1
|
Verwaerde P, Estrella C, Burlet S, Barrier M, Marotte AA, Clincke G. First-In-Human Safety, Tolerability, and Pharmacokinetics of Single and Multiple Doses of AZP2006, A Synthetic Compound for the Treatment of Alzheimer's Disease and Related Diseases. J Alzheimers Dis 2024; 98:715-727. [PMID: 38427472 DOI: 10.3233/jad-220883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Alzheimer's disease (AD) and progressive supranuclear palsy (PSP) are major neurodegenerative conditions with tau pathology in common but distinct symptoms-AD involves cognitive decline while PSP affects balance and eye movement. Progranulin (PGRN) is a growth factor implicated in neurodegenerative diseases, including AD and PSP. AZP2006, a synthetic compound, targets tauopathies by stabilizing PGRN levels and reducing tau aggregation and neuroinflammation. Objective Evaluate the safety, tolerability, and pharmacokinetics of AZP2006. Methods A first-in-Human phase 1 study comprised a single ascending dose (SAD) and a multiple ascending dose study (MAD). The SAD study included 64 healthy male volunteers and tested singles oral doses of 3 to 500 mg of AZP2006 free base equivalent or placebo. In the MAD study, 24 healthy male volunteers were administered oral doses of 30, 60, and 120 mg per day of AZP2006 or placebo for 10 days. Results No serious adverse events were observed. Clinical, biological, and electrocardiogram findings were non-relevant. Nineteen minor adverse events resolved before study completion. The safety profile indicated no specific risks. The multiple ascending dose study was halted, and the optional dose level of 180 mg was not performed due to high levels of M2 metabolite in plasma that necessitated additional preclinical evaluation of M2. Both AZP2006 and its M2 metabolite were quickly absorbed and widely distributed in tissues. Exposure increased more than proportionally with dose. Conclusions AZP2006 had a favorable safety profile and was rapidly absorbed. Elevated M2 metabolite levels necessitated further studies to clarify excretion and metabolism mechanisms.
Collapse
|
2
|
Zhu M, Xiao B, Xue T, Qin S, Ding J, Wu Y, Tang Q, Huang M, Zhao N, Ye Y, Zhang Y, Zhang B, Li J, Guo F, Jiang Y, Zhang L, Zhang L. Cdc42GAP deficiency contributes to the Alzheimer's disease phenotype. Brain 2023; 146:4350-4365. [PMID: 37254741 DOI: 10.1093/brain/awad184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023] Open
Abstract
Alzheimer's disease, the most common cause of dementia, is a chronic degenerative disease with typical pathological features of extracellular senile plaques and intracellular neurofibrillary tangles and a significant decrease in the density of neuronal dendritic spines. Cdc42 is a member of the small G protein family that plays an important role in regulating synaptic plasticity and is regulated by Cdc42GAP, which switches Cdc42 from active GTP-bound to inactive GDP-bound states regulating downstream pathways via effector proteins. However, few studies have focused on Cdc42 in the progression of Alzheimer's disease. In a heterozygous Cdc42GAP mouse model that exhibited elevated Cdc42-GTPase activity accompanied by increased Cdc42-PAK1-cofilin signalling, we found impairments in cognitive behaviours, neuron senescence, synaptic loss with depolymerization of F-actin and the pathological phenotypes of Alzheimer's disease, including phosphorylated tau (p-T231, AT8), along with increased soluble and insoluble Aβ1-42 and Aβ1-40, which are consistent with typical Alzheimer's disease mice. Interestingly, these impairments increased significantly with age. Furthermore, the results of quantitative phosphoproteomic analysis of the hippocampus of 11-month-old GAP mice suggested that Cdc42GAP deficiency induces and accelerates Alzheimer's disease-like phenotypes through activation of GSK-3β by dephosphorylation at Ser9, Ser389 and/or phosphorylation at Tyr216. In addition, overexpression of dominant-negative Cdc42 in the primary hippocampal and cortical neurons of heterozygous Cdc42GAP mice reversed synaptic loss and tau hyperphosphorylation. Importantly, the Cdc42 signalling pathway, Aβ1-42, Aβ1-40 and GSK-3β activity were increased in the cortical sections of Alzheimer's disease patients compared with those in healthy controls. Together, these data indicated that Cdc42GAP is involved in regulating Alzheimer's disease-like phenotypes such as cognitive deficits, dendritic spine loss, phosphorylated tau (p-T231, AT8) and increased soluble and insoluble Aβ1-42 and Aβ1-40, possibly through the activation of GSK-3β, and these impairments increased significantly with age. Thus, we provide the first evidence that Cdc42 is involved in the progression of Alzheimer's disease-like phenotypes, which may provide new targets for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Mengjuan Zhu
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bin Xiao
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tao Xue
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Sifei Qin
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Yue Wu
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qingqiu Tang
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengfan Huang
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Na Zhao
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Yingshan Ye
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuning Zhang
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Boya Zhang
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Juan Li
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Center for Orthopedic Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, OH 45229-3026, USA
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lin Zhang
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Center for Orthopedic Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
3
|
Romero-Márquez JM, Navarro-Hortal MD, Orantes FJ, Esteban-Muñoz A, Pérez-Oleaga CM, Battino M, Sánchez-González C, Rivas-García L, Giampieri F, Quiles JL, Forbes-Hernández TY. In Vivo Anti-Alzheimer and Antioxidant Properties of Avocado ( Persea americana Mill.) Honey from Southern Spain. Antioxidants (Basel) 2023; 12:antiox12020404. [PMID: 36829962 PMCID: PMC9952156 DOI: 10.3390/antiox12020404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
There is growing evidence that Alzheimer's disease (AD) can be prevented by reducing risk factors involved in its pathophysiology. Food-derived bioactive molecules can help in the prevention and reduction of the progression of AD. Honey, a good source of antioxidants and bioactive molecules, has been tied to many health benefits, including those from neurological origin. Monofloral avocado honey (AH) has recently been characterized but its biomedical properties are still unknown. The aim of this study is to further its characterization, focusing on the phenolic profile. Moreover, its antioxidant capacity was assayed both in vitro and in vivo. Finally, a deep analysis on the pathophysiological features of AD such as oxidative stress, amyloid-β aggregation, and protein-tau-induced neurotoxicity were evaluated by using the experimental model C. elegans. AH exerted a high antioxidant capacity in vitro and in vivo. No toxicity was found in C. elegans at the dosages used. AH prevented ROS accumulation under AAPH-induced oxidative stress. Additionally, AH exerted a great anti-amyloidogenic capacity, which is relevant from the point of view of AD prevention. AH exacerbated the locomotive impairment in a C. elegans model of tauopathy, although the real contribution of AH remains unclear. The mechanisms under the observed effects might be attributed to an upregulation of daf-16 as well as to a strong ROS scavenging activity. These results increase the interest to study the biomedical applications of AH; however, more research is needed to deepen the mechanisms under the observed effects.
Collapse
Affiliation(s)
- Jose M. Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | - María D. Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | | | - Adelaida Esteban-Muñoz
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | - Cristina M. Pérez-Oleaga
- Department of Biostatistics, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Department of Biostatistics, Universidad Internacional Iberoamericana, Arecibo, PR 00613, USA
- Department of Biostatistics, Universidade Internacional do Cuanza, Cuito 250, Angola
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Cristina Sánchez-González
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| | - Lorenzo Rivas-García
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| | - José L. Quiles
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain
- Correspondence: (J.L.Q.); (T.Y.F.-H.); Tel.: +34-95-824-1000 (ext. 20316) (J.L.Q. & T.Y.F.-H.)
| | - Tamara Y. Forbes-Hernández
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Correspondence: (J.L.Q.); (T.Y.F.-H.); Tel.: +34-95-824-1000 (ext. 20316) (J.L.Q. & T.Y.F.-H.)
| |
Collapse
|
4
|
Montalto G, Ricciarelli R. Tau, tau kinases, and tauopathies: An updated overview. Biofactors 2023. [PMID: 36688478 DOI: 10.1002/biof.1930] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/13/2022] [Indexed: 01/24/2023]
Abstract
Tau is a macrotubule-associated protein primarily involved in the stabilization of the cytoskeleton. Under normal conditions, phosphorylation reduces the affinity of tau for tubulin, allowing the protein to detach from microtubules and ensuring the system dynamics in neuronal cells. However, hyperphosphorylated tau aggregates into paired helical filaments, the main constituents of neurofibrillary tangles found in the brains of patients with Alzheimer's disease and other tauopathies. In this review, we provide an overview of the structure of tau and the pathophysiological roles of tau phosphorylation. We also evaluate the major protein kinases involved and discuss the progress made in the development of drug therapies aimed at inhibiting tau kinases.
Collapse
Affiliation(s)
- Giulia Montalto
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Roberta Ricciarelli
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
5
|
Truncating tau reveals different pathophysiological actions of oligomers in single neurons. Commun Biol 2021; 4:1265. [PMID: 34737403 PMCID: PMC8569149 DOI: 10.1038/s42003-021-02791-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/14/2021] [Indexed: 11/18/2022] Open
Abstract
Tau protein is involved in maintaining neuronal structure. In Alzheimer’s disease, small numbers of tau molecules can aggregate to form oligomers. However, how these oligomers produce changes in neuronal function remains unclear. Previously, oligomers made from full-length human tau were found to have multiple effects on neuronal properties. Here we have cut the tau molecule into two parts: the first 123 amino acids and the remaining 124-441 amino acids. These truncated tau molecules had specific effects on neuronal properties, allowing us to assign the actions of full-length tau to different regions of the molecule. We identified one key target for the effects of tau, the voltage gated sodium channel, which could account for the effects of tau on the action potential. By truncating the tau molecule, we have probed the mechanisms that underlie tau dysfunction, and this increased understanding of tau’s pathological actions will build towards developing future tau-targeting therapies. Hill et al. examine the effects of full-length or truncated human recombinant tau on the excitability of hippocampal pyramidal neurons in mice. Their results suggest that effects seen with full-length tau oligomers can be dissected apart using tau truncations and highlights a tau-mediated alteration in voltage-gated sodium channel currents.
Collapse
|
6
|
Callizot N, Estrella C, Burlet S, Henriques A, Brantis C, Barrier M, Campanari ML, Verwaerde P. AZP2006, a new promising treatment for Alzheimer's and related diseases. Sci Rep 2021; 11:16806. [PMID: 34413330 PMCID: PMC8376949 DOI: 10.1038/s41598-021-94708-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Progranulin (PGRN) is a protein with multiple functions including the regulation of neuroinflammation, neuronal survival, neurite and synapsis growth. Although the mechanisms of action of PGRN are currently unknown, its potential therapeutic application in treating neurodegenerative diseases is huge. Thus, strategies to increase PGRN levels in patients could provide an effective treatment. In the present study, we investigated the effects of AZP2006, a lysotropic molecule now in phase 2a clinical trial in Progressive Supranuclear Palsy patients, for its ability to increase PGRN level and promote neuroprotection. We showed for the first time the in vitro and in vivo neuroprotective effects of AZP2006 in neurons injured with Aβ1-42 and in two different pathological animal models of Alzheimer's disease (AD) and aging. Thus, the chronic treatment with AZP2006 was shown to reduce the loss of central synapses and neurons but also to dramatically decrease the massive neuroinflammation associated with the animal pathology. A deeper investigation showed that the beneficial effects of AZP2006 were associated with PGRN production. Also, AZP2006 binds to PSAP (the cofactor of PGRN) and inhibits TLR9 receptors normally responsible for proinflammation when activated. Altogether, these results showed the high potential of AZP2006 as a new putative treatment for AD and related diseases.
Collapse
Affiliation(s)
- N Callizot
- Alzprotect, Parc Eurasanté, 85C rue Nelson Mandela, 59120, Loos, France.
- Neuro-Sys, 410 Chemin Départemental 60, 13120, Gardanne, France.
| | - C Estrella
- Alzprotect, Parc Eurasanté, 85C rue Nelson Mandela, 59120, Loos, France
| | - S Burlet
- Alzprotect, Parc Eurasanté, 85C rue Nelson Mandela, 59120, Loos, France
| | - A Henriques
- Neuro-Sys, 410 Chemin Départemental 60, 13120, Gardanne, France
| | - C Brantis
- Alzprotect, Parc Eurasanté, 85C rue Nelson Mandela, 59120, Loos, France
| | - M Barrier
- Alzprotect, Parc Eurasanté, 85C rue Nelson Mandela, 59120, Loos, France
| | - M L Campanari
- Neuro-Sys, 410 Chemin Départemental 60, 13120, Gardanne, France
| | - P Verwaerde
- Alzprotect, Parc Eurasanté, 85C rue Nelson Mandela, 59120, Loos, France
| |
Collapse
|
7
|
Gorantla N, Sunny LP, Rajasekhar K, Nagaraju PG, CG PP, Govindaraju T, Chinnathambi S. Amyloid-β-Derived Peptidomimetics Inhibits Tau Aggregation. ACS OMEGA 2021; 6:11131-11138. [PMID: 34056268 PMCID: PMC8153954 DOI: 10.1021/acsomega.9b03497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/18/2020] [Indexed: 05/08/2023]
Abstract
The aggregation of tau protein is one of the hallmarks for Alzheimer's disease, resulting in neurodegeneration. The peptidomimetics strategy to prevent tau aggregation is more specific over other small molecules. In the present study, we analyzed the effect of amyloid-β-derived peptidomimetics for inhibiting heparin-induced tau aggregation in vitro. These peptides and their derivatives were known to prevent aggregation of amyloid-β. KLVFF is a hydrophobic sequence of the pentapeptide that prevented tau aggregation as observed by thioflavin S fluorescence, transmission electron microscopy, and circular dichroism spectroscopy. P4 and P5 also prevented assembly of tau into aggregates and formed short fibrils. The β-sheet breaker LPFFD was however ineffective in preventing tau aggregation. The peptides further demonstrated reversal of tau-induced cytotoxicity in a dose-dependent manner. Our results suggested that these peptides can also be used to inhibit tau aggregation and also, toxicity induced by tau could be considered as potential molecules that have an effect on tau as well as amyloid-β.
Collapse
Affiliation(s)
- Nalini
V. Gorantla
- Neurobiology
Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India
- Academy
of Scientific and Innovative Research (AcSIR), 411008 Pune, India
| | - Lisni P. Sunny
- Neurobiology
Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India
- Academy
of Scientific and Innovative Research (AcSIR), 411008 Pune, India
| | - Kolla Rajasekhar
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Pramod G. Nagaraju
- Department
of Molecular Nutrition, CSIR-CFTRI, 570020 Mysore, India
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Poornima Priyadarshini CG
- Department
of Molecular Nutrition, CSIR-CFTRI, 570020 Mysore, India
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Subashchandrabose Chinnathambi
- Neurobiology
Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India
- Academy
of Scientific and Innovative Research (AcSIR), 411008 Pune, India
- . Phone: +91-20-25902232. Fax: +91-20-25902648
| |
Collapse
|
8
|
The Seaweed Diet in Prevention and Treatment of the Neurodegenerative Diseases. Mar Drugs 2021; 19:md19030128. [PMID: 33652930 PMCID: PMC7996752 DOI: 10.3390/md19030128] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Edible marine algae are rich in bioactive compounds and are, therefore, a source of bioavailable proteins, long chain polysaccharides that behave as low-calorie soluble fibers, metabolically necessary minerals, vitamins, polyunsaturated fatty acids, and antioxidants. Marine algae were used primarily as gelling agents and thickeners (phycocolloids) in food and pharmaceutical industries in the last century, but recent research has revealed their potential as a source of useful compounds for the pharmaceutical, medical, and cosmetic industries. The green, red, and brown algae have been shown to have useful therapeutic properties in the prevention and treatment of neurodegenerative diseases: Parkinson, Alzheimer’s, and Multiple Sclerosis, and other chronic diseases. In this review are listed and described the main components of a suitable diet for patients with these diseases. In addition, compounds derived from macroalgae and their neurophysiological activities are described.
Collapse
|
9
|
Sadeghmousavi S, Eskian M, Rahmani F, Rezaei N. The effect of insomnia on development of Alzheimer's disease. J Neuroinflammation 2020; 17:289. [PMID: 33023629 PMCID: PMC7542374 DOI: 10.1186/s12974-020-01960-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia and a neurodegenerative disorder characterized by memory deficits especially forgetting recent information, recall ability impairment, and loss of time tracking, problem-solving, language, and recognition difficulties. AD is also a globally important health issue but despite all scientific efforts, the treatment of AD is still a challenge. Sleep has important roles in learning and memory consolidation. Studies have shown that sleep deprivation (SD) and insomnia are associated with the pathogenesis of Alzheimer's disease and may have an impact on the symptoms and development. Thus, sleep disorders have decisive effects on AD; this association deserves more attention in research, diagnostics, and treatment, and knowing this relation also can help to prevent AD through screening and proper management of sleep disorders. This study aimed to show the potential role of SD and insomnia in the pathogenesis and progression of AD.
Collapse
Affiliation(s)
- Shaghayegh Sadeghmousavi
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Eskian
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farzaneh Rahmani
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nima Rezaei
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Hill E, Wall MJ, Moffat KG, Karikari TK. Understanding the Pathophysiological Actions of Tau Oligomers: A Critical Review of Current Electrophysiological Approaches. Front Mol Neurosci 2020; 13:155. [PMID: 32973448 PMCID: PMC7468384 DOI: 10.3389/fnmol.2020.00155] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022] Open
Abstract
Tau is a predominantly neuronal protein that is normally bound to microtubules, where it acts to modulate neuronal and axonal stability. In humans, pathological forms of tau are implicated in a range of diseases that are collectively known as tauopathies. Kinases and phosphatases are responsible for maintaining the correct balance of tau phosphorylation to enable axons to be both stable and labile enough to function properly. In the early stages of tauopathies, this balance is interrupted leading to dissociation of tau from microtubules. This leaves microtubules prone to damage and phosphorylated tau prone to aggregation. Initially, phosphorylated tau forms oligomers, then fibrils, and ultimately neurofibrillary tangles (NFTs). It is widely accepted that the initial soluble oligomeric forms of tau are probably the most pathologically relevant species but there is relatively little quantitative information to explain exactly what their toxic effects are at the individual neuron level. Electrophysiology provides a valuable tool to help uncover the mechanisms of action of tau oligomers on synaptic transmission within single neurons. Understanding the concentration-, time-, and neuronal compartment-dependent actions of soluble tau oligomers on neuronal and synaptic properties are essential to understanding how best to counteract its effects and to develop effective treatment strategies. Here, we briefly discuss the standard approaches used to elucidate these actions, focusing on the advantages and shortcomings of the experimental procedures. Subsequently, we will describe a new approach that addresses specific challenges with the current methods, thus allowing real-time toxicity evaluation at the single-neuron level.
Collapse
Affiliation(s)
- Emily Hill
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Mark J Wall
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Kevin G Moffat
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Implications of increased S100β and Tau5 proteins in dystrophic nerves of two mdx mouse models for Duchenne muscular dystrophy. Mol Cell Neurosci 2020; 105:103484. [DOI: 10.1016/j.mcn.2020.103484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/25/2020] [Indexed: 12/31/2022] Open
|
12
|
Toral-Rios D, Pichardo-Rojas PS, Alonso-Vanegas M, Campos-Peña V. GSK3β and Tau Protein in Alzheimer's Disease and Epilepsy. Front Cell Neurosci 2020; 14:19. [PMID: 32256316 PMCID: PMC7089874 DOI: 10.3389/fncel.2020.00019] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/23/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia present in older adults; its etiology involves genetic and environmental factors. In recent years, epidemiological studies have shown a correlation between AD and chronic epilepsy since a considerable number of patients with AD may present seizures later on. Although the pathophysiology of seizures in AD is not completely understood, it could represent the result of several molecular mechanisms linked to amyloid beta-peptide (Aβ) accumulation and the hyperphosphorylation of tau protein, which may induce an imbalance in the release and recapture of excitatory and inhibitory neurotransmitters, structural alterations of the neuronal cytoskeleton, synaptic loss, and neuroinflammation. These changes could favor the recurrent development of hypersynchronous discharges and epileptogenesis, which, in a chronic state, favor the neurodegenerative process and influence the cognitive decline observed in AD. Supporting this correlation, histopathological studies in the brain tissue of temporal lobe epilepsy (TLE) patients have revealed the presence of Aβ deposits and the accumulation of tau protein in the neurofibrillary tangles (NFTs), accompanied by an increase of glycogen synthase kinase-3 beta (GSK3β) activity that may lead to an imminent alteration in posttranslational modifications of some microtubule-associated proteins (MAPs), mainly tau. The present review is focused on understanding the pathological aspects of GSK3β and tau in the development of TLE and AD.
Collapse
Affiliation(s)
- Danira Toral-Rios
- Departamento de Fisiología Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Pavel S Pichardo-Rojas
- Facultad de Ciencias de la Salud, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Mario Alonso-Vanegas
- Centro Internacional de Cirug#x000ED;a de Epilepsia, Instituto Nacional de Neurología y Neurocirugía, HMG, Hospital Coyoacán, Mexico City, Mexico
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| |
Collapse
|
13
|
Rodriguez-Callejas JD, Fuchs E, Perez-Cruz C. Increased oxidative stress, hyperphosphorylation of tau, and dystrophic microglia in the hippocampus of aged Tupaia belangeri. Glia 2020; 68:1775-1793. [PMID: 32096580 DOI: 10.1002/glia.23804] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/26/2022]
Abstract
Aging is a major risk factor for the development of neurodegenerative diseases. Alzheimer's disease and other neurodegenerative diseases are characterized by abnormal and prominent protein aggregation in the brain, partially due to deficiency in protein clearance. It has been proposed that alterations in microglia phagocytosis and debris clearance hasten the onset of neurodegeneration. Dystrophic microglia are abundant in aged humans, and it has been associated with the onset of disease. Furthermore, alterations in microglia containing ferritin are associated with neurodegenerative conditions. To further understand the process of microglia dysfunction during the aging process, we used hippocampal sections from Tupaia belangeri (tree shrews). Adult (mean age 3.8 years), old (mean age 6 years), and aged (mean age 7.5 years) tree shrews were used for histochemical and immunostaining techniques to determine ferritin and Iba1 positive microglia, iron tissue content, tau hyperphosphorylation and oxidized-RNA in dentate gyrus, subiculum, and CA1-CA3 hippocampal regions. Our results indicated that aged tree shrews presented an increased number of activated microglia containing ferritin, but microglia labeled with Iba1 with a dystrophic phenotype was more abundant in aged individuals. With aging, oxidative damage to RNA (8OHG) increased significantly in all hippocampal regions, while tau hyperphosphorylation (AT100) was enhanced in DG, CA3, and SUB in aged animals. Phagocytic inclusions of 8OHG- and AT100-damaged cells were observed in activated M2 microglia in old and aged animals. These data indicate that aged tree shrew may be a suitable model for translational research to study brain and microglia alterations during the aging process.
Collapse
Affiliation(s)
| | - Eberhard Fuchs
- German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | | |
Collapse
|
14
|
Proteomic and Genomic Changes in Tau Protein, Which Are Associated with Alzheimer's Disease after Ischemia-Reperfusion Brain Injury. Int J Mol Sci 2020; 21:ijms21030892. [PMID: 32019137 PMCID: PMC7037789 DOI: 10.3390/ijms21030892] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/12/2023] Open
Abstract
Recent evidence suggests that transient ischemia of the brain with reperfusion in humans and animals is associated with the neuronal accumulation of neurotoxic molecules associated with Alzheimer’s disease, such as all parts of the amyloid protein precursor and modified tau protein. Pathological changes in the amyloid protein precursor and tau protein at the protein and gene level due to ischemia may lead to dementia of the Alzheimer’s disease type after ischemic brain injury. Some studies have demonstrated increased tau protein immunoreactivity in neuronal cells after brain ischemia-reperfusion injury. Recent research has presented many new tau protein functions, such as neural activity control, iron export, protection of genomic DNA integrity, neurogenesis and long-term depression. This review discusses the potential mechanisms of tau protein in the brain after ischemia, including oxidative stress, apoptosis, autophagy, excitotoxicity, neurological inflammation, endothelium, angiogenesis and mitochondrial dysfunction. In addition, attention was paid to the role of tau protein in damage to the neurovascular unit. Tau protein may be at the intersection of many regulatory mechanisms in the event of major neuropathological changes in ischemic stroke. Data show that brain ischemia activates neuronal changes and death in the hippocampus in a manner dependent on tau protein, thus determining a new and important way to regulate the survival and/or death of post-ischemic neurons. Meanwhile, the association between tau protein and ischemic stroke has not been well discussed. In this review, we aim to update the knowledge about the proteomic and genomic changes in tau protein following ischemia-reperfusion injury and the connection between dysfunctional tau protein and ischemic stroke pathology. Finally we present the positive correlation between tau protein dysfunction and the development of sporadic Alzheimer’s disease type of neurodegeneration.
Collapse
|
15
|
Samarasimhareddy M, Mayer G, Hurevich M, Friedler A. Multiphosphorylated peptides: importance, synthetic strategies, and applications for studying biological mechanisms. Org Biomol Chem 2020; 18:3405-3422. [DOI: 10.1039/d0ob00499e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Advances in the synthesis of multiphosphorylated peptides and peptide libraries: tools for studying the effects of phosphorylation patterns on protein function and regulation.
Collapse
Affiliation(s)
- Mamidi Samarasimhareddy
- The Institute of Chemistry
- Edmond J. Safra Campus
- Givat Ram
- The Hebrew University of Jerusalem
- Jerusalem
| | - Guy Mayer
- The Institute of Chemistry
- Edmond J. Safra Campus
- Givat Ram
- The Hebrew University of Jerusalem
- Jerusalem
| | - Mattan Hurevich
- The Institute of Chemistry
- Edmond J. Safra Campus
- Givat Ram
- The Hebrew University of Jerusalem
- Jerusalem
| | - Assaf Friedler
- The Institute of Chemistry
- Edmond J. Safra Campus
- Givat Ram
- The Hebrew University of Jerusalem
- Jerusalem
| |
Collapse
|
16
|
Beyrent E, Gomez G. Oxidative stress differentially induces tau dissociation from neuronal microtubules in neurites of neurons cultured from different regions of the embryonic Gallus domesticus brain. J Neurosci Res 2019; 98:734-747. [PMID: 31621106 DOI: 10.1002/jnr.24541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/27/2022]
Abstract
Abnormal phosphorylation of microtubule-associated proteins such as tau has been shown to play a role in neurodegenerative disorders. It is hypothesized that oxidative stress-induced aggregates of hyperphosphorylated tau could lead to the microtubule network degradation commonly associated with neurodegeneration. We investigated whether oxidative stress induced tau hyperphosphorylation and focused on neurite degradation using cultured neurons isolated from the embryonic chick brain as a model system. Cells were isolated from the cerebrum, cerebellum, and tectum of 14-day-old chicks, grown separately in culture, and treated with tert-Butyl hydroperoxide (to simulate oxidative stress) for 48 hr. Relative expression and localization of tau or phospho-tau and β-tubulin III in neurites were determined using quantitative immunocytochemistry and confocal microscopy. In untreated cells, tau was tightly colocalized with β-tubulin III. Increasing levels of oxidative stress induced an increase in overall tau expression in neurites of cerebral and tectal but not the cerebellar neurons, coupled with a decrease in phospho-tau expression in tectal but not the cerebral or cerebellar neurons. In addition, oxidative stress induced the degeneration of the distal ends of the neurites and redistribution of phospho-tau toward the neuronal soma in the cerebral but not the tectal and cerebellar neurons. These results suggest that oxidative stress induces changes in tau protein that precede cytoskeletal degradation and neurite retraction. Additionally, there is a differential susceptibility of neuronal subpopulations to oxidative stress, which may offer potential avenues for investigation of the cellular mechanisms underlying the differential manifestations of neurodegenerative disorders in different regions of the brain.
Collapse
Affiliation(s)
- Erika Beyrent
- Biology Department, University of Scranton, Scranton, PA, USA
| | - George Gomez
- Biology Department, University of Scranton, Scranton, PA, USA
| |
Collapse
|
17
|
Introduction of Tau Oligomers into Cortical Neurons Alters Action Potential Dynamics and Disrupts Synaptic Transmission and Plasticity. eNeuro 2019; 6:ENEURO.0166-19.2019. [PMID: 31554666 PMCID: PMC6794083 DOI: 10.1523/eneuro.0166-19.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/29/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023] Open
Abstract
Tau is a highly soluble microtubule-associated protein that acts within neurons to modify microtubule stability. However, abnormally phosphorylated tau dissociates from microtubules to form oligomers and fibrils which associate in the somatodendritic compartment. Although tau can form neurofibrillary tangles (NFTs), it is the soluble oligomers that appear to be the toxic species. There is, however, relatively little quantitative information on the concentration-dependent and time-dependent actions of soluble tau oligomers (oTau) on the electrophysiological and synaptic properties of neurons. Here, whole-cell patch clamp recording was used to introduce known concentrations of oligomeric full-length tau-441 into mouse hippocampal CA1 pyramidal and neocortical Layer V thick-tufted pyramidal cells. oTau increased input resistance, reduced action potential amplitude and slowed action potential rise and decay kinetics. oTau injected into presynaptic neurons induced the run-down of unitary EPSPs which was associated with increased short-term depression. In contrast, introduction of oTau into postsynaptic neurons had no effect on basal synaptic transmission, but markedly impaired the induction of long-term potentiation (LTP). Consistent with its effects on synaptic transmission and plasticity, oTau puncta could be observed in the soma, axon and in the distal dendrites of injected neurons.
Collapse
|
18
|
Almansoub HA, Tang H, Wu Y, Wang DQ, Mahaman YAR, Wei N, Almansob YAM, He W, Liu D. Tau Abnormalities and the Potential Therapy in Alzheimer’s Disease. J Alzheimers Dis 2019; 67:13-33. [DOI: 10.3233/jad-180868] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hasan A.M.M. Almansoub
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
- Department of Biology, Faculty of Science – Marib, Sana’a University, Marib, Yemen
| | - Hui Tang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ying Wu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ding-Qi Wang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou, P.R. China
| | - Yusra A. M. Almansob
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Wei He
- Department of Orthopedics’, Hubei Hospital of Traditional Chinese Medicine, Wuhan, Hubei, P.R. China
| | - Dan Liu
- The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
- Department of Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
19
|
Harrison IF, Whitaker R, Bertelli PM, O’Callaghan JM, Csincsik L, Bocchetta M, Ma D, Fisher A, Ahmed Z, Murray TK, O’Neill MJ, Rohrer JD, Lythgoe MF, Lengyel I. Optic nerve thinning and neurosensory retinal degeneration in the rTg4510 mouse model of frontotemporal dementia. Acta Neuropathol Commun 2019; 7:4. [PMID: 30616676 PMCID: PMC6322294 DOI: 10.1186/s40478-018-0654-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023] Open
Abstract
Visual impairments, such as difficulties in reading and finding objects, perceiving depth and structure from motion, and impaired stereopsis, have been reported in tauopathy disorders, such as frontotemporal dementia (FTD). These impairments however have been previously attributed to cortical pathologies rather than changes in the neurosensory retina or the optic nerve. Here, we examined tau pathology in the neurosensory retina of the rTg(tauP301L)4510 mouse model of FTD. Optic nerve pathology in mice was also assessed using MRI, and corresponding measurements taken in a cohort of five FTD sufferers and five healthy controls. rTg(tauP301L)4510 mice were imaged (T2-weighted MRI) prior to being terminally anesthetized and eyes and brains removed for immunohistochemical and histological analysis. Central and peripheral retinal labelling of tau and phosphorylated tau (pTau) was quantified and retinal layer thicknesses and cell numbers assessed. MR volumetric changes of specific brain regions and the optic nerve were compared to tau accumulation and cell loss in the visual pathway. In addition, the optic nerves of a cohort of healthy controls and behavioural variant FTD patients, were segmented from T1- and T2-weighted images for volumetric study. Accumulation of tau and pTau were observed in both the central and peripheral retinal ganglion cell (RGC), inner plexiform and inner nuclear layers of the neurosensory retina of rTg(tauP301L)4510 mice. This pathology was associated with reduced nuclear density (− 24.9 ± 3.4%) of the central RGC layer, and a reduced volume (− 19.3 ± 4.6%) and elevated T2 signal (+ 27.1 ± 1.8%) in the optic nerve of the transgenic mice. Significant atrophy of the cortex (containing the visual cortex) was observed but not in other area associated with visual processing, e.g. the lateral geniculate nucleus or superior colliculus. Atrophic changes in optic nerve volume were similarly observed in FTD patients (− 36.6 ± 2.6%). The association between tau-induced changes in the neurosensory retina and reduced optic nerve volume in mice, combined with the observation of optic nerve atrophy in clinical FTD suggests that ophthalmic tau pathology may also exist in the eyes of FTD patients. If tau pathology and neurodegeneration in the retina were to reflect the degree of cortical tau burden, then cost-effective and non-invasive imaging of the neurosensory retina could provide valuable biomarkers in tauopathy. Further work should aim to validate whether these observations are fully translatable to a clinical scenario, which would recommend follow-up retinal and optic nerve examination in FTD.
Collapse
|
20
|
Ramkumar A, Jong BY, Ori-McKenney KM. ReMAPping the microtubule landscape: How phosphorylation dictates the activities of microtubule-associated proteins. Dev Dyn 2017; 247:138-155. [PMID: 28980356 DOI: 10.1002/dvdy.24599] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
Classical microtubule-associated proteins (MAPs) were originally identified based on their co-purification with microtubules assembled from mammalian brain lysate. They have since been found to perform a range of functions involved in regulating the dynamics of the microtubule cytoskeleton. Most of these MAPs play integral roles in microtubule organization during neuronal development, microtubule remodeling during neuronal activity, and microtubule stabilization during neuronal maintenance. As a result, mutations in MAPs contribute to neurodevelopmental disorders, psychiatric conditions, and neurodegenerative diseases. MAPs are post-translationally regulated by phosphorylation depending on developmental time point and cellular context. Phosphorylation can affect the microtubule affinity, cellular localization, or overall function of a particular MAP and can thus have profound implications for neuronal health. Here we review MAP1, MAP2, MAP4, MAP6, MAP7, MAP9, tau, and DCX, and how each is regulated by phosphorylation in neuronal physiology and disease. Developmental Dynamics 247:138-155, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amrita Ramkumar
- Department of Molecular and Cellular Biology, University of California, Davis, CA
| | - Brigette Y Jong
- Department of Molecular and Cellular Biology, University of California, Davis, CA
| | | |
Collapse
|
21
|
Kimura T, Suzuki M, Akagi T. Age-dependent changes in synaptic plasticity enhance tau oligomerization in the mouse hippocampus. Acta Neuropathol Commun 2017; 5:67. [PMID: 28874186 PMCID: PMC5586024 DOI: 10.1186/s40478-017-0469-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/22/2017] [Indexed: 01/09/2023] Open
Abstract
The aggregation mechanism of phosphorylated tau is an important therapeutic target for tauopathies, including Alzheimer’s disease, although the mechanism by which aggregation occurs is still unknown. Because the phosphorylation process of tau is involved in the trafficking of AMPA receptors, which accompanies the long-term depression (LTD) of synapses, we examined the effect of LTD-inducing low-frequency stimulation (LFS) on the formation of pathological tau aggregates in adult and aged wild-type mice. Our biochemical analysis demonstrated that LFS led to the formation of sarkosyl-insoluble (SI) tau oligomers in aged hippocampi but not in adult hippocampi in wild-type mice. In parallel, electrophysiological experiments showed an increased contribution of the autophagy-lysosomal pathway (ALP) to LTD during aging, although the other properties of LFS-induced LTD that we investigated were not altered. Thus, we anticipate that the increased contribution of the ALP to the LTD cascade is involved in the age-dependent formation of tau oligomers that results from LFS. Analysis of the LC3 ratio, an indicator of autophagosome formation, showed that LFS increased cleaved LC3 (type II) in the aged hippocampus relative to type I LC3, suggesting potentiation of the ALP accompanied by LTD. Pharmacological inhibition of autophagosome formation depressed LFS-induced oligomerization of tau. Prevention of lysosomal function in the ALP enhanced the formation of tau oligomers by LFS. These results suggest the importance of the autophagosome for the LFS-induced oligomerization of tau and suggest a reason for its age dependency. Interestingly, the lysosomal disturbance promoted the formation of the fibrillar form of aggregates consisting of hyper-phosphorylated tau. The LTD-ALP cascade potentially acts as one of the suppliers of pathological aggregates of tau in aged neurons.
Collapse
|
22
|
Rauch JN, Olson SH, Gestwicki JE. Interactions between Microtubule-Associated Protein Tau (MAPT) and Small Molecules. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024034. [PMID: 27940599 DOI: 10.1101/cshperspect.a024034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tau aggregation is linked to multiple neurodegenerative disorders that are collectively termed tauopathies. Small molecules are powerful probes of the aggregation process, helping to reveal the key steps and serving as diagnostics and reporters. Moreover, some of these small molecules may have potential as therapeutics. This review details how small molecules and chemical biology have helped to elucidate the mechanisms of tau aggregation and how they are being used to detect and prevent tau aggregation. In addition, we comment on how new insights into tau prions are changing the approach to small molecule discovery.
Collapse
Affiliation(s)
- Jennifer N Rauch
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Steven H Olson
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Jason E Gestwicki
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
23
|
Rodriguez-Callejas JD, Fuchs E, Perez-Cruz C. Evidence of Tau Hyperphosphorylation and Dystrophic Microglia in the Common Marmoset. Front Aging Neurosci 2016; 8:315. [PMID: 28066237 PMCID: PMC5177639 DOI: 10.3389/fnagi.2016.00315] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/08/2016] [Indexed: 01/22/2023] Open
Abstract
Common marmosets (Callithrix jacchus) have recently gained popularity in biomedical research as models of aging research. Basically, they confer advantages from other non-human primates due to their shorter lifespan with onset of appearance of aging at 8 years. Old marmosets present some markers linked to neurodegeneration in the brain such as amyloid beta (Aβ)1-42 and Aβ1-40. However, there are no studies exploring other cellular markers associated with neurodegenerative diseases in this non-human primate. Using immunohistochemistry, we analyzed brains of male adolescent, adult, old, and aged marmosets. We observed accumulation of Aβ1-40 and Aβ1-42 in the cortex of aged subjects. Tau hyperphosphorylation was already detected in the brain of adolescent animals and increased with aging in a more fibrillary form. Microglia activation was also observed in the aging process, while a dystrophic phenotype accumulates in aged subjects. Interestingly, dystrophic microglia contained hyperphosphorylated tau, but active microglia did not. These results support previous findings regarding microglia dysfunctionality in aging and neurodegenerative diseases as Alzheimer's disease. Further studies should explore the functional consequences of these findings to position this non-human primate as animal model of aging and neurodegeneration.
Collapse
Affiliation(s)
- Juan D Rodriguez-Callejas
- Laboratory of Neuroplasticity and Neurodegeneration, Department of Pharmacology, Center for Research and Advanced Studies (CINVESTAV) Mexico City, Mexico
| | - Eberhard Fuchs
- Clinical Neurobiology Laboratory, German Primate Center - Leibniz Institute for Primate Research, Göttingen Germany
| | - Claudia Perez-Cruz
- Laboratory of Neuroplasticity and Neurodegeneration, Department of Pharmacology, Center for Research and Advanced Studies (CINVESTAV) Mexico City, Mexico
| |
Collapse
|
24
|
Kanaan NM, Pigino GF, Brady ST, Lazarov O, Binder LI, Morfini GA. Axonal degeneration in Alzheimer's disease: when signaling abnormalities meet the axonal transport system. Exp Neurol 2013; 246:44-53. [PMID: 22721767 PMCID: PMC3465504 DOI: 10.1016/j.expneurol.2012.06.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 04/17/2012] [Accepted: 06/09/2012] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is characterized by progressive, age-dependent degeneration of neurons in the central nervous system. A large body of evidence indicates that neurons affected in AD follow a dying-back pattern of degeneration, where abnormalities in synaptic function and axonal connectivity long precede somatic cell death. Mechanisms underlying dying-back degeneration of neurons in AD remain elusive but several have been proposed, including deficits in fast axonal transport (FAT). Accordingly, genetic evidence linked alterations in FAT to dying-back degeneration of neurons, and FAT defects have been widely documented in various AD models. In light of these findings, we discuss experimental evidence linking several AD-related pathogenic polypeptides to aberrant activation of signaling pathways involved in the phosphoregulation of microtubule-based motor proteins. While each pathway appears to affect FAT in a unique manner, in the context of AD, many of these pathways might work synergistically to compromise the delivery of molecular components critical for the maintenance and function of synapses and axons. Therapeutic approaches aimed at preventing FAT deficits by normalizing the activity of specific protein kinases may help prevent degeneration of vulnerable neurons in AD.
Collapse
Affiliation(s)
- Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | | | | | | | | | | |
Collapse
|
25
|
Götz J, Ittner A, Ittner LM. Tau-targeted treatment strategies in Alzheimer's disease. Br J Pharmacol 2012; 165:1246-59. [PMID: 22044248 DOI: 10.1111/j.1476-5381.2011.01713.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
With populations ageing worldwide, the need for treating and preventing diseases associated with high age is pertinent. Alzheimer's disease (AD) is reaching epidemic proportions, yet the currently available therapies are limited to a symptomatic relief, without halting the degenerative process that characterizes the AD brain. As in AD cholinergic neurons are lost at high numbers, the initial strategies were limited to the development of acetylcholinesterase inhibitors, and more recently the NMDA receptor antagonist memantine, in counteracting excitotoxicity. With the identification of the protein tau in intracellular neurofibrillary tangles and of the peptide amyloid-β (Aβ) in extracellular amyloid plaques in the AD brain, and a better understanding of their role in disease, newer strategies are emerging, which aim at either preventing their formation and deposition or at accelerating their clearance. Interestingly, what is well established to combat viral diseases in peripheral organs - vaccination - seems to work for the brain as well. Accordingly, immunization strategies targeting Aβ show efficacy in mice and to some degree also in humans. Even more surprising is the finding in mice that immunization strategies targeting tau, a protein that forms aggregates in nerve cells, ameliorates the tau-associated pathology. We are reviewing the literature and discuss what can be expected regarding the translation into clinical practice and how the findings can be extended to other neurodegenerative diseases with protein aggregation in brain.
Collapse
Affiliation(s)
- Jürgen Götz
- Alzheimer's and Parkinson's Disease Laboratory, Brain & Mind Research Institute, University of Sydney, Camperdown, NSW, Australia.
| | | | | |
Collapse
|
26
|
Proteasome and Neurodegeneratıve Diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:397-414. [DOI: 10.1016/b978-0-12-397863-9.00011-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Zhang YJ, Gendron TF, Xu YF, Ko LW, Yen SH, Petrucelli L. Phosphorylation regulates proteasomal-mediated degradation and solubility of TAR DNA binding protein-43 C-terminal fragments. Mol Neurodegener 2010; 5:33. [PMID: 20804554 PMCID: PMC2941488 DOI: 10.1186/1750-1326-5-33] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 08/30/2010] [Indexed: 11/10/2022] Open
Abstract
Background Inclusions of TAR DNA binding protein-43 (TDP-43) are the defining histopathological feature of several neurodegenerative diseases collectively referred to as TDP-43 proteinopathies. These diseases are characterized by the presence of cellular aggregates composed of abnormally phosphorylated, N-terminally truncated and ubiquitinated TDP-43 in the spinal cord and/or brain. Recent studies indicate that C-terminal fragments of TDP-43 are aggregation-prone and induce cytotoxicity. However, little is known regarding the pathways responsible for the degradation of these fragments and how their phosphorylation contributes to the pathogenesis of disease. Results Herein, we established a human neuroblastoma cell line (M17D3) that conditionally expresses an enhanced green fluorescent protein (GFP)-tagged caspase-cleaved C-terminal TDP-43 fragment (GFP-TDP220-414). We report that expression of this fragment within cells leads to a time-dependent formation of inclusions that are immunoreactive for both ubiquitin and phosphorylated TDP-43, thus recapitulating pathological hallmarks of TDP-43 proteinopathies. Phosphorylation of GFP-TDP220-414 renders it resistant to degradation and enhances its accumulation into insoluble aggregates. Nonetheless, GFP-TDP220-414 inclusions are reversible and can be cleared through the ubiquitin proteasome system. Moreover, both Hsp70 and Hsp90 bind to GFP-TDP220-414 and regulate its degradation. Conclusions Our data indicates that inclusions formed from TDP-43 C-terminal fragments are reversible. Given that TDP-43 inclusions have been shown to confer toxicity, our findings have important therapeutic implications and suggest that modulating the phosphorylation state of TDP-43 C-terminal fragments may be a promising therapeutic strategy to clear TDP-43 inclusions.
Collapse
Affiliation(s)
- Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Hoppe JB, Frozza RL, Horn AP, Comiran RA, Bernardi A, Campos MM, Battastini AMO, Salbego C. Amyloid-beta neurotoxicity in organotypic culture is attenuated by melatonin: involvement of GSK-3beta, tau and neuroinflammation. J Pineal Res 2010; 48:230-238. [PMID: 20136701 DOI: 10.1111/j.1600-079x.2010.00747.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder marked by accumulation of extracellular deposits of amyloid-beta (Abeta) peptide in brain regions that are important for memory and cognition. The buildup of Abeta aggregates in the AD is followed by the formation of intracellular neurofibrillary tangles and activation of neuroinflammatory reactions. The present study investigated whether melatonin possesses a neuroprotective effect against Abeta-induced toxicity. For this purpose, organotypic hippocampal slices were cultured and exposed to 25 microm of Abeta(25-35) in the absence or in the presence of melatonin (25, 50, or 100 microm). In addition, the authors have investigated the involvement of GSK-3beta, tau protein, astroglial, and microglial activation, and cytokine levels in the melatonin protection against Abeta-induced neurotoxicity. Melatonin prevented the cell damage in hippocampus induced by the exposure to Abeta(25-35). In addition, melatonin significantly reduced the activation of GSK-3beta, the phosphorylation of tau protein, the glial activation and the Abeta-induced increase of TNF-alpha and IL-6 levels. On the basis of these findings, we speculate that melatonin may provide an effective therapeutic strategy for AD, by attenuating Abeta-induced phosphorylation of tau protein, and preventing GSK-3beta activation and neuroinflammation.
Collapse
Affiliation(s)
- Juliana Bender Hoppe
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rudimar Luiz Frozza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Horn
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ricardo Argenta Comiran
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andressa Bernardi
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria Martha Campos
- Faculdade de Odontologia e Instituto de Toxicologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Christianne Salbego
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
29
|
Advances in tau-focused drug discovery for Alzheimer's disease and related tauopathies. Nat Rev Drug Discov 2009; 8:783-93. [PMID: 19794442 DOI: 10.1038/nrd2959] [Citation(s) in RCA: 312] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Neuronal inclusions comprised of the microtubule-associated protein tau are found in numerous neurodegenerative diseases, commonly known as tauopathies. In Alzheimer's disease - the most prevalent tauopathy - misfolded tau is probably a key pathological agent. The recent failure of amyloid-beta-targeted therapeutics in Phase III clinical trials suggests that it is timely and prudent to consider alternative drug discovery strategies for Alzheimer's disease. Here, we focus on strategies directed at reducing misfolded tau and compensating for the loss of normal tau function.
Collapse
|
30
|
Li W, Sperry JB, Crowe A, Trojanowski JQ, Smith AB, Lee VMY. Inhibition of tau fibrillization by oleocanthal via reaction with the amino groups of tau. J Neurochem 2009; 110:1339-51. [PMID: 19549281 DOI: 10.1111/j.1471-4159.2009.06224.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tau is a microtubule-associated protein that promotes microtubule assembly and stability. In Alzheimer's disease and related tauopathies, tau fibrillizes and aggregates into neurofibrillary tangles. Recently, oleocanthal isolated from extra virgin olive oil was found to display non-steroidal anti-inflammatory activity similar to ibuprofen. As our unpublished data indicates an inhibitory effect of oleocanthal on amyloid beta peptide fibrillization, we reasoned that it might inhibit tau fibrillization as well. Herein, we demonstrate that oleocanthal abrogates fibrillization of tau by locking tau into the naturally unfolded state. Using PHF6 consisting of the amino acid residues VQIVYK, a hexapeptide within the third repeat of tau that is essential for fibrillization, we show that oleocanthal forms an adduct with the lysine via initial Schiff base formation. Structure and function studies demonstrate that the two aldehyde groups of oleocanthal are required for the inhibitory activity. These two aldehyde groups show certain specificity when titrated with free lysine and oleocanthal does not significantly affect the normal function of tau. These findings provide a potential scheme for the development of novel therapies for neurodegenerative tauopathies.
Collapse
Affiliation(s)
- Wenkai Li
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 94305, USA
| | | | | | | | | | | |
Collapse
|
31
|
O-GlcNAc cycling: implications for neurodegenerative disorders. Int J Biochem Cell Biol 2009; 41:2134-46. [PMID: 19782947 DOI: 10.1016/j.biocel.2009.03.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 03/13/2009] [Accepted: 03/18/2009] [Indexed: 12/20/2022]
Abstract
The dynamic post-translational modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc), termed O-GlcNAcylation, is an important mechanism for modulating cellular signaling pathways. O-GlcNAcylation impacts transcription, translation, organelle trafficking, proteasomal degradation and apoptosis. O-GlcNAcylation has been implicated in the etiology of several human diseases including type-2 diabetes and neurodegeneration. This review describes the pair of enzymes responsible for the cycling of this post-translational modification: O-GlcNAc transferase (OGT) and beta-N-acetylglucosaminidase (OGA), with a focus on the function of their structural domains. We will also highlight the important processes and substrates regulated by these enzymes, with an emphasis on the role of O-GlcNAc as a nutrient sensor impacting insulin signaling and the cellular stress response. Finally, we will focus attention on the many ways by which O-GlcNAc cycling may affect the cellular machinery in the neuroendocrine and central nervous systems.
Collapse
|
32
|
Brunden KR, Trojanowski JQ, Lee VMY. Evidence that non-fibrillar tau causes pathology linked to neurodegeneration and behavioral impairments. J Alzheimers Dis 2008; 14:393-9. [PMID: 18688089 PMCID: PMC2789426 DOI: 10.3233/jad-2008-14406] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The discovery that mutations within the tau gene lead to frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) provided direct evidence that tau alterations can lead to neurodegenerative disease. While the presence of tau fibrils and tangles is a common feature of all tauopathies, including Alzheimer's disease (AD), data are emerging from biochemical, cell-based and transgenic mouse studies which suggest that a pre-fibrillar form of pathological tau may play a key role in eliciting central nervous system neurodegeneration and behavioral impairments. Herein we review recent findings that implicate diffusible tau pathology in the onset of neurodegeneration, and discuss the implications of these findings as they relate to tau tangles and possible therapeutic strategies for the treatment of AD and related tauopathies.
Collapse
Affiliation(s)
- Kurt R. Brunden
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, 3600 Spruce St., Maloney 3, Philadelphia, PA 19104
| | - John Q. Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, 3600 Spruce St., Maloney 3, Philadelphia, PA 19104
| | - Virginia M-Y. Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, 3600 Spruce St., Maloney 3, Philadelphia, PA 19104
| |
Collapse
|
33
|
Abstract
Neurofibrillary tangles are a characteristic hallmark of Alzheimer's and other neurodegenerative diseases, such as Pick's disease (PiD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). These diseases are summarized as tauopathies, because neurofibrillary tangles are composed of intracellular aggregates of the microtubule-associated protein tau. The molecular mechanisms of tau-mediated neurotoxicity are not well understood; however, pathologic hyperphosphorylation and aggregation of tau play a central role in neurodegeneration and neuronal dysfunction. The present review, therefore, focuses on therapeutic approaches that aim to inhibit tau phosphorylation and aggregation or to dissolve preexisting tau aggregates. Further experimental therapy strategies include the enhancement of tau clearance by activation of proteolytic, proteasomal, or autophagosomal degradation pathways or anti-tau directed immunotherapy. Hyperphosphorylated tau does not bind microtubules, leading to microtubule instability and transport impairment. Pharmacological stabilization of microtubule networks might counteract this effect. In several tauopathies there is a shift toward four-repeat tau isoforms, and interference with the splicing machinery to decrease four-repeat splicing might be another therapeutic option.
Collapse
Affiliation(s)
- Anja Schneider
- grid.7450.60000000123644210Department of Psychiatry and Psychotherapy, University of Goettingen, Von-Siebold-Strasse 5, 37075 Goettingen, Germany
- grid.419522.90000000106686902Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Goettingen, Germany
| | - Eckhard Mandelkow
- Max-Planck-Unit for Structural Molecular Biology, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
34
|
Shahpasand K, Ahmadian S, Riazi GH. A possible mechanism for controlling processive transport by microtubule-associated proteins. Neurosci Res 2008; 61:347-50. [PMID: 18541318 DOI: 10.1016/j.neures.2008.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/16/2008] [Accepted: 04/25/2008] [Indexed: 01/07/2023]
Abstract
Molecular mechanisms of axonal transport have been evaluated by several investigators. It seems that microtubules (MTs) act as a track for the transport and microtubule-associated proteins (MAPs) seem to play as a regulating factor in it. In order to transport MTs must move in the radial direction to make room for a vesicle and when the cargo passes, return to the previous position for the maintenance of neuronal structure. An inhibitor factor against the radial movement is the steric constraints resulted from presence of MAPs. In fact, inter-microtubular spaces (IMS) in the neuronal processes are resulted from the space-making role of the MAPs. Since the IMS must be locally altered to make enough room for a vesicle, it seems relevant to imagine some mechanisms that control the steric constraints for an efficient vesicular transport. Here we juxtapose the older findings and the recent ones to investigate the possible effects of MAPs on the processive transport.
Collapse
Affiliation(s)
- Kourosh Shahpasand
- Institute of Biochemistry & Biophysics, University of Tehran, Tehran, Iran.
| | | | | |
Collapse
|
35
|
Wang JZ, Liu F. Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol 2008; 85:148-75. [PMID: 18448228 DOI: 10.1016/j.pneurobio.2008.03.002] [Citation(s) in RCA: 298] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 12/29/2007] [Accepted: 03/13/2008] [Indexed: 12/11/2022]
Abstract
As a principal neuronal microtubule-associated protein, tau has been recognized to play major roles in promoting microtubule assembly and stabilizing the microtubules and to maintain the normal morphology of the neurons. Recent studies suggest that tau, upon alternative mRNA splicing and multiple posttranslational modifications, may participate in the regulations of intracellular signal transduction, development and viability of the neurons. Furthermore, tau gene mutations, aberrant mRNA splicing and abnormal posttranslational modifications, such as hyperphosphorylation, have also been found in a number of neurodegenerative disorders, collectively known as tauopathies. Therefore, changes in expression of the tau gene, alternative splicing of its mRNA and its posttranslational modification can modulate the normal architecture and functions of neurons as well as in a situation of tauopathies, such as Alzheimer's disease. The primary aim of this review is to summarize the latest developments and perspectives in our understanding about the roles of tau, especially hyperphosphorylation, in the development, degeneration and protection of neurons.
Collapse
Affiliation(s)
- Jian-Zhi Wang
- Pathophysiology Department, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | | |
Collapse
|
36
|
Terwel D, Muyllaert D, Dewachter I, Borghgraef P, Croes S, Devijver H, Van Leuven F. Amyloid activates GSK-3beta to aggravate neuronal tauopathy in bigenic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:786-98. [PMID: 18258852 DOI: 10.2353/ajpath.2008.070904] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hypothesis that amyloid pathology precedes and induces the tau pathology of Alzheimer's disease is experimentally supported here through the identification of GSK-3 isozymes as a major link in the signaling pathway from amyloid to tau pathology. This study compares two novel bigenic mouse models: APP-V717I x Tau-P301L mice with combined amyloid and tau pathology and GSK-3beta x Tau-P301L mice with tauopathy only. Extensive and remarkable parallels were observed between these strains including 1) aggravation of tauopathy with highly fibrillar tangles in the hippocampus and cortex; 2) prolonged survival correlated to alleviated brainstem tauopathy; 3) development of severe cognitive and behavioral defects in young adults before the onset of amyloid deposition or tauopathy; and 4) presence of pathological phospho-epitopes of tau, including the characteristic GSK-3beta motif at S396/S404. Both GSK-3 isozymes were activated in the brain of parental APP-V717I amyloid mice, even at a young age when cognitive and behavioral defects are evident but before amyloid deposition. The data indicate that amyloid induces tauopathy through activation of GSK-3 and suggest a role for the kinase in maintaining the functional integrity of adult neurons.
Collapse
Affiliation(s)
- Dick Terwel
- Experimental Genetics Group, Department Human Genetics, Katholieke Universiteit Leuven-Campus Gasthuisberg ON1-06.602, B-3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|