1
|
Nguyen HTN, Macielak RJ, Zhang L, Adunka OF, Wu KC, Ren Y. Plasma Matrix Metalloproteinase-9 Predicts Intraoperative Experience and Extent of Resection in Vestibular Schwannoma Surgery. Otolaryngol Head Neck Surg 2025; 172:1379-1386. [PMID: 39834087 DOI: 10.1002/ohn.1138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVE To evaluate the predictive value of plasma matrix metalloproteinase-9 (MMP-9) level in determining the extent of tumor resection (EOR) and tumor adherence in vestibular schwannoma (VS) surgery. STUDY DESIGN Prospective cohort study. SETTING Academic referral center. METHODS Plasma and tumor samples were prospectively collected from patients with nonradiated, sporadic VS undergoing microsurgical resection from July 2022 to June 2023. Plasma MMP-9 levels were measured by enzyme-linked immunosorbent assay, and their association with tumor adherence and postoperative outcomes were evaluated. RESULTS Thirty-three patients undergoing microsurgical resection agreed to participate (15 females, median age 54 years old, median tumor size 26.7 mm). A gross total resection (GTR) was performed in 18 patients (55%), and a near-total (NTR)/subtotal resection (STR) in 15 (45%). Tumor size was not significantly different between the GTR and NTR/STR groups (20.7 vs 24.8 mm, P= .185). Intraoperatively, a larger fraction of NTR/STR tumors were highly adherent to the brainstem and/or cranial nerves (93% vs 56%, P = .015). Preoperative plasma MMP-9 was higher in patients who underwent an NTR/STR compared to a GTR (229.9 vs 131.2ng/mL, P = .007). On multivariable logistic regression, preoperative plasma MMP-9 strongly predicted EOR by receiver operating characteristic analysis (area under the curve [AUC] = 0.77 P = .008). Combining plasma MMP-9 and age was an excellent predictor of EOR (AUC = 0.91, P = .0001). CONCLUSION Plasma MMP-9 levels strongly predicted intraoperative tumor adherence and postoperative extent of resection. This could provide crucial preoperative insights into surgical difficulty, potential complications, and the likelihood of gross total tumor removal, enhancing informed decision-making for both physicians/surgeons and patients.
Collapse
Affiliation(s)
- Han T N Nguyen
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Robert J Macielak
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Lisa Zhang
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Oliver F Adunka
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kyle C Wu
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Yin Ren
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
2
|
Fietta A, Fusco P, Germano G, Micheli S, Sorgato M, Lucchetta G, Cimetta E. Neuroblastoma-derived hypoxic extracellular vesicles promote metastatic dissemination in a zebrafish model. PLoS One 2024; 19:e0316103. [PMID: 39715212 DOI: 10.1371/journal.pone.0316103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
The zebrafish (Danio rerio) is a valuable model organism for studying human biology due to its easy genetic manipulation and small size. It is optically transparent and shares genetic similarities with humans, making it ideal for studying developmental processes, diseases, and drug screening via imaging-based approaches. Solid malignant tumors often contain hypoxic areas that stimulate the release of extracellular vesicles (EVs), lipid-bound structures released by cells into the extracellular space, that facilitate short- and long-range intercellular communication and metastatization. Here we investigate the effects of EVs derived from neuroblastoma (NB), a pediatric solid tumor, on metastatic niche formation using the zebrafish as an in vivo model. Intravascular injection in zebrafish embryos allows a non-invasive visualization of EVs dispersion, uptake, and interactions with host cells. To improve repeatability of our results and ease the injection steps, we used an agarose device replica molded from a custom designed micromilled aluminum mold. We first demonstrated that EVs released under hypoxic conditions promote angiogenesis and are more easily internalized by endothelial cells than those purified from normoxic cells. We also showed that injection of with hypoxic EVs increased macrophages mobilization. We then focused on the caudal hematopoietic tissue (CHT) region of the embryo as a potential metastatic site. After hypoxic EVs injection, we highlighted changes in the expression of mmp-9 and cxcl8b genes. Furthermore, we investigated the ability of NB-derived EVs to prime a metastatic niche by a two-step injection of EVs first, followed by NB cells. Interestingly, we found that embryos injected with hypoxic EVs had more proliferating NB cells than those injected with normoxic EVs. Our findings suggest that EVs released by hypoxic NB cells alter the behavior of recipient cells in the zebrafish embryo and promote metastatic outgrowth. In addition, we demonstrated the ability of the zebrafish embryo to be a suitable model for studying the interactions between EVs and recipient cells in the metastatic process.
Collapse
Affiliation(s)
- Anna Fietta
- Department of Biomedical Sciences (DSB), University of Padua, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy
| | - Pina Fusco
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy
- Department of Industrial Engineering (DII), University of Padua, Padova, Italy
| | - Giuseppe Germano
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy
| | - Sara Micheli
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy
- Department of Industrial Engineering (DII), University of Padua, Padova, Italy
| | - Marco Sorgato
- Department of Industrial Engineering (DII), University of Padua, Padova, Italy
| | - Giovanni Lucchetta
- Department of Industrial Engineering (DII), University of Padua, Padova, Italy
| | - Elisa Cimetta
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy
- Department of Industrial Engineering (DII), University of Padua, Padova, Italy
| |
Collapse
|
3
|
Jacobson JC, Qiao J, Cochran ED, McCreery S, Chung DH. Migration, invasion, and metastasis are mediated by P-Rex1 in neuroblastoma. Front Oncol 2024; 14:1336031. [PMID: 38884093 PMCID: PMC11176429 DOI: 10.3389/fonc.2024.1336031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Neuroblastoma accounts for approximately 15% of pediatric cancer-related deaths despite intensive multimodal therapy. This is due, in part, to high rates of metastatic disease at diagnosis and disease relapse. A better understanding of tumor biology of aggressive, pro-metastatic phenotypes is necessary to develop novel, more effective therapeutics against neuroblastoma. Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 (P-Rex1) has been found to stimulate migration, invasion, and metastasis in several adult malignancies. However, its role in neuroblastoma is currently unknown. In the present study, we found that P-Rex1 is upregulated in pro-metastatic murine models of neuroblastoma, as well as human neuroblastoma metastases. Correspondingly, silencing of P-Rex1 was associated with decreased migration and invasion in vitro. This was associated with decreased AKT-mTOR and ERK2 activity, dysregulation of Rac, and diminished secretion of matrix metalloproteinases. Furthermore, increased P-Rex1 expression was associated with inferior relapse-free and overall survival via tissue microarray and Kaplan-Meier survival analysis of a publicly available clinical database. Together, these findings suggest that P-Rex1 may be a novel therapeutic target and potential prognostic factor in neuroblastoma.
Collapse
Affiliation(s)
- Jillian C Jacobson
- Division of Pediatric Surgery, Department of Surgery, University of Texas Southwestern Medical Center and Children's Health, Dallas, TX, United States
| | - Jingbo Qiao
- Division of Pediatric Surgery, Department of Surgery, University of Texas Southwestern Medical Center and Children's Health, Dallas, TX, United States
| | - Elizabeth D Cochran
- Division of Pediatric Surgery, Department of Surgery, University of Texas Southwestern Medical Center and Children's Health, Dallas, TX, United States
| | - Sullivan McCreery
- Division of Pediatric Surgery, Department of Surgery, University of Texas Southwestern Medical Center and Children's Health, Dallas, TX, United States
| | - Dai H Chung
- Division of Pediatric Surgery, Department of Surgery, University of Texas Southwestern Medical Center and Children's Health, Dallas, TX, United States
| |
Collapse
|
4
|
Yıldırım MR, Kırbaş OK, Abdik H, Şahin F, Avşar Abdik E. The emerging role of breast cancer derived extracellular vesicles-mediated intercellular communication in ovarian cancer progression and metastasis. Med Oncol 2023; 41:30. [PMID: 38148465 DOI: 10.1007/s12032-023-02285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Breast cancer is one of the most occurring cancer types in women worldwide and metastasizes to several organs such as bone, lungs, liver, brain, and ovaries. Extracellular vesicles (EVs) mediate intercellular signaling which has a profound effect on tumor development and metastasis. Recent developments in the field of EVs provide an opportunity to investigate the roles of EVs released from tumor cells in metastasis. In this study, we compared the effects of metastatic breast cancer-derived EVs on both nonluteinized granulosa HGrC1 and ovarian cancer OVCAR-3 cells in terms of proliferation, invasion, apoptosis, and gene expression levels. EVs were isolated from the culture medium of metastatic breast cancer cell line MDA-MB-231 by ultracentrifugation. Cell proliferation, apoptosis, cell cycle, invasion, and cellular uptake analysis were performed to clarify the roles of tumor-derived EVs in both cells. 6.85 × 108 nanoparticles of BCD-EVs were markedly increased cell proliferation as well as invasion capacity. Exposing the cells with BCD-EVs for 24 h, resulted in an accumulation of both cells in G2/M phase as determined by flow cytometry. The apoptosis assay results were consistent with cell proliferation and cell cycle results. The uptake of the BCD-EVs was efficiently internalized by both cells. In addition, marked variations in fatty acid composition between cells were observed. BCD-EVs appeared new fatty acids in HGrC1. Besides, BCD-EVs upregulated epithelial-mesenchymal transition (EMT) and proliferation-related genes. In conclusion, an environment of tumor-derived EVs changes the cellular phenotype of cancer and noncancerous cells and may lead to tumor progression and metastasis.
Collapse
Affiliation(s)
- Melis Rahime Yıldırım
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 34755, Istanbul, Turkey
| | - Oğuz Kaan Kırbaş
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 34755, Istanbul, Turkey
| | - Hüseyin Abdik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, İstanbul Sabahattin Zaim University, 34303, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 34755, Istanbul, Turkey
| | - Ezgi Avşar Abdik
- Department of Genomics, Faculty of Aquatic Sciences, Istanbul University, 34134, Istanbul, Turkey.
| |
Collapse
|
5
|
Patras L, Paul D, Matei IR. Weaving the nest: extracellular matrix roles in pre-metastatic niche formation. Front Oncol 2023; 13:1163786. [PMID: 37350937 PMCID: PMC10282420 DOI: 10.3389/fonc.2023.1163786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023] Open
Abstract
The discovery that primary tumors condition distant organ sites of future metastasis for seeding by disseminating tumor cells through a process described as the pre-metastatic niche (PMN) formation revolutionized our understanding of cancer progression and opened new avenues for therapeutic interventions. Given the inherent inefficiency of metastasis, PMN generation is crucial to ensure the survival of rare tumor cells in the otherwise hostile environments of metastatic organs. Early on, it was recognized that preparing the "soil" of the distal organ to support the outgrowth of metastatic cells is the initiating event in PMN development, achieved through the remodeling of the organ's extracellular matrix (ECM). Remote restructuring of ECM at future sites of metastasis under the influence of primary tumor-secreted factors is an iterative process orchestrated through the crosstalk between resident stromal cells, such as fibroblasts, epithelial and endothelial cells, and recruited innate immune cells. In this review, we will explore the ECM changes, cellular effectors, and the mechanisms of ECM remodeling throughout PMN progression, as well as its impact on shaping the PMN and ultimately promoting metastasis. Moreover, we highlight the clinical and translational implications of PMN ECM changes and opportunities for therapeutically targeting the ECM to hinder PMN formation.
Collapse
Affiliation(s)
- Laura Patras
- Children’s Cancer and Blood Foundation Laboratories, Department of Pediatrics, Division of Hematology/Oncology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Doru Paul
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Irina R. Matei
- Children’s Cancer and Blood Foundation Laboratories, Department of Pediatrics, Division of Hematology/Oncology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther 2023; 8:198. [PMID: 37169756 PMCID: PMC10175505 DOI: 10.1038/s41392-023-01460-1] [Citation(s) in RCA: 404] [Impact Index Per Article: 202.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/20/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels, is a complex and dynamic process regulated by various pro- and anti-angiogenic molecules, which plays a crucial role in tumor growth, invasion, and metastasis. With the advances in molecular and cellular biology, various biomolecules such as growth factors, chemokines, and adhesion factors involved in tumor angiogenesis has gradually been elucidated. Targeted therapeutic research based on these molecules has driven anti-angiogenic treatment to become a promising strategy in anti-tumor therapy. The most widely used anti-angiogenic agents include monoclonal antibodies and tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factor (VEGF) pathway. However, the clinical benefit of this modality has still been limited due to several defects such as adverse events, acquired drug resistance, tumor recurrence, and lack of validated biomarkers, which impel further research on mechanisms of tumor angiogenesis, the development of multiple drugs and the combination therapy to figure out how to improve the therapeutic efficacy. Here, we broadly summarize various signaling pathways in tumor angiogenesis and discuss the development and current challenges of anti-angiogenic therapy. We also propose several new promising approaches to improve anti-angiogenic efficacy and provide a perspective for the development and research of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Zhen-Ling Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Huan-Huan Chen
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Li Zheng
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| | - Lei Shi
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| |
Collapse
|
7
|
Horwacik I. The Extracellular Matrix and Neuroblastoma Cell Communication-A Complex Interplay and Its Therapeutic Implications. Cells 2022; 11:cells11193172. [PMID: 36231134 PMCID: PMC9564247 DOI: 10.3390/cells11193172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric neuroendocrine neoplasm. It arises from the sympatho-adrenal lineage of neural-crest-derived multipotent progenitor cells that fail to differentiate. NB is the most common extracranial tumor in children, and it manifests undisputed heterogeneity. Unsatisfactory outcomes of high-risk (HR) NB patients call for more research to further inter-relate treatment and molecular features of the disease. In this regard, it is well established that in the tumor microenvironment (TME), malignant cells are engaged in complex and dynamic interactions with the extracellular matrix (ECM) and stromal cells. The ECM can be a source of both pro- and anti-tumorigenic factors to regulate tumor cell fate, such as survival, proliferation, and resistance to therapy. Moreover, the ECM composition, organization, and resulting signaling networks are vastly remodeled during tumor progression and metastasis. This review mainly focuses on the molecular mechanisms and effects of interactions of selected ECM components with their receptors on neuroblastoma cells. Additionally, it describes roles of enzymes modifying and degrading ECM in NB. Finally, the article gives examples on how the knowledge is exploited for prognosis and to yield new treatment options for NB patients.
Collapse
Affiliation(s)
- Irena Horwacik
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
8
|
Zhou H, He Q, Li C, Alsharafi BLM, Deng L, Long Z, Gan Y. Focus on the tumor microenvironment: A seedbed for neuroendocrine prostate cancer. Front Cell Dev Biol 2022; 10:955669. [PMID: 35938167 PMCID: PMC9355504 DOI: 10.3389/fcell.2022.955669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor microenvironment (TME) is a microecology consisting of tumor and mesenchymal cells and extracellular matrices. The TME plays important regulatory roles in tumor proliferation, invasion, metastasis, and differentiation. Neuroendocrine differentiation (NED) is a mechanism by which castration resistance develops in advanced prostate cancer (PCa). NED is induced after androgen deprivation therapy and neuroendocrine prostate cancer (NEPC) is established finally. NEPC has poor prognosis and short overall survival and is a major cause of death in patients with PCa. Both the cellular and non-cellular components of the TME regulate and induce NEPC formation through various pathways. Insights into the roles of the TME in NEPC evolution, growth, and progression have increased over the past few years. These novel insights will help refine the NEPC formation model and lay the foundation for the discovery of new NEPC therapies targeting the TME.
Collapse
Affiliation(s)
- Hengfeng Zhou
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiangrong He
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Chao Li
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | | | - Liang Deng
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Long
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhi Long, ; Yu Gan,
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhi Long, ; Yu Gan,
| |
Collapse
|
9
|
MMP-9 Knockdown Inhibits Oral Squamous Cell Carcinoma Lymph Node Metastasis in the Nude Mouse Tongue-Xenografted Model through the RhoC/Src Pathway. ACTA ACUST UNITED AC 2021; 2021:6683391. [PMID: 33828938 PMCID: PMC8004385 DOI: 10.1155/2021/6683391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/04/2021] [Indexed: 11/17/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common types of cancers in developing countries. A major contributor to the high mortality rate of OSCC is the tendency of oral cancer cells to metastasize to lymph nodes around the head and neck during the early stages of cancer development. Matrix metalloproteinase 9 (MMP-9), an endopeptidase, can degrade the extracellular matrix and basement membrane and plays a key role in tumor invasion and metastasis. In vitro, cell migration ability was conducted by scratching assays. We also investigated the interaction abilities between OSCC cells and vascular endothelial cells (ECs) by an adhesion assay and transendothelial migration assay. And we established a BALB/c nude mouse tongue-xenografted metastasis model to investigate the role of MMP-9 and explore its potential underlying mechanism in OSCC growth, lymph node metastasis, and angiogenesis in vivo. The results showed that knockdown of MMP-9 could significantly suppress OSCC cell migration, proliferation, interactions between endothelial cells, xenografted tumor growth, and angiogenesis and simultaneously markedly inhibited OSCC cell metastasis to mouse lymphonodi cervicales superficiales, axillary lymph nodes, and even distant inguinal lymph nodes. Mechanistic studies revealed that knockdown of MMP-9 also led to a decreased expression of RhoC, Src, and F-actin by RT-PCR, western blotting, and immunohistochemistry. And the bioinformatic analysis showed that MMP-9, RhoC, and Src mRNA expression was positively and linearly correlated in OSCC on TCGA database. Together, our findings indicated that MMP-9 plays a very important role in OSCC growth, migration, angiogenesis, and lymph node metastasis, and its potential mechanism may be mediated by RhoC and Src gene expression.
Collapse
|
10
|
Zefferino R, Piccoli C, Di Gioia S, Capitanio N, Conese M. How Cells Communicate with Each Other in the Tumor Microenvironment: Suggestions to Design Novel Therapeutic Strategies in Cancer Disease. Int J Mol Sci 2021; 22:ijms22052550. [PMID: 33806300 PMCID: PMC7961918 DOI: 10.3390/ijms22052550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
Connexin- and pannexin (Panx)-formed hemichannels (HCs) and gap junctions (GJs) operate an interaction with the extracellular matrix and GJ intercellular communication (GJIC), and on account of this they are involved in cancer onset and progression towards invasiveness and metastatization. When we deal with cancer, it is not correct to omit the immune system, as well as neglecting its role in resisting or succumbing to formation and progression of incipient neoplasia until the formation of micrometastasis, nevertheless what really occurs in the tumor microenvironment (TME), which are the main players and which are the tumor or body allies, is still unclear. The goal of this article is to discuss how the pivotal players act, which can enhance or contrast cancer progression during two important process: "Activating Invasion and Metastasis" and the "Avoiding Immune Destruction", with a particular emphasis on the interplay among GJIC, Panx-HCs, and the purinergic system in the TME without disregarding the inflammasome and cytokines thereof derived. In particular, the complex and contrasting roles of Panx1/P2X7R signalosome in tumor facilitation and/or inhibition is discussed in regard to the early/late phases of the carcinogenesis. Finally, considering this complex interplay in the TME between cancer cells, stromal cells, immune cells, and focusing on their means of communication, we should be capable of revealing harmful messages that help the cancer growth and transform them in body allies, thus designing novel therapeutic strategies to fight cancer in a personalized manner.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
- Correspondence: ; Tel.: +39-0881-884673
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (N.C.)
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (N.C.)
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| |
Collapse
|
11
|
Role of Matrix Metalloproteinases in Angiogenesis and Its Implications in Asthma. J Immunol Res 2021; 2021:6645072. [PMID: 33628848 PMCID: PMC7896871 DOI: 10.1155/2021/6645072] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Asthma is a chronic airway disorder associated with aberrant inflammatory and remodeling responses. Angiogenesis and associated vascular remodeling are one of the pathological hallmarks of asthma. The mechanisms underlying angiogenesis in asthmatic airways and its clinical relevance represent a relatively nascent field in asthma when compared to other airway remodeling features. Matrix metalloproteinases (MMPs) are proteases that play an important role in both physiological and pathological conditions. In addition to facilitating extracellular matrix turnover, these proteolytic enzymes cleave bioactive molecules, thereby regulating cell signaling. MMPs have been implicated in the pathogenesis of asthma by interacting with both the airway inflammatory cells and the resident structural cells. MMPs also cover a broad range of angiogenic functions, from the degradation of the vascular basement membrane and extracellular matrix remodeling to the release of a variety of angiogenic mediators and growth factors. This review focuses on the contribution of MMPs and the regulatory role exerted by them in angiogenesis and vascular remodeling in asthma as well as addresses their potential as therapeutic targets in ameliorating angiogenesis in asthma.
Collapse
|
12
|
Deryugina E, Carré A, Ardi V, Muramatsu T, Schmidt J, Pham C, Quigley JP. Neutrophil Elastase Facilitates Tumor Cell Intravasation and Early Metastatic Events. iScience 2020; 23:101799. [PMID: 33299970 PMCID: PMC7702017 DOI: 10.1016/j.isci.2020.101799] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/15/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
Functional roles of neutrophil elastase (NE) have not been examined in distinct steps of the metastatic cascade. NE, delivered to primary tumors as a purified enzyme or within intact neutrophils or neutrophil granule content, enhanced human tumor cell intravasation and subsequent dissemination via NE-mediated formation of dilated intratumoral vasculature. These effects depended on picomole range of NE activity, sensitive to its natural inhibitor, α1PI. In Elane-negative mice, the lack of NE decreased lung retention of human tumor cells in experimental metastasis. Furthermore, NE was essential for spontaneous metastasis of murine carcinoma cells in a syngeneic orthotopic model of oral cancer. NE also induced tumor cell survival and migration via Src/PI3K-dependent activation of Akt signaling, vital for tumor cell dissemination in vivo. Together, our findings implicate NE, a potent host enzyme specific for first-responding innate immune cells, as directly involved in early metastatic events and a potential target for therapeutic intervention. NE enhances human carcinoma cell intravasation and spontaneous metastasis NE mediates formation of dilated intratumoral vasculature supporting cell intravasation NE-KO mice exhibit decreased lung retention and spontaneous metastasis of tumor cells NE induces tumor cell survival and migration via activation of Src/PI3K/Akt pathway
Collapse
Affiliation(s)
- Elena Deryugina
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alexia Carré
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Veronica Ardi
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.,National University, 9388 Lightwave Avenue, San Diego, CA 92123, USA
| | - Tomoki Muramatsu
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jonas Schmidt
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Christine Pham
- Department of Internal Medicine, Washington University, St. Louis, MO 63110, USA
| | - James P Quigley
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
13
|
Analysis of the Gene Expression Profile of Stromal Pro-Tumor Factors in Cancer-Associated Fibroblasts from Luminal Breast Carcinomas. Diagnostics (Basel) 2020; 10:diagnostics10110865. [PMID: 33114046 PMCID: PMC7690699 DOI: 10.3390/diagnostics10110865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Luminal tumors are the most frequent type of breast carcinomas showing less tumor aggressiveness, although heterogeneity exists in their clinical outcomes. Cancer-associated fibroblasts (CAFs) are a key component of the tumor stroma which contribute to tumor progression. We investigated by real-time PCR the gene expression of 19 factors implicated in tumor progression. Those factors included the calcium-binding protein S100A4, several growth factors (FGF2, FGF7, HGF, PDGFA, PDGFB, TGFβ, VEGFA, and IGF2), and we also studied inflammatory cytokines (IL6 and IL8), chemokines (CCL2, CXCL12), important proteases (uPA, MMP2, MMP9 and MMP11), the nuclear factor NFκB, and the metalloprotease inhibitor TIMP1, from luminal A and luminal B breast carcinoma CAFs. We performed a similar analysis after co-culturing CAFs with MCF-7 and MDA-MB-231 breast cancer cell lines. MMP-9 and CCL2 gene expressions were higher in CAFs from luminal B tumors. We also found different patterns in the induction of pro-tumoral factors from different CAFs populations co-cultured with different cancer cell lines. Globally, CAFs from luminal B tumors showed a higher expression of pro-tumor factors compared to CAFs from luminal A tumors when co-cultured with breast cancer cell lines. Moreover, we found that CAFs from metastatic tumors had higher IGF-2 gene expression, and we detected the same after co-culture with cell lines. Our results show the variability in the capacities of CAFs from luminal breast carcinomas, which may contribute to a better biological and clinical characterization of these cancer subtypes.
Collapse
|
14
|
Blavier L, Yang RM, DeClerck YA. The Tumor Microenvironment in Neuroblastoma: New Players, New Mechanisms of Interaction and New Perspectives. Cancers (Basel) 2020; 12:E2912. [PMID: 33050533 PMCID: PMC7599920 DOI: 10.3390/cancers12102912] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/08/2023] Open
Abstract
The contribution of the tumor microenvironment (TME) to cancer progression has been well recognized in recent decades. As cancer therapeutic strategies are increasingly precise and include immunotherapies, knowledge of the nature and function of the TME in a tumor becomes essential. Our understanding of the TME in neuroblastoma (NB), the second most common solid tumor in children, has significantly progressed from an initial focus on its Schwannian component to a better awareness of its complex nature, which includes not only immune but also non-immune cells such as cancer-associated fibroblasts (CAFs), the contribution of which to inflammation and interaction with tumor-associated macrophages (TAMs) is now recognized. Recent studies on the TME landscape of NB tumors also suggest significant differences between MYCN-amplified (MYCN-A) and non-amplified (MYCN-NA) tumors, in their content in stromal and inflammatory cells and their immunosuppressive activity. Extracellular vesicles (EVs) released by cells in the TME and microRNAs (miRs) present in their cargo could play important roles in the communication between NB cells and the TME. This review article discusses these new aspects of the TME in NB and the impact that information on the TME landscape in NB will have in the design of precise, biomarker-integrated clinical trials.
Collapse
Affiliation(s)
- Laurence Blavier
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (L.B.); (R.-M.Y.)
- Division of Hematology, Oncology and Blood and Bone Marrow Transplantation, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ren-Ming Yang
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (L.B.); (R.-M.Y.)
- Division of Hematology, Oncology and Blood and Bone Marrow Transplantation, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yves A. DeClerck
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (L.B.); (R.-M.Y.)
- Division of Hematology, Oncology and Blood and Bone Marrow Transplantation, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
15
|
Joseph C, Alsaleem M, Orah N, Narasimha PL, Miligy IM, Kurozumi S, Ellis IO, Mongan NP, Green AR, Rakha EA. Elevated MMP9 expression in breast cancer is a predictor of shorter patient survival. Breast Cancer Res Treat 2020; 182:267-282. [PMID: 32445177 PMCID: PMC7297818 DOI: 10.1007/s10549-020-05670-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE MMP9 is a matricellular protein associated with extracellular matrix (ECM) remodelling, that promotes tumour progression, and modulates the activity of cell adhesion molecules and cytokines. This study aims to assess the prognostic value of MMP9 and its association with cytoskeletal modulators in early-stage invasive breast cancer (BC). METHODS MMP9 expression was evaluated by immunohistochemistry using a well-characterised series of primary BC patients with long-term clinical follow-up. Association with clinicopathological factors, patient outcome and ECM remodelling BC-biomarkers were investigated. METABRIC dataset, BC-GenExMiner v4.0 and TCGA were used for the external validation of MMP9 expression. GSEA gene enrichment analyses were used to evaluate MMP9 associated pathways. RESULTS MMP9 immunopositivity was observed in the stroma and cytoplasm of BC cells. Elevated MMP9 protein levels were associated with high tumour grade, high Nottingham Prognostic Index, and hormonal receptor negativity. Elevated MMP9 protein expression correlated significantly with cytokeratin 17 (Ck17), Epidermal Growth Factor Receptor (EGFR), proliferation (Ki67) biomarkers, cell surface adhesion receptor (CD44) and cell division control protein 42 (CDC42). Cytoplasmic MMP9 expression was an independent prognostic factor associated with shorter BC-specific survival. In the external validation cohorts, MMP9 expression was also associated with poor patients' outcome. Transcriptomic analysis confirmed a positive association between MMP9 and ECM remodelling biomarkers. GSEA analysis supports MMP9 association with ECM and cytoskeletal pathways. CONCLUSION This study provides evidence for the prognostic value of MMP9 in BC. Further functional studies to decipher the role of MMP9 and its association with cytoskeletal modulators in BC progression are warranted.
Collapse
Affiliation(s)
- Chitra Joseph
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Mansour Alsaleem
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK.,Faculty of Applied Medical Sciences, Onizah Community College, Qassim University, Qassim, Saudi Arabia
| | - Nnamdi Orah
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Pavan L Narasimha
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Islam M Miligy
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Sasagu Kurozumi
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ian O Ellis
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nigel P Mongan
- Department of Pharmacology, Weill Cornell Medicine, New York, 10065, USA.,Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK. .,Histopathology Department, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt. .,Division of Cancer and Stem Cells, Department of Histopathology, School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, NG5 1PB, UK.
| |
Collapse
|
16
|
Gonzalez-Avila G, Sommer B, García-Hernández AA, Ramos C. Matrix Metalloproteinases' Role in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:97-131. [PMID: 32266655 DOI: 10.1007/978-3-030-40146-7_5] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer cells evolve in the tumor microenvironment (TME) by the acquisition of characteristics that allow them to initiate their passage through a series of events that constitute the metastatic cascade. For this purpose, tumor cells maintain a crosstalk with TME non-neoplastic cells transforming them into their allies. "Corrupted" cells such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and tumor-associated neutrophils (TANs) as well as neoplastic cells express and secrete matrix metalloproteinases (MMPs). Moreover, TME metabolic conditions such as hypoxia and acidification induce MMPs' synthesis in both cancer and stromal cells. MMPs' participation in TME consists in promoting events, for example, epithelial-mesenchymal transition (EMT), apoptosis resistance, angiogenesis, and lymphangiogenesis. MMPs also facilitate tumor cell migration through the basement membrane (BM) and extracellular matrix (ECM). The aim of the present chapter is to discuss MMPs' contribution to the evolution of cancer cells, their cellular origin, and their influence in the main processes that take place in the TME.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - A Armando García-Hernández
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Carlos Ramos
- Laboratorio de Biología Celular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
17
|
Zhang J, Liu M, Huang M, Chen M, Zhang D, Luo L, Ye G, Deng L, Peng Y, Wu X, Liu G, Ye W, Zhang D. Ginsenoside F1 promotes angiogenesis by activating the IGF-1/IGF1R pathway. Pharmacol Res 2019; 144:292-305. [PMID: 31048033 DOI: 10.1016/j.phrs.2019.04.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/06/2019] [Accepted: 04/18/2019] [Indexed: 01/29/2023]
Abstract
Ischemic stroke is one of the most lethal and highly disabling diseases that seriously affects the human health and quality of life. A therapeutic angiogenic strategy has been proposed to alleviate ischemia-induced injury by promoting angiogenesis and improving cerebrovascular function in the ischemic regions. The insulin-like growth factor 1 (IGF-1)/insulin-like growth factor 1 receptor (IGF1R) axis is crucial for cerebral angiogenesis and neurogenesis. However, effective drugs that prevent cerebral ischemic injury by inducing cerebral angiogenesis via activation of the IGF1R pathway are lacking. Here, we screened a pro-angiogenic agent ginsenoside F1 (GF1), a ginseng saponin isolated from a traditional Chinese medicine that was widely used in ischemic stroke treatment. It promoted the proliferation, mobility and tube formation of human umbilical vein endothelial cells and human brain microvascular endothelial cells, as well as pericytes recruitment to the endothelial tubes. GF1 stimulated vessel sprouting in the rat arterial ring and facilitated neovascularization in chicken embryo chorioallantoic membrane (CAM). In the in vivo experiments, GF1 rescued the axitinib-induced vascular defect in zebrafish. It also increased the microvessel density (MVD) and improved focal cerebral blood perfusion in the rat middle cerebral artery occlusion (MCAO) model. Mechanism studies revealed that GF1-induced angiogenesis depended on IGF1R activation mediated by the autocrine IGF-1 loop in endothelial cells. Based on our findings, GF1-induced activation of the IGF-1/IGF1R pathway to promote angiogenesis is an effective approach to alleviate cerebral ischemia, and GF1 is a potential agent that improves cerebrovascular function and promotes recovery from ischemic stroke.
Collapse
Affiliation(s)
- Jiayan Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Mingqun Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Maohua Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Minfeng Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Dong Zhang
- Department of Medical Imaging Centre, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Liangping Luo
- Department of Medical Imaging Centre, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Geni Ye
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Lijuan Deng
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yinghui Peng
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Xin Wu
- Guangxi Engineering Research Center of Innovative Preparations for Natural Medicine, Guangxi Wuzhou Pharmaceutical (Group) Co., Ltd, Wuzhou 543000, China
| | - Guanping Liu
- Guangxi Engineering Research Center of Innovative Preparations for Natural Medicine, Guangxi Wuzhou Pharmaceutical (Group) Co., Ltd, Wuzhou 543000, China
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
18
|
Peng J, Yang Q, Shi K, Xiao Y, Wei X, Qian Z. Intratumoral fate of functional nanoparticles in response to microenvironment factor: Implications on cancer diagnosis and therapy. Adv Drug Deliv Rev 2019; 143:37-67. [PMID: 31276708 DOI: 10.1016/j.addr.2019.06.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/04/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023]
Abstract
The extraordinary growth and progression of tumor require enormous nutrient and energy. Unregulated behaviors of cancer cell progressing and persistently change of tumor microenvironment (TME) which acts as the soil for cancer growth and metastasis are the ubiquitous features. The tumor microenvironment exhibits some unique features which differ with the normal tissues. While the nanoparticles get through the blood vessel leakage, they encounter immediately and interact directly with these microenvironment factors. These factors may inhibit the diffusion of nanoparticles from penetrating through the tumor, or induce the dissociation of nanoparticles. Different nanoparticles encountered with different intratumoral microenvironment factors end up in different way. Therefore, in this review, we first briefly introduced the formations, distributions, features of some intratumoral microenvironment, and their effects on the tumor progression. They include extracellular matrix (ECM), matrix metalloproteinases (MMPs), acidic/hypoxia environment, redox environment, and tumor associated macrophages (TAMs). We then exemplified how these factors interact with nanoparticles and emphasized the potentials and challenges of nanoparticle-based strategies facing in enhancing intratumoral penetration and tumor microenvironment remodeling. We hope to give a simple understanding of the interaction between these microenvironment factors and the nanoparticles, thus, favors the designing and constructing of more ideal functional nanoparticles.
Collapse
|
19
|
Gonzalez-Avila G, Sommer B, Mendoza-Posada DA, Ramos C, Garcia-Hernandez AA, Falfan-Valencia R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit Rev Oncol Hematol 2019; 137:57-83. [PMID: 31014516 DOI: 10.1016/j.critrevonc.2019.02.010] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/11/2019] [Accepted: 02/24/2019] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) participate from the initial phases of cancer onset to the settlement of a metastatic niche in a second organ. Their role in cancer progression is related to their involvement in the extracellular matrix (ECM) degradation and in the regulation and processing of adhesion and cytoskeletal proteins, growth factors, chemokines and cytokines. MMPs participation in cancer progression makes them an attractive target for cancer therapy. MMPs have also been used for theranostic purposes in the detection of primary tumor and metastatic tissue in which a particular MMP is overexpressed, to follow up on therapy responses, and in the activation of cancer cytotoxic pro-drugs as part of nano-delivery-systems that increase drug concentration in a specific tumor target. Herein, we review MMPs molecular characteristics, their synthesis regulation and enzymatic activity, their participation in the metastatic process, and how their functions have been used to improve cancer treatment.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | | | - Carlos Ramos
- Laboratorio de Biología Celular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - A Armando Garcia-Hernandez
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Ramces Falfan-Valencia
- Laboratorio de HLA, Departamento de Inmunogenética y Alergia, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
20
|
Zonneville J, Safina A, Truskinovsky AM, Arteaga CL, Bakin AV. TGF-β signaling promotes tumor vasculature by enhancing the pericyte-endothelium association. BMC Cancer 2018; 18:670. [PMID: 29921235 PMCID: PMC6008941 DOI: 10.1186/s12885-018-4587-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
Background The breast cancer microenvironment promotes tumor vascularization through the complex interactions involving tumor-associated fibroblasts (TAFs). Emerging data indicate that TAFs increase production and signaling by TGF-β cytokines, while the role of TGF-β signaling in the regulation of tumor blood vessels is not fully understood. The current study presents evidence that TAFs enhance the organization of tumor blood capillaries, and TGF-β signaling plays an important role in this response. Methods Tumor vascularization was studied in xenograft models of breast carcinoma cells, alone and in combination with fibroblasts. TGF-β signaling in breast cancer cells was modulated by expression of kinase-inactive TGFBR1-K232R (dnTGFBR1) or constitutive-active TGFBR1-T204D (caTGFBR1) receptor mutants. The architecture of tumor blood capillaries was assessed by immune-histochemical analysis of endothelium and pericytes. The role of TGF-β-Smad signaling in fibronectin expression was examined using adenoviral transduction of signaling components. Results Our studies revealed that TAFs significantly increase the lumen size of blood microvessels. Inactivation of TGF-β signaling in tumor cells by dnTGFBR1 reduced the microvessel density and lumen sizes, decreasing tumor growth. In contrast, caTGFBR1-tumors exhibited greater vessel density and lumen sizes. Tumors with inactive dnTGFBR1 showed lower amounts of TAFs, while caTGFBR1 increased amounts of TAFs compared to the control. Inspection of pericytes and endothelial cells in tumor vasculature revealed that TAFs enhanced vessel coverage by pericytes, vascular cells supporting capillaries. This effect was impaired in dnTGFBR1-tumors, whereas active caTGFBR1 enhanced the association of pericytes with endothelium. Accordingly, dnTGFBR1-tumors exhibited the presence of hemorrhages, a sign of fragile blood vessels. Biochemical analysis showed that TGFBR1-SMAD signaling up-regulates fibronectin, a prominent regulator of endothelium-pericyte interactions. Conclusions The current study indicates that tumor-fibroblast crosstalk enhances tumor vascularization by increasing the pericyte-endothelium association via a mechanism involving the TGFβ-fibronectin axis. The tumor-fibroblast model represents a useful system for dissecting the complex interactions governing tumor angiogenesis and developing new approaches to therapeutic targeting tumor vasculature. Electronic supplementary material The online version of this article (10.1186/s12885-018-4587-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justin Zonneville
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, 14263, USA
| | - Alfiya Safina
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | - Carlos L Arteaga
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Andrei V Bakin
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, 14263, USA.
| |
Collapse
|
21
|
Tumor-fibroblast interactions stimulate tumor vascularization by enhancing cytokine-driven production of MMP9 by tumor cells. Oncotarget 2018; 8:35592-35608. [PMID: 28423685 PMCID: PMC5482601 DOI: 10.18632/oncotarget.16022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
Advance-stage breast carcinomas include significant amounts of fibroblasts and infiltrating immune cells which have been implicated in tumor growth, recurrence, and response to therapy. The present study investigated the contribution of fibroblasts to tumor growth using direct tumor-fibroblast co-cultures and tumor xenograft models. Our findings revealed that fibroblasts enhance breast carcinoma growth by promoting the tumor vasculature via the MMP9-dependent mechanism. In tumor-fibroblast co-cultures, fibroblasts increased expression of TGF-β, TNF, and IL-1β cytokines in tumor cells. These cytokines cooperatively induced expression of matrix metalloproteinase MMP9 in tumor cells. Knockdown of MMP9 by shRNA significantly reduced tumor vascularization induced by fibroblasts. Mechanistically, our findings argue that expression of MMP9 in tumor cellsis regulated by crosstalk of TGF-β with TNF and/or IL-1β cytokines. The mechanism of this cooperative response did not involve cross-activation of the canonical signaling pathways as TGF-β did not activate RELA/p65 signaling, while TNF did not affect SMAD signaling. Instead, TGF-β and TNF cytokines co-stimulated MAP kinases and expression of JUN and JUNB, AP1 transcription factor subunits, which together with RELA/p65 were essential for the regulation of MMP9. Depletion of JUN and JUNB or RELA in tumor cells blocked the cooperative induction of MMP9 by the cytokines. Thus, our studies uncovered a previously unappreciated role of tumor-fibroblast interactions in the stimulation of tumor angiogenesis, and an essential role of the MAPK-AP1 axis in the cooperative up-regulation of the angiogenic driver MMP9 by cytokine crosstalk.
Collapse
|
22
|
Brun MJ, Gomez EJ, Suh J. Stimulus-responsive viral vectors for controlled delivery of therapeutics. J Control Release 2017; 267:80-89. [PMID: 28842318 PMCID: PMC5723212 DOI: 10.1016/j.jconrel.2017.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 12/31/2022]
Abstract
Virus-based therapies have gained momentum as the next generation of treatments for a variety of serious diseases. In order to make these therapies more controllable, stimulus-responsive viral vectors capable of sensing and responding to specific environmental inputs are currently being developed. A number of viruses naturally respond to endogenous stimuli, such as pH, redox, and proteases, which are present at different concentrations in diseases and at different organ and organelle sites. Additionally, rather than relying on natural viral properties, efforts are underway to engineer viruses to respond to endogenous stimuli in new ways as well as to exogenous stimuli, such as temperature, magnetic field, and optical light. Viruses with stimulus-responsive capabilities, either nature-evolved or human-engineered, will be reviewed to capture the current state of the field. Stimulus-responsive viral vector design considerations as well as gaps in current research efforts will be identified.
Collapse
Affiliation(s)
- Mitchell J Brun
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States
| | - Eric J Gomez
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, TX, United States; Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, United States.
| |
Collapse
|
23
|
Limoge M, Safina A, Truskinovsky AM, Aljahdali I, Zonneville J, Gruevski A, Arteaga CL, Bakin AV. Tumor p38MAPK signaling enhances breast carcinoma vascularization and growth by promoting expression and deposition of pro-tumorigenic factors. Oncotarget 2017; 8:61969-61981. [PMID: 28977919 PMCID: PMC5617479 DOI: 10.18632/oncotarget.18755] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/19/2017] [Indexed: 01/10/2023] Open
Abstract
The breast carcinoma microenvironment strikingly influences cancer progression and response to therapy. Various cell types in the carcinoma microenvironment show significant activity of p38 mitogen-activated protein kinase (MAPK), although the role of p38MAPK in breast cancer progression is still poorly understood. The present study examined the contribution of tumor p38MAPK to breast carcinoma microenvironment and metastatic capacity. Inactivation of p38MAPK signaling in metastatic breast carcinoma cells was achieved by forced expression of the kinase-inactive mutant of p38/MAPK14 (a dominant-negative p38, dn-p38). Disruption of tumor p38MAPK signaling reduced growth and metastases of breast carcinoma xenografts. Importantly, dn-p38 markedly decreased tumor blood-vessel density and lumen sizes. Mechanistic studies revealed that p38 controls expression of pro-angiogenic extracellular factors such as matrix protein Fibronectin and cytokines VEGFA, IL8, and HBEGF. Tumor-associated fibroblasts enhanced tumor growth and vasculature as well as increased expression of the pro-angiogenic factors. These effects were blunted by dn-p38. Metadata analysis showed elevated expression of p38 target genes in breast cancers and this was an unfavorable marker of disease recurrence and poor-outcome. Thus, our study demonstrates that tumor p38MAPK signaling promotes breast carcinoma growth, invasive and metastatic capacities. Importantly, p38 enhances carcinoma vascularization by facilitating expression and deposition of pro-angiogenic factors. These results argue that p38MAPK is a valuable target for anticancer therapy affecting tumor vasculature. Anti-p38 drugs may provide new therapeutic strategies against breast cancer, including metastatic disease.
Collapse
Affiliation(s)
- Michelle Limoge
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Alfiya Safina
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | - Ieman Aljahdali
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Justin Zonneville
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Aleksandar Gruevski
- State University of New York at Buffalo, Department of Biological Sciences, Buffalo, New York, USA
| | - Carlos L. Arteaga
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Andrei V. Bakin
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, USA
| |
Collapse
|
24
|
Prognostic Influence of Tumor Stroma on Breast Cancer Subtypes. Clin Breast Cancer 2017; 18:e123-e133. [PMID: 28927692 DOI: 10.1016/j.clbc.2017.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/06/2017] [Accepted: 08/13/2017] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The objective of the present work was to evaluate the impact of the phenotype of both intratumoral mononuclear inflammatory cells (MICs) and cancer-associated fibroblast (CAFs), assessed as to their expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) on prognosis in different breast cancer subtypes. MATERIALS AND METHODS A total of 247 tumors of patients with primary ductal invasive breast cancer were categorized into 1 of 4 major subtypes, using the 3 standard immunohistochemical markers (estrogen receptor [ER], progesterone receptor [PR], and human epidermal growth factor receptor/Neu 2 [HER2] receptor status). An immunohistochemical study was performed using tissue arrays and specific antibodies against MMP-9, MMP-11, and MMP-14, and TIMP-1 and TIMP-2. RESULTS MMP-11 expression by MICs was significantly and strongly associated with prognosis in all breast cancer subtypes. There were other significant associations with poor prognosis in luminal A tumors: expressions of MMP-9, MMP-11, and TIMP-2 by CAFs, in luminal B tumors: MMP-14 expression by MICs and TIMP-2 expression by MICs, in HER-2-positive tumors: expression of MMP-9 by MICs, and in triple negative breast cancers: expression of TIMP-1 by MICs. CONCLUSION Characterization of both tumor stromal CAFs and MICs, with regard to the expression of MMPs and TIMPs, improve the prognostic evaluation of all breast cancer subtypes.
Collapse
|
25
|
Borriello L, Nakata R, Sheard MA, Fernandez GE, Sposto R, Malvar J, Blavier L, Shimada H, Asgharzadeh S, Seeger RC, DeClerck YA. Cancer-Associated Fibroblasts Share Characteristics and Protumorigenic Activity with Mesenchymal Stromal Cells. Cancer Res 2017; 77:5142-5157. [PMID: 28687621 DOI: 10.1158/0008-5472.can-16-2586] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/30/2017] [Accepted: 06/29/2017] [Indexed: 11/16/2022]
Abstract
Cancer-associated fibroblasts (CAF) have been suggested to originate from mesenchymal stromal cells (MSC), but their relationship with MSCs is not clear. Here, we have isolated from primary human neuroblastoma tumors a population of αFAP- and FSP-1-expressing CAFs that share phenotypic and functional characteristics with bone marrow-derived MSCs (BM-MSC). Analysis of human neuroblastoma tumors also confirmed the presence of αFAP- and FSP-1-positive cells in the tumor stroma, and their presence correlated with that of M2 tumor-associated macrophages. These cells (designated CAF-MSCs) enhanced in vitro neuroblastoma cell proliferation, survival, and resistance to chemotherapy and stimulated neuroblastoma tumor engraftment and growth in immunodeficient mice, indicating an effect independent of the immune system. The protumorigenic activity of MSCs in vitro and in xenografted mice was dependent on the coactivation of JAK2/STAT3 and MEK/ERK1/2 in neuroblastoma cells. In a mouse model of orthotopically implanted neuroblastoma cells, inhibition of JAK2/STAT3 and MEK/ERK/1/2 by ruxolitinib and trametinib potentiated tumor response to etoposide and increased overall survival. These data point to a new type of protumorigenic CAF in the tumor microenvironment of neuroblastoma and to STAT3 and ERK1/2 as mediators of their activity. Cancer Res; 77(18); 5142-57. ©2017 AACR.
Collapse
Affiliation(s)
- Lucia Borriello
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Keck School of Medicine of the University of Southern California, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Rie Nakata
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Keck School of Medicine of the University of Southern California, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Michael A Sheard
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Keck School of Medicine of the University of Southern California, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - G Esteban Fernandez
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Richard Sposto
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Keck School of Medicine of the University of Southern California, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.,Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Jemily Malvar
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Keck School of Medicine of the University of Southern California, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Laurence Blavier
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Keck School of Medicine of the University of Southern California, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Hiroyuki Shimada
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.,Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Shahab Asgharzadeh
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Keck School of Medicine of the University of Southern California, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.,Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Robert C Seeger
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Keck School of Medicine of the University of Southern California, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Yves A DeClerck
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Keck School of Medicine of the University of Southern California, Los Angeles, California. .,Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
26
|
Chen LJ, Li XY, Zhao YQ, Liu WJ, Wu HJ, Liu J, Mu XQ, Wu HB. Down-regulated microRNA-375 expression as a predictive biomarker in non-small cell lung cancer brain metastasis and its prognostic significance. Pathol Res Pract 2017; 213:882-888. [PMID: 28688608 DOI: 10.1016/j.prp.2017.06.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 05/17/2017] [Accepted: 06/04/2017] [Indexed: 02/02/2023]
Abstract
Brain metastases (BM) are common among patients with non-small cell lung cancer (NSCLC) and have been associated with significant morbidity and limited survival. Early and sensitive detection of BM is essential for improving prognosis. Recently, microRNA-375(miR-375) which is specifically expressed in the brain has been found significantly dysregulated in many human cancers. However, there is still no data whether miR-375 is associated with higher risk of BM development in NSCLC. In this study, we detected the miR-375 expression using quantitative real-time PCR (qRT-PCR) and assessed its predictive and prognostic significance. Our result showed that miR-375 expression was significantly down-regulated in NSCLC patients with BM(BM+, N=30) compared with NSCLC without BM(BM-, N=30) (P<0.001). Statistical analysis indicated that low miR-375 expression was linked to advanced disease stage (P<0.001) and brain metastasis (P<0.001) in NSCLC patient. Survival analysis suggested that low-expression group had significantly shorter overall survival than high-expression group in NSCLC patients with BM(log-rank test: P<0.05) as well as the total cases(log-rank test: P<0.01). Multivariate Cox proportional hazards model analysis indicated that low miR-375 expression was independently linked to poor survival of patients with NSCLC (HR=5.48, 95% CI: 1.93-15.56, P=0.001). In addition, we found that VEGF and MMP-9 were over-expressed in down-regulated miR-375 expression cases. Collectively, this study demonstrated that miR-375 may play an important role as a predictive biomarker in brain metastasis and an independent prognostic factor in NSCLC. Over-expression of VEGF and MMP-9 may be the reason for poor prognosis of NSCLC patients with low miR-375 expression.
Collapse
Affiliation(s)
- Li-Juan Chen
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, PR China; First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Xing-Ya Li
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
| | - Yan-Qiu Zhao
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, PR China.
| | - Wen-Jing Liu
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, PR China
| | - Hui-Juan Wu
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, PR China
| | - Jie Liu
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, PR China
| | - Xiao-Qian Mu
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, PR China
| | - Hong-Bo Wu
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, PR China
| |
Collapse
|
27
|
Kunz P, Sähr H, Lehner B, Fischer C, Seebach E, Fellenberg J. Elevated ratio of MMP2/MMP9 activity is associated with poor response to chemotherapy in osteosarcoma. BMC Cancer 2016; 16:223. [PMID: 26979530 PMCID: PMC4793522 DOI: 10.1186/s12885-016-2266-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 03/10/2016] [Indexed: 11/15/2022] Open
Abstract
Background Matrix metalloproteinases (MMPs) are crucially involved in the regulation of multiple stages of cancer progression. Elevated MMP levels have been associated with the development of metastases and poor prognosis in several types of cancer. However, the role of MMPs in osteosarcoma and their prognostic value is still unclear. Available data are conflicting, most likely due to different technical approaches. We hypothesized that in contrast to total mRNA or protein levels frequently analyzed in previous studies the enzymatic activities of MMPs and their inhibitors the tissue inhibitors of matrix metalloproteinases (TIMPs) are closer related to their biological functions. We therefore aimed to evaluate the reliability of different zymography techniques for the quantification of MMP and TIMP activities in osteosarcoma biopsies in order to investigate their distribution, possible regulation and prognostic value. Methods All analyses were done using cryo-conserved osteosarcoma pretreatment biopsies (n = 18). Gene and protein expression of MMPs and TIMPs were analyzed by RT-qPCR and western blot analysis, respectively. Overall MMP activity was analyzed by in situ zymography, individual MMP activities were analyzed by gelatin zymography. Reverse zymography was used to detect and quantify TIMP activities. Results Strong overall MMP activities could be detected in osteosarcoma pretreatment biopsies with MMP2 and MMP9 as predominant active MMPs. In contrast to total RNA or protein expression MMP2 and MMP9 activities showed significant quantitative differences between good and poor responders. While MMP9 activity was high in the good responder group and significantly decreased in the poor responder group, MMP2 activity showed a reverse distribution. Likewise, significant differences were detected concerning the activity of TIMPs resulting in a negative correlation of TIMP1 activity with MMP2 activity (p = 0.044) and negative correlations of TIMP2 and TIMP3 with MMP9 activity (p = 0.007 and p = 0.006). Conclusion In contrast to mRNA or protein levels MMP and TIMP activities showed significant differences between the analyzed good and poor responder groups. A shift from MMP9 to predominant MMP2 activity is associated with poor response to chemotherapy suggesting that the ratio of MMP2/MMP9 activity might be a valuable and easily accessible marker to predict the response to chemotherapy in osteosarcoma.
Collapse
Affiliation(s)
- Pierre Kunz
- Clinic for Orthopedics and Trauma Surgery/Spinal Cord Injury Center; Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, Heidelberg, Germany
| | - Heiner Sähr
- Clinic for Orthopedics and Trauma Surgery/Spinal Cord Injury Center; Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, Heidelberg, Germany
| | - Burkhard Lehner
- Clinic for Orthopedics and Trauma Surgery/Spinal Cord Injury Center; Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, Heidelberg, Germany
| | - Christian Fischer
- Clinic for Orthopedics and Trauma Surgery/Spinal Cord Injury Center; Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, Heidelberg, Germany
| | - Elisabeth Seebach
- Clinic for Orthopedics and Trauma Surgery/Spinal Cord Injury Center; Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, Heidelberg, Germany
| | - Jörg Fellenberg
- Clinic for Orthopedics and Trauma Surgery/Spinal Cord Injury Center; Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
28
|
Garner EF, Beierle EA. Cancer Stem Cells and Their Interaction with the Tumor Microenvironment in Neuroblastoma. Cancers (Basel) 2015; 8:cancers8010005. [PMID: 26729169 PMCID: PMC4728452 DOI: 10.3390/cancers8010005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 12/26/2022] Open
Abstract
Neuroblastoma, a solid tumor arising from neural crest cells, accounts for over 15% of all pediatric cancer deaths. The interaction of neuroblastoma cancer-initiating cells with their microenvironment likely plays an integral role in the maintenance of resistant disease and tumor relapse. In this review, we discuss the interaction between neuroblastoma cancer-initiating cells and the elements of the tumor microenvironment and how these interactions may provide novel therapeutic targets for this difficult to treat disease.
Collapse
Affiliation(s)
- Evan F Garner
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL 35233, USA.
| | - Elizabeth A Beierle
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
29
|
Borriello L, Seeger RC, Asgharzadeh S, DeClerck YA. More than the genes, the tumor microenvironment in neuroblastoma. Cancer Lett 2015; 380:304-14. [PMID: 26597947 DOI: 10.1016/j.canlet.2015.11.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/06/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
Neuroblastoma is the second most common solid tumor in children. Since the seminal discovery of the role of amplification of the MYCN oncogene in the pathogenesis of neuroblastoma in the 1980s, much focus has been on the contribution of genetic alterations in the progression of this cancer. However it is now clear that not only genetic events play a role but that the tumor microenvironment (TME) substantially contributes to the biology of neuroblastoma. In this article, we present a comprehensive review of the literature on the contribution of the TME to the ten hallmarks of cancer in neuroblastoma and discuss the mechanisms of communication between neuroblastoma cells and the TME that underlie the influence of the TME on neuroblastoma progression. We end our review by discussing how the knowledge acquired over the last two decades in this field is now leading to new clinical trials targeting the TME.
Collapse
Affiliation(s)
- Lucia Borriello
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Robert C Seeger
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Shahab Asgharzadeh
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Yves A DeClerck
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Biochemistry and Molecular Biology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
30
|
González L, Eiro N, Fernandez-Garcia B, González LO, Dominguez F, Vizoso FJ. Gene expression profile of normal and cancer-associated fibroblasts according to intratumoral inflammatory cells phenotype from breast cancer tissue. Mol Carcinog 2015; 55:1489-1502. [PMID: 26349857 DOI: 10.1002/mc.22403] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 08/05/2015] [Accepted: 08/17/2015] [Indexed: 12/20/2022]
Abstract
The biological heterogeneity of breast cancer leads to the need for finding new approaches to understand the mechanisms implicated in breast cancer progression. The tumor stroma appears as a key in the progression of solid tumors towards a malignant phenotype. Cancer associated fibroblasts (CAFs) may orchestrate a functional "corrupted" stroma which in turn helps metastatic spread. In this study, we investigated by real-time PCR, the expression of 19 factors by normal breast-associated fibroblasts (NAFs) and CAFs, which were implicated in several actions promoting tumor growth, such as extracellular matrix remodeling, inflammation and invasion. Also, we explored the influence of inflammatory cells phenotypes (MMP11 status) and breast cancer cell lines (MCF-7 and MDA-MB-231) on the molecular profile of CAFs. If we consider that one of the major sources of CAFs are resident NAFs, the transition of NAFs into CAFs is associated with molecular changes involving the overexpression of some molecular factors of biological importance in tumor progression. In addition, the characterization of the tumor stroma regarding to the MMP11 status by MICs reflects a type of fibroblasts which contribute even more to tumor progression. Moreover, different patterns in the induction of the expression of factors by CAFs were observed, depending on the tumor cell line which they were co-cultured with. Furthermore, CAFs influence TGFβ expression in both cancer cell lines. Therefore, this study can help to a better characterization of tumor stroma in order to improve the prognostic evaluation, as well as to define the different populations of CAFs as potential therapeutic targets in breast cancer. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lucía González
- Unidad de Investigación, Fundación Hospital de Jove, Gijón, Asturias, Spain
| | - Noemi Eiro
- Unidad de Investigación, Fundación Hospital de Jove, Gijón, Asturias, Spain
| | | | - Luis O González
- Unidad de Investigación, Fundación Hospital de Jove, Gijón, Asturias, Spain.,Servicio de Anatomía Patológica, Fundación Hospital de Jove, Gijón, Asturias, Spain
| | - Francisco Dominguez
- Servicio de Anatomía Patológica, Hospital de Cabueñes, Gijón, Asturias, Spain
| | - Francisco J Vizoso
- Unidad de Investigación, Fundación Hospital de Jove, Gijón, Asturias, Spain. .,Servicio de Cirugía General, Fundación Hospital de Jove, Gijón, Spain.
| |
Collapse
|
31
|
Deryugina EI, Quigley JP. Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biol 2015; 44-46:94-112. [PMID: 25912949 PMCID: PMC5079283 DOI: 10.1016/j.matbio.2015.04.004] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 12/21/2022]
Abstract
Metastasis is a distinct stage of cancer progression that requires the development of angiogenic blood vessels serving as conduits for tumor cell dissemination. An accumulated body of evidence indicates that metastasis-supporting neovasculature should possess certain structural characteristics allowing for the process of tumor cell intravasation, an active entry of cancer cells into the vessel interior. It appears that the development of tumor vessels with lumens of a distinctive size and support of these vessels by a discontinuous pericyte coverage constitute critical microarchitectural requirements to: (a) provide accessible points for vessel wall penetration by primary tumor cells; (b) provide enough lumen space for a tumor cell or cell aggregate upon intravasation; and (c) allow for sufficient rate of blood flow to carry away intravasated cells from the primary tumor to the next, proximal or distal site. This review will primarily focus on the functional roles of matrix metalloproteinases (MMPs), which catalytically trigger the development of an intravasation-sustaining neovasculature at the early stages of tumor growth and are also required for the maintenance of a metastasis-supporting state of blood vessels at later stages of cancer progression.
Collapse
Affiliation(s)
- Elena I Deryugina
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| | - James P Quigley
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
32
|
Abstract
Transforming growth factor (TGF) β1 activity depends on a complex signalling cascade that controls expression of several genes. Among others, TGFβ1 regulates expression of matrix metalloproteinases (MMPs) through activation of Smads. In the present study, we demonstrate for the first time that the αvβ6 integrin interacts with TGFβ receptor II (TβRII) through the β6 cytoplasmic domain and promotes Smad3 activation in prostate cancer (PrCa) cells. Another related αv integrin, αvβ5, as well as the αvβ6/3 integrin, which contains a chimeric form of β6 with a β3 cytoplasmic domain, do not associate with TβRII and fail to show similar responses. We provide evidence that αvβ6 is required for up-regulation of MMP2 by TGFβ1 through a Smad3-mediated transcriptional programme in PrCa cells. The functional relevance of these results is underscored by the finding that αvβ6 modulates cell migration in an MMP2-dependent manner on an αvβ6-specific ligand, latency-associated peptide (LAP)-TGFβ. Overall, these mechanistic studies establish that expression of a single integrin, αvβ6, is sufficient to promote activation of Smad3, regulation of MMP2 levels and consequent catalytic activity, as well as cell migration. Our study describes a new TGFβ1-αvβ6-MMP2 signalling pathway that, given TGFβ1 pro-metastatic activity, may have profound implications for PrCa therapy.
Collapse
|
33
|
Abstract
Identifying novel mechanisms, which are at the core of breast cancer biology, is of critical importance. Such mechanisms may explain response to treatment, reveal novel targets or drive detection assays. To uncover such novel mechanisms, we used survival analysis on gene expression datasets encompassing 1363 patients. By iterating over the compendia of genes, we screened for their significance as prognosis biomarkers and identified SUMO-specific protease 5 (SENP5) to significantly stratify patients into two survival groups across five unrelated tested datasets. According to these findings, low expression of SENP5 is associated with good prognosis among breast cancer patients. Following these findings, we analyzed SENP5 silencing and show it is followed by inhibition of anchorage-independence growth, proliferation, migration and invasion in breast cancer cell lines. We further show that these changes are conducted via regulation of TGFβRI levels. These data relate to recent reports about the SUMOylation of TGFβRI. Following TGFβRI changes in expression, we show that one of its target genes, MMP9, which plays a key role in degrading the extracellular matrix and contributes to TGFβ-induced invasion, is dramatically down regulated upon SENP5 silencing. This is the first report represents SENP5-TGFβ-MMP9 cascade and its mechanistic involvement in breast cancer.
Collapse
|
34
|
Wu YY, V. Nguyen A, Wu XX, Loh M, Vu M, Zou Y, Liu Q, Guo P, Wang Y, Montgomery LL, Orlofsky A, Rand JH, Lin EY. Antiphospholipid Antibodies Promote Tissue Factor–Dependent Angiogenic Switch and Tumor Progression. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3359-75. [DOI: 10.1016/j.ajpath.2014.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 07/22/2014] [Accepted: 07/29/2014] [Indexed: 12/30/2022]
|
35
|
Muscella A, Vetrugno C, Calabriso N, Cossa LG, De Pascali SA, Fanizzi FP, Marsigliante S. [Pt(O,O'-acac)(γ-acac)(DMS)] alters SH-SY5Y cell migration and invasion by the inhibition of Na+/H+ exchanger isoform 1 occurring through a PKC-ε/ERK/mTOR Pathway. PLoS One 2014; 9:e112186. [PMID: 25372487 PMCID: PMC4221608 DOI: 10.1371/journal.pone.0112186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/13/2014] [Indexed: 11/19/2022] Open
Abstract
We previously showed that [Pt(O,O'-acac)(γ-acac)(DMS)] ([Pt(acac)2(DMS)]) exerted substantial cytotoxic effects in SH-SY5Y neuroblastoma cells, and decreased metalloproteases (MMPs) production and cells migration in MCF-7 breast cancer cells. The ubiquitously distributed sodium-hydrogen antiporter 1 (NHE1) is involved in motility and invasion of many solid tumours. The present study focuses on the effects of [Pt(acac)2(DMS)] in SH-SY5Y cell migration and also on the possibility that NHE1 may be involved in such effect. After sublethal [Pt(acac)2(DMS)] treatment cell migration was examined by wounding assay and cell invasion by transwell assay. NHE1 activity was measured in BCECF-loaded SH-SY5Y as the rate of Na+-dependent intracellular pH recovery in response to an acute acid pulse. Gelatin zymography for MMP-2/9 activities, Western blottings of MMPs, MAPKs, mTOR, S6 and PKCs and small interfering RNAs to PKC-ε/-δ mRNA were performed. Sublethal concentrations of [Pt(acac)2(DMS)] decreases NHE1 activity, inhibits cell migration and invasion and decreases expression and activity of MMP-2 and -9. [Pt(acac)2(DMS)] administered to SH-SY5Y cells provokes the increment of ROS, generated by NADPH oxidase, responsible for the PKC-ε and PKC-δ activation. Whilst PKC-δ activates p38/MAPK, responsible for the inhibition of MMP-2 and -9 secretion, PKC-ε activates a pathway made of ERK1/2, mTOR and S6K responsible for the inhibition of NHE1 activity and cell migration. In conclusion, we have shown a drastic impairment in tumour cell metastatization in response to inhibition of NHE1 and MMPs activities by [Pt(acac)2(DMS)] occurring through a novel mechanism mediated by PKC-δ/-ε activation.
Collapse
Affiliation(s)
- Antonella Muscella
- Cell Pathology Lab, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Salento University, Lecce, Italy
| | - Carla Vetrugno
- Neuropathology Unit, Istituto di Neurologia sperimentale e Divisione di Neuroscienze, Istituto Scientifico IRCCS San Raffaele (sezione di Lecce), Milano, Italy
| | - Nadia Calabriso
- Cell Physiology Lab, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Salento University, Lecce, Italy
| | - Luca Giulio Cossa
- Cell Physiology Lab, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Salento University, Lecce, Italy
| | - Sandra Angelica De Pascali
- General and Inorganic Chemistry Lab, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Salento University, Lecce, Italy
| | - Francesco Paolo Fanizzi
- General and Inorganic Chemistry Lab, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Salento University, Lecce, Italy
| | - Santo Marsigliante
- Cell Physiology Lab, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Salento University, Lecce, Italy
- * E-mail:
| |
Collapse
|
36
|
Waldron TJ, Quatromoni JG, Karakasheva TA, Singhal S, Rustgi AK. Myeloid derived suppressor cells: Targets for therapy. Oncoimmunology 2014; 2:e24117. [PMID: 23734336 PMCID: PMC3654606 DOI: 10.4161/onci.24117] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 01/14/2023] Open
Abstract
The goal of achieving measurable response with cancer immunotherapy requires counteracting the immunosuppressive characteristics of tumors. One of the mechanisms that tumors utilize to escape immunosurveillance is the activation of myeloid derived suppressor cells (MDSCs). Upon activation by tumor-derived signals, MDSCs inhibit the ability of the host to mount an anti-tumor immune response via their capacity to suppress both the innate and adaptive immune systems. Despite their relatively recent discovery and characterization, anti-MDSC agents have been identified, which may improve immunotherapy efficacy.
Collapse
Affiliation(s)
- Todd J Waldron
- Gastroenterology Division; Department of Medicine; University of Pennsylvania; Philadelphia, PA USA ; Abramson Cancer Center; University of Pennsylvania; Philadelphia, PA USA
| | | | | | | | | |
Collapse
|
37
|
Deryugina EI, Zajac E, Juncker-Jensen A, Kupriyanova TA, Welter L, Quigley JP. Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment. Neoplasia 2014; 16:771-88. [PMID: 25379015 PMCID: PMC4212255 DOI: 10.1016/j.neo.2014.08.013] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 12/16/2022] Open
Abstract
According to established notion, one of the major angiogenesis-inducing factors, pro-matrix metalloproteinase-9 (proMMP-9), is supplied to the tumor microenvironment by tumor-associated macrophages (TAMs). Accumulated evidence, however, indicates that tumor-associated neutrophils (TANs) are also critically important for proMMP-9 delivery, especially at early stages of tumor development. To clarify how much angiogenic proMMP-9 is actually contributed by TAMs and TANs, we quantitatively evaluated TAMs and TANs from different tumor types, including human xenografts and syngeneic murine tumors grown in wild-type and Mmp9-knockout mice. Whereas host MMP-9 competence was required for full angiogenic potential of both normal and tumor-associated leukocytes, direct comparisons of neutrophils versus macrophages and TANs versus TAMs demonstrated that macrophages and TAMs secrete 40- to 50-fold less proMMP-9 than the same numbers of neutrophils or TANs. Correspondingly, the levels of MMP-9–mediated in vivo angiogenesis induced by neutrophils and TANs substantially exceeded those induced by macrophages and TAMs. MMP-9–delivering TANs were also required for development of metastasis-supporting intratumoral vasculature, characterized by ≥ 11-μm size lumens and partial coverage with stabilizing pericytes. Importantly, MMP-9–producing TAMs exhibit M2-skewed phenotype but do not express tissue inhibitor of metalloproteinases-1 (TIMP-1), a novel characteristic allowing them to secrete TIMP-1–free, neutrophil-like MMP-9 zymogen unencumbered by its natural inhibitor. Together, our findings support the notion whereby TANs, capable of immediate release of their pre-stored cargo, are the major contributors of highly angiogenic MMP-9, whereas tumor-influxing precursors of macrophages require time to differentiate, polarize into M2-skewed TAMs, shut down their TIMP-1 expression, and only then, initiate relatively low-level production of TIMP-free MMP-9 zymogen.
Collapse
Key Words
- BM, bone marrow
- BMD, bone marrow–derived
- CM, conditioned medium
- IL, interleukin
- KO, knockout
- M-CSF, macrophage colony-stimulating factor
- MMP, matrix metalloproteinase
- PB, peripheral blood
- PBD, peripheral blood–derived
- TAM, tumor-associated macrophage
- TAN, tumor-associated neutrophil
- TIMP, tissue inhibitor of metalloproteinases
Collapse
Affiliation(s)
- Elena I Deryugina
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ewa Zajac
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Anna Juncker-Jensen
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tatyana A Kupriyanova
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lisa Welter
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - James P Quigley
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
38
|
Chamberlain MD, West MED, Lam GC, Sefton MV. In vivo remodelling of vascularizing engineered tissues. Ann Biomed Eng 2014; 43:1189-200. [PMID: 25297985 DOI: 10.1007/s10439-014-1146-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/27/2014] [Indexed: 12/15/2022]
Abstract
A critical aspect of creating vascularized tissues is the remodelling that occurs in vivo, driven in large part by the host response to the tissue construct. Rather than a simple inflammatory response, a beneficial tissue remodelling response results in the formation of vascularised tissue. The characteristics and dynamics of this response are slowly being elucidated, especially as they are modulated by the complex interaction between the biomaterial and cellular components of the tissue constructs and the host. This process has elements that are similar to both wound healing and tumour development, and its features are illustrated by reference to the bottom-up generation of a tissue using modular constructs. These modular constructs consist of mesenchymal stromal cells (MSC) embedded in endothelial cell (EC)-covered collagen gel rods that are a few hundred microns in size. Particular attention is paid to the role of hypoxia and macrophage recruitment, as well as the paracrine effects of the MSC and EC in this host response.
Collapse
Affiliation(s)
- M Dean Chamberlain
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada
| | | | | | | |
Collapse
|
39
|
Videira M, Reis RL, Brito MA. Deconstructing breast cancer cell biology and the mechanisms of multidrug resistance. Biochim Biophys Acta Rev Cancer 2014; 1846:312-25. [PMID: 25080053 DOI: 10.1016/j.bbcan.2014.07.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 12/12/2022]
Abstract
Cancer complexity constantly challenges the way that clinicians manage breast cancer therapy. Tumor heterogeneity and intratumoral stroma characteristics allow cells with different phenotypes and deregulated apoptotic, proliferative and migration abilities to co-exist contributing to a disappointing therapeutic response. While new approaches are being associated with conventional chemotherapy, such as hormonal therapy or target monoclonal antibodies, recurrence and metastasization are still observed. Membrane transporters are the cell's first line of contact with anticancer drugs having a major role in multidrug resistance events. This structural-based activity enables the cell to be drug-resistant by decreasing drug intracellular concentration through an efflux-transport mechanism, mainly associated with overexpression of ATP-binding cassette (ABC) proteins. This review focuses on some of the important structural and biological properties of the malignant cell and tumor microenvironment, addressing the role of the membrane ABC transporters in therapeutic outcomes, and highlighting related molecular pathways that may represent meaningful target therapies.
Collapse
Affiliation(s)
- Mafalda Videira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal; Department of Galenic Pharmacy and Pharmaceutical Technology, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
| | - Rita Leones Reis
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
40
|
Matrix metalloproteinase-9: its interplay with angiogenic factors in inflammatory bowel diseases. DISEASE MARKERS 2014; 2014:643645. [PMID: 24803722 PMCID: PMC3988740 DOI: 10.1155/2014/643645] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/03/2014] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinase- (MMP-) 9 is one of the main metalloproteinases reported to be involved in extracellular matrix degradation and recently also in triggering of angiogenic switch in the course of inflammatory bowel diseases (IBD). The goal of our studies was to estimate in one experimental setting the levels of MMP-9 in sera of Crohn's Disease (CD) and ulcerative colitis (UC) patients and to evaluate its possible diagnostic potential in comparison with other biochemical markers and selected proinflammatory and angiogenic factors. The study group included 176 subjects (CD = 64, UC = 85, control = 27). Concentrations of serum MMP-9 were significantly higher in active than inactive forms of IBD, being higher in active UC than in active CD. Both in the case of CD and UC serum MMP-9 positively correlated with disease activity, IL-6 levels, platelet and leukocyte count, midkine, and PDGF-BB, as well as in UC with ESR and in CD with CRP, IL-1, and VEGF-A. Diagnostic accuracy of MMP-9 in distinguishing active UC from active CD was 66%, and displayed higher specificity than CRP (79.0% versus 61.6%, resp.). Evaluation of serum MMP-9 concentrations could aid in differentiation of active UC from active CD. MMP-9 correlated better with inflammatory and angiogenic parameters in CD than in UC.
Collapse
|
41
|
Jamin Y, Glass L, Hallsworth A, George R, Koh DM, Pearson ADJ, Chesler L, Robinson SP. Intrinsic susceptibility MRI identifies tumors with ALKF1174L mutation in genetically-engineered murine models of high-risk neuroblastoma. PLoS One 2014; 9:e92886. [PMID: 24667968 PMCID: PMC3965493 DOI: 10.1371/journal.pone.0092886] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 02/26/2014] [Indexed: 11/18/2022] Open
Abstract
The early identification of children presenting ALK(F1174L)-mutated neuroblastoma, which are associated with resistance to the promising ALK inhibitor crizotinib and a marked poorer prognosis, has become a clinical priority. In comparing the radiology of the novel Th-ALK(F1174L)/Th-MYCN and the well-established Th-MYCN genetically-engineered murine models of neuroblastoma using MRI, we have identified a marked ALK(F1174L)-driven vascular phenotype. We demonstrate that quantitation of the transverse relaxation rate R2* (s(-1)) using intrinsic susceptibility-MRI under baseline conditions and during hyperoxia, can robustly discriminate this differential vascular phenotype, and identify MYCN-driven tumors harboring the ALK(F1174L) mutation with high specificity and selectivity. Intrinsic susceptibility-MRI could thus potentially provide a non-invasive and clinically-exploitable method to help identifying children with MYCN-driven neuroblastoma harboring the ALK(F1174L) mutation at the time of diagnosis.
Collapse
Affiliation(s)
- Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Laura Glass
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Albert Hallsworth
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Rani George
- Department of Pediatric Haematology and Oncology, Dana-Farber Cancer Institute and Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dow-Mu Koh
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Andrew D. J. Pearson
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Louis Chesler
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Simon P. Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
42
|
Taguchi A, Kawana K, Tomio K, Yamashita A, Isobe Y, Nagasaka K, Koga K, Inoue T, Nishida H, Kojima S, Adachi K, Matsumoto Y, Arimoto T, Wada-Hiraike O, Oda K, Kang JX, Arai H, Arita M, Osuga Y, Fujii T. Matrix metalloproteinase (MMP)-9 in cancer-associated fibroblasts (CAFs) is suppressed by omega-3 polyunsaturated fatty acids in vitro and in vivo. PLoS One 2014; 9:e89605. [PMID: 24586907 PMCID: PMC3937340 DOI: 10.1371/journal.pone.0089605] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/22/2014] [Indexed: 12/22/2022] Open
Abstract
Cancer associated fibroblasts (CAFs) are responsible for tumor growth, angiogenesis, invasion, and metastasis. Matrix metalloproteinase (MMP)-9 secreted from cancer stroma populated by CAFs is a prerequisite for cancer angiogenesis and metastasis. Omega-3 polyunsaturated fatty acids (omega-3 PUFA) have been reported to have anti-tumor effects on diverse types of malignancies. Fat-1 mice, which can convert omega-6 to omega-3 PUFA independent of diet, are useful to investigate the functions of endogenous omega-3 PUFA. To examine the effect of omega-3 PUFA on tumorigenesis, TC-1 cells, a murine epithelial cell line immortalized by human papillomavirus (HPV) oncogenes, were injected subcutaneously into fat-1 or wild type mice. Tumor growth and angiogenesis of the TC-1 tumor were significantly suppressed in fat-1 compared to wild type mice. cDNA microarray of the tumors derived from fat-1 and wild type mice revealed that MMP-9 is downregulated in fat-1 mice. Immunohistochemical study demonstrated immunoreactivity for MMP-9 in the tumor stromal fibroblasts was diffusely positive in wild type whereas focal in fat-1 mice. MMP-9 was expressed in primary cultured fibroblasts isolated from fat-1 and wild type mice but was not expressed in TC-1 cells. Co-culture of fibroblasts with TC-1 cells enhanced the expression and the proteinase activity of MMP-9, although the protease activity of MMP-9 in fat-1-derived fibroblasts was lower than that in wild type fibroblasts. Our data suggests that omega-3 PUFAs suppress MMP-9 induction and tumor angiogenesis. These findings may provide insight into mechanisms by which omega-3 PUFAs exert anti-tumor effects by modulating tumor microenvironment.
Collapse
Affiliation(s)
- Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (K. Kawana); (MA)
| | - Kensuke Tomio
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Aki Yamashita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yosuke Isobe
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kazunori Nagasaka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kaori Koga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tomoko Inoue
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Haruka Nishida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Satoko Kojima
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Katsuyuki Adachi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yoko Matsumoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Takahide Arimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Jing X. Kang
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Makoto Arita
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (K. Kawana); (MA)
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
43
|
Farina AR, Mackay AR. Gelatinase B/MMP-9 in Tumour Pathogenesis and Progression. Cancers (Basel) 2014; 6:240-96. [PMID: 24473089 PMCID: PMC3980597 DOI: 10.3390/cancers6010240] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 12/14/2022] Open
Abstract
Since its original identification as a leukocyte gelatinase/type V collagenase and tumour type IV collagenase, gelatinase B/matrix metalloproteinase (MMP)-9 is now recognised as playing a central role in many aspects of tumour progression. In this review, we relate current concepts concerning the many ways in which gelatinase B/MMP-9 influences tumour biology. Following a brief outline of the gelatinase B/MMP-9 gene and protein, we analyse the role(s) of gelatinase B/MMP-9 in different phases of the tumorigenic process, and compare the importance of gelatinase B/MMP-9 source in the carcinogenic process. What becomes apparent is the importance of inflammatory cell-derived gelatinase B/MMP-9 in tumour promotion, early progression and triggering of the "angiogenic switch", the integral relationship between inflammatory, stromal and tumour components with respect to gelatinase B/MMP-9 production and activation, and the fundamental role for gelatinase B/MMP-9 in the formation and maintenance of tumour stem cell and metastatic niches. It is also apparent that gelatinase B/MMP-9 plays important tumour suppressing functions, producing endogenous angiogenesis inhibitors, promoting inflammatory anti-tumour activity, and inducing apoptosis. The fundamental roles of gelatinase B/MMP-9 in cancer biology underpins the need for specific therapeutic inhibitors of gelatinase B/MMP-9 function, the use of which must take into account and substitute for tumour-suppressing gelatinase B/MMP-9 activity and also limit inhibition of physiological gelatinase B/MMP-9 function.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L'Aquila 67100, Italy.
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L'Aquila 67100, Italy.
| |
Collapse
|
44
|
Dutta A, Li J, Lu H, Akech J, Pratap J, Wang T, Zerlanko BJ, FitzGerald TJ, Jiang Z, Birbe R, Wixted J, Violette SM, Stein JL, Stein GS, Lian JB, Languino LR. Integrin αvβ6 promotes an osteolytic program in cancer cells by upregulating MMP2. Cancer Res 2014; 74:1598-608. [PMID: 24385215 DOI: 10.1158/0008-5472.can-13-1796] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The molecular circuitries controlling osseous prostate metastasis are known to depend on the activity of multiple pathways, including integrin signaling. Here, we demonstrate that the αvβ6 integrin is upregulated in human prostate cancer bone metastasis. In prostate cancer cells, this integrin is a functionally active receptor for fibronectin and latency-associated peptide-TGF-β1; it mediates attachment and migration upon ligand binding and is localized in focal contacts. Given the propensity of prostate cancer cells to form bone metastatic lesions, we investigated whether the αvβ6 integrin promotes this type of metastasis. We show for the first time that αvβ6 selectively induces matrix metalloproteinase 2 (MMP2) in vitro in multiple prostate cancer cells and promotes osteolysis in vivo in an immunodeficient mouse model of bone metastasis through upregulation of MMP2, but not MMP9. The effect of αvβ6 on MMP2 expression and activity is independent of androgen receptor in the analyzed prostate cancer cells. Increased levels of parathyroid hormone-related protein (PTHrP), known to induce osteoclastogenesis, were also observed in αvβ6-expressing cells. However, by using MMP2 short hairpin RNA, we demonstrate that the αvβ6 effect on bone loss is due to upregulation of soluble MMP2 by the cancer cells, not due to changes in tumor growth rate. Another related αv-containing integrin, αvβ5, fails to show similar responses, underscoring the significance of αvβ6 activity. Overall, these mechanistic studies establish that expression of a single integrin, αvβ6, contributes to the cancer cell-mediated program of osteolysis by inducing matrix degradation through MMP2. Our results open new prospects for molecular therapy for metastatic bone disease.
Collapse
Affiliation(s)
- Anindita Dutta
- Authors' Affiliations: Prostate Cancer Discovery and Development Program; Departments of Cancer Biology and Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Cell Biology, Radiation Oncology, Pathology, and Orthopedics, University of Massachusetts Medical School, Worcester; Biogen Idec, Inc., Cambridge, Massachusetts; and Department of Biochemistry, The University of Vermont, Burlington, Vermont
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
McNamara G, Yanai A, Khankaldyyan V, Laug WE, Boden J, Webster K, Li Y, Wen R. Low magnification confocal microscopy of tumor angiogenesis. Methods Mol Biol 2014; 1075:149-75. [PMID: 24052350 DOI: 10.1007/978-1-60761-847-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Blood vessels are critical to normal mammalian development, tissue repair, and growth and treatment of cancer. Mouse research models enable mechanistic studies of blood vessels. We detail how to perfuse mice with fluorescent tomato lectin or the lipophilic fluorophore DiI. We provide details on how to image fluorescently labeled blood vessels.
Collapse
Affiliation(s)
- George McNamara
- Analytical Imaging Core, Diabetes Research Institute, Miami Institute for Human Genomics, University of Miami, Miami, FL, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Bhatia A, Kumar Y. Cellular and molecular mechanisms in cancer immune escape: a comprehensive review. Expert Rev Clin Immunol 2013; 10:41-62. [PMID: 24325346 DOI: 10.1586/1744666x.2014.865519] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Immune escape is the final phase of cancer immunoediting process wherein cancer modulates our immune system to escape from being destroyed by it. Many cellular and molecular events govern the cancer's evasion of host immune response. The tumor undergoes continuous remodeling at the genetic, epigenetic and metabolic level to acquire resistance to apoptosis. At the same time, it effectively modifies all the components of the host's immunome so as to escape from its antitumor effects. Moreover, it induces accumulation of suppressive cells like Treg and myeloid derived suppressor cells and factors which also enable it to elude the immune system. Recent research in this area helps in defining the role of newer players like miRNAs and exosomes in immune escape. The immunotherapeutic approaches developed to target the escape phase appear quite promising; however, the quest for a perfect therapeutic agent that can achieve maximum cure with minimal toxicity continues.
Collapse
Affiliation(s)
- Alka Bhatia
- Department of Experimental Medicine & Biotechnology, PGIMER, Chandigarh-160012, India
| | | |
Collapse
|
47
|
CD13-positive bone marrow-derived myeloid cells promote angiogenesis, tumor growth, and metastasis. Proc Natl Acad Sci U S A 2013; 110:20717-22. [PMID: 24297924 DOI: 10.1073/pnas.1321139110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Angiogenesis is fundamental to tumorigenesis and an attractive target for therapeutic intervention against cancer. We have recently demonstrated that CD13 (aminopeptidase N) expressed by nonmalignant host cells of unspecified types regulate tumor blood vessel development. Here, we compare CD13 wild-type and null bone marrow-transplanted tumor-bearing mice to show that host CD13(+) bone marrow-derived cells promote cancer progression via their effect on angiogenesis. Furthermore, we have identified CD11b(+)CD13(+) myeloid cells as the immune subpopulation directly regulating tumor blood vessel development. Finally, we show that these cells are specifically localized within the tumor microenvironment and produce proangiogenic soluble factors. Thus, CD11b(+)CD13(+) myeloid cells constitute a population of bone marrow-derived cells that promote tumor progression and metastasis and are potential candidates for the development of targeted antiangiogenic drugs.
Collapse
|
48
|
Kothari P, Pestana R, Mesraoua R, Elchaki R, Khan KMF, Dannenberg AJ, Falcone DJ. IL-6-mediated induction of matrix metalloproteinase-9 is modulated by JAK-dependent IL-10 expression in macrophages. THE JOURNAL OF IMMUNOLOGY 2013; 192:349-57. [PMID: 24285838 DOI: 10.4049/jimmunol.1301906] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mechanisms by which IL-6 contributes to the pathogenesis of chronic inflammatory diseases and cancer are not fully understood. We previously reported that cyclooxygenase-2 (Cox-2)-dependent PGE2 synthesis regulates macrophage matrix metalloproteinase (MMP)-9 expression, an endopeptidase that participates in diverse pathologic processes. In these studies, we determined whether IL-6 regulates the Cox-2→PGE2→MMP-9 pathway in murine macrophages. IL-6 coinduced Cox-2 and microsomal PGE synthase-1, and inhibited the expression of 15-hydroxyprostaglandin dehydrogenase, leading to increased levels of PGE2. In addition, IL-6 induced MMP-9 expression, suggesting that the observed proteinase expression was regulated by the synthesis of PGE2. However, inhibition of PGE2 synthesis partially suppressed IL-6-mediated induction of MMP-9. In the canonical model of IL-6-induced signaling, JAK activation triggers STAT and MAPK(erk1/2)-signaling pathways. Therefore, the ability of structurally diverse JAK inhibitors to block IL-6-induced MMP-9 expression was examined. Inhibition of JAK blocked IL-6-induced phosphorylation of STAT3, but failed to block the phosphorylation of MAPK(erk1/2), and unexpectedly enhanced MMP-9 expression. In contrast, MEK-1 inhibition blocked IL-6-induced phosphorylation of MAPK(erk1/2) and MMP-9 expression without affecting the phosphorylation of STAT3. Thus, IL-6-induced MMP-9 expression is dependent on the activation of MAPK(erk1/2) and is restrained by a JAK-dependent gene product. Using pharmacologic and genetic approaches, we identified JAK-dependent induction of IL-10 as a potent feedback mechanism controlling IL-6-induced MMP-9 expression. Together, these data reveal that IL-6 induces MMP-9 expression in macrophages via Cox-2-dependent and -independent mechanisms, and identifies a potential mechanism linking IL-6 to the pathogenesis of chronic inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Poonam Kothari
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065
| | | | | | | | | | | | | |
Collapse
|
49
|
Angiogenic capacity of M1- and M2-polarized macrophages is determined by the levels of TIMP-1 complexed with their secreted proMMP-9. Blood 2013; 122:4054-67. [PMID: 24174628 DOI: 10.1182/blood-2013-05-501494] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A proangiogenic function of tissue-infiltrating monocytes/macrophages has long been attributed to their matrix metalloproteinase-9 zymogen (proMMP-9). Herein, we evaluated the capacity of human monocytes, mature M0 macrophages, and M1- and M2-polarized macrophages to induce proMMP-9-mediated angiogenesis. Only M2 macrophages induced angiogenesis at levels comparable with highly angiogenic neutrophils previously shown to release their proMMP-9 in a unique form, free of tissue inhibitor of metalloproteinases-1 (TIMP-1). Macrophage differentiation was accompanied by induction of low-angiogenic, TIMP-1-encumbered proMMP-9. However, polarization toward the M2, but not the M1 phenotype, caused a substantial downregulation of TIMP-1 expression, resulting in production of angiogenic, TIMP-deficient proMMP-9. Correspondingly, the angiogenic potency of M2 proMMP-9 was lost after its complexing with TIMP-1, whereas TIMP-1 silencing in M0/M1 macrophages rendered them both angiogenic. Similar to human cells, murine bone marrow-derived M2 macrophages also shut down their TIMP-1 expression and produced proMMP-9 unencumbered by TIMP-1. Providing proof that angiogenic capacity of murine M2 macrophages depended on their TIMP-free proMMP-9, Mmp9-null M2 macrophages were nonangiogenic, although their TIMP-1 was severely downregulated. Our study provides a unifying molecular mechanism for high angiogenic capacity of TIMP-free proMMP-9 that would be uniquely produced in a pathophysiological microenvironment by influxing neutrophils and/or M2 polarized macrophages.
Collapse
|
50
|
Wallace JA, Li F, Balakrishnan S, Cantemir-Stone CZ, Pecot T, Martin C, Kladney RD, Sharma SM, Trimboli AJ, Fernandez SA, Yu L, Rosol TJ, Stromberg PC, Lesurf R, Hallett M, Park M, Leone G, Ostrowski MC. Ets2 in tumor fibroblasts promotes angiogenesis in breast cancer. PLoS One 2013; 8:e71533. [PMID: 23977064 PMCID: PMC3745457 DOI: 10.1371/journal.pone.0071533] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/28/2013] [Indexed: 01/20/2023] Open
Abstract
Tumor fibroblasts are active partners in tumor progression, but the genes and pathways that mediate this collaboration are ill-defined. Previous work demonstrates that Ets2 function in stromal cells significantly contributes to breast tumor progression. Conditional mouse models were used to study the function of Ets2 in both mammary stromal fibroblasts and epithelial cells. Conditional inactivation of Ets2 in stromal fibroblasts in PyMT and ErbB2 driven tumors significantly reduced tumor growth, however deletion of Ets2 in epithelial cells in the PyMT model had no significant effect. Analysis of gene expression in fibroblasts revealed a tumor- and Ets2-dependent gene signature that was enriched in genes important for ECM remodeling, cell migration, and angiogenesis in both PyMT and ErbB2 driven-tumors. Consistent with these results, PyMT and ErbB2 tumors lacking Ets2 in fibroblasts had fewer functional blood vessels, and Ets2 in fibroblasts elicited changes in gene expression in tumor endothelial cells consistent with this phenotype. An in vivo angiogenesis assay revealed the ability of Ets2 in fibroblasts to promote blood vessel formation in the absence of tumor cells. Importantly, the Ets2-dependent gene expression signatures from both mouse models were able to distinguish human breast tumor stroma from normal stroma, and correlated with patient outcomes in two whole tumor breast cancer data sets. The data reveals a key function for Ets2 in tumor fibroblasts in signaling to endothelial cells to promote tumor angiogenesis. The results highlight the collaborative networks that orchestrate communication between stromal cells and tumor cells, and suggest that targeting tumor fibroblasts may be an effective strategy for developing novel anti-angiogenic therapies.
Collapse
Affiliation(s)
- Julie A. Wallace
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Fu Li
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Subhasree Balakrishnan
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Carmen Z. Cantemir-Stone
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Thierry Pecot
- Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- The Ohio State University Computer Science and Engineering, The Ohio State University Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
| | - Chelsea Martin
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Raleigh D. Kladney
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Sudarshana M. Sharma
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Anthony J. Trimboli
- Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Soledad A. Fernandez
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, United States of America
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas J. Rosol
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Paul C. Stromberg
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Robert Lesurf
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Québec, Canada
| | - Michael Hallett
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Québec, Canada
- McGill Centre for Bioinformatics, McGill University, Québec, Canada
| | - Morag Park
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Québec, Canada
- Department of Oncology, McGill University, Québec, Canada
| | - Gustavo Leone
- Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Tumor Microenvironment Program, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Michael C. Ostrowski
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Tumor Microenvironment Program, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|