1
|
Shichijo T, Yasunaga JI. Stratagems of HTLV-1 for persistent infection and the resultant oncogenesis: Immune evasion and clonal expansion. Leuk Res 2025; 152:107680. [PMID: 40120237 DOI: 10.1016/j.leukres.2025.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/23/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Adult T-cell leukemia-lymphoma (ATL) is one of the most severe malignant T-cell leukemia/lymphomas induced by human T-cell leukemia virus type I (HTLV-1). HTLV-1 persists in the host through stratagems of proliferating infected cells and evading host immunity. HTLV-1 encodes two viral oncogenes, tax and HTLV-1 bZIP factor (HBZ), which are related with protection from cell death and promotion of cell proliferation. In addition, HBZ and the somatic mutations in host genes, such as C-C chemokine receptor 4 (CCR4) and CIC, convert HTLV-1-infected cells into regulatory T (Treg)-like cells, leading to evasion of host immunity. A recent study demonstrated the key mechanisms for clonal expansion of HTLV-1-infected cells; the activation of the transforming growth factor (TGF)-β signaling pathway by HBZ not only converts HTLV-1-infected cells into a Treg-like cells through Foxp3 expression, but also contributes to the proliferation of HTLV-1-infected cells themselves. Due to the longevity induced by HTLV-1 infection, somatic mutations and epigenetic aberrations are accumulated in infected clones, contributing to the oncogenesis of ATL. Collectively, the long-term survival of infected cells enabled by the HTLV-1's stratagems for persistent infection ultimately leads to ATL oncogenesis via the accumulation of genetic/epigenetic abnormalities.
Collapse
Affiliation(s)
- Takafumi Shichijo
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Jun-Ichirou Yasunaga
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
2
|
Letafati A, Mehdigholian Chaijani R, Edalat F, Eslami N, Askari H, Askari F, Shirvani S, Talebzadeh H, Tarahomi M, MirKhani N, Karimi F, Norouzi M, Mozhgani SH. Advances in epigenetic treatment of adult T-cell leukemia/lymphoma: a comprehensive review. Clin Epigenetics 2025; 17:39. [PMID: 40025589 PMCID: PMC11871821 DOI: 10.1186/s13148-025-01841-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/12/2025] [Indexed: 03/04/2025] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) infection causes the uncommon and deadly cancer known as adult T-cell leukemia/lymphoma (ATLL), which affects mature T cells. Its clinical appearance is varied, and its prognosis is often miserable. Drug resistance to conventional therapies confers significant therapeutic challenges in the management of ATLL. This review discusses the emerging role of epigenetic medical advances in the treatment of ATLL, focusing on DNA methyltransferase inhibitors, histone deacetylase inhibitors, histone methyltransferase inhibitors, and BET inhibitors. Indeed, several classes of epigenetic therapies currently exhibit trailed efficacy in preclinical and clinical studies: DNA methyltransferase inhibitors like azacitidine and decitabine reexpression of silenced tumor suppressors; histone deacetylase inhibitors like vorinostat and romidepsin induce cell cycle arrest and apoptosis; bromodomain and extra-terminal inhibitors like JQ1 disrupt oncogenic signaling pathways. Whereas preclinical and early clinical data indicate modest to good efficacy for such treatments, significant challenges remain. Here, we discuss the current state of understanding of epigenetic dysregulation in ATLL and appraise the evidence supporting the use of these epi-drugs. However, despite the opened doors of epigenetic treatment, much more research is required with regard to showing the best combinations of drugs and their resistance mechanisms, the minimization of adverse effects, and how this hope will eventually be translated into benefit for the patient with ATLL.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fahime Edalat
- Autophagy Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Nazila Eslami
- Department of Biology, Faculty of Basic Science, Islamic Azad University of Tabriz, Tabriz, Iran
| | - Hanieh Askari
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Farideh Askari
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Sara Shirvani
- Department of Pharmacological and Biomolecular Science, University of Milan, Milan, Italy
| | - Hamed Talebzadeh
- Department of Pharmacological and Biomolecular Science, University of Milan, Milan, Italy
| | - Mahdiyeh Tarahomi
- Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Nila MirKhani
- Department of Microbiology, Faculty of Science, Karaj Branch, Islamic Azad University, Alborz, Iran
| | - Faeze Karimi
- Department of Medical Laboratory, Shahrood University of Medical Sciences, Shahrood, Iran
| | - Mehdi Norouzi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran.
| |
Collapse
|
3
|
Noura M, Matsuo H, Yasuda T, Tsuzuki S, Kiyoi H, Hayakawa F. Suppression of super-enhancer-driven TAL1 expression by KLF4 in T-cell acute lymphoblastic leukemia. Oncogene 2024; 43:447-456. [PMID: 38102337 DOI: 10.1038/s41388-023-02913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
TAL1 is one of the most frequently dysregulated genes in T-ALL and is overexpressed in about 50% of T-ALL cases. One of the molecular mechanisms of TAL1 overexpression is abnormal mutations in the upstream region of the TAL1 promoter that introduce binding motifs for the MYB transcription factor. MYB binding at this location creates a 5' TAL1 super-enhancer (SE), which leads to aberrant expression of TAL1 and is associated with unfavorable clinical outcomes. Although targeting TAL1 is considered to be an attractive therapeutic strategy for patients with T-ALL, direct inhibition of transcription factors is challenging. Here, we show that KLF4, a known tumor suppressor in leukemic cells, suppresses SE-driven TAL1 expression in T-ALL cells. Mechanistically, KLF4 downregulates MYB expression by directly binding to its promoter and inhibits the formation of 5' TAL1 SE. In addition, we found that APTO-253, a small molecule inducer of KLF4, exerts an anti-leukemic effect by targeting SE-driven TAL1 expression in T-ALL cells. Taken together, our results suggest that the induction of KLF4 is a promising strategy to control TAL1 expression and could be a novel treatment for T-ALL patients with a poor prognosis.
Collapse
Affiliation(s)
- Mina Noura
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Hidemasa Matsuo
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiko Yasuda
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumihiko Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
4
|
Jiang H, Yang X, Mi M, Wei X, Wu H, Xin Y, Jiao L, Sun S, Sun C. Development and performance evaluation of TaqMan real-time fluorescence quantitative methylation specific PCR for detecting methylation level of PER2. Mol Biol Rep 2021; 49:2097-2105. [PMID: 34854010 DOI: 10.1007/s11033-021-07027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/26/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND PER2 gene methylation is closely related to the occurrence and progress of some cancers, but there is no method to quantitatively detect PER2 methylation in conventional laboratories. So, we established a TaqMan real-time fluorescence quantitative methylation specific PCR (TaqMan real-time FQ-MSP) assay and use it for quantitative detection of PER2 methylation in leukemia patients. METHODS According to the PER2 sequence searched by GenBank, a CpG sequence enrichment region of the PER2 gene promoter was selected, and the methylated and unmethylated target sequences were designed according to the law of bisulfite conversion of DNA to construct PER2 methylation positive and negative reference materials. Specific primers and probe were designed. The reference materials were continuously diluted into gradient samples by tenfold ratio to evaluate the analytical sensitivity, specificity, accuracy and reproducibility of the method, and the analytical sensitivity of TaqMan real-time FQ-MSP assay was compared with that of the conventional MSP assay. At the same time, the new-established TaqMan real-time FQ-MSP assay and the conventional MSP assay were used to detect the PER2 methylation level of 81 patients with leukemia, and the samples with inconsistent detection results of the two assays were sent to pyromethylation sequencing to evaluate the clinical detection performance. RESULTS The minimum detection limit of TaqMan real-time FQ-MSP assay for detecting PER2 methylation level established in this study was 6 copies/uL, and the coefficient of variation(CV) of intra-assay and inter-assay was less than 3%. Compared with the conventional MSP assay, it has higher analytical sensitivity. For the samples with inconsistent detection results, the results of pyrosequencing and TaqMan real-time FQ-MSP assay are consistent. CONCLUSION TaqMan real-time FQ-MSP assay of PER2 methylation established in this study has high detection performance and can be used for the detection of clinical samples.
Collapse
Affiliation(s)
- Huihui Jiang
- Qingdao University, Qingdao, 266000, Shandong, China
| | - Xin Yang
- Department of Laboratory Center, Yantai Yuhuangding Hospital Affiliated to Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, Shandong, China
| | - Miaomiao Mi
- Department of Laboratory Center, Qilu Hospital of Shandong University, Jinan, 250000, Shandong, China
| | - Xiaonan Wei
- Department of Laboratory Center, Qingdao Women and Children's Hospital, Qingdao, 266000, Shandong, China
| | - Hongyuan Wu
- Qingdao University, Qingdao, 266000, Shandong, China
| | - Yu Xin
- Binzhou Medical University, Yantai, 264000, Shandong, China
| | - Liping Jiao
- Qingdao University, Qingdao, 266000, Shandong, China
| | - Shengjun Sun
- Department of Laboratory Center, Yantaishan Hospital, Yantai, 264000, Shandong, China
| | - Chengming Sun
- Department of Laboratory Center, Yantai Yuhuangding Hospital Affiliated to Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, Shandong, China.
| |
Collapse
|
5
|
Arora S, Singh P, Ahmad S, Ahmad T, Dohare R, Almatroodi SA, Alrumaihi F, Rahmani AH, Syed MA. Comprehensive Integrative Analysis Reveals the Association of KLF4 with Macrophage Infiltration and Polarization in Lung Cancer Microenvironment. Cells 2021; 10:cells10082091. [PMID: 34440860 PMCID: PMC8392240 DOI: 10.3390/cells10082091] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 01/05/2023] Open
Abstract
Macrophage polarization and infiltration to the tumor microenvironment (TME) is a critical determining factor for tumor progression. Macrophages are polarized into two states—M1 (pro-inflammatory, anti-tumorigenic and stimulated by LPS or IFN-γ) and M2 (anti-inflammatory pro-tumorigenic and stimulated by IL-4) phenotypes. Specifically, M2 macrophages enhance tumor cell growth and survival. Recent evidences suggest the pivotal role of microRNAs in macrophage polarization during the development of Non-small cell lung cancer (NSCLC), thus proposing a new therapeutic option to target lung cancer. In silico analysis determined cogent upregulation of KLF4, downregulation of IL-1β and miR-34a-5p in NSCLC tissues, consequently worsening the overall survival of NSCLC patients. We observed a significant association of KLF4 with macrophage infiltration and polarization in NSCLC. We found that KLF4 is critically implicated in M2 polarization of macrophages, which, in turn, promotes tumorigenesis. KLF4 expression correlated with miR-34a-5p and IL-1β in a feed-forward loop (FFL), both of which are implicated in immune regulation. Mechanistic overexpression of miR-34a-5p in macrophages (IL-4 stimulated) inhibits KLF4, along with downregulation of ARG1, REL-1MB (M2 macrophage specific markers), and upregulation of IL-1β, IL-6, (M1 macrophage specific markers), demonstrating macrophage polarization switch from M2 to M1 phenotype. Moreover, co-culture of these macrophages with NSCLC cells reduces their proliferation, wound healing, clonogenic capacity and enhanced NO-mediated apoptosis. Further, transfection of miR-34a-5p in NSCLC cells, also degrades KLF4, but enhances the expression of KLF4 regulated genes—IL-1β, IL-6 (pro-inflammatory mediators), which is further enhanced upon co-culture with IL-4 stimulated macrophages. Additionally, we observed a significant increase in i-NOS/NO content upon co-culture, suggesting polarization reversion of macrophages from M2 to M1, and eventually leading to anti-tumor effects. Our findings thus show a significant role of KLF4 in tumorigenesis and TAM polarization of NSCLC. However, miR-34a-5p mediated targeting of these molecular networks will provide a better therapeutic intervention for NSCLC.
Collapse
Affiliation(s)
- Shweta Arora
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Srinivasa Ramanujan Block, Jamia Millia Islamia, New Delhi 110025, India
| | - Shaniya Ahmad
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advance Research and Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Srinivasa Ramanujan Block, Jamia Millia Islamia, New Delhi 110025, India
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
6
|
Pietropaolo V, Prezioso C, Moens U. Role of Virus-Induced Host Cell Epigenetic Changes in Cancer. Int J Mol Sci 2021; 22:ijms22158346. [PMID: 34361112 PMCID: PMC8346956 DOI: 10.3390/ijms22158346] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor viruses human T-lymphotropic virus 1 (HTLV-1), hepatitis C virus (HCV), Merkel cell polyomavirus (MCPyV), high-risk human papillomaviruses (HR-HPVs), Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV) and hepatitis B virus (HBV) account for approximately 15% of all human cancers. Although the oncoproteins of these tumor viruses display no sequence similarity to one another, they use the same mechanisms to convey cancer hallmarks on the infected cell. Perturbed gene expression is one of the underlying mechanisms to induce cancer hallmarks. Epigenetic processes, including DNA methylation, histone modification and chromatin remodeling, microRNA, long noncoding RNA, and circular RNA affect gene expression without introducing changes in the DNA sequence. Increasing evidence demonstrates that oncoviruses cause epigenetic modifications, which play a pivotal role in carcinogenesis. In this review, recent advances in the role of host cell epigenetic changes in virus-induced cancers are summarized.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy;
- Correspondence: (V.P.); (U.M.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy;
- IRCSS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies, 00161 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
- Correspondence: (V.P.); (U.M.)
| |
Collapse
|
7
|
Cheng X, Joseph A, Castro V, Chen-Liaw A, Skidmore Z, Ueno T, Fujisawa JI, Rauch DA, Challen GA, Martinez MP, Green P, Griffith M, Payton JE, Edwards JR, Ratner L. Epigenomic regulation of human T-cell leukemia virus by chromatin-insulator CTCF. PLoS Pathog 2021; 17:e1009577. [PMID: 34019588 PMCID: PMC8174705 DOI: 10.1371/journal.ppat.1009577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/03/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that causes an aggressive T-cell malignancy and a variety of inflammatory conditions. The integrated provirus includes a single binding site for the epigenomic insulator, CCCTC-binding protein (CTCF), but its function remains unclear. In the current study, a mutant virus was examined that eliminates the CTCF-binding site. The mutation did not disrupt the kinetics and levels of virus gene expression, or establishment of or reactivation from latency. However, the mutation disrupted the epigenetic barrier function, resulting in enhanced DNA CpG methylation downstream of the CTCF binding site on both strands of the integrated provirus and H3K4Me3, H3K36Me3, and H3K27Me3 chromatin modifications both up- and downstream of the site. A majority of clonal cell lines infected with wild type HTLV-1 exhibited increased plus strand gene expression with CTCF knockdown, while expression in mutant HTLV-1 clonal lines was unaffected. These findings indicate that CTCF binding regulates HTLV-1 gene expression, DNA and histone methylation in an integration site dependent fashion. Human T-cell leukemia virus type 1 (HTLV-1) is a cause of leukemia and lymphoma as well as several inflammatory medical disorders. The virus integrates in the host cell DNA, and it has a single binding site for a protein designated CTCF. This protein is important in the regulation of many DNA viruses, as well as many properties of normal and malignant cells. In order to define the role of CTCF binding to HTLV, we analyzed a mutant virus lacking the binding site. We found that this mutation variably affected gene expression, DNA and histone modification, suggesting a key role in regulation of virus replication in infected cells.
Collapse
Affiliation(s)
- Xiaogang Cheng
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Ancy Joseph
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Victor Castro
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Alice Chen-Liaw
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Zachary Skidmore
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Takaharu Ueno
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | | | - Daniel A. Rauch
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Grant A. Challen
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Michael P. Martinez
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, United States of America
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Patrick Green
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, United States of America
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Malachi Griffith
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jacqueline E. Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - John R. Edwards
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Phamacogenomics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Lee Ratner
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
8
|
Liu WH, Mrozek-Gorska P, Wirth AK, Herold T, Schwarzkopf L, Pich D, Völse K, Melo-Narváez MC, Carlet M, Hammerschmidt W, Jeremias I. Inducible transgene expression in PDX models in vivo identifies KLF4 as a therapeutic target for B-ALL. Biomark Res 2020; 8:46. [PMID: 32944247 PMCID: PMC7493381 DOI: 10.1186/s40364-020-00226-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
Background Clinically relevant methods are not available that prioritize and validate potential therapeutic targets for individual tumors, from the vast amount of tumor descriptive expression data. Methods We established inducible transgene expression in clinically relevant patient-derived xenograft (PDX) models in vivo to fill this gap. Results With this technique at hand, we analyzed the role of the transcription factor Krüppel-like factor 4 (KLF4) in B-cell acute lymphoblastic leukemia (B-ALL) PDX models at different disease stages. In competitive preclinical in vivo trials, we found that re-expression of wild type KLF4 reduced the leukemia load in PDX models of B-ALL, with the strongest effects being observed after conventional chemotherapy in minimal residual disease (MRD). A nonfunctional KLF4 mutant had no effect on this model. The re-expression of KLF4 sensitized tumor cells in the PDX model towards systemic chemotherapy in vivo. It is of major translational relevance that azacitidine upregulated KLF4 levels in the PDX model and a KLF4 knockout reduced azacitidine-induced cell death, suggesting that azacitidine can regulate KLF4 re-expression. These results support the application of azacitidine in patients with B-ALL as a therapeutic option to regulate KLF4. Conclusion Genetic engineering of PDX models allows the examination of the function of dysregulated genes like KLF4 in a highly clinically relevant translational context, and it also enables the selection of therapeutic targets in individual tumors and links their functions to clinically available drugs, which will facilitate personalized treatment in the future.
Collapse
Affiliation(s)
- Wen-Hsin Liu
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Marchioninistraße 25, 81377 Munich, Germany
| | - Paulina Mrozek-Gorska
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
| | - Anna-Katharina Wirth
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Marchioninistraße 25, 81377 Munich, Germany
| | - Tobias Herold
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Marchioninistraße 25, 81377 Munich, Germany.,Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Larissa Schwarzkopf
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Marchioninistraße 25, 81377 Munich, Germany
| | - Dagmar Pich
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
| | - Kerstin Völse
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Marchioninistraße 25, 81377 Munich, Germany
| | - M Camila Melo-Narváez
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
| | - Michela Carlet
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Marchioninistraße 25, 81377 Munich, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Marchioninistraße 25, 81377 Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
9
|
Watanabe T, Yamashita S, Ureshino H, Kamachi K, Kurahashi Y, Fukuda-Kurahashi Y, Yoshida N, Hattori N, Nakamura H, Sato A, Kawaguchi A, Sueoka-Aragane N, Kojima K, Okada S, Ushijima T, Kimura S, Sueoka E. Targeting aberrant DNA hypermethylation as a driver of ATL leukemogenesis by using the new oral demethylating agent OR-2100. Blood 2020; 136:871-884. [PMID: 32391874 DOI: 10.1182/blood.2019003084] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
Adult T-cell leukemia-lymphoma (ATL) is an aggressive hematological malignancy of CD4+ T cells transformed by human T-cell lymphotropic virus-1 (HTLV-1). Most HTLV-1-infected individuals are asymptomatic, and only 3% to 5% of carriers develop ATL. Here, we describe the contribution of aberrant DNA methylation to ATL leukemogenesis. HTLV-1-infected T-cells and their uninfected counterparts were separately isolated based on CADM1 and CD7 expression status, and differentially methylated positions (DMPs) specific to HTLV-infected T cells were identified through genome-wide DNA methylation profiling. Accumulation of DNA methylation at hypermethylated DMPs correlated strongly with ATL development and progression. In addition, we identified 22 genes downregulated because of promoter hypermethylation in HTLV-1-infected T cells, including THEMIS, LAIR1, and RNF130, which negatively regulate T-cell receptor (TCR) signaling. Phosphorylation of ZAP-70, a transducer of TCR signaling, was dysregulated in HTLV-1-infected cell lines but was normalized by reexpression of THEMIS. Therefore, we hypothesized that DNA hypermethylation contributes to growth advantages in HTLV-1-infected cells during ATL leukemogenesis. To test this idea, we investigated the anti-ATL activities of OR-1200 and OR-2100 (OR21), novel decitabine (DAC) prodrugs with enhanced oral bioavailability. Both DAC and OR21 inhibited cell growth, accompanied by global DNA hypomethylation, in xenograft tumors established by implantation of HTLV-1-infected cells. OR21 was less hematotoxic than DAC, whereas tumor growth inhibition was almost identical between the 2 compounds, making it suitable for long-term treatment of ATL patient-derived xenograft mice. Our results demonstrate that regional DNA hypermethylation is functionally important for ATL leukemogenesis and an effective therapeutic target.
Collapse
MESH Headings
- Administration, Oral
- Adult
- Aged
- Animals
- Antineoplastic Agents/administration & dosage
- Cell Transformation, Viral/drug effects
- Cell Transformation, Viral/genetics
- Cells, Cultured
- DNA Methylation/drug effects
- DNA Methylation/genetics
- Demethylation/drug effects
- Drugs, Investigational/therapeutic use
- Female
- Gene Expression Regulation, Leukemic/drug effects
- HTLV-I Infections/complications
- HTLV-I Infections/drug therapy
- HTLV-I Infections/genetics
- Human T-lymphotropic virus 1/drug effects
- Human T-lymphotropic virus 1/physiology
- Humans
- Leukemia-Lymphoma, Adult T-Cell/drug therapy
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Molecular Targeted Therapy/methods
- Pyridines/administration & dosage
- Xenograft Model Antitumor Assays
- Young Adult
Collapse
Affiliation(s)
- Tatsuro Watanabe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Satoshi Yamashita
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroshi Ureshino
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Kazuharu Kamachi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuki Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- OHARA Pharmaceutical Co., Ltd., Shiga, Japan
| | - Yuki Fukuda-Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- OHARA Pharmaceutical Co., Ltd., Shiga, Japan
| | - Nao Yoshida
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Naoko Hattori
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | | | - Akemi Sato
- Department of Clinical Laboratory Medicine, Faculty of Medicine, and
| | - Atsushi Kawaguchi
- Section of Clinical Cooperation System, Center for Comprehensive Community Medicine, Faculty of Medicine, Saga University, Saga, Japan; and
| | - Naoko Sueoka-Aragane
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Kensuke Kojima
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Shinya Kimura
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Eisaburo Sueoka
- Department of Clinical Laboratory Medicine, Faculty of Medicine, and
| |
Collapse
|
10
|
Yan M, Liu H, Xu J, Cen X, Wang Q, Xu W, Wang W, Qiu Z, Ou J, Dong Y, Zhu P, Ren H, He F, Wang M. Expression of human Krüppel-like factor 3 in peripheral blood as a promising biomarker for acute leukemia. Cancer Med 2020; 9:2803-2811. [PMID: 32101374 PMCID: PMC7163096 DOI: 10.1002/cam4.2911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/10/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Background Universal gene targets are in persistent demand by real‐time quantitative polymerase chain reaction (RT‐qPCR)‐based methods in acute leukemia (AL) diagnosis and monitoring. Human Krüppel‐like factor 3 (hKLF3), a newly cloned human transcription factor, has proved to be a regulator of hematopoiesis. Methods Sanger sequencing was performed in bone marrow (BM) samples from 17 AL patients for mutations in hKLF3 coding exons. hKLF3 expression in peripheral blood (PB) and BM samples from 45 AL patients was dynamically detected by RT‐qPCR. PB samples from 31 healthy donors were tested as normal controls. Results No mutation was sequenced in hKLF3 coding exons. hKLF3 expression in PB of AL was significantly lower than that in healthy donors [0.30 (0.02‐1.07) vs 1.18 (0.62‐3.37), P < .0001]. Primary acute myeloid leukemia (AML) exhibited the least expression values compared with secondary AML and acute lymphoblastic leukemia. Receiver operating characteristic (ROC) analyses suggested that hKLF3 expression in PB was a good marker for AML diagnosis with an AUC of 0.99 (95% CI 0.98‐1.00) and an optimum cutoff value of 0.67 (sensitivity 93.94% and specificity 93.55%). hKLF3 expression was upregulated significantly when AML patients acquired morphological complete remission (CR), and the level of hKLF3 seemed to be higher in patients with deeper CR than in patients with minimal residual disease (MRD). Paired PB and BM samples showed highly consistent alteration in hKLF3 expression (r = .6533, P = .001). Besides, a significantly converse correlation between decreased hKLF3 expression in PB and markers for leukemic load was observed. Conclusions hKLF3 expression in PB may act as a potential marker for AL diagnosis and monitoring.
Collapse
Affiliation(s)
- Miao Yan
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Huihui Liu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Junhui Xu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Xinan Cen
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Qian Wang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Weilin Xu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Wensheng Wang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Zhixiang Qiu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Jinping Ou
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Ping Zhu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Hanyun Ren
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Mangju Wang
- Department of Hematology, Peking University First Hospital, Beijing, China
| |
Collapse
|
11
|
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5:8. [PMID: 32296030 PMCID: PMC7005297 DOI: 10.1038/s41392-020-0110-5] [Citation(s) in RCA: 1139] [Impact Index Per Article: 227.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
Since cancer stem cells (CSCs) were first identified in leukemia in 1994, they have been considered promising therapeutic targets for cancer therapy. These cells have self-renewal capacity and differentiation potential and contribute to multiple tumor malignancies, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. The biological activities of CSCs are regulated by several pluripotent transcription factors, such as OCT4, Sox2, Nanog, KLF4, and MYC. In addition, many intracellular signaling pathways, such as Wnt, NF-κB (nuclear factor-κB), Notch, Hedgehog, JAK-STAT (Janus kinase/signal transducers and activators of transcription), PI3K/AKT/mTOR (phosphoinositide 3-kinase/AKT/mammalian target of rapamycin), TGF (transforming growth factor)/SMAD, and PPAR (peroxisome proliferator-activated receptor), as well as extracellular factors, such as vascular niches, hypoxia, tumor-associated macrophages, cancer-associated fibroblasts, cancer-associated mesenchymal stem cells, extracellular matrix, and exosomes, have been shown to be very important regulators of CSCs. Molecules, vaccines, antibodies, and CAR-T (chimeric antigen receptor T cell) cells have been developed to specifically target CSCs, and some of these factors are already undergoing clinical trials. This review summarizes the characterization and identification of CSCs, depicts major factors and pathways that regulate CSC development, and discusses potential targeted therapy for CSCs.
Collapse
Affiliation(s)
- Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Gaichao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jie Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jiayi Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Xiaowen Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China.
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
12
|
Epigenetics evaluation of the oncogenic mechanisms of two closely related bovine and human deltaretroviruses: A system biology study. Microb Pathog 2020; 139:103845. [DOI: 10.1016/j.micpath.2019.103845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/26/2019] [Accepted: 11/03/2019] [Indexed: 12/12/2022]
|
13
|
Ichikawa T, Nakahata S, Fujii M, Iha H, Shimoda K, Morishita K. The regulation of NDRG2 expression during ATLL development after HTLV-1 infection. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2633-2646. [PMID: 31295529 DOI: 10.1016/j.bbadis.2019.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/25/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is a candidate tumor suppressor that is frequently downregulated in adult T-cell leukemia/lymphoma (ATLL) and functions to negatively regulate several cellular signaling pathways as PP2A recruiter. To clarify the molecular mechanisms of suppression of NDRG2 expression, we initially determined the expression pattern of NDRG2 in various types of T-cells and ATLL cells. NDRG2 expression was significantly upregulated in HTLV-1/Tax-immortalized T-cells, which was mediated by NF-κB activation through Tax expression. On the other hand, NDRG2 expression was suppressed in HTLV-1-infected cell lines and various types of ATLL cells, which was dependent on the DNA methylation of the NDRG2 promoter. We found that the expression of enhancer of zeste homolog 2 (EZH2), a member of the polycomb family, is increased in ATLL, and that EZH2 directly binds to the NDRG2 promoter and induces DNA methylation of the NDRG2 promoter. Since the expression of EZH2 were anti-parallelly regulated with the NDRG2 expression, EZH2 might be one of the most important regulators of the downregulation of NDRG2, contributing to enhanced activation of signaling pathways during ATLL development.
Collapse
Affiliation(s)
- Tomonaga Ichikawa
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Shingo Nakahata
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Masahiro Fujii
- Division of Virology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Hidekatsu Iha
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Kazuya Shimoda
- Division of Gastroenterology and Hematology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| |
Collapse
|
14
|
Park CS, Lewis A, Chen T, Lacorazza D. Concise Review: Regulation of Self-Renewal in Normal and Malignant Hematopoietic Stem Cells by Krüppel-Like Factor 4. Stem Cells Transl Med 2019; 8:568-574. [PMID: 30790473 PMCID: PMC6525558 DOI: 10.1002/sctm.18-0249] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
Pluripotent and tissue‐specific stem cells, such as blood‐forming stem cells, are maintained through a balance of quiescence, self‐renewal, and differentiation. Self‐renewal is a specialized cell division that generates daughter cells with the same features as the parental stem cell. Although many factors are involved in the regulation of self‐renewal, perhaps the most well‐known factors are members of the Krüppel‐like factor (KLF) family, especially KLF4, because of the landmark discovery that this protein is required to reprogram somatic cells into induced pluripotent stem cells. Because KLF4 regulates gene expression through transcriptional activation or repression via either DNA binding or protein‐to‐protein interactions, the outcome of KLF4‐mediated regulation largely depends on the cellular context, cell cycle regulation, chromatin structure, and the presence of oncogenic drivers. This study first summarizes the current understanding of the regulation of self‐renewal by KLF proteins in embryonic stem cells through a KLF circuitry and then delves into the potential function of KLF4 in normal hematopoietic stem cells and its emerging role in leukemia‐initiating cells from pediatric patients with T‐cell acute lymphoblastic leukemia via repression of the mitogen‐activated protein kinase 7 pathway. stem cells translational medicine2019;8:568–574
Collapse
Affiliation(s)
- Chun S Park
- Department Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Andrew Lewis
- Department Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Taylor Chen
- Department Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Daniel Lacorazza
- Department Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
15
|
Liu S, Xing Y, Lu W, Li S, Tian Z, Xing H, Tang K, Xu Y, Rao Q, Wang M, Wang J. RUNX1 inhibits proliferation and induces apoptosis of t(8;21) leukemia cells via KLF4-mediated transactivation of P57. Haematologica 2019; 104:1597-1607. [PMID: 30792202 PMCID: PMC6669147 DOI: 10.3324/haematol.2018.192773] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
RUNX1 is a key transcription factor in hematopoiesis and its disruption is one of the most common aberrations in acute myeloid leukemia. RUNX1 alterations affect its DNA binding capacity and transcriptional activities, leading to the deregulation of transcriptional targets, and abnormal proliferation and differentiation of myeloid cells. Identification of RUNX1 target genes and clarification of their biological functions are of great importance in the search for new therapeutic strategies for RUNX1-altered leukemia. In this study, we identified and confirmed that KLF4, a known tumor suppressor gene, as a direct target of RUNX1, was down-regulated in RUNX1-ETO leukemia. RUNX1 bound to KLF4 promoter in chromatin to activate its transcription, while the leukemogenic RUNX1-ETO fusion protein had little effect on this transactivation. KLF4 was also identified as a novel binding partner of RUNX1. RUNX1 interacted with KLF4 through Runt domain and further co-activated its target genes. However, RUNX1-ETO competed with RUNX1 to bind KLF4 through Runt and ETO domains, and abrogated transcription of KLF4. Finally, overexpression experiments indicated that RUNX1 inhibited proliferation and induced apoptosis of t(8;21) leukemia cells via KLF4-mediated upregulation of P57. These data suggest KLF4 dysregulation mediated by RUNX1-ETO enhances proliferation and retards apoptosis, and provides a potential target for therapy of t(8;21) acute myeloid leukemia.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Experimental Hematology
| | - Yanyan Xing
- State Key Laboratory of Experimental Hematology
| | - Wenting Lu
- State Key Laboratory of Experimental Hematology
| | - Shouyun Li
- State Key Laboratory of Experimental Hematology
| | - Zheng Tian
- State Key Laboratory of Experimental Hematology
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology
| | - Kejing Tang
- State Key Laboratory of Experimental Hematology
| | - Yingxi Xu
- State Key Laboratory of Experimental Hematology
| | - Qing Rao
- State Key Laboratory of Experimental Hematology
| | - Min Wang
- State Key Laboratory of Experimental Hematology
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology .,National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, P.R. China
| |
Collapse
|
16
|
Charostad J, Astani A, Goudarzi H, Faghihloo E. DNA methyltransferases in virus-associated cancers. Rev Med Virol 2018; 29:e2022. [PMID: 30511446 DOI: 10.1002/rmv.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Abstract
Human tumor viruses are either casually linked or contribute in the development of human cancers. Viruses can stimulate oncogenesis through affecting diverse biological pathways in human cells. Growing data have demonstrated frequent involvement of one of the most characteristic parts of cellular epigenetic machinery, DNA methylation, in the oncogenesis. DNA methylation of cellular genes is catalyzed by DNA methyltransferases (DNMTs) as a key effector enzyme in this process. Dysregulation of DNMTs can cause aberrant gene methylation in promoter of cancer-related genes including tumor suppressor genes, resulting in gene silencing. In this regard, the role of tumor viruses is remarkable. Here, in this review, we used published information to elucidate whether tumor viruses are able to manipulate DNMT regulation, and if so, what are its consequences in the process of oncogenesis. This essay also aims to shed light on which cellular pathways have been engaged by viruses to induce DNMTs.
Collapse
Affiliation(s)
- Javad Charostad
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Astani
- Zoonotic Diseases Research Center, School of Public Health, Sahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Microbiology, Shahid Sadoghi University of Medical Science, Yazd, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Yamagishi M, Fujikawa D, Watanabe T, Uchimaru K. HTLV-1-Mediated Epigenetic Pathway to Adult T-Cell Leukemia-Lymphoma. Front Microbiol 2018; 9:1686. [PMID: 30087673 PMCID: PMC6066519 DOI: 10.3389/fmicb.2018.01686] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/06/2018] [Indexed: 11/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), the first reported human oncogenic retrovirus, is the etiologic agent of highly aggressive, currently incurable diseases such as adult T-cell leukemia-lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 proteins, including Tax and HBZ, have been shown to have critical roles in HTLV-1 pathogenicity, yet the underlying mechanisms of HTLV-1-driven leukemogenesis are unclear. The frequent disruption of genetic and epigenetic gene regulation in various types of malignancy, including ATL, is evident. In this review, we illustrate a focused range of topics about the establishment of HTLV-1 memory: (1) genetic lesion in the Tax interactome pathway, (2) gene regulatory loop/switch, (3) disordered chromatin regulation, (4) epigenetic lock by the modulation of epigenetic factors, (5) the loss of gene fine-tuner microRNA, and (6) the alteration of chromatin regulation by HTLV-1 integration. We discuss the persistent influence of Tax-dependent epigenetic changes even after the disappearance of HTLV-1 gene expression due to the viral escape from the immune system, which is a remaining challenge in HTLV-1 research. The summarized evidence and conceptualized description may provide a better understanding of HTLV-1-mediated cellular transformation and the potential therapeutic strategies to combat HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Makoto Yamagishi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Dai Fujikawa
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiki Watanabe
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kaoru Uchimaru
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Kuribayashi W, Takizawa K, Sugata K, Kuramitsu M, Momose H, Sasaki E, Hiradate Y, Furuhata K, Asada Y, Iwama A, Matsuoka M, Mizukami T, Hamaguchi I. Impact of the SCF signaling pathway on leukemia stem cell-mediated ATL initiation and progression in an HBZ transgenic mouse model. Oncotarget 2018; 7:51027-51043. [PMID: 27340921 PMCID: PMC5239456 DOI: 10.18632/oncotarget.10210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/01/2016] [Indexed: 12/31/2022] Open
Abstract
Adult T-cell leukemia (ATL) is a malignant disease caused by human T-lymphotropic virus type 1. In aggressive ATL, the response to chemotherapy is extremely poor. We hypothesized that this poor response is due to the existence of chemotherapy-resistant cells, such as leukemic stem cells. Previously, we successfully identified an ATL stem cell (ATLSC) candidate as the c-kit+/CD38−/CD71− cells in an ATL mouse model using Tax transgenic mice. Here, with a new ATL mouse model using HBZ-transgenic mice, we further discovered that the functional ATLSC candidate, which commonly expresses c-kit, is drug-resistant and has the ability to initiate tumors and reconstitute lymphomatous cells. We characterized the ATLSCs as c-kit+/CD4−/CD8− cells and found that they have a similar gene expression profile as T cell progenitors. Additionally, we found that AP-1 gene family members, including Junb, Jund, and Fosb, were up-regulated in the ATLSC fraction. The results of an in vitro assay showed that ATLSCs cultured with cytokines known to promote stem cell expansion, such as stem cell factor (SCF), showed highly proliferative activity and maintained their stem cell fraction. Inhibition of c-kit–SCF signaling with the neutralizing antibody ACK2 affected ATLSC self-renewal and proliferation. Experiments in Sl/Sld mice, which have a mutation in the membrane-bound c-kit ligand, found that ATL development was completely blocked in these mice. These results clearly suggest that the c-kit–SCF signal plays a key role in ATLSC self-renewal and in ATL initiation and disease progression.
Collapse
Affiliation(s)
- Wakako Kuribayashi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan.,Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kazuya Takizawa
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan
| | - Kenji Sugata
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Madoka Kuramitsu
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan
| | - Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan
| | - Yuki Hiradate
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan
| | - Keiko Furuhata
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan
| | - Yoshihisa Asada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan
| |
Collapse
|
19
|
The antihypertensive drug hydralazine activates the intrinsic pathway of apoptosis and causes DNA damage in leukemic T cells. Oncotarget 2017; 7:21875-86. [PMID: 26942461 PMCID: PMC5008330 DOI: 10.18632/oncotarget.7871] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/20/2016] [Indexed: 12/20/2022] Open
Abstract
Epigenetic therapies have emerged as promising anticancer approaches, since epigenetic modifications play a major role in tumor initiation and progression. Hydralazine, an approved vasodilator and antihypertensive drug, has been recently shown to act as a DNA methylation inhibitor. Even though hydralazine is already tested in clinical cancer trials, its mechanism of antitumor action remains undefined. Here, we show that hydralazine induced caspase-dependent apoptotic cell death in human p53-mutant leukemic T cells. Moreover, we demonstrate that hydralazine triggered the mitochondrial pathway of apoptosis by inducing Bak activation and loss of the mitochondrial membrane potential. Hydralazine treatment further resulted in the accumulation of reactive oxygen species, whereas a superoxide dismutase mimetic inhibited hydralazine-induced cell death. Interestingly, caspase-9-deficient Jurkat cells or Bcl-2- and Bcl-xL-overexpressing cells were strongly resistant to hydralazine treatment, thereby demonstrating the dependence of hydralazine-induced apoptosis on the mitochondrial death pathway. Furthermore, we demonstrate that hydralazine treatment triggered DNA damage which might contribute to its antitumor effect.
Collapse
|
20
|
Enhancer profiling identifies critical cancer genes and characterizes cell identity in adult T-cell leukemia. Blood 2017; 130:2326-2338. [PMID: 28978570 DOI: 10.1182/blood-2017-06-792184] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/22/2017] [Indexed: 02/06/2023] Open
Abstract
A number of studies have recently demonstrated that super-enhancers, which are large cluster of enhancers typically marked by a high level of acetylation of histone H3 lysine 27 and mediator bindings, are frequently associated with genes that control and define cell identity during normal development. Super-enhancers are also often enriched at cancer genes in various malignancies. The identification of such enhancers would pinpoint critical factors that directly contribute to pathogenesis. In this study, we performed enhancer profiling using primary leukemia samples from adult T-cell leukemia/lymphoma (ATL), which is a genetically heterogeneous intractable cancer. Super-enhancers were enriched at genes involved in the T-cell activation pathway, including IL2RA/CD25, CD30, and FYN, in both ATL and normal mature T cells, which reflected the origin of the leukemic cells. Super-enhancers were found at several known cancer gene loci, including CCR4, PIK3R1, and TP73, in multiple ATL samples, but not in normal mature T cells, which implicated those genes in ATL pathogenesis. A small-molecule CDK7 inhibitor, THZ1, efficiently inhibited cell growth, induced apoptosis, and downregulated the expression of super-enhancer-associated genes in ATL cells. Furthermore, enhancer profiling combined with gene expression analysis identified a previously uncharacterized gene, TIAM2, that was associated with super-enhancers in all ATL samples, but not in normal T cells. Knockdown of TIAM2 induced apoptosis in ATL cell lines, whereas overexpression of this gene promoted cell growth. Our study provides a novel strategy for identifying critical cancer genes.
Collapse
|
21
|
DNA methylation analysis of the EGR3 gene in patients of schizophrenia. Psychiatry Res 2017; 251:115-117. [PMID: 28199908 DOI: 10.1016/j.psychres.2017.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 02/05/2017] [Indexed: 12/27/2022]
Abstract
DNA methylation has been implicated in the pathogenesis of schizophrenia. EGR3 is considered as a potential candidate gene for schizophrenia. We conducted in vitro DNA methylation reaction, Lucia luciferase activity assay, and pyrosequencing assay to assess the DNA methylation of the EGR3 expression underlying the pathophysiology of schizophrenia. We found that DNA methylation of the putative EGR3 regulatory regions attenuated Lucia luciferase activity. There was no difference in the DNA methylation pattern of EGR3 between in 50 schizophrenic patients and 47 controls. Our data suggest that DNA methylation regulated the expression of EGR3 might not be associated with schizophrenia.
Collapse
|
22
|
Watanabe T. Adult T-cell leukemia: molecular basis for clonal expansion and transformation of HTLV-1-infected T cells. Blood 2017; 129:1071-1081. [PMID: 28115366 PMCID: PMC5374731 DOI: 10.1182/blood-2016-09-692574] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/21/2016] [Indexed: 02/07/2023] Open
Abstract
Adult T-cell leukemia (ATL) is an aggressive T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1) that develops through a multistep carcinogenesis process involving 5 or more genetic events. We provide a comprehensive overview of recently uncovered information on the molecular basis of leukemogenesis in ATL. Broadly, the landscape of genetic abnormalities in ATL that include alterations highly enriched in genes for T-cell receptor-NF-κB signaling such as PLCG1, PRKCB, and CARD11 and gain-of function mutations in CCR4 and CCR7 Conversely, the epigenetic landscape of ATL can be summarized as polycomb repressive complex 2 hyperactivation with genome-wide H3K27 me3 accumulation as the basis of the unique transcriptome of ATL cells. Expression of H3K27 methyltransferase enhancer of zeste 2 was shown to be induced by HTLV-1 Tax and NF-κB. Furthermore, provirus integration site analysis with high-throughput sequencing enabled the analysis of clonal composition and cell number of each clone in vivo, whereas multicolor flow cytometric analysis with CD7 and cell adhesion molecule 1 enabled the identification of HTLV-1-infected CD4+ T cells in vivo. Sorted immortalized but untransformed cells displayed epigenetic changes closely overlapping those observed in terminally transformed ATL cells, suggesting that epigenetic abnormalities are likely earlier events in leukemogenesis. These new findings broaden the scope of conceptualization of the molecular mechanisms of leukemogenesis, dissecting them into immortalization and clonal progression. These recent findings also open a new direction of drug development for ATL prevention and treatment because epigenetic marks can be reprogrammed. Mechanisms underlying initial immortalization and progressive accumulation of these abnormalities remain to be elucidated.
Collapse
Affiliation(s)
- Toshiki Watanabe
- Department of Advanced Medical Innovation, St. Marianna University Graduate School of Medicine, Kanagawa, Japan; and Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Hashimoto I, Nagata T, Sekine S, Moriyama M, Shibuya K, Hojo S, Matsui K, Yoshioka I, Okumura T, Hori T, Shimada Y, Tsukada K. Prognostic significance of KLF4 expression in gastric cancer. Oncol Lett 2016; 13:819-826. [PMID: 28356964 DOI: 10.3892/ol.2016.5499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 11/07/2016] [Indexed: 12/21/2022] Open
Abstract
To understand the roles of pluripotent stem cell-inducing genes in gastric cancer, the expression of Krüppel-like factor 4 (KLF4), Nanog, octamer-binding transcription factor 4 (Oct4), avian myelocytomatosis viral oncogene homolog (c-Myc) and sex-determining region Y-box 2 (SOX2) was examined using the newly developed gastric carcinoma tissue microarray. The associations between the immunohistochemical expression levels of the pluripotency-inducing factors and the clinicopathological data of 108 patients with gastric cancer were analyzed. No associations were identified between the expression levels of the five pluripotency-inducing factors and the tumor-node-metastasis (TNM) classification or clinicopathological characteristics of the patients. In addition, multivariate analysis revealed no association of Nanog, Oct4, SOX2 or c-Myc with the prognosis of the gastric cancer patients; however, low expression of KLF4 was determined to be an independent negative prognostic factor (P=0.0331), particularly in patients who underwent R0 resection (TNM stages 2 and 3; P=0.0048). In summary, low KLF4 expression was found to be negatively associated with overall survival, and may therefore be a useful prognostic marker in gastric cancer patients.
Collapse
Affiliation(s)
- Isaya Hashimoto
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama 930-0194, Japan
| | - Takuya Nagata
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama 930-0194, Japan
| | - Shinichi Sekine
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama 930-0194, Japan
| | - Makoto Moriyama
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama 930-0194, Japan
| | - Kazuto Shibuya
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama 930-0194, Japan
| | - Shozo Hojo
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama 930-0194, Japan
| | - Koshi Matsui
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama 930-0194, Japan
| | - Isaku Yoshioka
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama 930-0194, Japan
| | - Tomoyuki Okumura
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama 930-0194, Japan
| | - Takashi Hori
- Department of Pathology, Graduate School of Research into Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yutaka Shimada
- Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8304, Japan
| | - Kazuhiro Tsukada
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
24
|
Miyazato P, Matsuo M, Katsuya H, Satou Y. Transcriptional and Epigenetic Regulatory Mechanisms Affecting HTLV-1 Provirus. Viruses 2016; 8:v8060171. [PMID: 27322309 PMCID: PMC4926191 DOI: 10.3390/v8060171] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/01/2016] [Accepted: 06/09/2016] [Indexed: 11/16/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with human diseases, such as adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/Tropic spastic paraparesis (HAM/TSP). As a retrovirus, its life cycle includes a step where HTLV-1 is integrated into the host genomic DNA and forms proviral DNA. In the chronic phase of the infection, HTLV‑1 is known to proliferate as a provirus via the mitotic division of the infected host cells. There are generally tens of thousands of infected clones within an infected individual. They exist not only in peripheral blood, but also in various lymphoid organs. Viral proteins encoded in HTLV-1 genome play a role in the proliferation and survival of the infected cells. As is the case with other chronic viral infections, HTLV-1 gene expression induces the activation of the host immunity against the virus. Thus, the transcription from HTLV-1 provirus needs to be controlled in order to evade the host immune surveillance. There should be a dynamic and complex regulation in vivo, where an equilibrium between viral antigen expression and host immune surveillance is achieved. The mechanisms regulating viral gene expression from the provirus are a key to understanding the persistent/latent infection with HTLV-1 and its pathogenesis. In this article, we would like to review our current understanding on this topic.
Collapse
Affiliation(s)
- Paola Miyazato
- International Research Center for Medical Sciences, Center for AIDS Research, Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Misaki Matsuo
- International Research Center for Medical Sciences, Center for AIDS Research, Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Hiroo Katsuya
- International Research Center for Medical Sciences, Center for AIDS Research, Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Yorifumi Satou
- International Research Center for Medical Sciences, Center for AIDS Research, Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-0811, Japan.
| |
Collapse
|
25
|
Fadous-Khalifé MC, Aloulou N, Jalbout M, Hadchity J, Aftimos G, Paris F, Hadchity E. Krüppel-like factor 4: A new potential biomarker of lung cancer. Mol Clin Oncol 2016; 5:35-40. [PMID: 27330761 PMCID: PMC4907001 DOI: 10.3892/mco.2016.883] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/07/2016] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is most prevalent human cancer worldwide. However, no molecular markers are currently available for predicting lung cancer prognosis. Therefore, identifying novel biomarkers may be useful for improving clinical diagnosis and patient stratification. Krüppel-like factor 4 (KLF4) is a transcription factor with opposing roles in different human cancers. Its overexpression in several cancers is correlated with a poor prognosis. However, the expression and role of KLF4 in lung cancer remains to be elucidated. The aim of this study was to determine the profile of KLF4 expression in different types of lung cancer. The KLF4 protein expression level was tested and evaluated by immunohistochemical analysis in 47 lung tumors and normal tissues, and then correlated with clinical characteristics. A differential expression of KLF4 was observed between normal tissue and each of the lung cancer types. A significant decrease in KLF4 expression was observed in non-small-cell lung cancer (NSCLC) compared with that in normal tissue, while significant overexpression was detected in small-cell lung cancer. Furthermore, a higher rate of expression was observed in stage II, III and IV disease compared with stage I disease in NSCLC tissues. KLF4 expression was not found to be associated with age or gender. Our results suggested that the KLF4 protein level may be a potential biomarker in patients with advanced lung cancer.
Collapse
Affiliation(s)
- Marie Claude Fadous-Khalifé
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadath, Lebanon; Notre Dame De Secours University Hospital, Byblos, Lebanon
| | - Nijez Aloulou
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadath, Lebanon
| | - Majida Jalbout
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadath, Lebanon; Immunogenetic Pathology Laboratory, Faculty of Sciences, Lebanese University, Fanar, Lebanon
| | - Joseph Hadchity
- Department of Surgery, Sainte Thérèse Hospital, Hadath, Lebanon
| | | | - François Paris
- Endothelium Radiobiology and Targeting, UMR Inserm 892, Cancer Research Center, Nantes, France
| | - Elie Hadchity
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadath, Lebanon
| |
Collapse
|
26
|
Park CS, Shen Y, Lewis A, Lacorazza HD. Role of the reprogramming factor KLF4 in blood formation. J Leukoc Biol 2016; 99:673-85. [DOI: 10.1189/jlb.1ru1215-539r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/22/2016] [Indexed: 12/31/2022] Open
|
27
|
Deregulated KLF4 Expression in Myeloid Leukemias Alters Cell Proliferation and Differentiation through MicroRNA and Gene Targets. Mol Cell Biol 2015; 36:559-73. [PMID: 26644403 DOI: 10.1128/mcb.00712-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/20/2015] [Indexed: 12/23/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by increased proliferation and blocked differentiation of hematopoietic progenitors mediated, in part, by altered myeloid transcription factor expression. Decreased Krüppel-like factor 4 (KLF4) expression has been observed in AML, but how decreased KLF4 contributes to AML pathogenesis is largely unknown. We demonstrate decreased KLF4 expression in AML patient samples with various cytogenetic aberrations, confirm that KLF4 overexpression promotes myeloid differentiation and inhibits cell proliferation in AML cell lines, and identify new targets of KLF4. We have demonstrated that microRNA 150 (miR-150) expression is decreased in AML and that reintroducing miR-150 expression induces myeloid differentiation and inhibits proliferation of AML cells. We show that KLF family DNA binding sites are necessary for miR-150 promoter activity and that KLF2 or KLF4 overexpression induces miR-150 expression. miR-150 silencing, alone or in combination with silencing of CDKN1A, a well-described KLF4 target, did not fully reverse KLF4-mediated effects. Gene expression profiling and validation identified putative KLF4-regulated genes, including decreased MYC and downstream MYC-regulated gene expression in KLF4-overexpressing cells. Our findings indicate that decreased KLF4 expression mediates antileukemic effects through regulation of gene and microRNA networks, containing miR-150, CDKN1A, and MYC, and provide mechanistic support for therapeutic strategies increasing KLF4 expression.
Collapse
|
28
|
Hu C, Liu M, Zhang W, Xu Q, Ma K, Chen L, Wang Z, He S, Zhu H, Xu N. Upregulation of KLF4 by methylseleninic acid in human esophageal squamous cell carcinoma cells: Modification of histone H3 acetylation through HAT/HDAC interplay. Mol Carcinog 2015; 54:1051-9. [PMID: 24789055 DOI: 10.1002/mc.22174] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 01/01/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) occurs at a very high frequency in certain areas of China. Supplementation with selenium-containing compounds was associated with a significantly lower cancer mortality rate in a study conducted in Linxia, China. Thus, selenium could be a potential anti-esophageal cancer agent. In this study, methylseleninic acid (MSA) could inhibit cell growth of ESCC cells in vitro and in vivo. Upon treated with MSA, the activity of histone deacetylases (HDACs) was decreased and general control nonrepressed protein 5 (GCN5) was upregulated in ESCC cells. Meanwhile, a significant increase of H3K9 acetylation (H3K9ac) was detected. Upregulation of Krüppel-like factor 4 (KLF4) was also observed after MSA treatment. Additionally, the acetylated histone H3 located more at KLF4 promoter region after MSA treatment, shown by chromatin immunoprecipitation (ChIP) assay. Moreover, knockdown of GCN5 decreased the protein level of both H3K9ac and KLF4, along with less cell growth inhibition. Taken all, our results indicated that MSA could inhibit ESCC cell growth, at least in part, by MSA-HDAC/GCN5-H3K9ac-KLF4 axis. To our best knowledge, this is the first report that MSA induced acetylation of histone H3 at Lys9, which might depend on the activities and the balance between HDACs and HATs.
Collapse
Affiliation(s)
- Chenfei Hu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR, China
| | - Wei Zhang
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR, China
| | - Qing Xu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR, China
| | - Kai Ma
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR, China
| | - Lechuang Chen
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR, China
| | - Zaozao Wang
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR, China
| | - Shun He
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR, China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR, China
| |
Collapse
|
29
|
Ilisso CP, Castellano M, Zappavigna S, Lombardi A, Vitale G, Dicitore A, Cacciapuoti G, Caraglia M, Porcelli M. The methyl donor S-adenosylmethionine potentiates doxorubicin effects on apoptosis of hormone-dependent breast cancer cell lines. Endocrine 2015; 50:212-22. [PMID: 25577236 DOI: 10.1007/s12020-014-0484-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/14/2014] [Indexed: 12/19/2022]
Abstract
In this work, we have investigated the antiproliferative effect of AdoMet and Doxorubicin (Doxo), alone or in combination, on different breast cancer cell lines. For the evaluation of synergism, we have calculated the combination index (CI) by the Calcusyn software and we have evaluated the effects of the combination on apoptosis occurrence at FACS analysis in hormone-dependent CG5 cell line. We have found that AdoMet and Doxo given in combination were strongly synergistic in the hormone-dependent CG5 and MCF-7 human breast cancer cell line, as a CI50 < 0.5 was found after 72 h of treatment while the effect was only additive in hormone-independent MDA-MB 231 cells. On the basis of our results, we have selected a combination of AdoMet and Doxo, that was highly synergistic and we have found that the AdoMet in combination with Doxo increased apoptosis induced by Doxo alone, suggesting that the synergism on growth inhibition was largely due to apoptosis. Notably, the AdoMet/Doxo combination induced a significant activation of caspases 3, and 8, while no effect was found on caspase 9 cleavage. In contrast, no significant changes of the expression of cleaved caspase 8 and 9 were found in cells treated with AdoMet and Doxo alone. Moreover, the combination induced a significant increase of Fas and FasL expression. These results highlight the importance of the synergistic effect of AdoMet with Doxo in the regulation of hormone-dependent breast cancer cell proliferation and emphasize the anti-tumor activity of these molecules.
Collapse
Affiliation(s)
- Concetta Paola Ilisso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Phase 1 study of APTO-253 HCl, an inducer of KLF4, in patients with advanced or metastatic solid tumors. Invest New Drugs 2015; 33:1086-92. [PMID: 26268924 DOI: 10.1007/s10637-015-0273-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION This phase I, multicenter, open-label, single-arm, dose-escalation study evaluated the safety, pharmacokinetics and antitumor activity of APTO-253, an inducer of the transcription factor KLF4, in adults with advanced solid tumors. METHODS APTO-253 was administered IV on days 1 and 2, and 15 and 16 of each 28 day cycle; the dose were escalated from 20 to 387 mg/m(2) in 9 cohorts until DLT was observed. RESULTS Thirty-two patients were treated on this trial (50 % colon cancer, 22 % other gastrointenstinal malignancies and 18 % non-small cell lung cancer). Fatigue was the only drug-related treatment-emergent adverse event to occur in >10 % of patients. Dose-limiting toxicities of hypersensitivity reaction and transient hypotension despite prophylaxis occurred at 387 mg/m(2) which led to identification of 298 mg/m(2) as the MTD. Only 1 patient had any drug-related treatment-emergent grade 3 adverse event at or below 229 mg/m(2). A total of 21 patients underwent at least one restaging after 2 cycles; 11 patients discontinued prior to the end of cycle 2 due to adverse events (9) or disease progression (2). The best overall response was stable disease (SD) in 5 of these 21 (23.8 %) with durations ranging from 3.6 to 8.4 months. CONCLUSION APTO-253 was well tolerated at the Phase 2 recommended dose and produced evidence of antitumor activity in the form of stable disease in patients with advanced solid tumors. Based on the drug levels achieved and the lower frequency of treatment-emergent adverse events encountered, 229 mg/m(2) was selected as the recommended Phase 2 dose. Overall APTO-253 was found to be well tolerated and to have favorable pharmacokinetics, and treatment was associated with stable disease in 5 of 21 (24 %) of patients with far advanced solid tumors.
Collapse
|
31
|
Characteristics of Adult T-Cell Leukemia/Lymphoma Patients with Long Survival: Prognostic Significance of Skin Lesions and Possible Beneficial Role of Valproic Acid. LEUKEMIA RESEARCH AND TREATMENT 2015. [PMID: 26199759 PMCID: PMC4496652 DOI: 10.1155/2015/476805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We describe the clinical and biological features of ten patients with a survival superior to ten years (long survival), out of 175 patients diagnosed with Adult T-cell Leukemia/Lymphoma (ATL) in Martinique (1983–2013). There were 5 lymphoma and 5 chronic subtypes. Five of them (3 chronic, 2 lymphoma) had been treated with valproic acid (VA) for neurological disorders developed before or after ATL diagnosis, suggesting a beneficial role for VA as a histone deacetylase inhibitor (HDI) in ATL treatment. Total duration of uninterrupted VA treatment ranged from 8 to 37 years. Overall, the 175 incident ATL cases presented with a median survival of 5.43 months. The five VA-treated (VA+) patients presented with longer survival compared to VA treatment-free patients (VA−). For chronic subtypes, survival periods were of 213 months for 3 VA+ patients and of 33 months for 11 VA− patients (p = 0.023). For lymphoma subtypes, survival periods were of 144 months for 2 VA+ patients versus 6 months for 49 VA− patients (p = 0.0046). ATL cases with skin lesions, particularly lymphoma subtypes, had a longer survival (13.96 months) compared to those without skin lesions (6.06 months, p = 0.002). Eight out of the 10 patients presenting with long survival had skin lesions.
Collapse
|
32
|
Li W, Jiang Z, Li T, Wei X, Zheng Y, Wu D, Yang L, Chen S, Xu B, Zhong M, Jiang J, Hu Y, Su H, Zhang M, Huang X, Geng S, Weng J, Du X, Liu P, Li Y, Liu H, Yao Y, Li P. Genome-wide analyses identify KLF4 as an important negative regulator in T-cell acute lymphoblastic leukemia through directly inhibiting T-cell associated genes. Mol Cancer 2015; 14:26. [PMID: 25644173 PMCID: PMC4350611 DOI: 10.1186/s12943-014-0285-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/29/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Kruppel-like factor 4 (KLF4) induces tumorigenesis or suppresses tumor growth in a tissue-dependent manner. However, the roles of KLF4 in hematological malignancies and the mechanisms of action are not fully understood. METHODS Inducible KLF4-overexpression Jurkat cell line combined with mouse models bearing cell-derived xenografts and primary T-cell acute lymphoblastic leukemia (T-ALL) cells from four patients were used to assess the functional role of KLF4 in T-ALL cells in vitro and in vivo. A genome-wide RNA-seq analysis was conducted to identify genes regulated by KLF4 in T-ALL cells. Chromatin immunoprecipitation (ChIP) PCR was used to determine direct binding sites of KLF4 in T-ALL cells. RESULTS Here we reveal that KLF4 induced apoptosis through the BCL2/BCLXL pathway in human T-ALL cell lines and primary T-ALL specimens. In consistence, mice engrafted with KLF4-overexpressing T-ALL cells exhibited prolonged survival. Interestingly, the KLF4-induced apoptosis in T-ALL cells was compromised in xenografts but the invasion capacity of KLF4-expressing T-ALL cells to hosts was dramatically dampened. We found that KLF4 overexpression inhibited T cell-associated genes including NOTCH1, BCL11B, GATA3, and TCF7. Further mechanistic studies revealed that KLF4 directly bound to the promoters of NOTCH1, BCL2, and CXCR4 and suppressed their expression. Additionally, KLF4 induced SUMOylation and degradation of BCL11B. CONCLUSIONS These results suggest that KLF4 as a major transcription factor that suppresses the expression of T-cell associated genes, thus inhibiting T-ALL progression.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong, 510530, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Zhiwu Jiang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong, 510530, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Tianzhong Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong, 510530, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Xinru Wei
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong, 510530, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Yi Zheng
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong, 510530, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Donghai Wu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong, 510530, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Lijian Yang
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| | - Shaohua Chen
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| | - Bing Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nan Fang Hospital of Southern Medical University, Guangzhou, 510515, China.
| | - Jue Jiang
- School of Pharmacy, Tongji Medical College, Huazhong Unviersity of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| | - Yufeng Hu
- School of Pharmacy, Tongji Medical College, Huazhong Unviersity of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| | - Hexiu Su
- School of Pharmacy, Tongji Medical College, Huazhong Unviersity of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| | - Minjie Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China.
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South St., Beijing, 100044, China.
| | - Suxia Geng
- Department of Hematology, Guangdong Provincial People's Hospital, Guangzhou, 510500, China.
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital, Guangzhou, 510500, China.
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital, Guangzhou, 510500, China.
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, England, UK.
| | - Yangqiu Li
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| | - Hudan Liu
- School of Pharmacy, Tongji Medical College, Huazhong Unviersity of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| | - Yao Yao
- Drug Discovery Pipeline, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong, 510530, China.
| | - Peng Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong, 510530, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
33
|
Huang Y, Chen J, Lu C, Han J, Wang G, Song C, Zhu S, Wang C, Li G, Kang J, Wang J. HDAC1 and Klf4 interplay critically regulates human myeloid leukemia cell proliferation. Cell Death Dis 2014; 5:e1491. [PMID: 25341045 PMCID: PMC4237257 DOI: 10.1038/cddis.2014.433] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/31/2014] [Accepted: 09/08/2014] [Indexed: 12/20/2022]
Abstract
Acute myeloid leukemia (AML) is recognized as a complex disease of hematopoietic stem cell disorders, but its pathogenesis mechanisms, diagnosis, and treatment remain unclear. General histone deacetylase (HDAC) inhibitors have been used in blood cancers including AML, but the lack of gene specificity greatly limits their anti-cancer effects and clinical applications. Here, we found that HDAC1 expression was negatively correlated with that of Krüppel-like factor 4 (Klf4) and that AML patients with lower HDAC1 level had better prognosis. Further, knockdown of HDAC1 in leukemia cells K562, HL-60, and U937 significantly increased Klf4 expression and inhibited cell cycle progression and cell proliferation, similar results were found for HDAC inhibitors (VPA and mocetinostat). Moreover, overexpression or knockdown of Klf4 could markedly block the effects of HDAC1 overexpression or knockdown on leukemia cells in vitro and in vivo, respectively. Mechanistic analyses demonstrated that HDAC1 and Klf4 competitively bound to the promoter region of Klf4 and oppositely regulated Klf4 expression in myeloid leukemia. We identified HDAC1 as a potential specific target for repressing cell proliferation and inducing cell cycle arrest through interplay and modulation of Klf4 expression, suggests that HDAC1 and Klf4 are potential new molecular markers and targets for clinical diagnosis, prognosis, and treatment of myeloid leukemia.
Collapse
Affiliation(s)
- Y Huang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - J Chen
- Department of Hematology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, PR China
| | - C Lu
- Laboratory of Population & Quantitative Genetics, Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - J Han
- Department of Hematology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, PR China
| | - G Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - C Song
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - S Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - C Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - G Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - J Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - J Wang
- Department of Hematology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, PR China
| |
Collapse
|
34
|
Momparler RL, Côté S, Momparler LF, Idaghdour Y. Epigenetic therapy of acute myeloid leukemia using 5-aza-2'-deoxycytidine (decitabine) in combination with inhibitors of histone methylation and deacetylation. Clin Epigenetics 2014; 6:19. [PMID: 25313314 PMCID: PMC4194463 DOI: 10.1186/1868-7083-6-19] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/18/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The silencing of tumor suppressor genes (TSGs) by aberrant DNA methylation occurs frequently in acute myeloid leukemia (AML). This epigenetic alteration can be reversed by 5-aza-2'-deoxcytidine (decitabine, 5-AZA-CdR). Although 5-AZA-CdR can induce complete remissions in patients with AML, most patients relapse. The effectiveness of this therapy may be limited by the inability of 5-AZA-CdR to reactivate all TSGs due to their silencing by other epigenetic mechanisms such as histone methylation or chromatin compaction. EZH2, a subunit of the polycomb repressive complex 2, catalyzes the methylation of histone H3 lysine 27 (H3K27) to H3K27me3. 3-Deazaneplanocin-A (DZNep), an inhibitor of methionine metabolism, can reactivate genes silenced by H3K27me3 by its inhibition of EZH2. In a previous report, we observed that 5-AZA-CdR, in combination with DZNep, shows synergistic antineoplastic action against AML cells. Gene silencing due to chromatin compaction is attributable to the action of histone deacetylases (HDAC). This mechanism of epigenetic gene silencing can be reversed by HDAC inhibitors such as trichostatin-A (TSA). Silent TSGs that cannot be reactivated by 5-AZA-CdR or DZNep have the potential to be reactivated by TSA. This provides a rationale for the use of HDAC inhibitors in combination with 5-AZA-CdR and DZNep to treat AML. RESULTS The triple combination of 5-AZA-CdR, DZNep, and TSA induced a remarkable synergistic antineoplastic effect against human AML cells as demonstrated by an in vitro colony assay. This triple combination also showed a potent synergistic activation of several key TSGs as determined by real-time PCR. The triple combination was more effective than the combination of two agents or a single agent. Microarray analysis showed that the triple combination generated remarkable changes in global gene expression. CONCLUSIONS Our data suggest that it may be possible to design a very effective therapy for AML using agents that target the reversal of the following three epigenetic "lock" mechanisms that silence gene expression: DNA methylation, histone methylation, and histone deacetylation. This approach merits serious consideration for clinical investigation in patients with advanced AML.
Collapse
Affiliation(s)
- Richard L Momparler
- Département de Pharmacologie, Université de Montréal, 2900 Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
- Centre de recherche, Service d’hématologie/oncologie, CHU-Saint-Justine, Montréal, Québec H3T 1C5, Canada
| | - Sylvie Côté
- Centre de recherche, Service d’hématologie/oncologie, CHU-Saint-Justine, Montréal, Québec H3T 1C5, Canada
| | - Louise F Momparler
- Centre de recherche, Service d’hématologie/oncologie, CHU-Saint-Justine, Montréal, Québec H3T 1C5, Canada
| | - Youssef Idaghdour
- Department of Biology, New York University, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
35
|
MiR-7 promotes epithelial cell transformation by targeting the tumor suppressor KLF4. PLoS One 2014; 9:e103987. [PMID: 25181544 PMCID: PMC4151986 DOI: 10.1371/journal.pone.0103987] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 07/06/2014] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous small non-coding RNAs that have a pivotal role in the post-transcriptional regulation of gene expression and their misregulation is common in different types of cancer. Although it has been shown that miR-7 plays an oncogenic role in different cellular contexts, the molecular mechanisms by which miR-7 promotes cell transformation are not well understood. Here we show that the transcription factor KLF4 is a direct target of miR-7 and present experimental evidence indicating that the regulation of KLF4 by miR-7 has functional implications in epithelial cell transformation. Stable overexpression of miR-7 into lung and skin epithelial cells enhanced cell proliferation, cell migration and tumor formation. Alteration of these cellular functions by miR-7 resulted from misregulation of KLF4 target genes involved in cell cycle control. miR-7-induced tumors showed decreased p21 and increased Cyclin D levels. Taken together, these findings indicate that miR-7 acts as an oncomiR in epithelial cells in part by directly regulating KLF4 expression. Thus, we conclude that miR-7 acts as an oncomiR in the epithelial cellular context, where through the negative regulation of KLF4-dependent signaling pathways, miR-7 promotes cellular transformation and tumor growth.
Collapse
|
36
|
Malik D, Kaul D, Chauhan N, Marwaha RK. miR-2909-mediated regulation of KLF4: a novel molecular mechanism for differentiating between B-cell and T-cell pediatric acute lymphoblastic leukemias. Mol Cancer 2014; 13:175. [PMID: 25037230 PMCID: PMC4112645 DOI: 10.1186/1476-4598-13-175] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 07/10/2014] [Indexed: 12/22/2022] Open
Abstract
Background microRNAs (miRNAs) play both oncogenic and oncostatic roles in leukemia. However, the molecular details underlying miRNA-mediated regulation of their target genes in pediatric B- and T-cell acute lymphoblastic leukemias (ALLs) remain unclear. The present study investigated the relationship between miR-2909 and Kruppel-like factor 4 (KLF4), and its functional relevance to cell cycle progression and immortalization in patients with pediatric ALL. Methods Elevated levels of miR-2909 targeted the tumor suppressor gene KLF4 in pediatric B-cell, but not pediatric T-cell ALL, as detected by pMIR-GFP reporter assay. Expression levels of genes including apoptosis-antagonizing transcription factor (AATF), MYC, B-cell lymphoma (BCL3), P21CIP, CCND1 and SP1 in B- and T-cells from patients with pediatric ALL were compared with control levels using real-time quantitative reverse transcription polymerase chain reaction, western blotting, and reporter assays. Results We identified two novel mutations in KLF4 in pediatric T-ALL. A mutation in the 3′ untranslated region of the KLF4 gene resulted in loss of miR-2909-mediated regulation, while mutation in its first or third zinc-finger motif (Zf1/Zf3) rendered KLF4 transcriptionally inactive. This mutation was a frameshift mutation resulting in alteration of the Zf3 motif sequence in the mutant KLF4 protein in all pediatric T-ALL samples. Homology models, docking studies and promoter activity of its target gene P21CIP confirmed the lack of function of the mutant KLF4 protein in pediatric T-ALL. Moreover, the inability of miR-2909 to regulate KLF4 and its downstream genes controlling cell cycle and apoptosis in T-cell but not in B-ALL was verified by antagomiR-2909 transfection. Comprehensive sequence analysis of KLF4 identified the predominance of isoform 1 (~55 kDa) in most patients with pediatric B-ALL, while those with pediatric T-ALL expressed isoform 2 (~51 kDa). Conclusions This study identified a novel miR-2909-KLF4 molecular axis able to differentiate between the pathogeneses of pediatric B- and T-cell ALLs, and which may represent a new diagnostic/prognostic marker.
Collapse
Affiliation(s)
| | - Deepak Kaul
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education & Research, Chandigarh, India.
| | | | | |
Collapse
|
37
|
Jiang YZ, Jiménez JM, Ou K, McCormick ME, Zhang LD, Davies PF. Hemodynamic disturbed flow induces differential DNA methylation of endothelial Kruppel-Like Factor 4 promoter in vitro and in vivo. Circ Res 2014; 115:32-43. [PMID: 24755985 DOI: 10.1161/circresaha.115.303883] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Hemodynamic disturbed flow (DF) is associated with susceptibility to atherosclerosis. Endothelial Kruppel-Like Factor 4 (KLF4) is an important anti-inflammatory atheroprotective transcription factor that is suppressed in regions of DF. OBJECTIVE The plasticity of epigenomic KLF4 transcriptional regulation by flow-mediated DNA methylation was investigated in vitro and in arterial tissue. METHODS AND RESULTS To recapitulate dominant flow characteristics of atheroprotected and atherosusceptible arteries, human aortic endothelial cells were subjected to pulsatile undisturbed flow or oscillatory DF containing a flow-reversing phase. Differential CpG site methylation was measured by methylation-specific polymerase chain reaction, bisulfite pyrosequencing, and restriction enzyme-polymerase chain reaction. The methylation profiles of endothelium from disturbed and undisturbed flow sites of adult swine aortas were also investigated. In vitro, DF increased DNA methylation of CpG islands within the KLF4 promoter that significantly contributed to suppression of KLF4 transcription; the effects were mitigated by DNA methyltransferase (DNMT) inhibitors and knockdown of DNMT3A. Contributory mechanisms included DF-induced increase of DNMT3A protein (1.7-fold), DNMT3A enrichment (11-fold) on the KLF4 promoter, and competitive blocking of a myocyte enhancer factor-2 binding site in the KLF4 promoter near the transcription start site. DF also induced DNMT-sensitive propathological expression of downstream KLF4 transcription targets nitric oxide synthase 3, thrombomodulin, and monocyte chemoattractant protein-1. In support of the in vitro findings, swine aortic endothelium isolated from DF regions expressed significantly lower KLF4 and nitric oxide synthase 3, and bisulfite sequencing of KLF4 promoter identified a hypermethylated myocyte enhancer factor-2 binding site. CONCLUSIONS Hemodynamics influence endothelial KLF4 expression through DNMT enrichment/myocyte enhancer factor-2 inhibition mechanisms of KLF4 promoter CpG methylation with regional consequences for atherosusceptibility.
Collapse
Affiliation(s)
- Yi-Zhou Jiang
- From the Department of Pathology & Laboratory Medicine and Institute for Medicine & Engineering (Y.-Z.J., J.M.J., M.E.M., L.-D.Z., P.F.D.) and Pharmacology Graduate Group (K.O.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Juan M Jiménez
- From the Department of Pathology & Laboratory Medicine and Institute for Medicine & Engineering (Y.-Z.J., J.M.J., M.E.M., L.-D.Z., P.F.D.) and Pharmacology Graduate Group (K.O.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Kristy Ou
- From the Department of Pathology & Laboratory Medicine and Institute for Medicine & Engineering (Y.-Z.J., J.M.J., M.E.M., L.-D.Z., P.F.D.) and Pharmacology Graduate Group (K.O.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Margaret E McCormick
- From the Department of Pathology & Laboratory Medicine and Institute for Medicine & Engineering (Y.-Z.J., J.M.J., M.E.M., L.-D.Z., P.F.D.) and Pharmacology Graduate Group (K.O.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Ling-Di Zhang
- From the Department of Pathology & Laboratory Medicine and Institute for Medicine & Engineering (Y.-Z.J., J.M.J., M.E.M., L.-D.Z., P.F.D.) and Pharmacology Graduate Group (K.O.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Peter F Davies
- From the Department of Pathology & Laboratory Medicine and Institute for Medicine & Engineering (Y.-Z.J., J.M.J., M.E.M., L.-D.Z., P.F.D.) and Pharmacology Graduate Group (K.O.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| |
Collapse
|
38
|
Castillo JJ, Reagan JL, Bishop KD, Apor E. Viral lymphomagenesis: from pathophysiology to the rationale for novel therapies. Br J Haematol 2014; 165:300-15. [DOI: 10.1111/bjh.12788] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jorge J. Castillo
- Division of Hematologic Malignancies; Dana-Farber Cancer Institute; Boston MA USA
| | - John L. Reagan
- Division of Hematology and Oncology; Rhode Island Hospital; Providence RI USA
| | - Kenneth D. Bishop
- Division of Hematology and Oncology; Rhode Island Hospital; Providence RI USA
| | - Emmanuel Apor
- Department of Medicine; Rhode Island Hospital; Providence RI USA
| |
Collapse
|
39
|
Tanaka-Nakanishi A, Yasunaga JI, Takai K, Matsuoka M. HTLV-1 bZIP factor suppresses apoptosis by attenuating the function of FoxO3a and altering its localization. Cancer Res 2013; 74:188-200. [PMID: 24177179 DOI: 10.1158/0008-5472.can-13-0436] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As the infectious agent causing human adult T-cell leukemia (ATL), the human T-cell leukemia virus type 1 (HTLV-1) virus spreads in vivo primarily by cell-to-cell transmission. However, the factors that determine its transmission efficiency are not fully understood. The viral genome encodes the HTLV-1 bZIP factor (HBZ), which is expressed in all ATL cases and is known to promote T-cell proliferation. In this study, we investigated the hypothesis that HBZ also influences the survival of T cells. Through analyzing the transcriptional profile of HBZ-expressing cells, we learned that HBZ suppressed transcription of the proapoptotic gene Bim (Bcl2l11) and that HBZ-expressing cells were resistant to activation-induced apoptosis. Mechanistic investigations into how HBZ suppresses Bim expression revealed that HBZ perturbs the localization and function of FoxO3a, a critical transcriptional activator of the genes encoding Bim and also Fas ligand (FasL). By interacting with FoxO3a, HBZ not only attenuated DNA binding by FoxO3a but also sequestered the inactive form of FoxO3a in the nucleus. In a similar manner, HBZ also inhibited FasL transcription induced by T-cell activation. Further study of ATL cells identified other Bim perturbations by HBZ, including at the level of epigenetic alteration, histone modification in the promoter region of the Bim gene. Collectively, our results indicated that HBZ impairs transcription of the Bim and FasL genes by disrupting FoxO3a function, broadening understanding of how HBZ acts to promote proliferation of HTLV-1-infected T cells by blocking their apoptosis.
Collapse
Affiliation(s)
- Azusa Tanaka-Nakanishi
- Authors' Affiliation: Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | |
Collapse
|
40
|
Li H, Wang J, Xiao W, Xia D, Lang B, Wang T, Guo X, Hu Z, Ye Z, Xu H. Epigenetic inactivation of KLF4 is associated with urothelial cancer progression and early recurrence. J Urol 2013; 191:493-501. [PMID: 24018236 DOI: 10.1016/j.juro.2013.08.087] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2013] [Indexed: 01/29/2023]
Abstract
PURPOSE KLF4 is a transcription factor with divergent functions in different malignancies. We analyzed KLF4 expression and DNA methylation, and their clinical relevance and biological function in urothelial cancer. MATERIALS AND METHODS Immunohistochemistry and Sequenom™ MassARRAY® were done to detect the expression and promoter methylation of KLF4 in urothelial cancer tissues. The association of the recurrence-free survival rate and decreased KLF4 or KLF4 methylation status was analyzed by the Kaplan-Meier method, Cox regression analysis and ROC assay. Lentivirus based KLF4 over expression and dsRNA mediated knockdown were used to detect KLF4 functions in urothelial cancer in vitro and in vivo. RESULTS KLF4 was down-regulated in urothelial cancer due to promoter hypermethylation. Each correlated with recurrence-free survival in patients with nonmuscle invasive bladder cancer after transurethral resection of bladder cancer, which potentiates them as valuable predictive biomarkers for early recurrence. Moreover, in and ex vivo experiments showed that KLF4 suppressed urothelial cancer cell growth, migration and invasion inhibited the epithelial-to-mesenchymal transition. CONCLUSIONS KLF4 may function as a tumor suppressor gene in urothelial cancer since down-regulation of KLF4 by promoter hypermethylation would promote cancer progression. In addition, decreased expression of KLF4 or its promoter hypermethylation may have predictive value for early recurrence in patients with nonmuscle invasive bladder cancer.
Collapse
Affiliation(s)
- Heng Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ji Wang
- Department of Urology and Helen-Diller Comprehensive Cancer Center, University of California-San Francisco, San Francisco, California
| | - Wei Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Bin Lang
- School of Health Sciences, Macao Polytechnic Institute, Macao, People's Republic of China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaolin Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
41
|
Ray A, Alalem M, Ray BK. Loss of epigenetic Kruppel-like factor 4 histone deacetylase (KLF-4-HDAC)-mediated transcriptional suppression is crucial in increasing vascular endothelial growth factor (VEGF) expression in breast cancer. J Biol Chem 2013; 288:27232-27242. [PMID: 23926105 DOI: 10.1074/jbc.m113.481184] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is recognized as an important angiogenic factor that promotes angiogenesis in a series of pathological conditions, including cancer, inflammation, and ischemic disorders. We have recently shown that the inflammatory transcription factor SAF-1 is, at least in part, responsible for the marked increase of VEGF levels in breast cancer. Here, we show that SAF-1-mediated induction of VEGF is repressed by KLF-4 transcription factor. KLF-4 is abundantly present in normal breast epithelial cells, but its level is considerably reduced in breast cancer cells and clinical cancer tissues. In the human VEGF promoter, SAF-1- and KLF-4-binding elements are overlapping, whereas SAF-1 induces and KLF-4 suppresses VEGF expression. Ectopic overexpression of KLF-4 and RNAi-mediated inhibition of endogenous KLF-4 supported the role of KLF-4 as a transcriptional repressor of VEGF and an inhibitor of angiogenesis in breast cancer cells. We show that KLF-4 recruits histone deacetylases (HDACs) -2 and -3 at the VEGF promoter. Chronological ChIP assays demonstrated the occupancy of KLF-4, HDAC2, and HDAC3 in the VEGF promoter in normal MCF-10A cells but not in MDA-MB-231 cancer cells. Co-transfection of KLF-4 and HDAC expression plasmids in breast cancer cells results in synergistic repression of VEGF expression and inhibition of angiogenic potential of these carcinoma cells. Together these results identify a new mechanism of VEGF up-regulation in cancer that involves concomitant loss of KLF-4-HDAC-mediated transcriptional repression and active recruitment of SAF-1-mediated transcriptional activation.
Collapse
Affiliation(s)
- Alpana Ray
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211.
| | - Mohamed Alalem
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211
| | - Bimal K Ray
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211.
| |
Collapse
|
42
|
Kumar A, Kumar S, Vikram A, Hoffman TA, Naqvi A, Lewarchik CM, Kim YR, Irani K. Histone and DNA methylation-mediated epigenetic downregulation of endothelial Kruppel-like factor 2 by low-density lipoprotein cholesterol. Arterioscler Thromb Vasc Biol 2013; 33:1936-42. [PMID: 23723375 DOI: 10.1161/atvbaha.113.301765] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Low-density lipoprotein (LDL) cholesterol induces endothelial dysfunction and is a major modifiable risk factor for coronary heart disease. Endothelial Kruppel-like Factor 2 (KLF2) is a transcription factor that is vital to endothelium-dependent vascular homeostasis. The purpose of this study is to determine whether and how LDL affects endothelial KLF2 expression. APPROACH AND RESULTS LDL downregulates KLF2 expression and promoter activity in endothelial cells. LDL-induced decrease in KLF2 parallels changes in endothelial KLF2 target genes thrombomodulin, endothelial NO synthase, and plasminogen activator inhibitor-1. Pharmacological inhibition of DNA methyltransferases or knockdown of DNA methyltransferase 1 prevents downregulation of endothelial KLF2 by LDL. LDL induces endothelial DNA methyltransferase 1 expression and DNA methyltransferase activity. LDL stimulates binding of the DNA methyl-CpG-binding protein-2 and histone methyltransferase enhancer of zeste homolog 2, whereas decreases binding of the KLF2 transcriptional activator myocyte enhancing factor-2, to the KLF2 promoter in endothelial cells. Knockdown of myocyte enhancing factor-2, or mutation of the myocyte enhancing factor-2 site in the KLF2 promoter, abrogates LDL-induced downregulation of endothelial KLF2 and thrombomodulin, and KLF2 promoter activity. Similarly, knockdown of enhancer of zeste homolog 2 negates LDL-induced downregulation of KLF2 and thrombomodulin in endothelial cells. Finally, overexpression of KLF2 rescues LDL-induced clotting of platelet-rich plasma on endothelial cells. CONCLUSIONS LDL represses endothelial KLF2 expression via DNA and histone methylation. Downregulation of KLF2 by LDL leads to a dysfunctional, hypercoagulable endothelium.
Collapse
Affiliation(s)
- Ajay Kumar
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Li H, Wang J, Xiao W, Xia D, Lang B, Yu G, Guo X, Guan W, Wang Z, Hu Z, Liu J, Ye Z, Xu H. Epigenetic alterations of Krüppel-like factor 4 and its tumor suppressor function in renal cell carcinoma. Carcinogenesis 2013; 34:2262-70. [PMID: 23722653 DOI: 10.1093/carcin/bgt189] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Krüppel-like factor 4 (KLF4) is a transcription factor that can have divergent functions in different malignancies. The expression and role of KLF4 in renal cell cancer remain unclear. The purpose of this study is to determine epigenetic alterations and possible roles of KLF4 in renal cell carcinoma. The KLF4 expression in primary renal cell cancer tissues and case-matched normal renal tissues was determined by protein and messenger RNA analyses. The epigenetic alterations were detected by methylation-specific PCR and Sequenom MassARRAY. Kaplan-Meier curves and the log-rank test were used for the survival analysis. The effects of KLF4 on cell growth and epithelial-to-mesenchymal transition (EMT) were determined in renal cancer cell lines after viral-based and RNA activation-mediated overexpression of KLF4. In vivo antitumor activity of KLF4 was evaluated by using stably KLF4-transfected renal cancer cells. KLF4 expression was dramatically decreased in various pathological types of renal cancer and associated with poor survival after nephrectomy. Hypermethylation of KLF4 promoter mainly contributed to its expression suppression. In vitro assays indicated that KLF4 overexpression inhibited renal cancer cell growth and survival. KLF4 overexpression also suppressed renal cancer cell migration and invasion by altering the EMT-related factors. In vivo assay showed that ectopic expression of KLF4 also inhibited tumorigenicity and metastasis of renal cancer. Our results suggest that KLF4 is a putative tumor suppressor gene epigenetically silenced in renal cell cancers by promoter CpG methylation and that it has prognostic value for renal cell progression.
Collapse
Affiliation(s)
- Heng Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Satou Y, Matsuoka M. Virological and immunological mechanisms in the pathogenesis of human T-cell leukemia virus type 1. Rev Med Virol 2013; 23:269-80. [PMID: 23606621 DOI: 10.1002/rmv.1745] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/17/2013] [Accepted: 03/18/2013] [Indexed: 12/17/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) was the first retrovirus shown to cause human disease, such as adult T-cell leukemia and HTLV-1 associated myelopathy/tropic spastic paraparesis. HTLV-1 mainly infects CD4 T cells and deregulates their differentiation, function and homeostasis, which should contribute to the pathogenesis of HTLV-1, for example, inducing transformation of infected CD4 T cells and chronic inflammatory diseases. Therefore, not only virological approach but also immunological approach regarding CD4 T cells are required to understand how HTLV-1 causes related human diseases. This review focuses on recent advances in our understanding of the interaction between HTLV-1 and the main host cell, CD4 T cells, which should provide us some clue to the mechanisms of HTLV-1 mediated pathogenesis.
Collapse
Affiliation(s)
- Yorifumi Satou
- Laboratory for Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
45
|
Okazawa S, Furusawa Y, Kariya A, Hassan MA, Arai M, Hayashi R, Tabuchi Y, Kondo T, Tobe K. Inactivation of DNA-dependent protein kinase promotes heat-induced apoptosis independently of heat-shock protein induction in human cancer cell lines. PLoS One 2013; 8:e58325. [PMID: 23505488 PMCID: PMC3594312 DOI: 10.1371/journal.pone.0058325] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/01/2013] [Indexed: 12/14/2022] Open
Abstract
The inhibition of DNA damage response pathway seems to be an attractive strategy for cancer therapy. It was previously reported that in rodent cells exposed to heat stress, cell growth was promoted by the activity of DNA-dependent protein kinase (DNA-PK), an enzyme involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair. The absence of a functioning DNA-PK was associated with down regulation of heat shock protein 70 (HSP70). The objective of this study is thus to investigate the role of DNA-PK inhibition in heat-induced apoptosis in human cell lines. The inhibitors of phosphorylation of the DNA-PK catalytic subunit (DNA-PKcs) at Ser2056, such as NU7026 and NU7441, were utilized. Furthermore, knock down of DNA-PKcs was carried out using small interfering RNA (siDNA-PKcs). For heat exposure, cells were placed in water bath at 44°C for 60 min. Apoptosis was evaluated after 24 h incubation flow cytometrically. Proteins were extracted after 24 h and analyzed for HSP70 and HSP40 expression by Western blotting. Total RNA was extracted 6 h after treatment and analyzed using a GeneChip® microarray system to identify and select the up-regulated genes (≥1.5 fold). The results showed an enhancement in heat-induced apoptosis in absence of functioning DNA-PKcs. Interestingly, the expression levels of HSP70 and HSP40 were elevated in the absence of DNA-PKcs under heat stress. The results of genetic network analysis showed that HSPs and JUN genes were up-regulated independently of DNA-PKcs in exposed parent and knock out cells. In the presence of functioning DNA-PKcs, there was an observed up-regulation of anti-apoptotic genes, such as NR1D1, whereas in the absence of DNA-PKcs the pro-apoptotic genes, such as EGR2, were preferentially up-regulated. From these findings, we concluded that in human cells, the inactivation of DNA-PKcs can promote heat-induced apoptosis independently of heat-shock proteins.
Collapse
Affiliation(s)
- Seisuke Okazawa
- First Department of Internal Medicine, Graduate School of Medicine Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Department of Radiological Sciences, Graduate School of Medicine Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yukihiro Furusawa
- Department of Radiological Sciences, Graduate School of Medicine Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Ayako Kariya
- Department of Radiological Sciences, Graduate School of Medicine Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mariame Ali Hassan
- Department of Radiological Sciences, Graduate School of Medicine Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mie Arai
- Department of Radiological Sciences, Graduate School of Medicine Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Ryuji Hayashi
- First Department of Internal Medicine, Graduate School of Medicine Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, Graduate School of Medicine Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takashi Kondo
- Department of Radiological Sciences, Graduate School of Medicine Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Graduate School of Medicine Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- * E-mail:
| |
Collapse
|
46
|
Suppipat K, Park CS, Shen Y, Zhu X, Lacorazza HD. Sulforaphane induces cell cycle arrest and apoptosis in acute lymphoblastic leukemia cells. PLoS One 2012; 7:e51251. [PMID: 23251470 PMCID: PMC3521002 DOI: 10.1371/journal.pone.0051251] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/29/2012] [Indexed: 12/12/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common hematological cancer in children. Although risk-adaptive therapy, CNS-directed chemotherapy, and supportive care have improved the survival of ALL patients, disease relapse is still the leading cause of cancer-related death in children. Therefore, new drugs are needed as frontline treatments in high-risk disease and as salvage agents in relapsed ALL. In this study, we report that purified sulforaphane, a natural isothiocyanate found in cruciferous vegetables, has anti-leukemic properties in a broad range of ALL cell lines and primary lymphoblasts from pediatric T-ALL and pre-B ALL patients. The treatment of ALL leukemic cells with sulforaphane resulted in dose-dependent apoptosis and G2/M cell cycle arrest, which was associated with the activation of caspases (3, 8, and 9), inactivation of PARP, p53-independent upregulation of p21(CIP1/WAF1), and inhibition of the Cdc2/Cyclin B1 complex. Interestingly, sulforaphane also inhibited the AKT and mTOR survival pathways in most of the tested cell lines by lowering the levels of both total and phosphorylated proteins. Finally, the administration of sulforaphane to the ALL xenograft models resulted in a reduction of tumor burden, particularly following oral administration, suggesting a potential role as an adjunctive agent to improve the therapeutic response in high-risk ALL patients with activated AKT signaling.
Collapse
Affiliation(s)
- Koramit Suppipat
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Chun Shik Park
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ye Shen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xiao Zhu
- Summer Medical and Research Training Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - H. Daniel Lacorazza
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
47
|
Yamagishi M, Watanabe T. Molecular hallmarks of adult T cell leukemia. Front Microbiol 2012; 3:334. [PMID: 23060864 PMCID: PMC3444139 DOI: 10.3389/fmicb.2012.00334] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/29/2012] [Indexed: 12/20/2022] Open
Abstract
The molecular hallmarks of adult T cell leukemia (ATL) comprise outstanding deregulations of signaling pathways that control the cell cycle, resistance to apoptosis, and proliferation of leukemic cells, all of which have been identified by early excellent studies. Nevertheless, we are now confronted the therapeutic difficulties of ATL that is a most aggressive T cell leukemia/lymphoma. Using next-generation strategies, emerging molecular characteristics such as specific surface markers and an additional catalog of signals affecting the fate of leukemic cells have been added to the molecular hallmarks that constitute an organizing principle for rationalizing the complexities of ATL. Although human T cell leukemia virus type 1 is undoubtedly involved in ATL leukemogenesis, most leukemic cells do not express the viral protein Tax. Instead, cellular gene expression changes dominate homeostasis disorders of infected cells and characteristics of ATL. In this review, we summarize the state of the art of ATL molecular pathology, which supports the biological properties of leukemic cells. In addition, we discuss the recent discovery of two molecular hallmarks of potential generality; an abnormal microRNA pattern and epigenetic reprogramming, which strongly involve the imbalance of the molecular network of lymphocytes. Global analyses of ATL have revealed the functional impact of crosstalk between multifunctional pathways. Clinical and biological studies on signaling inhibitory agents have also revealed novel oncogenic drivers that can be targeted in future. ATL cells, by deregulation of such pathways and their interconnections, may become masters of their own destinies. Recognizing and understanding of the widespread molecular applicability of these concepts will increasingly affect the development of novel strategies for treating ATL.
Collapse
Affiliation(s)
- Makoto Yamagishi
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo Minato-ku, Tokyo, Japan
| | | |
Collapse
|
48
|
Guo X, Tang Y. KLF4 translation level is associated with differentiation stage of different pediatric leukemias in both cell lines and primary samples. Clin Exp Med 2012; 13:99-107. [DOI: 10.1007/s10238-012-0187-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/25/2012] [Indexed: 11/29/2022]
|
49
|
Toyota M, Suzuki H, Yamamoto E, Yamano H, Imai K, Shinomura Y. Integrated analysis of genetic and epigenetic alterations in cancer. Epigenomics 2012; 1:291-9. [PMID: 22122704 DOI: 10.2217/epi.09.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A proposed genetic model describing the transition from normal colonic epithelium to malignant cancer involves mutation of a number of key oncogenes and tumor suppressor genes. However, only subsets of colorectal cancers contain such mutations. Moreover, the heterogeneous pattern of tumor mutations suggests there are multiple alternative pathways leading to colonic tumorigenesis. These alternative pathways involve epigenetic alterations such as the methylation of multiple CpG islands, termed the CpG island methylator phenotype, and cancers with CpG island methylator phenotype show distinct genetic and clinicopathological features. The causes of these epigenetic alterations are still not fully understood, but exogenous pathogens such as Helicobacter pylori and Epstein-Barr virus, and the chromosomal translocations seen in leukemia, have all been shown to induce epigenetic alterations of genes.
Collapse
Affiliation(s)
- Minoru Toyota
- Department of Biochemistry, Sapporo Medical University, South-1 West-17, Chuo-ku, Sapporo, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Kühnl A, Kaiser M, Neumann M, Fransecky L, Heesch S, Radmacher M, Marcucci G, Bloomfield CD, Hofmann WK, Thiel E, Baldus CD. High expression of IGFBP2 is associated with chemoresistance in adult acute myeloid leukemia. Leuk Res 2011; 35:1585-90. [PMID: 21899885 DOI: 10.1016/j.leukres.2011.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 12/22/2022]
Abstract
Insulin-like growth factor (IGF) signaling plays an important role in many tumors and overexpression of IGF Binding Protein (IGFBP) 2 has been associated with adverse outcome in childhood leukemia. Here, we evaluated IGFBP2 mRNA expression and its prognostic implications in 99 adult acute myeloid leukemia (AML) patients by quantitative real-time RT-PCR. High IGFBP2 was associated with a high incidence of primary resistant disease (IGFBP2 high 65%, IGFBP2 low 32%; P=0.02) and was independently predictive for therapy resistance [OR 3.6 (95% CI 1.2-11); P=0.02] in multivariate analyses. Gene-expression profiling revealed an up-regulation of genes implicated in leukemogenesis (MYB, MEIS1, HOXB3, HOXA9) and genes associated with adverse outcome (ERG, WT1) in patients with high IGFBP2 expression. Thus, our data suggest a role of IGFBP2 and IGF signaling in chemoresistance of AML. Patients with high IGFBP2 expression might benefit from molecular therapies targeting the IGF pathway.
Collapse
Affiliation(s)
- Andrea Kühnl
- Department of Hematology and Oncology, Charité University Hospital, Campus Benjamin Franklin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|