1
|
Militi S, Nibhani R, Pook M, Pauklin S. SMAD2/3-SMYD2 and developmental transcription factors cooperate with cell-cycle inhibitors to guide tissue formation. Protein Cell 2025; 16:260-285. [PMID: 38758030 DOI: 10.1093/procel/pwae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/05/2024] [Indexed: 05/18/2024] Open
Abstract
Tissue formation and organ homeostasis are achieved by precise coordination of proliferation and differentiation of stem cells and progenitors. While deregulation of these processes can result in degenerative disease or cancer, their molecular interplays remain unclear. Here we show that the switch of human pluripotent stem cell (hPSC) self-renewal to differentiation is associated with the induction of distinct cyclin-dependent kinase inhibitors (CDKIs). In hPSCs, Activin/Nodal/TGFβ signaling maintains CDKIs in a poised state via SMAD2/3-NANOG-OCT4-EZH2-SNON transcriptional complex. Upon gradual differentiation, CDKIs are induced by successive transcriptional complexes between SMAD2/3-SMYD2 and developmental regulators such as EOMES, thereby lengthening the G1 phase. This, in turn, induces SMAD2/3 transcriptional activity by blocking its linker phosphorylation. Such SMAD2/3-CDKI positive feedback loops drive the exit from pluripotency and stepwise cell-fate specification that could be harnessed for producing cells for therapeutic applications. Our study uncovers fundamental mechanisms of how cell-fate specification is interconnected to cell-cycle dynamics and provides insight into autonomous circuitries governing tissue self-formation.
Collapse
Affiliation(s)
- Stefania Militi
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, United Kingdom
| | - Reshma Nibhani
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, United Kingdom
| | - Martin Pook
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, United Kingdom
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, United Kingdom
| |
Collapse
|
2
|
Rypens C, Van Berckelaer C, Berditchevski F, van Dam P, Van Laere S. Deciphering the molecular biology of inflammatory breast cancer through molecular characterization of patient samples and preclinical models. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 384:77-112. [PMID: 38637101 DOI: 10.1016/bs.ircmb.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Inflammatory breast cancer is an aggressive subtype of breast cancer with dismal patient prognosis and a unique clinical presentation. In the past two decades, molecular profiling technologies have been used in order to gain insight into the molecular biology of IBC and to search for possible targets for treatment. Although a gene signature that accurately discriminates between IBC and nIBC patient samples and preclinical models was identified, the overall genomic and transcriptomic differences are small and ambiguous, mainly due to the limited sample sizes of the evaluated patient series and the failure to correct for confounding effects of the molecular subtypes. Nevertheless, data collected over the past 20 years by independent research groups increasingly support the existence of several IBC-specific biological characteristics. In this review, these features are classified as established, emerging and conceptual hallmarks based on the level of evidence reported in the literature. In addition, a synoptic model is proposed that integrates all hallmarks and that can explain how cancer cell intrinsic mechanisms (i.e. NF-κB activation, genomic instability, MYC-addiction, TGF-β resistance, adaptive stress response, chromatin remodeling, epithelial-to-mesenchymal transition) can contribute to the establishment of the dynamic immune microenvironment associated with IBC. It stands to reason that future research projects are needed to further refine (parts of) this model and to investigate its clinical translatability.
Collapse
Affiliation(s)
- Charlotte Rypens
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; CellCarta N V, Wilrijk, Belgium
| | - Christophe Van Berckelaer
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Fedor Berditchevski
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Peter van Dam
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Multidisciplinary Oncological Centre Antwerp (MOCA), Antwerp University Hospital, Drie Eikenstraat 655, Edegem, Belgium
| | - Steven Van Laere
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
3
|
Veen LM, Skrabanja TLP, Derks S, de Gruijl TD, Bijlsma MF, van Laarhoven HWM. The role of transforming growth factor β in upper gastrointestinal cancers: A systematic review. Cancer Treat Rev 2021; 100:102285. [PMID: 34536730 DOI: 10.1016/j.ctrv.2021.102285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 01/02/2023]
Abstract
Esophageal and gastric malignancies are associated with poor prognosis, in part due to development of recurrences or metastases after curative treatment. The transforming growth factor β (TGF-β) pathway might play a role in the development of treatment resistance. In this systematic review, we provide an overview of preclinical studies investigating the role of TGF-β in esophageal and gastric malignancies. We systematically searched MEDLINE/PubMed and EMBASE for eligible preclinical studies describing the effect of TGF-β or TGF-β inhibition on hallmarks of cancer, such as proliferation, migration, invasion, angiogenesis and immune evasion. In total, 2107 records were screened and 45 articles were included, using mouse models and 45 different cell lines. TGF-β failed to induce apoptosis in twelve of sixteen tested cell lines. TGF-β could either decrease (five cell lines) or increase proliferation (seven cell lines) in gastric cancer cells, but had no effect in esophageal cancer cells. In all esophageal and all but two gastric cancer cell lines, TGF-β increased migratory, adhesive and invasive capacities. In vivo studies showed increased metastasis in response to TGF-β treatment. Additionally, TGF-β was shown to induce vascular endothelial growth factor production and differentiation of cancer-associated fibroblasts and regulatory T-cells. In conclusion, we found that TGF-β enhances hallmarks of cancer in most gastric and esophageal cancer cell lines, but not in all. Therefore, targeting the TGF-β pathway could be an attractive strategy in patients with gastric or esophageal cancer, but additional clinical trials are needed to define patient groups who would benefit most.
Collapse
Affiliation(s)
- Linde M Veen
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, De Boelelaan 1117-1118, 1081 HV Amsterdam, The Netherlands.
| | - Tim L P Skrabanja
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sarah Derks
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, De Boelelaan 1117-1118, 1081 HV Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, De Boelelaan 1117-1118, 1081 HV Amsterdam, The Netherlands
| | - Maarten F Bijlsma
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, De Boelelaan 1117-1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
4
|
SMAD-oncoprotein interplay: Potential determining factors in targeted therapies. Biochem Pharmacol 2020; 180:114155. [DOI: 10.1016/j.bcp.2020.114155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
|
5
|
Ji M, Ding Y, Li X, Mao N, Chen J. Computational investigation of a ternary model of SnoN-SMAD3-SMAD4 complex. Comput Biol Chem 2019; 83:107159. [PMID: 31743832 DOI: 10.1016/j.compbiolchem.2019.107159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/28/2019] [Accepted: 11/03/2019] [Indexed: 12/18/2022]
Abstract
The transforming growth factor β (TGFβ) plays an essential role in the regulation of cellular processes such as cell proliferation, migration, differentiation, and apoptosis by association with SMAD transcriptional factors that are regulated by the transcriptional regulator SnoN. The crystal structure of SnoN-SMAD4 reveals that SnoN can adopt two binding modes, the open and closed forms, at the interfaces of SMAD4 subunits. Accumulating evidence indicates that SnoN can interact with both SMAD3 and SMAD4 to form a ternary SnoN-SMAD3-SMAD4 complex in the TGFβ signaling pathway. However, how the interaction of SnoN with the SMAD3 and SMAD4 remains unclear. Here, molecular dynamics (MD) simulations and molecular modeling methods were performed to figure out this issue. The simulations reveal that SnoNopen exists in two, open and semi-closed, conformations. Molecular modeling and MD simulation studies suggest that the SnoNclosed form interferes with the SMAD3-SMAD4 protein; in contract, the SnoNopen can form a stable SnoN-SMAD3-SMAD4 complex. These mechanistic mechanisms may help elucidate the detailed engagement of SnoN with two SMAD3 and SMAD4 transcriptional factors in the regulation of TGFβ signaling pathway.
Collapse
Affiliation(s)
- Mingfei Ji
- Department of Urology, Changzheng Hospital, Naval Military Medical University, Shanghai, 200003, China
| | - Yelei Ding
- Department of Urology, Changzheng Hospital, Naval Military Medical University, Shanghai, 200003, China
| | - Xiaolong Li
- Department of Orthopedics, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China.
| | - Ningfang Mao
- Department of Orthopedics, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China.
| | - Jie Chen
- Department of Urology, Changzheng Hospital, Naval Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
6
|
Shahoumi LA, Yeudall WA. Targeted therapies for non-HPV-related head and neck cancer: challenges and opportunities in the context of predictive, preventive, and personalized medicine. EPMA J 2019; 10:291-305. [PMID: 31462945 DOI: 10.1007/s13167-019-00177-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) develops in the mucosal lining of the upper aerodigestive tract, principally as a result of exposure to carcinogens present in tobacco products and alcohol, with oncogenic papillomaviruses also being recognized as etiological agents in a limited proportion of cases. As such, there is considerable scope for prevention of disease development and progression. However, despite multimodal approaches to treatment, tumor recurrence and metastatic disease are common problems, and clinical outcome is unsatisfactory. As our understanding of the genetics and biochemical aberrations in HNSCC has improved, so the development and use of molecularly targeted drugs to combat the disease have come to the fore. In this article, we review molecular mechanisms that alter signal transduction downstream of the epidermal growth factor receptor (EGFR) as well as those that perturb orderly cell cycle progression, such as p53 mutation, cyclin overexpression, and loss of cyclin-dependent kinase inhibitor function. We outline some of the tactics that have been employed to combat the altered biochemistry. These include blockade of the EGFR using humanized monoclonal antibodies such as cetuximab and small molecule tyrosine kinase inhibitors (TKIs) such as erlotinib/gefitinib and subsequent generations of TKIs, restoration of p53 function using MIRA compounds, and inhibition of cyclin-dependent kinase and aurora kinase activity using drugs such as palbociclib and alisertib. Knowledge of the underlying molecular mechanisms may be utilizable in order to predict disease behavior and tailor therapeutic interventions in a more personalized approach to improve clinical response. Use of liquid biopsy, omics platforms, and salivary diagnostics hold promise in this regard.
Collapse
Affiliation(s)
- Linah A Shahoumi
- 1Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA.,2The Graduate School, Augusta University, Augusta, GA USA
| | - W Andrew Yeudall
- 1Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA.,2The Graduate School, Augusta University, Augusta, GA USA.,3Georgia Cancer Center, Augusta University, Augusta, GA USA
| |
Collapse
|
7
|
Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Rosales-Alvarez RE, Macías-Silva M. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduct Target Ther 2018; 3:15. [PMID: 29892481 PMCID: PMC5992185 DOI: 10.1038/s41392-018-0015-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family plays major pleiotropic roles by regulating many physiological processes in development and tissue homeostasis. The TGF-β signaling pathway outcome relies on the control of the spatial and temporal expression of >500 genes, which depend on the functions of the Smad protein along with those of diverse modulators of this signaling pathway, such as transcriptional factors and cofactors. Ski (Sloan-Kettering Institute) and SnoN (Ski novel) are Smad-interacting proteins that negatively regulate the TGF-β signaling pathway by disrupting the formation of R-Smad/Smad4 complexes, as well as by inhibiting Smad association with the p300/CBP coactivators. The Ski and SnoN transcriptional cofactors recruit diverse corepressors and histone deacetylases to repress gene transcription. The TGF-β/Smad pathway and coregulators Ski and SnoN clearly regulate each other through several positive and negative feedback mechanisms. Thus, these cross-regulatory processes finely modify the TGF-β signaling outcome as they control the magnitude and duration of the TGF-β signals. As a result, any alteration in these regulatory mechanisms may lead to disease development. Therefore, the design of targeted therapies to exert tight control of the levels of negative modulators of the TGF-β pathway, such as Ski and SnoN, is critical to restore cell homeostasis under the specific pathological conditions in which these cofactors are deregulated, such as fibrosis and cancer. Proteins that repress molecular signaling through the transforming growth factor-beta (TGF-β) pathway offer promising targets for treating cancer and fibrosis. Marina Macías-Silva and colleagues from the National Autonomous University of Mexico in Mexico City review the ways in which a pair of proteins, called Ski and SnoN, interact with downstream mediators of TGF-β to inhibit the effects of this master growth factor. Aberrant levels of Ski and SnoN have been linked to diverse range of diseases involving cell proliferation run amok, and therapies that regulate the expression of these proteins could help normalize TGF-β signaling to healthier physiological levels. For decades, drug companies have tried to target the TGF-β pathway, with limited success. Altering the activity of these repressors instead could provide a roundabout way of remedying pathogenic TGF-β activity in fibrosis and oncology.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- 1Instituto de Investigaciones Biomédicas at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Diana G Ríos-López
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | | | - Reyna E Rosales-Alvarez
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Marina Macías-Silva
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| |
Collapse
|
8
|
Lee SW, Lien HC, Lin CC, Wen MC, Chang CS. Low Expression of Transforming Growth Factor β in the Epithelium of Barrett's Esophagus. Gastroenterology Res 2018; 11:189-194. [PMID: 29915628 PMCID: PMC5997480 DOI: 10.14740/gr1009w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022] Open
Abstract
Background The aim of this study was to investigate the expression of transforming growth factor β (TGF-β) in the different stages of Barrett's esophagus (BE). Methods Paired endoscopic esophageal biopsy samples were obtained from patients with BE prospectively. Subjects were classified into three groups: BE, BE with dysplasia, and adenocarcinoma (AC) arising from BE. Biopsy specimens over normal esophageal epithelium and gastric cardiac epithelium of limited cases were done. Four cell lines, HETA1 (human esophageal epithelium), CA-A and CP-C (non-dysplastic metaplasia), and OE33 (AC) were analyzed for quantitative mRNA and Western blotting of TGF-β. Results All 30 subjects with BE were enrolled. Expression of TGF-β mRNA in BE were significantly (P < 0.01) lower than that in the normal esophagus and cardiac epithelium. The BE tissue showed a lower positive ratio of TGF-β immunohistochemical (IHC) stain than the cardiac epithelium. The expression of TGF-β mRNA in the cell lines CA-A, CP-3, OE-33, was significantly (P < 0.05) lower than that in the cell line HETA-1. The Western blotting result showed lower TGF-β protein expression of the cell lines CA-A, CP-3, and OE-33. Conclusions The expression of TGF-β was lower in the tissue of BE.
Collapse
Affiliation(s)
- Shou-Wu Lee
- Division of Gastroenterology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Internal Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Han-Chung Lien
- Division of Gastroenterology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Internal Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chi-Chen Lin
- Institute of Biomedical Sciences, Chung Hsing University, Taichung, Taiwan
| | - Mei-Chin Wen
- Department of Pathology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chi-Sen Chang
- Division of Gastroenterology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Internal Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
9
|
Walldén K, Nyman T, Hällberg BM. SnoN Stabilizes the SMAD3/SMAD4 Protein Complex. Sci Rep 2017; 7:46370. [PMID: 28397834 PMCID: PMC5387736 DOI: 10.1038/srep46370] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/15/2017] [Indexed: 12/30/2022] Open
Abstract
TGF-β signaling regulates cellular processes such as proliferation, differentiation and apoptosis through activation of SMAD transcription factors that are in turn modulated by members of the Ski-SnoN family. In this process, Ski has been shown to negatively modulate TGF-β signaling by disrupting active R-SMAD/Co-SMAD heteromers. Here, we show that the related regulator SnoN forms a stable complex with the R-SMAD (SMAD3) and the Co-SMAD (SMAD4). To rationalize this stabilization at the molecular level, we determined the crystal structure of a complex between the SAND domain of SnoN and the MH2-domain of SMAD4. This structure shows a binding mode that is compatible with simultaneous coordination of R-SMADs. Our results show that SnoN, and SMAD heteromers can form a joint structural core for the binding of other transcription modulators. The results are of fundamental importance for our understanding of the molecular mechanisms behind the modulation of TGF-β signaling.
Collapse
Affiliation(s)
- Karin Walldén
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Tomas Nyman
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.,Röntgen-Ångström-Cluster, Karolinska Institutet Outstation, Centre for Structural Systems Biology, DESY-Campus, 22603 Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, 22603 Hamburg, Germany
| |
Collapse
|
10
|
Caligaris C, Vázquez-Victorio G, Sosa-Garrocho M, Ríos-López DG, Marín-Hernández A, Macías-Silva M. Actin-cytoskeleton polymerization differentially controls the stability of Ski and SnoN co-repressors in normal but not in transformed hepatocytes. Biochim Biophys Acta Gen Subj 2015; 1850:1832-41. [PMID: 26002202 DOI: 10.1016/j.bbagen.2015.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/21/2015] [Accepted: 05/12/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ski and SnoN proteins function as transcriptional co-repressors in the TGF-β pathway. They regulate cell proliferation and differentiation, and their aberrant expression results in altered TGF-β signalling, malignant transformation, and alterations in cell proliferation. METHODS We carried out a comparative characterization of the endogenous Ski and SnoN protein regulation by TGF-β, cell adhesion disruption and actin-cytoskeleton rearrangements between normal and transformed hepatocytes; we also analyzed Ski and SnoN protein stability, subcellular localization, and how their protein levels impact the TGF-β/Smad-driven gene transcription. RESULTS Ski and SnoN protein levels are lower in normal hepatocytes than in hepatoma cells. They exhibit a very short half-life and a nuclear/cytoplasmic distribution in normal hepatocytes opposed to a high stability and restricted nuclear localization in hepatoma cells. Interestingly, while normal cells exhibit a transient TGF-β-induced gene expression, the hepatoma cells are characterized by a strong and sustained TGF-β-induced gene expression. A novel finding is that Ski and SnoN stability is differentially regulated by cell adhesion and cytoskeleton rearrangements in the normal hepatocytes. The inhibition of protein turnover down-regulated both Ski and SnoN co-repressors impacting the kinetic of expression of TGF-β-target genes. CONCLUSION Normal regulatory mechanisms controlling Ski and SnoN stability, subcellular localization and expression are altered in hepatocarcinoma cells. GENERAL SIGNIFICANCE This work provides evidence that Ski and SnoN protein regulation is far more complex in normal than in transformed cells, since many of the normal regulatory mechanisms are lost in transformed cells.
Collapse
Affiliation(s)
- Cassandre Caligaris
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. México D.F., 04510, México
| | - Genaro Vázquez-Victorio
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. México D.F., 04510, México
| | - Marcela Sosa-Garrocho
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. México D.F., 04510, México
| | - Diana G Ríos-López
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. México D.F., 04510, México
| | - Alvaro Marín-Hernández
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México D.F., 14080, México
| | - Marina Macías-Silva
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. México D.F., 04510, México.
| |
Collapse
|
11
|
Liu C, Zhang H, Zang X, Wang C, Kong Y, Zhang H. The influence of SnoN gene silencing by siRNA on the cell proliferation and apoptosis of human pancreatic cancer cells. Diagn Pathol 2015; 10:30. [PMID: 25907906 PMCID: PMC4407884 DOI: 10.1186/s13000-015-0267-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 04/07/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The prognosis for pancreatic cancer (PC) is very poor. The SnoN gene may have a role in cell proliferation and apoptosis in human cancer. However, the influence of SnoN on cell proliferation and apoptosis in human PC cells remains unknown. METHODS SnoN expression was assessed in SW1990 PC cell lines using real-time polymerase chain reaction (PCR). A luciferase reporter assay was used to confirm the target associations. The effect of SnoN on cell proliferation in vitro was confirmed using Cell Counting Kit-8. Apoptosis was confirmed using flow cytometry. Gene and protein expression were examined using real time PCR and Western blotting, respectively. RESULTS SnoN siRNA significantly inhibited the growth of SW1990 cells by decreasing cell proliferation (P < 0.05) and increasing cell apoptosis (P < 0.05), compared with the blank group and the negative control group. The highest inhibition of cell proliferation appeared at 3 days post-transfection. Cell apoptosis more obvious at 48 h after transfection. CONCLUSIONS In summary, our results reveal that the RNAi-mediated downregulation of SnoN effectively inhibited the proliferation of PC cells. SnoN-siRNA also enhanced SW1990 PC cell apoptosis. These findings indicate that SnoN gene plays an important role in pancreatic cancer development, and might serve as a potential therapeutic target for pancreatic cancer. However, further in vivo studies are needed to clarify the influence of SnoN gene silencing by siRNA on pancreatic cancer therapy. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/7609324661510147.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Hepatobiliary Surgery, Air Force General Hospital of PLA, 30 Fucheng Road, Beijing, 100142, China.
| | - Hui Zhang
- Department of Hepatobiliary Surgery, Air Force General Hospital of PLA, 30 Fucheng Road, Beijing, 100142, China.
| | - Xiaoxia Zang
- Department of Stomatology, Air Force General Hospital of PLA, Beijing, China.
| | - Cheng Wang
- Department of Hepatobiliary Surgery, Air Force General Hospital of PLA, 30 Fucheng Road, Beijing, 100142, China.
| | - Yalin Kong
- Department of Hepatobiliary Surgery, Air Force General Hospital of PLA, 30 Fucheng Road, Beijing, 100142, China.
| | - Hongyi Zhang
- Department of Hepatobiliary Surgery, Air Force General Hospital of PLA, 30 Fucheng Road, Beijing, 100142, China.
| |
Collapse
|
12
|
Qian Y, Wang Y, Li DS, Zhu YX, Lu ZW, Ji QH, Yang G. The chemokine receptor-CXCR2 plays a critical role in the invasion and metastases of oral squamous cell carcinoma in vitro and in vivo. J Oral Pathol Med 2014; 43:658-66. [PMID: 24953191 DOI: 10.1111/jop.12189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the most common cancers in the world with about 50% survival rate over 5 years. OSCC has a highly invasive potency and frequently metastasizes to the cervical lymph nodes, which is the principle reason leading to poor prognosis. CXCR2, the receptor of CXC chemokines, has been reported to be involved in invasion and metastasis in multiple types of malignancy. However, the accurate role of CXCR2 in OSCC has been little noticed. METHODS In this study, we determined the expression of CXCR2 in OSCC using immunohistochemical staining (IHC) and analyzed the association between the expression of CXCR2 and the biobehavior of OSCC. Then, we established stable OSCC cell lines with interference of CXCR2 and observed the effect of CXCR2 knockdown on cell proliferation, migration, invasion, and morphological changes in vitro and in vivo. RESULTS CXCR2 was positively expressed in 55.3% of OSCC patients and was statistically associated with the high cervical lymph node metastasis in OSCC. CXCR2 silencing markedly inhibited migration and invasion of OSCC cells in vitro and in vivo. Moreover, CXCR2 silencing led to morphological changes and decreased lamellipodial structures in OSCC cells. However, CXCR2 silencing showed no effect on proliferation of OSCC cells in vitro and in vivo. CONCLUSIONS CXCR2 plays a critical role in the invasion and metastases of OSCC. And it is probably by regulating actin cytoskeletal remodeling that CXCR2 takes part in the invasion and metastases of OSCC.
Collapse
Affiliation(s)
- Yong Qian
- Department of Head & Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Hernández-Damián J, Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Vázquez-Macías A, Caligaris C, Sosa-Garrocho M, Flores-Pérez B, Romero-Avila M, Macías-Silva M. Downregulation of SnoN oncoprotein induced by antibiotics anisomycin and puromycin positively regulates transforming growth factor-β signals. Biochim Biophys Acta Gen Subj 2013; 1830:5049-58. [PMID: 23872350 DOI: 10.1016/j.bbagen.2013.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/26/2013] [Accepted: 07/09/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND SnoN and Ski proteins function as Smad transcriptional corepressors and are implicated in the regulation of diverse cellular processes such as proliferation, differentiation and transformation. Transforming growth factor-β (TGF-β) signaling causes SnoN and Ski protein degradation via proteasome with the participation of phosphorylated R-Smad proteins. Intriguingly, the antibiotics anisomycin (ANS) and puromycin (PURO) are also able to downregulate Ski and SnoN proteins via proteasome. METHODS We explored the effects of ANS and PURO on SnoN protein downregulation when the activity of TGF-β signaling was inhibited by using different pharmacological and non-pharmacological approaches, either by using specific TβRI inhibitors, overexpressing the inhibitory Smad7 protein, or knocking-down TβRI receptor or Smad2 by specific shRNAs. The outcome of SnoN and Ski downregulation induced by ANS or PURO on TGF-β signaling was also studied. RESULTS SnoN protein downregulation induced by ANS and PURO did not involve the induction of R-Smad phosphorylation but it was abrogated after TGF-β signaling inhibition; this effect occurred in a cell type-specific manner and independently of protein synthesis inhibition or any other ribotoxic effect. Intriguingly, antibiotics seem to require components of the TGF-β/Smad pathway to downregulate SnoN. In addition, SnoN protein downregulation induced by antibiotics favored gene transcription induced by TGF-β signaling. CONCLUSIONS ANS and PURO require TGF-β/Smad pathway to induce SnoN and Ski protein downregulation independently of inducing R-Smad2 phosphorylation, which facilitates TGF-β signaling. GENERAL SIGNIFICANCE Antibiotic analogs lacking ribotoxic effects are useful as pharmacological tools to study TGF-β signaling by controlling Ski and SnoN protein levels.
Collapse
Affiliation(s)
- Jacqueline Hernández-Damián
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., 04510 Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wu BL, Luo LW, Li CQ, Xie JJ, Du ZP, Wu JY, Zhang PX, Xu LY, Li EM. Comprehensive bioinformation analysis of the mRNA profile of fascin knockdown in esophageal squamous cell carcinoma. Asian Pac J Cancer Prev 2013; 14:7221-7. [PMID: 24460279 DOI: 10.7314/apjcp.2013.14.12.7221] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Fascin, an actin-bundling protein forming actin bundles including filopodia and stress fibers, is overexpressed in multiple human epithelial cancers including esophageal squamous cell carcinoma (ESCC). Previously we conducted a microarray experiment to analyze fascin knockdown by RNAi in ESCC. METHOD In this study, the differentially expressed genes from mRNA expression profilomg of fascin knockdown were analyzed by multiple bioinformatics methods for a comprehensive understanding of the role of fascin. RESULTS Gene Ontology enrichment found terms associated with cytoskeleton organization, including cell adhesion, actin filament binding and actin cytoskeleton, which might be related to fascin function. Except GO categories, the differentially expressed genes were annotated by 45 functional categories from the Functional Annotation Chart of DAVID. Subpathway analysis showed thirty-nine pathways were disturbed by the differentially expressed genes, providing more detailed information than traditional pathway enrichment analysis. Two subpathways derivated from regulation of the actin cytoskeleton were shown. Promoter analysis results indicated distinguishing sequence patterns and transcription factors in response to the co-expression of downregulated or upregulated differentially expressed genes. MNB1A, c-ETS, GATA2 and Prrx2 potentially regulate the transcription of the downregulated gene set, while Arnt-Ahr, ZNF42, Ubx and TCF11-MafG might co-regulate the upregulated genes. CONCLUSIONS This multiple bioinformatic analysis helps provide a comprehensive understanding of the roles of fascin after its knockdown in ESCC.
Collapse
Affiliation(s)
- Bing-Li Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Guangzhou, China E-mail : ,
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tecalco-Cruz AC, Sosa-Garrocho M, Vázquez-Victorio G, Ortiz-García L, Domínguez-Hüttinger E, Macías-Silva M. Transforming growth factor-β/SMAD Target gene SKIL is negatively regulated by the transcriptional cofactor complex SNON-SMAD4. J Biol Chem 2012; 287:26764-76. [PMID: 22674574 PMCID: PMC3411014 DOI: 10.1074/jbc.m112.386599] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Indexed: 12/23/2022] Open
Abstract
The human SKI-like (SKIL) gene encodes the SMAD transcriptional corepressor SNON that antagonizes TGF-β signaling. SNON protein levels are tightly regulated by the TGF-β pathway: whereas a short stimulation with TGF-β decreases SNON levels by its degradation via the proteasome, longer TGF-β treatment increases SNON levels by inducing SKIL gene expression. Here, we investigated the molecular mechanisms involved in the self-regulation of SKIL gene expression by SNON. Bioinformatics analysis showed that the human SKIL gene proximal promoter contains a TGF-β response element (TRE) bearing four groups of SMAD-binding elements that are also conserved in mouse. Two regions of 408 and 648 bp of the human SKIL gene (∼2.4 kb upstream of the ATG initiation codon) containing the core promoter, transcription start site, and the TRE were cloned for functional analysis. Binding of SMAD and SNON proteins to the TRE region of the SKIL gene promoter after TGF-β treatment was demonstrated by ChIP and sequential ChIP assays. Interestingly, the SNON-SMAD4 complex negatively regulated basal SKIL gene expression through binding the promoter and recruiting histone deacetylases. In response to TGF-β signal, SNON is removed from the SKIL gene promoter, and then the activated SMAD complexes bind the promoter to induce SKIL gene expression. Subsequently, the up-regulated SNON protein in complex with SMAD4 represses its own expression as part of the negative feedback loop regulating the TGF-β pathway. Accordingly, when the SNON-SMAD4 complex is absent as in some cancer cells lacking SMAD4 the regulation of some TGF-β target genes is modified.
Collapse
Affiliation(s)
- Angeles C. Tecalco-Cruz
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Distrito Federal 04510, México
| | - Marcela Sosa-Garrocho
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Distrito Federal 04510, México
| | - Genaro Vázquez-Victorio
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Distrito Federal 04510, México
| | - Layla Ortiz-García
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Distrito Federal 04510, México
| | - Elisa Domínguez-Hüttinger
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Distrito Federal 04510, México
| | - Marina Macías-Silva
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Distrito Federal 04510, México
| |
Collapse
|
16
|
Bonni S, Bonni A. SnoN signaling in proliferating cells and postmitotic neurons. FEBS Lett 2012; 586:1977-83. [PMID: 22710173 DOI: 10.1016/j.febslet.2012.02.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 01/28/2023]
Abstract
The transcriptional regulator SnoN plays a fundamental role as a modulator of transforming growth factor beta (TGFβ)-induced signal transduction and biological responses. In recent years, novel functions of SnoN have been discovered in both TGFβ-dependent and TGFβ-independent settings in proliferating cells and postmitotic neurons. Accumulating evidence suggests that SnoN plays a dual role as a corepressor or coactivator of TGFβ-induced transcription. Accordingly, SnoN exerts oncogenic or tumor-suppressive effects in epithelial tissues. At the cellular level, SnoN antagonizes or mediates the ability of TGFβ to induce cell cycle arrest in a cell-type specific manner. SnoN also exerts key effects on epithelial-mesenchymal transition (EMT), with implications in cancer biology. Recent studies have expanded SnoN functions to postmitotic neurons, where SnoN orchestrates key aspects of neuronal development in the mammalian brain, from axon growth and branching to neuronal migration and positioning. In this review, we will highlight our understanding of SnoN biology at the crossroads of cancer biology and neurobiology.
Collapse
Affiliation(s)
- Shirin Bonni
- Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| | | |
Collapse
|
17
|
Band AM, Laiho M. SnoN oncoprotein enhances estrogen receptor-α transcriptional activity. Cell Signal 2011; 24:922-30. [PMID: 22227247 DOI: 10.1016/j.cellsig.2011.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/19/2011] [Indexed: 12/13/2022]
Abstract
Estrogen receptor-α (ERα) and transforming growth factor-beta (TGF-β) signaling pathways are essential regulators during mammary gland development and tumorigenesis. Ski-related novel gene (SnoN) is an oncoprotein and a negative feedback inhibitor of TGF-β signaling. We have previously reported that low expression of SnoN in ERα positive breast carcinomas is associated with favorable prognosis (Zhang et al. Cancer Res. (2003) 63, 5005-5010). Here we have studied the mechanism of a possible cross-talk between ERα and SnoN. We find that SnoN interacts with the estrogen-activated form of ERα in the nucleus. SnoN contains two highly conserved nuclear receptor binding LxxLL-like motifs and we show that mutations in these motifs reduce the interaction of SnoN with ERα. Over-expression of SnoN enhanced the transcriptional activity of ERα in estrogen response element (ERE)-reporter assays, augmented the expression of several ERα target genes and increased the proliferation of MCF7 breast carcinoma cells in an estrogen-dependent manner. Chromatin immunoprecipitation demonstrated that SnoN interacts with ERα at the TTF1 (pS2) gene promoter. Conversely, silencing of SnoN reduced both ERE-reporter activity and the expression of ERα target genes in MCF7 and T-47D breast cancer cells. Histone deacetylase inhibition increased the level of SnoN and SnoN-dependent enhancement of ERα-dependent transcription and SnoN supported the recruitment of p300 histone acetylase to ERα. This study reveals a novel mechanism that interconnects ERα and TGF-β signaling pathways by SnoN. Accordingly, the results indicate that high SnoN level promotes ERα signaling and possibly breast cancer progression.
Collapse
Affiliation(s)
- Arja M Band
- Molecular Cancer Biology Program, Biomedicum Helsinki and Haartman Institute, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
18
|
Band AM, Laiho M. Crosstalk of TGF-β and estrogen receptor signaling in breast cancer. J Mammary Gland Biol Neoplasia 2011; 16:109-15. [PMID: 21390570 DOI: 10.1007/s10911-011-9203-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 01/17/2023] Open
Abstract
Estrogen receptor-α (ERα) and transforming growth factor (TGF)-β signaling pathways are major regulators during mammary gland development, function and tumorigenesis. Predominantly, they have opposing roles in proliferation and apoptosis. While ERα signaling supports growth and differentiation and is antiapoptotic, mammary gland epithelia cells are very sensitive to TGF-β-induced cell cycle arrest and apoptosis. Their regulatory pathways intersect, and ERα blocks TGF-β pathway by multiple means, including direct interactions of its signaling components, Smads. However, relatively little is known of the dysfunction of their interactions in cancer. A better understanding would help to develop new strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Arja M Band
- Molecular Cancer Biology Program, Biomedicum Helsinki and Haartman Institute, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
19
|
Pot I, Ikeuchi Y, Bonni A, Bonni S. SnoN: bridging neurobiology and cancer biology. Curr Mol Med 2011; 10:667-73. [PMID: 20712586 DOI: 10.2174/156652410792630616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 06/12/2010] [Indexed: 01/05/2023]
Abstract
The transcriptional regulator SnoN has been the subject of growing interest due to its diverse functions in normal and pathological settings. A large body of evidence has established a fundamental role for SnoN as a modulator of signaling and responses by the transforming growth beta (TGFbeta) family of cytokines, though how SnoN regulates TGFbeta responses remains incompletely understood. In accordance with the critical and complex roles of TGFbeta in tumorigenesis and metastasis, SnoN may act as a tumor promoter or suppressor depending on the stage and type of cancer. Beyond its role in cancer, SnoN has also been implicated in the control of axon morphogenesis in postmitotic neurons in the mammalian brain. Remarkably, signaling pathways that control SnoN functions in the divergent cycling cells and postmitotic neurons appear to be conserved. Identification of novel SnoN regulatory and effector mechanisms holds the promise of advances at the interface of cancer biology and neurobiology.
Collapse
Affiliation(s)
- I Pot
- Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Research Institute, University of Calgary, Alberta, T2N 4N1 Canada
| | | | | | | |
Collapse
|
20
|
Jahchan NS, You YH, Muller WJ, Luo K. Transforming growth factor-beta regulator SnoN modulates mammary gland branching morphogenesis, postlactational involution, and mammary tumorigenesis. Cancer Res 2010; 70:4204-13. [PMID: 20460516 DOI: 10.1158/0008-5472.can-10-0135] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
SnoN is an important negative regulator of transforming growth factor-beta (TGF-beta) signaling that was originally identified as a transforming oncogene in chicken embryonic fibroblasts. Both pro-oncogenic and antioncogenic activities of SnoN have been reported, but its function in normal epithelial cells has not been defined. In the mouse mammary gland, SnoN is expressed at relatively low levels, but it is transiently upregulated at late gestation before being downregulated during lactation and early involution. To assess the effects of elevated levels of SnoN, we generated transgenic mice expressing a SnoN fragment under the control of the mouse mammary tumor virus promoter. In this model system, SnoN elevation increased side-branching and lobular-alveolar proliferation in virgin glands, while accelerating involution in postlactation glands. Increased proliferation stimulated by SnoN was insufficient to induce mammary tumorigenesis. In contrast, elevated levels of SnoN cooperated with polyoma middle T antigen to accelerate the formation of aggressive multifocal adenocarcinomas and to increase the formation of pulmonary metastases. Our studies define functions of SnoN in mammary epithelial cell proliferation and involution, and provide the first in vivo evidence of a pro-oncogenic role for SnoN in mammalian tumorigenesis.
Collapse
Affiliation(s)
- Nadine S Jahchan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
21
|
Pan D, Zhu Q, Luo K. SnoN functions as a tumour suppressor by inducing premature senescence. EMBO J 2009; 28:3500-13. [PMID: 19745809 PMCID: PMC2782089 DOI: 10.1038/emboj.2009.250] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 07/29/2009] [Indexed: 01/08/2023] Open
Abstract
SnoN represses TGF-beta signalling to promote cell proliferation and has been defined as a proto-oncogene partly due to its elevated expression in many human cancer cells. Although the anti-tumourigenic activity of SnoN has been suggested, the molecular basis for this has not been defined. We showed here that high levels of SnoN exert anti-oncogenic activity by inducing senescence. SnoN interacts with the promyelocytic leukaemia (PML) protein and is recruited to the PML nuclear bodies where it stabilizes p53, leading to premature senescence. Furthermore, overexpression of SnoN inhibits oncogenic transformation induced by Ras and Myc in vitro and significantly blocks papilloma development in vivo in a carcinogen-induced skin tumourigenesis model. The few papillomas that were developed displayed high levels of senescence and spontaneously regressed. Our study has revealed a novel Smad-independent pathway of SnoN function that mediates its anti-oncogenic activity.
Collapse
Affiliation(s)
- Deng Pan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Qingwei Zhu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Kunxin Luo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
22
|
Deheuninck J, Luo K. Ski and SnoN, potent negative regulators of TGF-beta signaling. Cell Res 2009; 19:47-57. [PMID: 19114989 DOI: 10.1038/cr.2008.324] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ski and the closely related SnoN were discovered as oncogenes by their ability to transform chicken embryo fibroblasts upon overexpression. While elevated expressions of Ski and SnoN have also been reported in many human cancer cells and tissues, consistent with their pro-oncogenic activity, emerging evidence also suggests a potential anti-oncogenic activity for both. In addition, Ski and SnoN have been implicated in regulation of cell differentiation, especially in the muscle and neuronal lineages. Multiple cellular partners of Ski and SnoN have been identified in an effort to understand the molecular mechanisms underlying the complex roles of Ski and SnoN. In this review, we summarize recent findings on the biological functions of Ski and SnoN, their mechanisms of action and how their levels of expression are regulated.
Collapse
Affiliation(s)
- Julien Deheuninck
- UC Berkeley, Department of Molecular and Cellular Biology, 16 Barker Hall, MC3204, Berkeley, CA 94720, USA
| | | |
Collapse
|
23
|
Abstract
Members of the transforming growth factor-beta (TGF-beta) family, including TGF-beta, activin and bone morphogenetic proteins (BMPs), are multifunctional proteins that regulate a wide variety of cellular responses, such as proliferation, differentiation, migration and apoptosis. Alterations in their downstream signaling pathways are associated with a range of human diseases like cancer. TGF-beta family members transduce signals through membrane serine/threonine kinase receptors and intracellular Smad proteins. The ubiquitin-proteasome pathway, an evolutionarily conserved cascade, tightly regulates TGF-beta family signaling. In this pathway, E3 ubiquitin ligases play a crucial role in the recognition and degradation of target proteins by the 26S proteasomes. Smad degradation regulates TGF-beta family signaling; HECT (homologous to the E6-accessory protein C-terminus)-type E3 ubiquitin ligases, Smad ubiquitin regulatory factor 1 (Smurf1), Smurf2, and a RING-type E3 ubiquitin ligase, ROC1-SCF(Fbw1a) have been implicated in Smad degradation. Smurf1 and Smurf2 bind to TGF-beta family receptors via the inhibitory Smads, Smad6 and Smad7, to induce their ubiquitin-dependent degradation. Arkadia, a RING-type E3 ubiquitin ligase, induces the ubiquitination and degradation of Smad7 and corepressors, c-Ski and SnoN, to enhance TGF-beta family signaling. Abnormalities in E3 ubiquitin ligases that control components of TGF-beta family signaling may lead to the development and progression of various cancers.
Collapse
Affiliation(s)
- Yasumichi Inoue
- Division of Biochemistry, the Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | | |
Collapse
|
24
|
Akagi I, Miyashita M, Makino H, Nomura T, Hagiwara N, Takahashi K, Cho K, Mishima T, Takizawa T, Tajiri T. SnoN Overexpression is Predictive of Poor Survival in Patients with Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 2008; 15:2965-75. [DOI: 10.1245/s10434-008-9986-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/16/2008] [Accepted: 04/27/2008] [Indexed: 11/18/2022]
|
25
|
Reed JA, Chen D, Lin Q, Medrano EE. SKI is critical for repressing the growth inhibitory function of TGF-beta in human melanoma. Pigment Cell Melanoma Res 2008; 21:494-5; author reply 496-7. [PMID: 18510588 DOI: 10.1111/j.1755-148x.2008.00476.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Overexpression of SnoN/SkiL, amplified at the 3q26.2 locus, in ovarian cancers: a role in ovarian pathogenesis. Mol Oncol 2008; 2:164-81. [PMID: 19383336 DOI: 10.1016/j.molonc.2008.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Revised: 05/01/2008] [Accepted: 05/06/2008] [Indexed: 01/05/2023] Open
Abstract
High-resolution array comparative genomic hybridization of 235 serous epithelial ovarian cancers demonstrated a regional increase at 3q26.2 encompassing SnoN/SkiL, a coregulator of SMAD/TGFbeta signaling. SnoN RNA transcripts were elevated in approximately 80% of advanced stage serous epithelial ovarian cancers. In both immortalized normal (TIOSE) and ovarian carcinoma cell lines (OVCA), SnoN RNA levels were increased by TGFbeta stimulation and altered by LY294002 and JNK II inhibitor treatment suggesting that the PI3K and JNK signaling pathways may regulate TGFbeta-induced increases in SnoN RNA. In TIOSE, SnoN protein levels were reduced 15min post TGFbeta-stimulation, likely by proteosome-mediated degradation. In contrast, in OVCA, SnoN levels were elevated 3h post-stimulation potentially as a result of inhibition of the proteosome. To elucidate the role of SnoN in ovarian tumorigenesis, we explored the effects of both increasing and decreasing SnoN levels. In both TIOSE and OVCA, SnoN siRNA decreased cell growth between 20 and 50% concurrent with increased p21 levels. In TIOSE, transient expression of SnoN repressed TGFbeta induction of PAI-1 promoters with little effect on the p21 promoter or resultant cell growth. In contrast to the effects of transient expression, stable expression of SnoN in TIOSE led to growth arrest through induction of senescence. Collectively, these results implicate SnoN levels in multiple roles during ovarian carcinogenesis: promoting cellular proliferation in ovarian cancer cells and as a positive mediator of cell cycle arrest and senescence in non-transformed ovarian epithelial cells.
Collapse
|
27
|
Sphingosine kinases and sphingosine-1-phosphate are critical for transforming growth factor beta-induced extracellular signal-regulated kinase 1 and 2 activation and promotion of migration and invasion of esophageal cancer cells. Mol Cell Biol 2008; 28:4142-51. [PMID: 18426913 DOI: 10.1128/mcb.01465-07] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor beta (TGFbeta) plays a dual role in oncogenesis, acting as both a tumor suppressor and a tumor promoter. These disparate processes of suppression and promotion are mediated primarily by Smad and non-Smad signaling, respectively. A central issue in understanding the role of TGFbeta in the progression of epithelial cancers is the elucidation of the mechanisms underlying activation of non-Smad signaling cascades. Because the potent lipid mediator sphingosine-1-phosphate (S1P) has been shown to transactivate the TGFbeta receptor and activate Smad3, we examined its role in TGFbeta activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and promotion of migration and invasion of esophageal cancer cells. Both S1P and TGFbeta activate ERK1/2, but only TGFbeta activates Smad3. Both ligands promoted ERK1/2-dependent migration and invasion. Furthermore, TGFbeta rapidly increased S1P, which was required for TGFbeta-induced ERK1/2 activation, as well as migration and invasion, since downregulation of sphingosine kinases, the enzymes that produce S1P, inhibited these responses. Finally, our data demonstrate that TGFbeta activation of ERK1/2, as well as induction of migration and invasion, is mediated at least in part by ligation of the S1P receptor, S1PR2. Thus, these studies provide the first evidence that TGFbeta activation of sphingosine kinases and formation of S1P contribute to non-Smad signaling and could be important for progression of esophageal cancer.
Collapse
|
28
|
Roles of CXCL8 in squamous cell carcinoma proliferation and migration. Oral Oncol 2008; 44:920-6. [PMID: 18282785 DOI: 10.1016/j.oraloncology.2007.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 12/04/2007] [Accepted: 12/05/2007] [Indexed: 02/08/2023]
Abstract
Previous work from our laboratory has demonstrated overexpression of chemokines in head and neck cancer, and the utility of targeting CXCL5 for tumor therapy in a preclinical model. In the present study, we investigated the contribution of a related chemokine, CXCL8, to cellular properties associated with tumor progression, namely cell growth and motility. Expression of CXCL8 was detectable in multiple squamous carcinoma cell lines, indicating a possible role in pathogenesis. Overexpression of CXCL8 in HN4 primary tumor cells with low endogenous CXCL8 levels was found to increase cell growth, as judged by cell counting and MTT assays. Conversely, RNAi-mediated knockdown of CXCL8 expression in HN12 cells, derived from a synchronous metastasis and which express high levels of this chemokine, resulted in a decrease in proliferation. Similarly, overexpression of CXCL8 enhanced migration of HN4 cells, while suppression of CXCL8 inhibited HN12 cell migration and invasion through a basement membrane substitute. Taken together, these findings support the hypothesis that CXCL8 affects multiple processes involved in tumor progression and identify CXCL8 as a potential therapeutic target, similar to CXCL5.
Collapse
|
29
|
Wrighton KH, Feng XH. To (TGF)beta or not to (TGF)beta: fine-tuning of Smad signaling via post-translational modifications. Cell Signal 2008; 20:1579-91. [PMID: 18387785 DOI: 10.1016/j.cellsig.2008.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 02/06/2008] [Indexed: 01/17/2023]
Abstract
Smad proteins are key signal transducers for the TGF-beta superfamily and are frequently inactivated in human cancers, yet the molecular basis of how their levels and activities are regulated remains unclear. Recent progress, discussed herein, illustrates the critical roles of Smad post-translational modifications in the cellular outcome to TGF-beta signaling.
Collapse
Affiliation(s)
- Katharine H Wrighton
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
30
|
Liu X, Li P, Liu P, Xiong R, Zhang E, Chen X, Gu D, Zhao Y, Wang Z, Zhou Y. The essential role for c-Ski in mediating TGF-beta1-induced bi-directional effects on skin fibroblast proliferation through a feedback loop. Biochem J 2008; 409:289-97. [PMID: 17725545 DOI: 10.1042/bj20070545] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The bi-directional regulation of TGF-beta1 (transforming growth factor-beta1) on fibroblast proliferation with stimulation at low concentration, but inhibition at high concentration, has important significance during tissue repair. The mechanism has not been defined. c-Ski is a major co-repressor of TGF-beta1/Smad3 signalling; however, the exact role of c-Ski in the bi-directional regulation of fibroblast proliferation remains to be determined. In the present study, we established a dose-effect relationship of bi-directional regulation of TGF-beta1-mediated proliferation in rat skin fibroblasts, and found that c-Ski overexpression promoted fibroblast proliferation by inhibiting Smad3 activity. Importantly, c-Ski expression was decreased at the high concentration of TGF-beta1, but increased at the low concentration of TGF-beta1. This dose-dependent change in TGF-beta1 action did not affect Smad3 phosphorylation or nuclear translocation, but altered Smad3 DNA-binding activity, transcriptional activity and expression of the downstream gene p21 that both increased at the high concentration and decreased at the low concentration. Furthermore, c-Ski overexpression exerted synergistic stimulation with TGF-beta1 at the low concentration, but reversed the inhibitory effect of TGF-beta1 at high concentrations, while knockdown of c-Ski by RNA interference abrogated bi-directional role of TGF-beta1 on fibroblast proliferation. Thus our data reveal a new mechanism for this bi-directional regulation, i.e. c-Ski expression change induced by low or high TGF-beta1 concentration in turn determines the promoting or inhibiting effects of TGF-beta1 on fibroblast proliferation, and suggests an important role of c-Ski that modulates the local availability of TGF-beta1 within the wound repair microenvironment.
Collapse
Affiliation(s)
- Xia Liu
- Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Levy L, Howell M, Das D, Harkin S, Episkopou V, Hill CS. Arkadia activates Smad3/Smad4-dependent transcription by triggering signal-induced SnoN degradation. Mol Cell Biol 2007; 27:6068-83. [PMID: 17591695 PMCID: PMC1952153 DOI: 10.1128/mcb.00664-07] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
E3 ubiquitin ligases play important roles in regulating transforming growth factor beta (TGF-beta)/Smad signaling. Screening of an E3 ubiquitin ligase small interfering RNA library, using TGF-beta induction of a Smad3/Smad4-dependent luciferase reporter as a readout, revealed that Arkadia is an E3 ubiquitin ligase that is absolutely required for this TGF-beta response. Knockdown of Arkadia or overexpression of a dominant-negative mutant completely abolishes transcription from Smad3/Smad4-dependent reporters, but not from Smad1/Smad4-dependent reporters or from reporters driven by Smad2/Smad4/FoxH1 complexes. We show that Arkadia specifically activates transcription via Smad3/Smad4 binding sites by inducing degradation of the transcriptional repressor SnoN. Arkadia is essential for TGF-beta-induced SnoN degradation, but it has little effect on SnoN levels in the absence of signal. Arkadia interacts with SnoN and induces its ubiquitination irrespective of TGF-beta/Activin signaling, but SnoN is efficiently degraded only when it forms a complex with both Arkadia and phosphorylated Smad2 or Smad3. Finally, we describe an esophageal cancer cell line (SEG-1) that we show has lost Arkadia expression and is deficient for SnoN degradation. Reintroduction of wild-type Arkadia restores TGF-beta-induced Smad3/Smad4-dependent transcription and SnoN degradation in these cells, raising the possibility that loss of Arkadia function may be relevant in cancer.
Collapse
Affiliation(s)
- Laurence Levy
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | | | | | | | |
Collapse
|
32
|
Onwuegbusi BA, Rees JR, Lao-Sirieix P, Fitzgerald RC. Selective loss of TGFbeta Smad-dependent signalling prevents cell cycle arrest and promotes invasion in oesophageal adenocarcinoma cell lines. PLoS One 2007; 2:e177. [PMID: 17264880 PMCID: PMC1766472 DOI: 10.1371/journal.pone.0000177] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 01/03/2007] [Indexed: 11/05/2022] Open
Abstract
In cancer, Transforming Growth Factor beta (TGFbeta) increases proliferation and promotes invasion via selective loss of signalling pathways. Oesophageal adenocarcinoma arises from Barrett's oesophagus, progresses rapidly and is usually fatal. The contribution of perturbed TGFbeta signalling in the promotion of metastasis in this disease has not been elucidated. We therefore investigated the role of TGFbeta in Barrett's associated oesophageal adenocarcinoma using a panel of cell lines (OE33, TE7, SEG, BIC, FLO). 4/5 adenocarcinoma cell lines failed to cell cycle arrest, down-regulate c-Myc or induce p21 in response to TGFbeta, and modulation of a Smad3/4 specific promoter was inhibited. These hyperproliferative adenocarcinoma cell lines displayed a TGFbeta induced increase in the expression of the extracellular matrix degrading proteinases, urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor 1 (PAI-1), which correlated with an invasive cell phenotype as measured by in vitro migration, invasion and cell scattering assays. Inhibiting ERK and JNK pathways significantly reduced PAI and uPA induction and inhibited the invasive cell phenotype. These results suggest that TGFbeta Smad-dependent signalling is perturbed in Barrett's carcinogenesis, resulting in failure of growth-arrest. However, TGFbeta can promote PAI and uPA expression and invasion through MAPK pathways. These data would support a dual role for TGFbeta in oesophageal adenocarcinoma.
Collapse
Affiliation(s)
| | - Jonathan R.E. Rees
- MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, United Kingdom
| | - Pierre Lao-Sirieix
- MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, United Kingdom
| | | |
Collapse
|
33
|
Zhu Q, Krakowski AR, Dunham EE, Wang L, Bandyopadhyay A, Berdeaux R, Martin GS, Sun L, Luo K. Dual role of SnoN in mammalian tumorigenesis. Mol Cell Biol 2006; 27:324-39. [PMID: 17074815 PMCID: PMC1800653 DOI: 10.1128/mcb.01394-06] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SnoN is an important negative regulator of transforming growth factor beta signaling through its ability to interact with and repress the activity of Smad proteins. It was originally identified as an oncoprotein based on its ability to induce anchorage-independent growth in chicken embryo fibroblasts. However, the roles of SnoN in mammalian epithelial carcinogenesis have not been well defined. Here we show for the first time that SnoN plays an important but complex role in human cancer. SnoN expression is highly elevated in many human cancer cell lines, and this high level of SnoN promotes mitogenic transformation of breast and lung cancer cell lines in vitro and tumor growth in vivo, consistent with its proposed pro-oncogenic role. However, this high level of SnoN expression also inhibits epithelial-to-mesenchymal transdifferentiation. Breast and lung cancer cells expressing the shRNA for SnoN exhibited an increase in cell motility, actin stress fiber formation, metalloprotease activity, and extracellular matrix production as well as a reduction in adherens junction proteins. Supporting this observation, in an in vivo breast cancer metastasis model, reducing SnoN expression was found to moderately enhance metastasis of human breast cancer cells to bone and lung. Thus, SnoN plays both pro-tumorigenic and antitumorigenic roles at different stages of mammalian malignant progression. The growth-promoting activity of SnoN appears to require its ability to bind to and repress the Smad proteins, while the antitumorigenic activity can be mediated by both Smad-dependent and Smad-independent pathways and requires the activity of small GTPase RhoA. Our study has established the importance of SnoN in mammalian epithelial carcinogenesis and revealed a novel aspect of SnoN function in malignant progression.
Collapse
Affiliation(s)
- Qingwei Zhu
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720-3204, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hsu YHR, Sarker KP, Pot I, Chan A, Netherton SJ, Bonni S. Sumoylated SnoN represses transcription in a promoter-specific manner. J Biol Chem 2006; 281:33008-18. [PMID: 16966324 DOI: 10.1074/jbc.m604380200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional modulator SnoN controls a diverse set of biological processes, including cell proliferation and differentiation. The mechanisms by which SnoN regulates these processes remain incompletely understood. Recent studies have shown that SnoN exerts positive or negative regulatory effects on transcription. Because post-translational modification of proteins by small ubiquitin-like modifier (SUMO) represents an important mechanism in the control of the activity of transcriptional regulators, we asked if this modification regulates SnoN function. Here, we show that SnoN is sumoylated. Our data demonstrate that the SUMO-conjugating E2 enzyme Ubc9 is critical for SnoN sumoylation and that the SUMO E3 ligase PIAS1 selectively interacts with and enhances the sumoylation of SnoN. We identify lysine residues 50 and 383 as the SUMO acceptor sites in SnoN. Analyses of SUMO "loss-of-function" and "gain-of-function" SnoN mutants in transcriptional reporter assays reveal that sumoylation of SnoN contributes to the ability of SnoN to repress gene expression in a promoter-specific manner. Although this modification has little effect on SnoN repression of the plasminogen activator inhibitor-1 promoter and only modestly potentiates SnoN repression of the p21 promoter, SnoN sumoylation robustly augments the ability of SnoN to suppress transcription of the myogenesis master regulatory gene myogenin. In addition, we show that the SnoN SUMO E3 ligase, PIAS1, at its endogenous levels, suppresses myogenin transcription. Collectively, our findings suggest that SnoN is directly regulated by sumoylation leading to the enhancement of the ability of SnoN to repress transcription in a promoter-specific manner. Our study also points to a physiological role for SnoN sumoylation in the control of myogenin expression in differentiating muscle cells.
Collapse
Affiliation(s)
- Ying-Han R Hsu
- Southern Alberta Cancer Research Institute and Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Pardali K, Moustakas A. Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta Rev Cancer 2006; 1775:21-62. [PMID: 16904831 DOI: 10.1016/j.bbcan.2006.06.004] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2006] [Revised: 06/24/2006] [Accepted: 06/26/2006] [Indexed: 02/07/2023]
Abstract
Transforming growth factor-beta (TGF-beta) is a secreted polypeptide that signals via receptor serine/threonine kinases and intracellular Smad effectors. TGF-beta inhibits proliferation and induces apoptosis in various cell types, and accumulation of loss-of-function mutations in the TGF-beta receptor or Smad genes classify the pathway as a tumor suppressor in humans. In addition, various oncogenic pathways directly inactivate the TGF-beta receptor-Smad pathway, thus favoring tumor growth. On the other hand, all human tumors overproduce TGF-beta whose autocrine and paracrine actions promote tumor cell invasiveness and metastasis. Accordingly, TGF-beta induces epithelial-mesenchymal transition, a differentiation switch that is required for transitory invasiveness of carcinoma cells. Tumor-derived TGF-beta acting on stromal fibroblasts remodels the tumor matrix and induces expression of mitogenic signals towards the carcinoma cells, and upon acting on endothelial cells and pericytes, TGF-beta regulates angiogenesis. Finally, TGF-beta suppresses proliferation and differentiation of lymphocytes including cytolytic T cells, natural killer cells and macrophages, thus preventing immune surveillance of the developing tumor. Current clinical approaches aim at establishing novel cancer drugs whose mechanisms target the TGF-beta pathway. In conclusion, TGF-beta signaling is intimately implicated in tumor development and contributes to all cardinal features of tumor cell biology.
Collapse
Affiliation(s)
- Katerina Pardali
- Ludwig Institute for Cancer Research, Box 595 Biomedical Center, Uppsala University, SE-751 24 Uppsala, Sweden
| | | |
Collapse
|
36
|
Miyazaki H, Patel V, Wang H, Edmunds RK, Gutkind JS, Yeudall WA. Down-regulation of CXCL5 inhibits squamous carcinogenesis. Cancer Res 2006; 66:4279-84. [PMID: 16618752 DOI: 10.1158/0008-5472.can-05-4398] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report a novel role for the CXC-chemokine, CXCL5, in the proliferation and invasion of head and neck squamous cell carcinoma (HNSCC). Previously, we reported transcriptional up-regulation of CXCL5 in metastatic cells. In this study, we provide biological validation of these findings and show that CXCL5 is intimately involved in tumor cell proliferation, migration, and invasion. Cells derived from a lymph node metastasis, but not from a synchronous primary tumor, secreted CXCL5 as judged by Western blotting of conditioned media. We used RNA interference to generate cell lines (shL5) in which CXCL5 expression was greatly reduced, and tested whether this modulated the cell phenotype. shL5 cells showed decreased proliferation compared with cells harboring nontargeting control sequences. In addition, we found that the ability of shL5 cells to migrate and invade in vitro through a basement membrane substitute was greatly impaired compared with control cells. Finally, whereas control cells were highly tumorigenic in nude mice, the tumorigenic potential in vivo of shL5 cells was found to be ablated. Taken together, these data suggest that CXCL5 production contributes to both enhanced proliferation and invasion of squamous cell carcinomas and that targeting of chemokine pathways may represent a potential therapeutic modality for these lesions.
Collapse
MESH Headings
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Growth Processes/physiology
- Cell Line, Tumor
- Cell Movement/physiology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Chemokine CXCL5
- Chemokines, CXC/antagonists & inhibitors
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/genetics
- Disease Progression
- Down-Regulation
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Humans
- Neoplasm Invasiveness
- Neoplasm Metastasis
- RNA Interference
- RNA, Small Interfering/genetics
- Transfection
Collapse
Affiliation(s)
- Hiroshi Miyazaki
- Philips Institute, Virginia Commonwealth University, Richmond, Virginia 23298-0566, USA
| | | | | | | | | | | |
Collapse
|
37
|
Lacher MD, Tiirikainen MI, Saunier EF, Christian C, Anders M, Oft M, Balmain A, Akhurst RJ, Korn WM. Transforming growth factor-beta receptor inhibition enhances adenoviral infectability of carcinoma cells via up-regulation of Coxsackie and Adenovirus Receptor in conjunction with reversal of epithelial-mesenchymal transition. Cancer Res 2006; 66:1648-57. [PMID: 16452224 DOI: 10.1158/0008-5472.can-05-2328] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Expression of the Coxsackie and Adenovirus Receptor (CAR) is frequently reduced in carcinomas, resulting in decreased susceptibility of such tumors to infection with therapeutic adenoviruses. Because CAR participates physiologically in the formation of tight-junction protein complexes, we examined whether molecular mechanisms known to down-regulate cell-cell adhesions cause loss of CAR expression. Transforming growth factor-beta (TGF-beta)-mediated epithelial-mesenchymal transition (EMT) is a phenomenon associated with tumor progression that is characterized by loss of epithelial-type cell-cell adhesion molecules (including E-cadherin and the tight junction protein ZO-1), gain of mesenchymal biochemical markers, such as fibronectin, and acquisition of a spindle cell phenotype. CAR expression is reduced in tumor cells that have undergone EMT in response to TGF-beta. This down-regulation results from repression of CAR gene transcription, whereas altered RNA stability and increased proteasomal protein degradation play no role. Loss of CAR expression in response to TGF-beta is accompanied by reduced susceptibility to adenovirus infection. Indeed, treatment of carcinoma cells with LY2109761, a specific pharmacologic inhibitor of TGF-beta receptor types I and II kinases, resulted in increased CAR RNA and protein levels as well as improved infectability with adenovirus. This was observed in cells induced to undergo EMT by addition of exogenous TGF-beta and in those that were transformed by endogenous autocrine/paracrine TGF-beta. These findings show down-regulation of CAR in the context of EMT and suggest that combination of therapeutic adenoviruses and TGF-beta receptor inhibitors could be an efficient anticancer strategy.
Collapse
Affiliation(s)
- Markus D Lacher
- Division of Gastroenterology and Hematology/Oncology, University of California-San Francisco Comprehensive Cancer Center, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Krakowski AR, Laboureau J, Mauviel A, Bissell MJ, Luo K. Cytoplasmic SnoN in normal tissues and nonmalignant cells antagonizes TGF-beta signaling by sequestration of the Smad proteins. Proc Natl Acad Sci U S A 2005; 102:12437-42. [PMID: 16109768 PMCID: PMC1194926 DOI: 10.1073/pnas.0504107102] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TGF-beta is a ubiquitously expressed cytokine that signals through the Smad proteins to regulate many diverse cellular processes. SnoN is an important negative regulator of Smad signaling. It has been described as a nuclear protein, based on studies of ectopically expressed SnoN and endogenous SnoN in cancer cell lines. In the nucleus, SnoN binds to Smad2, Smad3, and Smad4 and represses their ability to activate transcription of TGF-beta target genes through multiple mechanisms. Here, we show that, whereas SnoN is localized exclusively in the nucleus in cancer tissues or cells, in normal tissues and nontumorigenic or primary epithelial cells, SnoN is predominantly cytoplasmic. Upon morphological differentiation or cell-cycle arrest, SnoN translocates into the nucleus. In contrast to nuclear SnoN that represses the transcriptional activity of the Smad complexes, cytoplasmic SnoN antagonizes TGF-beta signaling by sequestering the Smad proteins in the cytoplasm. Interestingly, cytoplasmic SnoN is resistant to TGF-beta-induced degradation and therefore is more potent than nuclear SnoN in repressing TGF-beta signaling. Thus, we have identified a mechanism of regulation of TGF-beta signaling via differential subcellular localization of SnoN that is likely to produce different patterns of downstream TGF-beta responses and may influence the proliferation or differentiation states of epithelial cells.
Collapse
Affiliation(s)
- Ariel R Krakowski
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|