1
|
Kazi A, Vasiyani H, Ghosh D, Bandyopadhyay D, Shah RD, Vudatha V, Trevino J, Sebti SM. FGTI-2734 Inhibits ERK Reactivation to Overcome Sotorasib Resistance in KRAS G12C Lung Cancer. J Thorac Oncol 2025; 20:331-344. [PMID: 39603412 PMCID: PMC11885004 DOI: 10.1016/j.jtho.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/09/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
INTRODUCTION KRAS G12C targeted therapies, such as sotorasib, represent a major breakthrough, but overall response rates and progression-free survival for patients with KRAS G12C lung cancer are modest due to the emergence of resistance mechanisms involving adaptive reactivation of ERK, which requires wild-type HRAS and NRAS membrane localization. METHODS AND RESULTS Here, we demonstrate that the dual farnesyltransferase and geranylgeranyltransferase-1 inhibitor FGTI-2734 inhibits wild-type RAS membrane localization and sotorasib-induced ERK feedback reactivation, and overcomes sotorasib adaptive resistance. The combination of FGTI-2734 and sotorasib is synergistic at inhibiting the viability and inducing apoptosis of KRAS G12C lung cancer cells, including those highly resistant to sotorasib. FGTI-2734 enhances sotorasib's anti-tumor activity in vivo leading to significant tumor regression of a patient-derived xenograft (PDX) from a patient with KRAS G12C lung cancer and several xenografts from highly sotorasib-resistant KRAS G12C human lung cancer cells. Importantly, treatment of mice with FGTI-2734 inhibited sotorasib-induced ERK reactivation in KRAS G12C PDX, and treatment of mice with the combination of FGTI-2734 and sotorasib was also significantly more effective at suppressing in vivo the levels of P-ERK in sotorasib-resistant human KRAS G12C lung cancer xenografts and the NSCLC PDX. CONCLUSION Our findings provide a foundation for overcoming sotorasib resistance and potentially improving the treatment outcomes of KRAS G12C lung cancer.
Collapse
Affiliation(s)
- Aslamuzzaman Kazi
- Department of Pharmacology and Toxicology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Hitesh Vasiyani
- Department of Pharmacology and Toxicology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Deblina Ghosh
- Department of Pharmacology and Toxicology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | | | - Rachit D Shah
- Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Jose Trevino
- Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Said M Sebti
- Department of Pharmacology and Toxicology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
2
|
Tesson M, Morton JP. The preclinical gap in pancreatic cancer and radiotherapy. Dis Model Mech 2024; 17:dmm050703. [PMID: 38979684 PMCID: PMC11261628 DOI: 10.1242/dmm.050703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Pancreatic ductal adenocarcinoma is an aggressive malignancy with limited treatment options. Chemotherapy offers little benefit and, although there is some evidence that radiotherapy may improve response, its use in the clinical management of pancreatic cancer remains controversial due to conflicting reports on its survival benefit. There has also been a lack of clinical trials that directly investigate the efficacy of radiotherapy in pancreatic cancer. The limited progress in the development of radiotherapeutic strategies in pancreatic cancer can be attributed, at least in part, to a dearth of preclinical research and our limited understanding of the effects of radiation on the pancreatic tumour microenvironment. In this Perspective, we discuss how insight into the immunosuppressive tumour microenvironment and the complex signalling between tumour and stromal cells following radiation is needed to develop effective radiosensitising strategies for pancreatic cancer. We also highlight that to have the best chance for successful clinical translation, more preclinical research is required in appropriately complex models.
Collapse
Affiliation(s)
- Mathias Tesson
- Cancer Research UK Scotland Institute, Switchback Rd, Glasgow G61 1BD, UK
| | - Jennifer P. Morton
- Cancer Research UK Scotland Institute, Switchback Rd, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
3
|
Sadeghi Moghadam M, Azimian H, Tavakol Afshari J, Bahreyni Toossi MT, Kaffash Farkhad N, Aghaee-Bakhtiari SH. Chromosomal Instability in Various Generations of Human Mesenchymal Stem Cells Following the Therapeutic Radiation. Stem Cells Int 2023; 2023:9991656. [PMID: 37674788 PMCID: PMC10480024 DOI: 10.1155/2023/9991656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/09/2023] [Accepted: 07/22/2023] [Indexed: 09/08/2023] Open
Abstract
Background Radiotherapy is a crucial treatment for most malignancies. However, it can cause several side effects, including the development of secondary malignancies due to radiation-induced genomic instability (RIGI). The aim of this study was to evaluate genomic instability in human mesenchymal stem cells (hMSCs) at different X-ray radiation doses. Additionally, the study aimed to examine the relative expression of certain genes involved in DNA repair, proto-oncogenes, and tumor suppressor genes. Methods After extracting, characterizing, and expanding hMSCs, they were exposed to X-ray beams at doses of 0, 0.5, 2, and 6 Gy. Nuclear alterations were evaluated through the cytokinesis-block micronucleus (CBMN) assay at 2, 10, and 15 days postirradiation. The expressions of BRCA1, BRCA2, TP53, Bax, Bcl2, and KRAS genes were analyzed 48 hr after irradiation to evaluate genomic responses to different radiation doses. Results The mean incidence of micronuclei, nucleoplasmic bridges, and nuclear buds was 4.8 ± 1.6, 47.6 ± 6, and 18 ± 2.6, respectively, in the nonirradiated group 48 hr after the fourth passage, per 1,000 binucleated cells. The incidence of micronuclei in groups exposed to 0.5, 2, and 6 Gy of radiation was 14.3 ± 4.9, 32.3 ± 6.5, and 55 ± 9.1, respectively, 48 hr after irradiation. The expression levels of the BRCA2, Bax, TP53, and KRAS genes significantly increased after exposure to 6 Gy radiation compared to the control groups. However, there was no significant increase in BRCA1 and Bcl2 gene expression in our study. Conclusion This study demonstrated significant nuclear alterations in the 10 days postirradiation due to the RIGIs that they inherited from their irradiated ancestral cells. While chromosomal instability is a prevalent event in malignant cells, so it seems necessary to optimize radiotherapy treatment protocols for tissues that contain stem cells, especially with IMRT, which delivers a low dose to a larger volume of tissues.
Collapse
Affiliation(s)
- Majid Sadeghi Moghadam
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Azimian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Immunology Research Center, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Najmeh Kaffash Farkhad
- Immunology Research Center, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
4
|
Jin H, Koh M, Lim H, Yong HY, Kim ES, Kim SY, Kim K, Jung J, Ryu WJ, Choi KY, Moon A. Lipid raft protein flotillin-1 is important for the interaction between SOS1 and H-Ras/K-Ras, leading to Ras activation. Int J Cancer 2023; 152:1933-1946. [PMID: 36691829 DOI: 10.1002/ijc.34443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/20/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
Ras mutations have been frequently observed in human cancer. Although there is a high degree of similarity between Ras isomers, they display preferential coupling in specific cancer types. The binding of Ras to the plasma membrane is essential for its activation and biological functions. The present study elucidated Ras isoform-specific interactions with the membrane and their role in Ras-mediated biological activities. We investigated the role of a lipid raft protein flotillin-1 (Flot-1) in the activations of Ras. We found that Flot-1 was co-localized with H-Ras, but not with N-Ras, in lipid rafts of MDA-MB-231 human breast cells. The amino-terminal hydrophobic domain (1-38) of Flot-1 interacted with the hypervariable region of H-Ras. The epidermal growth factor-stimulated activation of H-Ras required Flot-1 which was not necessary for that of N-Ras in breast cancer cells. Flot-1 interacted with son of sevenless (SOS)-1, which promotes the conversion of Ras-bound GDP to GTP. Notably, Flot-1 was crucial for the interaction between SOS1 and H-Ras/K-Ras in breast and pancreatic cancer cells. Stable knockdown of Flot-1 reduced the in vivo metastasis in a mouse xenograft model with human breast carcinoma cells. A tissue microarray composed of 61 human pancreatic cancer samples showed higher levels of Flot-1 expression in pancreatic tumor tissues compared to normal tissues, and a correlation between K-Ras and Flot-1. Taken together, our findings suggest that Flot-1 may serve as a membrane platform for the interaction of SOS1 with H-Ras/K-Ras in human cancer cells, presenting Flot-1 as a potential target for Ras-driven cancers.
Collapse
Affiliation(s)
- Hao Jin
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Minsoo Koh
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Hyesol Lim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Hae-Young Yong
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Eun-Sook Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul, Republic of Korea
| | - Kyoungmee Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Joohee Jung
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Won-Ji Ryu
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| |
Collapse
|
5
|
Zhang Z, Zhang H, Liao X, Tsai HI. KRAS mutation: The booster of pancreatic ductal adenocarcinoma transformation and progression. Front Cell Dev Biol 2023; 11:1147676. [PMID: 37152291 PMCID: PMC10157181 DOI: 10.3389/fcell.2023.1147676] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. It has a poor response to conventional therapy and has an extremely poor 5-year survival rate. PDAC is driven by multiple oncogene mutations, with the highest mutation frequency being observed in KRAS. The KRAS protein, which binds to GTP, has phosphokinase activity, which further activates downstream effectors. KRAS mutation contributes to cancer cell proliferation, metabolic reprogramming, immune escape, and therapy resistance in PDAC, acting as a critical driver of the disease. Thus, KRAS mutation is positively associated with poorer prognosis in pancreatic cancer patients. This review focus on the KRAS mutation patterns in PDAC, and further emphases its role in signal transduction, metabolic reprogramming, therapy resistance and prognosis, hoping to provide KRAS target therapy strategies for PDAC.
Collapse
Affiliation(s)
- Zining Zhang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Heng Zhang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang Liao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hsiang-i Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Yang L, Shen C, Estrada-Bernal A, Robb R, Chatterjee M, Sebastian N, Webb A, Mo X, Chen W, Krishnan S, Williams TM. Oncogenic KRAS drives radioresistance through upregulation of NRF2-53BP1-mediated non-homologous end-joining repair. Nucleic Acids Res 2021; 49:11067-11082. [PMID: 34606602 PMCID: PMC8565339 DOI: 10.1093/nar/gkab871] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/03/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
KRAS-activating mutations are oncogenic drivers and are correlated with radioresistance of multiple cancers, including colorectal cancer, but the underlying precise molecular mechanisms remain elusive. Herein we model the radiosensitivity of isogenic HCT116 and SW48 colorectal cancer cell lines bearing wild-type or various mutant KRAS isoforms. We demonstrate that KRAS mutations indeed lead to radioresistance accompanied by reduced radiotherapy-induced mitotic catastrophe and an accelerated release from G2/M arrest. Moreover, KRAS mutations result in increased DNA damage response and upregulation of 53BP1 with associated increased non-homologous end-joining (NHEJ) repair. Remarkably, KRAS mutations lead to activation of NRF2 antioxidant signaling to increase 53BP1 gene transcription. Furthermore, genetic silencing or pharmacological inhibition of KRAS, NRF2 or 53BP1 attenuates KRAS mutation-induced radioresistance, especially in G1 phase cells. These findings reveal an important role for a KRAS-induced NRF2-53BP1 axis in the DNA repair and survival of KRAS-mutant tumor cells after radiotherapy, and indicate that targeting NRF2, 53BP1 or NHEJ may represent novel strategies to selectively abrogate KRAS mutation-mediated radioresistance.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Changxian Shen
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Adriana Estrada-Bernal
- The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Ryan Robb
- The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Moumita Chatterjee
- The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Nikhil Sebastian
- The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Amy Webb
- The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Xiaokui Mo
- The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Wei Chen
- The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | | | - Terence M Williams
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
7
|
Manoukian P, Bijlsma M, van Laarhoven H. The Cellular Origins of Cancer-Associated Fibroblasts and Their Opposing Contributions to Pancreatic Cancer Growth. Front Cell Dev Biol 2021; 9:743907. [PMID: 34646829 PMCID: PMC8502878 DOI: 10.3389/fcell.2021.743907] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic tumors are known to harbor an abundant and highly desmoplastic stroma. Among the various cell types that reside within tumor stroma, cancer-associated fibroblasts (CAFs) have gained a lot of attention in the cancer field due to their contributions to carcinogenesis and tumor architecture. These cells are not a homogeneous population, but have been shown to have different origins, phenotypes, and contributions. In pancreatic tumors, CAFs generally emerge through the activation and/or recruitment of various cell types, most notably resident fibroblasts, pancreatic stellate cells (PSCs), and tumor-infiltrating mesenchymal stem cells (MSCs). In recent years, single cell transcriptomic studies allowed the identification of distinct CAF populations in pancreatic tumors. Nonetheless, the exact sources and functions of those different CAF phenotypes remain to be fully understood. Considering the importance of stromal cells in pancreatic cancer, many novel approaches have aimed at targeting the stroma but current stroma-targeting therapies have yielded subpar results, which may be attributed to heterogeneity in the fibroblast population. Thus, fully understanding the roles of different subsets of CAFs within the stroma, and the cellular dynamics at play that contribute to heterogeneity in CAF subsets may be essential for the design of novel therapies and improving clinical outcomes. Fortunately, recent advances in technologies such as microfluidics and bio-printing have made it possible to establish more advanced ex vivo models that will likely prove useful. In this review, we will present the different roles of stromal cells in pancreatic cancer, focusing on CAF origin as a source of heterogeneity, and the role this may play in therapy failure. We will discuss preclinical models that could be of benefit to the field and that may contribute to further clinical development.
Collapse
Affiliation(s)
- Paul Manoukian
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maarten Bijlsma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hanneke van Laarhoven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Wolfe AR, Chablani P, Siedow MR, Miller ED, Walston S, Kendra KL, Wuthrick E, Williams TM. BRAF mutation correlates with worse local-regional control following radiation therapy in patients with stage III melanoma. Radiat Oncol 2021; 16:181. [PMID: 34537078 PMCID: PMC8449455 DOI: 10.1186/s13014-021-01903-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/30/2021] [Indexed: 11/26/2022] Open
Abstract
Background In patients with stage III melanoma, the use of adjuvant radiation therapy (RT) after lymph node dissection (LND) may be currently considered in selected high-risk patients to improve tumor control. Melanomas harbor BRAF mutations (BRAF+) in 40–50% of cases, the majority of which are on the V600E residue. This study sought to compare the clinical outcomes after RT between patients with BRAF+ and BRAF− melanoma. Methods This was a retrospective review of 105 Stage III melanoma patients treated at our institution with LND followed by adjuvant RT from 2006 to 2019. BRAF mutational status was determined on the primary skin or nodal tissue samples from all patients. We compared characteristics of the BRAF+ and BRAF− groups using Fisher’s exact test and Wilcoxon rank sum test and performed univariate and multivariate analysis using Kaplan–Meier estimates, log-rank tests, and Cox proportional hazards modeling with the clinical outcomes of local–regional lymph node control, distant metastasis-free survival (DMFS), recurrence-free survival (RFS), and overall survival (OS). Results Fifty-three (50%) patients harbored a BRAF mutation (92%, pV600E). BRAF+ patients were younger and had primary tumors more commonly found in the trunk vs head and neck compared to BRAF- patients (p < 0.05). The 5 year local–regional control in the BRAF + patients was 60% compared to 81% in the BRAF- patients (HR 4.5, 95% CI 1.3–15.5, p = 0.02). There were no significant differences in 5-year DMFS, RFS, and OS rates between the two BRAF patient groups. The presence of 4 or more positive LNs remained a significant prognostic factor for local–regional lymph node control, RFS, and OS in multivariate analysis. Conclusions Stage III melanoma patients with BRAF mutation treated with adjuvant RT had > 4 times increased risk of local recurrence or regional lymph node recurrence. These results could be useful for adjuvant RT consideration in lymph node positive melanoma patients and supports other data that BRAF mutation confers radiation resistance.
Collapse
Affiliation(s)
- Adam R Wolfe
- Department of Radiation Oncology, The University of Arkansas for Medical Sciences, The Winthrop P. Rockefeller Cancer Institute, Little Rock, AR, USA
| | - Priyanka Chablani
- Division of Hematology-Oncology, Department of Internal Medicine, University of Chicago, Chicago, IL, USA
| | - Michael R Siedow
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Eric D Miller
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Steve Walston
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kari L Kendra
- Division of Hematology-Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Evan Wuthrick
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Terence M Williams
- Department of Radiation Oncology, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
9
|
De Lellis L, Veschi S, Tinari N, Mokini Z, Carradori S, Brocco D, Florio R, Grassadonia A, Cama A. Drug Repurposing, an Attractive Strategy in Pancreatic Cancer Treatment: Preclinical and Clinical Updates. Cancers (Basel) 2021; 13:3946. [PMID: 34439102 PMCID: PMC8394389 DOI: 10.3390/cancers13163946] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest malignancies worldwide, since patients rarely display symptoms until an advanced and unresectable stage of the disease. Current chemotherapy options are unsatisfactory and there is an urgent need for more effective and less toxic drugs to improve the dismal PC therapy. Repurposing of non-oncology drugs in PC treatment represents a very promising therapeutic option and different compounds are currently being considered as candidates for repurposing in the treatment of this tumor. In this review, we provide an update on some of the most promising FDA-approved, non-oncology, repurposed drug candidates that show prominent clinical and preclinical data in pancreatic cancer. We also focus on proposed mechanisms of action and known molecular targets that they modulate in PC. Furthermore, we provide an explorative bioinformatic analysis, which suggests that some of the PC repurposed drug candidates have additional, unexplored, oncology-relevant targets. Finally, we discuss recent developments regarding the immunomodulatory role displayed by some of these drugs, which may expand their potential application in synergy with approved anticancer immunomodulatory agents that are mostly ineffective as single agents in PC.
Collapse
Affiliation(s)
- Laura De Lellis
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Serena Veschi
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Nicola Tinari
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (N.T.); (A.G.)
- Center for Advanced Studies and Technology—CAST, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Zhirajr Mokini
- European Society of Anaesthesiology and Intensive Care (ESAIC) Mentorship Programme, ESAIC, 24 Rue des Comédiens, BE-1000 Brussels, Belgium;
| | - Simone Carradori
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Davide Brocco
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Rosalba Florio
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Antonino Grassadonia
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (N.T.); (A.G.)
- Center for Advanced Studies and Technology—CAST, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
- Center for Advanced Studies and Technology—CAST, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
10
|
Trujillo-Nolasco M, Cruz-Nova P, Ferro-Flores G, Gibbens-Bandala B, Morales-Avila E, Aranda-Lara L, Vargas M, Ocampo-García B. Development of 177Lu-DN(C19)-CXCR4 Ligand Nanosystem for Combinatorial Therapy in Pancreatic Cancer. J Biomed Nanotechnol 2021; 17:263-278. [PMID: 33785097 DOI: 10.1166/jbn.2021.3016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pancreatic cancer is highly lethal and has a poor prognosis. The most common alteration during the formation of pancreatic tumors is the activation of KRAS (Kirsten rat sarcoma 2 viral oncogene homolog) oncogene. As a new therapeutic strategy, the C19 molecule ((2S)-N-(2,5-dichlorophenyl)-2-[(3,4-dimethoxyphenyl)-methylamine]propanamide) blocks the KRAS-membrane association in cancer cells. In addition, the chemokine receptor CXCR4 is overexpressed in pancreatic cancer. In this research, a new dendrimer-based nanoradiopharmaceutical (177Lu-DN(C19)-CXCR4L) encapsulating C19 and functionalized to target CXCR4 receptors is proposed as both, a targeted radiotherapy system (lutetium-177) and an oncotherapeutic approach by the stabilization of KRAS4b-PDESδ complex to produce dual-specific therapy in pancreatic cancer. 177The Lu-DN(C19)-CXCR4L was synthesized and characterized, C19 was encapsulated with 81% efficiency, the final nanosystem rendered a particle size of 67 nm and the specific uptake in pancreatic cell lines was demonstrated. The major cytotoxic effect was observed in the KRAS-dependent and radioresistant cell line Mia PaCa-2, which expresses a high density of CXCR4 receptors. The radiation dose of 3 Gy/Bq decreased viability to 7%, and this effect was attributed to the presence of C19. A synergistic effect (radio and chemotherapy) capable of reducing viability in pancreatic cancer cells through apoptotic mechanisms was demonstrated. Thus, 177Lu-DN(C19)-CXCR4L nanoradiopharmaceutical is efficacious in pancreatic cancer cell lines overexpressing the CXCR4 receptor.
Collapse
Affiliation(s)
- Maydelid Trujillo-Nolasco
- Departamento de Materials Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México, 52750, Mexico
| | - Pedro Cruz-Nova
- Departamento de Materials Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México, 52750, Mexico
| | - Guillermina Ferro-Flores
- Departamento de Materials Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México, 52750, Mexico
| | - Brenda Gibbens-Bandala
- Departamento de Materials Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México, 52750, Mexico
| | - Enrique Morales-Avila
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Tollocan S/N, Toluca, Estado de México, 50180, Mexico
| | - Liliana Aranda-Lara
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, 50180 Estado de México, Mexico
| | - Miguel Vargas
- Departamento de Biomedicina Molecular. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. I.P.N., 07360, Ciudad de México
| | - Blanca Ocampo-García
- Departamento de Materials Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México, 52750, Mexico
| |
Collapse
|
11
|
Klimpel A, Stillger K, Wiederstein JL, Krüger M, Neundorf I. Cell-permeable CaaX-peptides affect K-Ras downstream signaling and promote cell death in cancer cells. FEBS J 2020; 288:2911-2929. [PMID: 33112492 DOI: 10.1111/febs.15612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 08/17/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022]
Abstract
Cysteine prenylation is a post-translational modification that is used by nature to control crucial biological functions of proteins, such as membrane trafficking, signal transduction, and apoptosis. It mainly occurs in eukaryotic proteins at a C-terminal CaaX box and is mediated by prenyltransferases. Since the discovery of prenylated proteins, various tools have been developed to study the mechanisms of prenyltransferases, as well as to visualize and to identify prenylated proteins. Herein, we introduce cell-permeable peptides bearing a C-terminal CaaX motif based on Ras sequences. We demonstrate that intracellular accumulation of those peptides in different cells is controlled by the presence of their CaaX motif and that they specifically interact with intracellular prenyltransferases. As proof of concept, we further highlight their utilization to alter downstream signaling of Ras proteins, particularly of K-Ras-4B, in pancreatic cancer cells. Application of this strategy holds great promise to better understand and regulate post-translational cysteine prenylation.
Collapse
Affiliation(s)
- Annika Klimpel
- Institute for Biochemistry, University of Cologne, Germany
| | | | - Janica L Wiederstein
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Germany
| | - Ines Neundorf
- Institute for Biochemistry, University of Cologne, Germany
| |
Collapse
|
12
|
Yu S, Zhang C, Xie KP. Therapeutic resistance of pancreatic cancer: Roadmap to its reversal. Biochim Biophys Acta Rev Cancer 2020; 1875:188461. [PMID: 33157162 DOI: 10.1016/j.bbcan.2020.188461] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is a lethal disease with limited opportunity for resectable surgery as the first choice for cure due to its late diagnosis and early metastasis. The desmoplastic stroma and cellular genetic or epigenetic alterations of pancreatic cancer impose physical and biological barriers to effective therapies, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. Here, we review the current therapeutic options for pancreatic cancer, and underlying mechanisms and potential reversal of therapeutic resistance, a hallmark of this deadly disease.
Collapse
Affiliation(s)
- Sen Yu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital Affiliated to the South China University of Technology, School of Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Chunyu Zhang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital Affiliated to the South China University of Technology, School of Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Ke-Ping Xie
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital Affiliated to the South China University of Technology, School of Medicine, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
13
|
Wu C, Williams TM, Robb R, Webb A, Wei L, Chen W, Mikhail S, Ciombor KK, Cardin D, Timmers C, Krishna S, Arnold M, Harzman A, Abdel-Misih S, Roychowdhury S, Bekaii-Saab T, Wuthrick EJ. Phase I Trial of Trametinib with Neoadjuvant Chemoradiation in Patients with Locally Advanced Rectal Cancer. Clin Cancer Res 2020; 26:3117-3125. [PMID: 32253228 PMCID: PMC7334091 DOI: 10.1158/1078-0432.ccr-19-4193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/25/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE The RAS/RAF/MEK/ERK signaling pathway is critical to the development of colorectal cancers, and KRAS, NRAS, and BRAF mutations foster resistance to radiation. We performed a phase I trial to determine the safety of trametinib, a potent MEK1/2 inhibitor, with 5-fluorouracil (5-FU) chemoradiation therapy (CRT) in patients with locally advanced rectal cancer (LARC). PATIENTS AND METHODS Patients with stage II/III rectal cancer were enrolled on a phase I study with 3+3 study design, with an expansion cohort of 9 patients at the MTD. Following a 5-day trametinib lead-in, with pre- and posttreatment tumor biopsies, patients received trametinib and CRT, surgery, and adjuvant chemotherapy. Trametinib was given orally daily at 3 dose levels: 0.5 mg, 1 mg, and 2 mg. CRT consisted of infusional 5-FU 225 mg/m2/day and radiation dose of 28 daily fractions of 1.8 Gy (total 50.4 Gy). The primary endpoint was to identify the MTD and recommended phase II dose. IHC staining for phosphorylated ERK (pERK) and genomic profiling was performed on the tumor samples. RESULTS Patients were enrolled to all dose levels, and 18 patients were evaluable for toxicities and responses. Treatment was well tolerated, and there was one dose-limiting toxicity of diarrhea, which was attributed to CRT rather than trametinib. At the 2 mg dose level, 25% had pathologic complete response. IHC staining confirmed dose-dependent decrease in pERK with increasing trametinib doses. CONCLUSIONS The combination of trametinib with 5-FU CRT is safe and well tolerated, and may warrant additional study in a phase II trial, perhaps in a RAS/RAF-mutant selected population.
Collapse
Affiliation(s)
- Christina Wu
- Emory University, Winship Cancer Institute, Atlanta, GA
| | | | - Ryan Robb
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Amy Webb
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Lai Wei
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Wei Chen
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | | | - Dana Cardin
- Vanderbilt-Ingram Cancer Center, Nashville, TN
| | | | | | - Mark Arnold
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Alan Harzman
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | | | | | | |
Collapse
|
14
|
Jeong JH, Ryu JH. Broussoflavonol B from Broussonetia kazinoki Siebold Exerts Anti-Pancreatic Cancer Activity through Downregulating FoxM1. Molecules 2020; 25:E2328. [PMID: 32429421 PMCID: PMC7287790 DOI: 10.3390/molecules25102328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 11/22/2022] Open
Abstract
Pancreatic cancer has a high mortality rate due to poor rates of early diagnosis. One tumor suppressor gene in particular, p53, is frequently mutated in pancreatic cancer, and mutations in p53 can inactivate normal wild type p53 activity and increase expression of transcription factor forkhead box M1 (FoxM1). Overexpression of FoxM1 accelerates cellular proliferation and cancer progression. Therefore, inhibition of FoxM1 represents a therapeutic strategy for treating pancreatic cancer. Broussoflavonol B (BF-B), isolated from the stem bark of Broussonetia kazinoki Siebold has previously been shown to inhibit the growth of breast cancer cells. This study aimed to investigate whether BF-B exhibits anti-pancreatic cancer activity and if so, identify the underlying mechanism. BF-B reduced cell proliferation, induced cell cycle arrest, and inhibited cell migration and invasion of human pancreatic cancer PANC-1 cells (p53 mutated). Interestingly, BF-B down-regulated FoxM1 expression at both the mRNA and protein level. It also suppressed the expression of FoxM1 downstream target genes, such as cyclin D1, cyclin B1, and survivin. Cell cycle analysis showed that BF-B induced the arrest of G0/G1 phase. BF-B reduced the phosphorylation of extracellular signal-regulated kinase ½ (ERK½) and expression of ERK½ downstream effector c-Myc, which regulates cell proliferation. Furthermore, BF-B inhibited cell migration and invasion, which are downstream functional properties of FoxM1. These results suggested that BF-B could repress pancreatic cancer cell proliferation by inactivation of the ERK/c-Myc/FoxM1 signaling pathway. Broussoflavonol B from Broussonetia kazinoki Siebold may represent a novel chemo-therapeutic agent for pancreatic cancer.
Collapse
Affiliation(s)
| | - Jae-Ha Ryu
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea;
| |
Collapse
|
15
|
Cramer G, Lewis R, Gymarty A, Hagan S, Mickler M, Evans S, Punekar SR, Shuman L, Simone CB, Hahn SM, Busch TM, Fraker D, Cengel KA. Preclinical Evaluation of Cetuximab and Benzoporphyrin Derivative‐Mediated Intraperitoneal Photodynamic Therapy in a Canine Model. Photochem Photobiol 2020; 96:684-691. [DOI: 10.1111/php.13247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/22/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Gwendolyn Cramer
- Department of Radiation Oncology University of Pennsylvania School of Medicine Philadelphia PA
| | - Robert Lewis
- St. Francis Hospital and Medical Center Bloomfield CT
| | - Ashley Gymarty
- Department of Radiation Oncology University of Pennsylvania School of Medicine Philadelphia PA
| | - Sarah Hagan
- Department of Radiation Oncology University of Pennsylvania School of Medicine Philadelphia PA
| | - Michela Mickler
- Department of Radiation Oncology University of Pennsylvania School of Medicine Philadelphia PA
| | - Sydney Evans
- Department of Radiation Oncology University of Pennsylvania School of Medicine Philadelphia PA
| | - Salman R. Punekar
- Department of Radiation Oncology University of Pennsylvania School of Medicine Philadelphia PA
| | - Lee Shuman
- Department of Radiation Oncology University of Pennsylvania School of Medicine Philadelphia PA
| | | | - Stephen M. Hahn
- Department of Radiation Oncology MD Anderson Cancer Center Houston TX
| | - Theresa M. Busch
- Department of Radiation Oncology University of Pennsylvania School of Medicine Philadelphia PA
| | - Douglass Fraker
- Department of Radiation Oncology University of Pennsylvania School of Medicine Philadelphia PA
| | - Keith A. Cengel
- Department of Radiation Oncology University of Pennsylvania School of Medicine Philadelphia PA
| |
Collapse
|
16
|
George TJ, Franke AJ, Chakravarthy AB, Das P, Dasari A, El-Rayes BF, Hong TS, Kinsella TJ, Landry JC, Lee JJ, Monjazeb AM, Jacobs SA, Raben D, Rahma OE, Williams TM, Wu C, Coleman CN, Vikram B, Ahmed MM. National Cancer Institute (NCI) state of the science: Targeted radiosensitizers in colorectal cancer. Cancer 2019; 125:2732-2746. [PMID: 31017664 PMCID: PMC6663584 DOI: 10.1002/cncr.32150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/03/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) represents a major public health problem as the second leading cause of cancer-related mortality in the United States. Of an estimated 140,000 newly diagnosed CRC cases in 2018, roughly one-third of these patients will have a primary tumor located in the distal large bowel or rectum. The current standard-of-care approach includes curative-intent surgery, often after preoperative (neoadjuvant) radiotherapy (RT), to increase rates of tumor down-staging, clinical and pathologic response, as well as improving surgical resection quality. However, despite advancements in surgical techniques, as well as sharpened precision of dosimetry offered by contemporary RT delivery platforms, the oncology community continues to face challenges related to disease relapse. Ongoing investigations are aimed at testing novel radiosensitizing agents and treatments that might exploit the systemic antitumor effects of RT using immunotherapies. If successful, these treatments may usher in a new curative paradigm for rectal cancers, such that surgical interventions may be avoided. Importantly, this disease offers an opportunity to correlate matched paired biopsies, radiographic response, and molecular mechanisms of treatment sensitivity and resistance with clinical outcomes. Herein, the authors highlight the available evidence from preclinical models and early-phase studies, with an emphasis on promising developmental therapeutics undergoing prospective validation in larger scale clinical trials. This review by the National Cancer Institute's Radiation Research Program Colorectal Cancer Working Group provides an updated, comprehensive examination of the continuously evolving state of the science regarding radiosensitizer drug development in the curative treatment of CRC.
Collapse
Affiliation(s)
- Thomas J George
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida
| | - Aaron J Franke
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida
| | - A Bapsi Chakravarthy
- Department of Radiation Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Prajnan Das
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard, Boston, Massachusetts
| | - Timothy J Kinsella
- Department of Radiation Oncology, Rhode Island Hospital-Brown University Alpert Medical School, Providence, Rhode Island
| | - Jerome C Landry
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - James J Lee
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh Medical Center, Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Arta M Monjazeb
- Division of Radiation Oncology, University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - Samuel A Jacobs
- National Adjuvant Surgical and Bowel Project Foundation/NRG Oncology, Pittsburg, Pennsylvania
| | - David Raben
- Department of Radiation Oncology, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - Osama E Rahma
- Center for Immuno-Oncology, Department of Medical Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio
| | - Christina Wu
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - C Norman Coleman
- Clinical Radiation Oncology Branch, Radiation Research Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Bhadrasain Vikram
- Clinical Radiation Oncology Branch, Radiation Research Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mansoor M Ahmed
- Clinical Radiation Oncology Branch, Radiation Research Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
17
|
Pettit C, Webb A, Walston S, Chatterjee M, Chen W, Frankel W, Croce C, Williams TM. MicroRNA molecular profiling identifies potential signaling pathways conferring resistance to chemoradiation in locally-advanced rectal adenocarcinoma. Oncotarget 2018; 9:28951-28964. [PMID: 29988972 PMCID: PMC6034754 DOI: 10.18632/oncotarget.25652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/02/2018] [Indexed: 12/16/2022] Open
Abstract
Purpose There has been growing interest in using chemoradiation (CRT) for non-operative management of rectal cancer, and identifying patients who might benefit most from this approach is crucial. This study identified miRNAs (miRs) associated with clinical outcomes and treatment resistance by evaluating both pre- and post-CRT expression profiles. Methods Forty patients, 9 with pathologic complete response (pCR) and 31 with pathologic incomplete response (pIR) were included. MicroRNA was extracted from 40 pre-therapy tumor samples and 31 post-chemoradiation surgical samples with pathologic incomplete response (pIR). A generalized linear model was used to identify miRs associated with pCR. A linear mixed effects model was used to identify miRs differentially expressed before and after treatment. miR expression was dichotomized at the mean and clinical outcomes were evaluated using Cox proportional hazard modeling. Results Nine miRs were associated with pCR (p<0.05), but none were significant after false discovery rate correction. Among patients with pIR, 68 miRs were differentially expressed between the pre and post-CRT groups (FDR p<0.05). Ingenuity pathway analysis (IPA) demonstrated multiple signaling networks associated with pIR, including p38MAPK, TP53, AKT, IL-6, and RAS. Increased let-7b was correlated with increased distant metastasis (DM), worse relapse-free survival (RFS), and worse overall survival (OS) (p<0.05). Conclusions No miRs were significantly correlated with pCR. We identified miRs that were differentially expressed between pre- and post-CRT tumor samples, and these miRs implicated multiple signaling pathways that may confer resistance to CRT. In addition, we identified an association between increased let-7b and worse clinical outcomes (DM, DFS, OS).
Collapse
Affiliation(s)
- Cory Pettit
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Amy Webb
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Steve Walston
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Moumita Chatterjee
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Wei Chen
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Wendy Frankel
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Carlo Croce
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Terence M Williams
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Seshacharyulu P, Baine MJ, Souchek JJ, Menning M, Kaur S, Yan Y, Ouellette MM, Jain M, Lin C, Batra SK. Biological determinants of radioresistance and their remediation in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:69-92. [PMID: 28249796 PMCID: PMC5548591 DOI: 10.1016/j.bbcan.2017.02.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/17/2022]
Abstract
Despite recent advances in radiotherapy, a majority of patients diagnosed with pancreatic cancer (PC) do not achieve objective responses due to the existence of intrinsic and acquired radioresistance. Identification of molecular mechanisms that compromise the efficacy of radiation therapy and targeting these pathways is paramount for improving radiation response in PC patients. In this review, we have summarized molecular mechanisms associated with the radio-resistant phenotype of PC. Briefly, we discuss the reversible and irreversible biological consequences of radiotherapy, such as DNA damage and DNA repair, mechanisms of cancer cell survival and radiation-induced apoptosis following radiotherapy. We further describe various small molecule inhibitors and molecular targeting agents currently being tested in preclinical and clinical studies as potential radiosensitizers for PC. Notably, we draw attention towards the confounding effects of cancer stem cells, immune system, and the tumor microenvironment in the context of PC radioresistance and radiosensitization. Finally, we discuss the need for examining selective radioprotectors in light of the emerging evidence on radiation toxicity to non-target tissue associated with PC radiotherapy.
Collapse
Affiliation(s)
- Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michael J Baine
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Joshua J Souchek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Melanie Menning
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michel M. Ouellette
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Chi Lin
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
19
|
Dauer P, Nomura A, Saluja A, Banerjee S. Microenvironment in determining chemo-resistance in pancreatic cancer: Neighborhood matters. Pancreatology 2017; 17:7-12. [PMID: 28034553 PMCID: PMC5291762 DOI: 10.1016/j.pan.2016.12.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022]
Abstract
Every year, nearly 300,000 people are diagnosed with pancreatic cancer worldwide, and an equivalent number succumb to this disease. One of the major challenges of pancreatic cancer that contributes to its poor survival rates is the development of resistance to the standard chemotherapy. Heterogeneity of the tumor, the dense fibroblastic stroma, and the aggressive biology of the tumor all contribute to the chemoresistant phenotype. In addition, the acellular components of the tumor microenvironment like hypoxia, stress pathways in the stromal cells, and the cytokines that are secreted by the immune cells, have a definitive role in orchestrating the chemoresistant property of the tumor. In this review, we systematically focus on the role played by the different microenvironmental components in determining chemoresistance of pancreatic tumors.
Collapse
Affiliation(s)
- Patricia Dauer
- Department of Pharmacology, University of Minnesota, MN, USA
| | - Alice Nomura
- Division of Surgical Oncology, Department of Surgery, University of Miami, FL, USA
| | - Ashok Saluja
- Division of Surgical Oncology, Department of Surgery, University of Miami, FL, USA
| | - Sulagna Banerjee
- Division of Surgical Oncology, Department of Surgery, University of Miami, FL, USA,Address of Correspondence: PAP Research Building, Rm 109B, 1550 NW 10th Ave, Miami, FL 33136, USA, , Phone: 305-243-8242
| |
Collapse
|
20
|
Grabocka E, Commisso C, Bar-Sagi D. Molecular pathways: targeting the dependence of mutant RAS cancers on the DNA damage response. Clin Cancer Res 2014; 21:1243-7. [PMID: 25424849 DOI: 10.1158/1078-0432.ccr-14-0650] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Of the genes mutated in cancer, RAS remains the most elusive to target. Recent technological advances and discoveries have greatly expanded our knowledge of the biology of oncogenic Ras and its role in cancer. As such, it has become apparent that a property that intimately accompanies RAS-driven tumorigenesis is the dependence of RAS-mutant cells on a number of nononcogenic signaling pathways. These dependencies arise as a means of adaptation to Ras-driven intracellular stresses and represent unique vulnerabilities of mutant RAS cancers. A number of studies have highlighted the dependence of mutant RAS cancers on the DNA damage response and identified the molecular pathways that mediate this process, including signaling from wild-type Ras isoforms, ATR/Chk1, and DNA damage repair pathways. Here, we review these findings, and we discuss the combinatorial use of DNA-damaging chemotherapy with blockade of wild-type H- and N-Ras signaling by farnesyltransferase inhibitors, Chk1 inhibitors, or small-molecule targeting DNA damage repair as potential strategies through which the dependence of RAS cancers on the DNA damage response can be harnessed for therapeutic intervention.
Collapse
Affiliation(s)
- Elda Grabocka
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York.
| | - Cosimo Commisso
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| |
Collapse
|
21
|
Unbiased analysis of pancreatic cancer radiation resistance reveals cholesterol biosynthesis as a novel target for radiosensitisation. Br J Cancer 2014; 111:1139-49. [PMID: 25025965 PMCID: PMC4453840 DOI: 10.1038/bjc.2014.385] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/31/2014] [Accepted: 06/11/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Despite its promise as a highly useful therapy for pancreatic cancer (PC), the addition of external beam radiation therapy to PC treatment has shown varying success in clinical trials. Understanding PC radioresistance and discovery of methods to sensitise PC to radiation will increase patient survival and improve quality of life. In this study, we identified PC radioresistance-associated pathways using global, unbiased techniques. METHODS Radioresistant cells were generated by sequential irradiation and recovery, and global genome cDNA microarray analysis was performed to identify differentially expressed genes in radiosensitive and radioresistant cells. Ingenuity pathway analysis was performed to discover cellular pathways and functions associated with differential radioresponse and identify potential small-molecule inhibitors for radiosensitisation. The expression of FDPS, one of the most differentially expressed genes, was determined in human PC tissues by IHC and the impact of its pharmacological inhibition with zoledronic acid (ZOL, Zometa) on radiosensitivity was determined by colony-forming assays. The radiosensitising effect of Zol in vivo was determined using allograft transplantation mouse model. RESULTS Microarray analysis indicated that 11 genes (FDPS, ACAT2, AG2, CLDN7, DHCR7, ELFN2, FASN, SC4MOL, SIX6, SLC12A2, and SQLE) were consistently associated with radioresistance in the cell lines, a majority of which are involved in cholesterol biosynthesis. We demonstrated that knockdown of farnesyl diphosphate synthase (FDPS), a branchpoint enzyme of the cholesterol synthesis pathway, radiosensitised PC cells. FDPS was significantly overexpressed in human PC tumour tissues compared with healthy pancreas samples. Also, pharmacologic inhibition of FDPS by ZOL radiosensitised PC cell lines, with a radiation enhancement ratio between 1.26 and 1.5. Further, ZOL treatment resulted in radiosensitisation of PC tumours in an allograft mouse model. CONCLUSIONS Unbiased pathway analysis of radioresistance allowed for the discovery of novel pathways associated with resistance to ionising radiation in PC. Specifically, our analysis indicates the importance of the cholesterol synthesis pathway in PC radioresistance. Further, a novel radiosensitiser, ZOL, showed promising results and warrants further study into the universality of these findings in PC, as well as the true potential of this drug as a clinical radiosensitiser.
Collapse
|
22
|
Moran DM, Trusk PB, Pry K, Paz K, Sidransky D, Bacus SS. KRAS mutation status is associated with enhanced dependency on folate metabolism pathways in non-small cell lung cancer cells. Mol Cancer Ther 2014; 13:1611-24. [PMID: 24688052 DOI: 10.1158/1535-7163.mct-13-0649] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
KRAS gene mutation is linked to poor prognosis and resistance to therapeutics in non-small cell lung cancer (NSCLC). In this study, we have explored the possibility of exploiting inherent differences in KRAS-mutant cell metabolism for treatment. This study identified a greater dependency on folate metabolism pathways in KRAS mutant compared with KRAS wild-type NSCLC cell lines. Microarray gene expression and biologic pathway analysis identified higher expression of folate metabolism- and purine synthesis-related pathways in KRAS-mutant NSCLC cells compared with wild-type counterparts. Moreover, pathway analysis and knockdown studies suggest a role for MYC transcriptional activity in the expression of these pathways in KRAS-mutant NSCLC cells. Furthermore, KRAS knockdown and overexpression studies demonstrated the ability of KRAS to regulate expression of genes that comprise folate metabolism pathways. Proliferation studies demonstrated higher responsiveness to methotrexate, pemetrexed, and other antifolates in KRAS-mutant NSCLC cells. Surprisingly, KRAS gene expression is downregulated in KRAS wild-type and KRAS-mutant cells by antifolates, which may also contribute to higher efficacy of antifolates in KRAS-mutant NSCLC cells. In vivo analysis of multiple tumorgraft models in nude mice identified a KRAS-mutant tumor among the pemetrexed-responsive tumors and also demonstrated an association between expression of the folate pathway gene, methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), and antifolate activity. Collectively, we identify altered regulation of folate metabolism in KRAS-mutant NSCLC cells that may account for higher antifolate activity in this subtype of NSCLC.
Collapse
Affiliation(s)
- Diarmuid M Moran
- Authors' Affiliations: Translational R&D Oncology Group, Quintiles, Westmont; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; and Champions Oncology, Inc., Hackensack, New Jersey and Baltimore, Maryland
| | - Patricia B Trusk
- Authors' Affiliations: Translational R&D Oncology Group, Quintiles, Westmont; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; and Champions Oncology, Inc., Hackensack, New Jersey and Baltimore, Maryland
| | - Karen Pry
- Authors' Affiliations: Translational R&D Oncology Group, Quintiles, Westmont; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; and Champions Oncology, Inc., Hackensack, New Jersey and Baltimore, Maryland
| | - Keren Paz
- Authors' Affiliations: Translational R&D Oncology Group, Quintiles, Westmont; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; and Champions Oncology, Inc., Hackensack, New Jersey and Baltimore, Maryland
| | - David Sidransky
- Authors' Affiliations: Translational R&D Oncology Group, Quintiles, Westmont; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; and Champions Oncology, Inc., Hackensack, New Jersey and Baltimore, MarylandAuthors' Affiliations: Translational R&D Oncology Group, Quintiles, Westmont; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; and Champions Oncology, Inc., Hackensack, New Jersey and Baltimore, Maryland
| | - Sarah S Bacus
- Authors' Affiliations: Translational R&D Oncology Group, Quintiles, Westmont; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; and Champions Oncology, Inc., Hackensack, New Jersey and Baltimore, MarylandAuthors' Affiliations: Translational R&D Oncology Group, Quintiles, Westmont; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; and Champions Oncology, Inc., Hackensack, New Jersey and Baltimore, Maryland
| |
Collapse
|
23
|
Vulfovich M, Rocha-Lima C. Novel advances in pancreatic cancer treatment. Expert Rev Anticancer Ther 2014; 8:993-1002. [DOI: 10.1586/14737140.8.6.993] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Kleiman LB, Krebs AM, Kim SY, Hong TS, Haigis KM. Comparative analysis of radiosensitizers for K-RAS mutant rectal cancers. PLoS One 2013; 8:e82982. [PMID: 24349411 PMCID: PMC3861465 DOI: 10.1371/journal.pone.0082982] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/29/2013] [Indexed: 02/07/2023] Open
Abstract
Approximately 40% of rectal cancers harbor activating K-RAS mutations, and these mutations are associated with poor clinical response to chemoradiotherapy. We aimed to identify small molecule inhibitors (SMIs) that synergize with ionizing radiation (IR) ("radiosensitizers") that could be incorporated into current treatment strategies for locally advanced rectal cancers (LARCs) expressing mutant K-RAS. We first optimized a high-throughput assay for measuring individual and combined effects of SMIs and IR that produces similar results to the gold standard colony formation assay. Using this screening platform and K-RAS mutant rectal cancer cell lines, we tested SMIs targeting diverse signaling pathways for radiosensitizing activity and then evaluated our top hits in follow-up experiments. The two most potent radiosensitizers were the Chk1/2 inhibitor AZD7762 and the PI3K/mTOR inhibitor BEZ235. The chemotherapeutic agent 5-fluorouracil (5-FU), which is used to treat LARC, synergized with AZD7762 and enhanced radiosensitization by AZD7762. This study is the first to compare different SMIs in combination with IR for the treatment of K-RAS mutant rectal cancer, and our findings suggest that Chk1/2 inhibitors should be evaluated in new clinical trials for LARC.
Collapse
Affiliation(s)
- Laura B. Kleiman
- Molecular Pathology Unit, Center for Cancer Research and Center for Systems Biology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Angela M. Krebs
- Molecular Pathology Unit, Center for Cancer Research and Center for Systems Biology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University Freiburg, Germany
| | - Stephen Y. Kim
- Molecular Pathology Unit, Center for Cancer Research and Center for Systems Biology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Theodore S. Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kevin M. Haigis
- Molecular Pathology Unit, Center for Cancer Research and Center for Systems Biology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
25
|
Giladi M, Schneiderman RS, Porat Y, Munster M, Itzhaki A, Mordechovich D, Cahal S, Kirson ED, Weinberg U, Palti Y. Mitotic disruption and reduced clonogenicity of pancreatic cancer cells in vitro and in vivo by tumor treating fields. Pancreatology 2013; 14:54-63. [PMID: 24555979 DOI: 10.1016/j.pan.2013.11.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/30/2013] [Accepted: 11/16/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Tumor Treating Fields (TTFields) are a non-invasive cancer treatment modality approved for the treatment of patients with recurrent glioblastoma. The present study determined the efficacy and mechanism of action of TTFields in preclinical models of pancreatic cancer. METHODS The effect of TTFields in vitro was assessed using cell counts, clonogenic assays, cell cycle analysis and analysis of mitotic figures. The effect in vivo effect was studied in the PC1-0 hamster pancreatic cancer model. RESULTS Application of TTFields in vitro showed a significant decrease in cell count, an increase in cell volume and reduced clonogenicity. Further analysis demonstrated significant increase in the number of abnormal mitotic figures, as well as a decrease in G2-M cell population. In hamsters with orthotopic pancreatic tumors, TTFields significantly reduced tumor volume accompanied by an increase in the frequency of abnormal mitotic events. TTFields efficacy was enhanced both in vitro and in vivo when combined with chemotherapy. CONCLUSIONS These results provide the first evidence that TTFields serve as an effective antimitotic treatment in preclinical pancreatic cancer models and have a long term negative effect on cancer cell survival. These results make TTFields an attractive candidate for testing in the treatment of patients with pancreatic cancer.
Collapse
|
26
|
Cho JH. [Recent update of molecular targeted therapy in pancreatic cancer]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2013; 61:147-54. [PMID: 23575233 DOI: 10.4166/kjg.2013.61.3.147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma is one of the most dreaded malignancies and the 5th leading cause of cancer-related death in Korea. Late diagnosis and unfavorable response to both chemotherapy and radiotherapy result in exceptionally poor prognosis. Recently, the rapid advances of molecular biology allowed an in-depth understanding of pancreatic carcinogenesis, and there are many attempts to modulate signal pathway using specific targeted agent. However, the most of them have so far failed to improve survival significantly except erlotinib. The real challenge is now how these impressive advances of molecular biology could be successfully integrated into better clinical implications. Herein, we summarize the latest insights into the carcinogenesis, and their repercussions for novel targeted agents for pancreatic cancer, and provide a review of recent clinical trials using molecular targeted therapy.
Collapse
Affiliation(s)
- Jae Hee Cho
- Division of Gastroenterology, Myongji Hospital, Department of Internal Medicine, Kwandong University College of Medicine, Goyang, Korea.
| |
Collapse
|
27
|
Deng L, Lu Y, Zhao X, Sun Y, Shi Y, Fan H, Liu C, Zhou J, Nie Y, Wu K, Fan D, Guo X. Ran GTPase protein promotes human pancreatic cancer proliferation by deregulating the expression of Survivin and cell cycle proteins. Biochem Biophys Res Commun 2013; 440:322-9. [PMID: 24076388 DOI: 10.1016/j.bbrc.2013.09.079] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 09/15/2013] [Indexed: 12/20/2022]
Abstract
Ran, a member of the Ras GTPase family, has important roles in nucleocytoplasmic transport. Herein, we detected Ran expression in pancreatic cancer and explored its potential role on tumour progression. Overexpressed Ran in pancreatic cancer tissues was found highly correlated with the histological grade. Downregulation of Ran led to significant suppression of cell proliferation, cell cycle arrest at the G1/S phase and induction of apoptosis. In vivo studies also validated that result. Further studies revealed that those effects were at least partly mediated by the downregulation of Cyclin A, Cyclin D1, Cyclin E, CDK2, CDK4, phospho-Rb and Survivin proteins and up regulation of cleaved Caspase-3.
Collapse
Affiliation(s)
- Lin Deng
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tjomsland V, Bojmar L, Sandström P, Bratthäll C, Messmer D, Spångeus A, Larsson M. IL-1α expression in pancreatic ductal adenocarcinoma affects the tumor cell migration and is regulated by the p38MAPK signaling pathway. PLoS One 2013; 8:e70874. [PMID: 23951028 PMCID: PMC3741369 DOI: 10.1371/journal.pone.0070874] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 06/25/2013] [Indexed: 01/09/2023] Open
Abstract
The interplay between the tumor cells and the surrounding stroma creates inflammation, which promotes tumor growth and spread. The inflammation is a hallmark for pancreatic adenocarcinoma (PDAC) and is to high extent driven by IL-1α. IL-1α is expressed and secreted by the tumor cells and exerting its effect on the stroma, i.e. cancer associated fibroblasts (CAF), which in turn produce massive amount of inflammatory and immune regulatory factors. IL-1 induces activation of transcription factors such as nuclear factor-κβ (NF-κβ), but also activator protein 1 (AP-1) via the small G-protein Ras. Dysregulation of Ras pathways are common in cancer as this oncogene is the most frequently mutated in many cancers. In contrast, the signaling events leading up to the expression of IL-1α by tumor cells are not well elucidated. Our aim was to examine the signaling cascade involved in the induction of IL-1α expression in PDAC. We found p38MAPK, activated by the K-Ras signaling pathway, to be involved in the expression of IL-1α by PDAC as blocking this pathway decreased both the gene and protein expression of IL-1α. Blockage of the P38MAPK signaling in PDAC also dampened the ability of the tumor cell to induce inflammation in CAFs. In addition, the IL-1α autocrine signaling regulated the migratory capacity of PDAC cells. Taken together, the blockage of signaling pathways leading to IL-1α expression and/or neutralization of IL-1α in the PDAC microenvironment should be taken into consideration as possible treatment or complement to existing treatment of this cancer.
Collapse
Affiliation(s)
- Vegard Tjomsland
- Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Linda Bojmar
- Division of Surgery, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Per Sandström
- Division of Surgery, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | - Davorka Messmer
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Anna Spångeus
- Division of Internal Medicine and Department of Endocrinology, Department of Medical and Health Science, Linköping University, Linköping, Sweden
| | - Marie Larsson
- Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
29
|
Du J, Nelson ES, Simons AL, Olney KE, Moser JC, Schrock HE, Wagner BA, Buettner GR, Smith BJ, Teoh ML, Tsao MS, Cullen JJ. Regulation of pancreatic cancer growth by superoxide. Mol Carcinog 2013; 52:555-67. [PMID: 22392697 PMCID: PMC3375391 DOI: 10.1002/mc.21891] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/31/2012] [Accepted: 02/06/2012] [Indexed: 12/29/2022]
Abstract
K-ras mutations have been identified in up to 95% of pancreatic cancers, implying their critical role in the molecular pathogenesis. Expression of K-ras oncogene in an immortalized human pancreatic ductal epithelial cell line, originally derived from normal pancreas (H6c7), induced the formation of carcinoma in mice. We hypothesized that K-ras oncogene correlates with increased non-mitochondrial-generated superoxide (O 2.-), which could be involved in regulating cell growth contributing to tumor progression. In the H6c7 cell line and its derivatives, H6c7er-Kras+ (H6c7 cells expressing K-ras oncogene), and H6c7eR-KrasT (tumorigenic H6c7 cells expressing K-ras oncogene), there was an increase in hydroethidine fluorescence in cell lines that express K-ras. Western blots and activity assays for the antioxidant enzymes that detoxify O 2.- were similar in these cell lines suggesting that the increase in hydroethidine fluorescence was not due to decreased antioxidant capacity. To determine a possible non-mitochondrial source of the increased levels of O 2.-, Western analysis demonstrated the absence of NADPH oxidase-2 (NOX2) in H6c7 cells but present in the H6c7 cell lines expressing K-ras and other pancreatic cancer cell lines. Inhibition of NOX2 decreased hydroethidine fluorescence and clonogenic survival. Furthermore, in the cell lines with the K-ras oncogene, overexpression of superoxide dismutases that detoxify non-mitochondrial sources of O 2.-, and treatment with the small molecule O 2.- scavenger Tempol, also decreased hydroethidine fluorescence, inhibited clonogenic survival and inhibited growth of tumor xenografts. Thus, O 2.- produced by NOX2 in pancreatic cancer cells with K-ras, may regulate pancreatic cancer cell growth.
Collapse
Affiliation(s)
- Juan Du
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA
| | - Elke S. Nelson
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA
| | - Andrean L. Simons
- Department of Pathology, University of Iowa College of Medicine, Iowa City, IA
- Holden Comprehensive Cancer Center, Iowa City, IA
| | - Kristen E. Olney
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA
| | - Justin C. Moser
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA
| | - Hannah E. Schrock
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA
| | - Brett A. Wagner
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA
| | - Garry R. Buettner
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA
- Holden Comprehensive Cancer Center, Iowa City, IA
| | | | - Melissa L.T. Teoh
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA
| | - Ming-Sound Tsao
- Department of Pathology and Division of Cellular Molecular Biology and the Ontario Cancer Institute/Princess Margaret Hospital Toronto, and University of Toronto, Ontario, Canada
| | - Joseph J. Cullen
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA
- Department of Surgery, University of Iowa College of Medicine, Iowa City, IA
- Holden Comprehensive Cancer Center, Iowa City, IA
- Veterans Affairs Medical Center, Iowa City, IA
| |
Collapse
|
30
|
Fokas E, Prevo R, Pollard JR, Reaper PM, Charlton PA, Cornelissen B, Vallis KA, Hammond EM, Olcina MM, Gillies McKenna W, Muschel RJ, Brunner TB. Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death Dis 2012; 3:e441. [PMID: 23222511 PMCID: PMC3542617 DOI: 10.1038/cddis.2012.181] [Citation(s) in RCA: 270] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/29/2012] [Accepted: 10/04/2012] [Indexed: 12/12/2022]
Abstract
Combined radiochemotherapy is the currently used therapy for locally advanced pancreatic ductal adenocarcinoma (PDAC), but normal tissue toxicity limits its application. Here we test the hypothesis that inhibition of ATR (ATM-Rad3-related) could increase the sensitivity of the cancer cells to radiation or chemotherapy without affecting normal cells. We tested VE-822, an ATR inhibitor, for in vitro and in vivo radiosensitization. Chk1 phosphorylation was used to indicate ATR activity, γH2AX and 53BP1 foci as evidence of DNA damage and Rad51 foci for homologous recombination activity. Sensitivity to radiation (XRT) and gemcitabine was measured with clonogenic assays in vitro and tumor growth delay in vivo. Murine intestinal damage was evaluated after abdominal XRT. VE-822 inhibited ATR in vitro and in vivo. VE-822 decreased maintenance of cell-cycle checkpoints, increased persistent DNA damage and decreased homologous recombination in irradiated cancer cells. VE-822 decreased survival of pancreatic cancer cells but not normal cells in response to XRT or gemcitabine. VE-822 markedly prolonged growth delay of pancreatic cancer xenografts after XRT and gemcitabine-based chemoradiation without augmenting normal cell or tissue toxicity. These findings support ATR inhibition as a promising new approach to improve the therapeutic ration of radiochemotherapy for patients with PDAC.
Collapse
Affiliation(s)
- E Fokas
- Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford, UK
| | - R Prevo
- Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford, UK
| | - J R Pollard
- Vertex Pharmaceuticals (Europe) Ltd, Abingdon, Oxfordshire, UK
| | - P M Reaper
- Vertex Pharmaceuticals (Europe) Ltd, Abingdon, Oxfordshire, UK
| | - P A Charlton
- Vertex Pharmaceuticals (Europe) Ltd, Abingdon, Oxfordshire, UK
| | - B Cornelissen
- Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford, UK
| | - K A Vallis
- Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford, UK
| | - E M Hammond
- Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford, UK
| | - M M Olcina
- Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford, UK
| | - W Gillies McKenna
- Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford, UK
| | - R J Muschel
- Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford, UK
| | - T B Brunner
- Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford, UK
| |
Collapse
|
31
|
Edmonds C, Hagan S, Gallagher-Colombo SM, Busch TM, Cengel KA. Photodynamic therapy activated signaling from epidermal growth factor receptor and STAT3: Targeting survival pathways to increase PDT efficacy in ovarian and lung cancer. Cancer Biol Ther 2012; 13:1463-70. [PMID: 22986230 DOI: 10.4161/cbt.22256] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Patients with serosal (pleural or peritoneal) spread of malignancy have few definitive treatment options and consequently have a very poor prognosis. We have previously shown that photodynamic therapy (PDT) can be an effective treatment for these patients, but that the therapeutic index is relatively narrow. Here, we test the hypothesis that EGFR and STAT3 activation increase survival following PDT, and that inhibiting these pathways leads to increased PDT-mediated direct cellular cytotoxicity by examining BPD-PDT in OvCa and NSCLC cells. We found that BPD-mediated PDT stimulated EGFR tyrosine phosphorylation and nuclear translocation, and that EGFR inhibition by erlotinib resulted in reduction of PDT-mediated EGFR activation and nuclear translocation. Nuclear translocation and PDT-mediated activation of EGFR were also observed in response to BPD-mediated PDT in multiple cell lines, including OvCa, NSCLC and head and neck cancer cells, and was observed to occur in response to porfimer sodium-mediated PDT. In addition, we found that PDT stimulates nuclear translocation of STAT3 and STAT3/EGFR association and that inhibiting STAT3 signaling prior to PDT leads to increased PDT cytotoxicity. Finally, we found that inhibition of EGFR signaling leads to increased PDT cytotoxicity through a mechanism that involves increased apoptotic cell death. Taken together, these results demonstrate that PDT stimulates the nuclear accumulation of both EGFR and STAT3 and that targeting these survival pathways is a potentially promising strategy that could be adapted for clinical trials of PDT for patients with serosal spread of malignancy.
Collapse
Affiliation(s)
- Christine Edmonds
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
32
|
Fokas E, McKenna WG, Muschel RJ. The impact of tumor microenvironment on cancer treatment and its modulation by direct and indirect antivascular strategies. Cancer Metastasis Rev 2012; 31:823-42. [DOI: 10.1007/s10555-012-9394-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Oh JH, Wong HP, Wang X, Deasy JO. A bioinformatics filtering strategy for identifying radiation response biomarker candidates. PLoS One 2012; 7:e38870. [PMID: 22768051 PMCID: PMC3387230 DOI: 10.1371/journal.pone.0038870] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/15/2012] [Indexed: 02/06/2023] Open
Abstract
The number of biomarker candidates is often much larger than the number of clinical patient data points available, which motivates the use of a rational candidate variable filtering methodology. The goal of this paper is to apply such a bioinformatics filtering process to isolate a modest number (<10) of key interacting genes and their associated single nucleotide polymorphisms involved in radiation response, and to ultimately serve as a basis for using clinical datasets to identify new biomarkers. In step 1, we surveyed the literature on genetic and protein correlates to radiation response, in vivo or in vitro, across cellular, animal, and human studies. In step 2, we analyzed two publicly available microarray datasets and identified genes in which mRNA expression changed in response to radiation. Combining results from Step 1 and Step 2, we identified 20 genes that were common to all three sources. As a final step, a curated database of protein interactions was used to generate the most statistically reliable protein interaction network among any subset of the 20 genes resulting from Steps 1 and 2, resulting in identification of a small, tightly interacting network with 7 out of 20 input genes. We further ranked the genes in terms of likely importance, based on their location within the network using a graph-based scoring function. The resulting core interacting network provides an attractive set of genes likely to be important to radiation response.
Collapse
Affiliation(s)
- Jung Hun Oh
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Harry P. Wong
- Department of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xiaowei Wang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
34
|
Zhou J, Du Y. Acquisition of resistance of pancreatic cancer cells to 2-methoxyestradiol is associated with the upregulation of manganese superoxide dismutase. Mol Cancer Res 2012; 10:768-77. [PMID: 22547077 DOI: 10.1158/1541-7786.mcr-11-0378] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acquired resistance of cancer cells to anticancer drugs or ionizing radiation (IR) is one of the major obstacles in cancer treatment. Pancreatic cancer is an exceptional aggressive cancer, and acquired drug resistance in this cancer is common. Reactive oxygen species (ROS) play an essential role in cell apoptosis, which is a key mechanism by which radio- or chemotherapy induce cell killing. Mitochondria are the major source of ROS in cells. Thus, alterations in the expression of mitochondrial proteins, involved in ROS production or scavenging, may be closely linked to the resistance of cancer cells to radio- or chemotherapy. In the present study, we generated a stable cell line by exposing pancreatic cancer cells to increasing concentrations of ROS-inducing, anticancer compound 2-methoxyestradiol (2-ME) over a 3-month period. The resulting cell line showed strong resistance to 2-ME and contained an elevated level of ROS. We then used a comparative proteomics method to profile the differential expression of mitochondrial proteins between the parental and the resistant cells. One protein identified to be upregulated in the resistant cells was manganese superoxide dismutase (SOD2), a mitochondrial protein that converts superoxide radicals to hydrogen peroxides. Silencing of SOD2 resensitized the resistant cells to 2-ME, and overexpression of SOD2 led the parental cells to 2-ME resistance. In addition, the 2-ME-resistant cells also showed resistance to IR. Our results suggest that upregulation of SOD2 expression is an important mechanism by which pancreatic cancer cells acquire resistance to ROS-inducing, anticancer drugs, and potentially also to IR.
Collapse
Affiliation(s)
- Jianhong Zhou
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | | |
Collapse
|
35
|
Fokas E, Yoshimura M, Prevo R, Higgins G, Hackl W, Maira SM, Bernhard EJ, McKenna WG, Muschel RJ. NVP-BEZ235 and NVP-BGT226, dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitors, enhance tumor and endothelial cell radiosensitivity. Radiat Oncol 2012; 7:48. [PMID: 22452803 PMCID: PMC3348043 DOI: 10.1186/1748-717x-7-48] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 03/27/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is activated in tumor cells and promotes tumor cell survival after radiation-induced DNA damage. Because the pathway may not be completely inhibited after blockade of PI3K itself, due to feedback through mammalian target of rapamycin (mTOR), more effective inhibition might be expected by targeting both PI3K and mTOR inhibition. MATERIALS AND METHODS We investigated the effect of two dual PI3K/mTOR (both mTORC1 and mTORC2) inhibitors, NVP-BEZ235 and NVP-BGT226, on SQ20B laryngeal and FaDu hypopharyngeal cancer cells characterised by EGFR overexpression, on T24 bladder tumor cell lines with H-Ras mutation and on endothelial cells. Analysis of target protein phosphorylation, clonogenic survival, number of residual γH2AX foci, cell cycle and apoptosis after radiation was performed in both tumor and endothelial cells. In vitro angiogenesis assays were conducted as well. RESULTS Both compounds effectively inhibited phosphorylation of Akt, mTOR and S6 target proteins and reduced clonogenic survival in irradiated tumor cells. Persistence of DNA damage, as evidenced by increased number of γH2AX foci, was detected after irradiation in the presence of PI3K/mTOR inhibition, together with enhanced G2 cell cycle delay. Treatment with one of the inhibitors, NVP-BEZ235, also resulted in decreased clonogenicity after irradiation of tumor cells under hypoxic conditions. In addition, NVP-BEZ235 blocked VEGF- and IR-induced Akt phosphorylation and increased radiation killing in human umbilical venous endothelial cells (HUVEC) and human dermal microvascular dermal cells (HDMVC). NVP-BEZ235 inhibited VEGF-induced cell migration and capillary tube formation in vitro and enhanced the antivascular effect of irradiation. Treatment with NVP-BEZ235 moderately increased apoptosis in SQ20B and HUVEC cells but not in FaDu cells, and increased necrosis in both tumor and endothelial all cells tumor. CONCLUSIONS The results of this study demonstrate that PI3K/mTOR inhibitors can enhance radiation-induced killing in tumor and endothelial cells and may be of benefit when combined with radiotherapy.
Collapse
Affiliation(s)
- Emmanouil Fokas
- Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Measurement of protein farnesylation and geranylgeranylation in vitro, in cultured cells and in biopsies, and the effects of prenyl transferase inhibitors. Nat Protoc 2011; 6:1775-91. [PMID: 22036881 DOI: 10.1038/nprot.2011.387] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The importance of the post-translational lipid modifications farnesylation and geranylgeranylation in protein localization and function coupled with the critical role of prenylated proteins in malignant transformation has prompted interest in their biology and the development of farnesyl transferase and geranylgeranyl transferase inhibitors (FTIs and GGTIs) as chemical probes and anticancer agents. The ability to measure protein prenylation before and after FTI and GGTI treatment is important to understanding and interpreting the effects of these agents on signal transduction pathways and cellular phenotypes, as well as to the use of prenylation as a biomarker. Here we describe protocols to measure the degree of protein prenylation by farnesyl transferase or geranylgeranyl transferase in vitro, in cultured cells and in tumors from animals and humans. The assays use [(3)H]farnesyl diphosphate and [(3)H]geranylgeranyl diphosphate, electrophoretic mobility shift, membrane association using subcellular fractionation or immunofluorescence of intact cells, [(3)H]mevalonic acid labeling, followed by immunoprecipitation and SDS-PAGE, and in vitro transcription, translation and prenylation in reticulocyte lysates. These protocols require from 1 d (enzyme assays) to up to 3 months (autoradiography of [(3)H]-labeled proteins).
Collapse
|
37
|
Xu D, Allsop SA, Witherspoon SM, Snider JL, Yeh JJ, Fiordalisi JJ, White CD, Williams D, Cox AD, Baines AT. The oncogenic kinase Pim-1 is modulated by K-Ras signaling and mediates transformed growth and radioresistance in human pancreatic ductal adenocarcinoma cells. Carcinogenesis 2011; 32:488-95. [PMID: 21262926 DOI: 10.1093/carcin/bgr007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Oncogenic Pim-1 kinase is upregulated in multiple solid cancers, including human pancreatic ductal adenocarcinoma (PDAC), a highly lethal disease with few useful treatment options. Pim-1 is also transcriptionally induced upon oncogenic K-Ras-mediated transformation of the human pancreatic ductal epithelial (HPDE) cell model of PDAC. Given the near ubiquitous presence of mutant K-Ras in PDAC and its critical role in this disease, we wished to study the effects of oncogenic K-Ras signaling on Pim-1 expression, as well as the role of Pim-1 in growth transformation of PDAC cells. Pim-1 protein levels were upregulated in both PDAC cell lines and patient tumor tissues. Furthermore, ectopic oncogenic K-Ras increased Pim-1 expression in human pancreatic nestin-expressing (HPNE) cells, a distinct immortalized cell model of PDAC. Conversely, shRNA-mediated suppression of oncogenic K-Ras decreased Pim-1 protein in PDAC cell lines. These results indicate that oncogenic K-Ras regulates Pim-1 expression. The kinase activity of Pim-1 is constitutively active. Accordingly, shRNA-mediated suppression of Pim-1 in K-Ras-dependent PDAC cell lines decreased Pim-1 activity, as measured by decreased phosphorylation of the pro-apoptotic protein Bad and increased expression of the cyclin-dependent kinase inhibitor p27Kip1. Biological consequences of inhibiting Pim-1 expression included decreases in both anchorage-dependent and -independent cell growth, invasion through Matrigel and radioresistance as measured by standard clonogenic assays. These results indicate that Pim-1 is required for PDAC cell growth, invasion and radioresistance downstream of oncogenic K-Ras. Overall, our studies help to elucidate the role of Pim-1 in PDAC growth transformation and validate Pim-1 kinase as a potential molecular marker for mutated K-Ras activity.
Collapse
Affiliation(s)
- Dapeng Xu
- Department of Biology, Cancer Research Program, JLC-Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Astsaturov I, Ratushny V, Sukhanova A, Einarson MB, Bagnyukova T, Zhou Y, Devarajan K, Silverman JS, Tikhmyanova N, Skobeleva N, Pecherskaya A, Nasto RE, Sharma C, Jablonski SA, Serebriiskii IG, Weiner LM, Golemis EA. Synthetic lethal screen of an EGFR-centered network to improve targeted therapies. Sci Signal 2010; 3:ra67. [PMID: 20858866 DOI: 10.1126/scisignal.2001083] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intrinsic and acquired cellular resistance factors limit the efficacy of most targeted cancer therapeutics. Synthetic lethal screens in lower eukaryotes suggest that networks of genes closely linked to therapeutic targets would be enriched for determinants of drug resistance. We developed a protein network centered on the epidermal growth factor receptor (EGFR), which is a validated cancer therapeutic target, and used small interfering RNA screening to comparatively probe this network for proteins that regulate the effectiveness of both EGFR-targeted agents and nonspecific cytotoxic agents. We identified subnetworks of proteins influencing resistance, with putative resistance determinants enriched among proteins that interacted with proteins at the core of the network. We found that clinically relevant drugs targeting proteins connected in the EGFR network, such as protein kinase C or Aurora kinase A, or the transcriptional regulator signal transducer and activator of transcription 3 (STAT3), synergized with EGFR antagonists to reduce cell viability and tumor size, suggesting the potential for a direct path to clinical exploitation. Such a focused approach can potentially improve the coherent design of combination cancer therapies.
Collapse
|
39
|
Kidd AR, Snider JL, Martin TD, Graboski SF, Der CJ, Cox AD. Ras-related small GTPases RalA and RalB regulate cellular survival after ionizing radiation. Int J Radiat Oncol Biol Phys 2010; 78:205-12. [PMID: 20619549 DOI: 10.1016/j.ijrobp.2010.03.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/05/2010] [Accepted: 03/10/2010] [Indexed: 01/25/2023]
Abstract
PURPOSE Oncogenic activation of Ras renders cancer cells resistant to ionizing radiation (IR), but the mechanisms have not been fully characterized. The Ras-like small GTPases RalA and RalB are downstream effectors of Ras function and are critical for both tumor growth and survival. The Ral effector RalBP1/RLIP76 mediates survival of mice after whole-body irradiation, but the role of the Ral GTPases themselves in response to IR is unknown. We have investigated the role of RalA and RalB in cellular responses to IR. METHODS AND MATERIALS RalA, RalB, and their major effectors RalBP1 and Sec5 were knocked down by stable expression of short hairpin RNAs in the K-Ras-dependent pancreatic cancer-derived cell line MIA PaCa-2. Radiation responses were measured by standard clonogenic survival assays for reproductive survival, gammaH2AX expression for double-strand DNA breaks (DSBs), and poly(ADP-ribose)polymerase (PARP) cleavage for apoptosis. RESULTS Knockdown of K-Ras, RalA, or RalB reduced colony-forming ability post-IR, and knockdown of either Ral isoform decreased the rate of DSB repair post-IR. However, knockdown of RalB, but not RalA, increased cell death. Surprisingly, neither RalBP1 nor Sec5 suppression affected colony formation post-IR. CONCLUSIONS Both RalA and RalB contribute to K-Ras-dependent IR resistance of MIA PaCa-2 cells. Sensitization due to suppressed Ral expression is likely due in part to decreased efficiency of DNA repair (RalA and RalB) and increased susceptibility to apoptosis (RalB). Ral-mediated radioresistance does not depend on either the RalBP1 or the exocyst complex, the two best-characterized Ral effectors, and instead may utilize an atypical or novel effector.
Collapse
Affiliation(s)
- Ambrose R Kidd
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Parsons BL, Meng F. K-RAS mutation in the screening, prognosis and treatment of cancer. Biomark Med 2010; 3:757-69. [PMID: 20477713 DOI: 10.2217/bmm.09.95] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The potential use of K-RAS mutation as a cancer screening biomarker has been investigated for many years. Numerous associations between K-RAS mutation and various cancers have been established, but these associations have not been translated into effective, cost-efficient cancer screening strategies. This lack of progress may be due to the existence of K-RAS mutation in nontumor tissues and/or using detection, rather than quantitation, of K-RAS mutation as the endpoint for cancer risk categorization. K-RAS mutation appears to be a useful prognostic biomarker for colon cancer. Recent progress toward sensitive and quantitative mutation characterization and the successful use of K-RAS mutation in a personalized medicine approach to targeted biological therapy selection are likely to re-direct and expand the use of K-RAS mutation as a cancer biomarker in the near future.
Collapse
Affiliation(s)
- Barbara L Parsons
- US Food and Drug Administration, National Center for Toxicological Research, Division of Genetic & Reproductive Toxicology, HFT-120, 3900 NCTR Rd. Jefferson, AR 72079, USA.
| | | |
Collapse
|
42
|
Kimple RJ, Vaseva AV, Cox AD, Baerman KM, Calvo BF, Tepper JE, Shields JM, Sartor CI. Radiosensitization of epidermal growth factor receptor/HER2-positive pancreatic cancer is mediated by inhibition of Akt independent of ras mutational status. Clin Cancer Res 2010; 16:912-23. [PMID: 20103665 DOI: 10.1158/1078-0432.ccr-09-1324] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Epidermal growth factor receptor (EGFR) family members (e.g., EGFR, HER2, HER3, and HER4) are commonly overexpressed in pancreatic cancer. We investigated the effects of inhibition of EGFR/HER2 signaling on pancreatic cancer to elucidate the role(s) of EGFR/HER2 in radiosensitization and to provide evidence in support of further clinical investigations. EXPERIMENTAL DESIGN Expression of EGFR family members in pancreatic cancer lines was assessed by quantitative reverse transcription-PCR. Cell growth inhibition was determined by MTS assay. The effects of inhibition of EGFR family receptors and downstream signaling pathways on in vitro radiosensitivity were evaluated using clonogenic assays. Growth delay was used to evaluate the effects of nelfinavir on in vivo tumor radiosensitivity. RESULTS Lapatinib inhibited cell growth in four pancreatic cancer cell lines, but radiosensitized only wild-type K-ras-expressing T3M4 cells. Akt activation was blocked in a wild-type K-ras cell line, whereas constitutive phosphorylation of Akt and extracellular signal-regulated kinase (ERK) was seen in lines expressing mutant K-ras. Overexpression of constitutively active K-ras (G12V) abrogated lapatinib-mediated inhibition of both Akt phosphorylation and radiosensitization. Inhibition of MAP/ERK kinase/ERK signaling with U0126 had no effect on radiosensitization, whereas inhibition of activated Akt with LY294002 (enhancement ratio, 1.2-1.8) or nelfinavir (enhancement ratio, 1.2-1.4) radiosensitized cells regardless of K-ras mutation status. Oral nelfinavir administration to mice bearing mutant K-ras-containing Capan-2 xenografts resulted in a greater than additive increase in radiation-mediated tumor growth delay (synergy assessment ratio of 1.5). CONCLUSIONS Inhibition of EGFR/HER2 enhances radiosensitivity in wild-type K-ras pancreatic cancer. Nelfinavir, and other phosphoinositide 3-kinase/Akt inhibitors, are effective pancreatic radiosensitizers regardless of K-ras mutation status.
Collapse
Affiliation(s)
- Randall J Kimple
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Qayum N, Muschel RJ, Im JH, Balathasan L, Koch CJ, Patel S, McKenna WG, Bernhard EJ. Tumor vascular changes mediated by inhibition of oncogenic signaling. Cancer Res 2009; 69:6347-54. [PMID: 19622766 DOI: 10.1158/0008-5472.can-09-0657] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many inhibitors of the epidermal growth factor receptor (EGFR)-RAS-phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway are in clinical use or under development for cancer therapy. Here, we show that treatment of mice bearing human tumor xenografts with inhibitors that block EGFR, RAS, PI3K, or AKT resulted in prolonged and durable enhancement of tumor vascular flow, perfusion, and decreased tumor hypoxia. The vessels in the treated tumors had decreased tortuosity and increased internodal length accounting for the functional alterations. Inhibition of tumor growth cannot account for these results, as the drugs were given at doses that did not alter tumor growth. The tumor cell itself was an essential target, as HT1080 tumors that lack EGFR did not respond to an EGFR inhibitor but did respond with vascular alterations to RAS or PI3K inhibition. We extended these observations to spontaneously arising tumors in MMTV-neu mice. These tumors also responded to PI3K inhibition with decreased tumor hypoxia, increased vascular flow, and morphologic alterations of their vessels, including increased vascular maturity and acquisition of pericyte markers. These changes are similar to the vascular normalization that has been described after the antiangiogenic treatment of xenografts. One difficulty in the use of vascular normalization as a therapeutic strategy has been its limited duration. In contrast, blocking tumor cell RAS-PI3K-AKT signaling led to persistent vascular changes that might be incorporated into clinical strategies based on improvement of vascular flow or decreased hypoxia. These results indicate that vascular alterations must be considered as a consequence of signaling inhibition in cancer therapy.
Collapse
Affiliation(s)
- Naseer Qayum
- Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Philip J Tofilon
- Drug Discovery Department, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612, USA.
| | | |
Collapse
|
45
|
d-δ-Tocotrienol-mediated suppression of the proliferation of human PANC-1, MIA PaCa-2, and BxPC-3 pancreatic carcinoma cells. Pancreas 2009; 38:e124-36. [PMID: 19346993 DOI: 10.1097/mpa.0b013e3181a20f9c] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The rate-limiting activity of the mevalonate pathway, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, provides intermediates essential for growth. Competitive inhibitors of HMG CoA reductase, such as the statins, and down-regulators of reductase, such as the tocotrienols, suppress tumor growth. We evaluated the impact of d-delta-tocotrienol, the most potent vitamin E isomer, on human MIA PaCa-2 and PANC-1 pancreatic carcinoma cells and BxPC-3 pancreatic ductal adenocarcinoma cells. METHODS Cell proliferation was measured by using CellTiter 96 Aqueous One Solution (Promega, Madison, Wis). Cell cycle distribution was determined by flow cytometry. Apoptosis was evaluated by Annexin V staining and fluorescence microscopy after dual staining with acridine orange and ethidium bromide. RESULTS d-delta-Tocotrienol induced concentration-dependent suppression of cell proliferation with 50% inhibitory concentrations of 28 (6) micromol/L (MIA PaCa-2), 35 (7) micromol/L (PANC-1), and 35 (8) microL (BxPC-3), respectively. These effects are attributable to cell cycle arrest at the G1 phase and apoptosis. Mevalonate attenuated d-delta-tocotrienol-mediated growth inhibition. A physiologically attainable blend of d-delta-tocotrienol and lovastatin synergistically suppressed the proliferation of MIA PaCa-2 cells. CONCLUSIONS Suppression of mevalonate pathway activities, be it by modulators of HMG CoA reductase (statins, tocotrienols, and farnesol), farnesyl transferase (farnesyl transferase inhibitors), and/or mevalonate pyrophosphate decarboxylase (phenylacetate) activity, may have a potential in pancreatic cancer chemotherapy.
Collapse
|
46
|
Cao P, Maira SM, García-Echeverría C, Hedley DW. Activity of a novel, dual PI3-kinase/mTor inhibitor NVP-BEZ235 against primary human pancreatic cancers grown as orthotopic xenografts. Br J Cancer 2009; 100:1267-76. [PMID: 19319133 PMCID: PMC2676548 DOI: 10.1038/sj.bjc.6604995] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The phosphatidylinositol-3-kinase (PI3K)/Akt signalling pathway is frequently deregulated in pancreatic cancers, and is believed to be an important determinant of their biological aggression and drug resistance. NVP-BEZ235 is a novel, dual class I PI3K/mammalian target of rapamycin (mTor) inhibitor undergoing phase I human clinical trials. To simulate clinical testing, the effects of NVP-BEZ235 were studied in five early passage primary pancreatic cancer xenografts, grown orthotopically. These tumours showed activated PKB/Akt, and increased levels of at least one of the receptor tyrosine kinases that are commonly activated in pancreatic cancers. Pharmacodynamic effects were measured following acute single doses, and anticancer effects were determined in separate groups following chronic drug exposure. Acute oral dosing with NVP-BEZ235 strongly suppressed the phosphorylation of PKB/Akt, followed by recovery over 24 h. There was also inhibition of Ser235/236 S6 ribosomal protein and Thr37/46 4E-BP1, consistent with the effects of NVP-BEZ235 as a dual PI3K/mTor inhibitor. Chronic dosing with 45 mg kg−1 of NVP-BEZ235 was well tolerated, and produced significant tumour growth inhibition in three models. These results predict that agents targeting the PI3K/Akt/mTor pathway might have anticancer activity in pancreatic cancer patients, and support the testing of combination studies involving chemotherapy or other molecular targeted agents.
Collapse
Affiliation(s)
- P Cao
- Division of Applied Molecular Oncology, Department of Medical Oncology and Hematology, Ontario Cancer Institute/Princess Margaret Hospital, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
47
|
Hdm2 is regulated by K-Ras and mediates p53-independent functions in pancreatic cancer cells. Oncogene 2008; 28:709-20. [DOI: 10.1038/onc.2008.423] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Abstract
Mutated ras has been identified in approximately 30% of human tumors, and dysregulation of ras function and signal transduction pathways is a critical step in tumorigenesis. Herein, we review the early data that supports the concept that the intrinsic radiosensitivity of tumor cells can be altered by oncogenic ras expression and that this impacts the PI3K-dependent signaling cascade. This ras-induced radioresistance can be reversed using prenyl transferase inhibitors (PTIs.). We discuss the effects of PTIs as a radiosensitizer in both in vivo and in vitro studies and show that PTIs can lead to increased radiosensitization in vivo through a variety of potential mechanisms that enhance radiation-induced cell kill. We critically evaluate the use of ras biomarkers in predicting the clinical response to PTIs that may explain the mixed results seen thus far in clinical trials using PTIs as a clinical radiosensitizer. We conclude that Ras-mediated radioresistance is the result of multiple intercommunicating pathways functioning against a complex genetic background and a solitary biomarker may not be adequate to predict for PTI-mediated radiosensitization. Nonetheless, our knowledge of the ras-signaling pathway has led to development and testing of specific therapies directed against PI3K-AKT signaling pathways as a future approach towards clinical radiosensitization.
Collapse
Affiliation(s)
- Ramesh Rengan
- Department of Radiation Oncology, University of Pennsylvania, 2-Donner, HUP, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
49
|
Abstract
INTRODUCTION Tumor response and duration of patient survival after treatment with inhibitors of the epidermal growth factor receptor (EGFR) varies considerably between different kinds of EGFR inhibitors, different combination schedules, but also between individual patients. DISCUSSION Development and introduction of biomarkers into clinical practice is necessary to predict treatment response and thereby to individualize cancer therapy. Due to specific interactions of EGFR inhibitors with biological effects of irradiation, biomarkers are expected to differ for radiation oncology compared to application of the drugs alone or within chemotherapy treatment schedules and therefore need to be established and tested separately. OBJECTIVES The review summarizes the current status of potential predictors for the effect of EGFR inhibitors used as single agents or in combination with chemotherapy. CONCLUSION Based on this knowledge and on preclinical radiotherapy data, candidate biomarkers and further research strategies for radiation oncology are discussed.
Collapse
|
50
|
Abstract
Pancreatic cancer is a lethal disease and notoriously difficult to treat. Only a small proportion is curative by surgical resection, whilst standard chemotherapy for patients with advanced disease has only modest effect with substantial toxicity. Clearly there is a need for the continual development of novel therapeutic agents to improve the current situation. Improvement of our understanding of the disease has generated a large number of studies on biological approaches targeting the molecular abnormalities of pancreatic cancer, including gene therapy and signal transduction inhibition, antiangiogenic and matrix metalloproteinase inhibition, oncolytic viral therapy and immunotherapy. This article provides a review of these approaches, both investigated in the laboratories and in subsequent clinical trials.
Collapse
Affiliation(s)
- Han Hsi Wong
- Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, London, UK.
| | | |
Collapse
|