1
|
Morales‐Hernández A, Kooienga E, Sheppard H, Gheorghe G, Caprio C, Chabot A, McKinney‐Freeman S. GPRASP protein deficiency triggers lymphoproliferative disease by affecting B-cell differentiation. Hemasphere 2024; 8:e70037. [PMID: 39479518 PMCID: PMC11522827 DOI: 10.1002/hem3.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
Gprasp1 and Gprasp2 encode proteins that control the stability and cellular trafficking of CXCR4, a master regulator of hematopoiesis whose dynamic regulation is required for appropriate trafficking of B-cells in the germinal center (GC). Here, we report that Gprasp1 and Gprasp2-deficient B-cells accumulate in the GC and show transcriptional abnormalities, affecting the mechanisms controlling Aicda expression and exposing them to excessive somatic hypermutation. Consequently, about 30% of mice transplanted with Gprasp-deficient hematopoietic stem and progenitor cells developed a biologically aggressive and fatal B-cell hyperproliferative disease by 20-50 weeks posttransplant. Histological and molecular profiling reveal that Gprasp1- and Gprasp2-deficient neoplasms morphologically resemble human high-grade B-cell lymphomas of germinal center origin with shared morphologic features of both Burkitt Lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL), and molecular features consistent with DLBCL, as well as elevated mutational burden and heterogenous transcriptional and mutational signature. Thus, reduced Gprasp1 and Gprasp2 gene expression perturbs B-cell maturation and increases the risk of B-cell neoplasms of germinal center origin. As this model recapitulates the essential features of the heterogenous group of human hematopoietic malignancies, it could be a powerful tool to interrogate the mechanisms of lymphomagenesis for these cancers.
Collapse
Affiliation(s)
- Antonio Morales‐Hernández
- Department of Periodontics and Oral Medicine, School of DentistryUniversity of MichiganAnn ArborMichiganUSA
| | - Emilia Kooienga
- Department of HematologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Heather Sheppard
- Department of PathologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Gabriela Gheorghe
- Department of PathologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Claire Caprio
- Department of HematologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Ashley Chabot
- Department of HematologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | | |
Collapse
|
2
|
Wu S, Zhao W, Yu Z. Novel Targets and Potential Mechanisms of Mizuhopecten yessoensis-Derived Tripeptide NCW as Antihypertensive Peptides. Mol Nutr Food Res 2024; 68:e2300552. [PMID: 38366946 DOI: 10.1002/mnfr.202300552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/07/2023] [Indexed: 02/19/2024]
Abstract
SCOPE Mizuhopecten yessoensis-derived tripeptide Asn-Cys-Trp (NCW) exhibits a potent antihypertensive effect in vivo. However, a lack of knowledge of the antihypertensive mechanism of tripeptide NCW limits its application for functional foods industrialization. The purpose of this study is to elucidate the corresponding targets and mechanisms of tripeptide NCW in hypertension regulation. METHODS AND RESULTS Administration of tripeptide NCW for 3 weeks, the blood pressure of spontaneously hypertensive rats (SHRs) is significantly decreased. After sacrifice, the serum sample is analyzed using tandem mass tag (TMT)-based liquid chromatography with tandem mass spectrometry to identify differentially expressed proteins. The proteomic analysis indicates that tripeptide NCW administration alters serum protein profiles in SHR rats, significantly upregulating 106 proteins and downregulating 30 proteins. These proteins enhance the glycolysis, glucose, and TCA cycle, improve amino metabolism, trigger the cAMP/PKA, cGMP/PKG, PI3K/AKT, and AMPK signal pathways, and inhibit Ras-regulated JNK activation, TGF-β/MAPK, and TGF-β/ RhoA/ROCK pathways. CONCLUSION Tripeptide NCW supplementation is demonstrated to regulate signal pathways involved in the control of blood pressure and regulate the energy and amino acids metabolic processes in serum, providing important insights into the protective effects of tripeptide NCW on hypertension.
Collapse
Affiliation(s)
- Sijia Wu
- School of Food Science and Engineering, Hainan University, Haikou, 570228, P.R. China
- College of Food Science and Engineering, Jilin University, Changchun, 130062, P.R. China
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou, 570228, P.R. China
| | - Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou, 570228, P.R. China
| |
Collapse
|
3
|
Bhasin SS, Thomas BE, Summers RJ, Sarkar D, Mumme H, Pilcher W, Emam M, Raikar SS, Park SI, Castellino SM, Graham DK, Bhasin MK, DeRyckere D. Pediatric T-cell acute lymphoblastic leukemia blast signature and MRD associated immune environment changes defined by single cell transcriptomics analysis. Sci Rep 2023; 13:12556. [PMID: 37532715 PMCID: PMC10397284 DOI: 10.1038/s41598-023-39152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
Different driver mutations and/or chromosomal aberrations and dysregulated signaling interactions between leukemia cells and the immune microenvironment have been implicated in the development of T-cell acute lymphoblastic leukemia (T-ALL). To better understand changes in the bone marrow microenvironment and signaling pathways in pediatric T-ALL, bone marrows collected at diagnosis (Dx) and end of induction therapy (EOI) from 11 patients at a single center were profiled by single cell transcriptomics (10 Dx, 5 paired EOI, 1 relapse). T-ALL blasts were identified by comparison with healthy bone marrow cells. T-ALL blast-associated gene signature included SOX4, STMN1, JUN, HES4, CDK6, ARMH1 among the most significantly overexpressed genes, some of which are associated with poor prognosis in children with T-ALL. Transcriptome profiles of the blast cells exhibited significant inter-patient heterogeneity. Post induction therapy expression profiles of the immune cells revealed significant changes. Residual blast cells in MRD+ EOI samples exhibited significant upregulation (P < 0.01) of PD-1 and RhoGDI signaling pathways. Differences in cellular communication were noted in the presence of residual disease in T cell and hematopoietic stem cell compartments in the bone marrow. Together, these studies generate new insights and expand our understanding of the bone marrow landscape in pediatric T-ALL.
Collapse
Affiliation(s)
- Swati S Bhasin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Beena E Thomas
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan J Summers
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Debasree Sarkar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hope Mumme
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - William Pilcher
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mohamed Emam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sunil S Raikar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sunita I Park
- Department of Pathology, Children's Healthcare of Atlanta, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sharon M Castellino
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Manoj K Bhasin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
4
|
Hui T, Yiling J, Guangqun C, Ran L, Hui L, Lan Y, Jie H, Su Q. Diallyl disulfide downregulating RhoGDI2 induces differentiation and inhibit invasion via the Rac1/Pak1/LIMK1 pathway in human leukemia HL-60 cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:1063-1077. [PMID: 36793247 DOI: 10.1002/tox.23748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Leukemia is a type of disease in which hematopoietic stem cells proliferate clonally at the genetic level. We discovered previously by high-resolution mass spectrometry that diallyl disulfide (DADS), which is one of the effective ingredients of garlic, reduces the performance of RhoGDI2 from APL HL-60 cells. Although RhoGDI2 is oversubscribed in several cancer categories, the effect of RhoGDI2 in HL-60 cells has remained unexplained. We aimed to investigate the influence of RhoGDI2 on DADS-induced differentiation of HL-60 cells to elucidate the association among the effect of inhibition or over-expression of RhoGDI2 with HL-60 cell polarization, migration and invasion, which is important for establishing a novel generation of inducers to elicit leukemia cell polarization. Co-transfection with RhoGDI2-targeted miRNAs apparently decreases the malignant biological behavior of cells and upregulates cytopenias in DADS-treated HL-60 cell lines, which increases CD11b and decreases CD33 and mRNA levels of Rac1, PAK1 and LIMK1. Meanwhile, we generated HL-60 cell lines with high-expressing RhoGDI2. The proliferation, migration and invasion capacity of such cells were significantly increased by the treated with DADS, while the reduction capacity of the cells was decreased. There was a reduction in CD11b and an increase in CD33 production, as well as an increase in the mRNA levels of Rac1, PAK1 and LIMK1. It also confirmed that inhibition of RhoGDI2 attenuates the EMT cascade via the Rac1/Pak1/LIMK1 pathway, thereby inhibiting the malignant biological behavior of HL-60 cells. Thus, we considered that inhibition of RhoGDI2 expression might be a new therapeutic direction for the treatment of human promyelocytic leukemia. The anti-cancer property of DADS against HL-60 leukemia cells might be regulated by RhoGDI2 through the Rac1-Pak1-LIMK1 pathway, which provides new evidence for DADS as a clinical anti-cancer medicine.
Collapse
Affiliation(s)
- Tan Hui
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
| | - Jiang Yiling
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
- Department of Oncology, First Affiliated Hospital, University of South China, Hengyang, China
| | - Chen Guangqun
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
- Department of Oncology, Loudi Central Hospital, Loudi, China
| | - Liu Ran
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
- Department of Pathology, The First Hospital of Changsha, Changsha, China
| | - Ling Hui
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
| | - Yi Lan
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
| | - He Jie
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
| | - Qi Su
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
- Department of Oncology, First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
5
|
Petrosyan V, Dobrolecki LE, Thistlethwaite L, Lewis AN, Sallas C, Srinivasan RR, Lei JT, Kovacevic V, Obradovic P, Ellis MJ, Osborne CK, Rimawi MF, Pavlick A, Shafaee MN, Dowst H, Jain A, Saltzman AB, Malovannaya A, Marangoni E, Welm AL, Welm BE, Li S, Wulf GM, Sonzogni O, Huang C, Vasaikar S, Hilsenbeck SG, Zhang B, Milosavljevic A, Lewis MT. Identifying biomarkers of differential chemotherapy response in TNBC patient-derived xenografts with a CTD/WGCNA approach. iScience 2023; 26:105799. [PMID: 36619972 PMCID: PMC9813793 DOI: 10.1016/j.isci.2022.105799] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/20/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Although systemic chemotherapy remains the standard of care for TNBC, even combination chemotherapy is often ineffective. The identification of biomarkers for differential chemotherapy response would allow for the selection of responsive patients, thus maximizing efficacy and minimizing toxicities. Here, we leverage TNBC PDXs to identify biomarkers of response. To demonstrate their ability to function as a preclinical cohort, PDXs were characterized using DNA sequencing, transcriptomics, and proteomics to show consistency with clinical samples. We then developed a network-based approach (CTD/WGCNA) to identify biomarkers of response to carboplatin (MSI1, TMSB15A, ARHGDIB, GGT1, SV2A, SEC14L2, SERPINI1, ADAMTS20, DGKQ) and docetaxel (c, MAGED4, CERS1, ST8SIA2, KIF24, PARPBP). CTD/WGCNA multigene biomarkers are predictive in PDX datasets (RNAseq and Affymetrix) for both taxane- (docetaxel or paclitaxel) and platinum-based (carboplatin or cisplatin) response, thereby demonstrating cross-expression platform and cross-drug class robustness. These biomarkers were also predictive in clinical datasets, thus demonstrating translational potential.
Collapse
Affiliation(s)
- Varduhi Petrosyan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lacey E. Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lillian Thistlethwaite
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alaina N. Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christina Sallas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Jonathan T. Lei
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vladimir Kovacevic
- School of Electrical Engineering, University of Belgrade, Belgrade, Serbia
| | - Predrag Obradovic
- School of Electrical Engineering, University of Belgrade, Belgrade, Serbia
| | - Matthew J. Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - C. Kent Osborne
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mothaffar F. Rimawi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anne Pavlick
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maryam Nemati Shafaee
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Heidi Dowst
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander B. Saltzman
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anna Malovannaya
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | - Alana L. Welm
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Bryan E. Welm
- Department of Surgery, University of Utah, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Shunqiang Li
- Division of Oncology, Washington University, St. Louis, MO 63130, USA
| | | | - Olmo Sonzogni
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Chen Huang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Suhas Vasaikar
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan G. Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bing Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aleksandar Milosavljevic
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael T. Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Chinchole A, Lone KA, Tyagi S. MLL regulates the actin cytoskeleton and cell migration by stabilising Rho GTPases via the expression of RhoGDI1. J Cell Sci 2022; 135:jcs260042. [PMID: 36111497 PMCID: PMC7615853 DOI: 10.1242/jcs.260042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/09/2022] [Indexed: 04/26/2024] Open
Abstract
Attainment of proper cell shape and the regulation of cell migration are essential processes in the development of an organism. The mixed lineage leukemia (MLL or KMT2A) protein, a histone 3 lysine 4 (H3K4) methyltransferase, plays a critical role in cell-fate decisions during skeletal development and haematopoiesis in higher vertebrates. Rho GTPases - RhoA, Rac1 and CDC42 - are small G proteins that regulate various key cellular processes, such as actin cytoskeleton formation, the maintenance of cell shape and cell migration. Here, we report that MLL regulates the homeostasis of these small Rho GTPases. Loss of MLL resulted in an abnormal cell shape and a disrupted actin cytoskeleton, which lead to diminished cell spreading and migration. MLL depletion affected the stability and activity of Rho GTPases in a SET domain-dependent manner, but these Rho GTPases were not direct transcriptional targets of MLL. Instead, MLL regulated the transcript levels of their chaperone protein RhoGDI1 (also known as ARHGDIA). Using MDA-MB-231, a triple-negative breast cancer cell line with high RhoGDI1 expression, we show that MLL depletion or inhibition by small molecules reduces tumour progression in nude mice. Our studies highlight the central regulatory role of MLL in Rho/Rac/CDC42 signalling pathways. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Akash Chinchole
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad 500039, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal 567104, India
| | - Kaisar Ahmad Lone
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad 500039, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad 121001, India
| | - Shweta Tyagi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad 500039, India
| |
Collapse
|
7
|
Ahlawat S, Shankar A, Vandna, Mohan H, Sharma KK. Yersinia enterocolitica and Lactobacillus fermentum induces differential cellular and behavioral responses during diclofenac biotransformation in rat gut. Toxicol Appl Pharmacol 2021; 431:115741. [PMID: 34619158 DOI: 10.1016/j.taap.2021.115741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) can induce small-intestinal injuries through inhibition of prostaglandin synthesis. Gut has an important role in building and maintaining the barriers to avoid the luminal gut microbiota from invading the host, and cytoskeleton plays a crucial role in the maintenance of cellular barrier. The recent advances suggest a bi-directional interaction between the drugs and gut microbiota, where gut microbes can metabolize the drugs, and in response drugs can alter the composition of gut microbiota. In the present study, we evaluated the effect of diclofenac on rat gut, when co-administrated with either Yersinia enterocolitica strain 8081 (an enteropathogen) or Lactobacillus fermentum strain 9338 (a probiotic). The LC-MS/MS based label-free quantitation of rat gut proteins revealed 51.38% up-regulated, 48.62% down-regulated in diclofenac-Y. enterocolitica strain 8081 (D*Y), and 74.31% up-regulated, 25.69% down-regulated in diclofenac-L. fermentum strain 9338 (D*L) experiments. The identified proteins belonged to cytoskeleton, metabolism, heme biosynthesis and binding, stress response, apoptosis and redox homeostasis, immune and inflammatory response, and detoxification and antioxidant defence. Further, the histopathological and biochemical analysis indicated more pronounced histological alterations and oxidative stress (enhanced malonaldehyde and altered antioxidant levels) in D*Y rats than D*L rats, compared to control rats. Elevated plus maze (EPM) test performed to determine the behavioral changes, suggested increased anxiety in D*Y rats than D*L rats, compared to control rats. These results together suggest the differential role of either bacterium in biotransformation of diclofenac, and inflammatory and cellular redox response.
Collapse
Affiliation(s)
- Shruti Ahlawat
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India; Presently at SGT University, Gurgaon-Badli Road Chandu, Budhera, Gurugram 122505, Haryana, India
| | - Akshay Shankar
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Vandna
- Department of Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Hari Mohan
- Department of Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
8
|
Yıldız M, Terzi H, Yıldız SH, Varol N, Özdemİr Erdoğan M, Kasap M, Akçalı N, Solak M. Proteomic analysis of the anticancer effect of various extracts of endemicThermopsisturcica in human cervical cancer cells. Turk J Med Sci 2020; 50:1993-2004. [PMID: 32682359 PMCID: PMC7775707 DOI: 10.3906/sag-2005-321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/18/2020] [Indexed: 12/30/2022] Open
Abstract
Background/aim Thermopsisturcica is a perennial species endemic to Turkey and different extracts of T. turcica have an antiproliferative effect on cancer cells, but there has not been any report on HeLa (human cervical cancer) cells. Materials and methods To get a better understanding of the molecular mechanism of anticancer activity of methanolic extracts of leaves (LE) and flowers (FE) of T. turcica, we employed 2-DE-based proteomics to explore the proteins involved in anticancer activity in HeLa cells. Results T. turcica extracts showed a potent cytotoxic effect on HeLa cells with the IC50 values of 1.75 mg/mL for LE and 3.25 mg/mL for FE. The induction of apoptosis by LE and FE was also consistent with increased expression of caspase mRNAs and DNA fragmentation. In terms of the proteomic approach, 27 differentially expressed proteins were detected and identified through MALDI-TOF/TOF mass spectrometry. These altered proteins were involved in cytoskeleton organization and movement, protein folding, proteolysis and translation, cell cycle and proliferation, signal transduction, cell redox homeostasis, and metabolism. Conclusion Up-regulation of protein disulfide isomerases and down-regulation of Rho GDP-dissociation inhibitor, heterogeneous nuclear ribonucleoproteins, and heat shock proteins may contribute to the induction of apoptosis and arresting of the cell cycle in HeLa cells.
Collapse
Affiliation(s)
- Mustafa Yıldız
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Hakan Terzi
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Saliha Handan Yıldız
- Department of Medical Genetics, Faculty of Medicine, Afyonkarahisar University of Health Sciences, Afyonkarahisar, Turkey
| | - Nuray Varol
- Department of Medical Genetics, Faculty of Medicine, Afyonkarahisar University of Health Sciences, Afyonkarahisar, Turkey
| | - Müjgan Özdemİr Erdoğan
- Department of Medical Genetics, Faculty of Medicine, Afyonkarahisar University of Health Sciences, Afyonkarahisar, Turkey
| | - Murat Kasap
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Nermin Akçalı
- Department of Medical Genetics, Faculty of Medicine, Afyonkarahisar University of Health Sciences, Afyonkarahisar, Turkey
| | - Mustafa Solak
- Department of Medical Genetics, Faculty of Medicine, Afyonkarahisar University of Health Sciences, Afyonkarahisar, Turkey
| |
Collapse
|
9
|
Celia C, Cristiano MC, Froiio F, Di Francesco M, d'Avanzo N, Di Marzio L, Fresta M. Nanoliposomes as Multidrug Carrier of Gemcitabine/Paclitaxel for the Effective Treatment of Metastatic Breast Cancer Disease: A Comparison with Gemzar and Taxol. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christian Celia
- Department of Pharmacy University of Chieti‐Pescara “G. d'Annunzio” Via dei Vestini 31 Chieti I‐66010 Italy
| | - Maria Chiara Cristiano
- Department of Clinical and Experimental Medicine University of Catanzaro “Magna Græcia” Viale “S. Venuta” s.n.c. Catanzaro I‐88100 Italy
| | - Francesca Froiio
- Department of Clinical and Experimental Medicine University of Catanzaro “Magna Græcia” Viale “S. Venuta” s.n.c. Catanzaro I‐88100 Italy
| | - Martina Di Francesco
- Department of Health Science University of Catanzaro “Magna Græcia” Viale “S. Venuta” s.n.c. Catanzaro I‐88100 Italy
- Laboratory of Nanotechnology for Precision Medicine Fondazione Istituto Italiano di Tecnologia Via Morego 30 Genoa I‐16163 Italy
| | - Nicola d'Avanzo
- Department of Pharmacy University of Chieti‐Pescara “G. d'Annunzio” Via dei Vestini 31 Chieti I‐66010 Italy
- Department of Health Science University of Catanzaro “Magna Græcia” Viale “S. Venuta” s.n.c. Catanzaro I‐88100 Italy
| | - Luisa Di Marzio
- Department of Pharmacy University of Chieti‐Pescara “G. d'Annunzio” Via dei Vestini 31 Chieti I‐66010 Italy
| | - Massimo Fresta
- Department of Health Science University of Catanzaro “Magna Græcia” Viale “S. Venuta” s.n.c. Catanzaro I‐88100 Italy
| |
Collapse
|
10
|
Ji C, Lu Z, Xu L, Li F, Cong M, Shan X, Wu H. Global responses to tris(1-chloro-2-propyl)phosphate (TCPP) in rockfish Sebastes schlegeli using integrated proteomic and metabolomic approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138307. [PMID: 32272412 DOI: 10.1016/j.scitotenv.2020.138307] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/22/2020] [Accepted: 03/28/2020] [Indexed: 05/22/2023]
Abstract
As alternatives of brominated flame retardants, organophosphate flame retardants (OPFRs) can be detected in multiple marine environmental media. Tris(1-chloro-2-propyl)phosphate (TCPP) was one of the most frequently and abundantly detected OPFRs in the Bohai Sea. Exposure to TCPP has been shown to induce abnormal behavior in zebrafish as well as neurotoxicity in Caenorhabditis elegans. However, there is a lack of mechanism investigations on the toxic effects of TCPP at molecular levels. In this work, proteomics and metabolomics were integrated to analyze the proteome and metabolome responses in rockfish Sebastes schlegeli treated with TCPP (10 and 100 nM) for 15 days. A total of 143 proteins and 8 metabolites were significantly altered in rockfish following TCPP treatments. The responsive proteins and metabolites were predominantly involved in neurotransmission, neurodevelopment, signal transduction, cellular transport, cholesterol metabolism, bile acid synthesis, and detoxification. Furthermore, a hypothesized network of proteins, metabolites, and pathways in rockfish was summarized based on the combination of proteomic and metabolomic results, showing some key molecular events in response to TCPP. Overall, the present study unraveled the molecular responses at protein and metabolite levels, which provided a better understanding of toxicological effects and mechanisms of TCPP in marine teleost.
Collapse
Affiliation(s)
- Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Zhen Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lanlan Xu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Ming Cong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Xiujuan Shan
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| |
Collapse
|
11
|
Cho HJ, Kim JT, Baek KE, Kim BY, Lee HG. Regulation of Rho GTPases by RhoGDIs in Human Cancers. Cells 2019; 8:cells8091037. [PMID: 31492019 PMCID: PMC6769525 DOI: 10.3390/cells8091037] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Rho GDP dissociation inhibitors (RhoGDIs) play important roles in various cellular processes, including cell migration, adhesion, and proliferation, by regulating the functions of the Rho GTPase family. Dissociation of Rho GTPases from RhoGDIs is necessary for their spatiotemporal activation and is dynamically regulated by several mechanisms, such as phosphorylation, sumoylation, and protein interaction. The expression of RhoGDIs has changed in many human cancers and become associated with the malignant phenotype, including migration, invasion, metastasis, and resistance to anticancer agents. Here, we review how RhoGDIs control the function of Rho GTPases by regulating their spatiotemporal activity and describe the regulatory mechanisms of the dissociation of Rho GTPases from RhoGDIs. We also discuss the role of RhoGDIs in cancer progression and their potential uses for therapeutic intervention.
Collapse
Affiliation(s)
- Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Jong-Tae Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Kyoung Eun Baek
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Bo-Yeon Kim
- Anticancer Cancer Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea.
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon 34141, Korea.
| |
Collapse
|
12
|
Structural characterization and biological properties of silver(I) tris(pyrazolyl)methane sulfonate. J Inorg Biochem 2019; 199:110789. [PMID: 31357066 DOI: 10.1016/j.jinorgbio.2019.110789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 11/24/2022]
Abstract
The water-soluble 1D helical coordination polymer [Ag(Tpms)]n (1) [Tpms = tris(pyrazolyl)methane sulfonate, -O3SC(pz)3; pz = pyrazolyl] was synthesized and fully characterized, its single-crystal X-ray diffraction analysis revealing the ligand acting as a bridging chelate N3-donor ligand. The antiproliferative potential of 1 was performed on two human tumour cell lines, A2780 and HCT116, and in normal fibroblasts, with a much higher effect in the former cell line (IC50 of 0.04 μM) as compared to the latter cell line and to normal fibroblasts. Compound 1 does not alter cell cycle progression but interferes with the adherence of A2780 cells triggering cell apoptosis. Apoptosis appears to occur via the extrinsic pathway (no changes in mitochondria membrane potential, reactive oxygen species (ROS) and pro-apoptotic (B-cell lymphoma 2 (BCL-2) associated protein (BAX))/anti-apoptotic (BCL-2) ratio) being this hypothesis also supported by the presence of silver mainly in the supernatants of A2780 cells. Results also indicated that cell death via autophagy was triggered. Proteomic analysis allowed us to confirm that compound 1 is able to induce a stress response in A2780 cells that is related with its antiproliferative activity and the trigger of apoptosis.
Collapse
|
13
|
Liu W, Chen G, Sun L, Zhang Y, Han J, Dai Y, He J, Shi S, Chen B. TUFT1 Promotes Triple Negative Breast Cancer Metastasis, Stemness, and Chemoresistance by Up-Regulating the Rac1/β-Catenin Pathway. Front Oncol 2019; 9:617. [PMID: 31338333 PMCID: PMC6629836 DOI: 10.3389/fonc.2019.00617] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/24/2019] [Indexed: 12/26/2022] Open
Abstract
Objectives: Triple negative breast cancer (TNBC) is a subtype of breast cancer with stronger invasion and metastasis, but its specific mechanism of action is still unclear. Tuft1 plays an important regulatory role in the survival of breast cancer cells; however, its role in regulating TNBC metastatic potential has not been well-characterized. Our aim was therefore to systematically study the mechanism of TUFT1 in the metastasis, stemness, and chemoresistance of TNBC and provide new predictors and targets for BC treatment. Methods: We used western blotting and IHC to measure TUFT1and Rac1-GTP expression levels in both human BC samples and cell lines. A combination of shRNA, migration/invasion assays, sphere formation assay, apoptosis assays, nude mouse xenograft tumor model, and GTP activity assays was used for further mechanistic studies. Results: We demonstrated that silencing TUFT1 in TNBC cells significantly inhibited cell metastasis and stemness in vitro. A nude mouse xenograft tumor model revealed that TUFT1 knockdown greatly decreased spontaneous lung metastasis of TNBC tumors. Mechanism studies showed that TUFT1 promoted tumor cell metastasis and stemness by up-regulating the Rac1/β-catenin pathway. Moreover, mechanistic studies indicated that the lack of TUFT1 expression in TNBC cells conferred more sensitive to chemotherapy and increased cell apoptosis via down-regulating the Rac1/β-catenin signaling pathway. Further, TUFT1 expression positively correlated with Rac1-GTP in TNBC samples, and co-expression of TUFT1 and Rac1-GTP predicted poor prognosis in TNBC patients who treated with chemotherapy. Conclusion: Our findings suggest that TUFT1/Rac1/β-catenin pathway may provide a potential target for more effective treatment of TNBC.
Collapse
Affiliation(s)
- Weiguang Liu
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Guanglei Chen
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lisha Sun
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Zhang
- Department of Physiology, Dalian Medical University, Dalian, China
| | - Jianjun Han
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Yuna Dai
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Jianchao He
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Sufang Shi
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Bo Chen
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Fletcher CE, Sulpice E, Combe S, Shibakawa A, Leach DA, Hamilton MP, Chrysostomou SL, Sharp A, Welti J, Yuan W, Dart DA, Knight E, Ning J, Francis JC, Kounatidou EE, Gaughan L, Swain A, Lupold SE, de Bono JS, McGuire SE, Gidrol X, Bevan CL. Androgen receptor-modulatory microRNAs provide insight into therapy resistance and therapeutic targets in advanced prostate cancer. Oncogene 2019; 38:5700-5724. [PMID: 31043708 PMCID: PMC6755970 DOI: 10.1038/s41388-019-0823-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Androgen receptor (AR) signalling is a key prostate cancer (PC) driver, even in advanced 'castrate-resistant' disease (CRPC). To systematically identify microRNAs (miRs) modulating AR activity in lethal disease, hormone-responsive and -resistant PC cells expressing a luciferase-based AR reporter were transfected with a miR inhibitor library; 78 inhibitors significantly altered AR activity. Upon validation, miR-346, miR-361-3p and miR-197 inhibitors markedly reduced AR transcriptional activity, mRNA and protein levels, increased apoptosis, reduced proliferation, repressed EMT, and inhibited PC migration and invasion, demonstrating additive effects with AR inhibition. Corresponding miRs increased AR activity through a novel and anti-dogmatic mechanism of direct association with AR 6.9 kb 3'UTR and transcript stabilisation. In addition, miR-346 and miR-361-3p modulation altered levels of constitutively active AR variants, and inhibited variant-driven PC cell proliferation, so may contribute to persistent AR signalling in CRPC in the absence of circulating androgens. Pathway analysis of AGO-PAR-CLIP-identified miR targets revealed roles in DNA replication and repair, cell cycle, signal transduction and immune function. Silencing these targets, including tumour suppressors ARHGDIA and TAGLN2, phenocopied miR effects, demonstrating physiological relevance. MiR-346 additionally upregulated the oncogene, YWHAZ, which correlated with grade, biochemical relapse and metastasis in patients. These AR-modulatory miRs and targets correlated with AR activity in patient biopsies, and were elevated in response to long-term enzalutamide treatment of patient-derived CRPC xenografts. In summary, we identified miRs that modulate AR activity in PC and CRPC, via novel mechanisms, and may represent novel PC therapeutic targets.
Collapse
Affiliation(s)
- Claire E Fletcher
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Eric Sulpice
- Université Grenoble Alpes, CEA, INSERM, BIG, BGE, 17 Avenue des Martyrs, 38054, Grenoble, France
| | - Stephanie Combe
- Université Grenoble Alpes, CEA, INSERM, BIG, BGE, 17 Avenue des Martyrs, 38054, Grenoble, France
| | - Akifumi Shibakawa
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Damien A Leach
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Mark P Hamilton
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza Houston M822, Houston, TX, 77030, USA
| | - Stelios L Chrysostomou
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Adam Sharp
- Prostate Cancer Target Therapy Group, Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Jon Welti
- Prostate Cancer Target Therapy Group, Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Wei Yuan
- Prostate Cancer Target Therapy Group, Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Dafydd A Dart
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Eleanor Knight
- Tumour Profiling Unit, Institute of Cancer Research, London, SW3 6JB, UK
| | - Jian Ning
- Tumour Profiling Unit, Institute of Cancer Research, London, SW3 6JB, UK
| | - Jeffrey C Francis
- Tumour Profiling Unit, Institute of Cancer Research, London, SW3 6JB, UK
| | - Evangelia E Kounatidou
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Luke Gaughan
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Amanda Swain
- Tumour Profiling Unit, Institute of Cancer Research, London, SW3 6JB, UK
| | - Shawn E Lupold
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Johann S de Bono
- Prostate Cancer Target Therapy Group, Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Sean E McGuire
- Department of Molecular and Cell Biology, Baylor College of Medicine Hospital, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xavier Gidrol
- Université Grenoble Alpes, CEA, INSERM, BIG, BGE, 17 Avenue des Martyrs, 38054, Grenoble, France
| | - Charlotte L Bevan
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
15
|
Xin Y, Chen X, Tang X, Li K, Yang M, Tai WCS, Liu Y, Tan Y. Mechanics and Actomyosin-Dependent Survival/Chemoresistance of Suspended Tumor Cells in Shear Flow. Biophys J 2019; 116:1803-1814. [PMID: 31076101 PMCID: PMC6531788 DOI: 10.1016/j.bpj.2019.04.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/20/2019] [Accepted: 04/03/2019] [Indexed: 12/22/2022] Open
Abstract
Tumor cells disseminate to distant organs mainly through blood circulation in which they experience considerable levels of fluid shear stress. However, the effects of hemodynamic shear stress on biophysical properties and functions of circulating tumor cells (CTCs) in suspension are not fully understood. In this study, we found that the majority of suspended breast tumor cells could be eliminated by fluid shear stress, whereas cancer stem cells held survival advantages over conventional cancer cells. Compared to untreated cells, tumor cells surviving shear stress exhibited unique biophysical properties: 1) cell adhesion was significantly retarded, 2) these cells exhibited elongated morphology and enhanced spreading and expressed genes related to epithelial-mesenchymal transition or hybrid phenotype, and 3) surviving tumor cells showed reduced F-actin assembly and stiffness. Importantly, inhibiting actomyosin activity promoted the survival of suspended tumor cells in fluid shear stress, whereas activating actomyosin suppressed cell survival, which might be explained by the up- and downregulation of the antiapoptosis genes. Soft surviving tumor cells held survival advantages in shear flow and higher resistance to chemotherapy. Inhibiting actomyosin activity in untreated cells enhanced chemoresistance, whereas activating actomyosin in surviving tumor cells suppressed this ability. These findings might be associated with the corresponding changes in the genes related to multidrug resistance. In summary, these data demonstrate that hemodynamic shear stress significantly influences biophysical properties and functions of suspended tumor cells. Our study unveils the regulatory roles of actomyosin in the survival and drug resistance of suspended tumor cells in hemodynamic shear flow, which suggest the importance of fluid shear stress and actomyosin activity in tumor metastasis. These findings may reveal a new, to our knowledge, mechanism by which CTCs are able to survive hemodynamic shear stress and chemotherapy and may offer a new potential strategy to target CTCs in shear flow and combat chemoresistance through actomyosin.
Collapse
Affiliation(s)
- Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xi Chen
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xin Tang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - William Chi-Shing Tai
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yiyao Liu
- University of Electronic Science and Technology of China, Chengdu, China
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
16
|
Pineda B, Diaz-Lagares A, Pérez-Fidalgo JA, Burgués O, González-Barrallo I, Crujeiras AB, Sandoval J, Esteller M, Lluch A, Eroles P. A two-gene epigenetic signature for the prediction of response to neoadjuvant chemotherapy in triple-negative breast cancer patients. Clin Epigenetics 2019; 11:33. [PMID: 30786922 PMCID: PMC6381754 DOI: 10.1186/s13148-019-0626-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/31/2019] [Indexed: 01/14/2023] Open
Abstract
Background Pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) in triple-negative breast cancer (TNBC) varies between 30 and 40% approximately. To provide further insight into the prediction of pCR, we evaluated the role of an epigenetic methylation-based signature. Methods Epigenetic assessment of DNA extracted from biopsy archived samples previous to NAC from TNBC patients was performed. Patients included were categorized according to previous response to NAC in responder (pCR or residual cancer burden, RCB = 0) or non-responder (non-pCR or RCB > 0) patients. A methyloma study was performed in a discovery cohort by the Infinium HumanMethylation450 BeadChip (450K array) from Illumina. The epigenetic silencing of those methylated genes in the discovery cohort were validated by bisulfite pyrosequencing (PyroMark Q96 System version 2.0.6, Qiagen) and qRT-PCR in an independent cohort of TN patients and in TN cell lines. Results Twenty-four and 30 patients were included in the discovery and validation cohorts, respectively. In the discovery cohort, nine genes were differentially methylated: six presented higher methylation in non-responder patients (LOC641519, LEF1, HOXA5, EVC2, TLX3, CDKL2) and three greater methylation in responder patients (FERD3L, CHL1, and TRIP10). After validation, a two-gene (FER3L and TRIP10) epigenetic score predicted RCB = 0 with an area under the ROC curve (AUC) = 0.905 (95% CI = 0.805–1.000). Patients with a positive epigenetic two-gene score showed 78.6% RCB = 0 versus only 10.7% RCB = 0 if signature were negative. Conclusions These results suggest that pCR in TNBC could be accurately predicted with an epigenetic signature of FERD3L and TRIP10 genes. Further prospective validation of these findings is warranted. Electronic supplementary material The online version of this article (10.1186/s13148-019-0626-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Begoña Pineda
- Biomedical Research Institute (INCLIVA), Valencia, Spain.,Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Angel Diaz-Lagares
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.,Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Present Address: Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), CIBERONC, Santiago de Compostela, Spain
| | - José Alejandro Pérez-Fidalgo
- Biomedical Research Institute (INCLIVA), Valencia, Spain.,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.,Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Octavio Burgués
- Biomedical Research Institute (INCLIVA), Valencia, Spain.,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.,Pathology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | | | - Ana B Crujeiras
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Present Address: Laboratory of Epigenomics in Endocrinology and Nutrition, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Santiago de Compostela University (USC) and CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Juan Sandoval
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Biomarkers and Precision Medicne Unit (UByMP), Instituto de Investigación Sanitaria La Fe (IISLaFeValencia), Valencia, Spain
| | - Manel Esteller
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.,Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Badalona, Barcelona, Catalonia, Spain
| | - Ana Lluch
- Biomedical Research Institute (INCLIVA), Valencia, Spain.,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.,Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Pilar Eroles
- Biomedical Research Institute (INCLIVA), Valencia, Spain. .,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain. .,COST action, CA15204, Brussels, Belgium.
| |
Collapse
|
17
|
Non-Toxic and Ultra-Small Biosilver Nanoclusters Trigger Apoptotic Cell Death in Fluconazole-Resistant Candida albicans via Ras Signaling. Biomolecules 2019; 9:biom9020047. [PMID: 30769763 PMCID: PMC6406502 DOI: 10.3390/biom9020047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 01/01/2023] Open
Abstract
Silver-based nanostructures are suitable for many biomedical applications, but to be useful therapeutic agents, the high toxicity of these nanomaterials must be eliminated. Here, we biosynthesize nontoxic and ultra-small silver nanoclusters (rsAg@NCs) using metabolites of usnioid lichen (a symbiotic association of algae and fungi) that exhibit excellent antimicrobial activity against fluconazole (FCZ)-resistant Candida albicans that is many times higher than chemically synthesized silver nanoparticles (AgNPs) and FCZ. The rsAg@NCs trigger apoptosis via reactive oxygen species accumulation that leads to the loss of mitochondrial membrane potential, DNA fragmentation, chromosomal condensation, and the activation of metacaspases. The proteomic analysis clearly demonstrates that rsAg@NCs exposure significantly alters protein expression. Most remarkable among the down-regulated proteins are those related to glycolysis, metabolism, free radical scavenging, anti-apoptosis, and mitochondrial function. In contrast, proteins involved in plasma membrane function, oxidative stress, cell death, and apoptosis were upregulated. Eventually, we also established that the apoptosis-inducing potential of rsAg@NCs is due to the activation of Ras signaling, which confirms their application in combating FCZ-resistant C. albicans infections.
Collapse
|
18
|
He J, Cai L, Chen Y, He Y, Wang M, Tang J, Guan H, Wang J, Peng X. Antitumor and radiosensitizing effects of SKLB-163, a novel benzothiazole-2-thiol derivative, on nasopharyngeal carcinoma by affecting the RhoGDI/JNK-1 signaling pathway. Radiother Oncol 2018; 129:30-37. [PMID: 29519627 DOI: 10.1016/j.radonc.2018.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 01/27/2018] [Accepted: 02/08/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND PURPOSE SKLB-163 is a novel benzothiazole-2-thiol derivative with antitumor activities. This study investigated the effects of SKLB-163 on nasopharyngeal carcinoma (NPC) and its mechanisms. MATERIALS AND METHODS Rho GDP-dissociation inhibitor (RhoGDI) expression was examined in NPC cell lines by western blot. Effects of SKLB-163 on proliferation, migration and radiosensitivity were assessed by MTT, wound healing and colony formation assays in vitro. Anti-tumor and anti-metastatic effects, and radiosensitizing effects of SKLB-163 were evaluated in a NPC lung metastatic nude mouse model and a subcutaneous xenograft mouse model. Effects of SKLB-163 on proliferation and apoptosis were assessed by PCNA immunohistochemistry and TUNEL assay in vivo. Key molecules in RhoGDI/c-Jun N-terminal kinases-1 (JNK-1) pathway were examined by western blot. RESULTS RhoGDI was up-regulated in NPC cell lines. SKLB-163 inhibited proliferation and migration, and increased radiosensitivity of NPC cells. SKLB-163 inhibited tumor growth and metastases, and sensitized tumor to irradiation. The radiosensitizing effects were correlated with induction of apoptosis and suppression of proliferation. The molecular mechanism was the down-regulation of RhoGDI and activation of JNK-1 signaling, and the subsequent activation of caspase-3 and the decrease in phosphorylated AKT. CONCLUSIONS SKLB-163 shows strong anti-tumor activities against NPC and sensitizes NPC to irradiation by affecting the RhoGDI/JNK-1 pathway.
Collapse
Affiliation(s)
- Jinlan He
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Lei Cai
- Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ye Chen
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yan He
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ming Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Tang
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Hui Guan
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Jingjing Wang
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xingchen Peng
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China.
| |
Collapse
|
19
|
Yu Y, Jin H, Xu J, Gu J, Li X, Xie Q, Huang H, Li J, Tian Z, Jiang G, Chen C, He F, Wu XR, Huang C. XIAP overexpression promotes bladder cancer invasion in vitro and lung metastasis in vivo via enhancing nucleolin-mediated Rho-GDIβ mRNA stability. Int J Cancer 2018; 142:2040-2055. [PMID: 29250796 PMCID: PMC5867227 DOI: 10.1002/ijc.31223] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/02/2017] [Accepted: 12/13/2017] [Indexed: 12/19/2022]
Abstract
Our recent studies demonstrate that X-linked inhibitor of apoptosis protein (XIAP) is essential for regulating colorectal cancer invasion. Here, we discovered that RhoGDIβ was a key XIAP downstream effector mediating bladder cancer (BC) invasion in vitro and in vivo. We found that both XIAP and RhoGDIβ expressions were consistently elevated in BCs of N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-treated mice in comparison to bladder tissues from vehicle-treated mice and human BCs in comparison to the paired adjacent normal bladder tissues. Knockdown of XIAP attenuated RhoGDIβ expression and reduced cancer cell invasion, whereas RhoGDIβ expression was attenuated in BBN-treated urothelium of RING-deletion knockin mice. Mechanistically, XIAP stabilized RhoGDIβ mRNA by its positively regulating nucleolin mRNA stability via Erks-dependent manner. Moreover, ectopic expression of GFP-RhoGDIβ in T24T(shXIAP) cells restored its lung metastasis in nude mice. Our results demonstrate that XIAP-regulated Erks/nucleolin/RhoGDIβ axis promoted BC invasion and lung metastasis.
Collapse
Affiliation(s)
- Yonghui Yu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Jiheng Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Jiayan Gu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Xin Li
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Qipeng Xie
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Zhongxian Tian
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Guosong Jiang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Caiyi Chen
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Feng He
- Departments of Urology and Pathology, New York University School of Medicine, Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, NY 10016, USA
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University School of Medicine, Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, NY 10016, USA
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| |
Collapse
|
20
|
Proteomic analysis of macrophage in response to Edwardsiella tarda-infection. Microb Pathog 2017; 111:86-93. [DOI: 10.1016/j.micpath.2017.08.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
|
21
|
Hu X, Li S, He Y, Ai P, Wu S, Su Y, Li X, Cai L, Peng X. Antitumor and antimetastatic activities of a novel benzothiazole-2-thiol derivative in a murine model of breast cancer. Oncotarget 2017; 8:11887-11895. [PMID: 28060755 PMCID: PMC5355312 DOI: 10.18632/oncotarget.14431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 12/21/2016] [Indexed: 02/05/2023] Open
Abstract
The prognosis of metastatic breast cancer is always very poor. Thus, it is urgent to develop novel drugs with less toxicity against metastatic breast cancer. A new drug (XC-591) derived from benzothiazole-2-thiol was designed and synthesized in our lab. In this study, we tried to assess effects of XC-591 treatment on primary breast cancer and pulmonary metastasis in 4T1 mice model. Furthermore, we tried to discover its possible molecular mechanism of action. MTT experiment showed XC-591 had significant anti-cancer activity on diverse cancer cells. Furthermore, XC-591 significantly suppressed the proliferation of 4T1 cells by colony formation assay. The in vivo results displayed that XC-591 could inhibit the growth and metastasis in 4T1 model. Moreover, histological analysis revealed that XC-591 treatment increased apoptosis, inhibited proliferation and angiogenesis in vivo. In addition, XC-591 did not contribute to obvious drug associated toxicity during the whole study. Molecular mechanism showed XC-591 could inhibit RhoGDI, activate caspase-3 and decrease phosphorylated Akt. The present data may be important to further explore this kind of new small-molecule inhibitor.
Collapse
Affiliation(s)
- XiaoLin Hu
- Department of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Sen Li
- Department of Spinal Surgery, Traditional Chinese Medicine Hospital of SouthWest Medical University, Luzhou, China
| | - Yan He
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Ai
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shaoyong Wu
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yonglin Su
- Department of Rehabilitation, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaolin Li
- Department of Pathophysiology, Basic Medical College, Jilin University, Changchun, China
| | - Lei Cai
- Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xingchen Peng
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Khan SN, Khan S, Iqbal J, Khan R, Khan AU. Enhanced Killing and Antibiofilm Activity of Encapsulated Cinnamaldehyde against Candida albicans. Front Microbiol 2017; 8:1641. [PMID: 28900419 PMCID: PMC5581813 DOI: 10.3389/fmicb.2017.01641] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/14/2017] [Indexed: 11/23/2022] Open
Abstract
Candida sp. impelled opportunistic infection in immune-compromised patients ensuing from asymptomatic colonization to pathogenic forms. Moreover, slow spread of Candida species inducing refractory mucosal and invasive infections brings acute resistance to antifungal drugs. Hence, here we probed the effect of encapsulated preparation of cinnamaldehyde (CNMA) in multilamellar liposomes (ML) against Candida albicans. The efficacy of ML-CNMA against Candida biofilm was assessed by scanning electron microscopy, transmission electron microscopy, as well as light microscopy and its percent inhibition, was determined by XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] and crystal violet assay. ML-CNMA showed more fungicidal activity than free CNMA as well as multilamellar liposomal amphotericin B (ML-Amp B), which was further confirmed by spot test assay and Log-logistic dose–response analysis. Antifungal activity was driven by reactive oxygen species and cellular damage by sustained release of CNMA. Effect on hyphal formation during 48 h in presence/absence of ML-CNMA was observed under a microscope and further substantiated by RT-PCR by amplifying HWP1, the gene responsible for hyphal wall protein formation. Apoptotic programmed cell death was analyzed by FACS analysis which was further confirmed by cytochrome C release assay. This study elucidates the mechanistic insight of the enhanced antifungal activity of ML preparation of CNMA against Candida infections.
Collapse
Affiliation(s)
- Shahper N Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim UniversityAligarh, India
| | - Shakir Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim UniversityAligarh, India
| | - Jawed Iqbal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim UniversityAligarh, India
| | - Rosina Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim UniversityAligarh, India
| | - Asad U Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim UniversityAligarh, India
| |
Collapse
|
23
|
Bober P, Alexovic M, Talian I, Tomkova Z, Viscorova Z, Benckova M, Andrasina I, Ciccocioppo R, Petrovic D, Adamek M, Kruzliak P, Sabo J. Proteomic analysis of the vitamin C effect on the doxorubicin cytotoxicity in the MCF-7 breast cancer cell line. J Cancer Res Clin Oncol 2017; 143:35-42. [PMID: 27620743 DOI: 10.1007/s00432-016-2259-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 09/02/2016] [Indexed: 12/15/2022]
Abstract
PURPOSE Doxorubicin is an anthracycline drug which inhibits the growth of breast cancer cell lines. However, a major factor limiting its use is a cumulative, dose-dependent cardiotoxicity, resulting in a permanent loss of cardiomyocytes. Vitamin C was found to potentiate the cytotoxic effects of a variety of chemotherapeutic drugs including doxorubicin. The aim of the study was to describe the changes in protein expression and proliferation of the MCF-7 cells induced by the vitamin C applied with doxorubicin. METHODS Label-free quantitative proteomics and real-time cell analysis methods were used to search for proteome and cell proliferation changes. These changes were induced by the pure DOX and by DOX combined with vitamin C applied on the MCF-7 cell line. RESULTS From the real-time cell analysis experiments, it is clear that the highest anti-proliferative effect occurs with the addition of 200 µM of vitamin C to 1 µM of doxorubicin. By applying both the label-free protein quantification method and total ion current assay, we found statistically significant changes (p ≤ 0.05) of 26 proteins induced by the addition of vitamin C to doxorubicin on the MCF-7 cell line. These differentially expressed proteins are involved in processes such as structural molecule activity, transcription and translation, immune system process and antioxidant, cellular signalling and transport. CONCLUSION The detected proteins may be capable of predicting response to DOX therapy. This is a key tool in the treatment of breast cancer, and the combination with vit C seems to be of particular interest due to the fact that it can potentiate anti-proliferative effect of DOX.
Collapse
Affiliation(s)
- Peter Bober
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Safarik University, Trieda SNP 1, 040 11, Kosice, Slovakia
| | - Michal Alexovic
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Safarik University, Trieda SNP 1, 040 11, Kosice, Slovakia
| | - Ivan Talian
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Safarik University, Trieda SNP 1, 040 11, Kosice, Slovakia
| | - Zuzana Tomkova
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Safarik University, Trieda SNP 1, 040 11, Kosice, Slovakia
| | - Zuzana Viscorova
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Safarik University, Trieda SNP 1, 040 11, Kosice, Slovakia
- Department of Radiotherapy and Oncology, Faculty of Medicine, Pavol Jozef Safarik University, East Slovakia Oncology Institute, Kosice, Slovakia
| | - Maria Benckova
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Safarik University, Trieda SNP 1, 040 11, Kosice, Slovakia
| | - Igor Andrasina
- Department of Radiotherapy and Oncology, Faculty of Medicine, Pavol Jozef Safarik University, East Slovakia Oncology Institute, Kosice, Slovakia
| | - Rachele Ciccocioppo
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Daniel Petrovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mariusz Adamek
- Department of Thoracic Surgery, Faculty of Medicine and Dentistry, Medical University of Silesia, Katowice, Poland
| | - Peter Kruzliak
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Safarik University, Trieda SNP 1, 040 11, Kosice, Slovakia.
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.
| | - Jan Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Safarik University, Trieda SNP 1, 040 11, Kosice, Slovakia.
| |
Collapse
|
24
|
Zandvakili I, Lin Y, Morris JC, Zheng Y. Rho GTPases: Anti- or pro-neoplastic targets? Oncogene 2016; 36:3213-3222. [PMID: 27991930 PMCID: PMC5464989 DOI: 10.1038/onc.2016.473] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023]
Abstract
Rho GTPases are critical signal transducers of multiple pathways. They have been proposed to be useful anti-neoplastic targets for over two decades, especially in Ras-driven cancers. Until recently, however, few in vivo studies had been carried out to test this premise. Several recent mouse model studies have verified that Rac1, RhoA, and some of their effector proteins such as PAK and ROCK, are likely anti-cancer targets for treating K-Ras-driven tumors. Other seemingly contradictory studies have suggested that at least in certain instances inhibition of individual Rho GTPases may paradoxically result in pro-neoplastic effects. Significantly, both RhoA GTPase gain- and loss-of-function mutations have been discovered in primary leukemia/lymphoma and gastric cancer by human cancer genome sequencing efforts, suggesting both pro- and anti-neoplastic roles. In this review we summarize and integrate these unexpected findings and discuss the mechanistic implications in the design and application of Rho GTPase targeting strategies in future cancer therapies.
Collapse
Affiliation(s)
- I Zandvakili
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Medical-Scientist Training Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Y Lin
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - J C Morris
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio USA
| | - Y Zheng
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Medical-Scientist Training Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
25
|
Bozza WP, Zhang Y, Hallett K, Rivera Rosado LA, Zhang B. RhoGDI deficiency induces constitutive activation of Rho GTPases and COX-2 pathways in association with breast cancer progression. Oncotarget 2016; 6:32723-36. [PMID: 26416248 PMCID: PMC4741725 DOI: 10.18632/oncotarget.5416] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/15/2015] [Indexed: 11/25/2022] Open
Abstract
Rho GDP Dissociation Inhibitor (RhoGDI) is a key regulator of Rho GTPases. Here we report that loss of RhoGDI significantly accelerated xenograft tumor growth of MDA-MB-231 cells in animal models. At the molecular level, RhoGDI depletion resulted in constitutive activation of Rho GTPases, including RhoA, Cdc42, and Rac1. This was accompanied by Rho GTPase translocation from the cytosol to membrane compartments. Notably, COX-2 protein levels, mRNA expression, and biological activity were markedly increased in RhoGDI-deficient cells. The upregulated expression of COX-2 was directly associated with increased Rho GTPase activity. Further, we assessed the expression level of RhoGDI protein in breast tumor specimens (n = 165) by immunohistochemistry. We found that RhoGDI expression is higher in the early stages of breast cancer followed by a significant decrease in malignant tumors and metastatic lesions (p < 0.01). These data suggest that downregulation of RhoGDI could be a critical mechanism of breast tumor development, which may involve the hyperactivation of Rho GTPases and upregulation of COX-2 activity. Additional studies are warranted to evaluate the therapeutic potential of inhibiting Rho GTPases and COX-2 for treating breast cancers.
Collapse
Affiliation(s)
- William P Bozza
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Yaqin Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Kory Hallett
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Leslie A Rivera Rosado
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.,United States Public Health Service Commissioned Corps, Rockville, MD 20852, USA
| | - Baolin Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
26
|
Alterations of proteins in MDCK cells during acute potassium deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:683-696. [DOI: 10.1016/j.bbapap.2016.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/05/2016] [Accepted: 03/10/2016] [Indexed: 11/18/2022]
|
27
|
Abstract
The local extension of cancer cells along nerves is a frequent clinical finding for various tumours. Traditionally, nerve invasion was assumed to occur via the path of least resistance; however, recent animal models and human studies have revealed that cancer cells have an innate ability to actively migrate along axons in a mechanism called neural tracking. The tendency of cancer cells to track along nerves is supported by various cell types in the perineural niche that secrete multiple growth factors and chemokines. We propose that the perineural niche should be considered part of the tumour microenvironment, describe the molecular cues that facilitate neural tracking and suggest methods for its inhibition.
Collapse
Affiliation(s)
- Moran Amit
- Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Head and Neck Center, Rambam Healthcare Campus, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion-Israel Institute of Technology, Haalia Street No. 8, Haifa, Israel
| | - Shorook Na'ara
- Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Head and Neck Center, Rambam Healthcare Campus, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion-Israel Institute of Technology, Haalia Street No. 8, Haifa, Israel
| | - Ziv Gil
- Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Head and Neck Center, Rambam Healthcare Campus, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion-Israel Institute of Technology, Haalia Street No. 8, Haifa, Israel
| |
Collapse
|
28
|
Pearce SC, Lonergan SM, Huff-Lonergan E, Baumgard LH, Gabler NK. Acute Heat Stress and Reduced Nutrient Intake Alter Intestinal Proteomic Profile and Gene Expression in Pigs. PLoS One 2015; 10:e0143099. [PMID: 26575181 PMCID: PMC4648527 DOI: 10.1371/journal.pone.0143099] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/30/2015] [Indexed: 12/22/2022] Open
Abstract
Heat stress and reduced feed intake negatively affect intestinal integrity and barrier function. Our objective was to compare ileum protein profiles of pigs subjected to 12 hours of HS, thermal neutral ad libitum feed intake, or pair-fed to heat stress feed intake under thermal neutral conditions (pair-fed thermal neutral). 2D-Differential In Gel Electrophoresis and gene expression were performed. Relative abundance of 281 and 138 spots differed due to heat stress, compared to thermal neutral and pair-fed thermal neutral pigs, respectively. However, only 20 proteins were different due to feed intake (thermal neutral versus pair-fed thermal neutral). Heat stress increased mRNA expression of heat shock proteins and protein abundance of heat shock proteins 27, 70, 90-α and β were also increased. Heat stress reduced ileum abundance of several metabolic enzymes, many of which are involved in the glycolytic or TCA pathways, indicating a change in metabolic priorities. Stress response enzymes peroxiredoxin-1 and peptidyl-prolyl cis-trans isomerase A were decreased in pair-fed thermal neutral and thermal neutral pigs compared to heat stress. Heat stress increased mRNA abundance markers of ileum hypoxia. Altogether, these data show that heat stress directly alters intestinal protein and mRNA profiles largely independent of reduced feed intake. These changes may be related to the reduced intestinal integrity associated with heat stress.
Collapse
Affiliation(s)
- Sarah C. Pearce
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Steven M. Lonergan
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | | | - Lance H. Baumgard
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Nicholas K. Gabler
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
29
|
Peng XC, Chen XX, Zhang YU, Wang HJ, Feng Y. A novel inhibitor of Rho GDP-dissociation inhibitor α improves the therapeutic efficacy of paclitaxel in Lewis lung carcinoma. Biomed Rep 2015; 3:473-477. [PMID: 26171151 DOI: 10.3892/br.2015.475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 05/21/2015] [Indexed: 02/05/2023] Open
Abstract
Molecular-targeted therapies are considered a promising strategy for the treatment of most types of human cancer. Rho GDP-dissociation inhibitor α (RhoGDIα), which functions mainly by controlling the cellular distribution and activity of Rho GTPases and is associated with tumor progression and poor prognosis of cancer patients, has become a new promising target for anticancer treatment. Recently, a specific RhoGDIα inhibitor (no. SKLB-163) was developed via computer-aided drug design and de novo synthesis. Previous studies have shown that SKLB-163 had extremely good antitumor activities against diverse cancer cell lines. In the present study, SKLB-163 was used in combination with paclitaxel in order to determine the synergistic effect of the antitumor activity. The findings showed that the combination therapy clearly inhibited cell proliferation and induced apoptosis of LL/2 in vitro. The LL/2 mice model also showed that the combination therapy inhibited tumor growth in vivo. Proliferative cell nuclear antigen (PCNA) immunohistochmeistry and terminal deoxynucleotidyl transferase dUTP nick end-labeling showed that combination therapy inhibited cell proliferation and increased apoptosis compared to the treatment with SKLB-163 or paclitaxel alone. The data suggests that the combination therapy exerted synergistic antitumor effects, providing a novel way to augment the antitumor efficacy of cytotoxic chemotherapy.
Collapse
Affiliation(s)
- Xing Chen Peng
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xu Xia Chen
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Y U Zhang
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, P.R. China
| | - Hai Jun Wang
- Department of Thoracic Surgery, Sichuan Cancer Hospital, Chengdu, Sichuan 610041, P.R. China
| | - You Feng
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
30
|
Characterization of antiproliferative potential and biological targets of a copper compound containing 4'-phenyl terpyridine. J Biol Inorg Chem 2015; 20:935-48. [PMID: 26077814 DOI: 10.1007/s00775-015-1277-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/03/2015] [Indexed: 12/11/2022]
Abstract
Several copper complexes have been assessed as anti-tumor agents against cancer cells. In this work, a copper compound [Cu(H2O){OS(CH3)2}L](NO3)2 incorporating the ligand 4'-phenyl-terpyridine antiproliferative activity against human colorectal, hepatocellular carcinomas and breast adenocarcinoma cell lines was determined, demonstrating high cytotoxicity. The compound is able to induce apoptosis and a slight delay in cancer cell cycle progression, probably by its interaction with DNA and induction of double-strand pDNA cleavage, which is enhanced by oxidative mechanisms. Moreover, proteomic studies indicate that the compound induces alterations in proteins involved in cytoskeleton maintenance, cell cycle progression and apoptosis, corroborating its antiproliferative potential.
Collapse
|
31
|
|
32
|
Role of miR-155 in drug resistance of breast cancer. Tumour Biol 2015; 36:1395-401. [PMID: 25744731 DOI: 10.1007/s13277-015-3263-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 02/13/2015] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expressions at posttranscriptional level. Growing evidence points to their significant role in the acquisition of drug resistance in cancers. Studies show that miRNAs are often aberrantly expressed in human cancer cells which are associated with tumorigenesis, metastasis, invasiveness, and drug resistance. Breast cancer is the leading cause of cancer-induced death in women. Over the last decades, increasing attention has been paid to the effects of miRNAs on the development of breast cancer drug resistance. Among them, miR-155 takes part in a sequence of bioprocesses that contribute to the development of such drug resistance, including repression of FOXO3a, enhancement of epithelial-to-mesenchymal transition (EMT) and mitogen-activated protein kinase (MAPK) signaling, reduction of RhoA, and affecting the length of telomeres. In this review, we discuss the role of miR-155 in the acquisition of breast cancer drug resistance. This will provide a new way in antiresistance treatment of drug-resistant breast cancer.
Collapse
|
33
|
14-3-3σ attenuates RhoGDI2-induced cisplatin resistance through activation of Erk and p38 in gastric cancer cells. Oncotarget 2014; 4:2045-56. [PMID: 24185104 PMCID: PMC3875768 DOI: 10.18632/oncotarget.1334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Rho GDP dissociation inhibitor 2 (RhoGDI2) promotes tumor growth and malignant progression and enhances chemoresistance of gastric cancer. Recently, we noted an inverse correlation between RhoGDI2 and 14-3-3σ expression, which suggests that 14-3-3σ is a target of gastric cancer metastasis and the chemoresistance-promoting effect of RhoGDI2. Herein, we evaluated whether 14-3-3σ is regulated by RhoGDI2 and is functionally important for the RhoGDI2-induced cisplatin resistance of gastric cancer cells. We used highly metastatic and cisplatin-resistant RhoGDI2-overexpressing SNU-484 cells and observed decreased 14-3-3σ mRNA and protein expression. Depletion of 14-3-3σ in SNU-484 control cells enhanced cisplatin resistance, whereas restoration of 14-3-3σ in RhoGDI2-overexpressing SNU-484 cells impaired cisplatin resistance in vitro and in vivo. We also found that the phosphorylation levels of Erk and p38 kinases significantly decreased in RhoGDI2-overexpressing SNU-484 cells and recovered after 14-3-3σ expression, and that decreased activities of these kinases were critical for RhoGDI2-induced cisplatin resistance. In conclusion, 14-3-3σ is a RhoGDI2-regulated gene that appears to be important for suppressing the chemoresistance of gastric cancer cells.
Collapse
|
34
|
Bozza WP, Di X, Takeda K, Rivera Rosado LA, Pariser S, Zhang B. The use of a stably expressed FRET biosensor for determining the potency of cancer drugs. PLoS One 2014; 9:e107010. [PMID: 25188024 PMCID: PMC4154796 DOI: 10.1371/journal.pone.0107010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/10/2014] [Indexed: 11/19/2022] Open
Abstract
Many cancer drugs are intended to kill cancer cells by inducing apoptosis. However, the potency assays used for measuring the bioactivity of these products are generally cell viability assays which do not distinguish between cell death and growth inhibition. Here we describe a cell-based fluorescence resonance energy transfer (FRET) biosensor designed to measure the bioactivity of apoptosis inducing cancer drugs. The biosensor contains cyan fluorescent protein (CFP) linked via caspase 3 and caspase 8 specific cleavage recognition sequences to yellow fluorescent protein (YFP). Upon caspase activation, as in the case of apoptosis induction, the linker is cleaved abolishing the cellular FRET signal. This assay closely reflects the mechanism of action of cancer drugs, in killing cancer cells and therefore can function as a potency test for different cancer drugs. We rigorously demonstrate this through characterization of a class of proteins targeting the death receptors. The one-step assay appears to be superior to other apoptosis-based assays because of its simplicity, convenience, and robustness.
Collapse
Affiliation(s)
- William P. Bozza
- Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Xu Di
- Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Leslie A. Rivera Rosado
- Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Sarah Pariser
- Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- Brown University, Providence, Rode Island, United States of America
| | - Baolin Zhang
- Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
Signaling related with biphasic effects of bisphenol A (BPA) on Sertoli cell proliferation: A comparative proteomic analysis. Biochim Biophys Acta Gen Subj 2014; 1840:2663-73. [DOI: 10.1016/j.bbagen.2014.05.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 01/15/2023]
|
36
|
Peng X, Xie G, Wang Z, Lin H, Zhou T, Xiang P, Jiang Y, Yang S, Wei Y, Yu L, Zhao Y. SKLB-163, a new benzothiazole-2-thiol derivative, exhibits potent anticancer activity by affecting RhoGDI/JNK-1 signaling pathway. Cell Death Dis 2014; 5:e1143. [PMID: 24675461 PMCID: PMC3973246 DOI: 10.1038/cddis.2014.107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/21/2014] [Accepted: 01/21/2014] [Indexed: 02/05/2023]
Abstract
Small-molecule inhibitors are an attractive therapeutic approach for most types of human cancers. SKLB-163, a novel benzothiazole-2-thiol derivative, was developed via computer-aided drug design and de novo synthesis. MTT assay showed it had potent anti-proliferative activity on various human cancer cells. Treatment of cancer cells with SKLB-163 induced obvious apoptosis and inhibited proliferation in vitro. SKLB-163 administered p.o. showed a marked antitumor activity in vivo. Proteomic techniques were employed to identify possible drug target proteins. The data showed molecular mechanism of action might be involved in downregulation of RhoGDI, which finally contributed to increased apoptosis and inhibited proliferation. These findings provided the potential value of SKLB-163 as a novel candidate antitumor drug.
Collapse
Affiliation(s)
- X Peng
- 1] State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China [2] Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - G Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Z Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - H Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - T Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - P Xiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Y Jiang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - S Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Y Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - L Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Y Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
37
|
Huang Z, Fang Z, Zhen H, Zhou L, Amin HM, Shi P. Inhibition of type I insulin-like growth factor receptor tyrosine kinase by picropodophyllin induces apoptosis and cell cycle arrest in T lymphoblastic leukemia/lymphoma. Leuk Lymphoma 2014; 55:1876-83. [PMID: 24206093 DOI: 10.3109/10428194.2013.862241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It has been recently shown that the type I insulin-like growth factor receptor (IGF-IR) contributes significantly to the survival of T lymphoblastic leukemia/lymphoma (T-LBL) cells, and it was therefore suggested that IGF-IR could represent a legitimate therapeutic target in this aggressive disease. Picropodophyllin (PPP) is a potent, selective inhibitor of IGF-IR that is currently used with notable success in clinical trials that include patients with aggressive types of epithelial tumors. In the present study, we tested the effects of PPP on Jurkat and Molt-3 cells; two prototype T-LBL cell lines. Our results demonstrate that PPP efficiently induced apoptotic cell death and cell cycle arrest of these two cells. These effects were attributable to alterations of downstream target proteins. By using proteomic analysis, seven different proteins were found to be affected by PPP treatment of Jurkat cells. These proteins are involved in various aspects of cellular metabolism, cytoskeleton organization and signal transduction pathways. The results suggest that PPP affects multiple signaling molecules and inhibits fundamental pathways that control cell growth and survival. Our study also provides novel evidence that PPP could be potentially utilized for the treatment of aggressive T-LBL.
Collapse
Affiliation(s)
- Zhiwei Huang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai , China
| | | | | | | | | | | |
Collapse
|
38
|
Wang H, Wang B, Liao Q, An H, Li W, Jin X, Cui S, Zhao L. Overexpression of RhoGDI, a novel predictor of distant metastasis, promotes cell proliferation and migration in hepatocellular carcinoma. FEBS Lett 2014; 588:503-8. [PMID: 24374343 DOI: 10.1016/j.febslet.2013.12.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/09/2013] [Indexed: 11/18/2022]
Abstract
RhoGDI (Rho GDP-dissociation inhibitor alpha, or RhoGDIα) was identified as a regulator of Rho GTPases, but its role in cancer remains controversial. In this study, increased expression of RhoGDI was detected in hepatocellular carcinoma (HCC) cell lines and tissues with highly metastatic potential. RhoGDI overexpression correlated with postoperative distant metastasis. Enforced expression of RhoGDI in HCC cells significantly enhanced cell proliferation and migration. Conversely, knockdown of RhoGDI caused an inhibition of the aggressive phenotypes of HCC cells. Furthermore, RhoGDI up-regulated Rho, but not Rac, and enhanced PI3K/AKT and MAPK pathway activity. Our findings suggest that RhoGDI overexpression is a predictor of distant metastasis and plays an important role in the progression of HCC.
Collapse
Affiliation(s)
- Hui Wang
- Department of Medical Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qing Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongying An
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weidong Li
- Department of Medical Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuejun Jin
- Department of Medical Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuzhong Cui
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
39
|
Chen JJ, Mikelis CM, Zhang Y, Gutkind JS, Zhang B. TRAIL induces apoptosis in oral squamous carcinoma cells--a crosstalk with oncogenic Ras regulated cell surface expression of death receptor 5. Oncotarget 2014; 4:206-17. [PMID: 23470485 PMCID: PMC3712567 DOI: 10.18632/oncotarget.813] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
TNF-related apoptosis inducing ligand (TRAIL) induces apoptosis through its death receptors (DRs) 4 and/or 5 expressed on the surface of target cells. The selectivity of TRAIL towards cancer cells has promoted clinical evaluation of recombinant human TRAIL (rhTRAIL) and its agonistic antibodies in treating several major human cancers including colon and non-Hodgkin's lymphoma. However, little is known about their ability in killing oral squamous cell carcinoma (OSCC) cells. In this study, we tested the apoptotic responses of a panel of seven human OSCC cell lines (HN31, HN30, HN12, HN6, HN4, Cal27, and OSCC3) to rhTRAIL and monoclonal antibodies against DR4 or DR5. We found that rhTRAIL is a potent inducer of apoptosis in most of the oral cancer cell lines tested both in vitro and in vivo. We also showed that DR5 was expressed on the surface of the tested cell lines which correlated with the cellular susceptibility to apoptosis induced by rhTRAIL and anti-DR5 antibody. By contrast, little or no DR4 was detected on the surface of OSCC3 and HN6 cells rendering cellular resistance to DR4 antibody and a reduced sensitivity to rhTRAIL. Notably, the overall TRAIL sensitivity correlated well with the levels of endogenous active Ras in the cell lines tested. Expression of a constitutively active Ras mutant (RasV12) in OSCC3 cells selectively upregulated surface expression of DR5, but not DR4, and restored TRAIL sensitivity. Our findings could have implications for the use of TRAIL receptor targeted therapies in the treatment of human OSCC tumors particularly the ones harboring constitutively active Ras mutant.
Collapse
Affiliation(s)
- Jun-Jie Chen
- Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
40
|
Huang L, Huang QY, Huang HQ. The evidence of HeLa cell apoptosis induced with tetraethylammonium using proteomics and various analytical methods. J Biol Chem 2013; 289:2217-29. [PMID: 24297172 DOI: 10.1074/jbc.m113.515932] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tetraethylammonium (TEA) is a potassium channel (KCh) blocker applied in the functional and pharmacological studies of the KChs. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, a colorimetric assay to quantitatively measure living cells, demonstrated that TEA reduced the HeLa cell viability dose-dependently. Flow cytometry analysis indicated an increased apoptosis rate of the HeLa cell after exposing to TEA. The patch clamp technique revealed that the K(+) current of the HeLa cell was inhibited up to 80% when exposed to TEA. In addition, quantitative real-time PCR approach set up cross-talk among the cytotoxicity of TEA, 4-aminopyridine, and anti-cancer drug such as cisplatin. Using comparative proteomics combined with MALDI-TOF MS/MS, 33 significantly changed proteins were found from TEA treatment group; among these proteins, 12 were up-regulated, and 21 were down-regulated. Here we indicated that these proteins were closely connected with many biological functions such as oxidative stress response, signal transduction, metabolism, protein synthesis, and degradation. Both Western blotting and quantitative real-time PCR approaches further verified these differential proteins. Ingenuity Pathways Analysis software, a tool to analyze "omics" data and model biological system, was applied to analyze the interaction pathways of these proteins. The subcellular locations of the differential proteins are also predicted from Uniprot. All results above can help in our understanding of the mechanism of TEA-induced cytotoxicity and provide potential cancer biomarkers. Various experimental results in this study (like those for cisplatin) indicated that TEA is not only a KCh blocker but also a potential anti-cancer drug.
Collapse
Affiliation(s)
- Lin Huang
- From the State Key Laboratory of Cellular Stress Biology, School of Life Sciences, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China and
| | | | | |
Collapse
|
41
|
Wang L, Pan J, Wang T, Song M, Chen W. Pathological cyclic strain-induced apoptosis in human periodontal ligament cells through the RhoGDIα/caspase-3/PARP pathway. PLoS One 2013; 8:e75973. [PMID: 24130754 PMCID: PMC3794943 DOI: 10.1371/journal.pone.0075973] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 08/19/2013] [Indexed: 12/16/2022] Open
Abstract
AIM Human periodontal ligament (PDL) cells incur changes in morphology and express proteins in response to cyclic strain. However, it is not clear whether cyclic strain, especially excessive cyclic strain, induces PDL cell apoptosis and if so, what mechanism(s) are responsible. The aim of the present study was to elucidate the molecular mechanisms by which pathological levels of cyclic strain induce human PDL cell apoptosis. MATERIALS AND METHODS Human PDL cells were obtained from healthy premolar tissue. After three to five passages in culture, the cells were subjected to 20% cyclic strain at a frequency of 0.1 Hz for 6 or 24 h using an FX-5000T system. Morphological changes of the cells were assessed by inverted phase-contrast microscopy, and apoptosis was detected by fluorescein isothiocyanate (FITC)-conjugated annexin V and propidium iodide staining followed by flow cytometry. Protein expression was evaluated by Western blot analysis. RESULTS The number of apoptotic human PDL cells increased in a time-dependent manner in response to pathological cyclic strain. The stretched cells were oriented parallel to each another with their long axes perpendicular to the strain force vector. Cleaved caspase-3 and poly-ADP-ribose polymerase (PARP) protein levels increased in response to pathological cyclic strain over time, while Rho GDP dissociation inhibitor alpha (RhoGDIα) decreased. Furthermore, knock-down of RhoGDIα by targeted siRNA transfection increased stretch-induced apoptosis and upregulated cleaved caspase-3 and PARP protein levels. Inhibition of caspase-3 prevented stretch-induced apoptosis, but did not change RhoGDIα protein levels. CONCLUSION The overall results suggest that pathological-level cyclic strain not only influenced morphology but also induced apoptosis in human PDL cells through the RhoGDIα/caspase-3/PARP pathway. Our findings provide novel insight into the mechanism of apoptosis induced by pathological cyclic strain in human PDL cells.
Collapse
Affiliation(s)
- Li Wang
- Department of Stomatology, First People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinsong Pan
- Department of Stomatology, First People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Tingle Wang
- Department of Stomatology, Central Hospital of Minhang District, Shanghai, China
| | - Meng Song
- Department of Stomatology, First People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (MS); (WC)
| | - Wantao Chen
- Department of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
- * E-mail: (MS); (WC)
| |
Collapse
|
42
|
Huang TC, Chen JY. Proteomic analysis reveals that pardaxin triggers apoptotic signaling pathways in human cervical carcinoma HeLa cells: cross talk among the UPR, c-Jun and ROS. Carcinogenesis 2013; 34:1833-42. [DOI: 10.1093/carcin/bgt130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
43
|
De Schutter T, Andrei G, Topalis D, Naesens L, Snoeck R. Cidofovir selectivity is based on the different response of normal and cancer cells to DNA damage. BMC Med Genomics 2013; 6:18. [PMID: 23702334 PMCID: PMC3681722 DOI: 10.1186/1755-8794-6-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/17/2013] [Indexed: 12/05/2022] Open
Abstract
Background Cidofovir (CDV) proved efficacious in treatment of human papillomaviruses (HPVs) hyperplasias. Antiproliferative effects of CDV have been associated with apoptosis induction, S-phase accumulation, and increased levels of tumor suppressor proteins. However, the molecular mechanisms for the selectivity and antitumor activity of CDV against HPV-transformed cells remain unexplained. Methods We evaluated CDV drug metabolism and incorporation into cellular DNA, in addition to whole genome gene expression profiling by means of microarrays in two HPV+ cervical carcinoma cells, HPV- immortalized keratinocytes, and normal keratinocytes. Results Determination of the metabolism and drug incorporation of CDV into genomic DNA demonstrated a higher rate of drug incorporation in HPV+ tumor cells and immortalized keratinocytes compared to normal keratinocytes. Gene expression profiling clearly showed distinct and specific drug effects in the cell types investigated. Although an effect on inflammatory response was seen in all cell types, different pathways were identified in normal keratinocytes compared to immortalized keratinocytes and HPV+ tumor cells. Notably, Rho GTPase pathways, LXR/RXR pathways, and acute phase response signaling were exclusively activated in immortalized cells. CDV exposed normal keratinocytes displayed activated cell cycle regulation upon DNA damage signaling to allow DNA repair via homologous recombination, resulting in genomic stability and survival. Although CDV induced cell cycle arrest in HPV- immortalized cells, DNA repair was not activated in these cells. In contrast, HPV+ cells lacked cell cycle regulation, leading to genomic instability and eventually apoptosis. Conclusions Taken together, our data provide novel insights into the mechanism of action of CDV and its selectivity for HPV-transformed cells. The proposed mechanism suggests that this selectivity is based on the inability of HPV+ cells to respond to DNA damage, rather than on a direct anti-HPV effect. Since cell cycle control is deregulated by the viral oncoproteins E6 and E7 in HPV+ cells, these cells are more susceptible to DNA damage than normal keratinocytes. Our findings underline the therapeutic potential of CDV for HPV-associated malignancies as well as other neoplasias.
Collapse
Affiliation(s)
- Tim De Schutter
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
44
|
Qiu X, Yuan Y, Vaishnav A, Tessel MA, Nonn L, van Breemen RB. Effects of lycopene on protein expression in human primary prostatic epithelial cells. Cancer Prev Res (Phila) 2013; 6:419-27. [PMID: 23483004 PMCID: PMC3644332 DOI: 10.1158/1940-6207.capr-12-0364] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Clinical trials and animal studies have suggested that lycopene, the red carotenoid found in tomatoes, might be useful for the prevention of prostate cancer in the diet or as a dietary supplement through a variety of chemoprevention mechanisms. As most mechanism of action studies have used prostate cancer cells or males with existing prostate cancer, we investigated the effects of lycopene on protein expression in human primary prostatic epithelial cells. After treatment with lycopene at a physiologically relevant concentration (2 μmol/L) or placebo for 48 hours, the primary prostatic epithelial cells were lysed and fractionated using centrifugation into cytosolic/membrane and nuclear fractions. Proteins from lycopene-treated and placebo-treated cells were trypsinized and derivatized for quantitative proteomics using isobaric tags for relative and absolute quantitation (iTRAQ) reagent. Peptides were analyzed using two-dimensional microcapillary high-performance liquid chromatography-tandem mass spectrometry to identify proteins that were significantly upregulated or downregulated following lycopene exposure. Proteins that were most affected by lycopene were those involved in antioxidant responses, cytoprotection, apoptosis, growth inhibition, androgen receptor signaling, and the Akt/mTOR cascade. These data are consistent with previous studies suggesting that lycopene can prevent cancer in human prostatic epithelial cells at the stages of cancer initiation, promotion, and/or progression.
Collapse
Affiliation(s)
- Xi Qiu
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL
| | - Yang Yuan
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL
| | - Avani Vaishnav
- Department of Pathology, University of Illinois College of Medicine, Chicago, IL
| | - Michael A. Tessel
- Department of Pathology, University of Illinois College of Medicine, Chicago, IL
| | - Larisa Nonn
- Department of Pathology, University of Illinois College of Medicine, Chicago, IL
| | - Richard B. van Breemen
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL
| |
Collapse
|
45
|
Provan F, Jensen LB, Uleberg KE, Larssen E, Rajalahti T, Mullins J, Obach A. Proteomic analysis of epidermal mucus from sea lice-infected Atlantic salmon, Salmo salar L. JOURNAL OF FISH DISEASES 2013; 36:311-321. [PMID: 23305410 DOI: 10.1111/jfd.12064] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/29/2012] [Accepted: 10/31/2012] [Indexed: 06/01/2023]
Abstract
Health diets that contain immunostimulants and other functional ingredients can strengthen the immune response in Atlantic salmon, Salmo salar, and thereby reduce sea lice, Lepeophtheirus salmonis, infection levels. Such diets can be used to supplement other treatments and will potentially reduce the need for delousing and medication. A sea lice infection trial was conducted on fish with an average weight of 215 g. One control diet and four experimental diets containing functional ingredients were produced. The diets were fed to salmon for 4 weeks before infection with sea lice copepodids. When lice had developed to chalimus III/IV, 88 fish per diet were examined for lice loads. Mucus samples from fish fed the different diets were taken before and after lice infection. Mass spectrometry-based proteomics was used to characterize the protein composition in the epidermal mucus of Atlantic salmon and to identify quantitative alterations in protein expression. Multivariate analysis of the generated data sets was performed to identify protein biomarkers. Putative biomarkers associated with functional feed intake and with sea lice infection have been identified and can form the basis for strategic validation experiments with selected functional feeds.
Collapse
Affiliation(s)
- F Provan
- International Research Institute of Stavanger, Stavanger, Norway.
| | | | | | | | | | | | | |
Collapse
|
46
|
Golubnitschaja O, Yeghiazaryan K, Costigliola V, Trog D, Braun M, Debald M, Kuhn W, Schild HH. Risk assessment, disease prevention and personalised treatments in breast cancer: is clinically qualified integrative approach in the horizon? EPMA J 2013; 4:6. [PMID: 23418957 PMCID: PMC3615949 DOI: 10.1186/1878-5085-4-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/29/2012] [Indexed: 12/21/2022]
Abstract
Breast cancer is a multifactorial disease. A spectrum of internal and external factors contributes to the disease promotion such as a genetic predisposition, chronic inflammatory processes, exposure to toxic compounds, abundant stress factors, a shift-worker job, etc. The cumulative effects lead to high incidence of breast cancer in populations worldwide. Breast cancer in the USA is currently registered with the highest incidence rates amongst all cancer related patient cohorts. Currently applied diagnostic approaches are frequently unable to recognise early stages in tumour development that impairs individual outcomes. Early diagnosis has been demonstrated to be highly beneficial for significantly enhanced therapy efficacy and possibly full recovery. Actual paper shows that the elaboration of an integrative diagnostic approach combining several levels of examinations creates a robust platform for the reliable risk assessment, targeted preventive measures and more effective treatments tailored to the person in the overall task of breast cancer management. The levels of examinations are proposed, and innovative technological approaches are described in the paper. The absolute necessity to create individual patient profiles and extended medical records is justified for the utilising by routine medical services. Expert recommendations are provided to promote further developments in the field.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Department of Radiology, Rheinische Friedrich-Wilhelms-University of Bonn, Sigmund-Freud-Str, 25, Bonn, 53105, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Dal Bo M, Pozzo F, Bomben R, Degan M, Marconi D, Zucchetto A, Rossi D, Pozzato G, Zauli G, Gaidano G, Del Poeta G, Gattei V. ARHGDIA, a mutant TP53-associated Rho GDP dissociation inhibitor, is over-expressed in gene expression profiles of TP53 disrupted chronic lymphocytic leukaemia cells. Br J Haematol 2013; 161:596-9. [PMID: 23406297 DOI: 10.1111/bjh.12258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Boatti L, Robotti E, Marengo E, Viarengo A, Marsano F. Effects of nickel, chlorpyrifos and their mixture on the Dictyostelium discoideum proteome. Int J Mol Sci 2012; 13:15679-705. [PMID: 23443088 PMCID: PMC3546656 DOI: 10.3390/ijms131215679] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 11/16/2022] Open
Abstract
Mixtures of chemicals can have additive, synergistic or antagonistic interactions. We investigated the effects of the exposure to nickel, the organophosphate insecticide chlorpyrifos at effect concentrations (EC) of 25% and 50% and their binary mixture (Ec25 + EC25) on Dictyostelium discoideum amoebae based on lysosomal membrane stability (LMS). We treated D. discoideum with these compounds under controlled laboratory conditions and evaluated the changes in protein levels using a two-dimensional gel electrophoresis (2DE) proteomic approach. Nickel treatment at EC25 induced changes in 14 protein spots, 12 of which were down-regulated. Treatment with nickel at EC50 resulted in changes in 15 spots, 10 of which were down-regulated. Treatment with chlorpyrifos at EC25 induced changes in six spots, all of which were down-regulated; treatment with chlorpyrifos at EC50 induced changes in 13 spots, five of which were down-regulated. The mixture corresponding to EC25 of each compound induced changes in 19 spots, 13 of which were down-regulated. The data together reveal that a different protein expression signature exists for each treatment, and that only a few proteins are modulated in multiple different treatments. For a simple binary mixture, the proteomic response does not allow for the identification of each toxicant. The protein spots that showed significant differences were identified by mass spectrometry, which revealed modulations of proteins involved in metal detoxification, stress adaptation, the oxidative stress response and other cellular processes.
Collapse
Affiliation(s)
- Lara Boatti
- Department of Science & Technological Innovation (DiSIT), The University of Eastern Piedmont Amedeo Avogadro, Alessandria, Novara, Vercelli, Viale Teresa Michel, 11-15121 Alessandria, Italy.
| | | | | | | | | |
Collapse
|
49
|
Dhondge A, Surendran S, Seralathan MV, Naoghare PK, Krishnamurthi K, Devi SS, Chakrabarti T. Cellular alterations and modulation of protein expression in bitumen-challenged human osteoblast cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:4030-4041. [PMID: 22528993 DOI: 10.1007/s11356-012-0879-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/13/2012] [Indexed: 05/31/2023]
Abstract
PURPOSE There are many arguments on the carcinogenic potential of bitumen extract. The mechanism of bitumen-induced damage is not well understood at the molecular level. Therefore, in the present study, cell-transforming and tumor-inducing potential of bitumen extract was studied using in vitro [human osteosarcoma (HOS) cells] and in vivo [nude and severe combined immunodeficiency (SCID) mice] models. METHODS Gas chromatography/mass spectrometry (GC/MS) analysis was carried out to find out the existence of carcinogenic compounds in the bitumen extract. Cell transformation test, anchorage independence assay, karyotyping assay, tumorigenicity assay, and 2-DE analysis were used to find out the effect of bitumen using the in vitro and in vivo models. RESULTS GC/MS analysis showed the existence of carcinogenic compounds in the bitumen extract. HOS cells were treated with different concentrations (25, 50, and 100 μl/ml) of bitumen extract. Compared to the parental HOS cells, bitumen transformants (HOS T1 and HOS T2) showed the characteristics of anchorage independency, chromosomal anomaly, and cellular transformation. Interestingly, bitumen transformants were not able to form tumor in nude/SCID mice. Proteomic analysis revealed the existence of 19 differentially expressed proteins involved in progression of cancer, angiogenesis, cell adhesion, etc. CONCLUSIONS Exposure of bitumen extract to HOS cells results in the cellular transformation similar to cancer cells and can modulate proteins involved in the progression of cancer. We state that the non-tumorogenic potential of bitumen transformant in nude/SCID mice can be attributed to the downregulation of galectin-1, chromodomain helicase DNA-binding protein 1-like gene, and membrane-associated guanylate kinase 2 protein.
Collapse
Affiliation(s)
- Alka Dhondge
- National Environmental Engineering Research Institute, Nehru Marg, Nagpur, India
| | | | | | | | | | | | | |
Collapse
|
50
|
Stiehler C, Bünger C, Overall RW, Royer L, Schroeder M, Foss M, Besenbacher F, Kruhøffer M, Kassem M, Günther KP, Stiehler M. Whole-Genome Expression Analysis of Human Mesenchymal Stromal Cells Exposed to Ultrasmooth Tantalum vs. Titanium Oxide Surfaces. Cell Mol Bioeng 2012. [DOI: 10.1007/s12195-012-0255-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|