1
|
Neri I, Ramazzotti G, Mongiorgi S, Rusciano I, Bugiani M, Conti L, Cousin M, Giorgio E, Padiath QS, Vaula G, Cortelli P, Manzoli L, Ratti S. Understanding the Ultra-Rare Disease Autosomal Dominant Leukodystrophy: an Updated Review on Morpho-Functional Alterations Found in Experimental Models. Mol Neurobiol 2023; 60:6362-6372. [PMID: 37450245 PMCID: PMC10533580 DOI: 10.1007/s12035-023-03461-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Autosomal dominant leukodystrophy (ADLD) is an ultra-rare, slowly progressive, and fatal neurodegenerative disorder associated with the loss of white matter in the central nervous system (CNS). Several years after its first clinical description, ADLD was found to be caused by coding and non-coding variants in the LMNB1 gene that cause its overexpression in at least the brain of patients. LMNB1 encodes for Lamin B1, a protein of the nuclear lamina. Lamin B1 regulates many cellular processes such as DNA replication, chromatin organization, and senescence. However, its functions have not been fully characterized yet. Nevertheless, Lamin B1 together with the other lamins that constitute the nuclear lamina has firstly the key role of maintaining the nuclear structure. Being the nucleus a dynamic system subject to both biochemical and mechanical regulation, it is conceivable that changes to its structural homeostasis might translate into functional alterations. Under this light, this review aims at describing the pieces of evidence that to date have been obtained regarding the effects of LMNB1 overexpression on cellular morphology and functionality. Moreover, we suggest that further investigation on ADLD morpho-functional consequences is essential to better understand this complex disease and, possibly, other neurological disorders affecting CNS myelination.
Collapse
Affiliation(s)
- Irene Neri
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Isabella Rusciano
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Marianna Bugiani
- Department of Pathology, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, 1105, Amsterdam, The Netherlands
| | - Luciano Conti
- Department of Cellular, Computational, and Integrative Biology (CIBIO), Università Degli Studi Di Trento, 38123, Povo-Trento, Italy
| | - Margot Cousin
- Center for Individualized Medicine and Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, 27100, Pavia, Italy
- Medical Genetics Unit, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | - Quasar S Padiath
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Giovanna Vaula
- Department of Neuroscience, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, 10126, Turin, Italy
| | - Pietro Cortelli
- IRCCS, Istituto Di Scienze Neurologiche Di Bologna, 40139, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 , Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy.
| |
Collapse
|
2
|
Ma Y, Deng X, Zhou L, Dong H, Xu P. HSV-1 selectively packs the transcription factor Oct-1 into EVs to facilitate its infection. Front Microbiol 2023; 14:1205906. [PMID: 37396389 PMCID: PMC10309031 DOI: 10.3389/fmicb.2023.1205906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
HSV-1 hijacks the cellular vesicular secretion system and promotes the secretion of extracellular vesicles (EVs) from infected cells. This is believed to facilitate the maturation, secretion, intracellular transportation and immune evasion of the virus. Intriguingly, previous studies have shown that noninfectious EVs from HSV-1-infected cells exert antiviral effects on HSV-1 and have identified host restrictive factors, such as STING, CD63, and Sp100 packed in these lipid bilayer-enclosed vesicles. Octamer-binding transcription factor-1 (Oct-1) is shown here to be a pro-viral cargo in non-virion-containing EVs during HSV-1 infection and serves to facilitate virus dissemination. Specifically, during HSV-1 infection, the nuclear localized transcription factor Oct-1 displayed punctate cytosolic staining that frequently colocalized with VP16 and was increasingly secreted into the extracellular space. HSV-1 grown in cells bereft of Oct-1 (Oct-1 KO) was significantly less efficient at transcribing viral genes during the next round of infection. In fact, HSV-1 promoted increased exportation of Oct-1 in non-virion-containing EVs, but not the other VP16-induced complex (VIC) component HCF-1, and EV-associated Oct-1 was promptly imported into the nucleus of recipient cells to facilitate the next round of HSV-1 infection. Interestingly, we also found that EVs from HSV-1-infected cells primed cells for infection by another RNA virus, vesicular stomatitis virus. In summary, this investigation reports one of the first pro-viral host proteins packed into EVs during HSV-1 infection and underlines the heterogenetic nature and complexity of these noninfectious double-lipid particles.
Collapse
|
3
|
Perovanovic J, Wu Y, Abewe H, Shen Z, Hughes EP, Gertz J, Chandrasekharan MB, Tantin D. Oct1 cooperates with the Smad family of transcription factors to promote mesodermal lineage specification. Sci Signal 2023; 16:eadd5750. [PMID: 37071732 PMCID: PMC10360295 DOI: 10.1126/scisignal.add5750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 03/14/2023] [Indexed: 04/20/2023]
Abstract
The transition between pluripotent and tissue-specific states is a key aspect of development. Understanding the pathways driving these transitions will facilitate the engineering of properly differentiated cells for experimental and therapeutic uses. Here, we showed that during mesoderm differentiation, the transcription factor Oct1 activated developmental lineage-appropriate genes that were silent in pluripotent cells. Using mouse embryonic stem cells (ESCs) with an inducible knockout of Oct1, we showed that Oct1 deficiency resulted in poor induction of mesoderm-specific genes, leading to impaired mesodermal and terminal muscle differentiation. Oct1-deficient cells exhibited poor temporal coordination of the induction of lineage-specific genes and showed inappropriate developmental lineage branching, resulting in poorly differentiated cell states retaining epithelial characteristics. In ESCs, Oct1 localized with the pluripotency factor Oct4 at mesoderm-associated genes and remained bound to those loci during differentiation after the dissociation of Oct4. Binding events for Oct1 overlapped with those for the histone lysine demethylase Utx, and an interaction between Oct1 and Utx suggested that these two proteins cooperate to activate gene expression. The specificity of the ubiquitous Oct1 for the induction of mesodermal genes could be partially explained by the frequent coexistence of Smad and Oct binding sites at mesoderm-specific genes and the cooperative stimulation of mesodermal gene transcription by Oct1 and Smad3. Together, these results identify Oct1 as a key mediator of mesoderm lineage-specific gene induction.
Collapse
Affiliation(s)
- Jelena Perovanovic
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Yifan Wu
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Hosiana Abewe
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Zuolian Shen
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Erik P. Hughes
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Mahesh B. Chandrasekharan
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
4
|
Jackson NA, Jabbi MM. Integrating biobehavioral information to predict mood disorder suicide risk. Brain Behav Immun Health 2022; 24:100495. [PMID: 35990401 PMCID: PMC9388879 DOI: 10.1016/j.bbih.2022.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
The will to live and the ability to maintain one's well-being are crucial for survival. Yet, almost a million people die by suicide globally each year (Aleman and Denys, 2014), making premature deaths due to suicide a significant public health problem (Saxena et al., 2013). The expression of suicidal behaviors is a complex phenotype with documented biological, psychological, clinical, and sociocultural risk factors (Turecki et al., 2019). From a brain disease perspective, suicide is associated with neuroanatomical, neurophysiological, and neurochemical dysregulations of brain networks involved in integrating and contextualizing cognitive and emotional regulatory behaviors. From a symptom perspective, diagnostic measures of dysregulated mood states like major depressive symptoms are associated with over sixty percent of suicide deaths worldwide (Saxena et al., 2013). This paper reviews the neurobiological and clinical phenotypic correlates for mood dysregulations and suicidal phenotypes. We further propose machine learning approaches to integrate neurobiological measures with dysregulated mood symptoms to elucidate the role of inflammatory processes as neurobiological risk factors for suicide.
Collapse
Affiliation(s)
- Nicholas A. Jackson
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, USA
- Institute for Neuroscience, The University of Texas at Austin, USA
| | - Mbemba M. Jabbi
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, USA
- Mulva Clinics for the Neurosciences
- Institute for Neuroscience, The University of Texas at Austin, USA
- Department of Psychology, The University of Texas at Austin, USA
- Center for Learning and Memory, The University of Texas at Austin, USA
| |
Collapse
|
5
|
Primate-specific stress-induced transcription factor POU2F1Z protects human neuronal cells from stress. Sci Rep 2021; 11:18808. [PMID: 34552146 PMCID: PMC8458439 DOI: 10.1038/s41598-021-98323-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
The emergence of new primate-specific genes is an essential factor in human and primate brain development and functioning. POU2F1/Oct-1 is a transcription regulator in higher eukaryotes which is involved in the regulation of development, differentiation, stress response, and other processes. We have demonstrated that the Tigger2 transposon insertion into the POU2F1 gene which occurred in the primate lineage led to the formation of an additional exon (designated the Z-exon). Z-exon-containing primate-specific Oct-1Z transcript includes a short upstream ORF (uORF) located at its 5’-end and the main ORF encoding the Oct-1Z protein isoform (Pou2F1 isoform 3, P14859-3), which differs from other Oct-1 isoforms by its N-terminal peptide. The Oct-1Z-encoding transcript is expressed mainly in human brain cortex. Under normal conditions, the translation of the ORF coding for the Oct-1Z isoform is repressed by uORF. Under various stress conditions, uORF enables a strong increase in the translation of the Oct-1Z-encoding ORF. Increased Oct-1Z expression levels in differentiating human neuroblasts activate genes controlling stress response, neural cell differentiation, brain formation, and organogenesis. We have shown that the Oct-1Z isoform of the POU2F1/Oct-1 transcription factor is an example of a primate-specific genomic element contributing to brain development and cellular stress defense.
Collapse
|
6
|
POU2F1 Promotes Cell Viability and Tumor Growth in Gastric Cancer through Transcriptional Activation of lncRNA TTC3-AS1. JOURNAL OF ONCOLOGY 2021; 2021:5570088. [PMID: 34257651 PMCID: PMC8260299 DOI: 10.1155/2021/5570088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/10/2021] [Accepted: 06/09/2021] [Indexed: 11/18/2022]
Abstract
POU domain, class 2, transcription factor 1 (POU2F1) is involved in the development of gastric cancer (GC). However, the molecular mechanism has not been fully elucidated. Here, we identified a novel lncRNA named TTC3-AS1 that was potentially regulated by POU2F1 and investigated their roles in GC progression. Bioinformatics analysis suggested that high expression of POU2F1 predicted poor prognosis in patients with GC. We further screened out an lncRNA TTC3-AS1 that may be transcriptionally activated by POU2F1 according to the JASPAR database, and POU2F1 and TTC3-AS1 were highly expressed in GC cells and tissues compared with normal controls (NCs). Function analysis revealed that both POU2F1 and TTC3-AS1 played oncogenic roles by promoting cell viability, migration, and invasion in GC. qRT-PCR analysis showed that POU2F1 improved the expression of TTC3-AS1 in GC cells, while TTC3-AS1 knockdown or overexpression had no effect on POU2F1 expression. The results of chromatin immunoprecipitation and DNA-affinity precipitation assays indicated that POU2F1 directly bound to the promoter region of TTC3-AS1 and activated its transcription. TTC3-AS1 knockdown neutralized the protumor effects of POU2F1 overexpression in GC cell lines as well as mouse models of GC, which suggested that TTC3-AS1 mediates the oncogenic function of POU2F1. In summary, POU2F1 promoted GC progression by transcriptionally activating TTC3-AS1; thus, this study provided a new perspective for the mechanism of GC progression.
Collapse
|
7
|
Octamer transcription factor-1 induces the Warburg effect via up-regulation of hexokinase 2 in non-small cell lung cancer. Mol Cell Biochem 2021; 476:3423-3431. [PMID: 33970409 DOI: 10.1007/s11010-021-04171-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/27/2021] [Indexed: 01/05/2023]
Abstract
Reprogramming of energy metabolism is a hallmark of cancer which is prevalent worldwide. Octamer transcription factor-1 (OCT1) is a well-known transcription factor. However, the role of OCT1 in metabolism remodeling has not been well defined. In the present study, we found that OCT1 was up-regulated in non-small cell lung cancer (NSCLC) and correlated with poor patient survival. Further data identified that OCT1 increased glycolysis flux, promoting proliferation in lung cancer cells. Mechanistically, OCT1 facilitated the aerobic glycolysis and cell proliferation via up-regulation of hexokinase 2 (HK2), a crucial enzyme of the Warburg effect. Hence, our findings indicate that, in NSCLC, high levels of OCT1 contribute to the Warburg effect through up-regulation of HK2, linking up the OCT1/HK2 axis and cancer progression, which provide a potential biomarker and therapeutic target for NSCLC treatment.
Collapse
|
8
|
Gupta A, Storey KB. Coordinated expression of Jumonji and AHCY under OCT transcription factor control to regulate gene methylation in wood frogs during anoxia. Gene 2021; 788:145671. [PMID: 33887369 DOI: 10.1016/j.gene.2021.145671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022]
Abstract
Wood frogs (Rana sylvatica) can survive extended periods of whole body freezing. Freezing imparts multiple stresses on cells that include anoxia and dehydration, but these can also be experienced as independent stresses. Under anoxia stress, energy metabolism is suppressed, and pro-survival pathways are prioritized to differentially regulate some transcription factors including OCT1 and OCT4. Jumonji C domain proteins (JMJD1A and JMJD2C) are hypoxia responsive demethylases whose expression is accelerated by OCT1 and OCT4 which act to demethylate genes related to the methionine cycle. The responses by these factors to 24 h anoxia exposure and 4 h aerobic recovery was analyzed in liver and skeletal muscle of wood frogs to assess their involvement in metabolic adaptation to oxygen limitation. Immunoblot results showed a decrease in JMJD1A levels under anoxia in liver and muscle, but an increase was observed in JMJD2C demethylase protein in anoxic skeletal muscle. Protein levels of adenosylhomocysteinase (AHCY) and methionine adenosyl transferase (MAT), enzymes of the methionine cycle, also showed an increase in the reoxygenated liver, whereas the levels decreased in muscle. A transcription factor ELISA showed a decrease in DNA binding by OCT1 in the reoxygenated liver and anoxic skeletal muscle, and transcript levels also showed tissue specific gene expression. The present study provides the first analysis of the role of the OCT1 transcription factor, associated proteins, and lysine demethylases in mediating responses to anoxia by wood frog tissues.
Collapse
Affiliation(s)
- Aakriti Gupta
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada.
| |
Collapse
|
9
|
Domcke S, Hill AJ, Daza RM, Cao J, O'Day DR, Pliner HA, Aldinger KA, Pokholok D, Zhang F, Milbank JH, Zager MA, Glass IA, Steemers FJ, Doherty D, Trapnell C, Cusanovich DA, Shendure J. A human cell atlas of fetal chromatin accessibility. Science 2020; 370:eaba7612. [PMID: 33184180 PMCID: PMC7785298 DOI: 10.1126/science.aba7612] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
The chromatin landscape underlying the specification of human cell types is of fundamental interest. We generated human cell atlases of chromatin accessibility and gene expression in fetal tissues. For chromatin accessibility, we devised a three-level combinatorial indexing assay and applied it to 53 samples representing 15 organs, profiling ~800,000 single cells. We leveraged cell types defined by gene expression to annotate these data and cataloged hundreds of thousands of candidate regulatory elements that exhibit cell type-specific chromatin accessibility. We investigated the properties of lineage-specific transcription factors (such as POU2F1 in neurons), organ-specific specializations of broadly distributed cell types (such as blood and endothelial), and cell type-specific enrichments of complex trait heritability. These data represent a rich resource for the exploration of in vivo human gene regulation in diverse tissues and cell types.
Collapse
Affiliation(s)
- Silvia Domcke
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Andrew J Hill
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Junyue Cao
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Diana R O'Day
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Hannah A Pliner
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Kimberly A Aldinger
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Jennifer H Milbank
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael A Zager
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Center for Data Visualization, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ian A Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Dan Doherty
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Darren A Cusanovich
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
10
|
Gouveia GR, Ferreira SC, Siqueira SAC, de Pádua Covas Lage LA, Hallack Neto AE, de Oliveira Costa R, Pereira J. Overexpression of OCT-1 gene is a biomarker of adverse prognosis for diffuse large B-cell lymphoma (DLBCL): data from a retrospective cohort of 77 Brazilian patients. BMC Cancer 2020; 20:1041. [PMID: 33121489 PMCID: PMC7596969 DOI: 10.1186/s12885-020-07553-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/22/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND OCT-1 gene is a member of the POU-homeodomain family of transcriptional regulators of B-lymphocyte differentiation by controlling expression of B-cell specific genes. BCL-2 gene is a potent inhibitor of apoptosis and it is essential during B-cell differentiation into germinal center. These genes may be expressed in diffuse large B-cell lymphoma (DLBCL), but the role of BCL-2 in its prognosis has been contradictory, and OCT-1 has yet to be tested. METHODS In this study, we aimed to investigate the prognostic impact of OCT-1 and BCL-2 expression in DLBCL treated in the real world with immunochemotherapy in a single center. BCL-2 and OCT-1 genes were available in 78.5% (77/98) DLBCL patients, and the RNA for quantitative real-time PCR was isolated from formalin-fixed paraffin-embedded samples. The values obtained for gene expression were transformed in categorical variable according to their median. RESULTS Cohort median age was 54.5 years (15-84), 49 (50%) were male, 38/77 (49.4%) and 40/77 (51.9%) presented OCT-1 and BCL-2 expression ≥ median, respectively. The overall response rate (ORR) in all patients was 68.4% (67/98), 65,3% (64/98) of patients acquired complete response, and 3.1% (3/98) partial response, while 6.1% (6/98) were primary refractory. The median follow-up was 3.77 years (95% CI: 3.2-4.1), with 5.43 (95% CI: 2.2-NR) of overall survival (OS) and 5.15 years (95% CI: 2.9-NA) of progression free survival (PFS). OCT-1 ≥ median was associated with shorter OS at univariate analysis (p = 0.013; [HR] 2.450, 95% CI: 1.21-4.96) and PFS (p = 0.019; [HR] 2.270, 95%CI: 1.14-4.51) and BCL-2 gene overexpression presented worse PFS (p = 0.043, [HR] 2.008, 95% CI: 1.02-3.95). At multivariate analysis, OCT-1 overexpression was associated with poor PFS (p = 0.035, [HR] 2.22, 95% CI: 1.06-4.67). CONCLUSION In this study, we showed that overexpression of OCT1 gene was an independent prognostic factor of adverse outcomes in DLBCL.
Collapse
Affiliation(s)
- Gisele R Gouveia
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Faculty of Medicine, University of Sao Paulo's Medical School (FM-USP), Av. Dr. Enéas Carvalho de Aguiar, 155, Cerqueira César, São Paulo, Brazil
| | - Suzete C Ferreira
- Department of Molecular Biology, Pró-Sangue Foundation, Sao Paulo Blood Bank, São Paulo, Brazil
| | - Sheila A C Siqueira
- Department of Pathology, Hospital das Clínicas - Faculty of Medicine, Sao Paulo University (HC-FM-USP), São Paulo, Brazil
| | - Luis Alberto de Pádua Covas Lage
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Faculty of Medicine, University of Sao Paulo's Medical School (FM-USP), Av. Dr. Enéas Carvalho de Aguiar, 155, Cerqueira César, São Paulo, Brazil. .,Department of Hematology, Hemotherapy and Cell Therapy, Faculty of Medicine, Sao Paulo University (FM-USP), São Paulo, Brazil.
| | - Abrahão E Hallack Neto
- Department of Hematology and Hemotherapy, University of Juiz de Fora (UJF), Juiz de Fora, Brazil
| | - Renata de Oliveira Costa
- Department of Hematology and Hemotherapy, Centro Universitário Lusíadas (FCMS/UNILUS), Santos, Brazil
| | - Juliana Pereira
- Department of Hematology, Hemotherapy and Cell Therapy, Faculty of Medicine, Sao Paulo University (FM-USP), São Paulo, Brazil.,Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology, Nucleus of non-Hodgkin's Lymphomas & Histiocytic Disorders (LIM-31/FM-USP), São Paulo, Brazil
| |
Collapse
|
11
|
Host Transcription Factors in Hepatitis B Virus RNA Synthesis. Viruses 2020; 12:v12020160. [PMID: 32019103 PMCID: PMC7077322 DOI: 10.3390/v12020160] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
The hepatitis B virus (HBV) chronically infects over 250 million people worldwide and is one of the leading causes of liver cancer and hepatocellular carcinoma. HBV persistence is due in part to the highly stable HBV minichromosome or HBV covalently closed circular DNA (cccDNA) that resides in the nucleus. As HBV replication requires the help of host transcription factors to replicate, focusing on host protein–HBV genome interactions may reveal insights into new drug targets against cccDNA. The structural details on such complexes, however, remain poorly defined. In this review, the current literature regarding host transcription factors’ interactions with HBV cccDNA is discussed.
Collapse
|
12
|
Transcription factor Oct1 protects against hematopoietic stress and promotes acute myeloid leukemia. Exp Hematol 2019; 76:38-48.e2. [PMID: 31295506 PMCID: PMC7670548 DOI: 10.1016/j.exphem.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 01/01/2023]
Abstract
A better understanding of the development and progression of acute myelogenous leukemia (AML) is necessary to improve patient outcome. Here we define roles for the transcription factor Oct1/Pou2f1 in AML and normal hematopoiesis. Inappropriate reactivation of the CDX2 gene is widely observed in leukemia patients and in leukemia mouse models. We show that Oct1 associates with the CDX2 promoter in both normal and AML primary patient samples, but recruits the histone demethylase Jmjd1a/Kdm3a to remove the repressive H3K9me2 mark only in malignant specimens. The CpG DNA immediately adjacent to the Oct1 binding site within the CDX2 promoter exhibits variable DNA methylation in healthy control blood and bone marrow samples, but complete demethylation in AML samples. In MLL-AF9-driven mouse models, partial loss of Oct1 protects from myeloid leukemia. Complete Oct1 loss completely suppresses leukemia but results in lethality from bone marrow failure. Loss of Oct1 in normal hematopoietic transplants results in superficially normal long-term reconstitution; however, animals become acutely sensitive to 5-fluorouracil, indicating that Oct1 is dispensable for normal hematopoiesis but protects blood progenitor cells against external chemotoxic stress. These findings elucidate a novel and important role for Oct1 in AML.
Collapse
|
13
|
The POU-Domain Transcription Factor Oct-6/POU3F1 as a Regulator of Cellular Response to Genotoxic Stress. Cancers (Basel) 2019; 11:cancers11060810. [PMID: 31212703 PMCID: PMC6627474 DOI: 10.3390/cancers11060810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
DNA damage and the generation of reactive oxygen species (ROS) are key mechanisms of apoptotic cell death by commonly used genotoxic drugs. However, the complex cellular response to these pharmacologic agents remains yet to be fully characterized. Several studies have described the role of transcription factor octamer-1 (Oct-1)/Pit-1, Oct-1/2, and Unc-86 shared domain class 2 homeobox 1 (POU2F1) in the regulation of the genes important for cellular response to genotoxic stress. Evaluating the possible involvement of other POU family transcription factors in these pathways, we revealed the inducible expression of Oct-6/POU3F1, a regulator of neural morphogenesis and epidermal differentiation, in cancer cells by genotoxic drugs. The induction of Oct-6 occurs at the transcriptional level via reactive oxygen species (ROS) and ataxia telangiectasia mutated- and Rad3-related (ATR)-dependent mechanisms, but in a p53 independent manner. Moreover, we provide evidence that Oct-6 may play a role in the regulation of cellular response to DNA damaging agents. Indeed, by using the shRNA approach, we demonstrate that in doxorubicin-treated H460 non-small-cell lung carcinoma (NSCLC) cells, Oct-6 depletion leads to a reduced G2-cell cycle arrest and senescence, but also to increased levels of intracellular ROS and DNA damage. In addition, we could identify p21 and catalase as Oct-6 target genes possibly mediating these effects. These results demonstrate that Oct-6 is expressed in cancer cells after genotoxic stress, and suggests its possible role in the control of ROS, DNA damage response (DDR), and senescence.
Collapse
|
14
|
Vázquez-Arreguín K, Bensard C, Schell JC, Swanson E, Chen X, Rutter J, Tantin D. Oct1/Pou2f1 is selectively required for colon regeneration and regulates colon malignancy. PLoS Genet 2019; 15:e1007687. [PMID: 31059499 PMCID: PMC6522070 DOI: 10.1371/journal.pgen.1007687] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 05/16/2019] [Accepted: 04/16/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor Oct1/Pou2f1 promotes poised gene expression states, mitotic stability, glycolytic metabolism and other characteristics of stem cell potency. To determine the effect of Oct1 loss on stem cell maintenance and malignancy, we deleted Oct1 in two different mouse gut stem cell compartments. Oct1 deletion preserved homeostasis in vivo and the ability to establish organoids in vitro, but blocked the ability to recover from treatment with dextran sodium sulfate, and the ability to maintain organoids after passage. In a chemical model of colon cancer, loss of Oct1 in the colon severely restricted tumorigenicity. In contrast, loss of one or both Oct1 alleles progressively increased tumor burden in a colon cancer model driven by loss-of-heterozygosity of the tumor suppressor gene Apc. The different outcomes are consistent with prior findings that Oct1 promotes mitotic stability, and consistent with differentially expressed genes between the two models. Oct1 ChIPseq using HCT116 colon carcinoma cells identifies target genes associated with mitotic stability, metabolism, stress response and malignancy. This set of gene targets overlaps significantly with genes differentially expressed in the two tumor models. These results reveal that Oct1 is selectively required for recovery after colon damage, and that Oct1 has potent effects in colon malignancy, with outcome (pro-oncogenic or tumor suppressive) dictated by tumor etiology.
Collapse
Affiliation(s)
- Karina Vázquez-Arreguín
- Department of Pathology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Claire Bensard
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - John C. Schell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Eric Swanson
- Department of Pathology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Xinjian Chen
- Department of Pathology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States of America
- Howard Hughes Medical Institute, Salt Lake City, Utah, United States of America
| | - Dean Tantin
- Department of Pathology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| |
Collapse
|
15
|
Catalase and nonalcoholic fatty liver disease. Pflugers Arch 2018; 470:1721-1737. [PMID: 30120555 DOI: 10.1007/s00424-018-2195-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
Obesity and insulin resistance are considered the main causes of nonalcoholic fatty liver disease (NAFLD), and oxidative stress accelerates the progression of NAFLD. Free fatty acids, which are elevated in the liver by obesity or insulin resistance, lead to incomplete oxidation in the mitochondria, peroxisomes, and microsomes, leading to the production of reactive oxygen species (ROS). Among the ROS generated, H2O2 is mainly produced in peroxisomes and decomposed by catalase. However, when the H2O2 concentration increases because of decreased expression or activity of catalase, it migrates to cytosol and other organelles, causing cell injury and participating in the Fenton reaction, resulting in serious oxidative stress. To date, numerous studies have been shown to inhibit the pathogenesis of NAFLD, but treatment for this disease mainly depends on weight loss and exercise. Various molecules such as vitamin E, metformin, liraglutide, and resveratrol have been proposed as therapeutic agents, but further verification of the dose setting, clinical application, and side effects is needed. Reducing oxidative stress may be a fundamental method for improving not only the progression of NAFLD but also obesity and insulin resistance. However, the relationship between NAFLD progression and antioxidants, particularly catalase, which is most commonly expressed in the liver, remains unclear. Therefore, this review summarizes the role of catalase, focusing on its potential therapeutic effects in NAFLD progression.
Collapse
|
16
|
Chen HY, Islam A, Yuan TM, Chen SW, Liu PF, Chueh PJ. Regulation of tNOX expression through the ROS-p53-POU3F2 axis contributes to cellular responses against oxaliplatin in human colon cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:161. [PMID: 30029680 PMCID: PMC6053734 DOI: 10.1186/s13046-018-0837-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oxaliplatin belongs to the platinum-based drug family and has shown promise in treating cancer by binding to DNA to induce cytotoxicity. However, individual patients show diverse therapeutic responses toward oxaliplatin due to yet-unknown underlying mechanisms. We recently established that oxaliplatin also exert its anti-cancer activity in gastric cancer cell lines by targeting tumor-associated NADH oxidase (tNOX), attenuate NAD+ generation and reduce NAD+-dependent sirtuin 1 (SIRT1) deacetylase activity, which in turn enhances p53 acetylation and apoptosis. METHODS In this study, differential cellular outcomes in response to oxaliplatin exposure of p53-wild-type versus p53-null HCT116 human colon cancer cells were examined. Cell growth profile was determined by cell impedance measurements and apoptosis was analyzed by flow cytometry. The engagement between oxaliplatin and tNOX protein was studied by cellular thermal shift assay. Furthermore, western blot analysis revealed that p53 was important in regulating tNOX expression in these cell lines. RESULTS In p53-wild-type cells, we found that oxaliplatin inhibited cell growth by inducing apoptosis and concurrently down-regulating tNOX at both the transcriptional and translational levels. In p53-null cells, in contrast, oxaliplatin moderately up-regulated tNOX expression and yielded no apoptosis and much less cytotoxicity. Further experiments revealed that in p53-wild-type cells, oxaliplatin enhanced ROS generation and p53 transcriptional activation, leading to down-regulation of the transcriptional factor, POU3F2, which enhances the expression of tNOX. Moreover, the addition of a ROS scavenger reversed the p53 activation, POU3F2 down-regulation, and apoptosis induced by oxaliplatin in p53-wild-type cells. In the p53-null line, on the other hand, oxaliplatin treatment triggered less ROS generation and no p53 protein, such that POU3F2 and tNOX were not down-regulated and oxaliplatin-mediated cytotoxicity was attenuated. CONCLUSION Our results show that oxaliplatin mediates differential cellular responses in colon cancer cells depending on their p53 status, and demonstrate that the ROS-p53 axis is important for regulating POU3F2 and its downstream target, tNOX. Notably, the depletion of tNOX sensitizes p53-null cells to both spontaneous and oxaliplatin-induced apoptosis. Our work thus clearly shows a scenario in which targeting of tNOX may be a potential strategy for cancer therapy in a p53-inactivated system.
Collapse
Affiliation(s)
- Huei-Yu Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Atikul Islam
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Tien-Ming Yuan
- Department of Surgery, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, 42055, Taiwan
| | - Shi-Wen Chen
- Department of Surgery, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, 42055, Taiwan
| | - Pei-Fen Liu
- DDepartment of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist, Taichung City, 40227, Taiwan
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40227, Taiwan. .,Graduate Institute of Basic Medicine, China Medical University, Taichung, 40402, Taiwan. .,Department of Medical Research, China Medical University Hospital, Taichung, 40402, Taiwan. .,Department of Biotechnology, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
17
|
Zhong Y, Huang H, Chen M, Huang J, Wu Q, Yan GR, Chen D. POU2F1 over-expression correlates with poor prognoses and promotes cell growth and epithelial-to-mesenchymal transition in hepatocellular carcinoma. Oncotarget 2018; 8:44082-44095. [PMID: 28489585 PMCID: PMC5546464 DOI: 10.18632/oncotarget.17296] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/03/2017] [Indexed: 12/31/2022] Open
Abstract
Despite recent efforts to understand activities of POU domain class 2 transcription factor 1 (POU2F1), little is known about the roles of POU2F1 in hepatocellular carcinoma (HCC) tumorigenesis and its correlation with any clinicopathological feature of HCC. In this study, we found that POU2F1 was significantly up-regulated in HCC specimens compared with adjacent non-cancerous liver specimens. The high POU2F1 protein expression level positively correlated with large tumor size, high histological grade, tumor metastasis and advanced clinical stage, and HCC patients with high POU2F1 levels exhibited poor prognoses. We further demonstrated that POU2F1 over-expression promoted HCC cell proliferation, colony formation, epithelial-to-mesenchymal transition (EMT), migration and invasion, while silencing of POU2F1 inhibited these malignant phenotypes. POU2F1 induced the expression of Twist1, Snai1, Snai2 and ZEB1 genes which are involved in the regulation of EMT. Furthermore, POU2F1 was up-regulated by AKT pathway in HCC, and POU2F1 over-expression reversed the inhibition of malignant phenotypes induced by AKT knock-down, indicating POU2F1 is a key down-stream effector of AKT pathway. Collectively, our results indicate that POU2F1 over-expression is positively associated with aggressive phenotypes and poor survival in patients with HCC, and POU2F1 regulated by AKT pathway promotes HCC aggressive phenotypes by regulating the transcription of EMT genes. POU2F1 may be employed as a new prognostic factor and therapeutic target for HCC.
Collapse
Affiliation(s)
- Yonghao Zhong
- Biomedicine Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongyang Huang
- Biomedicine Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Chen
- Biomedicine Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinzhou Huang
- Biomedicine Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingxia Wu
- Biomedicine Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guang-Rong Yan
- Biomedicine Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, China
| | - De Chen
- Biomedicine Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Lindberg BG, Tang X, Dantoft W, Gohel P, Seyedoleslami Esfahani S, Lindvall JM, Engström Y. Nubbin isoform antagonism governs Drosophila intestinal immune homeostasis. PLoS Pathog 2018; 14:e1006936. [PMID: 29499056 PMCID: PMC5851638 DOI: 10.1371/journal.ppat.1006936] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/14/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
Gut immunity is regulated by intricate and dynamic mechanisms to ensure homeostasis despite a constantly changing microbial environment. Several regulatory factors have been described to participate in feedback responses to prevent aberrant immune activity. Little is, however, known about how transcriptional programs are directly tuned to efficiently adapt host gut tissues to the current microbiome. Here we show that the POU/Oct gene nubbin (nub) encodes two transcription factor isoforms, Nub-PB and Nub-PD, which antagonistically regulate immune gene expression in Drosophila. Global transcriptional profiling of adult flies overexpressing Nub-PB in immunocompetent tissues revealed that this form is a strong transcriptional activator of a large set of immune genes. Further genetic analyses showed that Nub-PB is sufficient to drive expression both independently and in conjunction with nuclear factor kappa B (NF-κB), JNK and JAK/STAT pathways. Similar overexpression of Nub-PD did, conversely, repress expression of the same targets. Strikingly, isoform co-overexpression normalized immune gene transcription, suggesting antagonistic activities. RNAi-mediated knockdown of individual nub transcripts in enterocytes confirmed antagonistic regulation by the two isoforms and that both are necessary for normal immune gene transcription in the midgut. Furthermore, enterocyte-specific Nub-PB expression levels had a strong impact on gut bacterial load as well as host lifespan. Overexpression of Nub-PB enhanced bacterial clearance of ingested Erwinia carotovora carotovora 15. Nevertheless, flies quickly succumbed to the infection, suggesting a deleterious immune response. In line with this, prolonged overexpression promoted a proinflammatory signature in the gut with induction of JNK and JAK/STAT pathways, increased apoptosis and stem cell proliferation. These findings highlight a novel regulatory mechanism of host-microbe interactions mediated by antagonistic transcription factor isoforms.
Collapse
Affiliation(s)
- Bo G. Lindberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Xiongzhuo Tang
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Widad Dantoft
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Priya Gohel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Jessica M. Lindvall
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ylva Engström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
19
|
Vázquez-Arreguín K, Maddox J, Kang J, Park D, Cano RR, Factor RE, Ludwig T, Tantin D. BRCA1 through Its E3 Ligase Activity Regulates the Transcription Factor Oct1 and Carbohydrate Metabolism. Mol Cancer Res 2018; 16:439-452. [PMID: 29330289 DOI: 10.1158/1541-7786.mcr-17-0364] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/17/2017] [Accepted: 11/10/2017] [Indexed: 12/19/2022]
Abstract
The tumor suppressor BRCA1 regulates the DNA damage response (DDR) and other processes that remain incompletely defined. Among these, BRCA1 heterodimerizes with BARD1 to ubiquitylate targets via its N-terminal E3 ligase activity. Here, it is demonstrated that BRCA1 promotes oxidative metabolism by degrading Oct1 (POU2F1), a transcription factor with proglycolytic and tumorigenic effects. BRCA1 E3 ubiquitin ligase mutation skews cells toward a glycolytic metabolic profile while elevating Oct1 protein. CRISPR-mediated Oct1 deletion reverts the glycolytic phenotype. RNA sequencing (RNAseq) confirms deregulation of metabolic genes downstream of Oct1. BRCA1 mediates Oct1 ubiquitylation and degradation, and mutation of two ubiquitylated Oct1 lysines insulates the protein against BRCA1-mediated destabilization. Oct1 deletion in MCF-7 breast cancer cells does not perturb growth in standard culture, but inhibits growth in soft agar and xenograft assays. In primary breast cancer clinical specimens, Oct1 protein levels correlate positively with tumor aggressiveness and inversely with BRCA1. These results identify BRCA1 as an Oct1 ubiquitin ligase that catalyzes Oct1 degradation to promote oxidative metabolism and restrict tumorigenicity. Mol Cancer Res; 16(3); 439-52. ©2018 AACR.
Collapse
Affiliation(s)
- Karina Vázquez-Arreguín
- Department of Pathology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jessica Maddox
- Department of Pathology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jinsuk Kang
- Department of Pathology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Dongju Park
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio
| | - Reuben R Cano
- Department of Pathology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Rachel E Factor
- Department of Pathology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Thomas Ludwig
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio
| | - Dean Tantin
- Department of Pathology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah.
| |
Collapse
|
20
|
Zeng K, Tian L, Sirek A, Shao W, Liu L, Chiang YT, Chernoff J, Ng DS, Weng J, Jin T. Pak1 mediates the stimulatory effect of insulin and curcumin on hepatic ChREBP expression. J Mol Cell Biol 2017; 9:384-394. [PMID: 28992163 PMCID: PMC5907843 DOI: 10.1093/jmcb/mjx031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 11/14/2022] Open
Abstract
Insulin can stimulate hepatic expression of carbohydrate-responsive element-binding protein (ChREBP). As recent studies revealed potential metabolic beneficial effects of ChREBP, we asked whether its expression can also be regulated by the dietary polyphenol curcumin. We also aimed to determine mechanisms underlying ChREBP stimulation by insulin and curcumin. The effect of insulin on ChREBP expression was assessed in mouse hepatocytes, while the effect of curcumin was assessed in mouse hepatocytes and with curcumin gavage in mice. Chemical inhibitors for insulin signaling molecules were utilized to identify involved signaling molecules, and the involvement of p21-activated protein kinase 1 (Pak1) was determined with its chemical inhibitor and Pak1-/- hepatocytes. We found that both insulin and curcumin-stimulated ChREBP expression in Akt-independent but MEK/ERK-dependent manner, involving the inactivation of the transcriptional repressor Oct-1. Aged Pak1-/- mice showed reduced body fat volume. Pak1 inhibition or its genetic deletion attenuated the stimulatory effect of insulin or curcumin on ChREBP expression. Our study hence suggests the existence of a novel signaling cascade Pak1/MEK/ERK/Oct-1 for both insulin and curcumin in exerting their glucose-lowering effect via promoting hepatic ChREBP production, supports the recognition of beneficial functions of ChREBP, and brings us a new overview on dietary polyphenols.
Collapse
Affiliation(s)
- Kejing Zeng
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Lili Tian
- Toronto General Research Institutes, University Health Network, Toronto, Canada
| | - Adam Sirek
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Weijuan Shao
- Toronto General Research Institutes, University Health Network, Toronto, Canada
| | - Ling Liu
- Toronto General Research Institutes, University Health Network, Toronto, Canada
| | - Yu-Ting Chiang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jonathan Chernoff
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Dominic S Ng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Keenan Research Centre, Li Ka Shing Knowledge Institute, Department of Medicine, St. Michael’s Hospital, Toronto, Canada
| | - Jianping Weng
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Tianru Jin
- Toronto General Research Institutes, University Health Network, Toronto, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Bathige SDNK, Umasuthan N, Godahewa GI, Thulasitha WS, Jayasinghe JDHE, Wan Q, Lee J. Molecular insights of two STAT1 variants from rock bream (Oplegnathus fasciatus) and their transcriptional regulation in response to pathogenic stress, interleukin-10, and tissue injury. FISH & SHELLFISH IMMUNOLOGY 2017; 69:128-141. [PMID: 28818616 DOI: 10.1016/j.fsi.2017.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/03/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Signal transducers and activators of transcription 1 (STAT1) is critically involved in mediating cytokine-driven signaling, and triggers the transcription of target genes to activate cellular functions. Although the structural and functional aspects of STAT members have been well described in mammals, only limited information is available for the STAT genes in teleost fishes. In the present study, two variants of STAT1 genes (RbSTAT1 and RbSTAT1L) were identified from rock bream and characterized at the cDNA and genomic sequence levels. RbSTAT1 and RbSTAT1L were found to share a common domain architecture with mammalian STAT1. Phylogenetic analysis revealed that RbSTAT1 shows a common evolutionary trajectory with other STAT1 counterparts, whereas RbSTAT1L showed a separate path, implying that it could be a novel member of the STAT family. The genomic organizations of RbSTAT1 and RbSTAT1L illustrated a similar exon-intron pattern with 23 exons in the coding sequence. Transcription factor-binding sites, which are mostly involved in the regulation of immune responses, were predicted at the putative promoter regions of the RbSTAT1 and RbSTAT1L genes. SYBR Green qPCR analysis revealed the ubiquitous expression of RbSTAT1 and RbSTAT1L transcripts in different fish tissues with the highest level observed in peripheral blood cells. Significantly modulated transcripts were noted upon viral (rock bream iridovirus [RBIV]), bacterial (Edwardsiella tarda and Streptococcus iniae), and pathogen-associated molecular pattern (lipopolysaccharide and poly I:C) stimulations. The WST-1 cell viability assay affirmed the potential antiviral capacity of RbSTAT1 and RbSTAT1L against RBIV. A possible role of RbSTAT1 and RbSTAT1L in the wound healing process was revealed according to their modulated expression in injured fish. In addition, the transcriptional regulation of RbSTAT1 and RbSTAT1L was analyzed by qPCR following stimulation with rock bream interleukin-10. Taken together, these findings suggest that the STAT1-mediated Janus kinase/STAT pathway might at least in part be involved in the regulatory mechanisms underlying the immune defensive roles against microbial pathogens and the wound healing process.
Collapse
Affiliation(s)
- S D N K Bathige
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Navaneethaiyer Umasuthan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada
| | - G I Godahewa
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - William Shanthakumar Thulasitha
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Department of Zoology, University of Jaffna, Jaffna, Sri Lanka
| | - J D H E Jayasinghe
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea.
| |
Collapse
|
22
|
Linher-Melville K, Singh G. The complex roles of STAT3 and STAT5 in maintaining redox balance: Lessons from STAT-mediated xCT expression in cancer cells. Mol Cell Endocrinol 2017; 451:40-52. [PMID: 28202313 DOI: 10.1016/j.mce.2017.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 12/12/2022]
Abstract
STAT3 and STAT5 mediate diverse cellular processes, transcriptionally regulating gene expression and interacting with cytoplasmic proteins. Their canonical activity is stimulated by cytokines/growth factors through JAK-STAT signaling. As targets of oncogenes with intrinsic tyrosine kinase activity, STAT3 and STAT5 become constitutively active in hematologic neoplasms and solid tumors, promoting cell proliferation and survival and modulating redox homeostasis. This review summarizes reactive oxygen species (ROS)-regulated STAT activation and how STATs influence ROS production. ROS-induced effects on post-translational modifications are presented, and STAT3/5-mediated regulation of xCT, a redox-sensitive target up-regulated in numerous cancers, is discussed with regard to transcriptional cross-talk.
Collapse
Affiliation(s)
- Katja Linher-Melville
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada.
| |
Collapse
|
23
|
Molecular cloning, transcriptional profiling, and subcellular localization of signal transducer and activator of transcription 2 (STAT2) ortholog from rock bream, Oplegnathus fasciatus. Gene 2017; 626:95-105. [DOI: 10.1016/j.gene.2017.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/16/2017] [Accepted: 05/09/2017] [Indexed: 02/01/2023]
|
24
|
Shen Z, Kang J, Shakya A, Tabaka M, Jarboe EA, Regev A, Tantin D. Enforcement of developmental lineage specificity by transcription factor Oct1. eLife 2017; 6:20937. [PMID: 28537559 PMCID: PMC5466424 DOI: 10.7554/elife.20937] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 05/23/2017] [Indexed: 12/26/2022] Open
Abstract
Embryonic stem cells co-express Oct4 and Oct1, a related protein with similar DNA-binding specificity. To study the role of Oct1 in ESC pluripotency and transcriptional control, we constructed germline and inducible-conditional Oct1-deficient ESC lines. ESCs lacking Oct1 show normal appearance, self-renewal and growth but manifest defects upon differentiation. They fail to form beating cardiomyocytes, generate neurons poorly, form small, poorly differentiated teratomas, and cannot generate chimeric mice. Upon RA-mediated differentiation, Oct1-deficient cells induce lineage-appropriate developmentally poised genes poorly while lineage-inappropriate genes, including extra-embryonic genes, are aberrantly expressed. In ESCs, Oct1 co-occupies a specific set of targets with Oct4, but does not occupy differentially expressed developmental targets. Instead, Oct1 occupies these targets as cells differentiate and Oct4 declines. These results identify a dynamic interplay between Oct1 and Oct4, in particular during the critical window immediately after loss of pluripotency when cells make the earliest developmental fate decisions. DOI:http://dx.doi.org/10.7554/eLife.20937.001 Humans and most other animals are composed of hundreds of different types of cell, including nerve cells, muscle cells and blood cells. Despite performing many different roles, these cells all develop from a single fertilized egg, which divides to make a particular group of cells that when studied in the laboratory are called embryonic stem cells (or ESCs for short). The ability of a cell to become a different cell type is defined as “potency”. ESCs are unique because they can specialize into any type of cell present in the adult organism, and they are therefore called “pluripotent”. However, as the embryo develops, its ESCs gradually lose their potency, and become more and more specialized. The activity of a great number of genes must be regulated during the transition from pluripotent to specialized cells, and some of the mechanisms involved in this transition are still unclear. ESCs are known to need a gene-regulating protein called Oct4 to remain pluripotent and Shen, Kang, Shakya et al. now show that a similar protein named Oct1 is essential for their transition to becoming more specialized. When the gene for Oct1 was deleted from mouse ECSs, they behaved largely like “normal” ESCs, but could not properly mature into certain cell types such as heart and nerve cells. Molecular analyses revealed that Oct4 and Oct1 compete to regulate the activity of many common genes with opposing outcomes: Oct4 keeps ESCs pluripotent while Oct1 leads them to specialize. The Oct4 protein is abundant in ESCs and prevails over Oct1, but as the cells mature, the levels of Oct4 drop, and Oct1 takes over in the regulation of their common target genes. Going forward, a better understanding of how ESCs become specialized will help basic research in the laboratory and allow scientists to tackle new questions about how the human body develops and how our organs work. In the longer-term, these findings might also have applications in the field of regenerative medicine, which aims to repair or replace a person’s cells, tissues or organs to improve their health. DOI:http://dx.doi.org/10.7554/eLife.20937.002
Collapse
Affiliation(s)
- Zuolian Shen
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| | - Jinsuk Kang
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| | - Arvind Shakya
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| | - Marcin Tabaka
- The Broad Institute of MIT and Harvard, Cambridge, United States
| | - Elke A Jarboe
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| | - Aviv Regev
- The Broad Institute of MIT and Harvard, Cambridge, United States.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
25
|
Bathige SDNK, Thulasitha WS, Umasuthan N, Jayasinghe JDHE, Wan Q, Nam BH, Lee J. A homolog of teleostean signal transducer and activator of transcription 3 (STAT3) from rock bream, Oplegnathus fasciatus: Structural insights, transcriptional modulation, and subcellular localization. Vet Immunol Immunopathol 2017; 186:29-40. [PMID: 28413047 DOI: 10.1016/j.vetimm.2017.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 12/23/2016] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is one of the crucial transcription factors in the Janus kinase (JAK)/STAT signaling pathway, and it was previously considered as acute phase response factor. A number of interleukins (ILs) such as IL-5, IL-6, IL-9, IL-10, IL-12, and IL-22 are known to be involved in activation of STAT3. In addition, various growth factors and pathogenic or oxidative stresses mediate the activation of a wide range of functions via STAT3. In this study, a STAT3 homolog was identified and functionally characterized from rock bream (RbSTAT3), Oplegnathus fasciatus. In silico characterization revealed that the RbSTAT3 amino acid sequence shares highly conserved common domain architectural features including N-terminal domain, coiled coil domain, DNA binding domain, linker domain, and Src homology 2 (SH2) domains. In addition, a fairly conserved transcriptional activation domain (TAD) was located at the C-terminus. Comparison of RbSTAT3 with other counterparts revealed higher identities (>90%) with fish orthologs. The genomic sequence of RbSTAT3 was obtained from a bacterial artificial chromosome (BAC) library, and was identified as a multi-exonic gene (24 exons), as found in other vertebrates. Genomic structural comparison and phylogenetic studies have showed that the evolutionary routes of teleostean and non-teleostean vertebrates were distinct. Quantitative real time PCR (qPCR) analysis revealed that the spatial distribution of RbSTAT3 mRNA expression was ubiquitous and highly detectable in blood, heart, and liver tissues. Transcriptional modulation of RbSTAT3 was examined in blood and liver tissues after challenges with bacteria (Edwardsiella tarda and Streptococcus iniae), rock bream irido virus (RBIV), and immune stimulants (LPS and poly (I:C)). Significant changes in RbSTAT3 transcription were also observed in response to tissue injury. In addition, the transcriptional up-regulation of RbSTAT3 was detected in rock bream heart cells upon recombinant rock bream IL-10 (rRbIL-10) treatment. Subcellular localization and nuclear translocation of rock bream STAT3 following poly (I:C) treatment were also demonstrated. Taken together, the results of the current study provide important evidence for potential roles of rock bream STAT3 in the immune system and wound healing processes.
Collapse
Affiliation(s)
- S D N K Bathige
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - William Shanthakumar Thulasitha
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - J D H E Jayasinghe
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - Qiang Wan
- Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan 46083, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 63243, Republic of Korea.
| |
Collapse
|
26
|
Obinata D, Takayama K, Takahashi S, Inoue S. Crosstalk of the Androgen Receptor with Transcriptional Collaborators: Potential Therapeutic Targets for Castration-Resistant Prostate Cancer. Cancers (Basel) 2017; 9:E22. [PMID: 28264478 PMCID: PMC5366817 DOI: 10.3390/cancers9030022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is the second leading cause of death from cancer among males in Western countries. It is also the most commonly diagnosed male cancer in Japan. The progression of prostate cancer is mainly influenced by androgens and the androgen receptor (AR). Androgen deprivation therapy is an established therapy for advanced prostate cancer; however, prostate cancers frequently develop resistance to low testosterone levels and progress to the fatal stage called castration-resistant prostate cancer (CRPC). Surprisingly, AR and the AR signaling pathway are still activated in most CRPC cases. To overcome this problem, abiraterone acetate and enzalutamide were introduced for the treatment of CRPC. Despite the impact of these drugs on prolonged survival, CRPC acquires further resistance to keep the AR pathway activated. Functional molecular studies have shown that some of the AR collaborative transcription factors (TFs), including octamer transcription factor (OCT1), GATA binding protein 2 (GATA2) and forkhead box A1 (FOXA1), still stimulate AR activity in the castration-resistant state. Therefore, elucidating the crosstalk between the AR and collaborative TFs on the AR pathway is critical for developing new strategies for the treatment of CRPC. Recently, many compounds targeting this pathway have been developed for treating CRPC. In this review, we summarize the AR signaling pathway in terms of AR collaborators and focus on pyrrole-imidazole (PI) polyamide as a candidate compound for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo 173-8610, Japan.
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
| | - Kenichi Takayama
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Satoshi Inoue
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan.
| |
Collapse
|
27
|
Pankratova EV, Stepchenko AG, Portseva T, Mogila VA, Georgieva SG. Different N-terminal isoforms of Oct-1 control expression of distinct sets of genes and their high levels in Namalwa Burkitt's lymphoma cells affect a wide range of cellular processes. Nucleic Acids Res 2016; 44:9218-9230. [PMID: 27407111 PMCID: PMC5100579 DOI: 10.1093/nar/gkw623] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 01/03/2023] Open
Abstract
Oct-1 transcription factor has various functions in gene regulation. Its expression level is increased in several types of cancer and is associated with poor survival prognosis. Here we identified distinct Oct-1 protein isoforms in human cells and compared gene expression patterns and functions for Oct-1A, Oct-1L, and Oct-1X isoforms that differ by their N-terminal sequences. The longest isoform, Oct-1A, is abundantly expressed and is the main Oct-1 isoform in most of human tissues. The Oct-1L and the weakly expressed Oct-1X regulate the majority of Oct-1A targets as well as additional sets of genes. Oct-1X controls genes involved in DNA replication, DNA repair, RNA processing, and cellular response to stress. The high level of Oct-1 isoforms upregulates genes related to cell cycle progression and activates proliferation both in Namalwa Burkitt's lymphoma cells and primary human fibroblasts. It downregulates expression of genes related to antigen processing and presentation, cytokine-cytokine receptor interaction, oxidative metabolism, and cell adhesion, thus facilitating pro-oncogenic processes.
Collapse
Affiliation(s)
- Elizaveta V Pankratova
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991 Russia
| | - Alexander G Stepchenko
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991 Russia
| | - Tatiana Portseva
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991 Russia
| | - Vladic A Mogila
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991 Russia
| | - Sofia G Georgieva
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991 Russia
| |
Collapse
|
28
|
Xie CH, Cao YM, Huang Y, Shi QW, Guo JH, Fan ZW, Li JG, Chen BW, Wu BY. Long non-coding RNA TUG1 contributes to tumorigenesis of human osteosarcoma by sponging miR-9-5p and regulating POU2F1 expression. Tumour Biol 2016; 37:15031-15041. [PMID: 27658774 DOI: 10.1007/s13277-016-5391-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/09/2016] [Indexed: 01/02/2023] Open
Abstract
Recent studies have shown that long non-coding RNAs (lncRNAs) have critical roles in tumorigenesis, including osteosarcoma. The lncRNA taurine-upregulated gene 1 (TUG1) was reported to be involved in the progression of osteosarcoma. Here, we investigated the role of TUG1 in osteosarcoma cells and the underlying mechanism. TUG1 expression was measured in osteosarcoma cell lines and human normal osteoblast cells by quantitative real-time PCR (qRT-PCR). The effects of TUG1 on osteosarcoma cells were studied by RNA interference in vitro and in vivo. The mechanism of competing endogenous RNA (ceRNA) was determined using bioinformatic analysis and luciferase assays. Our data showed that TUG1 knockdown inhibited cell proliferation and colony formation, and induced G0/G1 cell cycle arrest and apoptosis in vitro, and suppressed tumor growth in vivo. Besides, we found that TUG1 acted as an endogenous sponge to directly bind to miR-9-5p and downregulated miR-9-5p expression. Moreover, TUG1 overturned the effect of miR-9-5p on the proliferation, colony formation, cell cycle arrest, and apoptosis in osteosarcoma cells, which involved the derepression of POU class 2 homeobox 1 (POU2F1) expression. In conclusion, our study elucidated a novel TUG1/miR-9-5p/POU2F1 pathway, in which TUG1 acted as a ceRNA by sponging miR-9-5p, leading to downregulation of POU2F1 and facilitating the tumorigenesis of osteosarcoma. These findings may contribute to the lncRNA-targeted therapy for human osteosarcoma.
Collapse
Affiliation(s)
- Chu-Hai Xie
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Chang-gang-dong Road, Guangzhou, 510260, China.
| | - Yan-Ming Cao
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Chang-gang-dong Road, Guangzhou, 510260, China
| | - Yan Huang
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Chang-gang-dong Road, Guangzhou, 510260, China
| | - Qun-Wei Shi
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Chang-gang-dong Road, Guangzhou, 510260, China
| | - Jian-Hong Guo
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Chang-gang-dong Road, Guangzhou, 510260, China
| | - Zi-Wen Fan
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Chang-gang-dong Road, Guangzhou, 510260, China
| | - Ju-Gen Li
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Chang-gang-dong Road, Guangzhou, 510260, China
| | - Bin-Wei Chen
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Chang-gang-dong Road, Guangzhou, 510260, China
| | - Bo-Yi Wu
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Chang-gang-dong Road, Guangzhou, 510260, China
| |
Collapse
|
29
|
Vázquez-Arreguín K, Tantin D. The Oct1 transcription factor and epithelial malignancies: Old protein learns new tricks. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:792-804. [PMID: 26877236 PMCID: PMC4880489 DOI: 10.1016/j.bbagrm.2016.02.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 01/29/2023]
Abstract
The metazoan-specific POU domain transcription factor family comprises activities underpinning developmental processes such as embryonic pluripotency and neuronal specification. Some POU family proteins efficiently bind an 8-bp DNA element known as the octamer motif. These proteins are known as Oct transcription factors. Oct1/POU2F1 is the only widely expressed POU factor. Unlike other POU factors it controls no specific developmental or organ system. Oct1 was originally described to operate at target genes associated with proliferation and immune modulation, but more recent results additionally identify targets associated with oxidative and cytotoxic stress resistance, metabolic regulation, stem cell function and other unexpected processes. Oct1 is pro-oncogenic in multiple contexts, and several recent reports provide broad evidence that Oct1 has prognostic and therapeutic value in multiple epithelial tumor settings. This review focuses on established and emerging roles of Oct1 in epithelial tumors, with an emphasis on mechanisms of transcription regulation by Oct1 that may underpin these findings. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin.
Collapse
Affiliation(s)
- Karina Vázquez-Arreguín
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
30
|
Hwang SS, Kim LK, Lee GR, Flavell RA. Role of OCT-1 and partner proteins in T cell differentiation. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:825-31. [PMID: 27126747 DOI: 10.1016/j.bbagrm.2016.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/24/2022]
Abstract
The understanding of CD4 T cell differentiation gives important insights into the control of immune responses against various pathogens and in autoimmune diseases. Naïve CD4 T cells become effector T cells in response to antigen stimulation in combination with various environmental cytokine stimuli. Several transcription factors and cis-regulatory regions have been identified to regulate epigenetic processes on chromatin, to allow the production of proper effector cytokines during CD4 T cell differentiation. OCT-1 (Pou2f1) is well known as a widely expressed transcription factor in most tissues and cells. Although the importance of OCT-1 has been emphasized during development and differentiation, its detailed molecular underpinning and precise role are poorly understood. Recently, a series of studies have reported that OCT-1 plays a critical role in CD4 T cells through regulating gene expression during differentiation and mediating long-range chromosomal interactions. In this review, we will describe the role of OCT-1 in CD4 T cell differentiation and discuss how this factor orchestrates the fate and function of CD4 effector T cells.
Collapse
Affiliation(s)
- Soo Seok Hwang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lark Kyun Kim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonjuro, Gangnam-gu, Seoul 135-720, South Korea
| | - Gap Ryol Lee
- Department of Life-Science, Sogang University, Baekbeom-ro, Seoul 121-742, South Korea
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
31
|
Shakya A, Goren A, Shalek A, German CN, Snook J, Kuchroo VK, Yosef N, Chan RC, Regev A, Williams MA, Tantin D. Oct1 and OCA-B are selectively required for CD4 memory T cell function. J Exp Med 2015; 212:2115-31. [PMID: 26481684 PMCID: PMC4647264 DOI: 10.1084/jem.20150363] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/25/2015] [Indexed: 12/31/2022] Open
Abstract
Shakya et al. identify the transcription factor Oct1 and its cofactor OCA-B as central mediators for generating memory T cell responses in mice. Epigenetic changes are crucial for the generation of immunological memory. Failure to generate or maintain these changes will result in poor memory responses. Similarly, augmenting or stabilizing the correct epigenetic states offers a potential method of enhancing memory. Yet the transcription factors that regulate these processes are poorly defined. We find that the transcription factor Oct1 and its cofactor OCA-B are selectively required for the in vivo generation of CD4+ memory T cells. More importantly, the memory cells that are formed do not respond properly to antigen reencounter. In vitro, both proteins are required to maintain a poised state at the Il2 target locus in resting but previously stimulated CD4+ T cells. OCA-B is also required for the robust reexpression of multiple other genes including Ifng. ChIPseq identifies ∼50 differentially expressed direct Oct1 and OCA-B targets. We identify an underlying mechanism involving OCA-B recruitment of the histone lysine demethylase Jmjd1a to targets such as Il2, Ifng, and Zbtb32. The findings pinpoint Oct1 and OCA-B as central mediators of CD4+ T cell memory.
Collapse
Affiliation(s)
- Arvind Shakya
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Alon Goren
- Broad Technology Labs, The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Alex Shalek
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 Department of Physics, Harvard University, Cambridge, MA 02138 The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Cody N German
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Jeremy Snook
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Vijay K Kuchroo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Nir Yosef
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Raymond C Chan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Aviv Regev
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Matthew A Williams
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
32
|
Glorieux C, Zamocky M, Sandoval JM, Verrax J, Calderon PB. Regulation of catalase expression in healthy and cancerous cells. Free Radic Biol Med 2015; 87:84-97. [PMID: 26117330 DOI: 10.1016/j.freeradbiomed.2015.06.017] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 11/28/2022]
Abstract
Catalase is an important antioxidant enzyme that dismutates hydrogen peroxide into water and molecular oxygen. The catalase gene has all the characteristics of a housekeeping gene (no TATA box, no initiator element sequence, high GC content in promoter) and a core promoter that is highly conserved among species. We demonstrate in this review that within this core promoter, the presence of DNA binding sites for transcription factors, such as NF-Y and Sp1, plays an essential role in the positive regulation of catalase expression. Additional transcription factors, such as FoxO3a, are also involved in this regulatory process. There is strong evidence that the protein Akt/PKB in the PI3K signaling pathway plays a major role in the expression of catalase by modulating the activity of FoxO3a. Over the past decade, other transcription factors (PPARγ, Oct-1, etc.), as well as genetic, epigenetic, and posttranscriptional processes, have emerged as crucial contributors to the regulation of catalase expression. Altered expression levels of catalase have been reported in cancer tissues compared to their normal counterparts. Deciphering the molecular mechanisms that regulate catalase expression could, therefore, be of crucial importance for the future development of pro-oxidant cancer chemotherapy.
Collapse
Affiliation(s)
- Christophe Glorieux
- Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Marcel Zamocky
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), A-1190 Vienna, Austria; Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia
| | - Juan Marcelo Sandoval
- Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Julien Verrax
- Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Pedro Buc Calderon
- Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium; Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile.
| |
Collapse
|
33
|
Casco-Robles MM, Miura T, Chiba C. The newt (Cynops pyrrhogaster) RPE65 promoter: molecular cloning, characterization and functional analysis. Transgenic Res 2015; 24:463-73. [PMID: 25490979 PMCID: PMC4436847 DOI: 10.1007/s11248-014-9857-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/29/2014] [Indexed: 12/20/2022]
Abstract
The adult newt has the ability to regenerate the neural retina following injury, a process achieved primarily by the retinal pigment epithelium (RPE). To deliver exogenous genes to the RPE for genetic manipulation of regenerative events, we isolated the newt RPE65 promoter region by genome walking. First, we cloned the 2.8 kb RPE65 promoter from the newt, Cynops pyrrhogaster. Sequence analysis revealed several conserved regulatory elements described previously in mouse and human RPE65 promoters. Second, having previously established an I-SceI-mediated transgenic protocol for the newt, we used it here to examine the -657 bp proximal promoter of RPE65. The promoter assay used with F0 transgenic newts confirmed transgene expression of mCherry fluorescent protein in the RPE. Using bioinformatic tools and the TRANSFAC database, we identified a 340 bp CpG island located between -635 and -296 bp in the promoter; this region contains response elements for the microphthalmia-associated transcription factor known as MITF (CACGTG, CATGTG), and E-boxes (CANNTG). Sex-determining region box 9 (or SOX9) response element previously reported in the regulation of RPE genes (including RPE65) was also identified in the newt RPE65 promoter. Third, we identified DNA motif boxes in the newt RPE65 promoter that are conserved among other vertebrates. The newt RPE65 promoter is an invaluable tool for site-specific delivery of exogenous genes or genetic manipulation systems for the study of retinal regeneration in this animal.
Collapse
Affiliation(s)
- Martin Miguel Casco-Robles
- Department of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572 Japan
| | - Tomoya Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572 Japan
| | - Chikafumi Chiba
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572 Japan
| |
Collapse
|
34
|
Puscheck EE, Awonuga AO, Yang Y, Jiang Z, Rappolee DA. Molecular biology of the stress response in the early embryo and its stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 843:77-128. [PMID: 25956296 DOI: 10.1007/978-1-4939-2480-6_4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stress is normal during early embryogenesis and transient, elevated stress is commonplace. Stress in the milieu of the peri-implantation embryo is a summation of maternal hormones, and other elements of the maternal milieu, that signal preparedness for development and implantation. Examples discussed here are leptin, adrenaline, cortisol, and progesterone. These hormones signal maternal nutritional status and provide energy, but also signal stress that diverts maternal and embryonic energy from an optimal embryonic developmental trajectory. These hormones communicate endocrine maternal effects and local embryonic effects although signaling mechanisms are not well understood. Other in vivo stresses affect the embryo such as local infection and inflammation, hypoxia, environmental toxins such as benzopyrene, dioxin, or metals, heat shock, and hyperosmotic stress due to dehydration or diabetes. In vitro, stresses include shear during handling, improper culture media and oxygen levels, cryopreservation, and manipulations of the embryo to introduce sperm or mitochondria. We define stress as any stimulus that slows stem cell accumulation or diminishes the ability of cells to produce normal and sufficient parenchymal products upon differentiation. Thus stress deflects downwards the normal trajectories of development, growth and differentiation. Typically stress is inversely proportional to embryonic developmental and proliferative rates, but can be proportional to induction of differentiation of stem cells in the peri-implantation embryo. When modeling stress it is most interesting to produce a 'runting model' where stress exposures slow accumulation but do not create excessive apoptosis or morbidity. Windows of stress sensitivity may occur when major new embryonic developmental programs require large amounts of energy and are exacerbated if nutritional flow decreases and removes energy from the normal developmental programs and stress responses. These windows correspond to zygotic genome activation, the large mRNA program initiated at compaction, ion pumping required for cavitation, the differentiation of the first lineages, integration with the uterine environment at implantation, rapid proliferation of stem cells, and production of certain lineages which require the highest energy and are most sensitive to mitochondrial inhibition. Stress response mechanisms insure that stem cells for the early embryo and placenta survive at lower stress exposures, and that the organism survives through compensatory and prioritized stem cell differentiation, at higher stress exposures. These servomechanisms include a small set of stress enzymes from the 500 protein kinases in the kinome; the part of the genome coding for protein kinases that hierarchically regulate the activity of other proteins and enzymes. Important protein kinases that mediate the stress response of embryos and their stem cells are SAPK, p38MAPK, AMPK, PI3K, Akt, MEK1/2, MEKK4, PKA, IRE1 and PERK. These stress enzymes have cytosolic function in cell survival at low stress exposures and nuclear function in modifying transcription factor activity at higher stress exposures. Some of the transcription factors (TFs) that are most important in the stress response are JunC, JunB, MAPKAPs, ATF4, XBP1, Oct1, Oct4, HIFs, Nrf2/KEAP, NFKB, MT1, Nfat5, HSF1/2 and potency-maintaining factors Id2, Cdx2, Eomes, Sox2, Nanog, Rex1, and Oct4. Clearly the stress enzymes have a large number of cytosolic and nuclear substrates and the TFs regulate large numbers of genes. The interaction of stress enzymes and TFs in the early embryo and its stem cells are a continuing central focus of research. In vitro regulation of TFs by stress enzymes leads to reprogramming of the stem cell when stress diminishes stem cell accumulation. Since more differentiated product is produced by fewer cells, the process compensates for fewer cells. Coupled with stress-induced compensatory differentiation of stem cells is a tendency to prioritize differentiation by increasing the first essential lineage and decreasing later lineages. These mechanisms include stress enzymes that regulate TFs and provide stress-specific, shared homeostatic cellular and organismal responses of prioritized differentiation.
Collapse
Affiliation(s)
- Elizabeth E Puscheck
- Department of Ob/Gyn, REI Division, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
35
|
Slater JA, Zhou S, Puscheck EE, Rappolee DA. Stress-induced enzyme activation primes murine embryonic stem cells to differentiate toward the first extraembryonic lineage. Stem Cells Dev 2014; 23:3049-64. [PMID: 25144240 PMCID: PMC4267551 DOI: 10.1089/scd.2014.0157] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/21/2014] [Indexed: 12/11/2022] Open
Abstract
Extracellular stresses influence transcription factor (TF) expression and therefore lineage identity in the peri-implantation mouse embryo and its stem cells. This potentially affects pregnancy outcome. To understand the effects of stress signaling during this critical period of pregnancy, we exposed cultured murine embryonic stem cells (mESCs) to hyperosmotic stress. We then measured stress-enzyme-dependent regulation of key pluripotency and lineage TFs. Hyperosmotic stress slowed mESC accumulation due to slowing of the cell cycle over 72 h, after a small apoptotic response within 12 h. Phosphoinositide 3-kinase (PI3K) enzymatic signaling was responsible for stem cell survival under stressed conditions. Stress initially triggered mESC differentiation after 4 h through MEK1, c-Jun N-terminal kinase (JNK), and PI3K enzymatic signaling, which led to proteasomal degradation of Oct4, Nanog, Sox2, and Rex1 TF proteins. Concurrent with this post-transcriptional effect was the decreased accumulation of potency TF mRNA transcripts. After 12-24 h of stress, cells adapted, cell cycle resumed, and Oct4 and Nanog mRNA and protein expression returned to approximately normal levels. The TF protein recovery was mediated by p38MAPK and PI3K signaling, as well as by MEK2 and/or MEK1. However, due to JNK signaling, Rex1 expression did not recover. Probing for downstream lineages revealed that although mESCs did not differentiate morphologically during 24 h of stress, they were primed to differentiate by upregulating markers of the first lineage differentiating from mESCs, extraembryonic endoderm. Thus, although two to three TFs that mark pluripotency recover expression by 24 h of stress, there is nonetheless sustained Rex1 suppression and a priming of mESCs for differentiation to the earliest lineage.
Collapse
Affiliation(s)
- Jill A. Slater
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
- Program for Reproductive Sciences, Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Sichang Zhou
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
- Program for Reproductive Sciences, Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Elizabeth Ella Puscheck
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
| | - Daniel A. Rappolee
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
- Program for Reproductive Sciences, Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, Michigan
- Department of Biology, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
36
|
Altered expression of miR-202 in cerebellum of multiple-system atrophy. Mol Neurobiol 2014; 51:180-6. [PMID: 24981430 DOI: 10.1007/s12035-014-8788-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
Abstract
Cerebellar degeneration is a devastating manifestation of cerebellar-type multiple-system atrophy (MSA), a rapidly progressive neurodegenerative disease, and the exact pathogenesis is unknown. Here, we examined the expression of micro-RNAs (miRNAs), which are short noncoding RNAs, in the cerebellum of MSA and the key target genes. miRNA microarray found 11 miRNAs with significantly different expression in MSA cerebellum compared to cerebellum from age-, sex-, and postmortem interval-matched controls. miR-202 was the most upregulated in the MSA samples. In silico analysis, followed by target gene luciferase assay, in vitro transfection, and Western blotting in human samples showed that miR-202 downregulates Oct1 (Pou2f1), a transcription factor expressed in cerebellar Purkinje cells. Transfection of Neuro-2a cells with miR-202 enhanced oxidative stress-induced cell death, and an antagomir to miR-202 inhibited this effect of miR-202. This study provides novel insight into the role of miRNA in cerebellar degeneration and suggests that miR-202 is a key miRNA mediating the pathogenesis of MSA.
Collapse
|
37
|
Infante A, Gago A, de Eguino GR, Calvo-Fernández T, Gómez-Vallejo V, Llop J, Schlangen K, Fullaondo A, Aransay AM, Martín A, Rodríguez CI. Prelamin A accumulation and stress conditions induce impaired Oct-1 activity and autophagy in prematurely aged human mesenchymal stem cell. Aging (Albany NY) 2014; 6:264-80. [PMID: 24753226 PMCID: PMC4032794 DOI: 10.18632/aging.100651] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/03/2014] [Indexed: 12/22/2022]
Abstract
Aging, a time-dependent functional decline of biological processes, is the primary risk factor in developing diseases such as cancer, cardiovascular or degenerative diseases. There is a real need to understand the human aging process in order to increase the length of disease-free life, also known as "health span". Accumulation of progerin and prelamin A are the hallmark of a group of premature aging diseases but have also been found during normal cellular aging strongly suggesting similar mechanisms between healthy aging and LMNA-linked progeroid syndromes. How this toxic accumulation contributes to aging (physiological or pathological) remains unclear. Since affected tissues in age-associated disorders and in pathological aging are mainly of mesenchymal origin we propose a model of human aging based on mesenchymal stem cells (hMSCs) which accumulate prelamin A. We demonstrate that prelamin A-accumulating hMSCs have a premature aging phenotype which affects their functional competence in vivo. The combination of prelamin A accumulation and stress conditions enhance the aging phenotype by dysregulating the activity of the octamer binding protein Oct-1This experimental model has been fundamental to identify a new role for Oct-1 in hMSCs aging.
Collapse
Affiliation(s)
- Arantza Infante
- Stem Cells and Cell Therapy Laboratory, BioCruces Health Research Institute, Cruces University Hospital, Barakaldo 48903, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lee SY, Kim BS, Noh CH, Nam YK. Genomic organization and functional diversification of two warm-temperature-acclimation-associated 65-kDa protein genes in rockbream (Oplegnathus fasciatus; Perciformes). FISH & SHELLFISH IMMUNOLOGY 2014; 37:11-21. [PMID: 24434646 DOI: 10.1016/j.fsi.2014.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/04/2014] [Accepted: 01/04/2014] [Indexed: 06/03/2023]
Abstract
Two paralogue genes of warm-temperature-acclimation-associated 65-kDa protein were characterized and their mRNA expression patterns during various experimental stimulations were examined in the rockbream (Oplegnathus fasciatus; Perciformes). Rockbream Wap65 isoforms (rbWap65-1 and rbWap65-2) share basically common structural features with other teleostean orthologues and human hemopexin (HPX) at both amino acid (conserved cysteine and histidine residues) and genomic levels (ten-exon structure), although the rbWap65-2 reveals more homologous characteristics to human HPX than does rbWap65-1 isoform. Southern blot analysis indicates that each rbWap65 isoform exists as a single copy gene in the rockbream genome. Both rbWap65 genes were predicted to possess various transcription factor (TF) binding motifs related with stress and innate immunity in their 5ʹ-upstream regions, in which inflammation-related motifs were more highlighted in the rbWap65-2 than in rbWap65-1. Based on the RT-PCR assay, the liver-predominant expression pattern was more apparent in rbWap65-1 than rbWap65-2 isoform. During thermal elevation, clear upregulation was found only for the rbWap65-1. In contrast, immune stimulations (bacterial challenges, viral infection and iron overload) activated more preferentially the rbWap65-2 isoform in overall, although the inducibility was affected by the kinds of stimulators and tissue types. Taken together, our data suggest that the two paralogue rbWap65 isoforms have experienced subfunctionalization and/or neofunctionalization during their evolutionary history, in which the rbWap65-2 has retained closer, functional orthology to the human HPX while the rbWap65-1 have been diversified to be more related with thermal acclimation physiology.
Collapse
Affiliation(s)
- Sang Yoon Lee
- Department of Marine Bio-Materials & Aquaculture, Pukyong National University, Busan 608-737, Republic of Korea
| | - Byoung Soo Kim
- Department of Marine Bio-Materials & Aquaculture, Pukyong National University, Busan 608-737, Republic of Korea
| | - Choong Hwan Noh
- Korea Institute of Ocean Science & Technology, Ansan 426-744, Republic of Korea
| | - Yoon Kwon Nam
- Department of Marine Bio-Materials & Aquaculture, Pukyong National University, Busan 608-737, Republic of Korea; Center of Marine-Integrated Biomedical Technology, Pukyong National University, Busan 608-737, Republic of Korea.
| |
Collapse
|
39
|
OCT-1 overexpression is associated with poor prognosis in patients with well-differentiated gastric cancer. Tumour Biol 2014; 35:5501-9. [PMID: 24566898 DOI: 10.1007/s13277-014-1724-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 02/03/2014] [Indexed: 12/28/2022] Open
Abstract
Octamer transcription factor-1 (OCT-1) is a well-known transcription factor that is reportedly overexpressed in intestinal metaplasia and gastric carcinoma in the intestine. In this study, we investigated OCT-1 overexpression as a prognostic factor for gastric cancer. The association between OCT-1 overexpression (detected using immunohistochemistry) and clinicopathological features including survival was evaluated. In vitro gain-of-function approaches were utilized to assess the function of OCT-1 in malignancy. Analysis of OCT-1 expression in patients with gastric cancer with well-differentiated carcinoma as per the World Health Organization classification showed that OCT-1 overexpression was correlated with advanced tumor invasion (58.8 % of patients with advanced tumor invasion vs. 21.2 % of patients with early tumor invasion; p<0.01), lymph node metastasis (63.9 % of patients with metastasis vs. 24.1 % of those without; p=0.015), and cancer recurrence (83.3 % of patients with recurrence vs. 25.4 % of those without; p<0.01), as well as a lower survival rate (62.8 vs. 87.9 Mo; p<0.01). However, there were no significant differences in the levels of OCT-1 expression in gastric cancer patients with other carcinoma types (p>0.05). Furthermore, we found that the proliferation rate of OCT-1-overexpressing MKN-45 cells was higher than that of the control cells. OCT-1 overexpression may be a marker for poor prognosis in patients with well-differentiated gastric adenocarcinoma.
Collapse
|
40
|
Tokarz P, Kaarniranta K, Blasiak J. Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD). Biogerontology 2013; 14:461-82. [PMID: 24057278 PMCID: PMC3824279 DOI: 10.1007/s10522-013-9463-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 09/03/2013] [Indexed: 12/20/2022]
Abstract
Cells in aerobic condition are constantly exposed to reactive oxygen species (ROS), which may induce damage to biomolecules, including proteins, nucleic acids and lipids. In normal circumstances, the amount of ROS is counterbalanced by cellular antioxidant defence, with its main components—antioxidant enzymes, DNA repair and small molecular weight antioxidants. An imbalance between the production and neutralization of ROS by antioxidant defence is associated with oxidative stress, which plays an important role in the pathogenesis of many age-related and degenerative diseases, including age-related macular degeneration (AMD), affecting the macula—the central part of the retina. The retina is especially prone to oxidative stress due to high oxygen pressure and exposure to UV and blue light promoting ROS generation. Because oxidative stress has an established role in AMD pathogenesis, proper functioning of antioxidant defence may be crucial for the occurrence and progression of this disease. Antioxidant enzymes play a major role in ROS scavenging and changes of their expression or/and activity are reported to be associated with AMD. Therefore, the enzymes in the retina along with their genes may constitute a perspective target in AMD prevention and therapy.
Collapse
Affiliation(s)
- Paulina Tokarz
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland,
| | | | | |
Collapse
|
41
|
Dantoft W, Davis MM, Lindvall JM, Tang X, Uvell H, Junell A, Beskow A, Engström Y. The Oct1 homolog Nubbin is a repressor of NF-κB-dependent immune gene expression that increases the tolerance to gut microbiota. BMC Biol 2013; 11:99. [PMID: 24010524 PMCID: PMC3849502 DOI: 10.1186/1741-7007-11-99] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/30/2013] [Indexed: 11/10/2022] Open
Abstract
Background Innate immune responses are evolutionarily conserved processes that provide crucial protection against invading organisms. Gene activation by potent NF-κB transcription factors is essential both in mammals and Drosophila during infection and stress challenges. If not strictly controlled, this potent defense system can activate autoimmune and inflammatory stress reactions, with deleterious consequences for the organism. Negative regulation to prevent gene activation in healthy organisms, in the presence of the commensal gut flora, is however not well understood. Results We show that the Drosophila homolog of mammalian Oct1/POU2F1 transcription factor, called Nubbin (Nub), is a repressor of NF-κB/Relish-driven antimicrobial peptide gene expression in flies. In nub1 mutants, which lack Nub-PD protein, excessive expression of antimicrobial peptide genes occurs in the absence of infection, leading to a significant reduction of the numbers of cultivatable gut commensal bacteria. This aberrant immune gene expression was effectively blocked by expression of Nub from a transgene. We have identified an upstream regulatory region, containing a cluster of octamer sites, which is required for repression of antimicrobial peptide gene expression in healthy flies. Chromatin immunoprecipitation experiments demonstrated that Nub binds to octamer-containing promoter fragments of several immune genes. Gene expression profiling revealed that Drosophila Nub negatively regulates many genes that are involved in immune and stress responses, while it is a positive regulator of genes involved in differentiation and metabolism. Conclusions This study demonstrates that a large number of genes that are activated by NF-κB/Relish in response to infection are normally repressed by the evolutionarily conserved Oct/POU transcription factor Nub. This prevents uncontrolled gene activation and supports the existence of a normal gut flora. We suggest that Nub protein plays an ancient role, shared with mammalian Oct/POU transcription factors, to moderate responses to immune challenge, thereby increasing the tolerance to biotic stress.
Collapse
Affiliation(s)
- Widad Dantoft
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Tantin D. Oct transcription factors in development and stem cells: insights and mechanisms. Development 2013; 140:2857-66. [PMID: 23821033 DOI: 10.1242/dev.095927] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The POU domain family of transcription factors regulates developmental processes ranging from specification of the early embryo to terminal differentiation. About half of these factors display substantial affinity for an 8 bp DNA site termed the octamer motif, and are hence known as Oct proteins. Oct4 (Pou5f1) is a well-known Oct factor, but there are other Oct proteins with varied and essential roles in development. This Primer outlines our current understanding of Oct proteins and the regulatory mechanisms that govern their role in developmental processes and concludes with the assertion that more investigation into their developmental functions is needed.
Collapse
Affiliation(s)
- Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
43
|
Chandrasekharan S, Kandasamy KK, Dayalan P, Ramamurthy V. Estrogen induced concentration dependent differential gene expression in human breast cancer (MCF7) cells: role of transcription factors. Biochem Biophys Res Commun 2013; 437:475-81. [PMID: 23845903 DOI: 10.1016/j.bbrc.2013.06.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 06/28/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND Breast cancer cells respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. The mechanism of this concentration dependent differential outcome is not well understood yet. METHODOLOGY Meta-analysis of the expression data of MCF7 cells treated with low (1nM) or high (100nM) dose of estradiol (E2) was performed. We identified genes differentially expressed at the low or the high dose, and examined the nature of regulatory elements in the vicinity of these genes. Specifically, we looked for the difference in the presence, abundance and spatial distribution of binding sites for estrogen receptor (ER) and selected transcription factors (TFs) in the genomic region up to 25kb upstream and downstream from the transcription start site (TSS) of these genes. RESULTS It was observed that at high dose E2 induced the expression of stress responsive genes, while at low dose, genes involved in cell cycle were induced. We found that the occurrence of transcription factor binding regions (TFBRs) for certain factors such as Sp1 and SREBP1 were higher on regulatory regions of genes expressed at low dose. At high concentration of E2, genes with a higher frequency of Oct-1 binding regions were predominantly involved. In addition, there were differences in the spatial distribution pattern of the TFBRs in the genomic regions among the two sets of genes. DISCUSSION E2 induced predominantly proliferative/metabolic response at low concentrations; but at high concentration, stress-rescue responses were induced. At high E2 concentration, classical genomic pathway involving ER binding to the regulatory regions was reduced, and alternate or indirect activation of genes through Oct-1 became more prominent.
Collapse
|
44
|
Kang J, Shen Z, Lim JM, Handa H, Wells L, Tantin D. Regulation of Oct1/Pou2f1 transcription activity by O-GlcNAcylation. FASEB J 2013; 27:2807-17. [PMID: 23580612 DOI: 10.1096/fj.12-220897] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Oct1 transcription factor is a potent regulator of stress responses, metabolism, and tumorigenicity. Although Oct1 is regulated by phosphorylation and ubiquitination, the presence and importance of other modifications is unknown. Here we show that Oct1 is modified by O-linked β-N-acetylglucosamine (O-GlcNAc) moieties. We map two sites of O-GlcNAcylation at positions T255 and S728 within human Oct1. Under anchorage-independent overgrowth conditions, Oct1 associates 3-fold more strongly with the Gadd45a promoter and mediates transcriptional repression. Increased binding correlates with quantitative reductions in Oct1 nuclear periphery-associated puncta, and a reduced association with lamin B1. The O-GlcNAc modification sites are important for both Gadd45a repression and anchorage-independent survival. In contrast to chronic overgrowth conditions, following acute nutrient starvation Oct1 mediates Gadd45a activation. The O-GlcNAc sites are also important for Gadd45a activation under these conditions. We also, for the first time, identify specific Oct1 ubiquitination sites. The findings suggest that Oct1 integrates metabolic and stress signals via O-GlcNAc modification to regulate target gene activity.
Collapse
Affiliation(s)
- Jinsuk Kang
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | | | |
Collapse
|
45
|
Hamilton NA, Tammen I, Raadsma HW. Multi-species comparative analysis of the equine ACE gene identifies a highly conserved potential transcription factor binding site in intron 16. PLoS One 2013; 8:e55434. [PMID: 23408978 PMCID: PMC3568152 DOI: 10.1371/journal.pone.0055434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/23/2012] [Indexed: 11/18/2022] Open
Abstract
Angiotensin converting enzyme (ACE) is essential for control of blood pressure. The human ACE gene contains an intronic Alu indel (I/D) polymorphism that has been associated with variation in serum enzyme levels, although the functional mechanism has not been identified. The polymorphism has also been associated with cardiovascular disease, type II diabetes, renal disease and elite athleticism. We have characterized the ACE gene in horses of breeds selected for differing physical abilities. The equine gene has a similar structure to that of all known mammalian ACE genes. Nine common single nucleotide polymorphisms (SNPs) discovered in pooled DNA were found to be inherited in nine haplotypes. Three of these SNPs were located in intron 16, homologous to that containing the Alu polymorphism in the human. A highly conserved 18 bp sequence, also within that intron, was identified as being a potential binding site for the transcription factors Oct-1, HFH-1 and HNF-3β, and lies within a larger area of higher than normal homology. This putative regulatory element may contribute to regulation of the documented inter-individual variation in human circulating enzyme levels, for which a functional mechanism is yet to be defined. Two equine SNPs occurred within the conserved area in intron 16, although neither of them disrupted the putative binding site. We propose a possible regulatory mechanism of the ACE gene in mammalian species which was previously unknown. This advance will allow further analysis leading to a better understanding of the mechanisms underpinning the associations seen between the human Alu polymorphism and enzyme levels, cardiovascular disease states and elite athleticism.
Collapse
Affiliation(s)
- Natasha A Hamilton
- ReproGen-Animal Bioscience Group, Faculty of Veterinary Science, University of Sydney, Camperdown, New South Wales, Australia.
| | | | | |
Collapse
|
46
|
Adaptive and Pathogenic Responses to Stress by Stem Cells during Development. Cells 2012; 1:1197-224. [PMID: 24710551 PMCID: PMC3901130 DOI: 10.3390/cells1041197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 11/06/2012] [Accepted: 11/07/2012] [Indexed: 02/07/2023] Open
Abstract
Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK) which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK) that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies.
Collapse
|
47
|
Maddox J, Shakya A, South S, Shelton D, Andersen JN, Chidester S, Kang J, Gligorich KM, Jones DA, Spangrude GJ, Welm BE, Tantin D. Transcription factor Oct1 is a somatic and cancer stem cell determinant. PLoS Genet 2012; 8:e1003048. [PMID: 23144633 PMCID: PMC3493455 DOI: 10.1371/journal.pgen.1003048] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 08/28/2012] [Indexed: 12/13/2022] Open
Abstract
Defining master transcription factors governing somatic and cancer stem cell identity is an important goal. Here we show that the Oct4 paralog Oct1, a transcription factor implicated in stress responses, metabolic control, and poised transcription states, regulates normal and pathologic stem cell function. Oct1HI cells in the colon and small intestine co-express known stem cell markers. In primary malignant tissue, high Oct1 protein but not mRNA levels strongly correlate with the frequency of CD24LOCD44HI cancer-initiating cells. Reducing Oct1 expression via RNAi reduces the proportion of ALDHHI and dye effluxHI cells, and increasing Oct1 increases the proportion of ALDHHI cells. Normal ALDHHI cells harbor elevated Oct1 protein but not mRNA levels. Functionally, we show that Oct1 promotes tumor engraftment frequency and promotes hematopoietic stem cell engraftment potential in competitive and serial transplants. In addition to previously described Oct1 transcriptional targets, we identify four Oct1 targets associated with the stem cell phenotype. Cumulatively, the data indicate that Oct1 regulates normal and cancer stem cell function. Understanding the mechanisms that control stem cell function is a fundamental prerequisite both for the full application of stem cells to regenerative medicine and for a full understanding of the relationship between stem cells and cancer. In this study we show that a transcription factor known as Oct1 is a central regulator of normal and cancer stem cell function. We show that high Oct1 levels are associated with stem cells in multiple normal and malignant settings. Altering Oct1 expression, up or down, correspondingly alters multiple stem cell parameters, as well as stem cell function. We highlight known and identify new target genes Oct1 binds to that are consistent with a role in stem cell function.
Collapse
Affiliation(s)
- Jessica Maddox
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Arvind Shakya
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Samuel South
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Dawne Shelton
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jared N. Andersen
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Stephanie Chidester
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jinsuk Kang
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Keith M. Gligorich
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - David A. Jones
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Gerald J. Spangrude
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Bryan E. Welm
- Department of Surgery, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
48
|
Lu H, Hallstrom TC. Sensitivity to TOP2 targeting chemotherapeutics is regulated by Oct1 and FILIP1L. PLoS One 2012; 7:e42921. [PMID: 22900064 PMCID: PMC3416772 DOI: 10.1371/journal.pone.0042921] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/13/2012] [Indexed: 12/28/2022] Open
Abstract
Topoisomerase II (TOP2) targeting drugs like doxorubicin and etoposide are frontline chemotherapeutics for a wide variety of solid and hematological malignancies, including breast and ovarian adenocarcinomas, lung cancers, soft tissue sarcomas, leukemias and lymphomas. These agents cause a block in DNA replication leading to a pronounced DNA damage response and initiation of apoptotic programs. Resistance to these agents is common, however, and elucidation of the mechanisms causing resistance to therapy could shed light on strategies to reduce the frequency of ineffective treatments. To explore these mechanisms, we utilized an unbiased shRNA screen to identify genes that regulate cell death in response to doxorubicin treatment. We identified the Filamin A interacting protein 1-like (FILIP1L) gene as a crucial mediator of apoptosis triggered by doxorubicin. FILIP1L shares significant similarity with bacterial SbcC, an ATPase involved in DNA repair. FILIP1L was originally described as DOC1, or “down-regulated in ovarian cancer” and has since been shown to be downregulated in a wide variety of human tumors. FILIP1L levels increase markedly through transcriptional mechanisms following treatment with doxorubicin and other TOP2 poisons, including etoposide and mitoxantrone, but not by the TOP2 catalytic inhibitors merbarone or dexrazoxane (ICRF187), or by UV irradiation. This induction requires the action of the OCT1 transcription factor, which relocalizes to the FILIP1L promoter and facilitates its expression following doxorubicin treatment. Our findings suggest that the FILIP1L expression status in tumors may influence the response to anti-TOP2 chemotherapeutics.
Collapse
Affiliation(s)
- Huarui Lu
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Timothy C. Hallstrom
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
49
|
Abstract
The importance of the lectin-like oxidized LDL receptor (LOX-1) gene in cardiovascular and other diseases is slowly being revealed. LOX-1 gene expression appears to be a "canary in a coal mine" for atherogenesis, being strongly up-regulated early on in a number of cell types when they are activated, and predicting the sites of future disease. From this early time point the LOX-1 protein often participates in the disease process itself. While gene/protein expression can be regulated on a multiplicity of levels, the most basic and important mode of regulation is usually transcriptional. There are very few studies on the transcriptional regulation of the human LOX-1 promoter; fewer still on definitive mapping of the transcription factors involved. It is known that a wide variety of stimuli up-regulate LOX-1, usually/probably on the transcriptional level. Angiotensin II (Ang II) is one important regulator of renin-angiotensin system and stimulator LOX-1. Ang II is known to up-regulate LOX-1 transcription through an NF-kB motif located at nt -2158. Oxidized low density lipoprotein (ox-LDL) is another important cardiovascular regulator, particularly of atherosclerotic disease, and a strong stimulator of LOX-1. Ox-LDL is known to up-regulate LOX-1 transcription through an Oct-1 motif located at nt -1556. The subsequent enhanced LOX-1 receptor numbers and their binding by ox-LDL ligand triggers a positive feedback loop, increasing further LOX-1 expression, with a presently unknown regulatory governor. The Oct-1 gene also has its own Oct-1-driven positive feedback loop, which likely also contributes to LOX-1 up-regulation. There is also data which suggests the involvement of the transcription factor AP-1 during stimulation with Phorbol 12-myristate acetate. While the importance of NF-κB as a transcriptional regulator of cardiovascular-relevant genes is well known, the importance of Oct-1 is not. Data suggests that Oct-1-mediated up-regulation of transcription is an early event in the stimulation of LOX-1 by ox-LDL. Yet Oct-1 also down-regulates cardiovascular-relevant genes by suppressing NF-κB transactivation. Thus, Oct-1 is presently somewhat of an enigma, up-regulating and down-regulating genes seemingly at random without an overall theme (with the exception of cell cycle). Yet the up-regulation of LOX-1 by ox-LDL is a very important event in atherogenesis (both early and late) and Oct-1 is, therefore, an important transcriptional gatekeeper of this important atherogenic trigger.
Collapse
|
50
|
Sha ZX, Wang QL, Liu Y, Chen SL. Identification and expression analysis of goose-type lysozyme in half-smooth tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2012; 32:914-921. [PMID: 22321603 DOI: 10.1016/j.fsi.2012.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 12/18/2011] [Accepted: 01/11/2012] [Indexed: 05/31/2023]
Abstract
Lysozymes are considered to be potent innate immune molecules against the invasion of bacterial pathogens. The goose-type lysozyme is one of the three major distinct lysozyme types identified in the animal kingdom including teleosts. In this report, we identified, sequenced, and characterized the goose-type lysozyme gene (CsGLys) from half-smooth tongue sole (Cynoglossus semilaevis). The full-length cDNA of CsGLys is 1191 bp in length from the transcription start site to polyadenylation site, including a 91 bp 5'-terminal untranslated region (UTR), a 452 bp 3'-terminal UTR and a 648 bp open reading frame (ORF) of encoding a polypeptide with 215 amino acids. The deduced amino acid sequence of CsGLys possesses a Goose Egg White Lysozyme (GEWL) domain with three conserved residues (E91, D104 and D121) essential for catalytic activity. The CsGLys gene consisting of 2535 bp, was similar to those of other teleost species such as Japanese flounder and large yellow croaker with five exons interrupted by four introns. The 5'-flanking region of CsGLys gene shows several transcriptional factor binding sites related to immune response. Tissue expression profile analysis by quantitative real-time reverse transcription PCR showed that CsGLys mRNA was constitutively expressed in all examined tissues with the predominant expression in skin and the weakest expression in heart. The expression of CsGLys after challenged with bacteria Vibrio anguillarum was up-regulated in blood, head kidney, liver and spleen at 12 h post-infection and it reached the peak level at the same time point with a 19.89-, 4.21-, 14.45- and 10.37-fold increase, respectively, while the CsGLys expression was down-regulated to lower level than the normal level in each tested tissues except in liver from the 48 h until 96 h. These results suggest that CsGLys might play an important role in half-smooth tongue sole host defense against the bacteria infection.
Collapse
Affiliation(s)
- Zhen-Xia Sha
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | | | | | | |
Collapse
|