1
|
Gu H, He J, Li Y, Mi D, Guan T, Guo W, Liu B, Chen Y. B-cell Lymphoma 6 Inhibitors: Current Advances and Prospects of Drug Development for Diffuse Large B-cell Lymphomas. J Med Chem 2022; 65:15559-15583. [PMID: 36441945 DOI: 10.1021/acs.jmedchem.2c01433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
B-cell lymphoma 6 (BCL6) is a transcriptional repressor that regulates the differentiation of B lymphocytes and mediates the formation of germinal centers (GCs) by recruiting corepressors through the BTB domain of BCL6. Physiological processes regulated by BCL6 involve cell activation, differentiation, DNA damage, and apoptosis. BCL6 is highly expressed when the gene is mutated, leading to the malignant proliferation of cells and drives tumorigenesis. BCL6 overexpression is closely correlated with tumorigenesis in diffuse large B-cell lymphoma (DLBCL) and other lymphomas, and BCL6 inhibitors can effectively inhibit some lymphomas and overcome resistance. Therefore, targeting BCL6 might be a promising therapeutic strategy for treating lymphomas. Herein, we comprehensively review the latest development of BCL6 inhibitors in diffuse large B-cell lymphoma and discuss the overview of the pharmacophores of BCL6 inhibitors and their efficacies in vitro and in vivo. Additionally, the current advances in BCL6 degraders are provided.
Collapse
Affiliation(s)
- Haijun Gu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jia He
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuzhan Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dazhao Mi
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Tian Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weikai Guo
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Bo Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yihua Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
2
|
Wiegreffe C, Wahl T, Joos NS, Bonnefont J, Liu P, Britsch S. Developmental cell death of cortical projection neurons is controlled by a Bcl11a/Bcl6‐dependent pathway. EMBO Rep 2022; 23:e54104. [PMID: 35766181 PMCID: PMC9346488 DOI: 10.15252/embr.202154104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 12/05/2022] Open
Abstract
Developmental neuron death plays a pivotal role in refining organization and wiring during neocortex formation. Aberrant regulation of this process results in neurodevelopmental disorders including impaired learning and memory. Underlying molecular pathways are incompletely determined. Loss of Bcl11a in cortical projection neurons induces pronounced cell death in upper‐layer cortical projection neurons during postnatal corticogenesis. We use this genetic model to explore genetic mechanisms by which developmental neuron death is controlled. Unexpectedly, we find Bcl6, previously shown to be involved in the transition of cortical neurons from progenitor to postmitotic differentiation state to provide a major checkpoint regulating neuron survival during late cortical development. We show that Bcl11a is a direct transcriptional regulator of Bcl6. Deletion of Bcl6 exerts death of cortical projection neurons. In turn, reintroduction of Bcl6 into Bcl11a mutants prevents induction of cell death in these neurons. Together, our data identify a novel Bcl11a/Bcl6‐dependent molecular pathway in regulation of developmental cell death during corticogenesis.
Collapse
Affiliation(s)
| | - Tobias Wahl
- Institute of Molecular and Cellular Anatomy Ulm University Ulm Germany
| | | | - Jerome Bonnefont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI) Université Libre de Bruxelles (ULB) Brussels Belgium
- VIB‐KU Leuven Center for Brain & Disease Research, KU Leuven Department of Neuroscience Leuven Brain Institute Leuven Belgium
| | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy Ulm University Ulm Germany
| |
Collapse
|
3
|
Liu Q, Dai G, Wu Y, Zhang M, Yang M, Wang X, Song M, Li X, Xia R, Wu Z. iRGD-modified exosomes-delivered BCL6 siRNA inhibit the progression of diffuse large B-cell lymphoma. Front Oncol 2022; 12:822805. [PMID: 35982974 PMCID: PMC9378967 DOI: 10.3389/fonc.2022.822805] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 07/01/2022] [Indexed: 11/27/2022] Open
Abstract
Clinical applications of siRNA therapeutics have been limited by the immunogenicity of the siRNA and low efficiency of siRNA delivery to target cells. Recently, evidence have shown that exosomes, endogenous nano-vesicles, can deliver siRNA to the tumor tissues in mice. Here, to reduce immunogenicity, we selected immature dendritic cells (DCs) to produce exosomes. In addition, tumor targeting was achieved by engineering the DCs to express exosomal membrane protein (Lamp2b), fused to av integrin-specific iRGD peptide (CRGDKGPDC). Next, iRGD targeted exosomes (iRGD-Exo) were isolated from the transfected DCs, and then the isolated exosomes were loaded with BCL6 siRNA by electroporation. Our results found that integrin (αvβ3) receptors were highly expressed on OCI-Ly8 cells. In addition, iRGD-Exo showed high targeting ability with avβ3 integrins positive OCI-Ly8 cells. Significantly, iRGD-Exo loaded with BCL6 siRNA suppressed DLBCL cell proliferation in vitro. Furthermore, intravenously injected iRGD-Exo delivered BCL6 siRNA to tumor tissues, resulting in inhibition of tumor growth in DLBCL. Meanwhile, exosomes mediated BCL6 siRNA delivery did not exhibit appreciable toxicity in mice. Collectively, our study demonstrates a therapeutic potential of exosomes as a promising vehicle for RNAi delivery to treat DLBCL.
Collapse
|
4
|
BCL6 maintains survival and self-renewal of primary human acute myeloid leukemia cells. Blood 2021; 137:812-825. [PMID: 32911532 DOI: 10.1182/blood.2019001745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
B-cell lymphoma 6 (BCL6) is a transcription repressor and proto-oncogene that plays a crucial role in the innate and adaptive immune system and lymphoid neoplasms. However, its role in myeloid malignancies remains unclear. Here, we explored the role of BCL6 in acute myeloid leukemia (AML). BCL6 was expressed at variable and often high levels in AML cell lines and primary AML samples. AMLs with higher levels of BCL6 were generally sensitive to treatment with BCL6 inhibitors, with the exception of those with monocytic differentiation. Gene expression profiling of AML cells treated with a BCL6 inhibitor revealed induction of BCL6-repressed target genes and transcriptional programs linked to DNA damage checkpoints and downregulation of stem cell genes. Ex vivo treatment of primary AML cells with BCL6 inhibitors induced apoptosis and decreased colony-forming capacity, which correlated with the levels of BCL6 expression. Importantly, inhibition or knockdown of BCL6 in primary AML cells resulted in a significant reduction of leukemia-initiating capacity in mice, suggesting ablation of leukemia repopulating cell functionality. In contrast, BCL6 knockout or inhibition did not suppress the function of normal hematopoietic stem cells. Treatment with cytarabine further induced BCL6 expression, and the levels of BCL6 induction were correlated with resistance to cytarabine. Treatment of AML patient-derived xenografts with BCL6 inhibitor plus cytarabine suggested enhanced antileukemia activity with this combination. Hence, pharmacologic inhibition of BCL6 might provide a novel therapeutic strategy for ablation of leukemia-repopulating cells and increased responsiveness to chemotherapy.
Collapse
|
5
|
Ai Y, Hwang L, MacKerell AD, Melnick A, Xue F. Progress toward B-Cell Lymphoma 6 BTB Domain Inhibitors for the Treatment of Diffuse Large B-Cell Lymphoma and Beyond. J Med Chem 2021; 64:4333-4358. [PMID: 33844535 DOI: 10.1021/acs.jmedchem.0c01686] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
B-cell lymphoma 6 (BCL6) is a master regulator of germinal center formation that produce antibody-secreting plasma cells and memory B-cells for sustained immune responses. The BTB domain of BCL6 (BCL6BTB) forms a homodimer that mediates transcriptional repression by recruiting its corepressor proteins to form a biologically functional transcriptional complex. The protein-protein interaction (PPI) between the BCL6BTB and its corepressors has emerged as a therapeutic target for the treatment of DLBCL and a number of other human cancers. This Perspective provides an overview of recent advances in the development of BCL6BTB inhibitors from reversible inhibitors, irreversible inhibitors, to BCL6 degraders. Inhibitor design and medicinal chemistry strategies for the development of novel compounds will be provided. The binding mode of new inhibitors to BCL6BTB are highlighted. Also, the in vitro and in vivo assays used for the evaluation of new compounds will be discussed.
Collapse
Affiliation(s)
- Yong Ai
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Lucia Hwang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Ari Melnick
- Department of Hematology and Oncology, Weill Cornell Medical College, New York, New York 10021, United States.,Department of Pharmacology, Weill Cornell Medical College, New York, New York 10021, United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| |
Collapse
|
6
|
Lodhi N, Tun M, Nagpal P, Inamdar AA, Ayoub NM, Siyam N, Oton-Gonzalez L, Gerona A, Morris D, Sandhu R, Suh KS. Biomarkers and novel therapeutic approaches for diffuse large B-cell lymphoma in the era of precision medicine. Oncotarget 2020; 11:4045-4073. [PMID: 33216822 PMCID: PMC7646825 DOI: 10.18632/oncotarget.27785] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the great efforts for better treatment options for diffuse large B-cell lymphoma (DLBCL) (most common form of non-Hodgkin lymphoma, NHL) to treat and prevent relapse, it continues to be a challenge. Here, we present an overview of DLBCL and address the diagnostic assays and molecular techniques used in its diagnosis, role of biomarkers in detection, treatment of early and advanced stage DLBCL, and novel drug regimens. We discuss the significant biomarkers that have emerged as essential tools for stratifying patients according to risk factors and for providing insights into the use of more targeted and individualized therapeutics. We discuss techniques such as gene expression studies, including next-generation sequencing, which have enabled a more understanding of the complex pathogenesis of DLBCL and have helped determine molecular targets for novel therapeutic agents. We examine current treatment approaches, outline the findings of completed clinical trials, and provide updates for ongoing clinical trials. We highlight clinical trials relevant to the significant fraction of DLBCL patients who present with complex cases marked by high relapse rates. Supported by an increased understanding of targetable pathways in DLBCL, clinical trials involving specialized combination therapies are bringing us within reach the promise of an effective cure to DLBCL using precision medicine. Optimization of therapy remains a crucial objective, with the end goal being a balance between high survival rates through targeted and personalized treatment while reducing adverse effects in DLBCL patients of all subsets.
Collapse
Affiliation(s)
- Niraj Lodhi
- Department of Immunotherapeutic and Biotechnology, Texas Tech Health Science Center, Abilene, TX, USA
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
- These authors contributed equally to this work
| | - Moe Tun
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
- These authors contributed equally to this work
| | - Poonam Nagpal
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
- College of Natural, Applied, and Health Sciences, Kean University, Union, NJ, USA
| | - Arati A. Inamdar
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | - Nehad M. Ayoub
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Noor Siyam
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | | | - Angela Gerona
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | - Dainelle Morris
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | - Rana Sandhu
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | - Kwangsun Stephen Suh
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
- DiagnoCine, Hackensack, NJ, USA
| |
Collapse
|
7
|
Guo W, Xing Y, Zhang Q, Xie J, Huang D, Gu H, He P, Zhou M, Xu S, Pang X, Liu M, Yi Z, Chen Y. Synthesis and Biological Evaluation of B-Cell Lymphoma 6 Inhibitors of N-Phenyl-4-pyrimidinamine Derivatives Bearing Potent Activities against Tumor Growth. J Med Chem 2020; 63:676-695. [PMID: 31895575 DOI: 10.1021/acs.jmedchem.9b01618] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transcriptional repressor B-cell lymphoma 6 (BCL6) is frequently misregulated in diffuse large B-cell lymphoma (DLBCL) and has emerged as an attractive drug target for the treatments of lymphoma. In this article, a series of N-phenyl-4-pyrimidinamine derivatives were designed and synthesized as potent BCL6 inhibitors by optimizing hit compound N4-(3-chloro-4-methoxyphenyl)-N2-isobutyl-5-fluoro-2,4-pyrimidinediamine on the basis of the structure-activity relationship. Among them, compound 14j displayed the most potent activities, which significantly blocked the interaction of BCL6 with its corepressors, reactivated BCL6 target genes in a dose-dependent manner, and had better effects compared with the two positive controls. Further studies indicated that a low dose of 14j could effectively inhibit germinal center formation. More importantly, 14j not only showed potent inhibition of DLBCL cell proliferation in vitro but also strongly suppressed the growth of DLBCL in vivo.
Collapse
Affiliation(s)
- Weikai Guo
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 200241 Shanghai , China
| | - Yajing Xing
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 200241 Shanghai , China
| | - Qiansen Zhang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 200241 Shanghai , China
| | - Jiuqing Xie
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 200241 Shanghai , China
| | - Dongxia Huang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 200241 Shanghai , China
| | - Haijun Gu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 200241 Shanghai , China
| | - Peng He
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 200241 Shanghai , China
| | - Miaoran Zhou
- Shanghai University of Traditional Chinese Medicine , Shanghai 200030 , China
| | - Shifen Xu
- Shanghai University of Traditional Chinese Medicine , Shanghai 200030 , China
| | - Xiufeng Pang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 200241 Shanghai , China
| | - Mingyao Liu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 200241 Shanghai , China
| | - Zhengfang Yi
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 200241 Shanghai , China
| | - Yihua Chen
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 200241 Shanghai , China
| |
Collapse
|
8
|
Cheng H, Linhares BM, Yu W, Cardenas MG, Ai Y, Jiang W, Winkler A, Cohen S, Melnick A, MacKerell A, Cierpicki T, Xue F. Identification of Thiourea-Based Inhibitors of the B-Cell Lymphoma 6 BTB Domain via NMR-Based Fragment Screening and Computer-Aided Drug Design. J Med Chem 2018; 61:7573-7588. [PMID: 29969259 PMCID: PMC6334293 DOI: 10.1021/acs.jmedchem.8b00040] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Protein-protein interactions (PPI) between the transcriptional repressor B-cell lymphoma 6 (BCL6) BTB domain (BCL6BTB) and its corepressors have emerged as a promising target for anticancer therapeutics. However, identification of potent, drug-like inhibitors of BCL6BTB has remained challenging. Using NMR-based screening of a library of fragment-like small molecules, we have identified a thiourea compound (7CC5) that binds to BCL6BTB. From this hit, the application of computer-aided drug design (CADD), medicinal chemistry, NMR spectroscopy, and X-ray crystallography has yielded an inhibitor, 15f, that demonstrated over 100-fold improved potency for BCL6BTB. This gain in potency was achieved by a unique binding mode that mimics the binding mode of the corepressor SMRT in the aromatic and the HDCH sites. The structure-activity relationship based on these new inhibitors will have a significant impact on the rational design of novel BCL6 inhibitors, facilitating the identification of therapeutics for the treatment of BCL6-dependent tumors.
Collapse
Affiliation(s)
- Huimin Cheng
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, Maryland, 21201, USA
| | - Brian M. Linhares
- University of Michigan, Department of Pathology, Ann Arbor, Michigan, 48109, USA
| | - Wenbo Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, Maryland, 21201, USA,University of Maryland Computer-Aided Drug Design Center, Baltimore, Maryland, 21201, USA
| | - Mariano G. Cardenas
- Weill Cornell Medical College, Department of Hematology/Oncology, New York, New York, 10021, USA
| | - Yong Ai
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, Maryland, 21201, USA
| | - Wenjuan Jiang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, Maryland, 21201, USA,University of Maryland Computer-Aided Drug Design Center, Baltimore, Maryland, 21201, USA
| | - Alyssa Winkler
- University of Michigan, Department of Pathology, Ann Arbor, Michigan, 48109, USA
| | - Sandra Cohen
- Weill Cornell Medical College, Department of Hematology/Oncology, New York, New York, 10021, USA
| | - Ari Melnick
- Weill Cornell Medical College, Department of Hematology/Oncology, New York, New York, 10021, USA
| | - Alexander MacKerell
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, Maryland, 21201, USA,University of Maryland Computer-Aided Drug Design Center, Baltimore, Maryland, 21201, USA
| | - Tomasz Cierpicki
- University of Michigan, Department of Pathology, Ann Arbor, Michigan, 48109, USA,Correspondence to: Professor Fengtian Xue at the Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, USA, Phone: 410-706-8521, , Professor Tomasz Cierpicki at the University of Michigan, Department of Pathology, Ann Arbor, Michigan 48109, USA, Phone: 734-615-9324,
| | - Fengtian Xue
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, Maryland, 21201, USA,University of Maryland Computer-Aided Drug Design Center, Baltimore, Maryland, 21201, USA,Correspondence to: Professor Fengtian Xue at the Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, USA, Phone: 410-706-8521, , Professor Tomasz Cierpicki at the University of Michigan, Department of Pathology, Ann Arbor, Michigan 48109, USA, Phone: 734-615-9324,
| |
Collapse
|
9
|
Valls E, Lobry C, Geng H, Wang L, Cardenas M, Rivas M, Cerchietti L, Oh P, Yang SN, Oswald E, Graham CW, Jiang Y, Hatzi K, Agirre X, Perkey E, Li Z, Tam W, Bhatt K, Leonard JP, Zweidler-McKay PA, Maillard I, Elemento O, Ci W, Aifantis I, Melnick A. BCL6 Antagonizes NOTCH2 to Maintain Survival of Human Follicular Lymphoma Cells. Cancer Discov 2017; 7:506-521. [PMID: 28232365 PMCID: PMC5413414 DOI: 10.1158/2159-8290.cd-16-1189] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/05/2016] [Accepted: 02/21/2017] [Indexed: 11/16/2022]
Abstract
Although the BCL6 transcriptional repressor is frequently expressed in human follicular lymphomas (FL), its biological role in this disease remains unknown. Herein, we comprehensively identify the set of gene promoters directly targeted by BCL6 in primary human FLs. We noted that BCL6 binds and represses NOTCH2 and NOTCH pathway genes. Moreover, BCL6 and NOTCH2 pathway gene expression is inversely correlated in FL. Notably, BCL6 upregulation is associated with repression of NOTCH2 and its target genes in primary human and murine germinal center (GC) cells. Repression of NOTCH2 is an essential function of BCL6 in FL and GC B cells because inducible expression of Notch2 abrogated GC formation in mice and killed FL cells. Indeed, BCL6-targeting compounds or gene silencing leads to the induction of NOTCH2 activity and compromises survival of FL cells, whereas NOTCH2 depletion or pathway antagonists rescue FL cells from such effects. Moreover, BCL6 inhibitors induced NOTCH2 expression and suppressed growth of human FL xenografts in vivo and primary human FL specimens ex vivo These studies suggest that established FLs are thus dependent on BCL6 through its suppression of NOTCH2Significance: We show that human FLs are dependent on BCL6, and primary human FLs can be killed using specific BCL6 inhibitors. Integrative genomics and functional studies of BCL6 in primary FL cells point toward a novel mechanism whereby BCL6 repression of NOTCH2 drives the survival and growth of FL cells as well as GC B cells, which are the FL cell of origin. Cancer Discov; 7(5); 506-21. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 443.
Collapse
Affiliation(s)
- Ester Valls
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Camille Lobry
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, New York
- Institut Gustave Roussy, INSERM U1170, Villejuif and Université Paris Sud, Orsay, France
| | - Huimin Geng
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California
| | - Ling Wang
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Mariano Cardenas
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Martín Rivas
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Leandro Cerchietti
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Philmo Oh
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Shao Ning Yang
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Erin Oswald
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Camille W Graham
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yanwen Jiang
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Katerina Hatzi
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xabier Agirre
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
- Division of Hematology/Oncology, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Eric Perkey
- Life Sciences Institute, Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan
| | - Zhuoning Li
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Kamala Bhatt
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - John P Leonard
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | | | - Ivan Maillard
- Life Sciences Institute, Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York
| | - Weimin Ci
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York.
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Iannis Aifantis
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, New York.
| | - Ari Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
10
|
Dupont T, Yang SN, Patel J, Hatzi K, Malik A, Tam W, Martin P, Leonard J, Melnick A, Cerchietti L. Selective targeting of BCL6 induces oncogene addiction switching to BCL2 in B-cell lymphoma. Oncotarget 2016; 7:3520-32. [PMID: 26657288 PMCID: PMC4823124 DOI: 10.18632/oncotarget.6513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/21/2015] [Indexed: 12/21/2022] Open
Abstract
The BCL6 oncogene plays a crucial role in sustaining diffuse large B-cell lymphomas (DLBCL) through transcriptional repression of key checkpoint genes. BCL6-targeted therapy kills lymphoma cells by releasing these checkpoints. However BCL6 also directly represses several DLBCL oncogenes such as BCL2 and BCL-XL that promote lymphoma survival. Herein we show that DLBCL cells that survive BCL6-targeted therapy induce a phenomenon of “oncogene-addiction switching” by reactivating BCL2-family dependent anti-apoptotic pathways. Thus, most DLBCL cells require concomitant inhibition of BCL6 and BCL2-family members for effective lymphoma killing. Moreover, in DLBCL cells initially resistant to BH3 mimetic drugs, BCL6 inhibition induces a newly developed reliance on anti-apoptotic BCL2-family members for survival that translates in acquired susceptibility to BH3 mimetic drugs ABT-737 and obatoclax. In germinal center B cell-like (GCB)-DLBCL cells, the proteasome inhibitor bortezomib and the NEDD inhibitor MLN4924 post-transcriptionally activated the BH3-only sensitizer NOXA thus counteracting the oncogenic switch to BCL2 induced by BCL6-targeting. Hence our study indicates that BCL6 inhibition induces an on-target feedback mechanism based on the activation of anti-apoptotic BH3 members. This oncogene-addition switching mechanism was harnessed to develop rational combinatorial therapies for GCB-DLBCL.
Collapse
Affiliation(s)
- Thibault Dupont
- Hematology and Oncology Division, Weill Cornell Medical College, New York, NY, USA
| | - Shao Ning Yang
- Hematology and Oncology Division, Weill Cornell Medical College, New York, NY, USA
| | - Jayeshkumar Patel
- Hematology and Oncology Division, Weill Cornell Medical College, New York, NY, USA
| | - Katerina Hatzi
- Hematology and Oncology Division, Weill Cornell Medical College, New York, NY, USA
| | - Alka Malik
- Hematology and Oncology Division, Weill Cornell Medical College, New York, NY, USA
| | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Peter Martin
- Hematology and Oncology Division, Weill Cornell Medical College, New York, NY, USA
| | - John Leonard
- Hematology and Oncology Division, Weill Cornell Medical College, New York, NY, USA
| | - Ari Melnick
- Hematology and Oncology Division, Weill Cornell Medical College, New York, NY, USA.,Pharmacology Department, Weill Cornell Medical College, New York, NY, USA
| | - Leandro Cerchietti
- Hematology and Oncology Division, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
11
|
Cardenas MG, Oswald E, Yu W, Xue F, MacKerell AD, Melnick AM. The Expanding Role of the BCL6 Oncoprotein as a Cancer Therapeutic Target. Clin Cancer Res 2016; 23:885-893. [PMID: 27881582 DOI: 10.1158/1078-0432.ccr-16-2071] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 12/28/2022]
Abstract
BCL6 was initially discovered as an oncogene in B-cell lymphomas, where it drives the malignant phenotype by repressing proliferation and DNA damage checkpoints and blocking B-cell terminal differentiation. BCL6 mediates its effects by binding to hundreds of target genes and then repressing these genes by recruiting several different chromatin-modifying corepressor complexes. Structural characterization of BCL6-corepressor complexes suggested that BCL6 might be a druggable target. Accordingly, a number of compounds have been designed to bind to BCL6 and block corepressor recruitment. These compounds, based on peptide or small-molecule scaffolds, can potently block BCL6 repression of target genes and kill lymphoma cells. In the case of diffuse large B-cell lymphomas (DLBCL), BCL6 inhibitors are equally effective in suppressing both the germinal center B-cell (GCB)- and the more aggressive activated B-cell (ABC)-DLBCL subtypes, both of which require BCL6 to maintain their survival. In addition, BCL6 is implicated in an expanding scope of hematologic and solid tumors. These include, but are not limited to, B-acute lymphoblastic leukemia, chronic myeloid leukemia, breast cancer, and non-small cell lung cancer. BCL6 inhibitors have been shown to exert potent effects against these tumor types. Moreover, mechanism-based combinations of BCL6 inhibitors with other agents have yielded synergistic and often quite dramatic activity. Hence, there is a compelling case to accelerate the development of BCL6-targeted therapies for translation to the clinical setting. Clin Cancer Res; 23(4); 885-93. ©2016 AACR.
Collapse
Affiliation(s)
- Mariano G Cardenas
- Department of Hematology/Oncology, Weill Cornell Medicine, New York, New York
| | - Erin Oswald
- Department of Hematology/Oncology, Weill Cornell Medicine, New York, New York
| | - Wenbo Yu
- Department of Pharmaceutical Sciences, Computer-Aided Drug Design Center, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, Computer-Aided Drug Design Center, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, Computer-Aided Drug Design Center, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Ari M Melnick
- Department of Hematology/Oncology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
12
|
Huang C, Melnick A. Mechanisms of action of BCL6 during germinal center B cell development. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1226-32. [PMID: 26566802 DOI: 10.1007/s11427-015-4919-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 08/17/2015] [Indexed: 11/30/2022]
Abstract
The transcriptional repressor B cell lymphoma 6 (BCL6) controls a large transcriptional network that is required for the formation and maintenance of germinal centers (GC). GC B cells represent the normal counterpart of most human B-cell lymphomas, which are often characterized by deregulated BCL6 expression or BCL6-mediated pathways. BCL6 suppresses gene transcription largely through recruitment of its co-repressors through its distinct repression domain. Understanding the precise biological roles of each repression domain in normal and malignant B cells is helpful for development of targeted inhibition of BCL6 functions that is emerging as the basis for design of anti-lymphoma therapies. This review focuses on recent progress in the molecular mechanisms of action of BCL6 in B cells and discusses remaining unresolved questions related to how these mechanisms are linked to normal and malignant B cell development.
Collapse
Affiliation(s)
- ChuanXin Huang
- Shanghai Institute of Immunology & Department of Immunobiology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ari Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
13
|
Integrin-specific hydrogels as adaptable tumor organoids for malignant B and T cells. Biomaterials 2015; 73:110-9. [PMID: 26406451 DOI: 10.1016/j.biomaterials.2015.09.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 01/21/2023]
Abstract
Non-Hodgkin lymphomas are a heterogeneous group of lymphoproliferative disorders of B and T cell origin that are treated with chemotherapy drugs with variable success rate that has virtually not changed over decades. Although new classes of chemotherapy-free epigenetic and metabolic drugs have emerged, durable responses to these conventional and new therapies are achieved in a fraction of cancer patients, with many individuals experiencing resistance to the drugs. The paucity in our understanding of what regulates the drug resistance phenotype and establishing a predictive indicator is, in great part, due to the lack of adequate ex vivo lymphoma models to accurately study the effect of microenvironmental cues in which malignant B and T cell lymphoma cells arise and reside. Unlike many other tumors, lymphomas have been neglected from biomaterials-based microenvironment engineering standpoint. In this study, we demonstrate that B and T cell lymphomas have different pro-survival integrin signaling requirements (αvβ3 and α4β1) and the presence of supporting follicular dendritic cells are critical for enhanced proliferation in three-dimensional (3D) microenvironments. We engineered adaptable 3D tumor organoids presenting adhesive peptides with distinct integrin specificities to B and T cell lymphoma cells that resulted in enhanced proliferation, clustering, and drug resistance to the chemotherapeutics and a new class of histone deacetylase inhibitor (HDACi), Panobinostat. In Diffuse Large B cell Lymphomas, the 3D microenvironment upregulated the expression level of B cell receptor (BCR), which supported the survival of B cell lymphomas through a tyrosine kinase Syk in the upstream BCR pathway. Our integrin specific ligand functionalized 3D organoids mimic a lymphoid neoplasm-like heterogeneous microenvironment that could, in the long term, change the understanding of the initiation and progression of hematological tumors, allow primary biospecimen analysis, provide prognostic values, and importantly, allow a faster and more rational screening and translation of therapeutic regimens.
Collapse
|
14
|
Purwada A, Jaiswal MK, Ahn H, Nojima T, Kitamura D, Gaharwar AK, Cerchietti L, Singh A. Ex vivo engineered immune organoids for controlled germinal center reactions. Biomaterials 2015; 63:24-34. [PMID: 26072995 DOI: 10.1016/j.biomaterials.2015.06.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 01/15/2023]
Abstract
Ex vivo engineered three-dimensional organotypic cultures have enabled the real-time study and control of biological functioning of mammalian tissues. Organs of broad interest where its architectural, cellular, and molecular complexity has prevented progress in ex vivo engineering are the secondary immune organs. Ex vivo immune organs can enable mechanistic understanding of the immune system and more importantly, accelerate the translation of immunotherapies as well as a deeper understanding of the mechanisms that lead to their malignant transformation into a variety of B and T cell malignancies. However, till date, no modular ex vivo immune organ has been developed with an ability to control the rate of immune reaction through tunable design parameter. Here we describe a B cell follicle organoid made of nanocomposite biomaterials, which recapitulates the anatomical microenvironment of a lymphoid tissue that provides the basis to induce an accelerated germinal center (GC) reaction by continuously providing extracellular matrix (ECM) and cell-cell signals to naïve B cells. Compared to existing co-cultures, immune organoids provide a control over primary B cell proliferation with ∼100-fold higher and rapid differentiation to the GC phenotype with robust antibody class switching.
Collapse
Affiliation(s)
- Alberto Purwada
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Manish K Jaiswal
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Haelee Ahn
- Division of Hematology and Medical Oncology, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Takuya Nojima
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Daisuke Kitamura
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Leandro Cerchietti
- Division of Hematology and Medical Oncology, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Ankur Singh
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
15
|
Tiberi L, Bonnefont J, van den Ameele J, Le Bon SD, Herpoel A, Bilheu A, Baron BW, Vanderhaeghen P. A BCL6/BCOR/SIRT1 complex triggers neurogenesis and suppresses medulloblastoma by repressing Sonic Hedgehog signaling. Cancer Cell 2014; 26:797-812. [PMID: 25490446 DOI: 10.1016/j.ccell.2014.10.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/27/2014] [Accepted: 10/30/2014] [Indexed: 12/21/2022]
Abstract
Disrupted differentiation during development can lead to oncogenesis, but the underlying mechanisms remain poorly understood. Here we identify BCL6, a transcriptional repressor and lymphoma oncoprotein, as a pivotal factor required for neurogenesis and tumor suppression of medulloblastoma (MB). BCL6 is necessary for and capable of preventing the development of GNP-derived MB in mice, and can block the growth of human MB cells in vitro. BCL6 neurogenic and oncosuppressor effects rely on direct transcriptional repression of Gli1 and Gli2 effectors of the SHH pathway, through recruitment of BCOR corepressor and SIRT1 deacetylase. Our findings identify the BCL6/BCOR/SIRT1 complex as a potent repressor of the SHH pathway in normal and oncogenic neural development, with direct diagnostic and/or therapeutic relevance for SHH MB.
Collapse
Affiliation(s)
- Luca Tiberi
- Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), and ULB Institute of Neuroscience (UNI), 808 Route de Lennik, 1070 Brussels, Belgium
| | - Jérôme Bonnefont
- Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), and ULB Institute of Neuroscience (UNI), 808 Route de Lennik, 1070 Brussels, Belgium
| | - Jelle van den Ameele
- Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), and ULB Institute of Neuroscience (UNI), 808 Route de Lennik, 1070 Brussels, Belgium
| | - Serge-Daniel Le Bon
- Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), and ULB Institute of Neuroscience (UNI), 808 Route de Lennik, 1070 Brussels, Belgium
| | - Adèle Herpoel
- Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), and ULB Institute of Neuroscience (UNI), 808 Route de Lennik, 1070 Brussels, Belgium
| | - Angéline Bilheu
- Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), and ULB Institute of Neuroscience (UNI), 808 Route de Lennik, 1070 Brussels, Belgium
| | - Beverly W Baron
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Pierre Vanderhaeghen
- Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), and ULB Institute of Neuroscience (UNI), 808 Route de Lennik, 1070 Brussels, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium.
| |
Collapse
|
16
|
Cerchietti L, Melnick A. Targeting BCL6 in diffuse large B-cell lymphoma: what does this mean for the future treatment? Expert Rev Hematol 2014; 6:343-5. [PMID: 23991920 DOI: 10.1586/17474086.2013.826928] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Hatzi K, Melnick A. Breaking bad in the germinal center: how deregulation of BCL6 contributes to lymphomagenesis. Trends Mol Med 2014; 20:343-52. [PMID: 24698494 DOI: 10.1016/j.molmed.2014.03.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 01/06/2023]
Abstract
The B cell lymphoma 6 (BCL6) transcriptional repressor is a master regulator of the germinal center (GC) B cell program, required for their unique proliferative and stress tolerant phenotype. Most B cell lymphomas arise from GC B cells and are dependent on the continued or deregulated expression of BCL6 to maintain their survival. The actions of BCL6 in B cells involve formation of distinct chromatin modifying complexes that silence specific promoter and enhancer networks, respectively. The same biochemical mechanisms are maintained in malignant lymphoma cells. Targeted inhibition of these BCL6 functions has emerged as the basis for rational design of lymphoma therapies and combinatorial regimens. In this review, we summarize recent advances on BCL6 mechanisms of action and the deregulation of its target gene networks in lymphoma.
Collapse
Affiliation(s)
- Katerina Hatzi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ari Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
18
|
Targeting the epigenome and other new strategies in diffuse large B-cell lymphoma: beyond R-CHOP. Hematology 2013; 2013:591-5. [DOI: 10.1182/asheducation-2013.1.591] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Diffuse large B-cell lymphoma, the most common lymphoma subtype, is curable in the majority of patients. However, one of the greatest unmet needs in lymphoma treatment remains novel approaches to prevent relapsed or refractory disease. Genomic profiling has provided important prognostic information that is being used in the development of novel therapeutic strategies currently in clinical trials. It is clear, however, that epigenetic alterations provide an additional series of targets that can be pharmacologically modified and offer great potential to improving patient outcomes. Greater understanding of this area is providing important new insights that are now being explored in the clinical setting. Demethylating agents and drugs that disrupt histone modifiers are in early clinical trials with promising results, and other approaches targeting epigenetic pathways are in active preclinical and early clinical development.
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Cellular to animal to human studies are shedding light on metabolic pathways that contribute to sustaining lymphomagenesis. Old players with new metabolic tricks and new metabolic players come into the scene. The purpose of this review is to discuss the recent advances made in the field of lymphoma metabolism with special focus on the metabolic modulation of tumor promoting and suppressing pathways and, conversely, on the effect of these pathways on metabolite addiction. RECENT FINDINGS The basis for the high glucose uptake and glycolytic activity in lymphoma cells is now beginning to be understood. Recent findings suggest a greater role of nucleotide biosynthesis as a major driving force for glycolysis, especially during proliferation and cellular stress conditions. There is new evidence for an increasing contribution of glycine-folate metabolism deregulation in nucleotide biosynthesis, genome integrity and epigenetic maintenance. Expanding roles for MYC, PI3K and TP53 in regulating reactive oxygen production, glycolysis and glutaminolysis in lymphoma cells have been described. The identification of novel pathways has allowed the emergence of new 'antimetabolite' strategies to increase the therapeutic efficacy of current approaches. SUMMARY Metabolism in lymphomas must fulfill the general demands from cell proliferation and those specific to lymphomagenesis. Data emerging from preclinical studies are elucidating the metabolic pathways that contribute to maintaining the malignant phenotype in lymphomas. This has resulted in identification of novel pathways, some of which may have a clinical impact in the diagnosis, characterization and treatment of lymphoma subtypes.
Collapse
|
20
|
Clozel T, Yang S, Elstrom RL, Tam W, Martin P, Kormaksson M, Banerjee S, Vasanthakumar A, Culjkovic B, Scott DW, Wyman S, Leser M, Shaknovich R, Chadburn A, Tabbo F, Godley LA, Gascoyne RD, Borden KL, Inghirami G, Leonard JP, Melnick A, Cerchietti L. Mechanism-based epigenetic chemosensitization therapy of diffuse large B-cell lymphoma. Cancer Discov 2013; 3:1002-19. [PMID: 23955273 PMCID: PMC3770813 DOI: 10.1158/2159-8290.cd-13-0117] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Although aberrant DNA methylation patterning is a hallmark of cancer, the relevance of targeting DNA methyltransferases (DNMT) remains unclear for most tumors. In diffuse large B-cell lymphoma (DLBCL) we observed that chemoresistance is associated with aberrant DNA methylation programming. Prolonged exposure to low-dose DNMT inhibitors (DNMTI) reprogrammed chemoresistant cells to become doxorubicin sensitive without major toxicity in vivo. Nine genes were recurrently hypermethylated in chemoresistant DLBCL. Of these, SMAD1 was a critical contributor, and reactivation was required for chemosensitization. A phase I clinical study was conducted evaluating azacitidine priming followed by standard chemoimmunotherapy in high-risk patients newly diagnosed with DLBCL. The combination was well tolerated and yielded a high rate of complete remission. Pre- and post-azacitidine treatment biopsies confirmed SMAD1 demethylation and chemosensitization, delineating a personalized strategy for the clinical use of DNMTIs. SIGNIFICANCE The problem of chemoresistant DLBCL remains the most urgent challenge in the clinical management of patients with this disease. We describe a mechanism-based approach toward the rational translation of DNMTIs for the treatment of high-risk DLBCL.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antimetabolites, Antineoplastic/therapeutic use
- Azacitidine/adverse effects
- Azacitidine/therapeutic use
- Cell Line, Tumor
- DNA Damage/drug effects
- DNA Methylation/genetics
- DNA Modification Methylases/antagonists & inhibitors
- DNA Modification Methylases/metabolism
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Middle Aged
- RNA Interference
- RNA, Small Interfering
- Smad1 Protein/genetics
- Young Adult
Collapse
Affiliation(s)
- Thomas Clozel
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
| | - ShaoNing Yang
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
| | - Rebecca L. Elstrom
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
- Weill Cornell Cancer Center, Weill Cornell Medical College, Cornell University, United States
| | - Wayne Tam
- Pathology Department, Weill Cornell Medical College, Cornell University, United States
| | - Peter Martin
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
| | | | - Samprit Banerjee
- Division of Biostatistics and Epidemiology, Public Health Department, Weill Cornell Medical College, Cornell University, United States
| | - Aparna Vasanthakumar
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, United States
| | - Biljana Culjkovic
- Institute for Research in Immunology and Cancer & Department of Pathology and Cell Biology, University of Montreal, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Sarah Wyman
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
| | - Michael Leser
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
| | - Rita Shaknovich
- Pathology Department, Weill Cornell Medical College, Cornell University, United States
| | - Amy Chadburn
- Department of Pathology, Northwestern University, Chicago, United States
| | - Fabrizio Tabbo
- Department of Oncological Sciences, University of Turin, Turin, Italy
| | - Lucy A. Godley
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, United States
| | - Randy D. Gascoyne
- Centre for Lymphoid Cancer, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Katherine L. Borden
- Institute for Research in Immunology and Cancer & Department of Pathology and Cell Biology, University of Montreal, Canada
| | - Giorgio Inghirami
- Department of Oncological Sciences, University of Turin, Turin, Italy
| | - John P. Leonard
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
- Weill Cornell Cancer Center, Weill Cornell Medical College, Cornell University, United States
| | - Ari Melnick
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
- Weill Cornell Cancer Center, Weill Cornell Medical College, Cornell University, United States
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, United States
| | - Leandro Cerchietti
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medical College, Cornell University, United States
- Weill Cornell Cancer Center, Weill Cornell Medical College, Cornell University, United States
| |
Collapse
|
21
|
Lineage-specific functions of Bcl-6 in immunity and inflammation are mediated by distinct biochemical mechanisms. Nat Immunol 2013; 14:380-8. [PMID: 23455674 PMCID: PMC3604075 DOI: 10.1038/ni.2543] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/10/2013] [Indexed: 01/08/2023]
Abstract
The transcription factor Bcl-6 orchestrates germinal center (GC) reactions through its actions in B cells and T cells and regulates inflammatory signaling in macrophages. Here we found that genetic replacement with mutated Bcl6 encoding Bcl-6 that cannot bind corepressors to its BTB domain resulted in disruption of the formation of GCs and affinity maturation of immunoglobulins due to a defect in the proliferation and survival of B cells. In contrast, loss of function of the BTB domain had no effect on the differentiation and function of follicular helper T cells or that of other helper T cell subsets. Bcl6-null mice had a lethal inflammatory phenotype, whereas mice with a mutant BTB domain had normal healthy lives with no inflammation. The repression of inflammatory responses by Bcl-6 in macrophages was accordingly independent of the repressor function of the BTB domain. Bcl-6 thus mediates its actions through lineage-specific biochemical functions.
Collapse
|
22
|
Abstract
The mechanisms that drive normal B cell differentiation and activation are frequently subverted by B cell lymphomas for their unlimited growth and survival. B cells are particularly prone to malignant transformation because the machinery used for antibody diversification can cause chromosomal translocations and oncogenic mutations. The advent of functional and structural genomics has greatly accelerated our understanding of oncogenic mechanisms in lymphomagenesis. The signaling pathways that normal B cells utilize to sense antigens are frequently derailed in B cell malignancies, leading to constitutive activation of prosurvival pathways. These malignancies co-opt transcriptional regulatory systems that characterize their normal B cell counterparts and frequently alter epigenetic regulators of chromatin structure and gene expression. These mechanistic insights are ushering in an era of targeted therapies for these cancers based on the principles of pathogenesis.
Collapse
Affiliation(s)
- Arthur L Shaffer
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
23
|
Cerchietti LC, Hatzi K, Caldas-Lopes E, Yang SN, Figueroa ME, Morin RD, Hirst M, Mendez L, Shaknovich R, Cole PA, Bhalla K, Gascoyne RD, Marra M, Chiosis G, Melnick A. BCL6 repression of EP300 in human diffuse large B cell lymphoma cells provides a basis for rational combinatorial therapy. J Clin Invest 2010; 120:4569-82. [PMID: 21041953 DOI: 10.1172/jci42869] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 09/21/2010] [Indexed: 11/17/2022] Open
Abstract
B cell lymphoma 6 (BCL6), which encodes a transcriptional repressor, is a critical oncogene in diffuse large B cell lymphomas (DLBCLs). Although a retro-inverted BCL6 peptide inhibitor (RI-BPI) was recently shown to potently kill DLBCL cells, the underlying mechanisms remain unclear. Here, we show that RI-BPI induces a particular gene expression signature in human DLBCL cell lines that included genes associated with the actions of histone deacetylase (HDAC) and Hsp90 inhibitors. BCL6 directly repressed the expression of p300 lysine acetyltransferase (EP300) and its cofactor HLA-B-associated transcript 3 (BAT3). RI-BPI induced expression of p300 and BAT3, resulting in acetylation of p300 targets including p53 and Hsp90. Induction of p300 and BAT3 was required for the antilymphoma effects of RI-BPI, since specific blockade of either protein rescued human DLBCL cell lines from the BCL6 inhibitor. Consistent with this, combination of RI-BPI with either an HDAC inhibitor (HDI) or an Hsp90 inhibitor potently suppressed or even eradicated established human DLBCL xenografts in mice. Furthermore, HDAC and Hsp90 inhibitors independently enhanced RI-BPI killing of primary human DLBCL cells in vitro. We also show that p300-inactivating mutations occur naturally in human DLBCL patients and may confer resistance to BCL6 inhibitors. Thus, BCL6 repression of EP300 provides a basis for rational targeted combinatorial therapy for patients with DLBCL.
Collapse
Affiliation(s)
- Leandro C Cerchietti
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Katerina Hatzi
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Eloisi Caldas-Lopes
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Shao Ning Yang
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Maria E Figueroa
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Ryan D Morin
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Martin Hirst
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Lourdes Mendez
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Rita Shaknovich
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Philip A Cole
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Kapil Bhalla
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Randy D Gascoyne
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Marco Marra
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Gabriela Chiosis
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Ari Melnick
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
24
|
Cerchietti LC, Ghetu AF, Zhu X, Da Silva GF, Shijun Z, Matthews M, Bunting KL, Polo JM, Farès C, Arrowsmith CH, Yang SN, Garcia M, Coop A, MacKerell AD, Privé GG, Melnick A. A small-molecule inhibitor of BCL6 kills DLBCL cells in vitro and in vivo. Cancer Cell 2010; 17:400-11. [PMID: 20385364 PMCID: PMC2858395 DOI: 10.1016/j.ccr.2009.12.050] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 10/29/2009] [Accepted: 02/05/2010] [Indexed: 11/30/2022]
Abstract
The BCL6 transcriptional repressor is the most frequently involved oncogene in diffuse large B cell lymphoma (DLBCL). We combined computer-aided drug design with functional assays to identify low-molecular-weight compounds that bind to the corepressor binding groove of the BCL6 BTB domain. One such compound disrupted BCL6/corepressor complexes in vitro and in vivo, and was observed by X-ray crystallography and NMR to bind the critical site within the BTB groove. This compound could induce expression of BCL6 target genes and kill BCL6-positive DLBCL cell lines. In xenotransplantation experiments, the compound was nontoxic and potently suppressed DLBCL tumors in vivo. The compound also killed primary DLBCLs from human patients.
Collapse
Affiliation(s)
- Leandro C. Cerchietti
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY
| | | | - Xiao Zhu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD
| | - Gustavo F. Da Silva
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Zhong Shijun
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD
| | - Marilyn Matthews
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD
| | - Karen L. Bunting
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY
| | - Jose M. Polo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | | | - Cheryl H. Arrowsmith
- Ontario Cancer Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Shao Ning Yang
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY
| | - Monica Garcia
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY
| | - Andrew Coop
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD
| | - Gilbert G. Privé
- Ontario Cancer Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Ari Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY
| |
Collapse
|
25
|
Winter JN, Li S, Aurora V, Variakojis D, Nelson B, Krajewska M, Zhang L, Habermann TM, Fisher RI, Macon WR, Chhanabhai M, Felgar RE, Hsi ED, Medeiros LJ, Weick JK, Weller EA, Melnick A, Reed JC, Horning SJ, Gascoyne RD. Expression of p21 protein predicts clinical outcome in DLBCL patients older than 60 years treated with R-CHOP but not CHOP: a prospective ECOG and Southwest Oncology Group correlative study on E4494. Clin Cancer Res 2010; 16:2435-42. [PMID: 20371683 DOI: 10.1158/1078-0432.ccr-09-1219] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To prospectively investigate the prognostic significance of p21 and p53 expression in diffuse large B-cell lymphoma in the context of the U.S. Intergroup trial comparing conventional cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) chemotherapy to rituximab-CHOP (R-CHOP) induction, with or without maintenance rituximab. EXPERIMENTAL DESIGN Immunohistochemical staining of 197 paraffin-embedded biopsy specimens was scored by an independent panel of experts. RESULTS The cyclin-dependent kinase inhibitor, p21, was expressed in 55% of cases examined. In a multivariable analysis adjusting for International Prognostic Index score and BCL2 status, p21 expression was a significant, independent, favorable predictive factor for failure-free survival (relative risk, 0.3; P = 0.001) and overall survival (relative risk, 0.3; P = 0.003) for patients treated with R-CHOP. Expression of p21 was not predictive of outcome for CHOP-treated patients. Only p21-positive cases benefited from the addition of rituximab to CHOP. Among p21-positive patients, treatment with R-CHOP was associated with a higher failure-free survival rate at 5 years compared with CHOP (61% versus 24%; P = 0.01). In contrast, no significant differences were detected in failure-free survival according to treatment arm for p21-negative patients. Expression of p53, alone or in combination with p21, did not predict for outcome in univariable or multivariable analyses. CONCLUSIONS In this study, p21 protein expression emerged as an important independent predictor of a favorable clinical outcome when rituximab was added to CHOP therapy. These data suggest that rituximab-related effects on lymphoma survival pathways may be functionally linked to p21 activity.
Collapse
Affiliation(s)
- Jane N Winter
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
The BCL6 transcriptional program features repression of multiple oncogenes in primary B cells and is deregulated in DLBCL. Blood 2009; 113:5536-48. [PMID: 19307668 DOI: 10.1182/blood-2008-12-193037] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The BCL6 transcriptional repressor is required for development of germinal center (GC) B cells and when expressed constitutively causes diffuse large B-cell lymphomas (DLBCLs). We examined genome-wide BCL6 promoter binding in GC B cells versus DLBCLs to better understand its function in these settings. BCL6 bound to both distinct and common sets of functionally related gene in normal GC cells versus DLBCL cells. Certain BCL6 target genes were preferentially repressed in GC B cells, but not DLBCL cells. Several such genes have prominent oncogenic functions, such as BCL2, MYC, BMI1, EIF4E, JUNB, and CCND1. BCL6 and BCL2 expression was negatively correlated in primary DLBCLs except in the presence of BCL2 translocations. The specific BCL6 inhibitor retro-inverso BCL6 peptidomimetic inhibitor-induced expression of BCL2 and other oncogenes, consistent with direct repression effects by BCL6. These data are consistent with a model whereby BCL6 can directly silence oncogenes in GC B cells and counterbalance its own tumorigenic potential. Finally, a BCL6 consensus sequence and binding sites for other physiologically relevant transcription factors were highly enriched among target genes and distributed in a pathway-dependent manner, suggesting that BCL6 forms specific regulatory circuits with other B-cell transcriptional factors.
Collapse
|
27
|
B-cell lymphoma 6 and the molecular pathogenesis of diffuse large B-cell lymphoma. Curr Opin Hematol 2008; 15:381-90. [PMID: 18536578 DOI: 10.1097/moh.0b013e328302c7df] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE OF REVIEW The B-cell lymphoma 6 transcriptional repressor is the most commonly involved oncogene in B-cell lymphomas. Sustained expression of B-cell lymphoma 6 causes malignant transformation of germinal center B cells. Understanding the mechanism of action of B-cell lymphoma 6 is crucial for the study of how aberrant transcriptional programming leads to lymphomagenesis and development of targeted antilymphoma therapy. RECENT FINDINGS Identification of B-cell lymphoma 6 target genes indicates a critical role for B-cell lymphoma 6 in facilitating a state of physiological genomic instability required for germinal center B cells to undergo affinity maturation, and suggests its contribution to several additional cellular functions. The discovery of several layers of counterregulatory mechanisms reveals how B cells can control and fine-tune the potentially lymphomagenic actions of B-cell lymphoma 6. From the biochemical standpoint, B-cell lymphoma 6 can regulate distinct biological pathways through different cofactors. This observation explains how the biological actions of B-cell lymphoma 6 can be physiologically controlled through separate mechanisms and affords the means for improved therapeutic targeting. The fact that patients with B-cell lymphoma 6-dependent lymphoma can be identified on the basis of gene signatures suggests that therapeutic trials of B-cell lymphoma 6 inhibitors could be personalized to these individuals. SUMMARY B-cell lymphoma 6 plays a fundamental role in lymphomagenesis and is an excellent therapeutic target for development of improved antilymphoma therapeutic regimens.
Collapse
|