1
|
Yao Y, Liu Y, Lu B, Ji G, Wang L, Dong K, Zhao Z, Lyu D, Wei M, Tu S, Lyu X, Li Y, Huang R, Zhou W, Xu G, Pan X, Cui X. Construction and validation of a regulatory T cells-based classification of renal cell carcinoma: an integrated bioinformatic analysis and clinical cohort study. Cell Oncol (Dordr) 2024:10.1007/s13402-024-01030-9. [PMID: 39714755 DOI: 10.1007/s13402-024-01030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 12/24/2024] Open
Abstract
PURPOSE Renal cell carcinoma (RCC), exhibiting remarkable heterogeneity, can be highly infiltrated by regulatory T cells (Tregs). However, the relationship between Treg and the heterogeneity of RCC remains to be explored. METHODS We acquired single-cell RNA-seq profiles and 537 bulk RNA-seq profiles of TCGA-KIRC cohort. Through clustering, monocle2 pseudotime and prognostic analyses, we identified Treg states-related prognostic genes (TSRPGs), then constructing the RCC Treg states-related prognostic classification (RCC-TSC). We also explored its prognostic significance and multi-omics landmarks. Additionally, we utilized correlation analysis to establish regulatory networks, and predicted candidate inhibitors. More importantly, in Xinhua cohort of 370 patients with kidney neoplasm, we used immunohistochemical (IHC) staining for classification, then employing statistical analyses including Chi-square tests and multivariate Cox proportional hazards regression analysis to explore its clinical relevance. RESULTS We defined 44 TSRPGs in four different monocle states, and identified high immune infiltration RCC (HIRC, LAG3+, Mki67+) as the highly exhausted subtype with the worst prognosis in RCC-TSC (p < 0.001). BATF-LAG3-immune cells axis might be its underlying metastasis-related mechanism. Immunotherapy and inhibitors including sunitinib potentially conferred best therapeutic effects for HIRC. Furthermore, we successfully validated HIRC subtype as an independent prognostic factor within the Xinhua cohort (OS, HR = 16.68, 95% CI = 1.88-148.1, p = 0.011; PFS, HR = 4.43, 95% CI = 1.55-12.6, p = 0.005). CONCLUSION Through integrated bioinformatics analysis and a large-sample retrospective clinical study, we successfully established RCC-TSC and a diagnostic kit, which could stratify RCC patients with different prognosis and to guide personalized treatment.
Collapse
Affiliation(s)
- Yuntao Yao
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yifan Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Bingnan Lu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Guo Ji
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Keqin Dong
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zihui Zhao
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Donghao Lyu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Maodong Wei
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Siqi Tu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xukun Lyu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuanan Li
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Wang Zhou
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Guofeng Xu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Xiuwu Pan
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Xingang Cui
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
DePasquale JA. Visible light potentiates rapid cell destruction and death by curcumin in vitro. Photochem Photobiol Sci 2024; 23:1893-1914. [PMID: 39333349 DOI: 10.1007/s43630-024-00639-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Curcumin, a small molecule derived from the plant Curcuma longa, is a pleiotropic agent with widely varying pharmacological activities attributed to it. In addition to its anti-cancer activity curcumin is also known to be cytotoxic upon photoactivation. Time-lapse DIC and correlative fluorescence microscopy were used to evaluate the effects of curcumin, combined with continuous exposure to visible light, on cellular components of RTG-2 cells. Curcumin combined with visible light resulted in rapid and dramatic destruction of cells. F-actin and microtubule cytoskeletons were drastically altered, both showing fragmentation and overall loss from cells. Nuclei exhibited granulated nucleoplasm, condensed DNA, and physical shrinkage. Mitochondria rapidly fragmented along their length and disappeared from cells. Plasma membrane was breached based on lipophilic dye staining and the entrance of otherwise impermeant small molecules into the cell. Grossly distorted morphology hallmarked by significant swelling and coarse granulation of the cytoplasm was consistently observed. All of these effects were dependent on visible light as the same cellular targets in curcumin-treated cells outside the illuminated area were always unperturbed. The combination of curcumin and continuous exposure to visible light enables rapid and irreversible cellular destruction which can be monitored in real-time. Real-time monitoring of this structural disintegration suggests a new approach to applying curcumin in photodynamic treatments, where the progression of cell and tissue destruction might be simultaneously evaluated through optical means.
Collapse
|
3
|
Tausif YM, Thekkekkara D, Sai TE, Jahagirdar V, Arjun HR, Meheronnisha SK, Babu A, Banerjee A. Heat shock protein paradigms in cancer progression: future therapeutic perspectives. 3 Biotech 2024; 14:96. [PMID: 38449709 PMCID: PMC10912419 DOI: 10.1007/s13205-024-03951-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/28/2024] [Indexed: 03/08/2024] Open
Abstract
Heat-shock proteins (HSPs), also known as stress proteins, are ubiquitously present in all forms of life. They play pivotal roles in protein folding and unfolding, the formation of multiprotein complexes, the transportation and sorting of proteins into their designated subcellular compartments, the regulation of the cell cycle, and signalling processes. These HSPs encompass HSP27, HSP40, HSP70, HSP60, and HSP90, each contributing to various cellular functions. In the context of cancer, HSPs exert influence by either inhibiting or activating diverse signalling pathways, thereby impacting growth, differentiation, and cell division. This article offers an extensive exploration of the functions of HSPs within the realms of pharmacology and cancer biology. HSPs are believed to play substantial roles in the mechanisms underlying the initiation and progression of cancer. They hold promise as valuable clinical markers for cancer diagnosis, potential targets for therapeutic interventions, and indicators of disease progression. In times of cellular stress, HSPs function as molecular chaperones, safeguarding the structural and functional integrity of proteins and aiding in their proper folding. Moreover, HSPs play a crucial role in cancer growth, by regulating processes such as angiogenesis, cell proliferation, migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Y. Mohammed Tausif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - Dithu Thekkekkara
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - Thummuru Ekshita Sai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - Vaishnavi Jahagirdar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - H. R. Arjun
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - S. K. Meheronnisha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - Amrita Babu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - Aniruddha Banerjee
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| |
Collapse
|
4
|
Viana P, Hamar P. Targeting the heat shock response induced by modulated electro-hyperthermia (mEHT) in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189069. [PMID: 38176599 DOI: 10.1016/j.bbcan.2023.189069] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
The Heat Shock Response (HSR) is a cellular stress reaction crucial for cell survival against stressors, including heat, in both healthy and cancer cells. Modulated electro-hyperthermia (mEHT) is an emerging non-invasive cancer therapy utilizing electromagnetic fields to selectively target cancer cells via temperature-dependent and independent mechanisms. However, mEHT triggers HSR in treated cells. Despite demonstrated efficacy in cancer treatment, understanding the underlying molecular mechanisms for improved therapeutic outcomes remains a focus. This review examines the HSR induced by mEHT in cancer cells, discussing potential strategies to modulate it for enhanced tumor-killing effects. Approaches such as HSF1 gene-knockdown and small molecule inhibitors like KRIBB11 are explored to downregulate the HSR and augment tumor destruction. We emphasize the impact of HSR inhibition on cancer cell viability, mEHT sensitivity, and potential synergistic effects, addressing challenges and future directions. This understanding offers opportunities for optimizing treatment strategies and advancing precision medicine in cancer therapy.
Collapse
Affiliation(s)
- Pedro Viana
- Institute of Translational Medicine, Semmelweis University, Tűzoltó utca 37-49, 1094 Budapest, Hungary.
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, Tűzoltó utca 37-49, 1094 Budapest, Hungary.
| |
Collapse
|
5
|
Gad HA, Diab AM, Elsaied BE, Tayel AA. Biopolymer-based formulations for curcumin delivery toward cancer management. CURCUMIN-BASED NANOMEDICINES AS CANCER THERAPEUTICS 2024:309-338. [DOI: 10.1016/b978-0-443-15412-6.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
MaruYama T, Miyazaki H, Komori T, Osana S, Shibata H, Owada Y, Kobayashi S. Curcumin analog GO-Y030 inhibits tumor metastasis and glycolysis. J Biochem 2023; 174:511-518. [PMID: 37656908 PMCID: PMC11002536 DOI: 10.1093/jb/mvad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023] Open
Abstract
Tumor metastasis is one of the worst prognostic features of cancer. Although metastasis is a major cause of cancer-related deaths, an effective treatment has not yet been established. Here, we explore the antitumor effects of GO-Y030, a curcumin analog, via various mechanisms using a mouse model. GO-Y030 treatment of B16-F10 melanoma cells inhibited TGF-β expression and glycolysis. The invasion assay results showed almost complete invasion inhibition following GO-Y030 treatment. Mouse experiments demonstrated that GO-Y030 administration inhibited lung tumor metastasis without affecting vascular endothelial cells. Consistent with this result, GO-Y030 treatment led to the downregulation of MMP2 and VEGFα, inhibiting tumor invasion and metastasis. The silencing of eIF4B, a downstream molecule of S6, attenuated MMP2 expression. Our study demonstrates the novel efficacy of GO-Y030 in inhibiting tumor metastasis by regulating metastasis-associated gene expression via inhibiting dual access, glycolytic and TGF-β pathways.
Collapse
Affiliation(s)
- Takashi MaruYama
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo 2-1, Aoba, Sendai, Miyagi, 980-8575, Japan
- Department of Immunology, Akita University, Graduate School of Medicine, Hondo 1-1, Akita, Akita, 010-8543, Japan
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo 2-1, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Taishi Komori
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research(NIDCR), National Institutes of Health, 30 convent drive, Building 30, Bethesda, MD, 20892, USA
| | - Shion Osana
- Department of Engineering Science, University of Electro-Communications, Graduate School of Informatics and Engineering, Chofugaoka 1-5-1, Chofu, Tokyo, 182-8585, Japan
| | - Hiroyuki Shibata
- Department of Clinical Oncology, Akita University, Graduate School of Medicine, Hondo 1-1, Akita, Akita, 010-8543, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo 2-1, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Shuhei Kobayashi
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo 2-1, Aoba, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
7
|
Sripetthong S, Nalinbenjapun S, Basit A, Surassmo S, Sajomsang W, Ovatlarnporn C. Preparation of Self-Assembled, Curcumin-Loaded Nano-Micelles Using Quarternized Chitosan-Vanillin Imine (QCS-Vani Imine) Conjugate and Evaluation of Synergistic Anticancer Effect with Cisplatin. J Funct Biomater 2023; 14:525. [PMID: 37888190 PMCID: PMC10607333 DOI: 10.3390/jfb14100525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Nano-micelles are self-assembling colloidal dispersions applied to enhance the anticancer efficacy of chemotherapeutic agents. In this study, the conjugate of quarternized chitosan and vanillin imine (QCS-Vani imine) was synthesized using the reaction of a Schiff base characterized by proton-NMR (1HNMR), UV-Vis spectroscopy, and FT-IR. The critical micelle concentration (CMC), particle size, and zeta potential of the resulting product were determined. The QCS-Vani imine conjugate was used as a carrier for the development of curcumin-loaded nano-micelles, and their entrapment efficiency (%EE), drug-loading capacity (%LC) and in vitro release were investigated using HPLC analysis. Moreover, the nano-micelles containing curcumin were combined with various concentrations of cisplatin and evaluated for a possible anticancer synergistic effect. The anticancer activity was evaluated against lung cancer A549 and mouse fibroblast L929 cell lines. The percent yield (%) of the QCS-Vani imine conjugate was 93.18%. The curcumin-loaded QCS-Vani imine nano-micelles were characterized and found to have a spherical shape (by TEM) with size < 200 nm (by DLS) with high %EE up to 67.61% and %LC up to 6.15 ± 0.41%. The loaded lyophilized powder of the nano-micelles was more stable at 4 °C than at room temperature during 120 days of storage. pH-sensitive release properties were observed to have a higher curcumin release at pH 5.5 (cancer environment) than at pH 7.4 (systemic environment). Curcumin-loaded QCS-Vani imine nano-micelles showed higher cytotoxicity and selectivity toward lung cancer A549 cell lines and exhibited lower toxicity toward the normal cell (H9C2) than pure curcumin. Moreover, the curcumin-loaded QCS-Vani imine nano-micelles exhibited an enhanced property of inducing cell cycle arrest during the S-phase against A549 cells and showed prominently induced apoptosis in lung cancer cells compared to that with curcumin. The co-treatment of cisplatin with curcumin-loaded QCS-Vani imine nano-micelles presented an enhanced anticancer effect, showing 8.66 ± 0.88 μM as the IC50 value, in comparison to the treatment with cisplatin alone (14.22 ± 1.01 μM). These findings suggest that the developed QCS-Vani imine nano-micelle is a potential drug delivery system and could be a promising approach for treating lung cancer in combination with cisplatin.
Collapse
Affiliation(s)
- Sasikarn Sripetthong
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Thailand; (S.S.); (S.N.); (A.B.)
- Drug Delivery System Excellent Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Sirinporn Nalinbenjapun
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Thailand; (S.S.); (S.N.); (A.B.)
- Drug Delivery System Excellent Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Thailand; (S.S.); (S.N.); (A.B.)
- Drug Delivery System Excellent Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Suvimol Surassmo
- Nano-Delivery System Laboratory, National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani 12120, Thailand; (S.S.); (W.S.)
| | - Warayuth Sajomsang
- Nano-Delivery System Laboratory, National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani 12120, Thailand; (S.S.); (W.S.)
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Thailand; (S.S.); (S.N.); (A.B.)
- Drug Delivery System Excellent Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Thailand
| |
Collapse
|
8
|
Memarzia A, Saadat S, Asgharzadeh F, Behrouz S, Folkerts G, Boskabady MH. Therapeutic effects of medicinal plants and their constituents on lung cancer, in vitro, in vivo and clinical evidence. J Cell Mol Med 2023; 27:2841-2863. [PMID: 37697969 PMCID: PMC10538270 DOI: 10.1111/jcmm.17936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023] Open
Abstract
The most common type of cancer in the world is lung cancer. Traditional treatments have an important role in cancer therapy. In the present review, the most recent findings on the effects of medicinal plants and their constituents or natural products (NP) in treating lung cancer are discussed. Empirical studies until the end of March 2022 were searched using the appropriate keywords through the databases PubMed, Science Direct and Scopus. The extracts and essential oils tested were all shown to effect lung cancer by several mechanisms including decreased tumour weight and volume, cell viability and modulation of cytokine. Some plant constituents increased expression of apoptotic proteins, the proportion of cells in the G2/M phase and subG0/G1 phase, and Cyt c levels. Also, natural products (NP) activate apoptotic pathways in lung cancer cell including p-JNK, Akt/mTOR, PI3/ AKT\ and Bax, Bcl2, but suppressed AXL phosphorylation. Plant-derived substances altered the cell morphology, reduced cell migration and metastasis, oxidative marker production, p-eIF2α and GRP78, IgG, IgM levels and reduced leukocyte counts, LDH, GGT, 5'NT and carcinoembryonic antigen (CEA). Therefore, medicinal plant extracts and their constituents could have promising therapeutic value for lung cancer, especially if used in combination with ordinary anti-cancer drugs.
Collapse
Affiliation(s)
- Arghavan Memarzia
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Saeideh Saadat
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, School of MedicineZahedan University of Medical SciencesZahedanIran
| | - Fereshteh Asgharzadeh
- Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Sepide Behrouz
- Department of Animal Science, Faculty of AgricultureUniversity of BirjandBirjandIran
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of ScienceUtrecht UniversityUtrechtNetherlands
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
9
|
Pant A, Moar K, K Arora T, Maurya PK. Biomarkers of endometriosis. Clin Chim Acta 2023; 549:117563. [PMID: 37739024 DOI: 10.1016/j.cca.2023.117563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Endometriosis is one of the most severe female reproductive disorders, affecting 6-10% of women between 18 and 35. It is a gynaecological condition where endometrial tissue develops and settles outside the uterus. The aetiology of endometriosis is primarily influenced by genetic, epigenetic, and non-genetic variables, making it highly challenging to create a therapeutic therapy explicitly targeting the ectopic tissue. The delay in the treatment is due to the limitations in the diagnostic approaches, which are restricted to invasive techniques such as laparoscopy or laparotomy. This accords to 70% of the women being diagnosed at later stages. By understanding the subject, several treatment medications have been produced to lessen the disease's symptoms. Nevertheless, endometriosis cannot be permanently cured. A viable or persuasive standard screening test for endometriosis must be utilized in a clinical context. A helpful assessment method for the early identification of endometriosis could be biomarkers. A major research priority is the identification of a biomarker that is sensitive and specific enough for detecting endometriosis. The present article has reviewed studies published on the expression of biomarkers of endometriosis. It outlines various biomarkers from different sample types, such as serum/plasma and urine, in addition to tissue. This would provide a non-invasive approach to diagnosing the disease at the initial stages without any harmful repercussions. Future high-throughput advances in science and technology are anticipated to result in the creation of a potent remedy for endometriosis. To achieve successful outcomes, it is necessary to research the discussed biomarkers that demonstrate substantial results extensively.
Collapse
Affiliation(s)
- Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Taruna K Arora
- Reproductive Biology and Maternal Child Health Division, Indian Council of Medical Research, New Delhi 110029, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
10
|
Choudhary N, Bawari S, Burcher JT, Sinha D, Tewari D, Bishayee A. Targeting Cell Signaling Pathways in Lung Cancer by Bioactive Phytocompounds. Cancers (Basel) 2023; 15:3980. [PMID: 37568796 PMCID: PMC10417502 DOI: 10.3390/cancers15153980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer is a heterogeneous group of malignancies with high incidence worldwide. It is the most frequently occurring cancer in men and the second most common in women. Due to its frequent diagnosis and variable response to treatment, lung cancer was reported as the top cause of cancer-related deaths worldwide in 2020. Many aberrant signaling cascades are implicated in the pathogenesis of lung cancer, including those involved in apoptosis (B cell lymphoma protein, Bcl-2-associated X protein, first apoptosis signal ligand), growth inhibition (tumor suppressor protein or gene and serine/threonine kinase 11), and growth promotion (epidermal growth factor receptor/proto-oncogenes/phosphatidylinositol-3 kinase). Accordingly, these pathways and their signaling molecules have become promising targets for chemopreventive and chemotherapeutic agents. Recent research provides compelling evidence for the use of plant-based compounds, known collectively as phytochemicals, as anticancer agents. This review discusses major contributing signaling pathways involved in the pathophysiology of lung cancer, as well as currently available treatments and prospective drug candidates. The anticancer potential of naturally occurring bioactive compounds in the context of lung cancer is also discussed, with critical analysis of their mechanistic actions presented by preclinical and clinical studies.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, GNA School of Pharmacy, GNA University, Phagwara 144 401, India
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University, Noida 201 301, India
| | - Jack T. Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
11
|
Fang F, Mo L, Pan X, Yang Z, Huang H, Zhu L, Wang Y, Jiang G. DNAJB4 promotes triple-negative breast cancer cell apoptosis via activation of the Hippo signaling pathway. Discov Oncol 2023; 14:40. [PMID: 37012515 PMCID: PMC10070573 DOI: 10.1007/s12672-023-00645-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is currently the most malignant subtype of breast cancer without effective targeted therapies. DNAJB4 (Dnaj heat shock protein family (Hsp40) member B4) is a member of the human heat shock protein family (Hsp40). The clinical significance of DNAJB4 in breast cancer has been reported in our previous study. However, the biological function of DNAJB4 in TNBC cell apoptosis remains unclear to date. METHODS The expression of DNAJB4 in normal breast cells, breast cancer cells, four-paired TNBC tissues, and adjacent noncancerous tissues was quantified by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assay. The role of DNAJB4 in TNBC cell apoptosis was investigated using a number of gain- and loss-of-function in vitro and in vivo assays. The underlying molecular mechanisms in TNBC cell apoptosis were elucidated via Western blot assay. RESULTS DNAJB4 expression was significantly downregulated in TNBC tissues and cell lines. DNAJB4 knockdown inhibited TNBC cell apoptosis and promoted tumorigenicity in vitro and in vivo, but DNAJB4 overexpression resulted in the opposite. Mechanically, DNAJB4 knockdown inhibited TNBC cell apoptosis through suppression of the Hippo signaling pathway, and the result was reversed after DNAJB4 overexpression. CONCLUSIONS DNAJB4 promotes TNBC cell apoptosis by activating the Hippo signaling pathway. Therefore, DNAJB4 may act as a prognostic biomarker and therapeutic target for TNBC.
Collapse
Affiliation(s)
- Fang Fang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004, China
- Department of Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Linglong Mo
- Department of Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Xiaofeng Pan
- Department of Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Ziquan Yang
- Department of Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Haoyu Huang
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, 241001, China
| | - Liangyu Zhu
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, 241001, China
| | - Yingying Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Guoqin Jiang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004, China.
| |
Collapse
|
12
|
Zhang J, Sun J, Li C, Qiao H, Hussain Z. Functionalization of curcumin nanomedicines: a recent promising adaptation to maximize pharmacokinetic profile, specific cell internalization and anticancer efficacy against breast cancer. J Nanobiotechnology 2023; 21:106. [PMID: 36964547 PMCID: PMC10039588 DOI: 10.1186/s12951-023-01854-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
Owing to its diverse heterogeneity, aggressive nature, enormous metastatic potential, and high remission rate, the breast cancer (BC) is among the most prevalent types of cancer associated with high mortality. Curcumin (Cur) is a potent phytoconstituent that has gained remarkable recognition due to exceptional biomedical viability against a wide range of ailments including the BC. Despite exhibiting a strong anticancer potential, the clinical translation of Cur is restricted due to intrinsic physicochemical properties such as low aqueous solubility, chemical instability, low bioavailability, and short plasma half-life. To overcome these shortcomings, nanotechnology-aided developments have been extensively deployed. The implication of nanotechnology has pointedly improved the physicochemical properties, pharmacokinetic profile, cell internalization, and anticancer efficacy of Cur; however, majority of Cur-nanomedicines are still facing grandeur challenges. The advent of various functionalization strategies such as PEGylation, surface decoration with different moieties, stimuli-responsiveness (i.e., pH, light, temperature, heat, etc.), tethering of specific targeting ligand(s) based on the biochemical targets (e.g., folic acid receptors, transferrin receptors, CD44, etc.), and multifunctionalization (multiple functionalities) has revolutionized the fate of Cur-nanomedicines. This study ponders the biomedical significance of various Cur-nanomedicines and adaptable functionalizations for amplifying the physicochemical properties, cytotoxicity via induction of apoptosis, cell internalization, bioavailability, passive and active targeting to the tumor microenvironment (TME), and anticancer efficacy of the Cur while reversing the multidrug resistance (MDR) and reoccurrence in BC. Nevertheless, the therapeutic outcomes of Cur-nanomedicines against the BC have been remarkably improved after adaptation of various functionalizations; however, this evolving strategy still demands extensive research for scalable clinical translation.
Collapse
Affiliation(s)
- Jinku Zhang
- Department of Pathology, Baoding First Central Hospital, Baoding, 071000, Hebei, China.
| | - Jirui Sun
- Department of Pathology, Baoding First Central Hospital, Baoding, 071000, Hebei, China
| | - Chong Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haizhi Qiao
- Department of Pathology, Baoding First Central Hospital, Baoding, 071000, Hebei, China
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| |
Collapse
|
13
|
Rahman MA, Ali A, Rahamathulla M, Salam S, Hani U, Wahab S, Warsi MH, Yusuf M, Ali A, Mittal V, Harwansh RK. Fabrication of Sustained Release Curcumin-Loaded Solid Lipid Nanoparticles (Cur-SLNs) as a Potential Drug Delivery System for the Treatment of Lung Cancer: Optimization of Formulation and In Vitro Biological Evaluation. Polymers (Basel) 2023; 15:polym15030542. [PMID: 36771843 PMCID: PMC9918916 DOI: 10.3390/polym15030542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
The goal of current research was to develop a new form of effective drug, curcumin-loaded solid lipid nanoparticles (Cur-SLNs) and test its efficacy in the treatment of lung cancer. Different batches of SLNs were prepared by the emulsification-ultrasonication method. For the optimization of formulation, each batch was evaluated for particle size, polydispersity index (PI), zeta potential (ZP), entrapment efficiency (EE) and drug loading (DL). The formulation components and process parameters largely affected the quality of SLNs. The SLNs obtained with particle size, 114.9 ± 1.36 nm; PI, 0.112 ± 0.005; ZP, -32.3 ± 0.30 mV; EE, 69.74 ± 2.03%, and DL, 0.81 ± 0.04% was designated as an optimized formulation. The formulation was freeze-dried to remove excess water to improve the physical stability. Freeze-dried Cur-SLNs showed 99.32% of drug release and demonstrated a burst effect trailed by sustained release up to 120 h periods. The erythrocyte toxicity study of Cur-SLNs and its components demonstrated moderate hemolytic potential towards red blood cells (RBCs). The cytotoxic potential of the formulation and plain curcumin was estimated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against A549 cell line. After 48 h of incubation, Cur-SLNs demonstrated more cytotoxicity (IC50 = 26.12 ± 1.24 µM) than plain curcumin (IC50 = 35.12 ± 2.33 µM). Moreover, the cellular uptake of curcumin was found to be significantly higher from Cur-SLNs (682.08 ± 6.33 ng/µg) compared to plain curcumin (162.4 ± 4.2 ng/µg). Additionally, the optimized formulation was found to be stable over the period of 90 days of storage. Hence, curcumin-loaded SLNs can be prepared using the proposed cost effective method, and can be utilized as an effective drug delivery system for the treatment of lung cancer, provided in vivo studies warrant a similar outcome.
Collapse
Affiliation(s)
- Mohammad Akhlaquer Rahman
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence:
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, P.O. Box 62236, Abha 62223, Saudi Arabia
| | - Shahana Salam
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, P.O. Box 62236, Abha 62223, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, P.O. Box 62236, Abha 62529, Saudi Arabia
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammad Yusuf
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amena Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak 124001, India
| | | |
Collapse
|
14
|
El-Saadony MT, Yang T, Korma SA, Sitohy M, Abd El-Mageed TA, Selim S, Al Jaouni SK, Salem HM, Mahmmod Y, Soliman SM, Mo’men SAA, Mosa WFA, El-Wafai NA, Abou-Aly HE, Sitohy B, Abd El-Hack ME, El-Tarabily KA, Saad AM. Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review. Front Nutr 2023; 9:1040259. [PMID: 36712505 PMCID: PMC9881416 DOI: 10.3389/fnut.2022.1040259] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/09/2022] [Indexed: 01/11/2023] Open
Abstract
The yellow polyphenolic pigment known as curcumin, originating from the rhizome of the turmeric plant Curcuma longa L., has been utilized for ages in ancient medicine, as well as in cooking and food coloring. Recently, the biological activities of turmeric and curcumin have been thoroughly investigated. The studies mainly focused on their antioxidant, antitumor, anti-inflammatory, neuroprotective, hepatoprotective, and cardioprotective impacts. This review seeks to provide an in-depth, detailed discussion of curcumin usage within the food processing industries and its effect on health support and disease prevention. Curcumin's bioavailability, bio-efficacy, and bio-safety characteristics, as well as its side effects and quality standards, are also discussed. Finally, curcumin's multifaceted uses, food appeal enhancement, agro-industrial techniques counteracting its instability and low bioavailability, nanotechnology and focused drug delivery systems to increase its bioavailability, and prospective clinical use tactics are all discussed.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mahmoud Sitohy
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Taia A. Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Yasser Mahmmod
- Department of Veterinary Sciences, Faculty of Health Sciences, Higher Colleges of Technology, Al Ain, United Arab Emirates
| | - Soliman M. Soliman
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shaimaa A. A. Mo’men
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Walid F. A. Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Nahed A. El-Wafai
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Hamed E. Abou-Aly
- Department of Agricultural Microbiology, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Basel Sitohy
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Mohamed E. Abd El-Hack
- Department of Poultry Diseases, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
15
|
Ullah A, Ullah N, Nawaz T, Aziz T. Molecular Mechanisms of Sanguinarine in Cancer Prevention and Treatment. Anticancer Agents Med Chem 2023; 23:765-778. [PMID: 36045531 DOI: 10.2174/1871520622666220831124321] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022]
Abstract
Historically, natural plant-derived drugs received a great impact of consideration in the treatment of several human-associated disorders. Cancer is a devastating disease and the second most cause of mortality. Sanguinarine (SANG), a naturally isolated plant alkaloidal agent, possesses chemo-preventive effects. Several studies have revealed that SANG impedes tumor metastasis and development by disrupting a wide range of cell signaling pathways and its molecular targets, such as BCL-2, MAPKs, Akt, NF-κB, ROS, and microRNAs (miRNAs). However, its low chemical stability and poor oral bioavailability remain key issues in its use as a medicinal molecule. A novel method (e.g., liposomes, nanoparticles, and micelles) and alternative analogs provide an exciting approach to alleviate these problems and broaden its pharmacokinetic profile. Cancer-specific miRNA expression is synchronized by SANG, which has also been uncertain. In this critical study, we review the utilization of SANG mimics and nano-technologies to improve its support in cancer. We focus on recently disclosed studies on SANG anti-cancer properties.
Collapse
Affiliation(s)
- Asmat Ullah
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Najeeb Ullah
- School of Biochemistry and Molecular Biology, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Touseef Nawaz
- Faculty of Pharmacy, Gomal University, D.I. Khan, Pakistan
| | - Tariq Aziz
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China
| |
Collapse
|
16
|
Kim HY, Hong S. Multi-Faceted Roles of DNAJB Protein in Cancer Metastasis and Clinical Implications. Int J Mol Sci 2022; 23:14970. [PMID: 36499297 PMCID: PMC9737691 DOI: 10.3390/ijms232314970] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Heat shock proteins (HSPs) are highly conserved molecular chaperones with diverse cellular activities, including protein folding, assembly or disassembly of protein complexes, and maturation process under diverse stress conditions. HSPs also play essential roles in tumorigenesis, metastasis, and therapeutic resistance across cancers. Among them, HSP40s are widely accepted as regulators of HSP70/HSP90 chaperones and an accumulating number of biological functions as molecular chaperones dependent or independent of either of these chaperones. Despite large numbers of HSP40s, little is known about their physiologic roles, specifically in cancer progression. This article summarizes the multi-faceted role of DNAJB proteins as one subclass of the HSP40 family in cancer development and metastasis. Regulation and deregulation of DNAJB proteins at transcriptional, post-transcriptional, and post-translational levels contribute to tumor progression, particularly cancer metastasis. Furthermore, understanding differences in function and regulating mechanism between DNAJB proteins offers a new perspective on tumorigenesis and metastasis to improve therapeutic opportunities for malignant diseases.
Collapse
Affiliation(s)
- Hye-Youn Kim
- Laboratory of Cancer Cell Biology, Department of Biochemistry, Gachon University School of Medicine, 155 Gaetbel-ro Yeonsu-gu, Incheon 21999, Republic of Korea
| | - Suntaek Hong
- Laboratory of Cancer Cell Biology, Department of Biochemistry, Gachon University School of Medicine, 155 Gaetbel-ro Yeonsu-gu, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
17
|
Tang C, Liu J, Yang C, Ma J, Chen X, Liu D, Zhou Y, Zhou W, Lin Y, Yuan X. Curcumin and Its Analogs in Non-Small Cell Lung Cancer Treatment: Challenges and Expectations. Biomolecules 2022; 12:1636. [PMID: 36358986 PMCID: PMC9688036 DOI: 10.3390/biom12111636] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2023] Open
Abstract
Researchers have made crucial advances in understanding the pathogenesis and therapeutics of non-small cell lung cancer (NSCLC), improving our understanding of lung tumor biology and progression. Although the survival of NSCLC patients has improved due to chemoradiotherapy, targeted therapy, and immunotherapy, overall NSCLC recovery and survival rates remain low. Thus, there is an urgent need for the continued development of novel NSCLC drugs or combination therapies with less toxicity. Although the anticancer effectiveness of curcumin (Cur) and some Cur analogs has been reported in many studies, the results of clinical trials have been inconsistent. Therefore, in this review, we collected the latest related reports about the anti-NSCLC mechanisms of Cur, its analogs, and Cur in combination with other chemotherapeutic agents via the Pubmed database (accessed on 18 June 2022). Furthermore, we speculated on the interplay of Cur and various molecular targets relevant to NSCLC with discovery studio and collected clinical trials of Cur against NSCLC to clarify the role of Cur and its analogs in NSCLC treatment. Despite their challenges, Cur/Cur analogs may serve as promising therapeutic agents or adjuvants for lung carcinoma treatment.
Collapse
Affiliation(s)
- Chunyin Tang
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Jieting Liu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang 157000, China
| | - Chunsong Yang
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Jun Ma
- Department of Pharmacy, Banan Second People’s Hospital, Banan District, Chongqing 401320, China
| | - Xuejiao Chen
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Dongwen Liu
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Yao Zhou
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Wei Zhou
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Yunzhu Lin
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Xiaohuan Yuan
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang 157000, China
| |
Collapse
|
18
|
Luo WJ, Yu SL, Chang CC, Chien MH, Chang YL, Liao KM, Lin PC, Chung KP, Chuang YH, Chen JJW, Yang PC, Su KY. HLJ1 amplifies endotoxin-induced sepsis severity by promoting IL-12 heterodimerization in macrophages. eLife 2022; 11:76094. [PMID: 35983991 PMCID: PMC9457701 DOI: 10.7554/elife.76094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/18/2022] [Indexed: 11/14/2022] Open
Abstract
Heat shock protein (HSP) 40 has emerged as a key factor in both innate and adaptive immunity, whereas the role of HLJ1, a molecular chaperone in HSP40 family, in modulating endotoxin-induced sepsis severity is still unclear. During lipopolysaccharide (LPS)-induced endotoxic shock, HLJ1 knockout mice shows reduced organ injury and IFN-γ (interferon-γ)-dependent mortality. Using single-cell RNA sequencing, we characterize mouse liver nonparenchymal cell populations under LPS stimulation, and show that HLJ1 deletion affected IFN-γ-related gene signatures in distinct immune cell clusters. In CLP models, HLJ1 deletion reduces IFN-γ expression and sepsis mortality rate when mice are treated with antibiotics. HLJ1 deficiency also leads to reduced serum levels of IL-12 in LPS-treated mice, contributing to dampened production of IFN-γ in natural killer cells but not CD4+ or CD8+ T cells, and subsequently to improved survival rate. Adoptive transfer of HLJ1-deleted macrophages into LPS-treated mice results in reduced IL-12 and IFN-γ levels and protects the mice from IFN-γ-dependent mortality. In the context of molecular mechanisms, HLJ1 is an LPS-inducible protein in macrophages and converts misfolded IL-12p35 homodimers to monomers, which maintains bioactive IL-12p70 heterodimerization and secretion. This study suggests HLJ1 causes IFN-γ-dependent septic lethality by promoting IL-12 heterodimerization, and targeting HLJ1 has therapeutic potential in inflammatory diseases involving activated IL-12/IFN-γ axis.
Collapse
Affiliation(s)
- Wei-Jia Luo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chia-Ching Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Min-Hui Chien
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ya-Ling Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Keng-Mao Liao
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| | - Pei-Chun Lin
- Department of Laboratory Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuei-Pin Chung
- Department of Laboratory Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Hui Chuang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Jeremy J W Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taichung, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
19
|
She K, Yu S, He S, Wang W, Chen B. CircRNA 0009043 suppresses non-small-cell lung cancer development via targeting the miR-148a-3p/DNAJB4 axis. Biomark Res 2022; 10:61. [PMID: 35974419 PMCID: PMC9380299 DOI: 10.1186/s40364-022-00407-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Circular RNAs (circRNAs) are important regulators of the development and progression of non-small-cell lung cancer (NSCLC) and many other malignancies. The functional importance of circ_0009043 in NSCLC, however, has yet to be established. Methods The expression of circ_0009043, miR-148a-3p, and DnaJ heat shock protein family (Hsp40) member B4 (DNAJB4) in NSCLC cells was assessed via qPCR. The proliferative activity of these cells was examined through EdU uptake and CCK-8 assays, while flow cytometry approaches were used to examine apoptotic cell death rates. Protein expression was measured through Western immunoblotting. Interactions between miR-148a-3p and circ_0009043 or DNAJB4 were detected through RNA immunoprecipitation (RIP) and dual-luciferase reporter assays. The in vivo importance of circ_0009043 as a regulator of oncogenic activity was assessed using murine xenograft models. Results Both NSCLC cells and tissue samples were found to exhibit circ_0009043 upregulation, and lower circ_0009043 expression levels were found to be related to poorer NSCLC patient overall survival. Knocking down circ_0009043 resulted in the enhancement of NSCLC cell proliferative activity and the suppression of apoptotic tumor cell death in vitro, while also driving more rapid in vivo tumorigenesis. Mechanistically, circ_0009043 was found to function as a molecular sponge that sequestered miR-148a-3p, which was in turn able to directly suppress DNAJB4 expression. When miR-148a-3p was overexpressed, this reversed the impact of knocking down circ_0009043 on the apoptotic death and proliferation of NSCLC cells. Conversely, miR-148a-3p inhibition resulted in the suppression of NSCLC cell apoptosis and the enhancement of tumor cell growth, while the downregulation of DNAJB4 reversed these changes. Conclusion Circ_0009043 acts as a tumor suppressor in NSCLC cells, promoting DNAJB4 upregulation via the sequestration of miR-148a-3p.
Collapse
Affiliation(s)
- Kelin She
- Department of Thoracic Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Nomal University, Changsha, Hunan, 410005, China. .,Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.
| | - Shaoqi Yu
- Department of Thoracic Surgery, The Central Hospital of Shaoyang Affiliated to University of South China, 422000, Shaoyang, China
| | - Shushuai He
- Department of Thoracic Surgery, The Central Hospital of Shaoyang Affiliated to University of South China, 422000, Shaoyang, China
| | - Wen Wang
- Department of Thoracic Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Nomal University, Changsha, Hunan, 410005, China
| | - Biao Chen
- Department of Thoracic Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Nomal University, Changsha, Hunan, 410005, China
| |
Collapse
|
20
|
Yuan R, Dai C, Chen P, Lv M, Shu Y, Wang Z, Xu Y, Li J. Circulating TP73-AS1 and CRNDE serve as diagnostic and prognostic biomarkers for non-small cell lung cancer. Cancer Med 2022; 12:1655-1672. [PMID: 35871358 PMCID: PMC9883423 DOI: 10.1002/cam4.5013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/08/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Circulating long noncoding RNAs (lncRNAs) are considered a new class of biomarkers for the diagnosis and prognosis of various malignancies. We aimed to identify circulating lncRNAs as biomarkers for the diagnosis and prognosis of non-small cell lung cancer (NSCLC). METHODS The expression of 14 candidate lncRNAs was measured in matched cancer and ipsilateral normal lung tissues of 20 patients with NSCLC using quantitative reverse-transcription PCR. In plasma samples from training and testing sets, significantly and aberrantly expressed lncRNAs, TA73-AS1 and CRNDE, were further analyzed. Receiver operating characteristic (ROC) curves were constructed, and the areas under the ROC curves (AUC) were obtained to assess diagnostic performance. The Kaplan-Meier survival analysis was used to assess the impact of plasma TA73-AS1 and CRNDE expression on tumor-free survival (TFS) of patients with NSCLC. The effect of TP73-AS1 expression on NSCLC cells was investigated in vitro. RESULTS AUC values of plasma TA73-AS1 and CRNDE were 0.822 and 0.815 in the training set and 0.843 and 0.804 in the testing set, respectively, to distinguish NSCLC from healthy controls. The combination of plasma TP73-AS1, CRNDE, and two classical tumor markers, carcinoembryonic antigen (CEA) and cytokeratin 19 fragment (CYFRA21-1), showed excellent diagnostic performance for NSCLC (AUC =0.927 in the training set; AUC = 0.925 in the testing set). Furthermore, the high expression of the two plasma lncRNAs correlated with worse TFS in patients with NSCLC. In vitro cell model studies revealed that TP73-AS1 overexpression facilitated NSCLC cell survival, invasion, and migration. CONCLUSION Circulating TP73-AS1 and CRNDE could be potential biomarkers for the diagnosis and prognostic prediction of NSCLC.
Collapse
Affiliation(s)
- Rong‐Xia Yuan
- Department of Pulmonary MedicineAffiliated Hospital of Jiangsu UniversityZhenjiangChina,Department of Respiratory DiseaseYancheng Third People's HospitalYanchengChina
| | - Chun‐Hua Dai
- Department of RadiotherapyAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Ping Chen
- Department of Pulmonary MedicineAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Meng‐Jia Lv
- Department of Pulmonary MedicineAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Yang Shu
- Center of Experimental MedicineAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Zhi‐Peng Wang
- Department of Pulmonary MedicineAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Ya‐Ping Xu
- Department of Pulmonary MedicineAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Jian Li
- Department of Pulmonary MedicineAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| |
Collapse
|
21
|
Yang FR, Li SY, Hu XW, Li XR, Li HJ. Identifying the Antitumor Effects of Curcumin on Lung Adenocarcinoma Using Comprehensive Bioinformatics Analysis. Drug Des Devel Ther 2022; 16:2365-2382. [PMID: 35910781 PMCID: PMC9329682 DOI: 10.2147/dddt.s371420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background As the main component of turmeric (Curcuma longa L.), curcumin is widely used in the treatment of various diseases. Previous studies have demonstrated that curcumin has great potential as a therapeutic agent, but the lack of understanding of the functional mechanism of the drug has hindered the widespread use of the natural product. In the present study, we used comprehensive bioinformatics analysis and in vitro experiments to explore the anti-tumor mechanism of curcumin. Materials and Methods LUAD mRNA expression data were obtained from TCGA database and differentially expressed genes (DEGs) were identified using R software. Functional enrichment analysis was conducted to further clarify its biological properties and hub genes were identified by a protein–protein interaction (PPI) network analysis. Survival analysis and molecular docking were used to analyze the effectiveness of the hub genes. By an in vitro study, we evaluated whether curcumin could influence the proliferation, migration, and invasion activities of LUAD cells. Results In this study, 1783 DEGs from LUAD tissue samples compared to normal samples were evaluated. Functional enrichment analysis and the PPI network revealed the characteristics of the DEGs. We performed a topological analysis and identified 10 hub genes. Of these, six genes (INS, GCG, SST, F2, AHSG, and NPY) were identified as potentially effective biomarkers of LUAD. The molecular docking results indicated that curcumin targets in regulating lung cancer may be INS and GCG. We found that curcumin significantly inhibited the proliferation, migration, and invasion of LUAD cells and significantly decreased the expression of the INS and GCG genes. Conclusion The results of this study suggest that the therapeutic effects of curcumin on LUAD may be achieved through the intervention of INS and GCG, which may act as potential biomarkers for LUAD prevention and treatment.
Collapse
Affiliation(s)
- Fei-Ran Yang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Si-Yi Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Xi-Wen Hu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Xiu-Rong Li
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Hui-Jie Li
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
- Correspondence: Hui-Jie Li; Xiu-Rong Li, Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingshi Road, Jinan, Shandong, 250014, People’s Republic of China, Email ;
| |
Collapse
|
22
|
Asgharzadeh F, Moradi-Marjaneh R, Marjaneh MM. The role of heat shock protein 40 in carcinogenesis and biology of colorectal cancer. Curr Pharm Des 2022; 28:1457-1465. [PMID: 35570564 DOI: 10.2174/1381612828666220513124603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Despite the enormous amount of effort in the diagnosis and treatment of CRC, the overall survival rate of patients remains low. The precise molecular and cellular basis underlying CRC has not been completely understood yet. Over time, new genes and molecular pathways involved in the pathogenesis of the disease are being identified. Accurate discovery of these genes and signaling pathways are important and urgent missions for the next generation of anticancer therapy research. Chaperone DnaJ, also known as Hsp40 (heat shock protein 40), has been of particular interest in CRC pathogenesis, as it is involved in the fundamental cell activities for maintaining cellular homeostasis. Evidence show that protein family members of DnaJ/Hsp40 play both roles; enhancing and reducing the growth of CRC cells. In the present review, we focus on the current knowledge on the molecular mechanisms responsible for the role of DnaJ/Hsp40 in CRC carcinogenesis and biology.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Moradi-Marjaneh
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahdi Moradi Marjaneh
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
23
|
Cyran AM, Zhitkovich A. Heat Shock Proteins and HSF1 in Cancer. Front Oncol 2022; 12:860320. [PMID: 35311075 PMCID: PMC8924369 DOI: 10.3389/fonc.2022.860320] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Fitness of cells is dependent on protein homeostasis which is maintained by cooperative activities of protein chaperones and proteolytic machinery. Upon encountering protein-damaging conditions, cells activate the heat-shock response (HSR) which involves HSF1-mediated transcriptional upregulation of a group of chaperones - the heat shock proteins (HSPs). Cancer cells experience high levels of proteotoxic stress due to the production of mutated proteins, aneuploidy-induced excess of components of multiprotein complexes, increased translation rates, and dysregulated metabolism. To cope with this chronic state of proteotoxic stress, cancers almost invariably upregulate major components of HSR, including HSF1 and individual HSPs. Some oncogenic programs show dependence or coupling with a particular HSR factor (such as frequent coamplification of HSF1 and MYC genes). Elevated levels of HSPs and HSF1 are typically associated with drug resistance and poor clinical outcomes in various malignancies. The non-oncogene dependence ("addiction") on protein quality controls represents a pancancer target in treating human malignancies, offering a potential to enhance efficacy of standard and targeted chemotherapy and immune checkpoint inhibitors. In cancers with specific dependencies, HSR components can serve as alternative targets to poorly druggable oncogenic drivers.
Collapse
Affiliation(s)
- Anna M Cyran
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Anatoly Zhitkovich
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| |
Collapse
|
24
|
Farhoudi L, Kesharwani P, Majeed M, Johnston TP, Sahebkar A. Polymeric nanomicelles of curcumin: Potential applications in cancer. Int J Pharm 2022; 617:121622. [PMID: 35227805 DOI: 10.1016/j.ijpharm.2022.121622] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023]
|
25
|
Hao M, Chu Y, Lei J, Yao Z, Wang P, Chen Z, Wang K, Sang X, Han X, Wang L, Cao G. Pharmacological Mechanisms and Clinical Applications of Curcumin: Update. Aging Dis 2022; 14:716-749. [PMID: 37191432 DOI: 10.14336/ad.2022.1101] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
Curcumin, a well-known hydrophobic polyphenol extracted from the rhizomes of turmeric (Curcuma longa L.), has attracted great interest in the last ten years due to its multiple pharmacological activities. A growing body of evidence has manifested that curcumin has extensive pharmacological activities including anti-inflammatory, anti-oxygenation, lipid regulation, antiviral, and anticancer with hypotoxicity and minor adverse reactions. However, the disadvantages of low bioavailability, short half-life in plasma, low drug concentration in blood, and poor oral absorption severely limited the clinical application of curcumin. Pharmaceutical researchers have carried out plenty of dosage form transformations to improve the druggability of curcumin and have achieved remarkable results. Therefore, the objective of this review summarizes the pharmacological research progress, problems in clinical application and the improvement methods of curcumin's druggability. By reviewing the latest research progress of curcumin, we believe that curcumin has a broad clinical application prospect for its wide range of pharmacological activities with few side effects. The deficiencies of lower bioavailability of curcumin could be improved by dosage form transformation. However, curcumin in the clinical application still requires further study regarding the underlying mechanism and clinical trial verification.
Collapse
|
26
|
SHEN H, ZHANG D, LIU H. Mesenchymal stem cell conditioned medium azacytidine, panobinostat and GSK126 alleviate TGF-β-induced EMT in lung cancer. FOOD SCIENCE AND TECHNOLOGY 2022; 42. [DOI: 10.1590/fst.53021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Huihui SHEN
- The First Affiliated Hospital of Guangdong Pharmaceutical University, China
| | - Dongying ZHANG
- The First Affiliated Hospital of Guangdong Pharmaceutical University, China
| | - Hua LIU
- The First Affiliated Hospital of Guangdong Pharmaceutical University, China
| |
Collapse
|
27
|
Combined Effect of Cold Atmospheric Plasma and Curcumin in Melanoma Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1969863. [PMID: 34825002 PMCID: PMC8610675 DOI: 10.1155/2021/1969863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/13/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022]
Abstract
Curcumin (CUR) has interesting properties to cure cancer. Cold atmospheric plasma (CAP) is also an emerging biomedical technique that has great potential for cancer treatment. Therefore, the combined effect of CAP and CUR on inducing cytotoxicity and apoptosis of melanoma cancer cells might be promising. Here, we investigated the combined effects of CAP and CUR on cytotoxicity and apoptosis in B16-F10 melanoma cancer cells compared to L929 normal cells using MTT method, acridine orange/ethidium bromide fluorescence microscopic assay, and Annexin V/PI flow cytometry. In addition, the activation of apoptosis pathways was evaluated using BCL2, BAX, and Caspase-3 (CASP3) gene expression and ratio of BAX to BCL2 (BAX/BCL2). Finally, in silico study was performed to suggest the molecular mechanism of this combination therapy on melanoma cancer. Results showed that although combination therapy with CUR and CAP has cytotoxic and apoptotic effects on cancer cells, it did not improve apoptosis rate in melanoma B16-F10 cancer cells compared to monotherapy with CAP or CUR. In addition, evaluation of gene expression in cancer cell line confirmed that CUR and CAP concomitant treatment did not enhance the expression of apoptotic genes. In silico analysis of docked model suggested that CUR blocks aquaporin- (AQP-) 1 channel and prevents penetration of CAP-induced ROS into the cells. In conclusion, combination therapy with CAP and CUR does not improve the anticancer effect of each alone.
Collapse
|
28
|
Herrero de la Parte B, Rodeño-Casado M, Iturrizaga Correcher S, Mar Medina C, García-Alonso I. Curcumin Reduces Colorectal Cancer Cell Proliferation and Migration and Slows In Vivo Growth of Liver Metastases in Rats. Biomedicines 2021; 9:biomedicines9091183. [PMID: 34572369 PMCID: PMC8467247 DOI: 10.3390/biomedicines9091183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/20/2021] [Accepted: 09/05/2021] [Indexed: 12/22/2022] Open
Abstract
Background: New therapeutic approaches are an essential need for patients suffering from colorectal cancer liver metastases. Curcumin, a well-known plant-derived polyphenol, has been shown to play a role in the modulation of multiple signaling pathways involved in the development and progression of certain cancer cells in vitro. This study aims to assess the anti-tumor effect of curcumin on CC531 colorectal cancer cells, both in vitro and in vivo. Methods: On CC531 cultures, the cell viability and cell migration capacity were analyzed (wound healing test) 24, 48, and 72 h after treatment with curcumin (15, 20, 25, or 30 µM). Additionally, in WAG/RijHsd tumor-bearing rats, the total and individual liver lobe tumor volume was quantified in untreated and curcumin-treated animals (200 mg/kg/day, oral). Furthermore, serum enzyme measurements (GOT, GPT, glucose, bilirubin, etc.) were carried out to assess the possible effects on the liver function. Results: In vitro studies showed curcumin’s greatest effects 48h after application, when all of the tested doses reduced cell proliferation by more than 30%. At 72 h, the highest doses of curcumin (25 and 30 µM) reduced cell viability to less than 50%. The wound healing test also showed that curcumin inhibits migration capacity. In vivo, curcumin slowed down the tumor volume of liver implants by 5.6-fold (7.98 ± 1.45 vs. 1.41 ± 1.33; p > 0.0001). Conclusions: Curcumin has shown an anti-tumor effect against liver implants from colorectal cancer, both in vitro and in vivo, in this experimental model.
Collapse
Affiliation(s)
- Borja Herrero de la Parte
- Department of Surgery and Radiology and Physical Medicine, University of The Basque Country, ES48940 Leioa, Spain; (M.R.-C.); (I.G.-A.)
- Biocruces Bizkaia Health Research Institute, ES48903 Barakaldo, Spain
- Correspondence:
| | - Mikel Rodeño-Casado
- Department of Surgery and Radiology and Physical Medicine, University of The Basque Country, ES48940 Leioa, Spain; (M.R.-C.); (I.G.-A.)
| | - Sira Iturrizaga Correcher
- Department of Clinical Analyses, Osakidetza Basque Health Service, Galdakao-Usansolo Hospital, ES48960 Galdakao, Spain; (S.I.C.); (C.M.M.)
| | - Carmen Mar Medina
- Department of Clinical Analyses, Osakidetza Basque Health Service, Galdakao-Usansolo Hospital, ES48960 Galdakao, Spain; (S.I.C.); (C.M.M.)
| | - Ignacio García-Alonso
- Department of Surgery and Radiology and Physical Medicine, University of The Basque Country, ES48940 Leioa, Spain; (M.R.-C.); (I.G.-A.)
- Biocruces Bizkaia Health Research Institute, ES48903 Barakaldo, Spain
| |
Collapse
|
29
|
Sharma A, Hawthorne S, Jha SK, Jha NK, Kumar D, Girgis S, Goswami VK, Gupta G, Singh S, Dureja H, Chellappan DK, Dua K. Effects of curcumin-loaded poly(lactic-co-glycolic acid) nanoparticles in MDA-MB231 human breast cancer cells. Nanomedicine (Lond) 2021; 16:1763-1773. [PMID: 34296625 DOI: 10.2217/nnm-2021-0066] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: This study was aimed at evaluating the anticancer potential of curcumin-loaded poly(lactic-co-glycolic acid) (PLGA) based nanoparticles (NPs) in MDA-MB231 human breast cancer cells. Methods: Curcumin-loaded PLGA NPs were developed using a modified solvent evaporation technique. Physical characterization was performed on the formulated NPs. Furthermore, in vitro experiments were conducted to study the biological activity of the curcumin-loaded NPs. Results: Curcumin-loaded PLGA NPs demonstrated high encapsulation efficiency and sustained payload release. Moreover, the NPs exhibited a significant reduction in cell viability, cell migration and cell invasion in the MDA-MB231 cells. Conclusion: The study revealed that the formulated curcumin-loaded PLGA NPs possessed significant anti-metastatic properties. The findings showcased the possible potential of curcumin-loaded NPs in the management of debilitating conditions such as cancer. In addition, this study could form the basis for further research and advancements in this area.
Collapse
Affiliation(s)
- Ankur Sharma
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Uttar Pradesh, 201310, India.,School of Pharmacy & Pharmaceutical Sciences, Saad Centre for Pharmacy & Diabetes, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
| | - Susan Hawthorne
- School of Pharmacy & Pharmaceutical Sciences, Saad Centre for Pharmacy & Diabetes, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Uttar Pradesh, 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Uttar Pradesh, 201310, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida, Uttar Pradesh, 201301, India
| | - Samuel Girgis
- School of Pharmacy, University of Sunderland, Chester Road, Sunderland, SR1 3SD, UK
| | - Vineet Kumar Goswami
- Department of Biological Sciences, School of Basic & Applied Sciences, G.D. Goenka University, Education city, Sohna Road, Gurugram, Haryana, 122103, India
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, 302017, India
| | - Sachin Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144402, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
30
|
Wu Q, Ou H, Shang Y, Zhang X, Wu J, Fan F. Nanoscale Formulations: Incorporating Curcumin into Combination Strategies for the Treatment of Lung Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2695-2709. [PMID: 34188448 PMCID: PMC8232383 DOI: 10.2147/dddt.s311107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022]
Abstract
Lung cancer remains the most common cancer worldwide. Although significant advances in screening have been made and early diagnosis strategies and therapeutic regimens have been developed, the overall survival rate remains bleak. Curcumin is extracted from the rhizomes of turmeric and exhibits a wide range of biological activities. In lung cancer, evidence has shown that curcumin can markedly inhibit tumor growth, invasion and metastasis, overcome resistance to therapy, and even eliminate cancer stem cells (CSCs). Herein, the underlying molecular mechanisms of curcumin were summarized by distinct biological processes. To solve the limiting factors that curtail the clinical applications of curcumin, nanoformulations encapsulating curcumin were surveyed in detail. Nanoparticles, including liposomes, micelles, carbon nanotubes (CNTs), solid lipid nanoparticles (SLNs), nanosuspensions, and nanoemulsions, were explored as proper carriers of curcumin. Moreover, it was firmly verified that curcumin has the ability to sensitize lung cancer cells to chemotherapeutic drugs, such as cisplatin and docetaxel, and to various targeted therapies. Regarding the advantages and drawbacks of curcumin, we concluded that combination therapy based on nanoparticles would be the optimal approach to broaden the application of curcumin in the clinic in the near future.
Collapse
Affiliation(s)
- Quhui Wu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Huiping Ou
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Yan Shang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Xi Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Junyong Wu
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Fuyuan Fan
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, People's Republic of China
| |
Collapse
|
31
|
Malik P, Hoidal JR, Mukherjee TK. Recent Advances in Curcumin Treated Non-Small Cell Lung Cancers: An Impetus of Pleiotropic Traits and Nanocarrier Aided Delive ry. Curr Med Chem 2021; 28:3061-3106. [PMID: 32838707 DOI: 10.2174/0929867327666200824110332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 01/10/2023]
Abstract
Characterized by the abysmal 18% five year survival chances, non-small cell lung cancers (NSCLCs) claim more than half of their sufferers within the first year of being diagnosed. Advances in biomedical engineering and molecular characterization have reduced the NSCLC diagnosis via timid screening of altered gene expressions and impaired cellular responses. While targeted chemotherapy remains a major option for NSCLCs complications, delayed diagnosis, and concurrent multi-drug resistance remain potent hurdles in regaining normalcy, ultimately resulting in relapse. Curcumin administration presents a benign resolve herein, via simultaneous interception of distinctly expressed pathological markers through its pleiotropic attributes and enhanced tumor cell internalization of chemotherapeutic drugs. Studies on NSCLC cell lines and related xenograft models have revealed a consistent decline in tumor progression owing to enhanced chemotherapeutics cellular internalization via co-delivery with curcumin. This presents an optimum readiness for screening the corresponding effectiveness in clinical subjects. Curcumin is delivered to NSCLC cells either (i) alone, (ii) in stoichiometrically optimal combination with chemotherapeutic drugs, (iii) through nanocarriers, and (iv) nanocarrier co-delivered curcumin and chemotherapeutic drugs. Nanocarriers protect the encapsulated drug from accidental and non-specific spillage. A unanimous trait of all nanocarriers is their moderate drug-interactions, whereby native structural expressions are not tampered. With such insights, this article focuses on the implicit NSCLC curative mechanisms viz-a-viz, free curcumin, nanocarrier delivered curcumin, curcumin + chemotherapeutic drug and nanocarrier assisted curcumin + chemotherapeutic drug delivery.
Collapse
Affiliation(s)
- Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, India
| | - John R Hoidal
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Tapan K Mukherjee
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
32
|
Abstract
Hyaluronic acid (HA), an important component of the extracellular matrix, has high water solubility and biocompatibility, and good application prospects in biomedicine. Especially in tumour treatment, prodrug polymer micelles prepared from HA and chemotherapeutics can increase water solubility, prolong drug release time, improve organ distribution and therapeutic effects, and show good tumour targeting and biocompatibility. Therefore, this study introduces strategies for using HA to prepare prodrug polymer micelles and discusses recent research on HA prodrug micelles for antitumor applications.
Collapse
Affiliation(s)
- Jiao Sun
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Lingyu Han
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China
| |
Collapse
|
33
|
Hardwick J, Taylor J, Mehta M, Satija S, Paudel KR, Hansbro PM, Chellappan DK, Bebawy M, Dua K. Targeting Cancer using Curcumin Encapsulated Vesicular Drug Delivery Systems. Curr Pharm Des 2021; 27:2-14. [PMID: 32723255 DOI: 10.2174/1381612826666200728151610] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/21/2020] [Indexed: 11/22/2022]
Abstract
Curcumin is a major curcuminoid present in turmeric. The compound is attributed to various therapeutic properties, which include anti-oxidant, anti-inflammatory, anti-bacterial, anti-malarial, and neuroprotection. Due to its therapeutic potential, curcumin has been employed for centuries in treating different ailments. Curcumin has been investigated lately as a novel therapeutic agent in the treatment of cancer. However, the mechanisms by which curcumin exerts its cytotoxic effects on malignant cells are still not fully understood. One of the main limiting factors in the clinical use of curcumin is its poor bioavailability and rapid elimination. Advancements in drug delivery systems such as nanoparticle-based vesicular drug delivery platforms have improved several parameters, namely, drug bioavailability, solubility, stability, and controlled release properties. The use of curcumin-encapsulated niosomes to improve the physical and pharmacokinetic properties of curcumin is one such approach. This review provides an up-to-date summary of nanoparticle-based vesicular drug carriers and their therapeutic applications. Specifically, we focus on niosomes as novel drug delivery formulations and their potential in improving the delivery of challenging small molecules, including curcumin. Overall, the applications of such carriers will provide a new direction for novel pharmaceutical drug delivery, as well as for biotechnology, nutraceutical, and functional food industries.
Collapse
Affiliation(s)
- Joel Hardwick
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Jack Taylor
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Keshav R Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
34
|
Anelli L, Di Nardo A, Bonucci M. Integrative Treatment of Lung Cancer Patients: Observational Study of 57 Cases. ASIAN JOURNAL OF ONCOLOGY 2021. [DOI: 10.1055/s-0040-1722380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Abstract
Introduction A retrospective clinical study was performed to identify the characteristics of patients with lung cancer treated with integrative cancer treatment in addition to conventional medicine.
Materials and Methods We reviewed medical records for lung cancer patients who visited a single integrative setting in Rome, Italy. A total of 57 patients were included, and the majority had advanced-stage cancer. All of them underwent integrative therapy with nutrition and phytotherapy indications. The diet was designed to reduce most of possible factors promoting cancer proliferation, inflammation, and obesity. Foods with anti-inflammatory, prebiotic, antioxidant, and anticancer properties had been chosen. Herbal supplements with known effects on lung cancer were prescribed. In particular, astragal, apigenine, fucosterol, polydatin, epigallocatechin gallate, cannabis, curcumin, and inositol were used. Furthermore, medical mushrooms and other substances were used to improve the immune system and to reduce chemotherapy side effects. Five key parameters have been evaluated for 2 years starting at the first surgery: nutritional status, immune status, discontinuation of therapy, quality of life, and prognosis of the disease.
Results A relevant improvement in parameters relative to nutritional status, immune status, and quality of life has been observed after integrative therapy compared with the same parameters at the first medical visit before starting such approach.
Conclusion The results suggest that integrative therapy may have benefits in patients with lung cancer. Even though there are limitations, the study suggests that integrative therapy could improve nutritional status and quality of life, with possible positive effect on overall survival.
Collapse
Affiliation(s)
- Lorenzo Anelli
- Integrative Oncology Ambulatory, Nuova Villa Claudia, Rome, Italy
- ARTOI, Rome, Italy
| | | | - Massimo Bonucci
- Integrative Oncology Ambulatory, Nuova Villa Claudia, Rome, Italy
- ARTOI, Rome, Italy
| |
Collapse
|
35
|
Wadhwa R, Paudel KR, Chin LH, Hon CM, Madheswaran T, Gupta G, Panneerselvam J, Lakshmi T, Singh SK, Gulati M, Dureja H, Hsu A, Mehta M, Anand K, Devkota HP, Chellian J, Chellappan DK, Hansbro PM, Dua K. Anti-inflammatory and anticancer activities of Naringenin-loaded liquid crystalline nanoparticles in vitro. J Food Biochem 2020; 45:e13572. [PMID: 33249629 DOI: 10.1111/jfbc.13572] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
In this study, we had developed Naringenin-loaded liquid crystalline nanoparticles (LCNs) and investigated the anti-inflammatory and anticancer activities of Naringenin-LCNs against human airway epithelium-derived basal cells (BCi-NS1.1) and human lung epithelial carcinoma (A549) cell lines, respectively. The anti-inflammatory potential of Naringenin-LCNs evaluated by qPCR revealed a decreased expression of IL-6, IL-8, IL-1β, and TNF-α in lipopolysaccharide-induced BCi-NS1.1 cells. The activity of LCNs was comparable to the positive control drug Fluticasone propionate (10 nM). The anticancer activity was studied by evaluating the antiproliferative (MTT and trypan blue assays), antimigratory (scratch wound healing assay, modified Boyden chamber assay, and immunoblot), and anticolony formation activity in A549 cells. Naringenin LCNs showed promising antiproliferative, antimigratory, and anticolony formation activities in A549 cells, in vitro. Therefore, based on our observations and results, we conclude that Naringenin-LCNs may be employed as a potential therapy-based intervention to ameliorate airway inflammation and to inhibit the progression of lung cancer. PRACTICAL APPLICATIONS: Naringenin was encapsulated into liquid crystalline nanoparticles, thus, attributing to their sustained-release nature. In addition, Naringenin-loaded LCNs efficiently reduced the levels of pro-inflammatory markers, namely, IL-1β, IL-6, TNF-α, and IL-8. In addition, the Naringenin-loaded LCNs also possess potent anticancer activity, when tested in the A549 cell line, as revealed by the inhibition of proliferation and migration of cells. They also attenuated colony formation and induced apoptosis in the A549 cells. The findings from our study could form the basis for future research that may be translated into an in vivo model to validate the possible therapeutic alternative for lung cancer using Naringenin-loaded LCNs. In addition, the applications of Naringenin-loaded LCNs as an intervention would be of great interest to biological, formulation and respiratory scientists and clinicians.
Collapse
Affiliation(s)
- Ridhima Wadhwa
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Li Hian Chin
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Chian Ming Hon
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Thangavelu Lakshmi
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Alan Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
36
|
Sathisaran I, Devidas Bhatia D, Vishvanath Dalvi S. New curcumin-trimesic acid cocrystal and anti-invasion activity of curcumin multicomponent solids against 3D tumor models. Int J Pharm 2020; 587:119667. [PMID: 32702448 DOI: 10.1016/j.ijpharm.2020.119667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/28/2020] [Accepted: 07/15/2020] [Indexed: 12/25/2022]
Abstract
Curcumin (CUR) is a Biopharmaceutics Classification System (BCS) class IV drug with poor aqueous solubility and low permeability. The dissolution of CUR can be enhanced through the cocrystallization approach. In this work, we report a new cocrystal phase of CUR with trimesic acid (TMA) with the enhanced dissolution of CUR. Cytotoxicity and cell invasion assays were conducted on (2D) monolayers and three-dimensional (3D) tumor models of triple-negative breast cancer (TNBC) cells, MDA-MB-231 using the new CUR-TMA cocrystal phase along with different CUR solid forms prepared in our previous works. The cytotoxicity and internalization assays conducted on 2D monolayers indicated that all CUR multicomponent solid forms except Curcumin-Folic Acid Dihydrate (CUR-FAD) (1:1) coamorphous solid exhibited enhanced bioavailability than unprocessed CUR. Cell invasion assay conducted on 3D tumor spheroid models showed that Curcumin-Hydroxyquinol (CUR-HXQ) cocrystal completely inhibited cell invasion whereas CUR-FAD (1:1) coamorphous solid induced enhanced invasion of cells from spheroid models.
Collapse
Affiliation(s)
- Indumathi Sathisaran
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Dhiraj Devidas Bhatia
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Sameer Vishvanath Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
37
|
Liang Z, Xue Y, Wang T, Xie Q, Lin J, Wang Y. Curcumin inhibits the migration of osteoclast precursors and osteoclastogenesis by repressing CCL3 production. BMC Complement Med Ther 2020; 20:234. [PMID: 32703287 PMCID: PMC7379354 DOI: 10.1186/s12906-020-03014-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/02/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Curcumin can inhibit the osteoclastogenesis and the migration of several cells including macrophages. Osteoclast precursors (OCPs) are known to exist as bone marrow-derived macrophages (BMMs). This study aims to explore whether curcumin can prevent the fusion and differentiation of OCPs to mature osteoclasts by inhibiting OCP migration. METHODS In this study, we investigated the role of curcumin in regulating the production of several chemokines (CCL2, CCL3 and CX3CL1) and the migration of OCPs by ELISA, Western blotting and Transwell assays. Furthermore, we explored the role of curcumin in the chemokines-related osteoclastogenesis using pharmacological intervention and virus infection, and used ovariectomized (OVX) mice (osteoporosis model) to explore the effect of curcumin on the production of specific chemokine in vivo. RESULTS The results showed that curcumin significantly reduced the production of CCL3 in OCPs. Moreover, curcumin-inhibited the migration of OCPs was not affected by CCR1 (Receptor of CCL3) overexpression. Remarkably, curcumin-reduced osteoclastogenesis was significantly reversed by CCL3 addition, while CCR1 overexpression did not increase the osteoclastogenesis in the presence of curcumin. Furthermore, in vivo assays also showed that curcumin significantly reduced the production of CCL3 in OCPs in the trabecular bone of OVX mice. CONCLUSIONS In conclusion, curcumin prevents the migration of OCPs by reducing CCL3 production, ultimately inhibiting the formation of mature osteoclasts. Therefore, our study provides the clues for improving the clinical strategies of osteoporosis, dental implantation or orthodontic treatment.
Collapse
Affiliation(s)
- Zhengeng Liang
- Department of Stomatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570000, China
| | - Yan Xue
- Department of Stomatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570000, China
| | - Tao Wang
- Department of Stomatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570000, China
| | - Qi Xie
- Department of Stomatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570000, China
| | - Jiafu Lin
- Fujian Health College, Fuzhou, 350000, Fujian, China
| | - Yu Wang
- Department of Orthopaedics, Chifeng Municipal Hospital, Chifeng, 024000, Inner Mongolia, China.
- Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, 024000, Inner Mongolia, China.
| |
Collapse
|
38
|
Mbemi AT, Sims JN, Yedjou CG, Noubissi FK, Gomez CR, Tchounwou PB. Vernonia calvoana Shows Promise towards the Treatment of Ovarian Cancer. Int J Mol Sci 2020; 21:E4429. [PMID: 32580345 PMCID: PMC7352360 DOI: 10.3390/ijms21124429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
The treatment for ovarian cancers includes chemotherapies which use drugs such as cisplatin, paclitaxel, carboplatin, platinum, taxanes, or their combination, and other molecular target therapies. However, these current therapies are often accompanied with side effects. Vernonia calvoana (VC) is a valuable edible medicinal plant that is widespread in West Africa. In vitro data in our lab demonstrated that VC crude extract inhibits human ovarian cancer cells in a dose-dependent manner, suggesting its antitumor activity. From the VC crude extract, we have generated 10 fractions and VC fraction 7 (F7) appears to show the highest antitumor activity towards ovarian cancer cells. However, the mechanisms by which VC F7 exerts its antitumor activity in cancer cells remain largely unknown. We hypothesized that VC F7 inhibits cell proliferation and induces DNA damage and cell cycle arrest in ovarian cells through oxidative stress. To test our hypothesis, we extracted and fractionated VC leaves. The effects of VC F7 were tested in OVCAR-3 cells. Viability was assessed by the means of MTS assay. Cell morphology was analyzed by acridine orange and propidium iodide (AO/PI) dye using a fluorescent microscope. Oxidative stress biomarkers were evaluated by the means of lipid peroxidation, catalase, and glutathione peroxidase assays, respectively. The degree of DNA damage was assessed by comet assay. Cell cycle distribution was assessed by flow cytometry. Data generated from the MTS assay demonstrated that VC F7 inhibits the growth of OVCAR-3 cells in a dose-dependent manner, showing a gradual increase in the loss of viability in VC F7-treated cells. Data obtained from the AO/PI dye assessment revealed morphological alterations and exhibited characteristics such as loss of cellular membrane integrity, cell shrinkage, cell membrane damage, organelle breakdown, and detachment from the culture plate. We observed a significant increase (p < 0.05) in the levels of malondialdhyde (MDA) production in treated cells compared to the control. A gradual decrease in both catalase and glutathione peroxidase activities were observed in the treated cells compared to the control. Data obtained from the comet assay showed a significant increase (p < 0.05) in the percentages of DNA cleavage and comet tail length. The results of the flow cytometry analysis indicated VC F7 treatment caused cell cycle arrest at the S-phase checkpoint. Taken together, our results demonstrate that VC F7 exerts its anticancer activity by inhibiting cell proliferation, inducing DNA damage, and causing cell cycle arrest through oxidative stress in OVAR-3 cells. This finding suggests that VC F7 may be a potential alternative dietary agent for the prevention and/or treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ariane T. Mbemi
- Natural Chemotherapeutics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Jackson, MS 39217, USA;
| | - Jennifer N. Sims
- School of Public Health, Jackson State University, Jackson Medical Mall-Thad Cochran Center, 350 West Woodrow Wilson Avenue, Jackson, MS 39213, USA;
| | - Clement G. Yedjou
- Natural Chemotherapeutics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Jackson, MS 39217, USA;
- Department of Biological Sciences, College of Science and Technology, Florida Agricultural and Mechanical University, 1610 S. Martin Luther King Blvd, Tallahassee, FL 32307, USA
| | - Felicite K. Noubissi
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Jackson, MS 39217, USA;
| | - Christian R. Gomez
- Departments of Pathology and Radiation Oncology, Center for Clinical and Translational Science, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216, USA;
| | - Paul B. Tchounwou
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Jackson, MS 39217, USA;
| |
Collapse
|
39
|
Salehi M, Movahedpour A, Tayarani A, Shabaninejad Z, Pourhanifeh MH, Mortezapour E, Nickdasti A, Mottaghi R, Davoodabadi A, Khan H, Savardashtaki A, Mirzaei H. Therapeutic potentials of curcumin in the treatment of non-small-cell lung carcinoma. Phytother Res 2020; 34:2557-2576. [PMID: 32307773 DOI: 10.1002/ptr.6704] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/11/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
Non-small-cell lung carcinoma (NSCLC) is one of the most lethal malignancies that include more than 80% of lung cancer cases worldwide. During the past decades, plants and plant-derived products have attracted great interest in the treatment of various human diseases. Curcumin, the turmeric isolated natural phenolic compound, has shown a promising chemo-preventive and anticancer agent. Numerous studies have shown that curcumin delays the initiation and progression of NSCLC by affecting a wide range of molecular targets and cell signalling pathways including NF-kB, Akt, MAPKS, BCL-2, ROS and microRNAs (miRNAs). However, the poor oral bioavailability and low chemical stability of curcumin remain as major challenges in the utilisation of this compound as a therapeutic agent. Different analogs of curcumin and new delivery systems (e.g., micelles, nanoparticles and liposomes) provided promising solutions to overcome these obstacles and improve curcumin pharmacokinetic profile. The present review focuses on current reported studies about anti-NSCLC effects of curcumin. NSCLC involved miRNAs whose expression is regulated by curcumin has also been discussed. Furthermore, recent researches on the use of curcumin analogs and delivery systems to enhance the curcumin benefits in NSCLC are also described.
Collapse
Affiliation(s)
- Mahsa Salehi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Tayarani
- Student research committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Erfan Mortezapour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Nickdasti
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Mottaghi
- Department of Oral and Maxillofacial Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
40
|
Ohnishi Y, Sakamoto T, Zhengguang L, Yasui H, Hamada H, Kubo H, Nakajima M. Curcumin inhibits epithelial-mesenchymal transition in oral cancer cells via c-Met blockade. Oncol Lett 2020; 19:4177-4182. [PMID: 32391111 DOI: 10.3892/ol.2020.11523] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. OSCC cells are highly invasive, a characteristic that involves epithelial-mesenchymal transition (EMT); the conversion of immotile epithelial cells into motile mesenchymal cells. EMT is involved in the progression of various types of cancer by promoting tumour cell scattering and conferring to these cells cancer stem cell (CSC)-like characteristics, such as self-renewal. Hepatocyte growth factor (HGF) signalling plays an important role in EMT induction and, therefore, contributes to cell invasion and metastasis in cancer. Due to its potential chemopreventative and anti-tumour activities, curcumin has attracted much interest and has been shown to act as a potent EMT inhibitor in various types of cancer. However, at present, the potential effects of curcumin on HGF-induced EMT in OSCC have not been investigated. Here, we demonstrated that HGF signalling could induce EMT in the HSC4 and Ca9-22 OSCC cell lines via the HGF receptor c-Met and downstream activation of the pro-survival ERK pathway. Notably, curcumin inhibited HGF-induced EMT and cell motility in HSC-4 and Ca9-22 cells via c-Met blockade. Therefore, these findings establish curcumin as a candidate drug for OSCC treatment. Furthermore, curcumin was able to effectively inhibit the HGF-induced increase in the levels of vimentin by downregulating the expression of phosphorylated c-Met, an ERK. In conclusion, the results of the present study demonstrated that curcumin was able to reverse HGF-induced EMT, possibly by inhibiting c-Met expression in oral cancer cells, providing a strong basis for the development of novel approaches for the treatment of oral cancer.
Collapse
Affiliation(s)
- Yuichi Ohnishi
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Tsukasa Sakamoto
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Li Zhengguang
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Hiroki Yasui
- Department of Dentistry and Oral Surgery, Kansai Medical University Hospital, Hirakata, Osaka 573-1010, Japan
| | - Hiroyuki Hamada
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Hirohito Kubo
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Masahiro Nakajima
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| |
Collapse
|
41
|
Cytotoxicity of Standardized Curcuminoids Mixture against Epithelial Ovarian Cancer Cell Line SKOV-3. Sci Pharm 2020. [DOI: 10.3390/scipharm88010011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Herbal medicine has been in use for centuries for a wide variety of ailments; however, the efficacy of its therapeutic agents in modern medicine is currently being studied. Curcuminoids are an example of natural agents, widely used due to their potential contribution in the prevention and treatment of cancer. In this study, the three main compounds of curcuminoids—curcumin, desmethoxycurcumin, and bisdesmethoxycurcumin—were determined by reversed-phase high performance liquid chromatography (HPLC) to quantify total content in a mixture. Subsequently, the effect of the three curcuminoids, employed as one sample, was evaluated, to study the proliferation, apoptosis, cell cycle, and migration of the human ovarian cancer cell line SKOV-3. The results reveal that curcuminoids inhibit the proliferation of SKOV-3 cells with concentration- and time-dependent mechanisms. The morphological analysis of the treated SKOV-3 cells showed a typical apoptotic phenotype—cell shrinkage and membrane blebbing in a dose-dependent manner. In addition, flow cytometry demonstrated an increase in apoptosis with an IC50 of 30 µM curcuminoids. The migration of SKOV-3 cells was also inhibited, reflected by a decrease in wound area. Furthermore, the curcuminoids were found to have no stimulation effect on the expression of cytokines TNF-α and IL-10. These results suggest that a curcuminoid mixture can effectively suppress epithelial cancer cell growth in vitro by inducing cellular changes and apoptosis.
Collapse
|
42
|
Xiang M, Jiang HG, Shu Y, Chen YJ, Jin J, Zhu YM, Li MY, Wu JN, Li J. Bisdemethoxycurcumin Enhances the Sensitivity of Non-small Cell Lung Cancer Cells to Icotinib via Dual Induction of Autophagy and Apoptosis. Int J Biol Sci 2020; 16:1536-1550. [PMID: 32226300 PMCID: PMC7097919 DOI: 10.7150/ijbs.40042] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/19/2020] [Indexed: 12/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) wild-type is intrinsic resistance to EGFR-tyrosine kinase inhibitors (TKIs). In this study, we assessed whether the combination of bisdemethoxycurcumin (BDMC) and icotinib could surmount primary EGFR-TKI resistance in NSCLC cells and investigated its molecular mechanism. Results showed that the combination of BDMC and icotinib produced potently synergistic growth inhibitory effect on primary EGFR-TKI-resistant NSCLC cell lines H460 (EGFR wild-type and K-ras mutation) and H1781 (EGFR wild-type and Her2 mutation). Compared with BDMC or icotinib alone, the two drug combination induced more significant apoptosis and autophagy via suppressing EGFR activity and interaction of Sp1 and HDCA1/HDCA2, which was accompanied by accumulation of reactive oxygen species (ROS), induction of DNA damage, and inhibition of cell migration and invasion. ROS inhibitor (NAC) and autophagy inhibitors (CQ or 3-MA) partially reversed BDMC plus icotinib-induced growth inhibitory effect on the NSCLC cells. Meanwhile, co-treatment with NAC attenuated the two drug combination-induced autophagy, apoptosis, DNA damage and decrease of cell migration and invasion ability. Also, 3-MA or CQ can abate the combination treatment-induced apoptosis and DNA damage, suggesting that there is crosstalk between different signaling pathways in the effect produced by the combination treatment. Our data indicate that BMDC has the potential to improve the treatment of primary EGFR-TKI resistant NISCLC that cannot be controlled with single-target agent, such as icotinib.
Collapse
Affiliation(s)
- Min Xiang
- Department of Clinical Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - He-Guo Jiang
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yang Shu
- Center of Medical Experiment, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yu-Jiao Chen
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Jun Jin
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yu-Min Zhu
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Mei-Yu Li
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Jian-Nong Wu
- Department of pathology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Jian Li
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| |
Collapse
|
43
|
Peterková L, Kmoníčková E, Ruml T, Rimpelová S. Sarco/Endoplasmic Reticulum Calcium ATPase Inhibitors: Beyond Anticancer Perspective. J Med Chem 2020; 63:1937-1963. [PMID: 32030976 DOI: 10.1021/acs.jmedchem.9b01509] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sarco/endoplasmic reticulum calcium ATPase (SERCA), which plays a key role in the maintenance of Ca2+ ion homeostasis, is an extensively studied enzyme, the inhibition of which has a considerable impact on cell life and death decision. To date, several SERCA inhibitors have been thoroughly studied and the most notable one, a derivative of the sesquiterpene lactone thapsigargin, is gradually approaching a clinical application. Meanwhile, new compounds with SERCA-inhibiting properties of natural, synthetic, or semisynthetic origin are being discovered and/or developed; some of these might also be suitable for the development of new drugs with improved performance. This review brings an up-to-date comprehensive overview of recently discovered compounds with the potential of SERCA inhibition, discusses their mechanism of action, and highlights their potential clinical applications, such as cancer treatment.
Collapse
Affiliation(s)
- Lucie Peterková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Eva Kmoníčková
- Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic.,Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
44
|
Wan Mohd Tajuddin WNB, Lajis NH, Abas F, Othman I, Naidu R. Mechanistic Understanding of Curcumin's Therapeutic Effects in Lung Cancer. Nutrients 2019; 11:E2989. [PMID: 31817718 PMCID: PMC6950067 DOI: 10.3390/nu11122989] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/22/2019] [Accepted: 11/30/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is among the most common cancers with a high mortality rate worldwide. Despite the significant advances in diagnostic and therapeutic approaches, lung cancer prognoses and survival rates remain poor due to late diagnosis, drug resistance, and adverse effects. Therefore, new intervention therapies, such as the use of natural compounds with decreased toxicities, have been considered in lung cancer therapy. Curcumin, a natural occurring polyphenol derived from turmeric (Curcuma longa) has been studied extensively in recent years for its therapeutic effects. It has been shown that curcumin demonstrates anti-cancer effects in lung cancer through various mechanisms, including inhibition of cell proliferation, invasion, and metastasis, induction of apoptosis, epigenetic alterations, and regulation of microRNA expression. Several in vitro and in vivo studies have shown that these mechanisms are modulated by multiple molecular targets such as STAT3, EGFR, FOXO3a, TGF-β, eIF2α, COX-2, Bcl-2, PI3KAkt/mTOR, ROS, Fas/FasL, Cdc42, E-cadherin, MMPs, and adiponectin. In addition, limitations, strategies to overcome curcumin bioavailability, and potential side effects as well as clinical trials were also reviewed.
Collapse
Affiliation(s)
- Wan Nur Baitty Wan Mohd Tajuddin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (W.N.B.W.M.T.); (I.O.)
| | - Nordin H. Lajis
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (N.H.L.); (F.A.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (N.H.L.); (F.A.)
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (W.N.B.W.M.T.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (W.N.B.W.M.T.); (I.O.)
| |
Collapse
|
45
|
Liu R, Chen P, Chen L. Single-sample landscape entropy reveals the imminent phase transition during disease progression. Bioinformatics 2019; 36:1522-1532. [DOI: 10.1093/bioinformatics/btz758] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/05/2019] [Accepted: 10/05/2019] [Indexed: 12/13/2022] Open
Abstract
Abstract
Motivation
The time evolution or dynamic change of many biological systems during disease progression is not always smooth but occasionally abrupt, that is, there is a tipping point during such a process at which the system state shifts from the normal state to a disease state. It is challenging to predict such disease state with the measured omics data, in particular when only a single sample is available.
Results
In this study, we developed a novel approach, i.e. single-sample landscape entropy (SLE) method, to identify the tipping point during disease progression with only one sample data. Specifically, by evaluating the disorder of a network projected from a single-sample data, SLE effectively characterizes the criticality of this single sample network in terms of network entropy, thereby capturing not only the signals of the impending transition but also its leading network, i.e. dynamic network biomarkers. Using this method, we can characterize sample-specific state during disease progression and thus achieve the disease prediction of each individual by only one sample. Our method was validated by successfully identifying the tipping points just before the serious disease symptoms from four real datasets of individuals or subjects, including influenza virus infection, lung cancer metastasis, prostate cancer and acute lung injury.
Availability and implementation
https://github.com/rabbitpei/SLE.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Rui Liu
- School of Mathematics, South China University of Technology, Guangzhou 510640, China
| | - Pei Chen
- School of Mathematics, South China University of Technology, Guangzhou 510640, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| |
Collapse
|
46
|
Forouzanfar F, Barreto G, Majeed M, Sahebkar A. Modulatory effects of curcumin on heat shock proteins in cancer: A promising therapeutic approach. Biofactors 2019; 45:631-640. [PMID: 31136038 DOI: 10.1002/biof.1522] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/12/2019] [Indexed: 12/23/2022]
Abstract
Cancer metastasis represents a multistep process, including alteration of cell adhesion/motility in the microenvironment and sustained angiogenesis, which is essential for supporting cancer growth in tissues that are distant from the primary tumor. There is growing evidence suggesting that heat shock proteins (HSPs) (also known as heat stress proteins), which constitute a family of stress-inducible proteins, may be involved in the pathogenesis of cancer. Curcumin (diferuloylmethane) is a potent anti-inflammatory, antioxidant, antimicrobial, and antitumor agent. Curcumin has been shown to regulate different members of HSPs including HSP27, HSP40, HSP60, HSP70, and HSP90 in cancer. Here, we present extent findings suggesting that curcumin may act as a potential therapeutic agent for the treatment of cancer through its regulation of HSPs.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - George Barreto
- Departamento de Nutrición yBioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology,School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
47
|
Uretmen Kagiali ZC, Sanal E, Karayel Ö, Polat AN, Saatci Ö, Ersan PG, Trappe K, Renard BY, Önder TT, Tuncbag N, Şahin Ö, Ozlu N. Systems-level Analysis Reveals Multiple Modulators of Epithelial-mesenchymal Transition and Identifies DNAJB4 and CD81 as Novel Metastasis Inducers in Breast Cancer. Mol Cell Proteomics 2019; 18:1756-1771. [PMID: 31221721 PMCID: PMC6731077 DOI: 10.1074/mcp.ra119.001446] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/21/2019] [Indexed: 01/01/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is driven by complex signaling events that induce dramatic biochemical and morphological changes whereby epithelial cells are converted into cancer cells. However, the underlying molecular mechanisms remain elusive. Here, we used mass spectrometry based quantitative proteomics approach to systematically analyze the post-translational biochemical changes that drive differentiation of human mammary epithelial (HMLE) cells into mesenchymal. We identified 314 proteins out of more than 6,000 unique proteins and 871 phosphopeptides out of more than 7,000 unique phosphopeptides as differentially regulated. We found that phosphoproteome is more unstable and prone to changes during EMT compared with the proteome and multiple alterations at proteome level are not thoroughly represented by transcriptional data highlighting the necessity of proteome level analysis. We discovered cell state specific signaling pathways, such as Hippo, sphingolipid signaling, and unfolded protein response (UPR) by modeling the networks of regulated proteins and potential kinase-substrate groups. We identified two novel factors for EMT whose expression increased on EMT induction: DnaJ heat shock protein family (Hsp40) member B4 (DNAJB4) and cluster of differentiation 81 (CD81). Suppression of DNAJB4 or CD81 in mesenchymal breast cancer cells resulted in decreased cell migration in vitro and led to reduced primary tumor growth, extravasation, and lung metastasis in vivo Overall, we performed the global proteomic and phosphoproteomic analyses of EMT, identified and validated new mRNA and/or protein level modulators of EMT. This work also provides a unique platform and resource for future studies focusing on metastasis and drug resistance.
Collapse
Affiliation(s)
| | - Erdem Sanal
- ‡Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Özge Karayel
- ‡Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Ayse Nur Polat
- ‡Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Özge Saatci
- §Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208
| | - Pelin Gülizar Ersan
- ¶Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Kathrin Trappe
- ‖Bioinformatics Unit (MF1), Robert Koch Institute, 13353 Berlin, Germany
| | - Bernhard Y Renard
- ‖Bioinformatics Unit (MF1), Robert Koch Institute, 13353 Berlin, Germany
| | - Tamer T Önder
- **Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey; ‡‡School of Medicine, Koç University, 34450 Istanbul, Turkey
| | - Nurcan Tuncbag
- §§Graduate School of Informatics, Department of Health Informatics, METU, 06800 Ankara, Turkey; ¶¶Cancer Systems Biology Laboratory (CanSyL), METU, 06800 Ankara, Turkey
| | - Özgür Şahin
- §Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208; ¶Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Nurhan Ozlu
- ‡Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey; **Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey.
| |
Collapse
|
48
|
Song Z, Wang H, Zhang S. Negative regulators of Wnt signaling in non-small cell lung cancer: Theoretical basis and therapeutic potency. Biomed Pharmacother 2019; 118:109336. [PMID: 31545260 DOI: 10.1016/j.biopha.2019.109336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/20/2019] [Accepted: 08/05/2019] [Indexed: 02/05/2023] Open
Abstract
Significant advances in the treatment of non-small cell lung cancer (NSCLC) have been made over the past decade, and they predominantly involve molecular targets such as epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements. However, despite the initial good response, drug resistance eventually develops. The Wnt signaling pathway has recently been considered important in embryonic development and tumorigenesis in many cancers, particularly NSCLC. Moreover, the aberrant Wnt pathway plays a significant role in NSCLC and is associated with cancer cell proliferation, metastasis, invasion and drug resistance, and the suppression of canonical or noncanonical Wnt signaling through various biological or pharmacological negative regulators has been proven to produce specific anticancer effects. Thus, blocking the Wnt pathway via its negative regulators may overcome the resistance of current treatment methods and lead to new treatment strategies for NSCLC. Therefore, in this review, we summarize recent studies on the role of negative regulators in Wnt signaling in NSCLC and the therapeutic potency of these molecules as agents and targets for NSCLC treatments.
Collapse
Affiliation(s)
- Zikuan Song
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haoyu Wang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuang Zhang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
49
|
Muller AG, Sarker SD, Saleem IY, Hutcheon GA. Delivery of natural phenolic compounds for the potential treatment of lung cancer. Daru 2019; 27:433-449. [PMID: 31115871 PMCID: PMC6593021 DOI: 10.1007/s40199-019-00267-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
The application of natural products to treat various diseases, such as cancer, has been an important area of research for many years. Several phytochemicals have demonstrated anticarcinogenic activity to prevent or reduce the progression of cancer by modulating various cellular mechanisms. However, poor bioavailability has hindered clinical success and the incorporation of these drugs into efficient drug delivery systems would be beneficial. For lung cancer, local delivery via the pulmonary route would also be more effective. In this article, recent in vitro scientific literature on phenolic compounds with anticancer activity towards lung cancer cell lines is reviewed and nanoparticulate delivery is mentioned as a possible solution to the problem of bioavailability. The first part of the review will explore the different classes of natural phenolic compounds and discuss recent reports on their activity on lung cancer cells. Then, the problem of the poor bioavailability of phenolic compounds will be explored, followed by a summary of recent advances in improving the efficacy of these phenolic compounds using nanoparticulate drug delivery systems. Graphical abstract The rationale for direct delivery of phenolic compounds loaded in microparticles to the lungs.
Collapse
Affiliation(s)
- Ashley G Muller
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom Street, Liverpool, L3 3AF, UK.
| | - Satyajit D Sarker
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom Street, Liverpool, L3 3AF, UK
| | - Imran Y Saleem
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom Street, Liverpool, L3 3AF, UK
| | - Gillian A Hutcheon
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
50
|
Khan H, Ullah H, Nabavi SM. Mechanistic insights of hepatoprotective effects of curcumin: Therapeutic updates and future prospects. Food Chem Toxicol 2019; 124:182-191. [PMID: 30529260 DOI: 10.1016/j.fct.2018.12.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023]
Abstract
The liver is the most essential organ of the body performing vital functions. Hepatic disorders affect the physiological and biochemical functions of the body. These disorders include hepatitis B, hepatitis C, alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), liver cirrhosis, hepatic failure and hepatocellular carcinoma (HCC). Drugs related hepatotoxicity is one of the major challenges facing by clinicians as it is a leading cause of liver failure. During post-marketing surveillance studies, detection and reporting of drug-induced hepatotoxicity may lead to drug withdrawal or warnings. Several mechanisms are involved in hepatotoxicity such as cell membrane disruption, initiating an immune response, alteration of cellular pathways of drug metabolism, accumulation of reactive oxygen species (ROS), lipid peroxidation and cell death. Curcumin, the active ingredient of turmeric and exhibits therapeutic potential for the treatment of diabetes, cardiovascular disorders and various types of cancers. Curcumin is strong anti-oxidant and anti-inflammatory effects and thus it possesses hepatoprotective properties. Despite its low bioavailability, its hepatoprotective effects have been studied in various protocols of hepatotoxicity including acetaminophen, alcohol, lindane, carbon tetrachloride (CCL4), diethylnitrosamine and heavy metals induced hepatotoxicities. This report reviews the hepatoprotective effects of curcumin with a focus on its mechanistic insights in various hepatotoxic protocols.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|