1
|
Moreira MP, Franco EP, Barros BAF, Anjos BRD, Almada DDG, Barbosa INT, Braga LDC, Cassali GD, Silva LM. Standard chemotherapy impacts on in vitro cellular heterogeneity in spheroids enriched with cancer stem cells (CSCs) derived from triple-negative breast cancer cell line. Biochem Biophys Res Commun 2024; 734:150765. [PMID: 39357337 DOI: 10.1016/j.bbrc.2024.150765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Triple-negative breast cancer is a heterogeneous disease with high recurrence and mortality, linked to cancer stem cells (CSCs). Our study characterized distinct cell subpopulations and signaling pathways to explore chemoresistance. We observed cellular heterogeneity among and within the cells regarding phenotyping and drug response. In untreated BT-549 cells, we noted plasticity properties in both CD44+/CD24+/CD146+ hybrid cells and CD44-/CD24+/CD146+ epithelial cells, enabling phenotypic conversion into CD44+/CD24-/CD146- epithelial-mesenchymal transition (EMT)-like like breast CSCs (BCSCs). Additionally, non-BCSCs may give rise to ALDH+ epithelial-like BCSCs. Enriched BCSCs demonstrated the potential to differentiation into CD44-/CD24-/CD146- cells and exhibited self-renewal capabilities. Similar phenotypic plasticity was not observed in untreated Hs 578T and HMT-3522 S1 cells. BT-549 cells were more resistant to paclitaxel/PTX than to doxorubicin/DOX, a phenomenon potentially linked to the presence of CD24+ cells prior to treatment. Under the CSCs-enriched spheroids model, BT-549 demonstrated extreme resistance to DOX, likely due to the enrichment of BCSCs CD44+/CD24-/CD146- and the tumor cells CD44-/CD24-/CD146-. Additionally, DOX treatment induced the enrichment of plastic and chemoresistant cells, further exacerbating resistance mechanisms. BT-549 exhibited high heterogeneity, leading to significant alterations in cell subpopulations under BCSCs enrichment, demonstrating increased phenotypic plasticity during EMT. This phenomenon appears to play a major role in DOX resistance, as indicated by the presence of the refractory cells CD44+/CD24-/CD146- BCSCs EMT-like, CD44-/CD24-/CD146- tumor cells, and elevated STAT3 expression. Gene expression data from BT-549 CSCs-enriched spheroids suggests that ferroptosis may be occurring via autophagic regulation triggered by RAB7A, highlighting this gene as a potential therapeutic target.
Collapse
Affiliation(s)
- Milene Pereira Moreira
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil.
| | - Eliza Pereira Franco
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Bárbara Avelar Ferreira Barros
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil; Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Bianca Rocha Dos Anjos
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil; Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Daniela de Gouvêa Almada
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Isabela Nery Tavares Barbosa
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Letícia da Conceição Braga
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Geovanni Dantas Cassali
- Laboratório de Patologia Comparada, Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Luciana Maria Silva
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| |
Collapse
|
2
|
Wu Z, Zhang R, Bao J, Yin M, Wang X. Development of a biomarker signature associated with anoikis to predict prognosis and immunotherapy response in melanoma. Arch Dermatol Res 2024; 316:219. [PMID: 38787413 DOI: 10.1007/s00403-024-03085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/21/2023] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Skin cutaneous melanoma (SKCM) is malignant cancer known for its high aggressiveness and unfavorable prognosis, particularly in advanced tumors. Anoikis is a specific pattern of programmed cell death associated with tumor regeneration, migration, and metastasis. Nevertheless, limited research has been conducted to investigate the function of anoikis in SKCM. Anoikis-related genes (ARGs) were extracted from Genecards to identify SKCM subtypes and to explore the immune microenvironment between the different subtypes. Prognostic models of SKCM were developed by LASSO COX regression analysis. Subsequently, the predictive value of risk scores in SKCM and the association with immunotherapy were further explored. Finally, the expression of 6 ARGs involved in the model construction was detected by immunohistochemistry and PCR. This study identified 20 ARGs significantly associated with SKCM prognosis and performed disease subtype analysis of samples based on these genes, different subtypes exhibited significantly different clinical features and tumor immune microenvironment (TIME) landscapes. The risk score prognostic model was generated by further screening and identification of the six ARGs. The model exhibited a high degree of sensitivity and specificity to predict the prognosis of individuals with SKCM. These high- and low-risk populations showed different immune statuses and drug sensitivity. Further immunohistochemical and PCR experiments identified significant differential expression of the six ARGs in tumor and normal samples. Anoikis-based features may serve as novel prognostic biomarkers for SKCM and may provide important new insights for survival prediction and individualized treatment development.
Collapse
Affiliation(s)
- Zhixuan Wu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, People's Republic of China
| | - Rongrong Zhang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, People's Republic of China
| | - Jingxia Bao
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, People's Republic of China
| | - Mengqi Yin
- The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, 214200, People's Republic of China.
| | - Xiaowu Wang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, People's Republic of China.
| |
Collapse
|
3
|
Dai Y, Zhang X, Ou Y, Zou L, Zhang D, Yang Q, Qin Y, Du X, Li W, Yuan Z, Xiao Z, Wen Q. Anoikis resistance--protagonists of breast cancer cells survive and metastasize after ECM detachment. Cell Commun Signal 2023; 21:190. [PMID: 37537585 PMCID: PMC10399053 DOI: 10.1186/s12964-023-01183-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/04/2023] [Indexed: 08/05/2023] Open
Abstract
Breast cancer exhibits the highest global incidence among all tumor types. Regardless of the type of breast cancer, metastasis is a crucial cause of poor prognosis. Anoikis, a form of apoptosis initiated by cell detachment from the native environment, is an outside-in process commencing with the disruption of cytosolic connectors such as integrin-ECM and cadherin-cell. This disruption subsequently leads to intracellular cytoskeletal and signaling pathway alterations, ultimately activating caspases and initiating programmed cell death. Development of an anoikis-resistant phenotype is a critical initial step in tumor metastasis. Breast cancer employs a series of stromal alterations to suppress anoikis in cancer cells. Comprehensive investigation of anoikis resistance mechanisms can inform strategies for preventing and regressing metastatic breast cancer. The present review first outlines the physiological mechanisms of anoikis, elucidating the alterations in signaling pathways, cytoskeleton, and protein targets that transpire from the outside in upon adhesion loss in normal breast cells. The specific anoikis resistance mechanisms induced by pathological changes in various spatial structures during breast cancer development are also discussed. Additionally, the genetic loci of targets altered in the development of anoikis resistance in breast cancer, are summarized. Finally, the micro-RNAs and targeted drugs reported in the literature concerning anoikis are compiled, with keratocin being the most functionally comprehensive. Video Abstract.
Collapse
Affiliation(s)
- Yalan Dai
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Oncology, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Xinyi Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Yingjun Ou
- Clinical Medicine School, Southwest Medicial Univercity, Luzhou, China
- Orthopaedics, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Linglin Zou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qingfan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Qin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiuju Du
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Li
- Southwest Medical University, Luzhou, China
| | | | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Linzer RW, Guida DL, Aminov J, Snider JM, Khalife G, Buyukbayraktar AB, Alhaddad C, Resnick AE, Wang P, Pan CH, Allopenna JJ, Clarke CJ. Dihydroceramide desaturase 1 (DES1) promotes anchorage-independent survival downstream of HER2-driven glucose uptake and metabolism. FASEB J 2022; 36:e22558. [PMID: 36165222 PMCID: PMC9597949 DOI: 10.1096/fj.202200748r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 11/11/2022]
Abstract
Oncogenic reprogramming of cellular metabolism is a hallmark of many cancers, but our mechanistic understanding of how such dysregulation is linked to tumor behavior remains poor. In this study, we have identified dihydroceramide desaturase (DES1)-which catalyzes the last step in de novo sphingolipid synthesis-as necessary for the acquisition of anchorage-independent survival (AIS), a key cancer enabling biology, and establish DES1 as a downstream effector of HER2-driven glucose uptake and metabolism. We further show that DES1 is sufficient to drive AIS and in vitro tumorigenicity and that increased DES1 levels-found in a third of HER2+ breast cancers-are associated with worse survival outcomes. Taken together, our findings reveal a novel pro-tumor role for DES1 as a transducer of HER2-driven glucose metabolic signals and provide evidence that targeting DES1 is an effective approach for overcoming AIS. Results further suggest that DES1 may have utility as a biomarker of aggressive and metastasis-prone HER2+ breast cancer.
Collapse
Affiliation(s)
- Ryan W Linzer
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Danielle L Guida
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Jonathan Aminov
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Justin M Snider
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Gabrielle Khalife
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - A Burak Buyukbayraktar
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Charbel Alhaddad
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Andrew E Resnick
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Pule Wang
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Chun-Hao Pan
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Janet J Allopenna
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Christopher J Clarke
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
5
|
Friedland F, Babu S, Springer R, Konrad J, Herfs Y, Gerlach S, Gehlen J, Krause HJ, De Laporte L, Merkel R, Noetzel E. ECM-transmitted shear stress induces apoptotic cell extrusion in early breast gland development. Front Cell Dev Biol 2022; 10:947430. [PMID: 36105352 PMCID: PMC9465044 DOI: 10.3389/fcell.2022.947430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial cells of human breast glands are exposed to various mechanical ECM stresses that regulate tissue development and homeostasis. Mechanoadaptation of breast gland tissue to ECM-transmitted shear stress remained poorly investigated due to the lack of valid experimental approaches. Therefore, we created a magnetic shear strain device that enabled, for the first time, to analyze the instant shear strain response of human breast gland cells. MCF10A-derived breast acini with basement membranes (BM) of defined maturation state and basoapical polarization were used to resemble breast gland morphogenesis in vitro. The novel biophysical tool was used to apply cyclic shear strain with defined amplitudes (≤15%, 0.2 Hz) over 22 h on living spheroids embedded in an ultrasoft matrix (<60 Pa). We demonstrated that breast spheroids gain resistance to shear strain, which increased with BM maturation and basoapical polarization. Most intriguingly, poorly developed spheroids were prone to cyclic strain-induced extrusion of apoptotic cells from the spheroid body. In contrast, matured spheroids were insensitive to this mechanoresponse—indicating changing mechanosensing or mechanotransduction mechanisms during breast tissue morphogenesis. Together, we introduced a versatile tool to study cyclic shear stress responses of 3D cell culture models. It can be used to strain, in principle, all kinds of cell clusters, even those that grow only in ultrasoft hydrogels. We believe that this approach opens new doors to gain new insights into dynamic shear strain-induced mechanobiological regulation circuits between cells and their ECM.
Collapse
Affiliation(s)
- F. Friedland
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, Jülich, Germany
| | - S. Babu
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), Polymeric Biomaterials, RWTH University Aachen, Aachen, Germany
| | - R. Springer
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, Jülich, Germany
| | - J. Konrad
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, Jülich, Germany
| | - Y. Herfs
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, Jülich, Germany
| | - S. Gerlach
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, Jülich, Germany
| | - J. Gehlen
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, Jülich, Germany
| | - H.-J. Krause
- Institute of Biological Information Processing 3 (IBI-3): Bioelectronics, Forschungszentrum Jülich, Jülich, Germany
| | - L. De Laporte
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), Polymeric Biomaterials, RWTH University Aachen, Aachen, Germany
- Advanced Materials for Biomedicine (AMB), Institute of Applied Medical Engineering (AME), University Hospital RWTH Aachen, Center for Biohybrid Medical Systems (CMBS), Aachen, Germany
| | - R. Merkel
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, Jülich, Germany
| | - E. Noetzel
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, Jülich, Germany
- *Correspondence: E. Noetzel,
| |
Collapse
|
6
|
Kato T. Immunofluorescence Detection of Plasma Membranous PTEN in Cultured Cells. J Histochem Cytochem 2022; 70:289-297. [PMID: 35199573 PMCID: PMC8971685 DOI: 10.1369/00221554221082539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/04/2022] [Indexed: 11/22/2022] Open
Abstract
PTEN is a well-known tumor suppressor with various functions that depend on its intracellular localization. Green fluorescent protein (GFP)-tagged live-cell images clarified the crucial amino acids needed to regulate the localization of PTEN in cells. However, it currently remains unknown whether GFP itself affects the intracellular localization of PTEN and its mutants, and the establishment of fixed-cell imaging is important for identifying the exact location of PTEN in cells. I herein investigated a number of immunofluorescence strategies for cell fixation, membrane permeabilization, and antigen retrieval. Permeabilization by detergents was necessary to observe nuclear and cytosolic PTEN in paraformaldehyde (PFA)-fixed cells; however, this permeabilization was not always valid. On the other hand, antigen retrieval by the pre-boiled EDTA treatment was useful for detecting plasma membranous PTEN in PFA-fixed cells in the same manner as in in vivo studies. Furthermore, methanol-fixed images of PTEN were consistent with GFP-tagged live-cell images. Two immunofluorescence methods (the PFA-fixed/pre-boiled EDTA treatment and methanol fixation) are applicable to investigations of the intracellular localization of PTEN without a GFP tag in cultured cells. In conclusion, live-cell imaging and appropriate immunofluorescence including a novel antigen retrieval treatment were both useful for detecting the cellular localization of PTEN, particularly at the plasma membrane.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Faculty of Pharmacy, Yasuda Women’s University, Hiroshima, Japan
| |
Collapse
|
7
|
Mathias TJ, Ju JA, Lee RM, Thompson KN, Mull ML, Annis DA, Chang KT, Ory EC, Stemberger MB, Hotta T, Ohi R, Vitolo MI, Moutin MJ, Martin SS. Tubulin Carboxypeptidase Activity Promotes Focal Gelatin Degradation in Breast Tumor Cells and Induces Apoptosis in Breast Epithelial Cells That Is Overcome by Oncogenic Signaling. Cancers (Basel) 2022; 14:1707. [PMID: 35406479 PMCID: PMC8996877 DOI: 10.3390/cancers14071707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Post-translational modifications (PTMs) of the microtubule network impart differential functions across normal cell types and their cancerous counterparts. The removal of the C-terminal tyrosine of α-tubulin (deTyr-Tub) as performed by the tubulin carboxypeptidase (TCP) is of particular interest in breast epithelial and breast cancer cells. The recent discovery of the genetic identity of the TCP to be a vasohibin (VASH1/2) coupled with a small vasohibin-binding protein (SVBP) allows for the functional effect of this tubulin PTM to be directly tested for the first time. Our studies revealed the immortalized breast epithelial cell line MCF10A undergoes apoptosis following transfection with TCP constructs, but the addition of oncogenic KRas or Bcl-2/Bcl-xL overexpression prevents subsequent apoptotic induction in the MCF10A background. Functionally, an increase in deTyr-Tub via TCP transfection in MDA-MB-231 and Hs578t breast cancer cells leads to enhanced focal gelatin degradation. Given the elevated deTyr-Tub at invasive tumor fronts and the correlation with poor breast cancer survival, these new discoveries help clarify how the TCP synergizes with oncogene activation, increases focal gelatin degradation, and may correspond to increased tumor cell invasion. These connections could inform more specific microtubule-directed therapies to target deTyr-tubulin.
Collapse
Affiliation(s)
- Trevor J. Mathias
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
- Medical Scientist Training Program (MSTP), University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - Julia A. Ju
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Rachel M. Lee
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Keyata N. Thompson
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Makenzy L. Mull
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - David A. Annis
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Epidemiology and Human Genetics, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - Katarina T. Chang
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - Eleanor C. Ory
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Megan B. Stemberger
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Biochemistry & Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, USA
| | - Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; (T.H.); (R.O.)
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; (T.H.); (R.O.)
| | - Michele I. Vitolo
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Marie-Jo Moutin
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France;
| | - Stuart S. Martin
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Habib EB, Mathavarajah S, Dellaire G. Tinker, Tailor, Tumour Suppressor: The Many Functions of PRP4K. Front Genet 2022; 13:839963. [PMID: 35281802 PMCID: PMC8912934 DOI: 10.3389/fgene.2022.839963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Pre-mRNA processing factor 4 kinase (PRP4K, also known as PRPF4B) is an essential kinase first identified in the fission yeast Schizosaccharomyces pombe that is evolutionarily conserved from amoebae to animals. During spliceosomal assembly, PRP4K interacts with and phosphorylates PRPF6 and PRPF31 to facilitate the formation of the spliceosome B complex. However, over the past decade additional evidence has emerged that PRP4K has many diverse cellular roles beyond splicing that contribute to tumour suppression and chemotherapeutic responses in mammals. For example, PRP4K appears to play roles in regulating transcription and the spindle assembly checkpoint (SAC), a key pathway in maintaining chromosomes stability and the response of cancer cells to taxane-based chemotherapy. In addition, PRP4K has been revealed to be a haploinsufficient tumour suppressor that promotes aggressive cancer phenotypes when partially depleted. PRP4K is regulated by both the HER2 and estrogen receptor, and its partial loss increases resistance to the taxanes in multiple malignancies including cervical, breast and ovarian cancer. Moreover, ovarian and triple negative breast cancer patients harboring tumours with low PRP4K expression exhibit worse overall survival. The depletion of PRP4K also enhances both Yap and epidermal growth factor receptor (EGFR) signaling, the latter promoting anoikis resistance in breast and ovarian cancer. Finally, PRP4K is negatively regulated during epithelial-to-mesenchymal transition (EMT), a process that promotes increased cell motility, drug resistance and cancer metastasis. Thus, as we discuss in this review, PRP4K likely plays evolutionarily conserved roles not only in splicing but in a number of cellular pathways that together contribute to tumour suppression.
Collapse
Affiliation(s)
- Elias B. Habib
- Dalhousie University, Department of Pathology, Halifax, NS, Canada
| | | | - Graham Dellaire
- Dalhousie University, Department of Pathology, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- *Correspondence: Graham Dellaire,
| |
Collapse
|
9
|
Shimizu T, Kimura K, Sugihara E, Yamaguchi-Iwai S, Nobusue H, Sampetrean O, Otsuki Y, Fukuchi Y, Saitoh K, Kato K, Soga T, Muto A, Saya H. MEK inhibition preferentially suppresses anchorage-independent growth in osteosarcoma cells and decreases tumors in vivo. J Orthop Res 2021; 39:2732-2743. [PMID: 33751653 DOI: 10.1002/jor.25023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 02/04/2023]
Abstract
Osteosarcoma is the most common high-grade malignancy of bone, and novel therapeutic options are urgently required. Previously, we developed mouse osteosarcoma AXT cells that can proliferate both under adherent and nonadherent conditions. Based on metabolite levels, nonadherent conditions were more similar to the in vivo environment than adherent conditions. A drug screen identified MEK inhibitors, including trametinib, that preferentially decreased the viability of nonadherent AXT cells. Trametinib inhibited the cell cycle and induced apoptosis in AXT cells, and both effects were stronger under nonadherent conditions. Trametinib also potently decreased viability in U2OS cells, but its effects were less prominent in MG63 or Saos2 cells. By contrast, MG63 and Saos2 cells were more sensitive to PI3K inhibition than AXT or U2OS cells. Notably, the combination of MAPK/ERK kinase (MEK) and PI3K inhibition synergistically decreased viability in U2OS and AXT cells, but this effect was less pronounced in MG63 or Saos2 cells. Therefore, signal dependence for cell survival and crosstalk between MEK-ERK and PI3K-AKT pathways in osteosarcoma are cell context-dependent. The activation status of other kinases including CREB varied in a cell context-dependent manner, which might determine the response to MEK inhibition. A single dose of trametinib was sufficient to decrease the size of the primary tumor and circulating tumor cells in vivo. Moreover, combined administration of trametinib and rapamycin or conventional anticancer drugs further increased antitumor activity. Thus, given optimal biomarkers for predicting its effects, trametinib holds therapeutic potential for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Takatsune Shimizu
- Department of Pathophysiology, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa-ku, Tokyo, Japan.,Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kiyomi Kimura
- Department of Pathophysiology, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa-ku, Tokyo, Japan.,Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Eiji Sugihara
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan
| | - Sayaka Yamaguchi-Iwai
- Department of Pathophysiology, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa-ku, Tokyo, Japan.,Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroyuki Nobusue
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Oltea Sampetrean
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yuji Otsuki
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yumi Fukuchi
- Department of Pathophysiology, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Kaori Saitoh
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Keiko Kato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Akihiro Muto
- Department of Pathophysiology, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
10
|
Puleo J, Polyak K. The MCF10 Model of Breast Tumor Progression. Cancer Res 2021; 81:4183-4185. [PMID: 34400468 DOI: 10.1158/0008-5472.can-21-1939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022]
Abstract
The MCF10 cell lines first described by Soule and colleagues in 1990 have been a great resource for the breast cancer research community, facilitating research on the regulation of normal breast epithelial phenotypes and progressive changes in this regulation during malignancy. Here we review the development of the MCF10 parental and subsequent sublines and highlight a few of the major contributions of MCF10 model systems to breast cancer research.See related article by Soule and colleagues, Cancer Res 1990;50:6075-86.
Collapse
Affiliation(s)
- Julieann Puleo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
11
|
Lee RM, Vitolo MI, Losert W, Martin SS. Distinct roles of tumor associated mutations in collective cell migration. Sci Rep 2021; 11:10291. [PMID: 33986306 PMCID: PMC8119502 DOI: 10.1038/s41598-021-89130-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/10/2021] [Indexed: 02/03/2023] Open
Abstract
Recent evidence suggests that groups of cells are more likely to form clinically dangerous metastatic tumors, emphasizing the importance of understanding mechanisms underlying collective behavior. The emergent collective behavior of migrating cell sheets in vitro has been shown to be disrupted in tumorigenic cells but the connection between this behavior and in vivo tumorigenicity remains unclear. We use particle image velocimetry to measure a multidimensional migration phenotype for genetically defined human breast epithelial cell lines that range in their in vivo behavior from non-tumorigenic to aggressively metastatic. By using cells with controlled mutations, we show that PTEN deletion enhances collective migration, while Ras activation suppresses it, even when combined with PTEN deletion. These opposing effects on collective migration of two mutations that are frequently found in patient tumors could be exploited in the development of novel treatments for metastatic disease. Our methods are based on label-free phase contrast imaging, and thus could easily be applied to patient tumor cells. The short time scales of our approach do not require potentially selective growth, and thus in combination with label-free imaging would allow multidimensional collective migration phenotypes to be utilized in clinical assessments of metastatic potential.
Collapse
Affiliation(s)
- Rachel M. Lee
- grid.411024.20000 0001 2175 4264Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA ,grid.164295.d0000 0001 0941 7177Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 USA
| | - Michele I. Vitolo
- grid.411024.20000 0001 2175 4264Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA ,grid.411024.20000 0001 2175 4264Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Wolfgang Losert
- grid.411024.20000 0001 2175 4264Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201 USA ,grid.164295.d0000 0001 0941 7177Department of Physics, University of Maryland, College Park, MD 20742 USA
| | - Stuart S. Martin
- grid.411024.20000 0001 2175 4264Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA ,grid.411024.20000 0001 2175 4264Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| |
Collapse
|
12
|
Pratt SJP, Lee RM, Chang KT, Hernández-Ochoa EO, Annis DA, Ory EC, Thompson KN, Bailey PC, Mathias TJ, Ju JA, Vitolo MI, Schneider MF, Stains JP, Ward CW, Martin SS. Mechanoactivation of NOX2-generated ROS elicits persistent TRPM8 Ca 2+ signals that are inhibited by oncogenic KRas. Proc Natl Acad Sci U S A 2020; 117:26008-26019. [PMID: 33020304 PMCID: PMC7584994 DOI: 10.1073/pnas.2009495117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Changes in the mechanical microenvironment and mechanical signals are observed during tumor progression, malignant transformation, and metastasis. In this context, understanding the molecular details of mechanotransduction signaling may provide unique therapeutic targets. Here, we report that normal breast epithelial cells are mechanically sensitive, responding to transient mechanical stimuli through a two-part calcium signaling mechanism. We observed an immediate, robust rise in intracellular calcium (within seconds) followed by a persistent extracellular calcium influx (up to 30 min). This persistent calcium was sustained via microtubule-dependent mechanoactivation of NADPH oxidase 2 (NOX2)-generated reactive oxygen species (ROS), which acted on transient receptor potential cation channel subfamily M member 8 (TRPM8) channels to prolong calcium signaling. In contrast, the introduction of a constitutively active oncogenic KRas mutation inhibited the magnitude of initial calcium signaling and severely blunted persistent calcium influx. The identification that oncogenic KRas suppresses mechanically-induced calcium at the level of ROS provides a mechanism for how KRas could alter cell responses to tumor microenvironment mechanics and may reveal chemotherapeutic targets for cancer. Moreover, we find that expression changes in both NOX2 and TRPM8 mRNA predict poor clinical outcome in estrogen receptor (ER)-negative breast cancer patients, a population with limited available treatment options. The clinical and mechanistic data demonstrating disruption of this mechanically-activated calcium pathway in breast cancer patients and by KRas activation reveal signaling alterations that could influence cancer cell responses to the tumor mechanical microenvironment and impact patient survival.
Collapse
Affiliation(s)
- Stephen J P Pratt
- Program in Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201;
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Rachel M Lee
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Katarina T Chang
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Erick O Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - David A Annis
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Eleanor C Ory
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Keyata N Thompson
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Patrick C Bailey
- Program in Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Trevor J Mathias
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Julia A Ju
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Michele I Vitolo
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Martin F Schneider
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Joseph P Stains
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Christopher W Ward
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD 21201
- School of Nursing, University of Maryland, Baltimore, MD 21201
| | - Stuart S Martin
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201;
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
13
|
Abstract
Pancreatic cancer is the third leading cause of cancer death in the USA, and pancreatic ductal adenocarcinoma (PDA) constitutes 85% of pancreatic cancer diagnoses. PDA frequently metastasizes to the peritoneum, but effective treatment of peritoneal metastasis remains a clinical challenge. Despite this unmet need, understanding of the biological mechanisms that contribute to development and progression of PDA peritoneal metastasis is sparse. By contrast, a vast number of studies have investigated mechanisms of peritoneal metastasis in ovarian and gastric cancers. Here, we contrast similarities and differences between peritoneal metastasis in PDA as compared with those in gastric and ovarian cancer by outlining molecular mediators involved in each step of the peritoneal metastasis cascade. This review aims to provide mechanistic insights that could be translated into effective targeted therapies for patients with peritoneal metastasis from PDA.
Collapse
|
14
|
Guo C, Xu LF, Li HM, Wang W, Guo JH, Jia MQ, Jia R, Jia J. Transcriptomic study of the mechanism of anoikis resistance in head and neck squamous carcinoma. PeerJ 2019; 7:e6978. [PMID: 31198634 PMCID: PMC6535219 DOI: 10.7717/peerj.6978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
Background Normal epithelial cells rapidly undergo apoptosis as soon as they lose contact with the extracellular matrix (ECM), which is termed as anoikis. However, cancer cells tend to develop a resistance mechanism to anoikis. This acquired ability is termed as anoikis resistance. Cancer cells, with anoikis resistance, can spread to distant tissues or organs via the peripheral circulatory system and cause cancer metastasis. Thus, inhibition of anoikis resistance blocks the metastatic ability of cancer cells. Methods Anoikis-resistant CAL27 (CAL27AR) cells were induced from CAL27 cells using the suspension culture approach. Transcriptome analysis was performed using RNA-Seq to study the differentially expressed genes (DEGs) between the CAL27ARcells and the parental CAL27 cells. Gene function annotation and Gene Ontology (GO) enrichment analysis were performed using DAVID database. Signaling pathways involved in DEGs were analyzed using Gene Set Enrichment Analysis (GSEA) software. Analysis results were confirmed by reverse transcription PCR (RT-PCR), western blotting, and gene correlation analysis based on the TCGA database. Results GO enrichment analysis indicated that the biological process (BP) of the DEGs was associated with epidermal development, DNA replication, and G1/S transition of the mitotic cell cycle. The analysis of cellular component (CC) showed that the most significant up-regulated genes were related to extracellular exosome. KEGG Pathway analysis revealed that 23 signaling pathways were activated (p-value ≤ 0.05, FDR q-value ≤ 0.05) and 22 signaling pathways were suppressed (p-value ≤ 0.05, FDR q-value ≤ 0.05). The results from the GSEA indicated that in contrast to the inhibition of EGFR signaling pathway, the VEGF signaling pathway was activated. The VEGF signaling pathway possibly activates STAT3 though induction of STAT3 phosphorylation. Gene correlation analysis revealed that the VEGFA- STAT3-KLF4-CDKN1A signal axis was not only present in head and neck squamous carcinoma (HNSCC) but also two other epithelial-derived carcinomas that highly express VEGFA, including kidney renal clear cell carcinoma (KIRC) and ovarian serous cystadenocarcinoma (OV).
Collapse
Affiliation(s)
- Chen Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Ling-Feng Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Hui-Min Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Wei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Ji-Hua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Meng-Qi Jia
- Department of Oral and Maxillofacial Surgery, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Jun Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China.,Department of Oral and Maxillofacial Surgery, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| |
Collapse
|
15
|
Oncosuppressor-Mutated Cells as a Liquid Biopsy Test for Cancer-Screening. Sci Rep 2019; 9:2384. [PMID: 30787346 PMCID: PMC6382857 DOI: 10.1038/s41598-019-38736-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
We reported on the ability of immortalized or oncosuppressor-mutated cells (OMCs) to uptake circulating cancer-factors and give tumors when transplanted into mice. This led to the first biological based liquid biopsy test, which we called MATER-D platform. In the present study, we showed for the first time that a different type of OMCs (PTEN-deficient human epithelial MCF10A cells) turn malignant when exposed to cancer patient’s sera, confirming the concept that different cells with diverse oncosuppressor mutations can uptake cancer factors and be used in biological based liquid biopsy tests. Our observations were confirmed in a large variety of solid and haematological malignancies. This test was able to detect dysplasia and carcinomas in situ lesions in different organs and circulating factors in cancer patients years after the removal of their lesions. To our knowledge, this ability is unique and not shared by other liquid biopsy platforms. Immunohistochemistry analysis of the xenotransplants revealed identical patterns of differentiation regardless of the cancer type, showing that differentiation through horizontal transfer might be dependent on the nature of the target cells rather than the type of cancer factors. These data strengthen the notion that OMC-based liquid biopsy tests might be promising platforms for cancer screening.
Collapse
|
16
|
Rsu1-dependent control of PTEN expression is regulated via ATF2 and cJun. J Cell Commun Signal 2019; 13:331-341. [PMID: 30680530 DOI: 10.1007/s12079-018-00504-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022] Open
Abstract
The Rsu1 protein contributes to cell adhesion and migration via its association with the adaptor complex of Integrin linked kinase (ILK), PINCH, and Parvin (IPP), which binds to the cytoplasmic domain of β1 integrins joining integrins to the actin cytoskeleton. Rsu1 binding to PINCH in the IPP complex is required for EGF-induced adhesion, spreading and migration in MCF10A mammary epithelial cells. In addition, Rsu1 expression inhibits Jun kinase but is necessary for the activation of MKK4 and p38 Map kinase signaling essential for migration in MCF10A cells. The data reported here examines the links between MKK4-p38-ATF2 signaling and AKT regulation in MCF10A cells. Ectopic Rsu1 inhibited AKT1 phosphorylation while Rsu1 depletion induced AKT activation and AKT1 phosphorylation of MKK4 on serine 80, blocking MKK4 activity. Rsu1 depletion also reduced the RNA for lipid phosphatase PTEN thus implicating PTEN in modulating levels of activated AKT in these conditions. ChIP analysis of the PTEN promoter revealed that Rsu1 depletion prevented binding of ATF2 to a positive regulatory site in the PTEN promoter and the enhanced binding of cJun to a negatively regulatory PTEN promoter site. These results demonstrate a mechanism by which Rsu1 adhesion signaling alters the balance between MKK4-p38-ATF2 and cJun activation thus altering PTEN expression in MCF10A cells.
Collapse
|
17
|
Effects of PTEN Loss and Activated KRAS Overexpression on Mechanical Properties of Breast Epithelial Cells. Int J Mol Sci 2018; 19:ijms19061613. [PMID: 29848992 PMCID: PMC6032141 DOI: 10.3390/ijms19061613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/21/2018] [Accepted: 05/26/2018] [Indexed: 12/21/2022] Open
Abstract
It has previously been shown that the simultaneous activation of PI3K (phosphatidylinositol 3-kinase) and Ras/MAPK (mitogen-activated protein kinases) pathways facilitate tumor growth despite only inducing cancer cell dormancy individually. Determining the impacts on cellular mechanics each pathway incites alone and in unison is critical to developing non-toxic cancer therapies for triple-negative breast cancers. PTEN (phosphatase and tensin homolog) knockout and activated KRAS (Kristen rat sarcoma viral oncogene homolog) overexpression in healthy MCF-10A human breast epithelial cells activated the PI3K and Ras/MAPK pathways, respectively. Cell stiffness and fluidity were simultaneously measured using atomic force microscopy. Results suggest that PTEN knockout reduced cell stiffness and increased cell fluidity independent of PI3K activation. Effects of activated KRAS overexpression on cell stiffness depends on rigidity of cell culture substrate. Activated KRAS overexpression also counteracts the effects of PTEN knockout.
Collapse
|
18
|
Lusche DF, Buchele EC, Russell KB, Soll BA, Vitolo MI, Klemme MR, Wessels DJ, Soll DR. Overexpressing TPTE2 ( TPIP), a homolog of the human tumor suppressor gene PTEN, rescues the abnormal phenotype of the PTEN-/- mutant. Oncotarget 2018; 9:21100-21121. [PMID: 29765523 PMCID: PMC5940379 DOI: 10.18632/oncotarget.24941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/06/2018] [Indexed: 11/25/2022] Open
Abstract
One possible approach to normalize mutant cells that are metastatic and tumorigenic, is to upregulate a functionally similar homolog of the mutated gene. Here we have explored this hypothesis by generating an overexpressor of TPTE2 (TPIP), a homolog of PTEN, in PTEN-/- mutants, the latter generated by targeted mutagenesis of a human epithelial cell line. Overexpression of TPTE2 normalized phenotypic changes associated with the PTEN mutation. The PTEN-/- -associated changes rescued by overexpressing TPTE2 included 1) accelerated wound healing in the presence or absence of added growth factors (GFs), 2) increased division rates on a 2D substrate in the presence of GFs, 3) adhesion and viability on a 2D substrate in the absence of GFs, 4) viability in a 3D Matrigel model in the absence of GFs and substrate adhesion 5) loss of apoptosis-associated annexin V cell surface binding sites. The results justify further exploration into the possibility that upregulating TPTE2 by a drug may reverse metastatic and tumorigenic phenotypes mediated in part by a mutation in PTEN. This strategy may also be applicable to other tumorigenic mutations in which a homolog to the mutated gene is present and can substitute functionally.
Collapse
Affiliation(s)
- Daniel F. Lusche
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Emma C. Buchele
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Kanoe B. Russell
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Benjamin A. Soll
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Michele I. Vitolo
- Greenebaum Cancer Center, The University of Maryland, Baltimore, Maryland, Baltimore, 21201 MD, USA
| | - Michael R. Klemme
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Deborah J. Wessels
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - David R. Soll
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| |
Collapse
|
19
|
Song KJ, Jeon SK, Moon SB, Park JS, Kim JS, Kim J, Kim S, An HJ, Ko JH, Kim YS. Lectin from Sambucus sieboldiana abrogates the anoikis resistance of colon cancer cells conferred by N-acetylglucosaminyltransferase V during hematogenous metastasis. Oncotarget 2018; 8:42238-42251. [PMID: 28178684 PMCID: PMC5522063 DOI: 10.18632/oncotarget.15034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/08/2017] [Indexed: 11/25/2022] Open
Abstract
Anoikis is a form of anchorage-dependent apoptosis, and cancer cells adopt anokis-resistance molecular machinery to conduct metastasis. Here, we report that N-acetylglucosaminyltransferase V gene expression confers anoikis resistance during cancer progression. Overexpression of N-acetylglucosaminyltransferase V protected detached cancer cells from apoptotic death, and suppression or knockout of the gene sensitized cancer cells to the apoptotic death. The gene expression also stimulated anchorage-dependent as well as anchorage-independent colony formation of cancer cells following anoikis stress treatments. Importantly, treatment with the lectin from Sambucus sieboldiana significantly sensitized anoikis-induced cancer cell deaths in vitro as well as in vivo. We propose that the lectin alone or an engineered form could offer a new therapeutic treatment option for cancer patients with advanced tumors.
Collapse
Affiliation(s)
| | - Seong Kook Jeon
- Genome Editing Research Center, KRIBB, Daejeon, South Korea.,Department of Chemistry, Chungnam National University, Daejeon, South Korea
| | - Su Bin Moon
- Genome Editing Research Center, KRIBB, Daejeon, South Korea.,Department of Biomolecular Science, Korea University of Science and Technology, Daejeon, South Korea
| | - Jin Suk Park
- Genome Editing Research Center, KRIBB, Daejeon, South Korea.,Department of Biomolecular Science, Korea University of Science and Technology, Daejeon, South Korea
| | - Jang Seong Kim
- Biotherapeutics Translational Research Center, KRIBB, Daejeon, South Korea.,Department of Biomolecular Science, Korea University of Science and Technology, Daejeon, South Korea
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, South Korea
| | - Sumin Kim
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea.,Asia-Pacific Glycomics Reference Site, Daejeon, South Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea.,Asia-Pacific Glycomics Reference Site, Daejeon, South Korea
| | - Jeong-Heon Ko
- Genome Editing Research Center, KRIBB, Daejeon, South Korea.,Department of Biomolecular Science, Korea University of Science and Technology, Daejeon, South Korea
| | - Yong-Sam Kim
- Genome Editing Research Center, KRIBB, Daejeon, South Korea.,Department of Biomolecular Science, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
20
|
Tang YC, Ho SC, Tan E, Ng AWT, McPherson JR, Goh GYL, Teh BT, Bard F, Rozen SG. Functional genomics identifies specific vulnerabilities in PTEN-deficient breast cancer. Breast Cancer Res 2018; 20:22. [PMID: 29566768 PMCID: PMC5863852 DOI: 10.1186/s13058-018-0949-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/02/2018] [Indexed: 12/29/2022] Open
Abstract
Background Phosphatase and tensin homolog (PTEN) is one of the most frequently inactivated tumor suppressors in breast cancer. While PTEN itself is not considered a druggable target, PTEN synthetic-sick or synthetic-lethal (PTEN-SSL) genes are potential drug targets in PTEN-deficient breast cancers. Therefore, with the aim of identifying potential targets for precision breast cancer therapy, we sought to discover PTEN-SSL genes present in a broad spectrum of breast cancers. Methods To discover broad-spectrum PTEN-SSL genes in breast cancer, we used a multi-step approach that started with (1) a genome-wide short interfering RNA (siRNA) screen of ~ 21,000 genes in a pair of isogenic human mammary epithelial cell lines, followed by (2) a short hairpin RNA (shRNA) screen of ~ 1200 genes focused on hits from the first screen in a panel of 11 breast cancer cell lines; we then determined reproducibility of hits by (3) identification of overlaps between our results and reanalyzed data from 3 independent gene-essentiality screens, and finally, for selected candidate PTEN-SSL genes we (4) confirmed PTEN-SSL activity using either drug sensitivity experiments in a panel of 19 cell lines or mutual exclusivity analysis of publicly available pan-cancer somatic mutation data. Results The screens (steps 1 and 2) and the reproducibility analysis (step 3) identified six candidate broad-spectrum PTEN-SSL genes (PIK3CB, ADAMTS20, AP1M2, HMMR, STK11, and NUAK1). PIK3CB was previously identified as PTEN-SSL, while the other five genes represent novel PTEN-SSL candidates. Confirmation studies (step 4) provided additional evidence that NUAK1 and STK11 have PTEN-SSL patterns of activity. Consistent with PTEN-SSL status, inhibition of the NUAK1 protein kinase by the small molecule drug HTH-01-015 selectively impaired viability in multiple PTEN-deficient breast cancer cell lines, while mutations affecting STK11 and PTEN were largely mutually exclusive across large pan-cancer data sets. Conclusions Six genes showed PTEN-SSL patterns of activity in a large proportion of PTEN-deficient breast cancer cell lines and are potential specific vulnerabilities in PTEN-deficient breast cancer. Furthermore, the NUAK1 PTEN-SSL vulnerability identified by RNA interference techniques can be recapitulated and exploited using the small molecule kinase inhibitor HTH-01-015. Thus, NUAK1 inhibition may be an effective strategy for precision treatment of PTEN-deficient breast tumors. Electronic supplementary material The online version of this article (10.1186/s13058-018-0949-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yew Chung Tang
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Szu-Chi Ho
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Elisabeth Tan
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Alvin Wei Tian Ng
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore
| | - John R McPherson
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Germaine Yen Lin Goh
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Bin Tean Teh
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore.,National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Steven G Rozen
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore. .,Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
21
|
Ory EC, Chen D, Chakrabarti KR, Zhang P, Andorko JI, Jewell CM, Losert W, Martin SS. Extracting microtentacle dynamics of tumor cells in a non-adherent environment. Oncotarget 2017; 8:111567-111580. [PMID: 29340075 PMCID: PMC5762343 DOI: 10.18632/oncotarget.22874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 11/15/2017] [Indexed: 12/12/2022] Open
Abstract
During metastasis, tumor cells dynamically change their cytoskeleton to traverse through a variety of non-adherent microenvironments, including the vasculature or lymphatics. Due to the challenges of imaging drift in non-adhered tumor cells, the dynamic cytoskeletal phenotypes are poorly understood. We present a new approach to analyze the dynamic cytoskeletal phenotypes of non-adhered cells that support microtentacles (McTNs), which are cell surface projections implicated in metastatic reattachment. Combining a recently-developed cell tethering method with a novel image analysis framework allowed McTN attribute extraction. Full cell outlines, number of McTNs, and distance of McTN tips from the cell body boundary were calculated by integrating a rotating anisotropic filtering method for identifying thin features with retinal segmentation and active contour algorithms. Tethered cells behave like free-floating cells; however tethering reduces cell drift and improves the accuracy of McTN measurements. Tethering cells does not significantly alter McTN number, but rather allows better visualization of existing McTNs. In drug treatment experiments, stabilizing tubulin with paclitaxel significantly increases McTN length, while destabilizing tubulin with colchicine significantly decreases McTN length. Finally, we quantify McTN dynamics by computing the time delay autocorrelations of 2 composite phenotype metrics (cumulative McTN tip distance, cell perimeter:cell body ratio). Our automated analysis demonstrates that treatment with paclitaxel increases total McTN amount and colchicine reduces total McTN amount, while paclitaxel also reduces McTN dynamics. This analysis method enables rapid quantitative measurement of tumor cell drug responses within non-adherent microenvironments, using the small numbers of tumor cells that would be available from patient samples.
Collapse
Affiliation(s)
- Eleanor C. Ory
- Department of Physics, IPST, and IREAP, University of Maryland, College Park, MD 20742, USA
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Desu Chen
- Department of Physics, IPST, and IREAP, University of Maryland, College Park, MD 20742, USA
| | - Kristi R. Chakrabarti
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peipei Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - James I. Andorko
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Christopher M. Jewell
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- United States Department of Veterans Affairs, Baltimore, MD 21201, USA
| | - Wolfgang Losert
- Department of Physics, IPST, and IREAP, University of Maryland, College Park, MD 20742, USA
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Stuart S. Martin
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
22
|
BRCA2 suppresses replication stress-induced mitotic and G1 abnormalities through homologous recombination. Nat Commun 2017; 8:525. [PMID: 28904335 PMCID: PMC5597640 DOI: 10.1038/s41467-017-00634-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
Mutations in the tumor suppressor BRCA2 predominantly predispose to breast cancer. Paradoxically, while loss of BRCA2 promotes tumor formation, it also causes cell lethality, although how lethality is triggered is unclear. Here, we generate BRCA2 conditional non-transformed human mammary epithelial cell lines using CRISPR-Cas9. Cells are inviable upon BRCA2 loss, which leads to replication stress associated with under replication, causing mitotic abnormalities, 53BP1 nuclear body formation in the ensuing G1 phase, and G1 arrest. Unexpected from other systems, the role of BRCA2 in homologous recombination, but not in stalled replication fork protection, is primarily associated with supporting human mammary epithelial cell viability, and, moreover, preventing replication stress, a hallmark of pre-cancerous lesions. Thus, we uncover a DNA under replication-53BP1 nuclear body formation-G1 arrest axis as an unanticipated outcome of homologous recombination deficiency, which triggers cell lethality and, we propose, serves as a barrier that must be overcome for tumor formation. BRCA2 mutations promote tumour formation while also paradoxically causing cell lethality. Here the authors generate conditional BRCA2 loss in a non-transformed human mammary cell line and see increased replication stress due to under-replication of DNA.
Collapse
|
23
|
Breast cancer suppression by aplysin is associated with inhibition of PI3K/AKT/FOXO3a pathway. Oncotarget 2017; 8:63923-63934. [PMID: 28969041 PMCID: PMC5609973 DOI: 10.18632/oncotarget.19209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/04/2017] [Indexed: 11/28/2022] Open
Abstract
Aplysin, a bromosesquiterpene isolated from Aplysia kurodai, was explored as a potential anti-breast cancer agent by us. However, the mechanisms underlying the anticarcinogenic effect of aplysin remain unclear. Here, aplysin was found to remarkably suppress tumor growth in vivo, inhibit cell proliferation and promote apoptosis in vitro. Additionally, we demonstrated that aplysin attained these effects in part by down-regulating PI3K/AKT/FOXO3a signaling pathway. Aplysin treatment inhibited the phosphorylation levels of AKT (Ser-473) and AKT-dependent phosphorylation of FOXO3a (Ser-253) in breast cancer cell lines and breast cancer tissues. The expression levels of FOXO3a-targeted genes were also destabilized by aplysin, cyclin D1 and Bcl-XL were declined; however, p21CIP1, p27KIP1, Bim, TRAIL and FasL were increased both in vivo and in vitro. Furthermore, activation of the PI3K/AKT signaling pathway by an activator and silencing of FOXO3a by shRNA protected the cells from aplysin mediated growth suppression and apoptosis. In summary, our findings revealed that aplysin could suppress breast cancer progression by inhibiting PI3K/AKT/FOXO3a pathway, thereby suggesting a potential role of aplysin as a chemoprevention drug for patients with breast cancer.
Collapse
|
24
|
Thompson KN, Whipple RA, Yoon JR, Lipsky M, Charpentier MS, Boggs AE, Chakrabarti KR, Bhandary L, Hessler LK, Martin SS, Vitolo MI. The combinatorial activation of the PI3K and Ras/MAPK pathways is sufficient for aggressive tumor formation, while individual pathway activation supports cell persistence. Oncotarget 2016; 6:35231-46. [PMID: 26497685 PMCID: PMC4742101 DOI: 10.18632/oncotarget.6159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/30/2015] [Indexed: 12/31/2022] Open
Abstract
A high proportion of human tumors maintain activation of both the PI3K and Ras/MAPK pathways. In basal-like breast cancer (BBC), PTEN expression is decreased/lost in over 50% of cases, leading to aberrant activation of the PI3K pathway. Additionally, BBC cell lines and tumor models have been shown to exhibit an oncogenic Ras-like gene transcriptional signature, indicating activation of the Ras/MAPK pathway. To directly test how the PI3K and Ras/MAPK pathways contribute to tumorigenesis, we deleted PTEN and activated KRas within non-tumorigenic MCF-10A breast cells. Neither individual mutation was sufficient to promote tumorigenesis, but the combination promoted robust tumor growth in mice. However, in vivo bioluminescence reveals that each mutation has the ability to promote a persistent phenotype. Inherent in the concept of tumor cell dormancy, a stage in which residual disease is present but remains asymptomatic, viable cells with each individual mutation can persist in vivo during a period of latency. The persistent cells were excised from the mice and showed increased levels of the cell cycle arrest proteins p21 and p27 compared to the aggressively growing PTEN−/−KRAS(G12V) cells. Additionally, when these persistent cells were placed into growth-promoting conditions, they were able to re-enter the cell cycle and proliferate. These results highlight the potential for either PTEN loss or KRAS activation to promote cell survival in vivo, and the unique ability of the combined mutations to yield rapid tumor growth. This could have important implications in determining recurrence risk and disease progression in tumor subtypes where these mutations are common.
Collapse
Affiliation(s)
- Keyata N Thompson
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca A Whipple
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jennifer R Yoon
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael Lipsky
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Monica S Charpentier
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Graduate Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amanda E Boggs
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Graduate Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Univesity of Pennsylvainia, Philadelphia, PA, USA
| | - Kristi R Chakrabarti
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Graduate Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lekhana Bhandary
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Graduate Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lindsay K Hessler
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stuart S Martin
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Graduate Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michele I Vitolo
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Graduate Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Ito S, Murphy CG, Doubrovina E, Jasin M, Moynahan ME. PARP Inhibitors in Clinical Use Induce Genomic Instability in Normal Human Cells. PLoS One 2016; 11:e0159341. [PMID: 27428646 PMCID: PMC4948780 DOI: 10.1371/journal.pone.0159341] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/30/2016] [Indexed: 11/18/2022] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs) are the first proteins involved in cellular DNA repair pathways to be targeted by specific inhibitors for clinical benefit. Tumors harboring genetic defects in homologous recombination (HR), a DNA double-strand break (DSB) repair pathway, are hypersensitive to PARP inhibitors (PARPi). Early phase clinical trials with PARPi have been promising in patients with advanced BRCA1 or BRCA2-associated breast, ovary and prostate cancer and have led to limited approval for treatment of BRCA-deficient ovary cancer. Unlike HR-defective cells, HR-proficient cells manifest very low cytotoxicity when exposed to PARPi, although they mount a DNA damage response. However, the genotoxic effects on normal human cells when agents including PARPi disturb proficient cellular repair processes have not been substantially investigated. We quantified cytogenetic alterations of human cells, including primary lymphoid cells and non-tumorigenic and tumorigenic epithelial cell lines, exposed to PARPi at clinically relevant doses by both sister chromatid exchange (SCE) assays and chromosome spreading. As expected, both olaparib and veliparib effectively inhibited poly-ADP-ribosylation (PAR), and caused marked hypersensitivity in HR-deficient cells. Significant dose-dependent increases in SCEs were observed in normal and non-tumorigenic cells with minimal residual PAR activity. Clinically relevant doses of the FDA-approved olaparib led to a marked increase of SCEs (5-10-fold) and chromatid aberrations (2-6-fold). Furthermore, olaparib potentiated SCE induction by cisplatin in normal human cells. Our data have important implications for therapies with regard to sustained genotoxicity to normal cells. Genomic instability arising from PARPi warrants consideration, especially if these agents will be used in people with early stage cancers, in prevention strategies or for non-oncologic indications.
Collapse
Affiliation(s)
- Shuhei Ito
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Conleth G. Murphy
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Ekaterina Doubrovina
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Mary Ellen Moynahan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Bhat-Nakshatri P, Goswami CP, Badve S, Magnani L, Lupien M, Nakshatri H. Molecular Insights of Pathways Resulting from Two Common PIK3CA Mutations in Breast Cancer. Cancer Res 2016; 76:3989-4001. [DOI: 10.1158/0008-5472.can-15-3174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/31/2016] [Indexed: 11/16/2022]
|
27
|
Turturro SB, Najor MS, Ruby CE, Cobleigh MA, Abukhdeir AM. Mutations in PIK3CA sensitize breast cancer cells to physiologic levels of aspirin. Breast Cancer Res Treat 2016; 156:33-43. [PMID: 26915040 PMCID: PMC4788696 DOI: 10.1007/s10549-016-3729-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/17/2016] [Indexed: 02/06/2023]
Abstract
A review of the literature finds that women diagnosed with breast cancer, who were on an aspirin regimen, experienced a decreased risk of distant metastases and death. Several recent studies have reported an improvement in overall survival in colorectal cancer patients who harbored mutations in the oncogene PIK3CA and received a daily aspirin regimen. Breast cancer patients on a daily aspirin regimen experienced decreased risk of distant metastases and death. PIK3CA is the most frequently mutated oncogene in breast cancer, occurring in up to 45 % of all breast cancers. In order to determine if mutations in PIK3CA sensitized breast cancers to aspirin treatment, we employed the use of isogenic cellular clones of the non-tumorigenic, breast epithelial cell line MCF-10A that harbored mutations in either PIK3CA or KRAS or both. We report that mutations in both PIK3CA and KRAS are required for the greatest aspirin sensitivity in breast cancer, and that the GSK3β protein was hyperphosphorylated in aspirin-treated double knockin cells, but not in other clones/treatments. A more modest effect was observed with single mutant PIK3CA, but not KRAS alone. These observations were further confirmed in a panel of breast cancer cell lines. Our findings provide the first evidence that mutations in PIK3CA sensitize breast cancer cells to aspirin.
Collapse
Affiliation(s)
- Sanja B Turturro
- Department of Internal Medicine, Division of Hematology, Oncology, and Cell Therapy, Rush University Medical Center, 1725 W. Harrison St., Chicago, IL, 60612, USA
| | - Matthew S Najor
- Department of Internal Medicine, Division of Hematology, Oncology, and Cell Therapy, Rush University Medical Center, 1725 W. Harrison St., Chicago, IL, 60612, USA
| | - Carl E Ruby
- Department of Surgery, Rush University Medical Center, 1725 W. Harrison St., Chicago, IL, 60612, USA
| | - Melody A Cobleigh
- Department of Internal Medicine, Division of Hematology, Oncology, and Cell Therapy, Rush University Medical Center, 1725 W. Harrison St., Chicago, IL, 60612, USA
| | - Abde M Abukhdeir
- Department of Internal Medicine, Division of Hematology, Oncology, and Cell Therapy, Rush University Medical Center, 1725 W. Harrison St., Chicago, IL, 60612, USA. .,Department of Pharmacology, Rush University Medical Center, 1735 W. Harrison St., Chicago, IL, 60612, USA.
| |
Collapse
|
28
|
Shore AN, Chang CH, Kwon OJ, Weston MC, Zhang M, Xin L, Rosen JM. PTEN is required to maintain luminal epithelial homeostasis and integrity in the adult mammary gland. Dev Biol 2015; 409:202-217. [PMID: 26526198 DOI: 10.1016/j.ydbio.2015.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/28/2015] [Accepted: 10/20/2015] [Indexed: 12/17/2022]
Abstract
In the mammary gland, PTEN loss in luminal and basal epithelial cells results in differentiation defects and enhanced proliferation, leading to the formation of tumors with basal epithelial characteristics. In breast cancer, PTEN loss is associated with a hormone receptor-negative, basal-like subtype that is thought to originate in a luminal epithelial cell. Here, we show that luminal-specific PTEN loss results in distinct effects on epithelial homeostasis and mammary tumor formation. Luminal PTEN loss increased proliferation of hormone receptor-negative cells, thereby decreasing the percentage of hormone receptor-positive cells. Moreover, luminal PTEN loss led to misoriented cell divisions and mislocalization of cells to the intraluminal space of mammary ducts. Despite their elevated levels of activated AKT, Pten-null intraluminal cells showed increased levels of apoptosis. One year after Pten deletion, the ducts had cleared and no palpable mammary tumors were detected. These data establish PTEN as a critical regulator of luminal epithelial homeostasis and integrity in the adult mammary gland, and further show that luminal PTEN loss alone is not sufficient to promote the progression of mammary tumorigenesis.
Collapse
Affiliation(s)
- Amy N Shore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Chi-Hsuan Chang
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Oh-Joon Kwon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Matthew C Weston
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mei Zhang
- Department of Developmental Biology, University of Pittsburg, Pittsburg, PA 15213, USA
| | - Li Xin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
29
|
Metformin and erlotinib synergize to inhibit basal breast cancer. Oncotarget 2015; 5:10503-17. [PMID: 25361177 PMCID: PMC4279389 DOI: 10.18632/oncotarget.2391] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/21/2014] [Indexed: 12/16/2022] Open
Abstract
Basal-like breast cancers (BBCs) are enriched for increased EGFR expression and decreased expression of PTEN. We found that treatment with metformin and erlotinib synergistically induced apoptosis in a subset of BBC cell lines. The drug combination led to enhanced reduction of EGFR, AKT, S6 and 4EBP1 phosphorylation, as well as prevented colony formation and inhibited mammosphere outgrowth. Our data with other compounds suggested that biguanides combined with EGFR inhibitors have the potential to outperform other targeted drug combinations and could be employed in other breast cancer subtypes, as well as other tumor types, with activated EGFR and PI3K signaling. Analysis of BBC cell line alterations led to the hypothesis that loss of PTEN sensitized cells to the drug combination which was confirmed using isogenic cell line models with and without PTEN expression. Combined metformin and erlotinib led to partial regression of PTEN-null and EGFR-amplified xenografted MDA-MB-468 BBC tumors with evidence of significant apoptosis, reduction of EGFR and AKT signaling, and lack of altered plasma insulin levels. Combined treatment also inhibited xenografted PTEN null HCC-70 BBC cells. Measurement of trough plasma drug levels in xenografted mice and a separately performed pharmacokinetics modeling study support possible clinical translation.
Collapse
|
30
|
The virus-induced protein APOBEC3G inhibits anoikis by activation of Akt kinase in pancreatic cancer cells. Sci Rep 2015; 5:12230. [PMID: 26178819 PMCID: PMC4503957 DOI: 10.1038/srep12230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 06/22/2015] [Indexed: 01/06/2023] Open
Abstract
Pancreatic cancer is one of the more common cancers with a poor prognosis. Some varieties of cancer are related to virus infection. As a virus-induced protein, APOBEC3G (A3G) presents extensive anti-virus ability, but the role of A3G in pancreatic cancer was previously unknown. The expression of A3G in pancreatic cancer was examined using TaqMan real-time qPCR, immunohistochemical and immunofluorescent staining. Subsequently, the role of A3G in pancreatic cancer was evaluated in vivo using the tumor xenograft model. Anoikis was detected by colony formation assay and flow cytometry in vitro. The Akt kinase activity and target protein PTEN were examined by co-immunoprecipitation and immunoblot. The virus-induced protein A3G was significantly up-regulated in pancreatic cancer, and the up-regulation of A3G promoted xenograft tumor formation. A3G inactivated PTEN by binding to the C2 tensin-type and PDZ domains, thereby inducing anoikis resistance through Akt activation. Our results demonstrate that the up-regulation of A3G in pancreatic cancer cells induces anoikis resistance, and they provide novel insight into the mechanism by which A3G affects the malignant behavior of pancreatic cancer cells.
Collapse
|
31
|
Scherer A, Kuhl S, Wessels D, Lusche DF, Hanson B, Ambrose J, Voss E, Fletcher E, Goldman C, Soll DR. A computer-assisted 3D model for analyzing the aggregation of tumorigenic cells reveals specialized behaviors and unique cell types that facilitate aggregate coalescence. PLoS One 2015; 10:e0118628. [PMID: 25790299 PMCID: PMC4366230 DOI: 10.1371/journal.pone.0118628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/28/2014] [Indexed: 01/11/2023] Open
Abstract
We have developed a 4D computer-assisted reconstruction and motion analysis system, J3D-DIAS 4.1, and applied it to the reconstruction and motion analysis of tumorigenic cells in a 3D matrix. The system is unique in that it is fast, high-resolution, acquires optical sections using DIC microscopy (hence there is no associated photoxicity), and is capable of long-term 4D reconstruction. Specifically, a z-series at 5 μm increments can be acquired in less than a minute on tissue samples embedded in a 1.5 mm thick 3D Matrigel matrix. Reconstruction can be repeated at intervals as short as every minute and continued for 30 days or longer. Images are converted to mathematical representations from which quantitative parameters can be derived. Application of this system to cancer cells from established lines and fresh tumor tissue has revealed unique behaviors and cell types not present in non-tumorigenic lines. We report here that cells from tumorigenic lines and tumors undergo rapid coalescence in 3D, mediated by specific cell types that we have named “facilitators” and “probes.” A third cell type, the “dervish”, is capable of rapid movement through the gel and does not adhere to it. These cell types have never before been described. Our data suggest that tumorigenesis in vitro is a developmental process involving coalescence facilitated by specialized cells that culminates in large hollow spheres with complex architecture. The unique effects of select monoclonal antibodies on these processes demonstrate the usefulness of the model for analyzing the mechanisms of anti-cancer drugs.
Collapse
Affiliation(s)
- Amanda Scherer
- Monoclonal Antibody Research Institute, Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Spencer Kuhl
- Monoclonal Antibody Research Institute, Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Deborah Wessels
- Monoclonal Antibody Research Institute, Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Daniel F. Lusche
- Monoclonal Antibody Research Institute, Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Brett Hanson
- Monoclonal Antibody Research Institute, Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Joseph Ambrose
- Monoclonal Antibody Research Institute, Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Edward Voss
- Monoclonal Antibody Research Institute, Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Emily Fletcher
- Mercy Hospital System of Des Moines, Des Moines, Iowa, United States of America
| | - Charles Goldman
- Mercy Hospital System of Des Moines, Des Moines, Iowa, United States of America
| | - David R. Soll
- Monoclonal Antibody Research Institute, Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, 52242, United States of America
- * E-mail:
| |
Collapse
|
32
|
Lusche DF, Wessels D, Richardson NA, Russell KB, Hanson BM, Soll BA, Lin BH, Soll DR. PTEN redundancy: overexpressing lpten, a homolog of Dictyostelium discoideum ptenA, the ortholog of human PTEN, rescues all behavioral defects of the mutant ptenA-. PLoS One 2014; 9:e108495. [PMID: 25247494 PMCID: PMC4172592 DOI: 10.1371/journal.pone.0108495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/22/2014] [Indexed: 11/18/2022] Open
Abstract
Mutations in the tumor suppressor gene PTEN are associated with a significant proportion of human cancers. Because the human genome also contains several homologs of PTEN, we considered the hypothesis that if a homolog, functionally redundant with PTEN, can be overexpressed, it may rescue the defects of a PTEN mutant. We have performed an initial test of this hypothesis in the model system Dictyostelium discoideum, which contains an ortholog of human PTEN, ptenA. Deletion of ptenA results in defects in motility, chemotaxis, aggregation and multicellular morphogenesis. D. discoideum also contains lpten, a newly discovered homolog of ptenA. Overexpressing lpten completely rescues all developmental and behavioral defects of the D. discoideum mutant ptenA−. This hypothesis must now be tested in human cells.
Collapse
Affiliation(s)
- Daniel F. Lusche
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Deborah Wessels
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Nicole A. Richardson
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Kanoe B. Russell
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Brett M. Hanson
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Benjamin A. Soll
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Benjamin H. Lin
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - David R. Soll
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
33
|
Damdindorj L, Karnan S, Ota A, Hossain E, Konishi Y, Hosokawa Y, Konishi H. A comparative analysis of constitutive promoters located in adeno-associated viral vectors. PLoS One 2014; 9:e106472. [PMID: 25170953 PMCID: PMC4149579 DOI: 10.1371/journal.pone.0106472] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/07/2014] [Indexed: 11/18/2022] Open
Abstract
The properties of constitutive promoters within adeno-associated viral (AAV) vectors have not yet been fully characterized. In this study, AAV vectors, in which enhanced GFP expression was directed by one of the six constitutive promoters (human β-actin, human elongation factor-1α, chicken β-actin combined with cytomegalovirus early enhancer, cytomegalovirus (CMV), simian virus 40, and herpes simplex virus thymidine kinase), were constructed and introduced into the HCT116, DLD-1, HT-1080, and MCF-10A cell lines. Quantification of GFP signals in infected cells demonstrated that the CMV promoter produced the highest GFP expression in the six promoters and maintained relatively high GFP expression for up to eight weeks after infection of HCT116, DLD-1, and HT-1080. Exogenous human CDKN2A gene expression was also introduced into DLD-1 and MCF-10A in a similar pattern by using AAV vectors bearing the human β-actin and the CMV promoters. The six constitutive promoters were subsequently placed upstream of the neomycin resistance gene within AAV vectors, and HCT116, DLD-1, and HT-1080 were infected with the resulting vectors. Of the six promoters, the CMV promoter produced the largest number of G418-resistant colonies in all three cell lines. Because AAV vectors have been frequently used as a platform to construct targeting vectors that permit gene editing in human cell lines, we lastly infected the three cell lines with AAV-based targeting vectors against the human PIGA gene in which one of the six promoters regulate the neomycin resistance gene. This assay revealed that the CMV promoter led to the lowest PIGA gene targeting efficiency in the investigated promoters. These results provide a clue to the identification of constitutive promoters suitable to express exogenous genes with AAV vectors, as well as those helpful to conduct efficient gene targeting using AAV-based targeting vectors in human cell lines.
Collapse
Affiliation(s)
- Lkhagvasuren Damdindorj
- Department of Biochemistry, Aichi Medical University School of Medicine Nagakute, Aichi, Japan
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine Nagakute, Aichi, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine Nagakute, Aichi, Japan
| | - Ekhtear Hossain
- Department of Biochemistry, Aichi Medical University School of Medicine Nagakute, Aichi, Japan
| | - Yuko Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine Nagakute, Aichi, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine Nagakute, Aichi, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine Nagakute, Aichi, Japan
- * E-mail:
| |
Collapse
|
34
|
Beltran PJ, Calzone FJ, Mitchell P, Chung YA, Cajulis E, Moody G, Belmontes B, Li CM, Vonderfecht S, Velculescu VE, Yang G, Qi J, Slamon DJ, Konecny GE. Ganitumab (AMG 479) inhibits IGF-II-dependent ovarian cancer growth and potentiates platinum-based chemotherapy. Clin Cancer Res 2014; 20:2947-58. [PMID: 24727326 DOI: 10.1158/1078-0432.ccr-13-3448] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Insulin-like growth factor 1 receptor (IGF-IR) has been implicated in the pathogenesis of ovarian cancer. Ganitumab is an investigational, fully human monoclonal antibody against IGF-IR. Here, we explore the therapeutic potential of ganitumab for the treatment of ovarian cancer. EXPERIMENTAL DESIGN The effects of ganitumab were tested in vitro against a panel of 23 established ovarian cancer cell lines. The ability of ganitumab to inhibit IGF-I-, IGF-II-, and insulin-mediated signaling was examined in vitro and in tumor xenografts using ovarian cancer models displaying IGF-IR/PI3K/AKT pathway activation by two distinct mechanisms, PTEN loss and IGF-II overexpression. Drug interactions between ganitumab and cisplatin, carboplatin, or paclitaxel were studied in vitro and in vivo. RESULTS In vitro, growth inhibition varied significantly among individual ovarian cancer cell lines. IGF-II mRNA and phospho-IGF-IR protein expression were quantitatively correlated with response to ganitumab, and PTEN mutations conferred resistance to ganitumab. Ganitumab potently inhibited baseline and IGF-I-, IGF-II-, and insulin-induced IGF-IR and IGF-IR/insulin hybrid receptor signaling in vitro and in vivo. Synergistic and additive drug interactions were seen for ganitumab and carboplatin or paclitaxel in vitro. Furthermore, ganitumab significantly increased the efficacy of cisplatin in ovarian cancer xenograft models in vivo. CONCLUSIONS These observations provide a biologic rationale to test ganitumab as a single agent or in combination with carboplatin/cisplatin and paclitaxel in patients with ovarian cancer. Moreover, assessment of tumor expression of IGF-II, phospho-IGF-IR, or PTEN status may help select patients with ovarian cancer who are most likely to benefit from ganitumab. Clin Cancer Res; 20(11); 2947-58. ©2014 AACR.
Collapse
Affiliation(s)
- Pedro J Beltran
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Frank J Calzone
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Petia Mitchell
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Young-Ah Chung
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Elaina Cajulis
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Gordon Moody
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Brian Belmontes
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Chi-Ming Li
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Steven Vonderfecht
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Victor E Velculescu
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Guorong Yang
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Jingwei Qi
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Dennis J Slamon
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Gottfried E Konecny
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
35
|
Hartman KG, Vitolo MI, Pierce AD, Fox JM, Shapiro P, Martin SS, Wilder PT, Weber DJ. Complex formation between S100B protein and the p90 ribosomal S6 kinase (RSK) in malignant melanoma is calcium-dependent and inhibits extracellular signal-regulated kinase (ERK)-mediated phosphorylation of RSK. J Biol Chem 2014; 289:12886-95. [PMID: 24627490 DOI: 10.1074/jbc.m114.561613] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S100B is a prognostic marker for malignant melanoma. Increasing S100B levels are predictive of advancing disease stage, increased recurrence, and low overall survival in malignant melanoma patients. Using S100B overexpression and shRNA(S100B) knockdown studies in melanoma cell lines, elevated S100B was found to enhance cell viability and modulate MAPK signaling by binding directly to the p90 ribosomal S6 kinase (RSK). S100B-RSK complex formation was shown to be Ca(2+)-dependent and to block ERK-dependent phosphorylation of RSK, at Thr-573, in its C-terminal kinase domain. Additionally, the overexpression of S100B sequesters RSK into the cytosol and prevents it from acting on nuclear targets. Thus, elevated S100B contributes to abnormal ERK/RSK signaling and increased cell survival in malignant melanoma.
Collapse
Affiliation(s)
- Kira G Hartman
- From the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | | | | | | | | | | | | | | |
Collapse
|
36
|
MRIOUAH JIHANE, BOURA CÉDRIC, GARGOURI MYRIEM, PLÉNAT FRANÇOIS, FAIVRE BÉATRICE. PTEN expression is involved in the invasive properties of HNSCC: A key protein to consider in locoregional recurrence. Int J Oncol 2013; 44:709-16. [DOI: 10.3892/ijo.2013.2219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/11/2013] [Indexed: 11/06/2022] Open
|
37
|
Juvin V, Malek M, Anderson KE, Dion C, Chessa T, Lecureuil C, Ferguson GJ, Cosulich S, Hawkins PT, Stephens LR. Signaling via class IA Phosphoinositide 3-kinases (PI3K) in human, breast-derived cell lines. PLoS One 2013; 8:e75045. [PMID: 24124465 PMCID: PMC3790768 DOI: 10.1371/journal.pone.0075045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/08/2013] [Indexed: 02/01/2023] Open
Abstract
We have addressed the differential roles of class I Phosphoinositide 3-kinases (PI3K) in human breast-derived MCF10a (and iso-genetic derivatives) and MDA-MB 231 and 468 cells. Class I PI3Ks are heterodimers of p110 catalytic (α, β, δ and γ) and p50-101 regulatory subunits and make the signaling lipid, phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) that can activate effectors, eg protein kinase B (PKB), and responses, eg migration. The PtdIns(3,4,5)P3-3-phosphatase and tumour-suppressor, PTEN inhibits this pathway. p110α, but not other p110s, has a number of onco-mutant variants that are commonly found in cancers. mRNA-seq data shows that MCF10a cells express p110β>>α>δ with undetectable p110γ. Despite this, EGF-stimulated phosphorylation of PKB depended upon p110α-, but not β- or δ- activity. EGF-stimulated chemokinesis, but not chemotaxis, was also dependent upon p110α, but not β- or δ- activity. In the presence of single, endogenous alleles of onco-mutant p110α (H1047R or E545K), basal, but not EGF-stimulated, phosphorylation of PKB was increased and the effect of EGF was fully reversed by p110α inhibitors. Cells expressing either onco-mutant displayed higher basal motility and EGF-stimulated chemokinesis.This latter effect was, however, only partially-sensitive to PI3K inhibitors. In PTEN(-/-) cells, basal and EGF-stimulated phosphorylation of PKB was substantially increased, but the p110-dependency was variable between cell types. In MDA-MB 468s phosphorylation of PKB was significantly dependent on p110β, but not α- or δ- activity; in PTEN(-/-) MCF10a it remained, like the parental cells, p110α-dependent. Surprisingly, loss of PTEN suppressed basal motility and EGF-stimulated chemokinesis. These results indicate that; p110α is required for EGF signaling to PKB and chemokinesis, but not chemotaxis; onco-mutant alleles of p110α augment signaling in the absence of EGF and may increase motility, in part, via acutely modulating PI3K-activity-independent mechanisms. Finally, we demonstrate that there is not a universal mechanism that up-regulates p110β function in the absence of PTEN.
Collapse
Affiliation(s)
| | | | | | - Carine Dion
- The Babraham Institute, Babraham, Cambridge, United Kingdom
| | - Tamara Chessa
- The Babraham Institute, Babraham, Cambridge, United Kingdom
| | | | | | - Sabina Cosulich
- The Babraham Institute, Babraham, Cambridge, United Kingdom
- Astrazeneca, Macclesfield United Kingdom
| | | | - Len R. Stephens
- The Babraham Institute, Babraham, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Liu YP, Liao WC, Ger LP, Chen JC, Hsu TI, Lee YC, Chang HT, Chen YC, Jan YH, Lee KH, Zeng YH, Hsiao M, Lu PJ. Carboxyl-terminal modulator protein positively regulates Akt phosphorylation and acts as an oncogenic driver in breast cancer. Cancer Res 2013; 73:6194-205. [PMID: 23943800 DOI: 10.1158/0008-5472.can-13-0518] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Akt activation has been implicated broadly in tumorigenesis, but the basis for its dysregulation in cancer cells is incompletely understood. In this study, we sought to clarify a regulatory role for the Akt-binding carboxy-terminal modulator protein (CTMP), which has been controversial. In evaluating CTMP expression in paired normal-tumor specimens of 198 patients with breast cancer, we found that CTMP was upregulated in breast tumors, where it was associated with poor patient survival. Notably, CTMP expression also correlated positively with Akt phosphorylation in breast cancer clinical specimens and cell lines. Furthermore, ectopic expression of CTMP promoted cell proliferation and enhanced the tumorigenic properties of estrogen-dependent breast cancer cells. This effect was correlated with increased sensitivity to insulin-induced Akt phosphorylation, which is mediated primarily by the phosphoinositide 3-kinase-Akt pathway. In contrast, short hairpin RNA-mediated silencing of endogenous CTMP decreased the proliferation of estrogen-dependent or estrogen-independent breast cancer cells. Mechanistic investigations defined the N-terminal domain of CTMP at amino acids 1 to 64 as responsible for Akt binding. Taken together, our results firmly corroborate the concept that CTMP promotes Akt phosphorylation and functions as an oncogenic molecule in breast cancer.
Collapse
Affiliation(s)
- Yu-Peng Liu
- Authors' Affiliations: Institute of Clinical Medicine, National Cheng Kung University, Tainan; Department of Medical Education and Research, Kaohsiung Veterans General Hospital; Departments of Surgery and Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung; Genomics Research Center, Academia Sinica; and Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3481-3498. [PMID: 23830918 DOI: 10.1016/j.bbamcr.2013.06.026] [Citation(s) in RCA: 794] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/21/2013] [Accepted: 06/22/2013] [Indexed: 02/07/2023]
Abstract
Anoikis is a programmed cell death induced upon cell detachment from extracellular matrix, behaving as a critical mechanism in preventing adherent-independent cell growth and attachment to an inappropriate matrix, thus avoiding colonizing of distant organs. As anchorage-independent growth and epithelial-mesenchymal transition, two features associated with anoikis resistance, are vital steps during cancer progression and metastatic colonization, the ability of cancer cells to resist anoikis has now attracted main attention from the scientific community. Cancer cells develop anoikis resistance due to several mechanisms, including change in integrins' repertoire allowing them to grow in different niches, activation of a plethora of inside-out pro-survival signals as over-activation of receptors due to sustained autocrine loops, oncogene activation, growth factor receptor overexpression, or mutation/upregulation of key enzymes involved in integrin or growth factor receptor signaling. In addition, tumor microenvironment has also been acknowledged to contribute to anoikis resistance of bystander cancer cells, by modulating matrix stiffness, enhancing oxidative stress, producing pro-survival soluble factors, triggering epithelial-mesenchymal transition and self-renewal ability, as well as leading to metabolic deregulations of cancer cells. All these events help cancer cells to inhibit the apoptosis machinery and sustain pro-survival signals after detachment, counteracting anoikis and constituting promising targets for anti-metastatic pharmacological therapy. This article is part of a Special Section entitled: Cell Death Pathways.
Collapse
Affiliation(s)
- Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; Tuscany Tumor Institute and "Center for Research, Transfer and High Education, DENOTHE", 50134 Florence, Italy.
| |
Collapse
|
40
|
Ghosh S, Varela L, Sood A, Park BH, Lotan TL. mTOR signaling feedback modulates mammary epithelial differentiation and restrains invasion downstream of PTEN loss. Cancer Res 2013; 73:5218-31. [PMID: 23774212 DOI: 10.1158/0008-5472.can-13-0429] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Oncogenic signaling pathways are tightly regulated by negative feedback circuits and relief of these circuits represents a common mechanism of tumor drug resistance. Although the significance of these feedback pathways for signal transduction is evident, their relevance for cellular differentiation and morphogenesis in a genetically defined context is unclear. In this study, we used isogenic benign mammary organotypic cultures to interrogate the role of mTOR-mediated negative feedback in the specific setting of PTEN inactivation. We found that mTOR signaling promoted basal-like differentiation and repressed nuclear hormone receptor expression after short-term PTEN loss in murine cell cultures analyzed ex vivo. Unexpectedly, we found that PTEN inactivation inhibited growth factor-induced epithelial invasion and that downstream mTOR-mediated signaling feedback was both necessary and sufficient for this effect. Mechanistically, using isogenic MCF10A cells with and without somatic PTEN deletion, we showed that mTOR inhibition promoted EGF-mediated epithelial invasion by derepressing upstream EGF receptor, SRC tyrosine kinase, and phosphoinositide 3-kinase signaling. In addition to offering new signal transduction insights, these results bring to light a number of important and potentially clinically relevant cellular consequences of mTOR inhibition in the specific context of PTEN loss, including modulation of hormone and growth factor responsiveness and promotion of epithelial invasion. Our findings prompt future investigations of the possibility that mTOR inhibitor therapy may not only be ineffective but even deleterious in tumors with PTEN loss.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
41
|
Lin J, Sampath D, Nannini MA, Lee BB, Degtyarev M, Oeh J, Savage H, Guan Z, Hong R, Kassees R, Lee LB, Risom T, Gross S, Liederer BM, Koeppen H, Skelton NJ, Wallin JJ, Belvin M, Punnoose E, Friedman LS, Lin K. Targeting activated Akt with GDC-0068, a novel selective Akt inhibitor that is efficacious in multiple tumor models. Clin Cancer Res 2013; 19:1760-72. [PMID: 23287563 DOI: 10.1158/1078-0432.ccr-12-3072] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We describe the preclinical pharmacology and antitumor activity of GDC-0068, a novel highly selective ATP-competitive pan-Akt inhibitor currently in clinical trials for the treatment of human cancers. EXPERIMENTAL DESIGN The effect of GDC-0068 on Akt signaling was characterized using specific biomarkers of the Akt pathway, and response to GDC-0068 was evaluated in human cancer cell lines and xenograft models with various genetic backgrounds, either as a single agent or in combination with chemotherapeutic agents. RESULTS GDC-0068 blocked Akt signaling both in cultured human cancer cell lines and in tumor xenograft models as evidenced by dose-dependent decrease in phosphorylation of downstream targets. Inhibition of Akt activity by GDC-0068 resulted in blockade of cell-cycle progression and reduced viability of cancer cell lines. Markers of Akt activation, including high-basal phospho-Akt levels, PTEN loss, and PIK3CA kinase domain mutations, correlate with sensitivity to GDC-0068. Isogenic PTEN knockout also sensitized MCF10A cells to GDC-0068. In multiple tumor xenograft models, oral administration of GDC-0068 resulted in antitumor activity ranging from tumor growth delay to regression. Consistent with the role of Akt in a survival pathway, GDC-0068 also enhanced antitumor activity of classic chemotherapeutic agents. CONCLUSIONS GDC-0068 is a highly selective, orally bioavailable Akt kinase inhibitor that shows pharmacodynamic inhibition of Akt signaling and robust antitumor activity in human cancer cells in vitro and in vivo. Our preclinical data provide a strong mechanistic rationale to evaluate GDC-0068 in cancers with activated Akt signaling.
Collapse
Affiliation(s)
- Jie Lin
- Genentech, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pires MM, Hopkins BD, Saal LH, Parsons RE. Alterations of EGFR, p53 and PTEN that mimic changes found in basal-like breast cancer promote transformation of human mammary epithelial cells. Cancer Biol Ther 2013; 14:246-53. [PMID: 23291982 PMCID: PMC3595307 DOI: 10.4161/cbt.23297] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Breast cancer can be classified into different molecular subtypes with varying clinical and pathological characteristics. The basal-like breast cancer subtype represents one of the most aggressive and lethal types of breast cancer, and due to poor mechanistic understanding, it lacks targeted therapy. Many basal-like breast cancer patient samples display alterations of established drivers of cancer development, including elevated expression of EGFR, p53 inactivating mutations and loss of expression of the tumor suppressor PTEN; however, their contribution to human basal-like breast cancer pathogenesis remains ill-defined. Using non-transformed human mammary epithelial cells, we set out to determine whether altering EGFR, p53 and PTEN in different combinations could contribute to basal-like breast cancer progression through transformation of cells. Altering PTEN in combination with either p53 or EGFR in contrast to any of the single alterations caused increased growth of transformed colonies in soft agar. Concomitantly modifying all three genes led to the highest rate of cellular proliferation and the greatest degree of anchorage-independent colony formation. Results from our effort to engineer a model of BBC expressing alterations of EGFR, p53 and PTEN suggest that these changes are cooperative and likely play a causal role in basal-like breast cancer pathogenesis. Consideration should be given to targeting EGFR and restoring p53 and PTEN signaling simultaneously as a strategy for treatment of this subtype of breast cancer.
Collapse
Affiliation(s)
- Maira M Pires
- Institute for Cancer Genetics, Herbert Irving Cancer Center, Columbia University, New York, NY, USA
| | | | | | | |
Collapse
|
43
|
Abstract
S100 proteins are markers for numerous cancers, and in many cases high S100 protein levels are a prognostic indicator for poor survival. One such case is S100B, which is overproduced in a very large percentage of malignant melanoma cases. Elevated S100B protein was more recently validated to have causative effects towards cancer progression via down-regulating the tumor suppressor protein, p53. Towards eliminating this problem in melanoma, targeting S100B with small molecule inhibitors was initiated. This work relies on numerous chemical biology technologies including structural biology, computer-aided drug design, compound screening, and medicinal chemistry approaches. Another important component of drug development is the ability to test compounds and various molecular scaffolds for their efficacy in vivo. This chapter briefly describes the development of S100B inhibitors, termed SBiXs, for melanoma therapy with a focus on the inclusion of in vivo screening at an early stage in the drug discovery process.
Collapse
Affiliation(s)
- Danna B Zimmer
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics, The University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
44
|
Cidado J, Park BH. Targeting the PI3K/Akt/mTOR pathway for breast cancer therapy. J Mammary Gland Biol Neoplasia 2012; 17:205-16. [PMID: 22865098 PMCID: PMC3724399 DOI: 10.1007/s10911-012-9264-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 07/23/2012] [Indexed: 01/06/2023] Open
Abstract
Recent advances in genetics and genomics have revealed new pathways that are aberrantly activated in many breast cancers. Chief among these genetic changes are somatic mutations and/or gains and losses of key genes within the phosphoinositide 3-kinase (PI3K) pathway. Since breast cancer cell growth and progression is often dependent upon activation of the PI3K pathway, there has been intense research interest in finding therapeutic agents that can selectively inhibit one or more constituents of this signaling cascade. Here we review key molecules involved with aberrant PI3K pathway activation in breast cancers and current efforts to target these components for therapeutic gain.
Collapse
Affiliation(s)
- Justin Cidado
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Ben Ho Park
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| |
Collapse
|
45
|
Knudsen ES, Pajak TF, Qeenan M, McClendon AK, Armon BD, Schwartz GF, Witkiewicz AK. Retinoblastoma and phosphate and tensin homolog tumor suppressors: impact on ductal carcinoma in situ progression. J Natl Cancer Inst 2012. [PMID: 23197489 DOI: 10.1093/jnci/djs446] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND A subset of patients with ductal carcinoma in situ (DCIS) will progress to invasive breast cancer. However, there are currently no markers to differentiate women at high risk from those at lower risk of developing invasive disease. METHODS The association of two major tumor suppressor genes, retinoblastoma (RB) and phosphatase and tensin homolog (PTEN), with risk of any ipsilateral breast event (IBE) or progression to invasive breast cancer (IBC) was analyzed using data from 236 DCIS patients treated with breast conserving surgery with long-term follow-up. RB and PTEN expression was assessed with immunohistochemistry. The functional effects of RB and/or PTEN loss were modeled in MCF10A cells. Hazard ratios (HRs) were estimated with univariate and multivariable Cox regression models. All statistical tests were two-sided. RESULTS Loss of RB immunoreactivity in DCIS was strongly associated with risk of IBE occurrence (HR = 2.64; 95% confidence interval [CI] = 1.64 to 4.25) and IBC recurrence (HR = 4.66; 95% CI = 2.19 to 9.93). The prognostic power of RB loss remained statistically significant in multivariable analyses. PTEN loss occurred frequently in DCIS but was not associated with recurrence or progression. However, patients with DCIS lesions that were both RB and PTEN deficient were at further increased risk for IBEs (HR = 3.39; 95% CI = 1.92 to 5.99) and IBC recurrence (HR = 6.1, 95% CI = 2.5 to 14.76). Preclinical modeling in MCF10A cells demonstrated that loss of RB and PTEN impacted proliferation, motility, and invasive properties. CONCLUSIONS These studies indicate that RB and PTEN together have prognostic utility and could be used to target aggressive treatment for patients with the greatest probability of benefit.
Collapse
Affiliation(s)
- Erik S Knudsen
- Department of Pathology, University of Texas Southwestern, Dallas, TX 75390.
| | | | | | | | | | | | | |
Collapse
|
46
|
Burgucu D, Guney K, Sahinturk D, Ozbudak IH, Ozel D, Ozbilim G, Yavuzer U. Tbx3 represses PTEN and is over-expressed in head and neck squamous cell carcinoma. BMC Cancer 2012; 12:481. [PMID: 23082988 PMCID: PMC3517435 DOI: 10.1186/1471-2407-12-481] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/17/2012] [Indexed: 01/02/2023] Open
Abstract
Background Despite advances in diagnostic and treatment strategies, head and neck squamous cell cancer (HNSCC) constitutes one of the worst cancer types in terms of prognosis. PTEN is one of the tumour suppressors whose expression and/or activity have been found to be reduced in HNSCC, with rather low rates of mutations within the PTEN gene (6-8%). We reasoned that low expression levels of PTEN might be due to a transcriptional repression governed by an oncogene. Tbx2 and Tbx3, both of which are transcriptional repressors, have been found to be amplified or over-expressed in various cancer types. Thus, we hypothesize that Tbx3 may be over expressed in HNSCC and may repress PTEN, thus leading to cancer formation and/or progression. Methods Using immunohistochemistry and quantitative PCR (qPCR), protein and mRNA levels of PTEN and Tbx3 were identified in samples excised from cancerous and adjacent normal tissues from 33 patients who were diagnosed with HNSCC. In addition, HeLa and HEK cell lines were transfected with a Tbx3 expressing plasmid and endogenous PTEN mRNA and protein levels were determined via qPCR and flow cytometry. Transcription assays were performed to demonstrate effects of Tbx3 on PTEN promoter activity. Mann–Whitney, Spearman’s Correlation and Wilcoxon signed-rank tests were used to analyze the data. Results We demonstrate that in HNSCC samples, Tbx3 mRNA levels are increased with respect to their normal tissue counterparts (p<0.001), whereas PTEN mRNA levels are significantly reduced in cancer tissues. Moreover, Tbx3 protein is also increased in HNSCC tissue sections. Over-expression of Tbx3 in HeLa and HEK cell lines causes reduction in endogenous PTEN mRNA and protein levels. In addition, transcription activity assays reveal that Tbx3 is capable of repressing both the basal and induced promoter activity of PTEN. Conclusions We show that Tbx3 is up-regulated in tissue samples of HNSCC patients and that Tbx3 represses PTEN transcription. Thus, our data not only reveals a new mechanism that may be important in cancer formation, but also suggests that Tbx3 can be used as a potential biomarker in cancer.
Collapse
Affiliation(s)
- Durmus Burgucu
- Department of Physiology, School of Medicine, Akdeniz University, Antalya 07058, Turkey
| | | | | | | | | | | | | |
Collapse
|
47
|
Karnan S, Konishi Y, Ota A, Takahashi M, Damdindorj L, Hosokawa Y, Konishi H. Simple monitoring of gene targeting efficiency in human somatic cell lines using the PIGA gene. PLoS One 2012; 7:e47389. [PMID: 23056640 PMCID: PMC3466256 DOI: 10.1371/journal.pone.0047389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 09/11/2012] [Indexed: 12/31/2022] Open
Abstract
Gene targeting in most of human somatic cell lines has been labor-intensive because of low homologous recombination efficiency. The development of an experimental system that permits a facile evaluation of gene targeting efficiency in human somatic cell lines is the first step towards the improvement of this technology and its application to a broad range of cell lines. In this study, we utilized phosphatidylinositol glycan anchor biosynthesis class A (PIGA), a gene essential for the synthesis of glycosylphosphatidyl inositol (GPI) anchors, as a reporter of gene targeting events in human somatic cell lines. Targeted disruption of PIGA was quantitatively detected with FLAER, a reagent that specifically binds to GPI anchors. Using this PIGA-based reporter system, we successfully detected adeno-associated virus (AAV)-mediated gene targeting events both with and without promoter-trap enrichment of gene-targeted cell population. The PIGA-based reporter system was also capable of reproducing previous findings that an AAV-mediated gene targeting achieves a remarkably higher ratio of homologous versus random integration (H/R ratio) of targeting vectors than a plasmid-mediated gene targeting. The PIGA-based system also detected an approximately 2-fold increase in the H/R ratio achieved by a small negative selection cassette introduced at the end of the AAV-based targeting vector with a promoter-trap system. Thus, our PIGA-based system is useful for monitoring AAV-mediated gene targeting and will assist in improving gene targeting technology in human somatic cell lines.
Collapse
Affiliation(s)
- Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Yuko Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Miyuki Takahashi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Lkhagvasuren Damdindorj
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
- * E-mail:
| |
Collapse
|
48
|
Li X, Wang HL, Peng X, Zhou HF, Wang X. miR-1297 mediates PTEN expression and contributes to cell progression in LSCC. Biochem Biophys Res Commun 2012; 427:254-60. [PMID: 22995297 DOI: 10.1016/j.bbrc.2012.09.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/06/2012] [Indexed: 11/26/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression after transcription, and are involved in cancer development. Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignant neoplasms with increasing incidence in recent years. In this paper, we report the overexpression of miR-1297 in LSCC and Hep-2 cells. In addition, PTEN was identified to be directly regulated by miR-1297 through western blot and luciferase activity assay. Furthermore, downregulation of miR-1297 in Hep-2 cells was shown to inhibit cancer cell proliferation, migration, and tumor genesis. Our results document a new epigenetic mechanism for PTEN regulation in LSCC, which is crucial for the development of these tumors.
Collapse
Affiliation(s)
- Xin Li
- Department of the Seven-year Clinical, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, People's Republic of China.
| | | | | | | | | |
Collapse
|
49
|
Konishi Y, Karnan S, Takahashi M, Ota A, Damdindorj L, Hosokawa Y, Konishi H. A system for the measurement of gene targeting efficiency in human cell lines using an antibiotic resistance-GFP fusion gene. Biotechniques 2012; 53:141-52. [PMID: 22963476 DOI: 10.2144/0000113911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/25/2012] [Indexed: 11/23/2022] Open
Abstract
Gene targeting in a broad range of human somatic cell lines has been hampered by inefficient homologous recombination. To improve this technology and facilitate its widespread application, it is critical to first have a robust and efficient research system for measuring gene targeting efficiency. Here, using a fusion gene consisting of hygromycin B phosphotransferase and 3'-truncated enhanced GFP (HygR-5' EGFP) as a reporter gene, we created a molecular system monitoring the ratio of homologous to random integration (H/R ratio) of targeting vectors into the genome. Cell clones transduced with a reporter vector containing HygR-5' EGFP were efficiently established from two human somatic cell lines. Established HygR-5' EGFP reporter clones retained their capacity to monitor gene targeting efficiency for a longer duration than a conventional reporter system using an unfused 5' EGFP gene. With the HygR-5' EGFP reporter system, we reproduced previous findings of gene targeting frequency being up-regulated by the use of an adeno-associated viral (AAV) backbone, a promoter-trap system, or a longer homology arm in a targeting vector, suggesting that this system accurately monitors H/R ratio. Thus, our HygR-5' EGFP reporter system will assist in the development of an efficient AAV-based gene targeting technology.
Collapse
Affiliation(s)
- Yuko Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
BACKGROUND The oncogenic roles contributed by the Akt/PKB kinase family remain controversial and presumably depend on cell context, but are perceived to be modulated by an interplay and net balance between various isoforms. This study is intended to decipher whether distinct Akt kinase isoforms exert either redundant or unique functions in regulating neoplastic features of breast cancer cells, including epithelial-mesenchymal transition (EMT), cell motility, and stem/progenitor cell expansion. RESULTS We demonstrate that overactivation of Akt signaling in nonmalignant MCF10A cells and in primary cultures of normal human mammary epithelial tissue results in previously unreported inhibitory effects on EMT, cell motility and stem/progenitor cell expansion. Importantly, this effect is largely redundant and independent of Akt isoform types. However, using a series of isogenic cell lines derived from MCF-10A cells but exhibiting varying stages of progressive tumorigenesis, we observe that this inhibition of neoplastic behavior can be reversed in epithelial cells that have advanced to a highly malignant state. In contrast to the tumor suppressive properties of Akt, activated Akt signaling in MCF10A cells can rescue cell viability upon treatment with cytotoxic agents. This feature is regarded as tumor-promoting. CONCLUSION We demonstrate that Akt signaling conveys novel dichotomy effects in which its oncogenic properties contributes mainly to sustaining cell viability, as opposed to the its tumor suppressing effects, which are mediated by repressing EMT, cell motility, and stem/progenitor cell expansion. While the former exerts a tumor-enhancing effect, the latter merely acts as a safeguard by restraining epithelial cells at the primary sites until metastatic spread can be moved forward, a process that is presumably dictated by the permissive tumor microenvironment or additional oncogenic insults.
Collapse
|