1
|
Shao SM, Ji X, Wang X, Liu RZ, Cai YR, Lin X, Zeng ZJ, Chen L, Yang L, Yang H, Gao W. Two-dimensional cell membrane chromatography guided screening of myocardial protective compounds from Yindan Xinnaotong soft capsule. Chin Med 2025; 20:5. [PMID: 39755669 DOI: 10.1186/s13020-024-01046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Cell membrane chromatography (CMC) is a biochromatography with a dual function of recognition and separation, offering a distinct advantage in screening bioactive compounds from Chinese medicines (CMs). Yindan Xinnaotong soft capsule (YD), a CM formulation, has been widely utilized in the treatment of cardiovascular disease. However, a comprehensive mapping of the myocardial protective active compounds remains elusive. PURPOSE To establish a stable and efficient 2D H9c2/CMC-RPLC-MS system, and to utilize it for screening the active compounds of YD that are associated with myocardial protection. METHODS An imidazole-modified silica gel exhibiting high modification efficiency and protein binding capacity was synthesized to enhance the longevity and efficiency of H9c2/CMC. Subsequently, the potentially bioactive compounds of YD were screened by integrating the 2D H9c2/CMC-RPLC-MS system with a high-content component knockout strategy. Additionally, an RNA-seq approach was employed to predict the targets and mechanisms of YD and the active compounds for myocardial protection. RESULTS The developed imidazole-modified H9c2/CMC exhibits remarkable selectivity, specificity, stability, and reproducibility. Following three rounds of screening, a total of 24 potential myocardial protective compounds were identified, comprising 8 flavonoids, 8 phenolic acids, 4 saponins, and 4 tanshinones. Bioinformatic analysis utilizing RNA-seq indicated that the FOXO signaling pathway, with FOXO3 identified as a key target, plays a significant role in the cardioprotective effects of YD. Furthermore, all 24 screened compounds exhibit strong binding affinities with FOXO3 evaluated by molecular docking. CONCLUSION A highly stable and efficient 2D imidazole-modified H9c2/CMC-RPLC-MS system was developed, allowing for the screening of potentially active compounds from YD. Through the integration of the bioinformatic analysis, the pharmacodynamic foundation of YD for myocardial protection has been comprehensively characterized.
Collapse
Affiliation(s)
- Si-Min Shao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China
| | - Xuan Ji
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China
| | - Xing Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China
| | - Run-Zhou Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China
| | - Yu-Ru Cai
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China
| | - Xiaobing Lin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China
| | - Ze-Jie Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China
| | - Ling Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China
| | - Liu Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China.
| |
Collapse
|
2
|
Stumpf FM, Müller S, Marx A. Identification of small molecules that are synthetically lethal upon knockout of the RNA ligase Rlig1 in human cells. RSC Chem Biol 2024; 5:833-840. [PMID: 39211475 PMCID: PMC11353076 DOI: 10.1039/d4cb00125g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Rlig1 is the first RNA ligase identified in humans utilising a classical 5'-3' ligation mechanism. It is a conserved enzyme in all vertebrates and is mutated in various cancers. During our initial research on Rlig1, we observed that Rlig1-knockout (KO) HEK293 cells are more sensitive to the stress induced by menadione than their WT counterpart, representing a type of chemical synthetic lethality. To gain further insight into the biological pathways in which Rlig1 may be involved, we aimed at identifying new synthetically lethal small molecules. To this end, we conducted a high-throughput screening with a compound library comprising over 13 000 bioactive small molecules. This approach led to the identification of compounds that exhibited synthetic lethality in combination with Rlig1-KO. In addition to the aforementioned novel compounds that diverge structurally from menadione, we also tested multiple small molecules containing a naphthoquinone scaffold.
Collapse
Affiliation(s)
- Florian M Stumpf
- Department of Chemistry, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
- Konstanz Research School Chemical Biology, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
| | - Silke Müller
- Department of Biology, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
- Screening Center, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
- Konstanz Research School Chemical Biology, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
| |
Collapse
|
3
|
Sun Y, Li Q, Huang Y, Yang Z, Li G, Sun X, Gu X, Qiao Y, Wu Q, Xie T, Sui X. Natural products for enhancing the sensitivity or decreasing the adverse effects of anticancer drugs through regulating the redox balance. Chin Med 2024; 19:110. [PMID: 39164783 PMCID: PMC11334420 DOI: 10.1186/s13020-024-00982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
Redox imbalance is reported to play a pivotal role in tumorigenesis, cancer development, and drug resistance. Severe oxidative damage is a general consequence of cancer cell responses to treatment and may cause cancer cell death or severe adverse effects. To maintain their longevity, cancer cells can rescue redox balance and enter a state of resistance to anticancer drugs. Therefore, targeting redox signalling pathways has emerged as an attractive and prospective strategy for enhancing the efficacy of anticancer drugs and decreasing their adverse effects. Over the past few decades, natural products (NPs) have become an invaluable source for developing new anticancer drugs due to their high efficacy and low toxicity. Increasing evidence has demonstrated that many NPs exhibit remarkable antitumour effects, whether used alone or as adjuvants, and are emerging as effective approaches to enhance sensitivity and decrease the adverse effects of conventional cancer therapies by regulating redox balance. Among them are several novel anticancer drugs based on NPs that have entered clinical trials. In this review, we summarize the synergistic anticancer effects and related redox mechanisms of the combination of NPs with conventional anticancer drugs. We believe that NPs targeting redox regulation will represent promising novel candidates and provide prospects for cancer treatment in the future.
Collapse
Affiliation(s)
- Yitian Sun
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qinyi Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yufei Huang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Zijing Yang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Guohua Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoyu Sun
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoqing Gu
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yunhao Qiao
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Tian Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Xinbing Sui
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
4
|
He Y, Yu Q, Ma X, Lv D, Wang H, Qiu W, Chen XF, Jiao Y, Liu Y. A metabolomics approach reveals metabolic disturbance of human cholangiocarcinoma cells after parthenolide treatment. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118075. [PMID: 38513779 DOI: 10.1016/j.jep.2024.118075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tanacetum parthenium (L.) Schultz-Bip, commonly known as feverfew, has been traditionally used to treat fever, migraines, rheumatoid arthritis, and cancer. Parthenolide (PTL), the main bioactive ingredient isolated from the shoots of feverfew, is a sesquiterpene lactone with anti-inflammatory and antitumor properties. Previous studies showed that PTL exerts anticancer activity in various cancers, including hepatoma, cholangiocarcinoma, acute myeloid leukemia, breast, prostate, and colorectal cancer. However, the metabolic mechanism underlying the anticancer effect of PTL remains poorly understood. AIM OF THE STUDY To explore the anticancer activity and underlying mechanism of PTL in human cholangiocarcinoma cells. MATERIAL AND METHODS In this investigation, the effects and mechanisms of PTL on human cholangiocarcinoma cells were investigated via a liquid chromatography/mass spectrometry (LC/MS)-based metabolomics approach. First, cell proliferation and apoptosis were evaluated using cell counting kit-8 (CCK-8), flow cytometry analysis, and western blotting. Then, LC/MS-based metabolic profiling along with orthogonal partial least-squares discriminant analysis (OPLS-DA) has been constructed to distinguish the metabolic changes between the negative control group and the PTL-treated group in TFK1 cells. Next, enzyme-linked immunosorbent assay (ELISA) was applied to investigate the changes of metabolic enzymes associated with significantly alerted metabolites. Finally, the metabolic network related to key metabolic enzymes, metabolites, and metabolic pathways was established using MetaboAnalyst 5.0 and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Database. RESULTS PTL treatment could induce the proliferation inhibition and apoptosis of TFK1 in a concentration-dependent manner. Forty-three potential biomarkers associated with the antitumor effect of PTL were identified, which primarily related to glutamine and glutamate metabolism, alanine, aspartate and glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, arginine biosynthesis, arginine and proline metabolism, glutathione metabolism, nicotinate and nicotinamide metabolism, pyrimidine metabolism, fatty acid metabolism, phospholipid catabolism, and sphingolipid metabolism. Pathway analysis of upstream and downstream metabolites, we found three key metabolic enzymes, including glutaminase (GLS), γ-glutamyl transpeptidase (GGT), and carnitine palmitoyltransferase 1 (CPT1), which mainly involved in glutamine and glutamate metabolism, glutathione metabolism, and fatty acid metabolism. The changes of metabolic enzymes associated with significantly alerted metabolites were consistent with the levels of metabolites, and the metabolic network related to key metabolic enzymes, metabolites, and metabolic pathways was established. PTL may exert its antitumor effect against cholangiocarcinoma by disturbing metabolic pathways. Furthermore, we selected two positive control agents that are considered as first-line chemotherapy standards in cholangiocarcinoma therapy to verify the reliability and accuracy of our metabolomic study on PTL. CONCLUSION This research enhanced our comprehension of the metabolic profiling and mechanism of PTL treatment on cholangiocarcinoma cells, which provided some references for further research into the anti-cancer mechanisms of other drugs.
Collapse
Affiliation(s)
- Yongping He
- School of Pharmacy, Guangxi Medical University, Guangxi, Nanning, 530021, China; School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China; Department of Pharmacy, The People's Hospital of Chongzuo, Guangxi, Chongzuo, 532200, China
| | - Qianxue Yu
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Xiaoyu Ma
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Diya Lv
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Hui Wang
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Weian Qiu
- School of Pharmacy, Guangxi Medical University, Guangxi, Nanning, 530021, China
| | - Xiao Fei Chen
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Yang Jiao
- School of Pharmacy, Guangxi Medical University, Guangxi, Nanning, 530021, China.
| | - Yue Liu
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| |
Collapse
|
5
|
|
6
|
Gan X, Nie M, Cai S, Liu Y, Zhang F, Feng X, Li Y, Yang B, Wang X. Dankasterone A induces prostate cancer cell death by inducing oxidative stress. Eur J Pharmacol 2023; 957:175988. [PMID: 37597647 DOI: 10.1016/j.ejphar.2023.175988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Oxidative stress plays a dual role in tumor survival, either promoting tumor development or killing tumor cells under different conditions. Dankasterone A is a secondary metabolite derived from the fungus Talaromyces purpurogenu. It showed good potential in a screen for anti-prostate cancer compounds. In this study, MTT results showed dankasterone A was cytotoxic to prostate cancer cells, with an IC50 of 5.10 μM for PC-3 cells and 3.41 μM for 22Rv1 cells. Further studies, plate cloning assays and real-time cell analysis monitoring showed that dankasterone A significantly inhibited clonal colony formation and cell migration in 22Rv1 and PC-3 cells. In addition, flow cytometry results showed that dankasterone A induced apoptosis in prostate cancer cells while having no impact on cell cycle distribution. At the molecular level, Protein microarray experiments and western blot assays revealed that dankasterone A specifically and dramatically upregulated HO-1 protein expression; and the results of cell fluorescence staining showed that dankasterone A induced overexpression of reactive oxygen species in 22Rv1 and PC-3 cells. Taken together, dankasterone A induced prostate cancer cells to undergo intense oxidative stress, which resulted in the production of large amounts of HO-1 and the release of large amounts of reactive oxygen species, leading to apoptosis of prostate cancer cells, ultimately resulting in the inhibition of both cell proliferation and migration. We also validated the anti-prostate cancer effects of dankasterone A in vivo in a zebrafish xenograft tumor model. In conclusion, dankasterone A has the potential to be developed as an anti-prostate cancer drug.
Collapse
Affiliation(s)
- Xia Gan
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Mingyi Nie
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Siying Cai
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaotao Feng
- Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yunqiu Li
- School of Pharmacy, Guilin Medical University, Guilin 541001, China.
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| |
Collapse
|
7
|
Kim JM, Choi JS, Jung J, Yeo SG, Kim SH. Inhibitory effect of parthenolide on peripheral nerve degeneration. Anat Sci Int 2023; 98:529-539. [PMID: 37024641 DOI: 10.1007/s12565-023-00718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023]
Abstract
Traumatic axonal damage disrupts connections between neurons, leading to the loss of motor and sensory functions. Although damaged peripheral nerves can regenerate, recovery depends on the variety and severity of nerve damage. Thus, many phytochemicals have been studied for their ability to reduce peripheral nerve degeneration, and among them, Parthenolide (PTL), which is extracted from Feverfew has effects against production of free radicals, inflammation, and apoptosis. Thus, we conducted a study to investigate whether PTL has an inhibitory effect on peripheral nerve degeneration during peripheral nerve damage. To verify the effect of PTL on peripheral nerve degeneration process, a morphological comparison of peripheral nerves with and without PTL was performed. PTL significantly reduced the quantity of fragmented ovoid formations at 3DIV (days in vitro). Immunostaining for MBP revealed that the ratio of intact myelin sheaths increased significantly in sciatic nerve with PTL compared with absence of PTL at 3DIV. Furthermore, nerve fibers in the presence of PTL maintained the continuity of Neurofilament (NF) compared to those without at 3DIV. Immunostaining for LAMP1 and p75 NTR showed that the expression of LAMP1 and p75 NTR decreased in the nerve after PTL addition at 3DIV. Lastly, immunostaining for anti-Ki67 revealed that PTL inhibited Ki67 expression at 3DIV compared to without PTL. These results confirm that PTL inhibits peripheral nerve degenerative processes. PTL may be a good applicant to inhibit peripheral nerve degeneration. Our study examined the effect of Parthenolide in preventing degeneration of peripheral nerves by inhibiting the breakdown of peripheral axons and myelin, also inhibiting Schwann cell trans-dedifferentiation and proliferation.
Collapse
Affiliation(s)
- Jung Min Kim
- Department of Otorhinolaryngology, Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, 02447, Korea
| | - Jae Sun Choi
- Clinical Research Institute, Kyung Hee Medical Center, Seou, 02447, Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicines, Kyung Hee University, Seoul, 02447, Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology, Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, 02447, Korea
| | - Sang Hoon Kim
- Department of Otorhinolaryngology, Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, 02447, Korea.
- Department of Otohinolaryngology - H & N Surgery, School of Medicine, KyungHee University, #1 Hoegi-Dong, Dongdaemun-Gu, Seoul, 130-702, Korea.
| |
Collapse
|
8
|
Lyu F, Shang SY, Gao XS, Ma MW, Xie M, Ren XY, Liu MZ, Chen JY, Li SS, Huang L. Uncovering the Secrets of Prostate Cancer's Radiotherapy Resistance: Advances in Mechanism Research. Biomedicines 2023; 11:1628. [PMID: 37371723 PMCID: PMC10296152 DOI: 10.3390/biomedicines11061628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/20/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Prostate cancer (PCa) is a critical global public health issue with its incidence on the rise. Radiation therapy holds a primary role in PCa treatment; however, radiation resistance has become increasingly challenging as we uncover more about PCa's pathogenesis. Our review aims to investigate the multifaceted mechanisms underlying radiation therapy resistance in PCa. Specifically, we will examine how various factors, such as cell cycle regulation, DNA damage repair, hypoxic conditions, oxidative stress, testosterone levels, epithelial-mesenchymal transition, and tumor stem cells, contribute to radiation therapy resistance. By exploring these mechanisms, we hope to offer new insights and directions towards overcoming the challenges of radiation therapy resistance in PCa. This can also provide a theoretical basis for the clinical application of novel ultra-high-dose-rate (FLASH) radiotherapy in the era of PCa.
Collapse
Affiliation(s)
- Feng Lyu
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| | - Shi-Yu Shang
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
- First Clinical Medical School, Hebei North University, Zhangjiakou 075000, China
| | - Xian-Shu Gao
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| | - Ming-Wei Ma
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| | - Mu Xie
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| | - Xue-Ying Ren
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| | - Ming-Zhu Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| | - Jia-Yan Chen
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| | - Shan-Shi Li
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| | - Lei Huang
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| |
Collapse
|
9
|
Li D, Liu L, Li F, Ma C, Ge K. Nifuroxazide induces the apoptosis of human non‑small cell lung cancer cells through the endoplasmic reticulum stress PERK signaling pathway. Oncol Lett 2023; 25:248. [PMID: 37153034 PMCID: PMC10161345 DOI: 10.3892/ol.2023.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/26/2023] [Indexed: 05/09/2023] Open
Abstract
The aim of the present study was to investigate the molecular mechanism of nifuroxazide (NFZ) in the induction of apoptosis of NCI-H1299 human non-small cell lung cancer (NSCLC) cells through the reactive oxygen species (ROS)/Ca2+/protein kinase R-like ER kinase (PERK)-activating transcription factor 4 (ATF4)-DNA damage inducible transcript 3 (CHOP) signaling pathway. Morphological changes of cells were observed by microscopy, and the apoptosis and intracellular ROS levels of cells were observed by inverted fluorescence microscopy. Cell viability after the addition of the PERK inhibitor, GSK2606414, were detected by Cell Counting Kit-8 assay. Annexin V-FITC was used to detect cell apoptosis, Brite 670 was used to detect intracellular ROS and Fura Red AM was used to detect Ca2+ content. Western blotting was used to detect PERK, phosphorylated (P)-PERK, ATF4, CHOP, P-Janus kinase 2 and P-signal transducer and activator of transcription 3 expression levels. Compared with the dimethyl sulfoxide control group, NFZ inhibited the survival activity in the H1299 NSCLC cell line, in a time- and dose-dependent manner. However, GSK2606414 inhibited the NFZ-induced apoptosis of H1299 cells. GSK2606414 also inhibited the increase in ROS and Ca2+ in H1299 cells induced by NFZ. Western blotting results demonstrated that NFZ significantly increased the expression levels of P-PERK, ATF4 and CHOP, whereas GSK2606414 significantly reduced the NFZ-induced increase in these protein expression levels. In conclusion, NFZ may induce the apoptosis of H1299 NSCLC cells through the ROS/Ca2+/PERK-ATF4-CHOP signaling pathway.
Collapse
Affiliation(s)
- Deliang Li
- The First Clinical Medical College, Medicine College, Qingdao University, Qingdao, Shandong 266023, P.R. China
- Emergency Department, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Liping Liu
- The First Clinical Medical College, Medicine College, Qingdao University, Qingdao, Shandong 266023, P.R. China
| | - Feng Li
- Traditional Chinese Medicine Department, Zibo Wanjie Cancer Hospital, Zibo, Shandong 255200, P.R. China
| | - Chengshan Ma
- Orthopedic SurgeryDepartment, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, P.R. China
- Dr Chengshan Ma, Orthopedic Surgery Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 9677 Jingshi Road, Lixia, Jinan, Shandong 250000, P.R. China, E-mail:
| | - Keli Ge
- School of Basic Medicine, Medical College, Qingdao University, Qingdao, Shandong 266023, P.R. China
- Correspondence to: Dr Keli Ge, School of Basic Medicine, Medical College, Qingdao University, 38 Dengzhou Road, Qingdao, Shandong 266023, P.R. China, E-mail:
| |
Collapse
|
10
|
Jorge J, Neves J, Alves R, Geraldes C, Gonçalves AC, Sarmento-Ribeiro AB. Parthenolide Induces ROS-Mediated Apoptosis in Lymphoid Malignancies. Int J Mol Sci 2023; 24:ijms24119167. [PMID: 37298119 DOI: 10.3390/ijms24119167] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Lymphoid malignancies are a group of highly heterogeneous diseases frequently associated with constitutive activation of the nuclear factor kappa B (NF-κB) signaling pathway. Parthenolide is a natural compound used to treat migraines and arthritis and found to act as a potent NF-κB signaling inhibitor. This study evaluated in vitro parthenolide efficacy in lymphoid neoplasms. We assessed parthenolide metabolic activity in NCI-H929 (MM), Farage (GCB-DLBCL), Raji (BL), 697 and KOPN-8 (B-ALL), and CEM and MOLT-4 (T-ALL), by resazurin assay. Cell death, cell cycle, mitochondrial membrane potential (ΔΨmit), reactive oxygen species (ROS) and reduced glutathione (GSH) levels, activated caspase-3, FAS-ligand, and phosphorylated NF-κB p65 were evaluated using flow cytometry. CMYC, TP53, GPX1, and TXRND1 expression levels were assessed using qPCR. Our results showed that parthenolide promoted a metabolic activity decrease in all cell lines in a time-, dose-, and cell-line-dependent manner. The mechanism induced by parthenolide was demonstrated to be cell line dependent. Nonetheless, parthenolide promoted cell death by apoptosis with significant ROS increase (peroxides and superoxide anion) and GSH decrease combined with a ΔΨmit reduction across all studied cell lines. Despite the need to further understand parthenolide mechanisms, parthenolide should be considered as a possible new therapeutic approach for B- and T-lymphoid malignancies.
Collapse
Affiliation(s)
- Joana Jorge
- Laboratory of Oncobiology and Hematology (LOH), University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)-Group of Environmental Genetics of Oncobiology (CIMAGO), FMUC, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Joana Neves
- Laboratory of Oncobiology and Hematology (LOH), University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Raquel Alves
- Laboratory of Oncobiology and Hematology (LOH), University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)-Group of Environmental Genetics of Oncobiology (CIMAGO), FMUC, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Catarina Geraldes
- Laboratory of Oncobiology and Hematology (LOH), University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)-Group of Environmental Genetics of Oncobiology (CIMAGO), FMUC, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Hematology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-061 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology (LOH), University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)-Group of Environmental Genetics of Oncobiology (CIMAGO), FMUC, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology (LOH), University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)-Group of Environmental Genetics of Oncobiology (CIMAGO), FMUC, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Hematology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-061 Coimbra, Portugal
| |
Collapse
|
11
|
Evaluation of a Developed MRI-Guided Focused Ultrasound System in 7 T Small Animal MRI and Proof-of-Concept in a Prostate Cancer Xenograft Model to Improve Radiation Therapy. Cells 2023; 12:cells12030481. [PMID: 36766824 PMCID: PMC9914251 DOI: 10.3390/cells12030481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Focused ultrasound (FUS) can be used to physiologically change or destroy tissue in a non-invasive way. A few commercial systems have clinical approval for the thermal ablation of solid tumors for the treatment of neurological diseases and palliative pain management of bone metastases. However, the thermal effects of FUS are known to lead to various biological effects, such as inhibition of repair of DNA damage, reduction in tumor hypoxia, and induction of apoptosis. Here, we studied radiosensitization as a combination therapy of FUS and RT in a xenograft mouse model using newly developed MRI-compatible FUS equipment. Xenograft tumor-bearing mice were produced by subcutaneous injection of the human prostate cancer cell line PC-3. Animals were treated with FUS in 7 T MRI at 4.8 W/cm2 to reach ~45 °C and held for 30 min. The temperature was controlled via fiber optics and proton resonance frequency shift (PRF) MR thermometry in parallel. In the combination group, animals were treated with FUS followed by X-ray at a single dose of 10 Gy. The effects of FUS and RT were assessed via hematoxylin-eosin (H&E) staining. Tumor proliferation was detected by the immunohistochemistry of Ki67 and apoptosis was measured by a TUNEL assay. At 40 days follow-up, the impact of RT on cancer cells was significantly improved by FUS as demonstrated by a reduction in cell nucleoli from 189 to 237 compared to RT alone. Inhibition of tumor growth by 4.6 times was observed in vivo in the FUS + RT group (85.3%) in contrast to the tumor volume of 393% in the untreated control. Our results demonstrated the feasibility of combined MRI-guided FUS and RT for the treatment of prostate cancer in a xenograft mouse model and may provide a chance for less invasive cancer therapy through radiosensitization.
Collapse
|
12
|
LoBianco FV, Krager KJ, Johnson E, Godwin CO, Allen AR, Crooks PA, Compadre CM, Borrelli MJ, Aykin-Burns N. Parthenolide induces rapid thiol oxidation that leads to ferroptosis in hepatocellular carcinoma cells. FRONTIERS IN TOXICOLOGY 2022; 4:936149. [PMID: 36591540 PMCID: PMC9795200 DOI: 10.3389/ftox.2022.936149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/07/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is both a devastating and common disease. Every year in the United States, about 24,500 men and 10,000 women are diagnosed with HCC, and more than half of those diagnosed patients die from this disease. Thus far, conventional therapeutics have not been successful for patients with HCC due to various underlying comorbidities. Poor survival rate and high incidence of recurrence after therapy indicate that the differences between the redox environments of normal surrounding liver and HCC are valuable targets to improve treatment efficacy. Parthenolide (PTL) is a naturally found therapeutic with anti-cancer and anti-inflammatory properties. PTL can alter HCC's antioxidant environment through thiol modifications leaving tumor cells sensitive to elevated reactive oxygen species (ROS). Investigating the link between altered thiol mechanism and increased sensitivity to iron-mediated lipid peroxidation will allow for improved treatment of HCC. HepG2 (human) and McARH7777 (rat) HCC cells treated with PTL with increasing concentrations decrease cell viability and clonogenic efficiency in vitro. PTL increases glutathione (GSH) oxidation rescued by the addition of a GSH precursor, N-acetylcysteine (NAC). In addition, this elevation in thiol oxidation results in an overall increase in mitochondrial dysfunction. To elucidate if cell death is through lipid peroxidation, using a lipid peroxidation sensor indicated PTL increases lipid oxidation levels after 6 h. Additionally, western blotting reveals glutathione peroxidase 4 (GPx4) protein levels decrease after treatment with PTL suggesting cells are incapable of preventing lipid peroxidation after exposure to PTL. An elevation in lipid peroxidation will lead to a form of cell death known as ferroptosis. To further establish ferroptosis as a critical mechanism of death for HCC in vitro, the addition of ferrostatin-1 combined with PTL demonstrates a partial recovery in a colony survival assay. This study reveals that PTL can induce tumor cell death through elevations in intracellular oxidation, leaving cells sensitive to ferroptosis.
Collapse
Affiliation(s)
- Francesca V. LoBianco
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kimberly J. Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Erica Johnson
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Christopher O. Godwin
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Antino R. Allen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Peter A. Crooks
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Cesar M. Compadre
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Michael J. Borrelli
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
13
|
Wang Y, Liu X, Huang W, Liang J, Chen Y. The intricate interplay between HIFs, ROS, and the ubiquitin system in the tumor hypoxic microenvironment. Pharmacol Ther 2022; 240:108303. [PMID: 36328089 DOI: 10.1016/j.pharmthera.2022.108303] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Alterations in protein ubiquitination and hypoxia-inducible factor (HIF) signaling both contribute to tumorigenesis and tumor progression. Ubiquitination is a dynamic process that is coordinately regulated by E3 ligases and deubiquitinases (DUBs), which have emerged as attractive therapeutic targets. HIF expression and transcriptional activity are usually increased in tumors, leading to poor clinical outcomes. Reactive oxygen species (ROS) are upregulated in tumors and have multiple effects on HIF signaling and the ubiquitin system. A growing body of evidence has shown that multiple E3 ligases and UBDs function synergistically to control the expression and activity of HIF, thereby allowing cancer cells to cope with the hypoxic microenvironment. Conversely, several E3 ligases and DUBs are regulated by hypoxia and/or HIF signaling. Hypoxia also induces ROS production, which in turn modulates the stability or activity of HIF, E3 ligases, and DUBs. Understanding the complex networks between E3 ligase, DUBs, ROS, and HIF will provide insights into the fundamental mechanism of the cellular response to hypoxia and help identify novel molecular targets for cancer treatment. We review the current knowledge on the comprehensive relationship between E3 ligase, DUBs, ROS, and HIF signaling, with a particular focus on the use of E3 ligase or DUB inhibitors in cancer.
Collapse
Affiliation(s)
- Yijie Wang
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Weixiao Huang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Junjie Liang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| | - Yan Chen
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China; School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
14
|
Hydrogen Peroxide Promotes the Production of Radiation-Derived EVs Containing Mitochondrial Proteins. Antioxidants (Basel) 2022; 11:antiox11112119. [PMID: 36358489 PMCID: PMC9686922 DOI: 10.3390/antiox11112119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 12/01/2022] Open
Abstract
In spite of extensive successes, cancer recurrence after radiation treatment (RT) remains one of the significant challenges in the cure of localized prostate cancer (PCa). This study focuses on elucidating a novel adaptive response to RT that could contribute to cancer recurrence. Here, we used PC3 cell line, an adenocarcinoma from a bone metastasis and radio-resistant clone 695 cell line, which survived after total radiation dose of 66 Gy (2 Gy × 33) and subsequently regrew in nude mice after exposure to fractionated radiation at 10 Gy (2 Gy × 5). Clone 695 cells not only showed an increase in surviving fraction post-radiation but also an increase in hydrogen peroxide (H2O2) production when compared to PC3 cells. At the single cell level, confocal microscope images coupled with IMARIS rendering software demonstrate an increase in mitochondrial mass and membrane potential in clone 695 cells. Utilizing the Seahorse XF96 instrument to investigate mitochondrial respiration, clone 695 cells demonstrated a higher basal Oxygen Consumption Rate (OCR), ATP-linked OCR, and proton leak compared to PC3 cells. The elevation of mitochondrial function in clone 695 cells is accompanied by an increase in mitochondrial H2O2 production. These data suggest that H2O2 could reprogram PCa’s mitochondrial homeostasis, which allows the cancer to survive and regrow after RT. Upon exposure to RT, in addition to ROS production, we found that RT induces the release of extracellular vesicles (EVs) from PC3 cells (p < 0.05). Importantly, adding H2O2 to PC3 cells promotes EVs production in a dose-dependent manner and pre-treatment with polyethylene glycol-Catalase mitigates H2O2-mediated EV production. Both RT-derived EVs and H2O2-derived EVs carried higher levels of mitochondrial antioxidant proteins including, Peroxiredoxin 3, Glutathione Peroxidase 4 as well as mitochondrial-associated oxidative phosphorylation proteins. Significantly, adding isolated functional mitochondria 24 h prior to RT shows a significant increase in surviving fractions of PC3 cells (p < 0.05). Together, our findings reveal that H2O2 promotes the production of EVs carrying mitochondrial proteins and that functional mitochondria enhance cancer survival after RT.
Collapse
|
15
|
Liu W, Liang B, Zeng J, Meng J, Shi L, Yang S, Chang J, Wang C, Hu X, Wang X, Han N, Lu C, Li J, Wang C, Li H, Zhang R, Xing D. First Discovery of Cholesterol-Lowering Activity of Parthenolide as NPC1L1 Inhibitor. Molecules 2022; 27:molecules27196270. [PMID: 36234807 PMCID: PMC9572688 DOI: 10.3390/molecules27196270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
Elevated cholesterol significantly increases the risk of developing atherosclerosis and coronary heart disease. The key to treating hypercholesterolemia is lowering plasma cholesterol levels. There have been no studies on the cholesterol-lowering potential of parthenolide (PTL), a naturally occurring small molecule from Tanacetum parthenium. Here, we first put forth PTL’s cholesterol-lowering ability to inhibit cellular uptake of cholesterol in a dose-dependent manner. Its performance was on par with the positive control drug, ezetimibe. Niemann–Pick C1 Like-1 (NPC1L1) has been identified as a potential therapeutic target for hypercholesterolemia. The interaction of PTL with NPC1L1 could be explained by the results of molecular docking and filipin staining further reinforces this hypothesis. Furthermore, PTL reduced the expression of NPC1L1 in HepG2 cells in a concentration-dependent manner, which suggests that PTL functions as a potential NPC1L1 inhibitor with therapeutic potential for hypercholesterolemia.
Collapse
Affiliation(s)
- Wenjing Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
| | - Jun Zeng
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Jingsen Meng
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Lingyu Shi
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Shanbo Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Jing Chang
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
| | - Xiaokun Hu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Xufu Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Na Han
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Chenghui Lu
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Jiao Li
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Congcong Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Huanting Li
- Interventional Medicine Center, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Renshuai Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
- Correspondence: (R.Z.); (D.X.)
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266071, China
- School of Life Sciences, Tsinghua University, Beijing 100190, China
- Correspondence: (R.Z.); (D.X.)
| |
Collapse
|
16
|
Kazantseva L, Becerra J, Santos-Ruiz L. Traditional Medicinal Plants as a Source of Inspiration for Osteosarcoma Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155008. [PMID: 35956961 PMCID: PMC9370649 DOI: 10.3390/molecules27155008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Osteosarcoma is one of the most common types of bone cancers among paediatric patients. Despite the advances made in surgery, chemo-, and radiotherapy, the mortality rate of metastatic osteosarcoma remains unchangeably high. The standard drug combination used to treat this bone cancer has remained the same for the last 20 years, and it produces many dangerous side effects. Through history, from ancient to modern times, nature has been a remarkable source of chemical diversity, used to alleviate human disease. The application of modern scientific technology to the study of natural products has identified many specific molecules with anti-cancer properties. This review describes the latest discovered anti-cancer compounds extracted from traditional medicinal plants, with a focus on osteosarcoma research, and on their cellular and molecular mechanisms of action. The presented compounds have proven to kill osteosarcoma cells by interfering with different pathways: apoptosis induction, stimulation of autophagy, generation of reactive oxygen species, etc. This wide variety of cellular targets confer natural products the potential to be used as chemotherapeutic drugs, and also the ability to act as sensitizers in drug combination treatments. The major hindrance for these molecules is low bioavailability. A problem that may be solved by chemical modification or nano-encapsulation.
Collapse
Affiliation(s)
- Liliya Kazantseva
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - José Becerra
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Cell Biology, Genetics and Physiology, Universidad de Málaga, 29071 Málaga, Spain
| | - Leonor Santos-Ruiz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Cell Biology, Genetics and Physiology, Universidad de Málaga, 29071 Málaga, Spain
- Correspondence:
| |
Collapse
|
17
|
Mittal A, Nenwani M, Sarangi I, Achreja A, Lawrence TS, Nagrath D. Radiotherapy-induced metabolic hallmarks in the tumor microenvironment. Trends Cancer 2022; 8:855-869. [PMID: 35750630 DOI: 10.1016/j.trecan.2022.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 10/17/2022]
Abstract
Radiation is frequently administered for cancer treatment, but resistance or remission remains common. Cancer cells alter their metabolism after radiotherapy to reduce its cytotoxic effects. The influence of altered cancer metabolism extends to the tumor microenvironment (TME), where components of the TME exchange metabolites to support tumor growth. Combining radiotherapy with metabolic targets in the TME can improve therapy response. We review the metabolic rewiring of cancer cells following radiotherapy and put these observations in the context of the TME to describe the metabolic hallmarks of radiotherapy in the TME.
Collapse
Affiliation(s)
- Anjali Mittal
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Minal Nenwani
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Itisam Sarangi
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Abhinav Achreja
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Theodore S Lawrence
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Deepak Nagrath
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
18
|
Chaiswing L, Xu F, Zhao Y, Thorson J, Wang C, He D, Lu J, Ellingson SR, Zhong W, Meyer K, Luo W, St. Clair W, Clair DS. The RelB-BLNK Axis Determines Cellular Response to a Novel Redox-Active Agent Betamethasone during Radiation Therapy in Prostate Cancer. Int J Mol Sci 2022; 23:ijms23126409. [PMID: 35742868 PMCID: PMC9223669 DOI: 10.3390/ijms23126409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022] Open
Abstract
Aberrant levels of reactive oxygen species (ROS) are potential mechanisms that contribute to both cancer therapy efficacy and the side effects of cancer treatment. Upregulation of the non-canonical redox-sensitive NF-kB family member, RelB, confers radioresistance in prostate cancer (PCa). We screened FDA-approved compounds and identified betamethasone (BET) as a drug that increases hydrogen peroxide levels in vitro and protects non-PCa tissues/cells while also enhancing radiation killing of PCa tissues/cells, both in vitro and in vivo. Significantly, BET increases ROS levels and exerts different effects on RelB expression in normal cells and PCa cells. BET induces protein expression of RelB and RelB target genes, including the primary antioxidant enzyme, manganese superoxide dismutase (MnSOD), in normal cells, while it suppresses protein expression of RelB and MnSOD in LNCaP cells and PC3 cells. RNA sequencing analysis identifies B-cell linker protein (BLNK) as a novel RelB complementary partner that BET differentially regulates in normal cells and PCa cells. RelB and BLNK are upregulated and correlate with the aggressiveness of PCa in human samples. The RelB-BLNK axis translocates to the nuclear compartment to activate MnSOD protein expression. BET promotes the RelB-BLNK axis in normal cells but suppresses the RelB-BLNK axis in PCa cells. Targeted disruptions of RelB-BLNK expressions mitigate the radioprotective effect of BET on normal cells and the radiosensitizing effect of BET on PCa cells. Our study identified a novel RelB complementary partner and reveals a complex redox-mediated mechanism showing that the RelB-BLNK axis, at least in part, triggers differential responses to the redox-active agent BET by stimulating adaptive responses in normal cells but pushing PCa cells into oxidative stress overload.
Collapse
Affiliation(s)
- Luksana Chaiswing
- Department of Toxicology and Cancer Biology, University of Kentucky, 452 Health Sciences Research Building, Lexington, KY 40536, USA; (F.X.); (Y.Z.)
- Correspondence: (L.C.); (D.S.C.)
| | - Fangfang Xu
- Department of Toxicology and Cancer Biology, University of Kentucky, 452 Health Sciences Research Building, Lexington, KY 40536, USA; (F.X.); (Y.Z.)
| | - Yanming Zhao
- Department of Toxicology and Cancer Biology, University of Kentucky, 452 Health Sciences Research Building, Lexington, KY 40536, USA; (F.X.); (Y.Z.)
| | - Jon Thorson
- Center for Pharmaceutical Research and Innovation, Lexington, KY 40536, USA;
- College of Pharmacy, Pharmaceutical Sciences Department, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Markey Biostatistics and Bioinformatics Shared Resource Facility, University of Kentucky, Lexington, KY 40536, USA; (C.W.); (D.H.); (J.L.); (S.R.E.)
| | - Daheng He
- Markey Biostatistics and Bioinformatics Shared Resource Facility, University of Kentucky, Lexington, KY 40536, USA; (C.W.); (D.H.); (J.L.); (S.R.E.)
| | - Jinpeng Lu
- Markey Biostatistics and Bioinformatics Shared Resource Facility, University of Kentucky, Lexington, KY 40536, USA; (C.W.); (D.H.); (J.L.); (S.R.E.)
| | - Sally R. Ellingson
- Markey Biostatistics and Bioinformatics Shared Resource Facility, University of Kentucky, Lexington, KY 40536, USA; (C.W.); (D.H.); (J.L.); (S.R.E.)
| | - Weixiong Zhong
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (W.Z.); (K.M.)
| | - Kristy Meyer
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (W.Z.); (K.M.)
| | - Wei Luo
- Department of Radiation Medicine, University of Kentucky, Lexington, KY 40536, USA; (W.L.); (W.S.C.)
| | - William St. Clair
- Department of Radiation Medicine, University of Kentucky, Lexington, KY 40536, USA; (W.L.); (W.S.C.)
| | - Daret St. Clair
- Department of Toxicology and Cancer Biology, University of Kentucky, 452 Health Sciences Research Building, Lexington, KY 40536, USA; (F.X.); (Y.Z.)
- Correspondence: (L.C.); (D.S.C.)
| |
Collapse
|
19
|
Kumar H, Kumar RM, Bhattacharjee D, Somanna P, Jain V. Role of Nrf2 Signaling Cascade in Breast Cancer: Strategies and Treatment. Front Pharmacol 2022; 13:720076. [PMID: 35571115 PMCID: PMC9098811 DOI: 10.3389/fphar.2022.720076] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 03/31/2022] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is the second leading cancer among all types of cancers. It accounts for 12% of the total cases of cancers. The complex and heterogeneous nature of breast cancer makes it difficult to treat in advanced stages. The expression of various enzymes and proteins is regulated by several molecular pathways. Oxidative stress plays a vital role in cellular events that are generally regulated by nuclear factor erythroid 2-related factor 2 (Nrf2). The exact mechanism of Nrf2 behind cytoprotective and antioxidative properties is still under investigation. In healthy cells, Nrf2 expression is lower, which maintains antioxidative stress; however, cancerous cells overexpress Nrf2, which is associated with various phenomena, such as the development of drug resistance, angiogenesis, development of cancer stem cells, and metastasis. Aberrant Nrf2 expression diminishes the toxicity and potency of therapeutic anticancer drugs and provides cytoprotection to cancerous cells. In this article, we have discussed the attributes associated with Nrf2 in the development of drug resistance, angiogenesis, cancer stem cell generation, and metastasis in the specific context of breast cancer. We also discussed the therapeutic strategies employed against breast cancer exploiting Nrf2 signaling cascades.
Collapse
Affiliation(s)
| | | | | | | | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| |
Collapse
|
20
|
Parthenolide and Its Soluble Analogues: Multitasking Compounds with Antitumor Properties. Biomedicines 2022; 10:biomedicines10020514. [PMID: 35203723 PMCID: PMC8962426 DOI: 10.3390/biomedicines10020514] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/23/2022] Open
Abstract
Due to its chemical properties and multiple molecular effects on different tumor cell types, the sesquiterpene lactone parthenolide (PN) can be considered an effective drug with significant potential in cancer therapy. PN has been shown to induce either classic apoptosis or alternative caspase-independent forms of cell death in many tumor models. The therapeutical potential of PN has been increased by chemical design and synthesis of more soluble analogues including dimethylaminoparthenolide (DMAPT). This review focuses on the molecular mechanisms of both PN and analogues action in tumor models, highlighting their effects on gene expression, signal transduction and execution of different types of cell death. Recent findings indicate that these compounds not only inhibit prosurvival transcriptional factors such as NF-κB and STATs but can also determine the activation of specific death pathways, increasing intracellular reactive oxygen species (ROS) production and modifications of Bcl-2 family members. An intriguing property of these compounds is its specific targeting of cancer stem cells. The unusual actions of PN and its analogues make these agents good candidates for molecular targeted cancer therapy.
Collapse
|
21
|
P M, Jain R SK, N P, Kumar J U S, M P, Monnenahally KH. Antiproliferative effects of Artabotrys odoratissimus fruit extract and its bioactive fraction through upregulation of p53/γH2AX signals and G2/M phase arrest in MIA PaCa-2 cells. Anticancer Agents Med Chem 2022; 22:2998-3008. [PMID: 35105296 DOI: 10.2174/1871520622666220201103431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/20/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Artabotrys odoratissimus (Annonaceae) is a medicinal and ornamental plant widely cultivated in Southeast Asia for its famous ylang ylang essential oil. The fruits of this plant are used for health benefits, but very little is studied about the bioactive principles, their role in regulating oxidative stress and tumour progression. OBJECTIVE The study aimed at evaluating the antiproliferative effects of fruit extract of Artabotrys odoratissimus and its bioactive fraction using cell-based assays. METHODS The free radical scavenging and anti-proliferative effects of Artabotrys odoratissimus Fruit Ethyl acetate (FEA) extract and its bioactive fraction were evaluated using Cell viability assays, Colony formation assay, Double staining assay, Reactive Oxygen Species (ROS) assay, Comet assay, Cell cycle analysis, and Western blotting. RESULTS The extract showed phenolic content of 149.8±0.11µg/mg Gallic acid equivalents and flavonoid content of 214.47±4.18 µg/mg Quercetin. FEA showed IC50 value of 76.35 µg/ml in ABTS assay and an IC50 value of 134.3±7.8 µg/ml on MIA PaCa-2 cells. The cells treated with 125 µg/ml and 250 µg/ml FEA showed increased apoptotic cells in Double staining assay, DNA damage during comet assay, attenuated ROS and cell cycle arrest at G2M phase at 125 µg/ml and 250 µg/ml. The active fraction AF5 showed a IC50 value of 67±1.26 µg/ml on MIA PaCa-2 cells during MTT assay, displayed potential antiproliferative effects, showed marked increase in the expression of γH2AX and p53. CONCLUSION These results prove that the fruit extract and the bioactive fraction demonstrate oxidative stress mediated DNA damage leading to the apoptosis in MIA PaCa-2 cell line.
Collapse
Affiliation(s)
- Meghana P
- Department of Post Graduate Studies and Research in Biotechnology, Kuvempu University, Shankarghatta-577451, Karnataka, India
| | - Sandeep Kumar Jain R
- Department of Post Graduate Studies and Research in Biotechnology, Kuvempu University, Shankarghatta-577451, Karnataka, India
| | - Prashanth N
- Department of Post Graduate Studies and Research in Biotechnology, Kuvempu University, Shankarghatta-577451, Karnataka, India
| | - Santhosh Kumar J U
- Research Unit of DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pallavi M
- Post graduate Department of Studies and Research in Biotechnology, Molecular Biomedicine Laboratory, Sahyadri Science College, Kuvempu University, Shimoga - 577203, Karnataka, India
| | | |
Collapse
|
22
|
Nelson VK, Pullaiah CP, Saleem Ts M, Roychoudhury S, Chinnappan S, Vishnusai B, Ram Mani R, Birudala G, Bottu KS. Natural Products as the Modulators of Oxidative Stress: An Herbal Approach in the Management of Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:161-179. [PMID: 36472822 DOI: 10.1007/978-3-031-12966-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prostate cancer is the most commonly diagnosed and frequently occurred cancer in the males globally. The current treatment strategies available to treat prostate cancer are not much effective and express various adverse effects. Hence, there is an urgent need to identify novel treatment that can improve patient outcome. From times immemorial, natural products are highly recognized for novel drug development for various diseases including cancer. Cancer cells generally maintain higher basal levels of reactive oxygen species (ROS) when compared to normal cells due to its high metabolic rate. However, initiation of excess intracellular ROS production can not be tolerated by the cancer cells and induce several cell death signals which are in contrast to normal cells. Therefore, small molecules of natural origin that induce ROS can potentially kill cancer cells in specific and provide a better opportunity to develop a novel drug therapy. In this review, we elaborated various classes of medicinal compounds and their mechanism of killing prostate cancer cells through direct or indirect ROS generation. This can generate a novel thought to develop promising drug candidate to treat prostate cancer patients.
Collapse
Affiliation(s)
- Vinod K Nelson
- Department of Pharmaceutical Chemistry, Raghavendra Institute of Pharmaceutical Education and Research (Autonomous), Anantapuramu, Andhra Pradesh, India.
| | - Chitikela P Pullaiah
- Department of Pharmacology, Siddha Central Research Institute, Central Council for Research in Siddha, Ministry of AYUSH, Chennai, Tamil Nadu, India
| | - Mohammed Saleem Ts
- College of Pharmacy, Riyadh ELM University, Riyadh, Kingdom of Saudi Arabia, Riyadh
| | | | - Sasikala Chinnappan
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Beere Vishnusai
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Ravishankar Ram Mani
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Geetha Birudala
- Faculty of Pharmacy, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Kavya Sree Bottu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
23
|
Li Y, Ni K, Chan C, Guo N, Luo T, Han W, Culbert A, Weichselbaum RR, Lin W. Dimethylaminomicheliolide Sensitizes Cancer Cells to Radiotherapy for Synergistic Combination with Immune Checkpoint Blockade. ADVANCED THERAPEUTICS 2022; 5:2100160. [PMID: 35812344 PMCID: PMC9269983 DOI: 10.1002/adtp.202100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 01/03/2023]
Abstract
Radiotherapy (RT) has demonstrated synergy with immune checkpoint blockade (ICB) in preclinical models. However, its potential as an immunoadjuvant is limited by low immunogenicity at low radiation doses and immunosuppression at high radiation doses. It is hypothesized that radiosensitizers can enhance both the anticancer and immunogenic effects of low-dose radiation. Herein the authors report the antitumor immunity of combined RT and immunotherapy with dimethylaminomicheliolide (DMAMCL), a prodrug of the anti-inflammatory sesquiterpene lactone micheliolide (MCL). DMAMCL sensitized cancer cells to a single fraction of RT in vitro by inducing apoptosis and DNA double-strand breaks. DMAMCL with 5 fractions of 2 Gy focal X-ray irradiation led to significant anticancer efficacy in subcutaneous and spontaneous models of murine cancer. DMAMCL-sensitized RT upregulated programmed death-ligand 1 (PD-L1) expression in the tumors. Combination of DMAMCL-sensitized RT with anti-PD-L1 ICB significantly enhanced antitumor efficacy by increasing tumor-infiltrating CD4+ and CD8+ T cells and establishing immune memory.
Collapse
Affiliation(s)
- Yingying Li
- Department of Chemistry University of Chicago Chicago, IL 60637, USA
| | - Kaiyuan Ni
- Department of Chemistry University of Chicago Chicago, IL 60637, USA
| | - Christina Chan
- Department of Chemistry University of Chicago Chicago, IL 60637, USA
| | - Nining Guo
- Department of Chemistry University of Chicago Chicago, IL 60637, USA
| | - Taokun Luo
- Department of Chemistry University of Chicago Chicago, IL 60637, USA
| | - Wenbo Han
- Department of Chemistry University of Chicago Chicago, IL 60637, USA
| | - August Culbert
- Department of Chemistry University of Chicago Chicago, IL 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research University of Chicago, Chicago, IL 60637, USA
| | - Wenbin Lin
- Department of Chemistry University of Chicago Chicago, IL 60637, USA
| |
Collapse
|
24
|
Altuna-Coy A, Ruiz-Plazas X, Alves-Santiago M, Segarra-Tomás J, Chacón MR. Serum Levels of the Cytokine TWEAK Are Associated with Metabolic Status in Patients with Prostate Cancer and Modulate Cancer Cell Lipid Metabolism In Vitro. Cancers (Basel) 2021; 13:cancers13184688. [PMID: 34572917 PMCID: PMC8465414 DOI: 10.3390/cancers13184688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary TWEAK is an inflammatory cytokine related to prostate cancer (PCa) progression that exerts its effects by engaging its cognate receptor Fn14. A soluble form of TWEAK (sTWEAK) has been detected in the PCa microenvironment. Altered levels of circulating sTWEAK are associated with aberrant glucose metabolism. We show that reduced serum levels of sTWEAK are associated with the metabolic status in patients with PCa and that the treatment of PC-3 cells with sTWEAK enhances the expression of genes related to lipid, but not to glucose, metabolism. sTWEAK also increases the lipid uptake and lipid accumulation in PC-3 cells. We corroborated that the observed effects were due to TWEAK/Fn14 engagement by silencing Fn14 expression, which attenuated the aberrant gene and protein expression. Additionally, we observed that the phosphorylation of ERK1/2 and AKT (ser473) were required for TWEAK/Fn14 actions. Thus, the contribution of the sTWEAK/Fn14 axis on PCa metabolism supports its potential as a therapeutic target for PCa. Abstract Soluble TWEAK (sTWEAK) has been proposed as a prognostic biomarker of prostate cancer (PCa). We found that reduced serum levels of sTWEAK, together with higher levels of prostate-specific antigen and a higher HOMA-IR index, are independent predictors of PCa. We also showed that sTWEAK stimulus failed to alter the expression of glucose transporter genes (SLC2A4 and SLC2A1), but significantly reduced the expression of glucose metabolism-related genes (PFK, HK1 and PDK4) in PCa cells. The sTWEAK stimulation of PC-3 cells significantly increased the expression of the genes related to lipogenesis (ACACA and FASN), lipolysis (CPT1A and PNPLA2), lipid transport (FABP4 and CD36) and lipid regulation (SREBP-1 and PPARG) and increased the lipid uptake. Silencing the TWEAK receptor (Fn14) in PC-3 cells confirmed the observed lipid metabolic effects, as shown by the downregulation of ACACA, FASN, CPT1A, PNPLA2, FABP4, CD36, SREBP-1 and PPARG expression, which was paralleled by a reduction of FASN, CPT1A and FABP4 protein expression. Specific-signaling inhibitor assays show that ERK1/2 and AKT (ser473) phosphorylation can regulate lipid metabolism-related genes in PCa cells, pointing to the AKT locus as a possible target for PCa. Overall, our data support sTWEAK/Fn14 axis as a potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Antonio Altuna-Coy
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-C.); (X.R.-P.); (M.A.-S.)
| | - Xavier Ruiz-Plazas
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-C.); (X.R.-P.); (M.A.-S.)
- Urology Unit, Joan XXIII University Hospital, 43005 Tarragona, Spain
| | - Marta Alves-Santiago
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-C.); (X.R.-P.); (M.A.-S.)
- Urology Unit, Joan XXIII University Hospital, 43005 Tarragona, Spain
| | - José Segarra-Tomás
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-C.); (X.R.-P.); (M.A.-S.)
- Urology Unit, Joan XXIII University Hospital, 43005 Tarragona, Spain
- Correspondence: (J.S.-T.); (M.R.C.); Tel.: +34-977295500 (ext. 3406) (J.S.-T. & M.R.C.)
| | - Matilde R. Chacón
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-C.); (X.R.-P.); (M.A.-S.)
- Correspondence: (J.S.-T.); (M.R.C.); Tel.: +34-977295500 (ext. 3406) (J.S.-T. & M.R.C.)
| |
Collapse
|
25
|
Abstract
Terpenoids are the largest class of natural products, most of which are derived from plants. Amongst their numerous biological properties, their anti-tumor effects are of interest for they are extremely diverse which include anti-proliferative, apoptotic, anti-angiogenic, and anti-metastatic activities. Recently, several in vitro and in vivo studies have been dedicated to understanding the 'terpenoid induced autophagy' phenomenon in cancer cells. Light has already been shed on the intricacy of apoptosis and autophagy relationship. This latter crosstalk is driven by the delicate balance between activating or silencing of certain proteins whereby the outcome is expressed via interrelated signaling pathways. In this review, we focus on nine of the most studied terpenoids and on their cell death and autophagic activity. These terpenoids are grouped in three classes: sesquiterpenoid (artemisinin, parthenolide), diterpenoids (oridonin, triptolide), and triterpenoids (alisol, betulinic acid, oleanolic acid, platycodin D, and ursolic acid). We have selected these nine terpenoids among others as they belong to the different major classes of terpenoids and our extensive search of the literature indicated that they were the most studied in terms of autophagy in cancer. These terpenoids alone demonstrate the complexity by which these secondary metabolites induce autophagy via complex signaling pathways such as MAPK/ERK/JNK, PI3K/AKT/mTOR, AMPK, NF-kB, and reactive oxygen species. Moreover, induction of autophagy can be either destructive or protective in tumor cells. Nevertheless, should this phenomenon be well understood, we ought to be able to exploit it to create novel therapies and design more effective regimens in the management and treatment of cancer.
Collapse
|
26
|
Penthala NR, Balasubramaniam M, Dachavaram SS, Morris EJ, Bhat-Nakshatri P, Ponder J, Jordan CT, Nakshatri H, Crooks PA. Antitumor properties of novel sesquiterpene lactone analogs as NFκB inhibitors that bind to the IKKβ ubiquitin-like domain (ULD). Eur J Med Chem 2021; 224:113675. [PMID: 34229108 DOI: 10.1016/j.ejmech.2021.113675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/30/2022]
Abstract
Melampomagnolide B (MMB, 3) is a parthenolide (PTL, 1) based sesquiterpene lactone that has been used as a template for the synthesis of a plethora of lead anticancer agents owing to its reactive C-10 primary hydroxyl group. Such compounds have been shown to inhibit the IKKβ subunit, preventing phosphorylation of the cytoplasmic IκB inhibitory complex. The present study focuses on the synthesis and in vitro antitumor properties of novel benzyl and phenethyl carbamates of MMB (7a-7k). Screening of these MMB carbamates identified analogs with potent growth inhibition properties against a panel of 60 human cancer cell lines (71% of the molecules screened had GI50 values < 2 μM). Two analogs, the benzyl carbamate 7b and the phenethyl carbamate7k, were the most active compounds. Lead compound 7b inhibited cell proliferation in M9 ENL AML cells, and in TMD-231, OV-MD-231 and SUM149 breast cancer cell lines. Interestingly, mechanistic studies showed that 7b did not inhibit p65 phosphorylation in M9 ENL AML and OV-MD-231 cells, but did inhibit phophorylation of both p65 and IκBα in SUM149 cells. 7b also reduced NFκB binding to DNA in both OV-MD-231 and SUM149 cells. Molecular docking studies indicated that 7b and 7k are both predicted to interact with the ubiquitin-like domain (ULD) of the IKKβ subunit. These data suggest that in SUM149 cells, 7b is likely acting as an allosteric inhibitor of IKKβ, whereas in M9 ENL AML and OV-MD-231 cells 7b is able to inhibit an event after IκB/p65/p50 phosphorylation by IKKβ that leads to inhibition of NFκB activation and reduction in NFκB-DNA binding. Analog 7b was by far the most potent compound in either carbamate series, and was considered an important lead compound for further optimization and development as an anticancer agent.
Collapse
Affiliation(s)
- Narsimha R Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States
| | - Meenakshisundaram Balasubramaniam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States
| | - Soma Shekar Dachavaram
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States
| | - Earl J Morris
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States
| | - Poornima Bhat-Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jessica Ponder
- Division of Hematology and University of Colorado, Aurora, CO, 80045, United States
| | - Craig T Jordan
- Division of Hematology and University of Colorado, Aurora, CO, 80045, United States
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| |
Collapse
|
27
|
Kim Y, Sengupta S, Sim T. Natural and Synthetic Lactones Possessing Antitumor Activities. Int J Mol Sci 2021; 22:ijms22031052. [PMID: 33494352 PMCID: PMC7865919 DOI: 10.3390/ijms22031052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/29/2022] Open
Abstract
Cancer is one of the leading causes of death globally, accounting for an estimated 8 million deaths each year. As a result, there have been urgent unmet medical needs to discover novel oncology drugs. Natural and synthetic lactones have a broad spectrum of biological uses including anti-tumor, anti-helminthic, anti-microbial, and anti-inflammatory activities. Particularly, several natural and synthetic lactones have emerged as anti-cancer agents over the past decades. In this review, we address natural and synthetic lactones focusing on their anti-tumor activities and synthetic routes. Moreover, we aim to highlight our journey towards chemical modification and biological evaluation of a resorcylic acid lactone, L-783277 (4). We anticipate that utilization of the natural and synthetic lactones as novel scaffolds would benefit the process of oncology drug discovery campaigns based on natural products.
Collapse
Affiliation(s)
- Younghoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
- Severance Biomedical Science Institute, Graduate School of Medical Science (Brain Korea 21 Project), College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| | - Sandip Sengupta
- Severance Biomedical Science Institute, Graduate School of Medical Science (Brain Korea 21 Project), College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
- Severance Biomedical Science Institute, Graduate School of Medical Science (Brain Korea 21 Project), College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
- Correspondence: ; Tel.: +82-2-2228-0797
| |
Collapse
|
28
|
Ramírez-Expósito MJ, Carrera-González MP, Mayas MD, Martínez-Martos JM. Gender differences in the antioxidant response of oral administration of hydroxytyrosol and oleuropein against N-ethyl-N-nitrosourea (ENU)-induced glioma. Food Res Int 2020; 140:110023. [PMID: 33648253 DOI: 10.1016/j.foodres.2020.110023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022]
Abstract
Brain tumorigenesis has been associated not only with oxidative stress, but also with a reduced response of non-enzyme and enzyme antioxidant defense systems. In fact, the imbalance between free-radical production and the efficiency of the antioxidant defense systems triggers the process because the central nervous system (CNS) is very sensitive to free-radical damage. Phenolic compounds, mainly oleuropein and its major metabolite hydroxytyrosol, derived from olives and virgin olive oil, have been shown to exert important anticancer activities both in vitro and in vivo due to their antioxidant properties. The present study analyzes the effects of the oral administration of oleuropein, hydroxytyrosol and the mixture of both phenolic compounds in rats with transplacental N-ethyl-N-nitrosourea (ENU)-induced brain tumors to analyze their potential effect against brain tumorigenesis through the modification of redox system components. Oxidative stress parameters, non-enzyme and enzyme antioxidant defense systems and blood chemistry were assayed in the different experimental groups. The treatment with oleuropein, hydroxytyrosol and/or the mixture of both phenolic compounds promotes a limited beneficial effect as anticancer compounds in our ENU-induced animal model of brain tumor. These effects occur via redox control mechanisms involving endogenous enzymatic and non-enzymatic antioxidant defense systems, and are highly dependent on the gender of the animals.
Collapse
Affiliation(s)
- M J Ramírez-Expósito
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Health Sciences, University of Jaén, Jaén, Spain
| | - M P Carrera-González
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Health Sciences, University of Jaén, Jaén, Spain
| | - M D Mayas
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Health Sciences, University of Jaén, Jaén, Spain
| | - J M Martínez-Martos
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Health Sciences, University of Jaén, Jaén, Spain.
| |
Collapse
|
29
|
Yu TJ, Hsieh CY, Tang JY, Lin LC, Huang HW, Wang HR, Yeh YC, Chuang YT, Ou-Yang F, Chang HW. Antimycin A shows selective antiproliferation to oral cancer cells by oxidative stress-mediated apoptosis and DNA damage. ENVIRONMENTAL TOXICOLOGY 2020; 35:1212-1224. [PMID: 32662599 DOI: 10.1002/tox.22986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/26/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
The antibiotic antimycin A (AMA) is commonly used as an inhibitor for the electron transport chain but its application in anticancer studies is rare. Recently, the repurposing use of AMA in antiproliferation of several cancer cell types has been reported. However, it is rarely investigated in oral cancer cells. The purpose of this study is to investigate the selective antiproliferation ability of AMA treatment on oral cancer cells. Cell viability, flow cytometry, and western blotting were applied to explore its possible anticancer mechanism in terms of both concentration- and exposure time-effects. AMA shows the higher antiproliferation to two oral cancer CAL 27 and Ca9-22 cell lines than normal oral HGF-1 cell lines. Moreover, AMA induces the production of higher reactive oxygen species (ROS) levels and pan-caspase activation in oral cancer CAL 27 and Ca9-22 cells than in normal oral HGF-1 cells, providing the possible mechanism for its selective antiproliferation effect of AMA. In addition to ROS, AMA induces mitochondrial superoxide (MitoSOX) generation and depletes mitochondrial membrane potential (MitoMP). This further supports the AMA-induced oxidative stress changes in oral cancer CAL 27 and Ca9-22 cells. AMA also shows high expressions of annexin V in CAL 27 and Ca9-22 cells and cleaved forms of poly (ADP-ribose) polymerase (PARP), caspase 9, and caspase 3 in CAL 27 cells, supporting the apoptosis-inducing ability of AMA. Furthermore, AMA induces DNA damage (γH2AX and 8-oxo-2'-deoxyguanosine [8-oxodG]) in CAL 27 and Ca9-22 cells. Notably, the AMA-induced selective antiproliferation, oxidative stress, and DNA damage were partly prevented from N-acetylcysteine (NAC) pretreatments. Taken together, AMA selectively kills oral cancer cells in an oxidative stress-dependent mechanism involving apoptosis and DNA damage.
Collapse
Affiliation(s)
- Tzu-Jung Yu
- Department of Biomedical Science and Environmental Biology, PhD program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Che-Yu Hsieh
- Department of Biomedical Science and Environmental Biology, PhD program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center, Tainan, Taiwan
- School of Medicine, Taipei Medical University, Taipei, Taiwan
- Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hui-Ru Wang
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yun-Chiao Yeh
- Department of Biomedical Science and Environmental Biology, PhD program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fu Ou-Yang
- Cancer Center, Kaohsiung Medical University Hospital; Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Breast Surgery and Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital; Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
30
|
Yu TJ, Tang JY, Lin LC, Lien WJ, Cheng YB, Chang FR, Ou-Yang F, Chang HW. Withanolide C Inhibits Proliferation of Breast Cancer Cells via Oxidative Stress-Mediated Apoptosis and DNA Damage. Antioxidants (Basel) 2020; 9:antiox9090873. [PMID: 32947878 PMCID: PMC7555407 DOI: 10.3390/antiox9090873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Some withanolides, particularly the family of steroidal lactones, show anticancer effects, but this is rarely reported for withanolide C (WHC)—especially anti-breast cancer effects. The subject of this study is to evaluate the ability of WHC to regulate the proliferation of breast cancer cells, using both time and concentration in treatment with WHC. In terms of ATP depletion, WHC induced more antiproliferation to three breast cancer cell lines, SKBR3, MCF7, and MDA-MB-231, than to normal breast M10 cell lines. SKBR3 and MCF7 cells showing higher sensitivity to WHC were used to explore the antiproliferation mechanism. Flow cytometric apoptosis analyses showed that subG1 phase and annexin V population were increased in breast cancer cells after WHC treatment. Western blotting showed that cleaved forms of the apoptotic proteins poly (ADP-ribose) polymerase (c-PARP) and cleaved caspase 3 (c-Cas 3) were increased in breast cancer cells. Flow cytometric oxidative stress analyses showed that WHC triggered reactive oxygen species (ROS) and mitochondrial superoxide (MitoSOX) production as well as glutathione depletion. In contrast, normal breast M10 cells showed lower levels of ROS and annexin V expression than breast cancer cells. Flow cytometric DNA damage analyses showed that WHC triggered γH2AX and 8-oxo-2′-deoxyguanosine (8-oxodG) expression in breast cancer cells. Moreover, N-acetylcysteine (NAC) pretreatment reverted oxidative stress-mediated ATP depletion, apoptosis, and DNA damage. Therefore, WHC kills breast cancer cells depending on oxidative stress-associated mechanisms.
Collapse
Affiliation(s)
- Tzu-Jung Yu
- Division of Breast Surgery and Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-B.C.); (F.-R.C.)
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center, Tainan 71004, Taiwan;
- School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Chung Hwa University Medical Technology, Tainan 71703, Taiwan
| | - Wan-Ju Lien
- Department of Biomedical Science and Environmental Biology, Ph.D Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-B.C.); (F.-R.C.)
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-B.C.); (F.-R.C.)
| | - Fu Ou-Yang
- Division of Breast Surgery and Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Correspondence: or (F.O.-Y.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 8105) (F.O.-Y.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-B.C.); (F.-R.C.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence: or (F.O.-Y.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 8105) (F.O.-Y.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
31
|
Parthenolide as Cooperating Agent for Anti-Cancer Treatment of Various Malignancies. Pharmaceuticals (Basel) 2020; 13:ph13080194. [PMID: 32823992 PMCID: PMC7466132 DOI: 10.3390/ph13080194] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
Primary and acquired resistance of cancer to therapy is often associated with activation of nuclear factor kappa B (NF-κB). Parthenolide (PN) has been shown to inhibit NF-κB signaling and other pro-survival signaling pathways, induce apoptosis and reduce a subpopulation of cancer stem-like cells in several cancers. Multimodal therapies that include PN or its derivatives seem to be promising approaches enhancing sensitivity of cancer cells to therapy and diminishing development of resistance. A number of studies have demonstrated that several drugs with various targets and mechanisms of action can cooperate with PN to eliminate cancer cells or inhibit their proliferation. This review summarizes the current state of knowledge on PN activity and its potential utility as complementary therapy against different cancers.
Collapse
|
32
|
Micheliolide Enhances Radiosensitivities of p53-Deficient Non-Small-Cell Lung Cancer via Promoting HIF-1α Degradation. Int J Mol Sci 2020; 21:ijms21093392. [PMID: 32403326 PMCID: PMC7247679 DOI: 10.3390/ijms21093392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 02/08/2023] Open
Abstract
Micheliolide (MCL) has shown promising anti-inflammatory and anti-tumor efficacy. However, whether and how MCL enhances the sensitivity of non-small-cell lung cancer (NSCLC) to radiotherapy are still unknown. In the present paper, we found that MCL exerted a tumor cell killing effect on NSCLC cells in a dose-dependent manner, and MCL strongly sensitized p53-deficient NSCLC cells, but not the cells with wild-type p53 to irradiation (IR). Meanwhile, MCL markedly inhibited the expression of hypoxia-inducible factor-1α (HIF-1α) after IR and hypoxic exposure in H1299 and Calu-1 cells rather than in H460 cells. Consistently, radiation- or hypoxia-induced expression of vascular endothelial growth factor (VEGF) was also significantly inhibited by MCL in H1299 and Calu-1 cells, but not in H460 cells. Therefore, inhibition of the HIF-1α pathway might, at least in part, contribute to the radiosensitizing effect of MCL. Further study showed that MCL could accelerate the degradation of HIF-1α through the ubiquitin-proteosome system. In addition, the transfection of wild-type p53 into p53-null cells (H1299) attenuated the effect of MCL on inhibiting HIF-1α expression. These results suggest MCL effectively sensitizes p53-deficient NSCLC cells to IR in a manner of inhibiting the HIF-1α pathway via promoting HIF-1α degradation, and p53 played a negative role in MCL-induced HIF-1α degradation.
Collapse
|
33
|
Gao W, Li L, Zhang X, Luo L, He Y, Cong C, Gao D. Nanomagnetic liposome-encapsulated parthenolide and indocyanine green for targeting and chemo-photothermal antitumor therapy. Nanomedicine (Lond) 2020; 15:871-890. [PMID: 32223505 DOI: 10.2217/nnm-2019-0038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: To synthesize a drug-delivery system with chemo-photothermal function and magnetic targeting, to validate its antitumor effect. Materials & methods: Parthenolide (PTL), employing chemotherapy and indocyanine green (ICG) providing phototherapy, were encased separately in the lipid and aqueous phases of liposomes (Lips). The Fe3O4 nanoparticles (MNPs), endowing magnetic targeting, were modified on the surface of Lips. The antitumor effects were investigated in vitro and in vivo. Results: ICG-PTL-Lips@MNPs showed outstanding synergistic antitumor efficacy in vitro and in vivo. Especially, after 14-day treatment, the tumor volumes decreased significantly and the biotoxicity was very low. Conclusion: The designed ICG-PTL-Lips@MNPs possess synergistic effects of chemotherapy, photothermal and targeting therapy, which are expected to provide an alternative way to further improve antitumor efficacy.
Collapse
Affiliation(s)
- Wenbin Gao
- Applying Chemistry Key Laboratory of Hebei Province, Department of Bioengineer, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China
| | - Lei Li
- Applying Chemistry Key Laboratory of Hebei Province, Department of Bioengineer, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China.,State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China
| | - Xuwu Zhang
- Applying Chemistry Key Laboratory of Hebei Province, Department of Bioengineer, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China
| | - Liyao Luo
- Applying Chemistry Key Laboratory of Hebei Province, Department of Bioengineer, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China
| | - Yuchu He
- Applying Chemistry Key Laboratory of Hebei Province, Department of Bioengineer, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China
| | - Cong Cong
- Applying Chemistry Key Laboratory of Hebei Province, Department of Bioengineer, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China.,Hebei Province Asparagus Industry Technology Research Institute, No. 12 Donghai Road, Qinhuangdao, 066318, PR China
| | - Dawei Gao
- Applying Chemistry Key Laboratory of Hebei Province, Department of Bioengineer, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China.,State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China.,Hebei Province Asparagus Industry Technology Research Institute, No. 12 Donghai Road, Qinhuangdao, 066318, PR China
| |
Collapse
|
34
|
Freund RRA, Gobrecht P, Fischer D, Arndt HD. Advances in chemistry and bioactivity of parthenolide. Nat Prod Rep 2020; 37:541-565. [DOI: 10.1039/c9np00049f] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
(−)-Parthenolide is a germacrane sesquiterpene lactone, available in ample amounts from the traditional medical plant feverfew (Tanacetum parthenium).
Collapse
Affiliation(s)
- Robert R. A. Freund
- Institut für Organische Chemie und Makromolekulare Chemie
- Friedrich-Schiller-Universität
- D-07743 Jena
- Germany
| | - Philipp Gobrecht
- Lehrstuhl für Zellphysiologie
- Ruhr-Universität Bochum
- D-44780 Bochum
- Germany
| | - Dietmar Fischer
- Lehrstuhl für Zellphysiologie
- Ruhr-Universität Bochum
- D-44780 Bochum
- Germany
| | - Hans-Dieter Arndt
- Institut für Organische Chemie und Makromolekulare Chemie
- Friedrich-Schiller-Universität
- D-07743 Jena
- Germany
| |
Collapse
|
35
|
Rashid S, Freitas MO, Cucchi D, Bridge G, Yao Z, Gay L, Williams M, Wang J, Suraweera N, Silver A, McDonald SAC, Chelala C, Szabadkai G, Martin SA. MLH1 deficiency leads to deregulated mitochondrial metabolism. Cell Death Dis 2019; 10:795. [PMID: 31641109 PMCID: PMC6805956 DOI: 10.1038/s41419-019-2018-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/02/2019] [Accepted: 09/24/2019] [Indexed: 12/18/2022]
Abstract
The DNA mismatch repair (MMR) pathway is responsible for the repair of base-base mismatches and insertion/deletion loops that arise during DNA replication. MMR deficiency is currently estimated to be present in 15-17% of colorectal cancer cases and 30% of endometrial cancers. MLH1 is one of the key proteins involved in the MMR pathway. Inhibition of a number of mitochondrial genes, including POLG and PINK1 can induce synthetic lethality in MLH1-deficient cells. Here we demonstrate for the first time that loss of MLH1 is associated with a deregulated mitochondrial metabolism, with reduced basal oxygen consumption rate and reduced spare respiratory capacity. Furthermore, MLH1-deficient cells display a significant reduction in activity of the respiratory chain Complex I. As a functional consequence of this perturbed mitochondrial metabolism, MLH1-deficient cells have a reduced anti-oxidant response and show increased sensitivity to reactive oxidative species (ROS)-inducing drugs. Taken together, our results provide evidence for an intrinsic mitochondrial dysfunction in MLH1-deficient cells and a requirement for MLH1 in the regulation of mitochondrial function.
Collapse
Affiliation(s)
- Sukaina Rashid
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Marta O Freitas
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Danilo Cucchi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Gemma Bridge
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Zhi Yao
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, WC1E 6BT, UK
| | - Laura Gay
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Marc Williams
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jun Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Nirosha Suraweera
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Andrew Silver
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Stuart A C McDonald
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Claude Chelala
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, WC1E 6BT, UK.,Department of Biomedical Sciences, University of Padua, Padua, 35131, Italy.,The Francis Crick Institute, London, NW1 1AT, UK
| | - Sarah A Martin
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
36
|
Ramírez-Expósito MJ, Mayas MD, Carrera-González MP, Martínez-Martos JM. Gender Differences in the Antioxidant Response to Oxidative Stress in Experimental Brain Tumors. Curr Cancer Drug Targets 2019; 19:641-654. [DOI: 10.2174/1568009618666181018162549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/13/2018] [Accepted: 09/15/2018] [Indexed: 01/16/2023]
Abstract
Background:Brain tumorigenesis is related to oxidative stress and a decreased response of antioxidant defense systems. As it is well known that gender differences exist in the incidence and survival rates of brain tumors, it is important to recognize and understand the ways in which their biology can differ.Objective:To analyze gender differences in redox status in animals with chemically-induced brain tumors.Methods:Oxidative stress parameters, non-enzyme and enzyme antioxidant defense systems are assayed in animals with brain tumors induced by transplacental N-ethyl-N-nitrosourea (ENU) administration. Both tissue and plasma were analyzed to know if key changes in redox imbalance involved in brain tumor development were reflected systemically and could be used as biomarkers of the disease.Results:Several oxidative stress parameters were modified in tumor tissue of male and female animals, changes that were not reflected at plasma level. Regarding antioxidant defense system, only glutathione (GSH) levels were decreased in both brain tumor tissue and plasma. Superoxide dismutase (SOD) and catalase (CAT) activities were decreased in brain tumor tissue of male and female animals, but plasma levels were only altered in male animals. However, different protein and mRNA expression patterns were found for both enzymes. On the contrary, glutathione peroxidase (GPx) activity showed increased levels in brain tumor tissue without gender differences, being protein and gene expression also increased in both males and female animals. However, these changes in GPx were not reflected at plasma level.Conclusion:We conclude that brain tumorigenesis was related to oxidative stress and changes in brain enzyme and non-enzyme antioxidant defense systems with gender differences, whereas plasma did not reflect the main redox changes that occur at the brain level.
Collapse
Affiliation(s)
| | - María Dolores Mayas
- Department of Health Sciences, Faculty of Health Sciences, University of Jaen, Jaen, Spain
| | | | | |
Collapse
|
37
|
Li C, Zhou Y, Cai Y, Shui C, Liu W, Wang X, Jiang J, Zeng D, Gui C, Sun R. Parthenolide Inhibits the Proliferation of MDA-T32 Papillary Thyroid Carcinoma Cells in Vitro and in Mouse Tumor Xenografts and Activates Autophagy and Apoptosis by Downregulation of the Mammalian Target of Rapamycin (mTOR)/PI3K/AKT Signaling Pathway. Med Sci Monit 2019; 25:5054-5061. [PMID: 31322140 PMCID: PMC6637819 DOI: 10.12659/msm.915387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background This study aimed to examine the effects of the sesquiterpene lactone, parthenolide, on migration, autophagy, and apoptosis of MDA-T32 human papillary thyroid carcinoma cells in vitro and in mouse tumor xenografts. Material/Methods Cell proliferation and viability of MDA-T32 human papillary thyroid carcinoma cells were determined by MTT assay, and cell migration was studied using a transwell assay. Fluorescence microscopy using acridine orange (AO) and ethidium bromide (EB) staining evaluated apoptosis. Transmission electron microscopy was used to study the effects of parthenolide on autophagy, and Western blot examined the levels of autophagy-associated proteins, including Bax, Bcl-2, and LC3-ll. Mice (n=10) were injected with 5×106 MDA-T32 cells subcutaneously into the left flank, and xenograft tumors were grown for six weeks. Control untreated mice (n=5) were compared with treated mice (n=5) given parthenolide three times per week. Results Parthenolide resulted in a dose-dependent reduction in viability and cell migration of MDA-T32 cells, with a half-maximal inhibitory concentration (IC50) of 12 μM. AO and EB staining showed that parthenolide induced cell apoptosis and electron microscopy identified autophagosomes in MDA-T32 cells. Parthenolide induced increased expression of the autophagocytic proteins, LC3-II and beclin-1, had a dose-dependent inhibitory effect on the mTOR/PI3K/AKT cascade in MDA-T32 cells and inhibited the growth of the mouse xenograft tumors in vivo. Conclusions Parthenolide inhibited the growth and migration of MDA-T32 human papillary thyroid carcinoma cells in vitro and mouse tumor xenografts and activated autophagy and apoptosis by downregulation of the mTOR/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Chao Li
- Department of Head and Neck Surgery, Sichuan Provincial Cancer Hospital, Chengdu, Sichuan, China (mainland)
| | - Yuqiu Zhou
- Department of Head and Neck Surgery, Sichuan Provincial Cancer Hospital, Chengdu, Sichuan, China (mainland)
| | - Yongcong Cai
- Department of Head and Neck Surgery, Sichuan Provincial Cancer Hospital, Chengdu, Sichuan, China (mainland)
| | - Chunyan Shui
- Department of Otolaryngology - Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Wei Liu
- Department of Otolaryngology - Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Xu Wang
- Graduate School, Chengdu Medical College, Chengdu, Sichuan, China (mainland)
| | - Jian Jiang
- Department of Head and Neck Surgery, Sichuan Provincial Cancer Hospital, Chengdu, Sichuan, China (mainland)
| | - Dingfen Zeng
- Department of Head and Neck Surgery, Sichuan Provincial Cancer Hospital, Chengdu, Sichuan, China (mainland)
| | - Chunhan Gui
- Department of Head and Neck Surgery, Sichuan Provincial Cancer Hospital, Chengdu, Sichuan, China (mainland)
| | - Ronghao Sun
- Department of Head and Neck Surgery, Sichuan Provincial Cancer Hospital, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
38
|
Morel KL, Ormsby RJ, Klebe S, Sweeney CJ, Sykes PJ. DMAPT is an Effective Radioprotector from Long-Term Radiation-Induced Damage to Normal Mouse Tissues In Vivo. Radiat Res 2019; 192:231-239. [PMID: 31095445 DOI: 10.1667/rr15404.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
While radiotherapy is widely used in cancer treatment, the benefits can be limited by radiation-induced damage to neighboring healthy tissues. We previously demonstrated in mice that the anti-inflammatory compound dimethylaminoparthenolide (DMAPT) selectively induces radiosensitivity in prostate tumor tissue from transgenic adenocarcinoma of mouse prostate (TRAMP) mice, while simultaneously protecting healthy tissues from 6 Gy whole-body radiation-induced apoptosis. Here, we examined the radioprotective effect of DMAPT on fibrosis in normal tissues after a partial-body fractionated radiation protocol that more closely mimics the image-guided fractionated radiotherapy protocols used clinically. Male C57BL/6J mice, 16 weeks old, received 20 Gy fractionated doses of X rays (2 Gy daily fractions, five days/week for two weeks) or sham irradiation to the lower abdomen, with or without a prior 20 mGy dose to mimic an image dose. In addition, mice received thrice weekly DMAPT (100 mg/kg by oral gavage) or vehicle control from 15 weeks of age until time of analysis at 6 weeks postirradiation. In the absence of exposure to radiation, there were no significant differences observed in the tissues of DMAPT and vehicle-treated mice (P > 0.05). DMAPT treatment significantly reduced radiation-induced testis weight loss by 60.9% (P < 0.0001), protected against a decrease in the seminiferous tubule diameter by 42.1% (P < 0.0001) and largely preserved testis morphology. Inclusion of the image dose had no significant effect on testis mass, seminiferous tubule diameter or testis morphology. DMAPT reduced radiation-induced fibrosis in the corpus cavernous region of the penis (98.1% reduction, P = 0.009) and in the muscle layer around the bladder (80.1% reduction, P = 0.0001). There was also a trend towards reduced collagen infiltration into the submucosal and muscle layers in the rectum. These results suggest that DMAPT could be useful in providing protection from the radiation-induced side effects of impotence and infertility, urinary incontinence and fecal urgency resulting from prostate cancer radiotherapy. DMAPT is a very well-tolerated drug and can conveniently be delivered orally without strict time windows relative to radiation exposure. Protection of normal tissues by DMAPT could potentially be useful in radiotherapy of other cancer types as well.
Collapse
Affiliation(s)
- Katherine L Morel
- a Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia, Australia.,c Dana-Farber Cancer Institute, Harvard University, Boston, Massachusetts
| | - Rebecca J Ormsby
- a Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia, Australia
| | - Sonja Klebe
- b Department of Anatomical Pathology, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | | | - Pamela J Sykes
- a Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia, Australia
| |
Collapse
|
39
|
Potential Applications of NRF2 Inhibitors in Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8592348. [PMID: 31097977 PMCID: PMC6487091 DOI: 10.1155/2019/8592348] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/10/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
The NRF2/KEAP1 pathway represents one of the most important cell defense mechanisms against exogenous or endogenous stressors. Indeed, by increasing the expression of several cytoprotective genes, the transcription factor NRF2 can shelter cells and tissues from multiple sources of damage including xenobiotic, electrophilic, metabolic, and oxidative stress. Importantly, the aberrant activation or accumulation of NRF2, a common event in many tumors, confers a selective advantage to cancer cells and is associated to malignant progression, therapy resistance, and poor prognosis. Hence, in the last years, NRF2 has emerged as a promising target in cancer treatment and many efforts have been made to identify therapeutic strategies aimed at disrupting its prooncogenic role. By summarizing the results from past and recent studies, in this review, we provide an overview concerning the NRF2/KEAP1 pathway, its biological impact in solid and hematologic malignancies, and the molecular mechanisms causing NRF2 hyperactivation in cancer cells. Finally, we also describe some of the most promising therapeutic approaches that have been successfully employed to counteract NRF2 activity in tumors, with a particular emphasis on the development of natural compounds and the adoption of drug repurposing strategies.
Collapse
|
40
|
Enzymatic glutaredoxin-dependent method to determine glutathione and protein S-glutathionylation using fluorescent eosin-glutathione. Anal Biochem 2019; 568:24-30. [DOI: 10.1016/j.ab.2018.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/18/2018] [Accepted: 12/27/2018] [Indexed: 11/18/2022]
|
41
|
Mortezaee K, Goradel NH, Amini P, Shabeeb D, Musa AE, Najafi M, Farhood B. NADPH Oxidase as a Target for Modulation of Radiation Response; Implications to Carcinogenesis and Radiotherapy. Curr Mol Pharmacol 2019; 12:50-60. [DOI: 10.2174/1874467211666181010154709] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/17/2018] [Accepted: 09/25/2018] [Indexed: 01/17/2023]
Abstract
Background:Radiotherapy is a treatment modality for cancer. For better therapeutic efficiency, it could be used in combination with surgery, chemotherapy or immunotherapy. In addition to its beneficial therapeutic effects, exposure to radiation leads to several toxic effects on normal tissues. Also, it may induce some changes in genomic expression of tumor cells, thereby increasing the resistance of tumor cells. These changes lead to the appearance of some acute reactions in irradiated organs, increased risk of carcinogenesis, and reduction in the therapeutic effect of radiotherapy.Discussion:So far, several studies have proposed different targets such as cyclooxygenase-2 (COX-2), some toll-like receptors (TLRs), mitogen-activated protein kinases (MAPKs) etc., for the amelioration of radiation toxicity and enhancing tumor response. NADPH oxidase includes five NOX and two dual oxidases (DUOX1 and DUOX2) subfamilies that through the production of superoxide and hydrogen peroxide, play key roles in oxidative stress and several signaling pathways involved in early and late effects of ionizing radiation. Chronic ROS production by NOX enzymes can induce genomic instability, thereby increasing the risk of carcinogenesis. Also, these enzymes are able to induce cell death, especially through apoptosis and senescence that may affect tissue function. ROS-derived NADPH oxidase causes apoptosis in some organs such as intestine and tongue, which mediate inflammation. Furthermore, continuous ROS production stimulates fibrosis via stimulation of fibroblast differentiation and collagen deposition. Evidence has shown that in contrast to normal tissues, the NOX system induces tumor resistance to radiotherapy through some mechanisms such as induction of hypoxia, stimulation of proliferation, and activation of macrophages. However, there are some contradictory results. Inhibition of NADPH oxidase in experimental studies has shown promising results for both normal tissue protection and tumor sensitization to ionizing radiation.Conclusion:In this article, we aimed to review the role of different subfamilies of NADPH oxidase in radiation-induced early and late normal tissue toxicities in different organs.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Amini
- Department of Radiology, faculty of paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
42
|
Chaiswing L, St. Clair WH, St. Clair DK. Redox Paradox: A Novel Approach to Therapeutics-Resistant Cancer. Antioxid Redox Signal 2018; 29:1237-1272. [PMID: 29325444 PMCID: PMC6157438 DOI: 10.1089/ars.2017.7485] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Cancer cells that are resistant to radiation and chemotherapy are a major problem limiting the success of cancer therapy. Aggressive cancer cells depend on elevated intracellular levels of reactive oxygen species (ROS) to proliferate, self-renew, and metastasize. As a result, these aggressive cancers maintain high basal levels of ROS compared with normal cells. The prominence of the redox state in cancer cells led us to consider whether increasing the redox state to the condition of oxidative stress could be used as a successful adjuvant therapy for aggressive cancers. Recent Advances: Past attempts using antioxidant compounds to inhibit ROS levels in cancers as redox-based therapy have met with very limited success. However, recent clinical trials using pro-oxidant compounds reveal noteworthy results, which could have a significant impact on the development of strategies for redox-based therapies. CRITICAL ISSUES The major objective of this review is to discuss the role of the redox state in aggressive cancers and how to utilize the shift in redox state to improve cancer therapy. We also discuss the paradox of redox state parameters; that is, hydrogen peroxide (H2O2) as the driver molecule for cancer progression as well as a target for cancer treatment. FUTURE DIRECTIONS Based on the biological significance of the redox state, we postulate that this system could potentially be used to create a new avenue for targeted therapy, including the potential to incorporate personalized redox therapy for cancer treatment.
Collapse
Affiliation(s)
- Luksana Chaiswing
- Department of Toxicology and Cancer Biology, University of Kentucky-Lexington, Lexington, Kentucky
| | - William H. St. Clair
- Department of Radiation Medicine, University of Kentucky-Lexington, Lexington, Kentucky
| | - Daret K. St. Clair
- Department of Toxicology and Cancer Biology, University of Kentucky-Lexington, Lexington, Kentucky
| |
Collapse
|
43
|
Morel KL, Ormsby RJ, Solly EL, Tran LNK, Sweeney CJ, Klebe S, Cordes N, Sykes PJ. Chronic low dose ethanol induces an aggressive metastatic phenotype in TRAMP mice, which is counteracted by parthenolide. Clin Exp Metastasis 2018; 35:649-661. [PMID: 29936575 DOI: 10.1007/s10585-018-9915-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/18/2018] [Indexed: 11/29/2022]
Abstract
Despite advances in prostate cancer therapy, dissemination and growth of metastases results in shortened survival. Here we examined the potential anti-cancer effect of the NF-κB inhibitor parthenolide (PTL) and its water soluble analogue dimethylaminoparthenolide (DMAPT) on tumour progression and metastasis in the TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model of prostate cancer. Six-week-old male TRAMP mice received PTL (40 mg/kg in 10% ethanol/saline), DMAPT (100 mg/kg in sterile water), or vehicle controls by oral gavage thrice weekly until palpable tumour formation. DMAPT treatment slowed normal tumour development in TRAMP mice, extending the time-to-palpable prostate tumour by 20%. PTL did not slow overall tumour development, while the ethanol/saline vehicle used to administer PTL unexpectedly induced an aggressive metastatic tumour phenotype. Chronic ethanol/saline vehicle upregulated expression of NF-κB, MMP2, integrin β1, collagen IV, and laminin, and induced vascular basement membrane degradation in primary prostate tumours, as well as increased metastatic spread to the lung and liver. All of these changes were largely prevented by co-administration with PTL. DMAPT (in water) reduced metastasis to below that of water-control. These data suggest that DMAPT has the potential to be used as a cancer preventive and anti-metastatic therapy for prostate cancer. Although low levels of ethanol consumption have not been shown to strongly correlate with prostate cancer epidemiology, these results would support a potential effect of chronic low dose ethanol on metastasis and the TRAMP model provides a useful system in which to further explore the mechanisms involved.
Collapse
Affiliation(s)
- Katherine L Morel
- Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, SA, Australia.
| | - Rebecca J Ormsby
- Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, SA, Australia
| | - Emma L Solly
- Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, SA, Australia
| | - Linh N K Tran
- Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, SA, Australia
| | | | - Sonja Klebe
- Department of Anatomical Pathology, Flinders University and SA Pathology at Flinders Medical Centre, Bedford Park, SA, Australia
| | - Nils Cordes
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden; Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pamela J Sykes
- Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, SA, Australia
| |
Collapse
|
44
|
Garmpis N, Damaskos C, Garmpi A, Kalampokas E, Kalampokas T, Spartalis E, Daskalopoulou A, Valsami S, Kontos M, Nonni A, Kontzoglou K, Perrea D, Nikiteas N, Dimitroulis D. Histone Deacetylases as New Therapeutic Targets in Triple-negative Breast Cancer: Progress and Promises. Cancer Genomics Proteomics 2018; 14:299-313. [PMID: 28870998 DOI: 10.21873/cgp.20041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) lacks expression of estrogen receptor (ER), progesterone receptor (PR) and HER2 gene. It comprises approximately 15-20% of breast cancers (BCs). Unfortunately, TNBC's treatment continues to be a clinical problem because of its relatively poor prognosis, its aggressiveness and the lack of targeted therapies, leaving chemotherapy as the mainstay of treatment. It is essential to find new therapies against TNBC, in order to surpass the resistance and the invasiveness of already existing therapies. Given the fact that epigenetic processes control both the initiation and progression of TNBC, there is an increasing interest in the mechanisms, molecules and signaling pathways that participate at the epigenetic modulation of genes expressed in carcinogenesis. The acetylation of histone proteins provokes the transcription of genes involved in cell growth, and the expression of histone deacetylases (HDACs) is frequently up-regulated in many malignancies. Unfortunately, in the field of BC, HDAC inhibitors have shown limited effect as single agents. Nevertheless, their use in combination with kinase inhibitors, autophagy inhibitors, ionizing radiation, or two HDAC inhibitors together is currently being evaluated. HDAC inhibitors such as suberoylanilidehydroxamic acid (SAHA), sodium butyrate, mocetinostat, panobinostat, entinostat, YCW1 and N-(2-hydroxyphenyl)-2-propylpentanamide have shown promising therapeutic outcomes against TNBC, especially when they are used in combination with other anticancer agents. More studies concerning HDAC inhibitors in breast carcinomas along with a more accurate understanding of the TNBC's pathobiology are required for the possible identification of new therapeutic strategies.
Collapse
Affiliation(s)
- Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Christos Damaskos
- Second Department of Propedeutic Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece.,N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Garmpi
- Internal Medicine Department, Laiko General Hospital, University of Athens Medical School, Athens, Greece
| | | | - Theodoros Kalampokas
- Assisted Conception Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Spartalis
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Afrodite Daskalopoulou
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Serena Valsami
- Blood Transfusion Department, Aretaieion Hospital, Medical School, National and Kapodistrian Athens University, Athens, Greece
| | - Michael Kontos
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Afroditi Nonni
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Kontzoglou
- Second Department of Propedeutic Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Despina Perrea
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Nikiteas
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Dimitroulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
45
|
Sinularin Selectively Kills Breast Cancer Cells Showing G2/M Arrest, Apoptosis, and Oxidative DNA Damage. Molecules 2018; 23:molecules23040849. [PMID: 29642488 PMCID: PMC6017762 DOI: 10.3390/molecules23040849] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/31/2023] Open
Abstract
The natural compound sinularin, isolated from marine soft corals, is antiproliferative against several cancers, but its possible selective killing effect has rarely been investigated. This study investigates the selective killing potential and mechanisms of sinularin-treated breast cancer cells. In 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H- tetrazolium, inner salt (MTS) assay, sinularin dose-responsively decreased the cell viability of two breast cancer (SKBR3 and MDA-MB-231) cells, but showed less effect on breast normal (M10) cells after a 24 h treatment. According to 7-aminoactinomycin D (7AAD) flow cytometry, sinularin dose-responsively induced the G2/M cycle arrest of SKBR3 cells. Sinularin dose-responsively induced apoptosis on SKBR3 cells in terms of a flow cytometry-based annexin V/7AAD assay and pancaspase activity, as well as Western blotting for cleaved forms of poly(ADP-ribose) polymerase (PARP), caspases 3, 8, and 9. These caspases and PARP activations were suppressed by N-acetylcysteine (NAC) pretreatment. Moreover, sinularin dose-responsively induced oxidative stress and DNA damage according to flow cytometry analyses of reactive oxygen species (ROS), mitochondrial membrane potential (MitoMP), mitochondrial superoxide, and 8-oxo-2'-deoxyguanosine (8-oxodG)). In conclusion, sinularin induces selective killing, G2/M arrest, apoptosis, and oxidative DNA damage of breast cancer cells.
Collapse
|
46
|
Bellavia D, Palermo R, Felli MP, Screpanti I, Checquolo S. Notch signaling as a therapeutic target for acute lymphoblastic leukemia. Expert Opin Ther Targets 2018. [PMID: 29527929 DOI: 10.1080/14728222.2018.1451840] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy. Although the therapy of ALL has significantly improved, the heterogeneous genetic landscape of the disease often causes relapse, which is difficult to treat. Achieving a positive outcome for patients with relapsed or refractory ALL remains a challenging issue. The high prevalence of NOTCH-activating mutations in T-cell acute lymphoblastic leukemia (T-ALL) and the central role of NOTCH signaling in regulating cell survival and growth of ALL provide a rationale for the development of Notch signaling-targeted strategies in this disease. Therapeutic alternatives with effective anti-leukemic potential and low toxicity are needed. Areas covered: This review provides an overview of the currently available drugs directly or indirectly targeting Notch signaling in ALL. Besides considering the known Notch targeting approaches, such as γ-secretase inhibitors (GSIs) and Notch inhibiting antibodies (mAbs), currently in clinical trials, we focus on the recent insights into the molecular mechanisms underlying the Notch signaling regulation in ALL. Expert opinion: Novel drugs targeting specific steps of Notch signaling or intersecting pathways could improve the efficiency of the conventional hematological cancers therapies. Further studies are required to translate the new findings into future clinical applications.
Collapse
Affiliation(s)
- Diana Bellavia
- a Department of Molecular Medicine , Sapienza University , Rome , Italy
| | - Rocco Palermo
- b Center for Life Nano Science@Sapienza , Istituto Italiano di Tecnologia , Rome , Italy
| | - Maria Pia Felli
- c Department of Experimental Medicine , Sapienza University , Rome , Italy
| | - Isabella Screpanti
- a Department of Molecular Medicine , Sapienza University , Rome , Italy.,b Center for Life Nano Science@Sapienza , Istituto Italiano di Tecnologia , Rome , Italy.,d Institute Pasteur-Foundation Cenci Bolognetti , Sapienza University , Rome , Italy
| | - Saula Checquolo
- e Department of Medico-Surgical Sciences and Biotechnology , Sapienza University , Latina , Italy
| |
Collapse
|
47
|
Suvarna V, Murahari M, Khan T, Chaubey P, Sangave P. Phytochemicals and PI3K Inhibitors in Cancer-An Insight. Front Pharmacol 2017; 8:916. [PMID: 29311925 PMCID: PMC5736021 DOI: 10.3389/fphar.2017.00916] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022] Open
Abstract
In today's world of modern medicine and novel therapies, cancer still remains to be one of the prime contributor to the death of people worldwide. The modern therapies improve condition of cancer patients and are effective in early stages of cancer but the advanced metastasized stage of cancer remains untreatable. Also most of the cancer therapies are expensive and are associated with adverse side effects. Thus, considering the current status of cancer treatment there is scope to search for efficient therapies which are cost-effective and are associated with lesser and milder side effects. Phytochemicals have been utilized for many decades to prevent and cure various ailments and current evidences indicate use of phytochemicals as an effective treatment for cancer. Hyperactivation of phosphoinositide 3-kinase (PI3K) signaling cascades is a common phenomenon in most types of cancers. Thus, natural substances targeting PI3K pathway can be of great therapeutic potential in the treatment of cancer patients. This chapter summarizes the updated research on plant-derived substances targeting PI3K pathway and the current status of their preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Manikanta Murahari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S Ramaiah University of Applied Sciences, Bangalore, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Pramila Chaubey
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Preeti Sangave
- Department of Pharmaceutical Sciences, School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
48
|
Kang KA, Piao MJ, Ryu YS, Hyun YJ, Park JE, Shilnikova K, Zhen AX, Kang HK, Koh YS, Jeong YJ, Hyun JW. Luteolin induces apoptotic cell death via antioxidant activity in human colon cancer cells. Int J Oncol 2017; 51:1169-1178. [DOI: 10.3892/ijo.2017.4091] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/30/2017] [Indexed: 11/06/2022] Open
|
49
|
Chen HHW, Kuo MT. Improving radiotherapy in cancer treatment: Promises and challenges. Oncotarget 2017; 8:62742-62758. [PMID: 28977985 PMCID: PMC5617545 DOI: 10.18632/oncotarget.18409] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/18/2017] [Indexed: 12/25/2022] Open
Abstract
Effective radiotherapy for cancer has relied on the promise of maximally eradicating tumor cells while minimally killing normal cells. Technological advancement has provided state-of-the-art instrumentation that enables delivery of radiotherapy with great precision to tumor lesions with substantial reduced injury to normal tissues. Moreover, better understanding of radiobiology, particularly the mechanisms of radiation sensitivity and resistance in tumor lesions and toxicity in normal tissues, has improved the treatment efficacy of radiotherapy. Previous mechanism-based studies have identified many cellular targets that can affect radiation sensitivity, notably reactive oxygen species, DNA-damaging response signals, and tumor microenvironments. Several radiation sensitizers and protectors have been developed and clinically evaluated; however, many of these results are inconclusive, indicating that improvement remains needed. In this era of personalized medicine in which patients’ genetic variations, transcriptome and proteomics, tumor metabolism and microenvironment, and tumor immunity are available. These new developments have provided opportunity for new target discovery. Several radiotherapy sensitivity-associated “gene signatures” have been reported although clinical validations are needed. Recently, several immune modifiers have been shown to associate with improved radiotherapy in preclinical models and in early clinical trials. Combination of radiotherapy and immunocheckpoint blockade has shown promising results especially in targeting metastatic tumors through abscopal response. In this article, we succinctly review recent advancements in the areas of mechanism-driven targets and exploitation of new targets from current radio-oncogenomic and radiation-immunotherapeutic approaches that bear clinical implications for improving the treatment efficacy of radiotherapy.
Collapse
Affiliation(s)
- Helen H W Chen
- Division of Clinical Radiation Oncology, Department of Radiation Oncology, National Cheng Kung University Hospital, Department of Radiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Macus Tien Kuo
- Division of Clinical Radiation Oncology, Department of Radiation Oncology, National Cheng Kung University Hospital, Department of Radiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
50
|
A novel quinazoline-based analog induces G2/M cell cycle arrest and apoptosis in human A549 lung cancer cells via a ROS-dependent mechanism. Biochem Biophys Res Commun 2017; 486:314-320. [PMID: 28302490 DOI: 10.1016/j.bbrc.2017.03.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/11/2017] [Indexed: 12/16/2022]
Abstract
6-amino-4-(4-phenoxyphenylethylamino)quinazoline (QNZ) is an excellent quinazoline-containing NF-κB inhibitor also acting as a novel anticancer agent. Considering both the medicinal significance of quinazoline scaffold and the tunable functionality of Michael acceptor-centric pharmacophores in the electrophilicity-based prooxidant strategy, we designed a novel QNZ-inspired electrophilic molecule QNZ-A by introducing a Michael acceptor unit at position-6 of quinazoline ring in QNZ. Our results identified QNZ-A as a promising selective cytotoxic agent against A549 cells. QNZ-A, by virtue of its Michael acceptor unit, induced reactive oxygen species (ROS) accumulation associated with collapse of the redox buffering system in A549 cells. This caused up-regulation of p53-inducible p21 and down-regulation of redox sensitive Cdc25C along with Cyclin B1/Cdk1, leading to a G2/M cell cycle arrest and final cell apoptosis. By contrast, QNZ-B, a reduction product of QNZ-A lacking the Michael acceptor unit failed to induce ROS generation and all these cell cycle-related events. In conclusion, this work provided a successful example of designing QNZ-directed anticancer agent by a ROS-promoting strategy and identified QNZ-A as a selective anticancer agent against A549 cells through G2/M cell cycle arrest and apoptosis via a ROS-dependent mechanism.
Collapse
|