1
|
Yan J, Guo S, He J, Huang H, Xu Y. Myeloid-derived suppressor cells in metabolic and cardiovascular disorders. Trends Endocrinol Metab 2025:S1043-2760(25)00024-4. [PMID: 40024876 DOI: 10.1016/j.tem.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 03/04/2025]
Abstract
Dysregulation of immune homeostasis can precipitate chronic inflammation, thus significantly contributing to the onset and progression of metabolic and cardiovascular diseases. Myeloid-derived suppressor cells (MDSCs) constitute a heterogeneous population of immature myeloid cells that are mobilized in response to biological stressors such as tissue damage and inflammation. Although MDSCs have been extensively characterized in the contexts of cancer and infectious diseases, emerging evidence highlights their pivotal roles in the pathophysiology of metabolic and cardiovascular disorders. We discuss growing evidence for the involvement of MDSCs in the progression of metabolic and cardiovascular diseases, with the aim of deepening our understanding of MDSCs in cardiometabolic physiology and identifying the necessary steps for the development of innovative MDSC-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Jingwei Yan
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Thoracic Surgery, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Shuai Guo
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jun He
- Department of Rehabilitation Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China
| | - Hanpeng Huang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Yiming Xu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Shao Y, Han S, Hou Z, Yang C, Zhao Y. Tumor-associated macrophages within the immunological milieu: An emerging focal point for therapeutic intervention. Heliyon 2024; 10:e36839. [PMID: 39281573 PMCID: PMC11401039 DOI: 10.1016/j.heliyon.2024.e36839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
Tumor-associated macrophages play an important role in the tumor immune microenvironment, and regulating the function of tumor-associated macrophages has important therapeutic potential in tumor therapy. Mature macrophages could migrate to the tumor microenvironment, influencing multiple factors such as tumor cell proliferation, invasion, metastasis, extracellular matrix remodeling, immune suppression, and drug resistance. As a major component of the tumor microenvironment, tumor-associated macrophages crosstalk with other immune cells. Currently, tumor-associated macrophages have garnered considerable attention in tumor therapy, broadening the spectrum of drug selection to some extent, thereby aiding in mitigating the prevailing clinical drug resistance dilemma. This article summarizes the recent advances in tumor-associated macrophages concerning immunology, drug targeting mechanisms for tumor-associated macrophages treatment, new developments, and existing challenges, offering insights for future therapeutic approaches. In addition, this paper summarized the impact of tumor-associated macrophages on current clinical therapies, discussed the advantages and disadvantages of targeted tumor-associated macrophages therapy compared with existing tumor therapies, and predicted and discussed the future role of targeted tumor-associated macrophages therapy and the issues that need to be focused on.
Collapse
Affiliation(s)
- Yanchi Shao
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Song Han
- The First Hospital of Jilin University, Changchun, China
| | - Zhenxin Hou
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Chen Yang
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yanbin Zhao
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Nie SC, Jing YH, Lu L, Ren SS, Ji G, Xu HC. Mechanisms of myeloid-derived suppressor cell-mediated immunosuppression in colorectal cancer and related therapies. World J Gastrointest Oncol 2024; 16:1690-1704. [PMID: 38764816 PMCID: PMC11099432 DOI: 10.4251/wjgo.v16.i5.1690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 05/09/2024] Open
Abstract
Severe immunosuppression is a hallmark of colorectal cancer (CRC). Myeloid-derived suppressor cells (MDSCs), one of the most abundant components of the tumor stroma, play an important role in the invasion, metastasis, and immune escape of CRC. MDSCs create an immunosuppressive microenvironment by inhibiting the proliferation and activation of immunoreactive cells, including T and natural killer cells, as well as by inducing the proliferation of immunosuppressive cells, such as regulatory T cells and tumor-associated macrophages, which, in turn, promote the growth of cancer cells. Thus, MDSCs are key contributors to the emergence of an immunosuppressive microenvironment in CRC and play an important role in the breakdown of antitumor immunity. In this narrative review, we explore the mechanisms through which MDSCs contribute to the immunosuppressive microenvironment, the current therapeutic approaches and technologies targeting MDSCs, and the therapeutic potential of modulating MDSCs in CRC treatment. This study provides ideas and methods to enhance survival rates in patients with CRC.
Collapse
Affiliation(s)
- Shu-Chang Nie
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan-Hua Jing
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
| | - Si-Si Ren
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai 200032, China
| | - Han-Chen Xu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai 200032, China
| |
Collapse
|
4
|
Kostecki KL, Iida M, Crossman BE, Salgia R, Harari PM, Bruce JY, Wheeler DL. Immune Escape Strategies in Head and Neck Cancer: Evade, Resist, Inhibit, Recruit. Cancers (Basel) 2024; 16:312. [PMID: 38254801 PMCID: PMC10814769 DOI: 10.3390/cancers16020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Head and neck cancers (HNCs) arise from the mucosal lining of the aerodigestive tract and are often associated with alcohol use, tobacco use, and/or human papillomavirus (HPV) infection. Over 600,000 new cases of HNC are diagnosed each year, making it the sixth most common cancer worldwide. Historically, treatments have included surgery, radiation, and chemotherapy, and while these treatments are still the backbone of current therapy, several immunotherapies have recently been approved by the Food and Drug Administration (FDA) for use in HNC. The role of the immune system in tumorigenesis and cancer progression has been explored since the early 20th century, eventually coalescing into the current three-phase model of cancer immunoediting. During each of the three phases-elimination, equilibrium, and escape-cancer cells develop and utilize multiple strategies to either reach or remain in the final phase, escape, at which point the tumor is able to grow and metastasize with little to no detrimental interference from the immune system. In this review, we summarize the many strategies used by HNC to escape the immune system, which include ways to evade immune detection, resist immune cell attacks, inhibit immune cell functions, and recruit pro-tumor immune cells.
Collapse
Affiliation(s)
- Kourtney L. Kostecki
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Bridget E. Crossman
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA;
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
| | - Justine Y. Bruce
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
| |
Collapse
|
5
|
Ramezani-Aliakbari K, Khaki-Bakhtiarvand V, Mahmoudian J, Asgarian-Omran H, Shokri F, Hojjat-Farsangi M, Jeddi-Tehrani M, Shabani M. Evaluation of the anti-tumor effects of an anti-Human Epidermal growth factor receptor 2 (HER2) monoclonal antibody in combination with CD11b +/Gr-1 + myeloid cells depletion using a recombinant peptibody in 4 T1-HER2 tumor model. Int Immunopharmacol 2023; 121:110463. [PMID: 37327513 DOI: 10.1016/j.intimp.2023.110463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Clinical efficacy of Human Epidermal growth factor Receptor 2 (HER2) targeted strategies is limited due to impaired anti-tumor responses negatively regulated by immunosuppressive cells. We thus, investigated the inhibitory effects of an anti-HER2 monoclonal antibody (1 T0 mAb) in combination with CD11b+/Gr-1+ myeloid cells depletion in 4 T1-HER2 tumor model. METHODS BALB/c mice were challenged with human HER2-expressing 4 T1 murine breast cancer cell line. A week post tumor challenge, each mouse received 50 µg of a myeloid cells specific peptibody every other day, or 10 mg/kg of 1 T0 mAb two times a week, and their combination for two weeks. The treatments effect on tumor growth was measured by calculating tumor size. Also, the frequencies of CD11b+/Gr-1+ cells and T lymphocytes were measured by flow cytometry. RESULTS Peptibody treated mice indicated tumor regression and 40 % of the mice eradicated their primary tumors. The peptibody was capable to deplete notably splenic CD11b+/Gr-1+ cells as well as intratumoral CD11b+/Gr-1+ cells (P < 0.0001) and led to an increased number of tumor infiltrating CD8+ T cells (3.3 folds) and also that of resident tumor draining lymph nodes (TDLNs) (3 folds). Combination of peptibody and 1 T0 mAb resulted in enhanced expansion of tumor infiltrating CD4 + and CD8+ T cells which was associated with tumor eradication in 60 % of the mice. CONCLUSIONS Peptibody is able to deplete CD11b+/Gr-1+ cells and increase anti-tumoral effects of the 1 T0 mAb in tumor eradication. Thus, this myeloid population have critical roles in development of tumors and their depletion is associated with induction of anti-tumoral responses.
Collapse
Affiliation(s)
| | - Vahid Khaki-Bakhtiarvand
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Mahmoudian
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institute, 17164 Stockholm, Sweden
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Kara N, Ayoub N, Ilgu H, Fotiadis D, Ilgu M. Aptamers Targeting Membrane Proteins for Sensor and Diagnostic Applications. Molecules 2023; 28:molecules28093728. [PMID: 37175137 PMCID: PMC10180177 DOI: 10.3390/molecules28093728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Many biological processes (physiological or pathological) are relevant to membrane proteins (MPs), which account for almost 30% of the total of human proteins. As such, MPs can serve as predictive molecular biomarkers for disease diagnosis and prognosis. Indeed, cell surface MPs are an important class of attractive targets of the currently prescribed therapeutic drugs and diagnostic molecules used in disease detection. The oligonucleotides known as aptamers can be selected against a particular target with high affinity and selectivity by iterative rounds of in vitro library evolution, known as Systematic Evolution of Ligands by EXponential Enrichment (SELEX). As an alternative to antibodies, aptamers offer unique features like thermal stability, low-cost, reuse, ease of chemical modification, and compatibility with various detection techniques. Particularly, immobilized-aptamer sensing platforms have been under investigation for diagnostics and have demonstrated significant value compared to other analytical techniques. These "aptasensors" can be classified into several types based on their working principle, which are commonly electrochemical, optical, or mass-sensitive. In this review, we review the studies on aptamer-based MP-sensing technologies for diagnostic applications and have included new methodological variations undertaken in recent years.
Collapse
Affiliation(s)
- Nilufer Kara
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Nooraldeen Ayoub
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Huseyin Ilgu
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Muslum Ilgu
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
- Aptalogic Inc., Ames, IA 50014, USA
| |
Collapse
|
7
|
Yang Y, Zhang M, Zhang Y, Liu K, Lu C. 5-Fluorouracil Suppresses Colon Tumor through Activating the p53-Fas Pathway to Sensitize Myeloid-Derived Suppressor Cells to FasL + Cytotoxic T Lymphocyte Cytotoxicity. Cancers (Basel) 2023; 15:1563. [PMID: 36900354 PMCID: PMC10001142 DOI: 10.3390/cancers15051563] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Myelosuppression is a major adverse effect of 5-fluorouracil (5-FU) chemotherapy. However, recent findings indicate that 5-FU selectively suppresses myeloid-derived suppressor cells (MDSCs), to enhance antitumor immunity in tumor-bearing mice. 5-FU-mediated myelosuppression may thus have a beneficial effect for cancer patients. The molecular mechanism underlying 5-FU's suppression of MDSCs is currently unknown. We aimed at testing the hypothesis that 5-FU suppresses MDSCs through enhancing MDSC sensitivity to Fas-mediated apoptosis. We observed that, although FasL is highly expressed in T cells, Fas is weakly expressed in myeloid cells in human colon carcinoma, indicating that downregulation of Fas is a mechanism underlying myeloid cell survival and accumulation in human colon cancer. 5-FU treatment upregulated expression of both p53 and Fas, and knocking down p53 diminished 5-FU-induced Fas expression in MDSC-like cells, in vitro. 5-FU treatment also increased MDSC-like cell sensitivity to FasL-induced apoptosis in vitro. Furthermore, we determined that 5-FU therapy increased expression of Fas on MDSCs, suppressed MDSC accumulation, and increased CTL tumor infiltration in colon tumor-bearing mice. In human colorectal cancer patients, 5-FU chemotherapy decreased MDSC accumulation and increased CTL level. Our findings determine that 5-FU chemotherapy activates the p53-Fas pathway, to suppress MDSC accumulation, to increase CTL tumor infiltration.
Collapse
Affiliation(s)
- Yingcui Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Mingqing Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Yongdan Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
| | - Chunwan Lu
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
8
|
Huang Y, Wang Z, Gong J, Zhu D, Chen W, Li F, Liang XJ, Liu X. Macrophages as potential targets in gene therapy for cancer treatment. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:89-101. [PMID: 36937317 PMCID: PMC10017190 DOI: 10.37349/etat.2023.00124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/30/2022] [Indexed: 03/04/2023] Open
Abstract
Macrophages, as ubiquitous and functionally diverse immune cells, play a central role in innate immunity and initiate adaptive immunity. Especially, tumor-associated macrophages (TAMs) are crucial contributors to the tumorigenesis and development of cancer. Thus, macrophages are emerging potential targets for cancer treatment. Among the numerous targeted therapeutic options, gene therapy is one of the most potential therapeutic strategies via directly and specifically regulating biological functions of macrophages at the gene level for cancer treatment. This short review briefly introduces the characteristics of macrophage populations, the functions of TAM in the occurrence, and the progress of cancer. It also summarized some representative examples to highlight the current progress in TAM-targeted gene therapy. The review hopes to provide new insights into macrophage-targeted gene therapy for precision cancer therapy.
Collapse
Affiliation(s)
- Yuanzheng Huang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Zhihui Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Junni Gong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Dandan Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Wang Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Fangzhou Li
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Nano Science and Technology Institute, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxuan Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
9
|
Iglesias-Escudero M, Arias-González N, Martínez-Cáceres E. Regulatory cells and the effect of cancer immunotherapy. Mol Cancer 2023; 22:26. [PMID: 36739406 PMCID: PMC9898962 DOI: 10.1186/s12943-023-01714-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/02/2023] [Indexed: 02/06/2023] Open
Abstract
Several mechanisms and cell types are involved in the regulation of the immune response. These include mostly regulatory T cells (Tregs), regulatory macrophages (Mregs), myeloid suppressor cells (MDSCs) and other regulatory cell types such as tolerogenic dendritic cells (tolDCs), regulatory B cells (Bregs), and mesenchymal stem cells (MSCs). These regulatory cells, known for their ability to suppress immune responses, can also suppress the anti-tumor immune response. The infiltration of many regulatory cells into tumor tissues is therefore associated with a poor prognosis. There is growing evidence that elimination of Tregs enhances anti-tumor immune responses. However, the systemic depletion of Treg cells can simultaneously cause deleterious autoimmunity. Furthermore, since regulatory cells are characterized by their high level of expression of immune checkpoints, it is also expected that immune checkpoint inhibitors perform part of their function by blocking these molecules and enhancing the immune response. This indicates that immunotherapy does not only act by activating specific effector T cells but can also directly or indirectly attenuate the suppressive activity of regulatory cells in tumor tissues. This review aims to draw together our current knowledge about the effect of immunotherapy on the various types of regulatory cells, and how these effects may be beneficial in the response to immunotherapy.
Collapse
Affiliation(s)
- María Iglesias-Escudero
- Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain. .,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | - Noelia Arias-González
- grid.411438.b0000 0004 1767 6330Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain
| | - Eva Martínez-Cáceres
- Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain. .,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
10
|
Paillasse MR, Esquerré M, Bertrand FA, Poussereau-Pomié C, Pichery M, Visentin V, Gueguen-Dorbes G, Gaujarengues F, Barron P, Badet G, Briaux A, Ancey PB, Sibrac D, Erdociain E, Özcelik D, Meneyrol J, Martin V, Gomez-Brouchet A, Selves J, Rochaix P, Battistella M, Lebbé C, Delord JP, Dol-Gleizes F, Bono F, Blanc I, Alam A, Hunneyball I, Whittaker M, Fons P. Targeting Tumor Angiogenesis with the Selective VEGFR-3 Inhibitor EVT801 in Combination with Cancer Immunotherapy. CANCER RESEARCH COMMUNICATIONS 2022; 2:1504-1519. [PMID: 36970050 PMCID: PMC10035370 DOI: 10.1158/2767-9764.crc-22-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/13/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2022]
Abstract
The receptor tyrosine kinase VEGFR-3 plays a crucial role in cancer-induced angiogenesis and lymphangiogenesis, promoting tumor development and metastasis. Here, we report the novel VEGFR-3 inhibitor EVT801 that presents a more selective and less toxic profile than two major inhibitors of VEGFRs (i.e., sorafenib and pazopanib). As monotherapy, EVT801 showed a potent antitumor effect in VEGFR-3–positive tumors, and in tumors with VEGFR-3–positive microenvironments. EVT801 suppressed VEGF-C–induced human endothelial cell proliferation in vitro and tumor (lymph)angiogenesis in different tumor mouse models. In addition to reduced tumor growth, EVT801 decreased tumor hypoxia, favored sustained tumor blood vessel homogenization (i.e., leaving fewer and overall larger vessels), and reduced important immunosuppressive cytokines (CCL4, CCL5) and myeloid-derived suppressor cells (MDSC) in circulation. Furthermore, in carcinoma mouse models, the combination of EVT801 with immune checkpoint therapy (ICT) yielded superior outcomes to either single treatment. Moreover, tumor growth inhibition was inversely correlated with levels of CCL4, CCL5, and MDSCs after treatment with EVT801, either alone or combined with ICT. Taken together, EVT801 represents a promising anti(lymph)angiogenic drug for improving ICT response rates in patients with VEGFR-3 positive tumors.
Significance:
The VEGFR-3 inhibitor EVT801 demonstrates superior selectivity and toxicity profile than other VEGFR-3 tyrosine kinase inhibitors. EVT801 showed potent antitumor effects in VEGFR-3–positive tumors, and tumors with VEGFR-3–positive microenvironments through blood vessel homogenization, and reduction of tumor hypoxia and limited immunosuppression. EVT801 increases immune checkpoint inhibitors’ antitumor effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gaelle Badet
- 1Evotec France, Campus Curie, Toulouse CEDEX, France
| | - Anne Briaux
- 1Evotec France, Campus Curie, Toulouse CEDEX, France
| | | | - David Sibrac
- 1Evotec France, Campus Curie, Toulouse CEDEX, France
| | | | | | | | | | - Anne Gomez-Brouchet
- 4Institut Universitaire du Cancer Toulouse Oncopole (IUCT-O), Toulouse, Occitanie, France
| | - Janik Selves
- 4Institut Universitaire du Cancer Toulouse Oncopole (IUCT-O), Toulouse, Occitanie, France
| | - Philippe Rochaix
- 4Institut Universitaire du Cancer Toulouse Oncopole (IUCT-O), Toulouse, Occitanie, France
| | - Maxime Battistella
- 5Université de Paris, Department of Pathology, AP-HP Hôpital Saint Louis, INSERM U976, Paris, France
| | - Céleste Lebbé
- 6Université de Paris, Department of Dermatology, AP-HP Hôpital Saint Louis, INSERM U976, Paris, France
| | - Jean-Pierre Delord
- 4Institut Universitaire du Cancer Toulouse Oncopole (IUCT-O), Toulouse, Occitanie, France
| | | | | | | | | | | | | | - Pierre Fons
- 1Evotec France, Campus Curie, Toulouse CEDEX, France
| |
Collapse
|
11
|
Xia Y, Yang R, Zhu J, Wang H, Li Y, Fan J, Fu C. Engineered nanomaterials trigger abscopal effect in immunotherapy of metastatic cancers. Front Bioeng Biotechnol 2022; 10:890257. [PMID: 36394039 PMCID: PMC9643844 DOI: 10.3389/fbioe.2022.890257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
Despite advances in cancer treatment, metastatic cancer is still the main cause of death in cancer patients. At present, the treatment of metastatic cancer is limited to palliative care. The abscopal effect is a rare phenomenon in which shrinkage of metastatic tumors occurs simultaneously with the shrinkage of a tumor receiving localized treatment, such as local radiotherapy or immunotherapy. Immunotherapy shows promise for cancer treatment, but it also leads to consequences such as low responsiveness and immune-related adverse events. As a promising target-based approach, intravenous or intratumoral injection of nanomaterials provides new opportunities for improving cancer immunotherapy. Chemically modified nanomaterials may be able to trigger the abscopal effect by regulating immune cells. This review discusses the use of nanomaterials in killing metastatic tumor cells through the regulation of immune cells and the prospects of such nanomaterials for clinical use.
Collapse
Affiliation(s)
- Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ruohan Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Changfeng Fu,
| |
Collapse
|
12
|
de Groot AE, Myers KV, Krueger TEG, Brennen WN, Amend SR, Pienta KJ. Targeting interleukin 4 receptor alpha on tumor-associated macrophages reduces the pro-tumor macrophage phenotype. Neoplasia 2022; 32:100830. [PMID: 35939881 PMCID: PMC9386102 DOI: 10.1016/j.neo.2022.100830] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022]
Abstract
Tumor-associated macrophages (TAMs) are an abundant tumor-promoting cell type in the tumor microenvironment (TME). Most TAMs exhibit a pro-tumor M2-like phenotype supportive of tumor growth, immune evasion, and metastasis. IL-4 and IL-13 are major cytokines that polarize macrophages to an M2 subset and share a common receptor, IL-4 receptor alpha (IL-4R alpha). Treatment of human ex vivo polarized M2 macrophages and M2 macrophage precursors with IL-4R alpha antagonist antibody Dupilumab (DupixentⓇ) reduces M2 macrophage features, including a shift in cell surface marker protein expression and gene expression. In animal models of prostate cancer, both pharmacologic inhibition of IL-4R alpha and genetic deletion of IL-4R alpha utilizing an Il4ra -/- mouse model result in decreased CD206 on TAMs. These data support IL-4R alpha as a target to reduce the pro-tumor, M2-like macrophage phenotype as a novel adjunct cancer therapy.
Collapse
Affiliation(s)
- Amber E de Groot
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD, USA
| | - Kayla V Myers
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD, USA.
| | - Timothy E G Krueger
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD, USA; Department of Oncology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA
| | - W Nathaniel Brennen
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD, USA; Department of Oncology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA
| | - Sarah R Amend
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA; Department of Oncology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA
| | - Kenneth J Pienta
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD, USA; Department of Oncology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins Whiting School of Engineering, 3400 N. Charles St., Baltimore, MD, 21218, USA
| |
Collapse
|
13
|
van Geffen C, Heiss C, Deißler A, Kolahian S. Pharmacological modulation of myeloid-derived suppressor cells to dampen inflammation. Front Immunol 2022; 13:933847. [PMID: 36110844 PMCID: PMC9468781 DOI: 10.3389/fimmu.2022.933847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population with potent suppressive and regulative properties. MDSCs’ strong immunosuppressive potential creates new possibilities to treat chronic inflammation and autoimmune diseases or induce tolerance towards transplantation. Here, we summarize and critically discuss different pharmacological approaches which modulate the generation, activation, and recruitment of MDSCs in vitro and in vivo, and their potential role in future immunosuppressive therapy.
Collapse
|
14
|
Pourhajibagher M, Etemad-Moghadam S, Alaeddini M, Miri Mousavi RS, Bahador A. DNA-aptamer-nanographene oxide as a targeted bio-theragnostic system in antimicrobial photodynamic therapy against Porphyromonas gingivalis. Sci Rep 2022; 12:12161. [PMID: 35842460 PMCID: PMC9288515 DOI: 10.1038/s41598-022-16310-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/07/2022] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to design and evaluate the specificity of a targeted bio-theragnostic system based on DNA-aptamer-nanographene oxide (NGO) against Porphyromonas gingivalis during antimicrobial photodynamic therapy (aPDT). Following synthesis and confirmation of NGO, the binding of selected labeled DNA-aptamer to NGO was performed and its hemolytic activity, cytotoxic effect, and release times were evaluated. The specificity of DNA-aptamer-NGO to P. gingivalis was determined. The antimicrobial effect, anti-biofilm potency, and anti-metabolic activity of aPDT were then assessed after the determination of the bacteriostatic and bactericidal concentrations of DNA-aptamer-NGO against P. gingivalis. Eventually, the apoptotic effect and anti-virulence capacity of aPDT based on DNA-aptamer-NGO were investigated. The results showed that NGO with a flaky, scale-like, and layered structure in non-cytotoxic DNA-aptamer-NGO has a continuous release in the weak-acid environment within a period of 240 h. The binding specificity of DNA-aptamer-NGO to P. gingivalis was confirmed by flow cytometry. When irradiated, non-hemolytic DNA-aptamer-NGO were photoactivated, generated ROS, and led to a significant decrease in the cell viability of P. gingivalis (P < 0.05). Also, the data indicated that DNA-aptamer-NGO-mediated aPDT led to a remarkable reduction of biofilms and metabolic activity of P. gingivalis compared to the control group (P < 0.05). In addition, the number of apoptotic cells increased slightly (P > 0.05) and the expression level of genes involved in bacterial biofilm formation and response to oxidative stress changed significantly after exposure to aPDT. It is concluded that aPDT using DNA-aptamer-NGO as a targeted bio-theragnostic system is a promising approach to detect and eliminate P. gingivalis as one of the main bacteria involved in periodontitis in periopathogenic complex in real-time and in situ.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahroo Etemad-Moghadam
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Alaeddini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvaneh Sadat Miri Mousavi
- Pharmaceutical Engineering Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Abbas Bahador
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
15
|
Austermann J, Roth J, Barczyk-Kahlert K. The Good and the Bad: Monocytes' and Macrophages' Diverse Functions in Inflammation. Cells 2022; 11:cells11121979. [PMID: 35741108 PMCID: PMC9222172 DOI: 10.3390/cells11121979] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Monocytes and macrophages are central players of the innate immune response and play a pivotal role in the regulation of inflammation. Thereby, they actively participate in all phases of the immune response, from initiating inflammation and triggering the adaptive immune response, through to the clearance of cell debris and resolution of inflammation. In this review, we described the mechanisms of monocyte and macrophage adaptation to rapidly changing microenvironmental conditions and discussed different forms of macrophage polarization depending on the environmental cues or pathophysiological condition. Therefore, special focus was placed on the tight regulation of the pro- and anti-inflammatory immune response, and the diverse functions of S100A8/S100A9 proteins and the scavenger receptor CD163 were highlighted, respectively. We paid special attention to the function of pro- and anti-inflammatory macrophages under pathological conditions.
Collapse
|
16
|
Adaptive immune resistance at the tumour site: mechanisms and therapeutic opportunities. Nat Rev Drug Discov 2022; 21:529-540. [PMID: 35701637 DOI: 10.1038/s41573-022-00493-5] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 12/11/2022]
Abstract
Tumours employ various tactics to adapt and eventually resist immune attack. These mechanisms are collectively called adaptive immune resistance (AIR). The first defined and therapeutically validated AIR mechanism is the selective induction of programmed cell death 1 ligand 1 (PDL1) by interferon-γ in the tumour. Blockade of PDL1 binding to its receptor PD1 by antibodies (anti-PD therapy) has resulted in remission of a fraction of patients with advanced-stage cancer, especially in solid tumours. However, many clinical trials combining anti-PD therapy with other antitumour drugs conducted without a strong mechanistic rationale have failed to identify a synergistic or additive effect. In this Perspective article, we discuss why defining AIR mechanisms at the tumour site should be a key focus to direct future drug development as well as practical approaches to improve current cancer therapy.
Collapse
|
17
|
Wang W, He J, Yang J, Zhang C, Cheng Z, Zhang Y, Zhang Q, Wang P, Tang S, Wang X, Liu M, Lu W, Zhang HK. Scaffold Hopping Strategy to Identify Prostanoid EP4 Receptor Antagonists for Cancer Immunotherapy. J Med Chem 2022; 65:7896-7917. [PMID: 35640059 DOI: 10.1021/acs.jmedchem.2c00448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cancer cells can effectively suppress the natural immune response in humans, and prostaglandin E2 (PGE2) is a key mediator in the development of tumor cell resistance to immunotherapy. As a major contributor to PGE2-elicited immunosuppressive activity, the EP4 receptor promotes tumor development and progression in the tumor microenvironment, and the development of selective and potent EP4 receptor antagonists should have promising potential for tumor immunotherapy. Aiming at improving the drug-like properties, a series of 4,7-dihydro-5H-thieno[2,3-c]pyran derivatives were designed and synthesized through a scaffold hopping strategy. The most promising compound 47 exhibited good EP4 antagonistic activity and excellent subtype selectivity, as well as favorable drug-like properties. It effectively suppressed the expression of multiple immunosuppression-related genes in macrophages. Meanwhile, oral administration of compound 47, alone or in combination with anti-PD-1 antibody, significantly enhanced the antitumor immune response and inhibited tumor growth in the mouse CT26 colon carcinoma model.
Collapse
Affiliation(s)
- Wei Wang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jiacheng He
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Junjie Yang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chan Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhiyuan Cheng
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yao Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Qiansen Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Peili Wang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Shuowen Tang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xin Wang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Mingyao Liu
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Weiqiang Lu
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Han-Kun Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
18
|
Thomas BJ, Porciani D, Burke DH. Cancer immunomodulation using bispecific aptamers. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:894-915. [PMID: 35141049 PMCID: PMC8803965 DOI: 10.1016/j.omtn.2022.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evasion of immune destruction is a major hallmark of cancer. Recent US Food and Drug Administration (FDA) approvals of various immunomodulating therapies underline the important role that reprogramming the immune system can play in combating this disease. However, a wide range of side effects still limit the therapeutic potential of immunomodulators, suggesting a need for more precise reagents with negligible off-target and on-target/off-tumor effects. Aptamers are single-chained oligonucleotides that bind their targets with high specificity and affinity owing to their three-dimensional (3D) structures, and they are one potential way to address this need. In particular, bispecific aptamers (bsApts) have been shown to induce artificial immune synapses that promote T cell activation and subsequent tumor cell lysis in various in vitro and in vivo pre-clinical models. We discuss these advances here, along with gaps in bsApt biology at both the cellular and resident tissue levels that should be addressed to accelerate their translation into the clinic. The broad application, minimal production cost, and relative lack of immunogenicity of bsApts give them some ideal qualities for manipulating the immune system. Building upon lessons from other novel therapies, bsApts could soon provide clinicians with an immunomodulating toolbox that is not only potent and efficacious but exercises a wide therapeutic index.
Collapse
Affiliation(s)
- Brian J. Thomas
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| | - David Porciani
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| | - Donald H. Burke
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
19
|
|
20
|
Medina-Andrade I, Olguín JE, Guerrero-García S, Espinosa JA, Garduño-Javier E, Hernández-Gómez V, Vaca-Paniagua F, Rodríguez-Sosa M, Terrazas LI. Recruitment of M1 Macrophages May Not Be Critical for Protection against Colitis-Associated Tumorigenesis. Int J Mol Sci 2021; 22:11204. [PMID: 34681866 PMCID: PMC8536994 DOI: 10.3390/ijms222011204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
A close connection between inflammation and the risk of developing colon cancer has been suggested in the last few years. It has been estimated that patients diagnosed with some types of inflammatory bowel disease, such as ulcerative colitis or Crohn's disease, have up to a 30% increased risk of developing colon cancer. However, there is also evidence showing that the activation of anti-inflammatory pathways, such as the IL-4 receptor-mediated pathway, may favor the development of colon tumors. Using an experimental model of colitis-associated colon cancer (CAC), we found that the decrease in tumor development in global IL4Rα knockout mice (IL4RαKO) was apparently associated with an inflammatory response mediated by the infiltration of M1 macrophages (F480+TLR2+STAT1+) and iNOS expression in colon tissue. However, when we developed mice with a specific deletion of IL4Rα in macrophages (LysMcreIL4Rα-/lox mice) and subjected them to CAC, it was found that despite presenting a large infiltration of M1 macrophages into the colon, these mice were as susceptible to colon-tumorigenesis as WT mice. These data suggest that in the tumor microenvironment the absence of IL4Rα expression on macrophages, as well as the recruitment of M1 macrophages, may not be directly associated with resistance to developing colon tumors. Therefore, it is possible that IL4Rα expression in other cell types, such as colonic epithelial cells, could have an important role in promoting the development of colitis-associated colon tumorigenesis.
Collapse
Affiliation(s)
- Itzel Medina-Andrade
- Laboratorio Nacional en Salud FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (I.M.-A.); (J.E.O.); (S.G.-G.); (J.A.E.); (E.G.-J.); (V.H.-G.); (F.V.-P.); (M.R.-S.)
| | - Jonadab E. Olguín
- Laboratorio Nacional en Salud FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (I.M.-A.); (J.E.O.); (S.G.-G.); (J.A.E.); (E.G.-J.); (V.H.-G.); (F.V.-P.); (M.R.-S.)
| | - Stephanie Guerrero-García
- Laboratorio Nacional en Salud FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (I.M.-A.); (J.E.O.); (S.G.-G.); (J.A.E.); (E.G.-J.); (V.H.-G.); (F.V.-P.); (M.R.-S.)
| | - Jossael A. Espinosa
- Laboratorio Nacional en Salud FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (I.M.-A.); (J.E.O.); (S.G.-G.); (J.A.E.); (E.G.-J.); (V.H.-G.); (F.V.-P.); (M.R.-S.)
| | - Elizabeth Garduño-Javier
- Laboratorio Nacional en Salud FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (I.M.-A.); (J.E.O.); (S.G.-G.); (J.A.E.); (E.G.-J.); (V.H.-G.); (F.V.-P.); (M.R.-S.)
| | - Victoria Hernández-Gómez
- Laboratorio Nacional en Salud FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (I.M.-A.); (J.E.O.); (S.G.-G.); (J.A.E.); (E.G.-J.); (V.H.-G.); (F.V.-P.); (M.R.-S.)
| | - Felipe Vaca-Paniagua
- Laboratorio Nacional en Salud FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (I.M.-A.); (J.E.O.); (S.G.-G.); (J.A.E.); (E.G.-J.); (V.H.-G.); (F.V.-P.); (M.R.-S.)
- Unidad de Biomedicina, Facultad de Estudios Superiores (FES)-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico
| | - Miriam Rodríguez-Sosa
- Laboratorio Nacional en Salud FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (I.M.-A.); (J.E.O.); (S.G.-G.); (J.A.E.); (E.G.-J.); (V.H.-G.); (F.V.-P.); (M.R.-S.)
| | - Luis I. Terrazas
- Laboratorio Nacional en Salud FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (I.M.-A.); (J.E.O.); (S.G.-G.); (J.A.E.); (E.G.-J.); (V.H.-G.); (F.V.-P.); (M.R.-S.)
- Unidad de Biomedicina, Facultad de Estudios Superiores (FES)-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico
| |
Collapse
|
21
|
Xiong X, Zhao J, Pan J, Liu C, Guo X, Zhou S. Personalized Nanovaccine Coated with Calcinetin-Expressed Cancer Cell Membrane Antigen for Cancer Immunotherapy. NANO LETTERS 2021; 21:8418-8425. [PMID: 34546061 DOI: 10.1021/acs.nanolett.1c03004] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A cancer vaccine has been widely applied in clinical tumor therapy as one of the main strategies of immunotherapy. However, the traditional cancer vaccine for a single antigen has a low benefit rate due to the individual differences in patients. Here, we report a R837-loaded poly(lactic-co-glycolic acid) nanovaccine coated with a calcinetin (CRT)-expressed cancer cell membrane antigen for immunotherapy. The cell membrane antigen that possessed a complete antigen array was obtained by inducing immunogenic cell death in vitro, avoiding the severe systemic toxicity of chemotherapy in vivo. The nanovaccine codelivers the adjuvant R837 and the Luc-4T1 membrane antigen, triggering a personalized immune response to the corresponding tumor. Moreover, the calcinetin exposed on the surface of the nanovaccine induces the active uptake of dendritic cells, consequently enhancing the antitumor effect. Meanwhile, the nanovaccine activates immune memory cells to provide long-term protection. Our work provides a new strategy for a clinical personalized antitumor vaccine.
Collapse
Affiliation(s)
- Xiang Xiong
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Jingya Zhao
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Jingmei Pan
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Chunping Liu
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Xing Guo
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
22
|
De La Fuente A, Zilio S, Caroli J, Van Simaeys D, Mazza EMC, Ince TA, Bronte V, Bicciato S, Weed DT, Serafini P. Aptamers against mouse and human tumor-infiltrating myeloid cells as reagents for targeted chemotherapy. Sci Transl Med 2021; 12:12/548/eaav9760. [PMID: 32554710 DOI: 10.1126/scitranslmed.aav9760] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/09/2019] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Local delivery of anticancer agents has the potential to maximize treatment efficacy and minimize the acute and long-term systemic toxicities. Here, we used unsupervised systematic evolution of ligands by exponential enrichment to identify four RNA aptamers that specifically recognized mouse and human myeloid cells infiltrating tumors but not their peripheral or circulating counterparts in multiple mouse models and from patients with head and neck squamous cell carcinoma (HNSCC). The use of these aptamers conjugated to doxorubicin enhanced the accumulation and bystander release of the chemotherapeutic drug in both primary and metastatic tumor sites in breast and fibrosarcoma mouse models. In the 4T1 mammary carcinoma model, these doxorubicin-conjugated aptamers outperformed Doxil, the first clinically approved highly optimized nanoparticle for targeted chemotherapy, promoting tumor regression after just three administrations with no detected changes in weight loss or blood chemistry. These RNA aptamers recognized tumor infiltrating myeloid cells in a variety of mouse tumors in vivo and from human HNSCC ex vivo. This work suggests the use of RNA aptamers for the detection of myeloid-derived suppressor cells in humans and for a targeted delivery of chemotherapy to the tumor microenvironment in multiple malignancies.
Collapse
Affiliation(s)
- Adriana De La Fuente
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Serena Zilio
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Jimmy Caroli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41100, Italy
| | - Dimitri Van Simaeys
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Emilia M C Mazza
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41100, Italy
| | - Tan A Ince
- Department of Pathology, Weill Cornell Medicine, Cornell University and New York Presbyterian Brooklyn Methodist Hospital, NY 11215, USA
| | - Vincenzo Bronte
- Department of Medicine, Verona University Hospital, Verona 37100, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41100, Italy
| | - Donald T Weed
- Department of Otolaryngology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Paolo Serafini
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA. .,Department of Otolaryngology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
23
|
Munir MT, Kay MK, Kang MH, Rahman MM, Al-Harrasi A, Choudhury M, Moustaid-Moussa N, Hussain F, Rahman SM. Tumor-Associated Macrophages as Multifaceted Regulators of Breast Tumor Growth. Int J Mol Sci 2021; 22:6526. [PMID: 34207035 PMCID: PMC8233875 DOI: 10.3390/ijms22126526] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most commonly occurring cancer in women of Western countries and is the leading cause of cancer-related mortality. The breast tumor microenvironment contains immune cells, fibroblasts, adipocytes, mesenchymal stem cells, and extracellular matrix. Among these cells, macrophages or tumor-associated macrophages (TAMs) are the major components of the breast cancer microenvironment. TAMs facilitate metastasis of the breast tumor and are responsible for poor clinical outcomes. High TAM density was also found liable for the poor prognosis of breast cancer. These observations make altering TAM function a potential therapeutic target to treat breast cancer. The present review summarizes the origin of TAMs, mechanisms of macrophage recruitment and polarization in the tumor, and the contributions of TAMs in tumor progression. We have also discussed our current knowledge about TAM-targeted therapies and the roles of miRNAs and exosomes in re-educating TAM function.
Collapse
Affiliation(s)
- Maliha Tabassum Munir
- Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.T.M.); (N.M.-M.)
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Matthew K. Kay
- Texas A&M University Health Sciences Center, College Station, TX 77843, USA; (M.K.K.); (M.C.)
| | - Min H. Kang
- Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Md Mizanur Rahman
- Department of Biological and Environmental Sciences, Qatar University, Doha 2713, Qatar;
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mouz 616, Oman;
| | - Mahua Choudhury
- Texas A&M University Health Sciences Center, College Station, TX 77843, USA; (M.K.K.); (M.C.)
| | - Naima Moustaid-Moussa
- Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.T.M.); (N.M.-M.)
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Fazle Hussain
- Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA;
| | - Shaikh Mizanoor Rahman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mouz 616, Oman;
| |
Collapse
|
24
|
Zhu Z, Parikh P, Zhao H, Givens NT, Beck DB, Willson CM, Bai Q, Wakefield MR, Fang Y. Targeting immunometabolism of neoplasms by interleukins: A promising immunotherapeutic strategy for cancer treatment. Cancer Lett 2021; 518:94-101. [PMID: 34153401 DOI: 10.1016/j.canlet.2021.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/23/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022]
Abstract
In recent years, tumor metabolism has become a prevalent research topic for scientists and pharmaceutical companies. As research in the field has progressed, the metabolism-based therapy of tumors has ushered in new opportunities. Most tumors emerge and evolve under selective pressure from their microenvironment, which promotes the diversification of both neoplastic and non-neoplastic compartments of the tumor microenvironment (TME), and finally reaches a certain degree of intratumoral heterogeneity. As a result of the tumor intratumoral heterogeneity, tumor cells often possess a complex energy metabolism phenotype. During tumor progression, the metabolism for both tumor parenchyma and stroma is reprogrammed. The tumor stroma mainly consists of the extracellular matrix, fibroblasts, and immune cells. Interestingly, tumor-infiltrating immune cells utilize different metabolites based on their subtype and function, and these immunometabolic pathways can be modified in the TME. In particular, interleukins play a vital role in the activation and differentiation of immune cells and have exhibited multiple effects on tumor cell neoplasia, invasion, and metastasis. In this review, we summarize the common mechanisms of interleukins affecting the tumor and tumor-infiltrating immune cells metabolically and discuss how these mechanisms may lead to novel therapeutic opportunities. This review might contribute to the novel development of cancer immunotherapy.
Collapse
Affiliation(s)
- Ziwen Zhu
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA, USA; Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA.
| | - Pooja Parikh
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Hongyun Zhao
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nathan T Givens
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA, USA
| | - Damien B Beck
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA, USA
| | - Conner M Willson
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA, USA; Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|
25
|
Roy D, Pascher A, Juratli MA, Sporn JC. The Potential of Aptamer-Mediated Liquid Biopsy for Early Detection of Cancer. Int J Mol Sci 2021; 22:ijms22115601. [PMID: 34070509 PMCID: PMC8199038 DOI: 10.3390/ijms22115601] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023] Open
Abstract
The early detection of cancer favors a greater chance of curative treatment and long-term survival. Exciting new technologies have been developed that can help to catch the disease early. Liquid biopsy is a promising non-invasive tool to detect cancer, even at an early stage, as well as to continuously monitor disease progression and treatment efficacy. Various methods have been implemented to isolate and purify bio-analytes in liquid biopsy specimens. Aptamers are short oligonucleotides consisting of either DNA or RNA that are capable of binding to target molecules with high specificity. Due to their unique properties, they are considered promising recognition ligands for the early detection of cancer by liquid biopsy. A variety of circulating targets have been isolated with high affinity and specificity by facile modification and affinity regulation of the aptamers. In this review, we discuss recent progress in aptamer-mediated liquid biopsy for cancer detection, its associated challenges, and its future potential for clinical applications.
Collapse
Affiliation(s)
- Dhruvajyoti Roy
- Helio Health, Irvine, CA 92618, USA
- Correspondence: ; Tel.: +1-949-8722383
| | - Andreas Pascher
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, 48149 Münster, Germany; (A.P.); (M.A.J.); (J.C.S.)
| | - Mazen A. Juratli
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, 48149 Münster, Germany; (A.P.); (M.A.J.); (J.C.S.)
| | - Judith C. Sporn
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, 48149 Münster, Germany; (A.P.); (M.A.J.); (J.C.S.)
| |
Collapse
|
26
|
Parveen S, Lun S, Urbanowski ME, Cardin M, Shen J, Murphy JR, Bishai WR. Effective host-directed therapy for tuberculosis by targeted depletion of myeloid-derived suppressor cells and related cells using a diphtheria toxin-based fusion protein. J Infect Dis 2021; 224:1962-1972. [PMID: 33955457 DOI: 10.1093/infdis/jiab235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/28/2021] [Indexed: 11/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are present in elevated numbers in TB patients and have been found to be permissive for Mycobacterium tuberculosis (Mtb) proliferation. To determine whether depletion of MDSCs may improve host control of TB, we used a novel diphtheria toxin-based fusion protein known as DABIL-4 that targets and depletes IL-4-receptor positive cells. We show that DABIL-4 depletes both PMN-MDSCs and M-MDSC, increases IFNγ + T-cells, and reduces the lung bacillary burden in the mouse TB model. These results indicate that MDSC-depleting therapies targeting the IL-4 receptor are beneficial in TB and offer an avenue towards host-directed TB therapy.
Collapse
Affiliation(s)
- Sadiya Parveen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - Shichun Lun
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - Michael E Urbanowski
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - Mitchell Cardin
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - Jessica Shen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - John R Murphy
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - William R Bishai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| |
Collapse
|
27
|
Parveen S, Siddharth S, Cheung LS, Kumar A, Shen J, Murphy JR, Sharma D, Bishai WR. Therapeutic targeting with DABIL-4 depletes myeloid suppressor cells in 4T1 triple-negative breast cancer model. Mol Oncol 2021; 15:1330-1344. [PMID: 33682324 PMCID: PMC8096791 DOI: 10.1002/1878-0261.12938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/10/2021] [Accepted: 03/05/2021] [Indexed: 12/19/2022] Open
Abstract
In many solid tumors including triple-negative breast cancer (TNBC), upregulation of the interleukin-4 receptor (IL-4R) has been shown to promote cancer cell proliferation, apoptotic resistance, metastatic potential, and a Th2 response in the tumor microenvironment (TME). Since immunosuppressive cells in the TME and spleen including myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) also express the IL-4R, we hypothesized that selective depletion of IL-4R-bearing cells in TNBC would result in the direct killing of tumor cells and the depletion of immunosuppressive cells and lead to an enhanced antitumor response. To selectively target IL-4R+ cells, we employed DABIL-4, a fusion protein toxin consisting of the catalytic and translocation domains of diphtheria toxin fused to murine IL-4. As anticipated, DABIL-4 has potent cytotoxic activity against TNBC cells both in vitro and in vivo. We demonstrate in the murine 4T1 TNBC model that DABIL-4 significantly reduces tumor growth, splenomegaly, and lung metastases. Importantly, we also show that the administration of DABIL-4 results in the selective depletion of MDSCs, TAMs, and regulatory T cells in treated mice, with a concomitant increase in IFN-γ+ CD8 effector T cells in the TME. Since the 4T1 antitumor activity of DABIL-4 was largely diminished in IL-4R knockout mice, we postulate that DABIL-4 functions primarily as an immunotherapeutic by the depletion of MDSCs, TAMs, and regulatory T cells. NanoString analysis of control and treated tumors confirmed and extended these observations by showing a marked decline of mRNA transcripts that are associated with tumorigenesis and metastasis. In conclusion, we demonstrate that DABIL-4 targeting of both tumor and immunosuppressive host cells likely represents a novel and effective treatment strategy for 4T1 TNBC and warrants further study.
Collapse
Affiliation(s)
- Sadiya Parveen
- Department of MedicineDivision of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Sumit Siddharth
- Department of OncologySidney Kimmel Comprehensive Cancer Center at Johns HopkinsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Laurene S. Cheung
- Department of MedicineDivision of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Alok Kumar
- Department of MedicineDivision of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Jessica Shen
- Department of MedicineDivision of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - John R. Murphy
- Department of MedicineDivision of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Dipali Sharma
- Department of OncologySidney Kimmel Comprehensive Cancer Center at Johns HopkinsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - William R. Bishai
- Department of MedicineDivision of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
28
|
Yi K, Rong Y, Huang L, Tang X, Zhang Q, Wang W, Wu J, Wang F. Aptamer-Exosomes for Tumor Theranostics. ACS Sens 2021; 6:1418-1429. [PMID: 33755415 DOI: 10.1021/acssensors.0c02237] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As carriers of biomolecules (proteins, nucleic acids, and lipids) from parent cells, exosomes play a significant role in physiology and pathology. In any diseased state, the morphology of the released exosomes remained similar. The contents of exosomes change depending on the disease or its stage; thus, exosomes are generally considered as a "source of biomarkers". Therefore, they are considered promising biomarkers for the diagnosis and prognosis of tumors. As natural delivery vehicles, exosomes can protect their cargo from immune clearance and deliver them to other cells through membrane fusion. After being genetically edited at the cell or exosome level, exosomes can be used for treatment with aptamers. Aptamers are short stretches of oligonucleotide sequences or short polypeptides that have been selected in vitro or in vivo, and have a wide range of targets and show excellent binding affinity and specificity. Aptamers have been widely used as molecular probes, and the combination of aptamers with exosomes has become a new direction for exosome-related research and therapeutic development. Here, we summarized various applications of exosomes and aptamers in cancer research, and further analyzed their combination as an "aptamer-exosome". Finally, we propose future directions for the aptamer-exosome in the precise diagnosis or personalized treatment of cancer.
Collapse
Affiliation(s)
- Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Yuan Rong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Lanxiang Huang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Xuan Tang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Qian Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Wei Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Jianyuan Wu
- Clinical Trial Center of Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| |
Collapse
|
29
|
Frosch J, Leontari I, Anderson J. Combined Effects of Myeloid Cells in the Neuroblastoma Tumor Microenvironment. Cancers (Basel) 2021; 13:1743. [PMID: 33917501 PMCID: PMC8038814 DOI: 10.3390/cancers13071743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Despite multimodal treatment, survival chances for high-risk neuroblastoma patients remain poor. Immunotherapeutic approaches focusing on the activation and/or modification of host immunity for eliminating tumor cells, such as chimeric antigen receptor (CAR) T cells, are currently in development, however clinical trials have failed to reproduce the preclinical results. The tumor microenvironment is emerging as a major contributor to immune suppression and tumor evasion in solid cancers and thus has to be overcome for therapies relying on a functional immune response. Among the cellular components of the neuroblastoma tumor microenvironment, suppressive myeloid cells have been described as key players in inhibition of antitumor immune responses and have been shown to positively correlate with more aggressive disease, resistance to treatments, and overall poor prognosis. This review article summarizes how neuroblastoma-driven inflammation induces suppressive myeloid cells in the tumor microenvironment and how they in turn sustain the tumor niche through suppressor functions, such as nutrient depletion and generation of oxidative stress. Numerous preclinical studies have suggested a range of drug and cellular therapy approaches to overcome myeloid-derived suppression in neuroblastoma that warrant evaluation in future clinical studies.
Collapse
Affiliation(s)
| | | | - John Anderson
- UCL Institute of Child Health, Developmental Biology and Cancer Section, University College London, London WC1N 1EH, UK; (J.F.); (I.L.)
| |
Collapse
|
30
|
Pu Y, Xiang J, Zhang X, Deng Y, Liu H, Tan W. CD36 as a Molecular Target of Functional DNA Aptamer NAFLD01 Selected against NAFLD Cells. Anal Chem 2021; 93:3951-3958. [PMID: 33596054 DOI: 10.1021/acs.analchem.0c04866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this study was to identify the target of nonalcoholic fatty liver disease (NAFLD) cell-specific aptamer NAFLD01 and investigate its effect on lipid metabolism in vitro. A distinct membrane protein of NAFLD cells pulled down by NAFLD01 was analyzed by mass spectrometry to determine target candidates, and affinity of NAFLD01 to target-protein-silent NAFLD cells was detected to validate it. Knockdown of CD36 abolished the binding of NAFLD01, and its binding affinity was associated with membrane-bound CD36. NAFLD01 affinity for NAFLD cells was proportional to the CD36 expression level. Moreover, compared to random sequences, NAFLD01 showed better recognition for both mouse and human tissue sections of NAFLD. Importantly, NAFLD01 could ameliorate liver fat deposition through interaction with CD36 in vitro. Therefore, aptamer NAFLD01 could act as an effective and safe targeted drug for NAFLD. NAFLD01 is the first reported CD36-specific aptamer. This aptamer can improve hepatocyte steatosis via specifically binding to CD36. This study provides a molecular tool to investigate the mechanism of CD36 in NAFLD.
Collapse
Affiliation(s)
- Ying Pu
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Juan Xiang
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xinxu Zhang
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuanyuan Deng
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Huixia Liu
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
31
|
Zhu H, Klement JD, Lu C, Redd PS, Yang D, Smith AD, Poschel DB, Zou J, Liu D, Wang PG, Ostrov D, Coant N, Hannun YA, Colby AH, Grinstaff MW, Liu K. Asah2 Represses the p53-Hmox1 Axis to Protect Myeloid-Derived Suppressor Cells from Ferroptosis. THE JOURNAL OF IMMUNOLOGY 2021; 206:1395-1404. [PMID: 33547170 DOI: 10.4049/jimmunol.2000500] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are immune suppressive cells that massively accumulate under pathological conditions to suppress T cell immune response. Dysregulated cell death contributes to MDSC accumulation, but the molecular mechanism underlying this cell death dysregulation is not fully understood. In this study, we report that neutral ceramidase (N-acylsphingosine amidohydrolase [ASAH2]) is highly expressed in tumor-infiltrating MDSCs in colon carcinoma and acts as an MDSC survival factor. To target ASAH2, we performed molecular docking based on human ASAH2 protein structure. Enzymatic inhibition analysis of identified hits determined NC06 as an ASAH2 inhibitor. Chemical and nuclear magnetic resonance analysis determined NC06 as 7-chloro-2-(3-chloroanilino)pyrano[3,4-e][1,3]oxazine-4,5-dione. NC06 inhibits ceramidase activity with an IC50 of 10.16-25.91 μM for human ASAH2 and 18.6-30.2 μM for mouse Asah2 proteins. NC06 induces MDSC death in a dose-dependent manner, and inhibition of ferroptosis decreased NC06-induced MDSC death. NC06 increases glutathione synthesis and decreases lipid reactive oxygen species to suppress ferroptosis in MDSCs. Gene expression profiling identified the p53 pathway as the Asah2 target in MDSCs. Inhibition of Asah2 increased p53 protein stability to upregulate Hmox1 expression to suppress lipid reactive oxygen species production to suppress ferroptosis in MDSCs. NC06 therapy increases MDSC death and reduces MDSC accumulation in tumor-bearing mice, resulting in increased activation of tumor-infiltrating CTLs and suppression of tumor growth in vivo. Our data indicate that ASAH2 protects MDSCs from ferroptosis through destabilizing p53 protein to suppress the p53 pathway in MDSCs in the tumor microenvironment. Targeting ASAH2 with NC06 to induce MDSC ferroptosis is potentially an effective therapy to suppress MDSC accumulation in cancer immunotherapy.
Collapse
Affiliation(s)
- Huabin Zhu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30904
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30904
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30904
| | - Priscilla S Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30904
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30904
| | - Alyssa D Smith
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30904
| | - Dakota B Poschel
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30904
| | - Juan Zou
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912
| | - Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303
| | - David Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Nicolas Coant
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
| | - Yusuf A Hannun
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
| | - Aaron H Colby
- Ionic Pharmaceuticals, Brookline, MA 02445; and.,Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912; .,Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30904
| |
Collapse
|
32
|
Fortunato O, Iorio MV. The Therapeutic Potential of MicroRNAs in Cancer: Illusion or Opportunity? Pharmaceuticals (Basel) 2020; 13:E438. [PMID: 33271894 PMCID: PMC7761241 DOI: 10.3390/ph13120438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
The functional involvement of microRNAs in human neoplasia has raised in the last years an increasing interest in the scientific community toward the potential application in clinics as therapeutic tools. Indeed, the possibility to modulate their expression to re-establish a lost equilibrium and counteract tumor growth and dissemination, and/or to improve responsiveness to standard therapies, is promising and fascinating. However, several issues need to be taken into account such as factors related to miRNA stability in the blood, tissue penetration and potential off-target effects, which might affect safety, tolerability and efficacy of an miRNA-based therapy. Here we describe the most relevant challenges related to miRNA-based therapy, review the delivery strategies exploited to date and the on-going clinical trials.
Collapse
Affiliation(s)
- Orazio Fortunato
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milan, Italy
| | - Marilena V. Iorio
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| |
Collapse
|
33
|
Komarova N, Barkova D, Kuznetsov A. Implementation of High-Throughput Sequencing (HTS) in Aptamer Selection Technology. Int J Mol Sci 2020; 21:E8774. [PMID: 33233573 PMCID: PMC7699794 DOI: 10.3390/ijms21228774] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
Aptamers are nucleic acid ligands that bind specifically to a target of interest. Aptamers have gained in popularity due to their high potential for different applications in analysis, diagnostics, and therapeutics. The procedure called systematic evolution of ligands by exponential enrichment (SELEX) is used for aptamer isolation from large nucleic acid combinatorial libraries. The huge number of unique sequences implemented in the in vitro evolution in the SELEX process imposes the necessity of performing extensive sequencing of the selected nucleic acid pools. High-throughput sequencing (HTS) meets this demand of SELEX. Analysis of the data obtained from sequencing of the libraries produced during and after aptamer isolation provides an informative basis for precise aptamer identification and for examining the structure and function of nucleic acid ligands. This review discusses the technical aspects and the potential of the integration of HTS with SELEX.
Collapse
Affiliation(s)
- Natalia Komarova
- Scientific-Manufacturing Complex Technological Centre, 1–7 Shokin Square, Zelenograd, 124498 Moscow, Russia; (D.B.); (A.K.)
| | | | | |
Collapse
|
34
|
Barbosa Bomfim CC, Pinheiro Amaral E, Santiago-Carvalho I, Almeida Santos G, Machado Salles É, Hastreiter AA, Silva do Nascimento R, Almeida FM, Lopes Biá Ventura Simão T, Linhares Rezende A, Hiroyuki Hirata M, Ambrósio Fock R, Álvarez JM, Lasunskaia EB, D'Império Lima MR. Harmful Effects of Granulocytic Myeloid-Derived Suppressor Cells on Tuberculosis Caused by Hypervirulent Mycobacteria. J Infect Dis 2020; 223:494-507. [PMID: 33206171 DOI: 10.1093/infdis/jiaa708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The role of myeloid-derived suppressor cells (MDSCs) in patients with severe tuberculosis who suffer from uncontrolled pulmonary inflammation caused by hypervirulent mycobacterial infection remains unclear. METHODS This issue was addressed using C57BL/6 mice infected with highly virulent Mycobacterium bovis strain MP287/03. RESULTS CD11b+GR1int population increased in the bone marrow, blood and lungs during advanced disease. Pulmonary CD11b+GR1int (Ly6GintLy6Cint) cells showed granularity similar to neutrophils and expressed immature myeloid cell markers. These immature neutrophils harbored intracellular bacilli and were preferentially located in the alveoli. T-cell suppression occurred concomitantly with CD11b+GR1int cell accumulation in the lungs. Furthermore, lung and bone marrow GR1+ cells suppressed both T-cell proliferation and interferon γ production in vitro. Anti-GR1 therapy given when MDSCs infiltrated the lungs prevented expansion and fusion of primary pulmonary lesions and the development of intragranulomatous caseous necrosis, along with increased mouse survival and partial recovery of T-cell function. Lung bacterial load was reduced by anti-GR1 treatment, but mycobacteria released from the depleted cells proliferated extracellularly in the alveoli, forming cords and clumps. CONCLUSIONS Granulocytic MDSCs massively infiltrate the lungs during infection with hypervirulent mycobacteria, promoting bacterial growth and the development of inflammatory and necrotic lesions, and are promising targets for host-directed therapies.
Collapse
Affiliation(s)
- Caio César Barbosa Bomfim
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Eduardo Pinheiro Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Igor Santiago-Carvalho
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Gislane Almeida Santos
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Érika Machado Salles
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Araceli Aparecida Hastreiter
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Fabrício M Almeida
- Laboratório de Biologia do Reconhecer, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Thatiana Lopes Biá Ventura Simão
- Laboratório de Biologia do Reconhecer, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Andreza Linhares Rezende
- Laboratório de Biologia do Reconhecer, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Mario Hiroyuki Hirata
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo Ambrósio Fock
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - José Maria Álvarez
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Elena B Lasunskaia
- Laboratório de Biologia do Reconhecer, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | |
Collapse
|
35
|
Permpoon U, Khan F, Vadevoo SMP, Gurung S, Gunassekaran GR, Kim MJ, Kim SH, Thuwajit P, Lee B. Inhibition of Tumor Growth against Chemoresistant Cholangiocarcinoma by a Proapoptotic Peptide Targeting Interleukin-4 Receptor. Mol Pharm 2020; 17:4077-4088. [PMID: 32881535 DOI: 10.1021/acs.molpharmaceut.0c00529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cholangiocarcinoma (CCA) has a poor prognosis and high chemoresistance. Interleukin-4 receptor (IL-4R) is overexpressed in several cancer cells and plays a crucial role in tumor progression and drug resistance. IL4RPep-1, an IL-4R-binding peptide, has been identified by phage display and used for tumor targeting. In this study, we exploited IL4RPep-1 to guide the tumor-specific delivery of a proapoptotic peptide to chemoresistant CCA, thereby inhibiting tumor growth. Immunohistochemistry of human primary CCA tissues showed that IL-4R levels were upregulated in moderately to poorly differentiated types, and higher levels of IL-4R are correlated with lower survival rates in patients with CCA. IL4RPep-1 was observed to preferentially bind with high IL-4R-expressing KKU-213 human CCA cells, whereas it barely bound with low IL-4R-expressing KKU-055 cells. A hybrid of IL4RPep-1 and a proapoptotic peptide (KLAKLAK)2 (named as IL4RPep-1-KLA) induced cytotoxicity and apoptosis in KKU-213 cells and increased those levels induced by 5-fluorouracil (5-FU). IL4RPep-1-KLA was internalized in the cells and colocalized with mitochondria. Whole-body fluorescence imaging and immunohistochemical analysis of tumor tissues showed the homing of IL4RPep-1-KLA as well as IL4RPep-1 to KKU-213 tumor in mice. Systemic administration of IL4RPep-1-KLA efficiently inhibited KKU-213 tumor growth, whereas treatment with 5-FU alone did not significantly inhibit tumor growth in mice. No significant systemic side effects including liver toxicity and immunotoxicity were observed in mice during peptide treatments. These findings suggest that IL4RPep-1-KLA holds potential as a targeted therapeutic agent against chemoresistant CCA.
Collapse
Affiliation(s)
- Uttapol Permpoon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Division of Biomedical Sciences, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Fatima Khan
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Division of Biomedical Sciences, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea
| | - Sri Murugan Poonkavithai Vadevoo
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Division of Biomedical Sciences, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea
| | - Smriti Gurung
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Division of Biomedical Sciences, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea
| | - Gowri Rangaswamy Gunassekaran
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea
| | - Min-Jong Kim
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Division of Biomedical Sciences, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea
| | - Sang-Hyun Kim
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Division of Biomedical Sciences, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea.,Division of Biomedical Sciences, School of Medicine, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Republic of Korea
| |
Collapse
|
36
|
Moaaz M, Lotfy H, Elsherbini B, Motawea MA, Fadali G. TGF-β Enhances the Anti-inflammatory Effect of Tumor- Infiltrating CD33+11b+HLA-DR Myeloid-Derived Suppressor Cells in Gastric Cancer: A Possible Relation to MicroRNA-494. Asian Pac J Cancer Prev 2020; 21:3393-3403. [PMID: 33247701 PMCID: PMC8033108 DOI: 10.31557/apjcp.2020.21.11.3393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Accumulation of myeloid-derived suppressor cells (MDSCs) constitutes a key mechanism of tumor immune evasion in gastric cancer (GC). Therefore, searching for more accurate prognostic factors affecting their immunosuppressive role has become a growing interest in cancer immunotherapy research. Increased expression of microRNA-494 was noticed in MDSCs from tumor-bearing mice, suggesting another new therapeutic objective for cancer treatment. It was also discovered that tumor-derived transforming growth factor beta (TGF-β) is responsible for the up-regulation of microRNA-494 in MDSCs. The purpose of this study was to address the effect of recombinant (rTGF-β) on the anti-inflammatory activity of MDSCs in GC and its possible association with micro-RNA-494 expression in tumor tissue. METHODS Freshly obtained GC tumor tissue samples and peripheral blood were used for isolation of CD33+11b+HLADR- MDSCs cells from 40 GC patients and 31 corresponding controls using flow cytometry. MDSCs were co-cultured with isolated autologous T cells to assess proliferation and cytokine production in the presence and absence of rTGF-β. Real-time PCR and Enzyme linked immunosorbent assay were used to evaluate tumor expression of miRNA-494 and TGF-β respectively. RESULTS Results showed that rTGF-β markedly increased the suppressive ability of tumor MDSCs on proliferation of autologous T cells and interferon gamma production. However, no inhibitory effect was observed for MDSCs from circulation. In addition, infiltration of MDSCs in tumors is associated with the prognosis of GC. MiRNA-494 was also extensively expressed in tumor samples with a significant correlation to MDSCs. CONCLUSION These results indicate that tumor-derived MDSCs but not circulatory MDSCs have an immunosuppressive effect on T cells, potentially involving TGF-β mediated stimulation. Results also suggest a role for miRNA-494 in GC progression. Therefore, control of TGF-β and miRNA-494 may be used as a treatment strategy to downregulate the immunosuppressive effect of MDSCs. .
Collapse
Affiliation(s)
- Mai Moaaz
- Department of Immunology and Allergy, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Hassan Lotfy
- Department of Surgery, Vascular Surgery Unit, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Bassem Elsherbini
- Department of Immunology and Allergy, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Mohamed A. Motawea
- Department of Experimental Surgery, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Geylan Fadali
- Department of Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
37
|
Han X, Luan T, Sun Y, Yan W, Wang D, Zeng X. MicroRNA 449c Mediates the Generation of Monocytic Myeloid-Derived Suppressor Cells by Targeting STAT6. Mol Cells 2020; 43:793-803. [PMID: 32863280 PMCID: PMC7528684 DOI: 10.14348/molcells.2020.2307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) promote tumour progression by contributing to angiogenesis, immunosuppression, and immunotherapy resistance. Although recent studies have shown that microRNAs (miRNAs) can promote the expansion of MDSCs in the tumour environment, the mechanisms involved in this process are largely unknown. Here, we report that microRNA 449c (miR-449c) expression was upregulated in myeloid progenitor cells upon activation of C-X-C motif chemokine receptor 2 (CXCR2) under tumour conditions. MiR-449c upregulation increased the generation of monocytic MDSCs (mo-MDSCs). The increased expression of miR-449c could target STAT6 mRNA in myeloid progenitor cells to shift the differentiation balance of myeloid progenitor cells and lead to an enhancement of the mo-MDSCs population in the tumour environment. Thus, our results demonstrate that the miR-449c/STAT6 axis is involved in the expansion of mo-MDSCs from myeloid progenitor cells upon activation of CXCR2, and thus, inhibition of miR-449c/STAT6 signalling may help to attenuate tumour progression.
Collapse
Affiliation(s)
- Xiaoqing Han
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Tao Luan
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yingying Sun
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Wenyi Yan
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Dake Wang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
38
|
Caroli J, Forcato M, Bicciato S. APTANI2: update of aptamer selection through sequence-structure analysis. Bioinformatics 2020; 36:2266-2268. [PMID: 31778141 DOI: 10.1093/bioinformatics/btz897] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/07/2019] [Accepted: 11/26/2019] [Indexed: 12/23/2022] Open
Abstract
SUMMARY Here we present APTANI2, an expanded and optimized version of APTANI, a computational tool for selecting target-specific aptamers from high-throughput-Systematic Evolution of Ligands by Exponential Enrichment data through sequence-structure analysis. As compared to its original implementation, APTANI2 ranks aptamers and identifies relevant structural motifs through the calculation of a score that combines frequency and structural stability of each secondary structure predicted in any aptamer sequence. In addition, APTANI2 comprises modules for a deeper investigation of sequence motifs and secondary structures, a graphical user interface that enhances its usability, and coding solutions that improve performances. AVAILABILITY AND IMPLEMENTATION Source code, documentation and example command lines can be downloaded from http://aptani.unimore.it. APTANI2 is implemented in Python 3.4, released under the GNU GPL3.0 License, and compatible with Linux, Mac OS and the MS Windows subsystem for Linux. SUPPLEMENTARY INFORMATION Supplementary information is available at Bioinformatics online.
Collapse
Affiliation(s)
- Jimmy Caroli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| |
Collapse
|
39
|
Malekghasemi S, Majidi J, Baghbanzadeh A, Abdolalizadeh J, Baradaran B, Aghebati-Maleki L. Tumor-Associated Macrophages: Protumoral Macrophages in Inflammatory Tumor Microenvironment. Adv Pharm Bull 2020; 10:556-565. [PMID: 33062602 PMCID: PMC7539304 DOI: 10.34172/apb.2020.066] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor microenvironment consists of malignant and non-malignant cells. The interaction of these dynamic and different cells is responsible for tumor progression at different levels. The non-malignant cells in TME contain cells such as tumor-associated macrophages (TAMs), cancer associated fibroblasts, pericytes, adipocytes, T cells, B cells, myeloid-derived suppressor cells (MDSCs), tumor-associated neutrophils (TANs), dendritic cells (DCs) and Vascular endothelial cells. TAMs are abundant in most human and murine cancers and their presence are associated with poor prognosis. The major event in tumor microenvironment is macrophage polarization into tumor-suppressive M1 or tumor-promoting M2 types. Although much evidence suggests that TAMS are primarily M2-like macrophages, the mechanism responsible for polarization into M1 and M2 macrophages remain unclear. TAM contributes cancer cell motility, invasion, metastases and angiogenesis. The relationship between TAM and tumor cells lead to used them as a diagnostic marker, therapeutic target and prognosis of cancer. This review presents the origin, polarization, role of TAMs in inflammation, metastasis, immune evasion and angiogenesis as well as they can be used as therapeutic target in variety of cancer cells. It is obvious that additional substantial and preclinical research is needed to support the effectiveness and applicability of this new and promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Somaiyeh Malekghasemi
- Department of Basic Oncology, Oncology Institute, Hacettepe University, Sihhiye, Ankara, TR-06100, Turkey
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Department of Basic Oncology, Oncology Institute, Hacettepe University, Sihhiye, Ankara, TR-06100, Turkey
| | - Jalal Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
Smith AD, Lu C, Payne D, Paschall AV, Klement JD, Redd PS, Ibrahim ML, Yang D, Han Q, Liu Z, Shi H, Hartney TJ, Nayak-Kapoor A, Liu K. Autocrine IL6-Mediated Activation of the STAT3-DNMT Axis Silences the TNFα-RIP1 Necroptosis Pathway to Sustain Survival and Accumulation of Myeloid-Derived Suppressor Cells. Cancer Res 2020; 80:3145-3156. [PMID: 32554751 PMCID: PMC7416440 DOI: 10.1158/0008-5472.can-19-3670] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/10/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Although accumulation of myeloid-derived suppressor cells (MDSC) is a hallmark of cancer, the underlying mechanism of this accumulation within the tumor microenvironment remains incompletely understood. We report here that TNFα-RIP1-mediated necroptosis regulates accumulation of MDSCs. In tumor-bearing mice, pharmacologic inhibition of DNMT with the DNA methyltransferease inhibitor decitabine (DAC) decreased MDSC accumulation and increased activation of antigen-specific cytotoxic T lymphocytes. DAC-induced decreases in MDSC accumulation correlated with increased expression of the myeloid cell lineage-specific transcription factor IRF8 in MDSCs. However, DAC also suppressed MDSC-like cell accumulation in IRF8-deficient mice, indicating that DNA methylation may regulate MDSC survival through an IRF8-independent mechanism. Instead, DAC decreased MDSC accumulation by increasing cell death via disrupting DNA methylation of RIP1-dependent targets of necroptosis. Genome-wide DNA bisulfite sequencing revealed that the Tnf promoter was hypermethylated in tumor-induced MDSCs in vivo. DAC treatment dramatically increased TNFα levels in MDSC in vitro, and neutralizing TNFα significantly increased MDSC accumulation and tumor growth in tumor-bearing mice in vivo. Recombinant TNFα induced MDSC cell death in a dose- and RIP1-dependent manner. IL6 was abundantly expressed in MDSCs in tumor-bearing mice and patients with human colorectal cancer. In vitro, IL6 treatment of MDSC-like cells activated STAT3, increased expression of DNMT1 and DNMT3b, and enhanced survival. Overall, our findings reveal that MDSCs establish a STAT3-DNMT epigenetic axis, regulated by autocrine IL6, to silence TNFα expression. This results in decreased TNFα-induced and RIP1-dependent necroptosis to sustain survival and accumulation. SIGNIFICANCE: These findings demonstrate that targeting IL6 expression or function represent potentially effective approaches to suppress MDSC survival and accumulation in the tumor microenvironment.
Collapse
Affiliation(s)
- Alyssa D Smith
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Daniela Payne
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
| | - Amy V Paschall
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Priscilla S Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Mohammed L Ibrahim
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Qimei Han
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
| | - Zhuoqi Liu
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
| | | | - Asha Nayak-Kapoor
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| |
Collapse
|
41
|
Chinnappan R, Al Faraj A, Abdel Rahman AM, Abu-Salah KM, Mouffouk F, Zourob M. Anti-VCAM-1 and Anti-IL4Rα Aptamer-Conjugated Super Paramagnetic Iron Oxide Nanoparticles for Enhanced Breast Cancer Diagnosis and Therapy. Molecules 2020; 25:E3437. [PMID: 32751068 PMCID: PMC7435411 DOI: 10.3390/molecules25153437] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/03/2022] Open
Abstract
The surface protein overexpressed on cancer cells can be used as biomarkers for early detection of specific diseases. Anti-VCAM-1 and anti-IL4Rα DNA aptamers specific to VCAM-1 and IL4Rα receptors that are overexpressed in 4T1 tumor-bearing mice could be used as potential biomarker for both diagnostic and therapeutic applications in cancer biology. Cell Viability and luciferase assay of 4T1-Luc2 cancer cells in the presence of anti-VCAM-1 ssDNA or anti-IL4Rα RNA aptamers was assessed by monitoring the changes in the absorbance and the fluorescence of Alamar blue dye. The aptamer-conjugated SPIO magnetic beads, used for the selective targeting to tumor sites, were monitored using noninvasive MRI and Bioluminescence imaging (BLI). Cell viability and luciferase assays showed that both anti-VCAM-1 and anti-IL4Rα aptamers favor the depletion of cancer cells and limit tumor progression. Microscopic analyses confirmed that the target specific aptamers significantly trigger tumor cell apoptosis and limit cancer cell growth in vitro. The intravenous injection of SPIO nanoparticle-conjugated aptamers were further confirmed using noninvasive MRI and Bioluminescence imaging. Anti-VCAM1 and anti-IL4Rα aptamers, specific to VCAM-1 and IL4Rα receptors overexpressed in 4T1-Luc2 tumor-bearing mice, were used as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Raja Chinnappan
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11533, Saudi Arabia;
| | - Achraf Al Faraj
- Department of Radiologic Sciences, Faculty of Health Sciences, American University of Science and Technology, Ashrafieh, Alfred Naccash Avenue, Beirut 1100, Lebanon
| | - Anas M. Abdel Rahman
- Department of Genentics, King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh 12713, Saudi Arabia;
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| | - Khalid M. Abu-Salah
- Department of Nanomedicine, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh 11481, Saudi Arabia;
| | - Fouzi Mouffouk
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait;
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11533, Saudi Arabia;
- Department of Genentics, King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh 12713, Saudi Arabia;
| |
Collapse
|
42
|
Cha YJ, Koo JS. Role of Tumor-Associated Myeloid Cells in Breast Cancer. Cells 2020; 9:E1785. [PMID: 32726950 PMCID: PMC7464644 DOI: 10.3390/cells9081785] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Stromal immune cells constitute the tumor microenvironment. These immune cell subsets include myeloid cells, the so-called tumor-associated myeloid cells (TAMCs), which are of two types: tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs). Breast tumors, particularly those in human epidermal growth factor receptor 2 (HER-2)-positive breast cancer and triple-negative breast cancer, are solid tumors containing immune cell stroma. TAMCs drive breast cancer progression via immune mediated, nonimmune-mediated, and metabolic interactions, thus serving as a potential therapeutic target for breast cancer. TAMC-associated breast cancer treatment approaches potentially involve the inhibition of TAM recruitment, modulation of TAM polarization/differentiation, reduction of TAM products, elimination of MDSCs, and reduction of MDSC products. Furthermore, TAMCs can enhance or restore immune responses during cancer immunotherapy. This review describes the role of TAMs and MDSCs in breast cancer and elucidates the clinical implications of TAMs and MDSCs as potential targets for breast cancer treatment.
Collapse
Affiliation(s)
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Korea;
| |
Collapse
|
43
|
Zheng ZM, Yang HL, Lai ZZ, Wang CJ, Yang SL, Li MQ, Shao J. Myeloid-derived suppressor cells in obstetrical and gynecological diseases. Am J Reprod Immunol 2020; 84:e13266. [PMID: 32418253 DOI: 10.1111/aji.13266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid-origin cells which have immunosuppressive activities in several conditions, such as cancer and inflammation. Recent research has also associated MDSCs with numerous obstetrical and gynecological diseases. During pregnancy, MDSCs accumulate to ensure maternal-fetal immune tolerance, whereas they are decreased in patients who suffer from early miscarriage or pre-eclampsia. While the etiology of endometriosis is still unknown, abnormal accumulation of MDSCs in the peripheral blood and peritoneal fluid, alongside an increased level of reactive oxygen species (ROS), has been observed in these patients, which is central to the cellular immune regulations by MDSCs. Additionally, the regulation of MDSCs observed in tumours is also applicable to gynecologic neoplasms, including ovarian cancer and cervical cancer. More recently, emerging evidence has shown that there are high levels of MDSCs in premature ovarian failure (POF) and in vitro fertilization (IVF), but the underlying mechanisms are unknown. In this review, the generation and mechanisms of MDSCs are summarized. In particular, the modulation of these cells in immune-related obstetrical and gynecological diseases is discussed, including potential treatment options targeting MDSCs.
Collapse
Affiliation(s)
- Zi-Meng Zheng
- Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Hui-Li Yang
- Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Zhen-Zhen Lai
- Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Cheng-Jie Wang
- Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Shao-Liang Yang
- Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Ming-Qing Li
- Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jun Shao
- Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
44
|
A Comprehensive Biological and Clinical Perspective Can Drive a Patient-Tailored Approach to Multiple Myeloma: Bridging the Gaps between the Plasma Cell and the Neoplastic Niche. JOURNAL OF ONCOLOGY 2020; 2020:6820241. [PMID: 32508920 PMCID: PMC7251466 DOI: 10.1155/2020/6820241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/17/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
There is a broad spectrum of diseases labeled as multiple myeloma (MM). This is due not only to the composite prognostic risk factors leading to different clinical outcomes and responses to treatments but also to the composite tumor microenvironment that is involved in a vicious cycle with the MM plasma cells. New therapeutic strategies have improved MM patients' chances of survival. Nevertheless, certain patients' subgroups have a particularly unfavorable prognosis. Biological stratification can be subdivided into patient, disease, or therapy-related factors. Alternatively, the biological signature of aggressive disease and dismal therapeutic response can promote a dynamic, comprehensive strategic approach, better tailoring the clinical management of high-risk profiles and refractoriness to therapy and taking into account the role played by the MM milieu. By means of an extensive literature search, we have reviewed the state-of-the-art pathophysiological insights obtained from translational investigations of the MM-bone marrow microenvironment. A good knowledge of the MM niche pathophysiological dissection is crucial to tailor personalized approaches in a bench-bedside fashion. The discussion in this review pinpoints two main aspects that appear fundamental in order to gain novel and definitive results from the biology of MM. A systematic knowledge of the plasma cell disorder, along with greater efforts to face the unmet needs present in MM evolution, promises to open a new therapeutic window looking out onto the plethora of scientific evidence about the myeloma and the bystander cells.
Collapse
|
45
|
Sylvestre M, Crane CA, Pun SH. Progress on Modulating Tumor-Associated Macrophages with Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902007. [PMID: 31559665 PMCID: PMC7098849 DOI: 10.1002/adma.201902007] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/25/2019] [Indexed: 05/14/2023]
Abstract
Tumor-associated macrophages (TAMs) are a complex and heterogeneous population of cells within the tumor microenvironment. In many tumor types, TAMs contribute toward tumor malignancy and are therefore a therapeutic target of interest. Here, three major strategies for regulating TAMs are highlighted, emphasizing the role of biomaterials in these approaches. First, systemic methods for targeting tumor-associated macrophage are summarized and limitations to both passive and active targeting approaches considered. Second, lessons learned from the significant literature on wound healing and macrophage response to implanted biomaterials are discussed with the vision of applying these principles to localized, biomaterial-based modulation of tumor-associated macrophage. Finally, the developing field of engineered macrophages, including genetic engineering and integration with biomaterials or drug delivery systems, is examined. Analysis of major challenges in the field along with exciting opportunities for the future of macrophage-based therapies in oncology are included.
Collapse
Affiliation(s)
- Meilyn Sylvestre
- Department of Bioengineering, University of Washington, 3720 15th Ave. NE, Seattle, WA, 98195, USA
| | - Courtney A Crane
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle Children's Research Institute, Ben Towne Center for Childhood Research, Seattle, WA, 98101, USA
| | - Suzie H Pun
- Department of Bioengineering, University of Washington, 3720 15th Ave. NE, Seattle, WA, 98195, USA
| |
Collapse
|
46
|
Sun X, Guo L, Shang M, Shi D, Liang P, Jing X, Meng D, Liu X, Zhou X, Zhao Y, Li J. Ultrasound Mediated Destruction of LMW-HA-Loaded and Folate-Conjugated Nanobubble for TAM Targeting and Reeducation. Int J Nanomedicine 2020; 15:1967-1981. [PMID: 32273697 PMCID: PMC7102913 DOI: 10.2147/ijn.s238587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose To synthesize and evaluate a novel folate-conjugated ultrasonic nanobubble (HA-FOL-NB) loading low-molecular-weight hyaluronic acid (LMW-HA) for specific tumor-associated macrophages (TAMs) targeting and reeducation. Methods The characteristics, cytotoxicity, contrast-enhanced ultrasound imaging (CEUS), and targeting ability to TAMs of HA-FOL-NBs were investigated. The TAMs reprogramming function of HA-FOL-NBs combining ultrasound targeted nanobubble destruction was assessed as well. Results HA-FOL-NBs (about 342 nm) showed remarkable contrast enhancement images, and higher targeting ability due to the folate to folate receptor interactions. Combined with ultrasound targeted nanobubble destruction, HA-FOL-NBs could specifically deliver LMW-HA into TAMs, thus exhibited stronger reeducation effect compared with free LMW-HA. Conclusion These folate-conjugated and LMW-HA-loaded nanobubbles, with targeted CEUS imaging and TAMs reeducation, are expected to be a potential approach for tumor therapy based on TAMs, especially folate receptor-positive ones.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Lu Guo
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Mengmeng Shang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Dandan Shi
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xuanxuan Jing
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Dong Meng
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xinxin Liu
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xiaoying Zhou
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yading Zhao
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| |
Collapse
|
47
|
Yang J, Zhang C. Regulation of cancer‐immunity cycle and tumor microenvironment by nanobiomaterials to enhance tumor immunotherapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1612. [PMID: 32114718 DOI: 10.1002/wnan.1612] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Jingxing Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated 6th Hospital, School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China
| | - Chunfu Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated 6th Hospital, School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
48
|
He J, Yin P, Xu K. Effect and Molecular Mechanisms of Traditional Chinese Medicine on Tumor Targeting Tumor-Associated Macrophages. Drug Des Devel Ther 2020; 14:907-919. [PMID: 32184560 PMCID: PMC7053810 DOI: 10.2147/dddt.s223646] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/05/2020] [Indexed: 12/17/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been used as a significant cancer treatment method for many years in China. It has been demonstrated that TCM could assist in inhibiting the growth of tumors and prolonging the survival rates of cancer patients. Although the mechanism of TCM are still not clear, accumulating evidence has shown that they may be related to the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) play a significant role in TME and are polarized to two phenotypes, M1 (classically activated) and M2 (alternatively activated) TAMs. The two different phenotypes of TAMs play converse roles in the TME and M2-polarized tumor-associated macrophages (M2-TAMs) always lead to poor prognosis in cancer patients compared to M1-polarized tumor-associated macrophages (M1-TAMs). In this review, the potential correlation between TCM and TAMs (especially the M2 phenotype) in tumor progression and promising TCM strategies targeting TAMs in cancer are discussed.
Collapse
Affiliation(s)
- Jing He
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Peihao Yin
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medicine University, Anhui, People’s Republic of China
- Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ke Xu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medicine University, Anhui, People’s Republic of China
- Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
49
|
Law AMK, Valdes-Mora F, Gallego-Ortega D. Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells 2020; 9:cells9030561. [PMID: 32121014 PMCID: PMC7140518 DOI: 10.3390/cells9030561] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence of immunotherapy has been an astounding breakthrough in cancer treatments. In particular, immune checkpoint inhibitors, targeting PD-1 and CTLA-4, have shown remarkable therapeutic outcomes. However, response rates from immunotherapy have been reported to be varied, with some having pronounced success and others with minimal to no clinical benefit. An important aspect associated with this discrepancy in patient response is the immune-suppressive effects elicited by the tumour microenvironment (TME). Immune suppression plays a pivotal role in regulating cancer progression, metastasis, and reducing immunotherapy success. Most notably, myeloid-derived suppressor cells (MDSC), a heterogeneous population of immature myeloid cells, have potent mechanisms to inhibit T-cell and NK-cell activity to promote tumour growth, development of the pre-metastatic niche, and contribute to resistance to immunotherapy. Accumulating research indicates that MDSC can be a therapeutic target to alleviate their pro-tumourigenic functions and immunosuppressive activities to bolster the efficacy of checkpoint inhibitors. In this review, we provide an overview of the general immunotherapeutic approaches and discuss the characterisation, expansion, and activities of MDSCs with the current treatments used to target them either as a single therapeutic target or synergistically in combination with immunotherapy.
Collapse
Affiliation(s)
- Andrew M. K. Law
- Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Correspondence: (A.M.K.L.); (F.V.-M.); (D.G.-O.); Tel.: +61-(0)2-9355-5894 (A.M.K.L); +61-(0)2-9385-0143 (F.V.-M); +61-(0)2-9355-5776 (D.G.-O)
| | - Fatima Valdes-Mora
- Histone Variants Group, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW 2052, Australia
- Correspondence: (A.M.K.L.); (F.V.-M.); (D.G.-O.); Tel.: +61-(0)2-9355-5894 (A.M.K.L); +61-(0)2-9385-0143 (F.V.-M); +61-(0)2-9355-5776 (D.G.-O)
| | - David Gallego-Ortega
- Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW 2052, Australia
- Correspondence: (A.M.K.L.); (F.V.-M.); (D.G.-O.); Tel.: +61-(0)2-9355-5894 (A.M.K.L); +61-(0)2-9385-0143 (F.V.-M); +61-(0)2-9355-5776 (D.G.-O)
| |
Collapse
|
50
|
Romano A, Parrinello NL, Simeon V, Puglisi F, La Cava P, Bellofiore C, Giallongo C, Camiolo G, D'Auria F, Grieco V, Larocca F, Barbato A, Cambria D, La Spina E, Tibullo D, Palumbo GA, Conticello C, Musto P, Di Raimondo F. High-density neutrophils in MGUS and multiple myeloma are dysfunctional and immune-suppressive due to increased STAT3 downstream signaling. Sci Rep 2020; 10:1983. [PMID: 32029833 PMCID: PMC7005058 DOI: 10.1038/s41598-020-58859-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023] Open
Abstract
To understand neutrophil impairment in the progression from MGUS through active MM, we investigated the function of mature, high-density neutrophils (HDNs), isolated from peripheral blood. In 7 MM, 3 MGUS and 3 healthy subjects by gene expression profile, we identified a total of 551 upregulated and 343 downregulated genes in MM-HDN, involved in chemokine signaling pathway and FC-gamma receptor mediated phagocytosis conveying in the activation of STAT proteins. In a series of 60 newly diagnosed MM and 30 MGUS patients, by flow-cytometry we found that HDN from MM, and to a lesser extend MGUS, had an up-regulation of the inducible FcγRI (also known as CD64) and a down-regulation of the constitutive FcγRIIIa (also known as CD16) together with a reduced phagocytic activity and oxidative burst, associated to increased immune-suppression that could be reverted by arginase inhibitors in co-culture with lymphocytes. In 43 consecutive newly-diagnosed MM patients, who received first-line treatment based on bortezomib, thalidomide and dexamethasone, high CD64 could identify at diagnosis patients with inferior median overall survival (39.5 versus 86.7 months, p = 0.04). Thus, HDNs are significantly different among healthy, MGUS and MM subjects. In both MGUS and MM neutrophils may play a role in supporting both the increased susceptibility to infection and the immunological dysfunction that leads to tumor progression.
Collapse
Affiliation(s)
- A Romano
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
- Division of Hematology, Azienda Ospedaliera Policlinico e Vittorio Emanuele di Catania, Catania, Italy
| | - N L Parrinello
- Division of Hematology, Azienda Ospedaliera Policlinico e Vittorio Emanuele di Catania, Catania, Italy
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", University of Catania, Catania, Italy
| | - V Simeon
- Laboratory of Pre-Clinical Research and Advanced Diagnostics, IRCCS-CROB, Rionero in Vulture (Pz), Potenza, Italy
- Department of Mental Health and Preventive Medicine, Medical Statistics Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - F Puglisi
- Division of Hematology, Azienda Ospedaliera Policlinico e Vittorio Emanuele di Catania, Catania, Italy
| | - P La Cava
- Division of Hematology, Azienda Ospedaliera Policlinico e Vittorio Emanuele di Catania, Catania, Italy
| | - C Bellofiore
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
- Division of Hematology, Azienda Ospedaliera Policlinico e Vittorio Emanuele di Catania, Catania, Italy
| | - C Giallongo
- Division of Hematology, Azienda Ospedaliera Policlinico e Vittorio Emanuele di Catania, Catania, Italy
| | - G Camiolo
- Division of Hematology, Azienda Ospedaliera Policlinico e Vittorio Emanuele di Catania, Catania, Italy
| | - F D'Auria
- Laboratory of Pre-Clinical Research and Advanced Diagnostics, IRCCS-CROB, Rionero in Vulture (Pz), Potenza, Italy
| | - V Grieco
- Laboratory of Pre-Clinical Research and Advanced Diagnostics, IRCCS-CROB, Rionero in Vulture (Pz), Potenza, Italy
| | - F Larocca
- Laboratory of Pre-Clinical Research and Advanced Diagnostics, IRCCS-CROB, Rionero in Vulture (Pz), Potenza, Italy
| | - A Barbato
- Division of Hematology, Azienda Ospedaliera Policlinico e Vittorio Emanuele di Catania, Catania, Italy
| | - D Cambria
- Division of Hematology, Azienda Ospedaliera Policlinico e Vittorio Emanuele di Catania, Catania, Italy
| | - E La Spina
- Biometec, Dipartimento di Scienze Biomediche e Biotecnologiche, University of Catania, Catania, Italy
| | - D Tibullo
- Biometec, Dipartimento di Scienze Biomediche e Biotecnologiche, University of Catania, Catania, Italy
| | - G A Palumbo
- Division of Hematology, Azienda Ospedaliera Policlinico e Vittorio Emanuele di Catania, Catania, Italy
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", University of Catania, Catania, Italy
| | - C Conticello
- Division of Hematology, Azienda Ospedaliera Policlinico e Vittorio Emanuele di Catania, Catania, Italy
| | - P Musto
- Laboratory of Pre-Clinical Research and Advanced Diagnostics, IRCCS-CROB, Rionero in Vulture (Pz), Potenza, Italy
- Chair and Unit of Hematology and Stem Cell Transplantation, Aldo Moro University, Bari, Italy
| | - F Di Raimondo
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy.
- Division of Hematology, Azienda Ospedaliera Policlinico e Vittorio Emanuele di Catania, Catania, Italy.
- Department of Mental Health and Preventive Medicine, Medical Statistics Unit, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|