1
|
Frijlink E, Bosma DM, Busselaar J, Battaglia TW, Staal MD, Verbrugge I, Borst J. PD-1 or CTLA-4 blockade promotes CD86-driven Treg responses upon radiotherapy of lymphocyte-depleted cancer in mice. J Clin Invest 2024; 134:e171154. [PMID: 38349740 PMCID: PMC10940086 DOI: 10.1172/jci171154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 01/17/2024] [Indexed: 03/16/2024] Open
Abstract
Radiotherapy (RT) is considered immunogenic, but clinical data demonstrating RT-induced T cell priming are scarce. Here, we show in a mouse tumor model representative of human lymphocyte-depleted cancer that RT enhanced spontaneous priming of thymus-derived (FOXP3+Helios+) Tregs by the tumor. These Tregs acquired an effector phenotype, populated the tumor, and impeded tumor control by a simultaneous, RT-induced CD8+ cytotoxic T cell (CTL) response. Combination of RT with CTLA-4 or PD-1 blockade, which enables CD28 costimulation, further increased this Treg response and failed to improve tumor control. We discovered that upon RT, the CD28 ligands CD86 and CD80 differentially affected the Treg response. CD86, but not CD80, blockade prevented the effector Treg response, enriched the tumor-draining lymph node migratory conventional DCs that were positive for PD-L1 and CD80 (PD-L1+CD80+), and promoted CTL priming. Blockade of CD86 alone or in combination with PD-1 enhanced intratumoral CTL accumulation, and the combination significantly increased RT-induced tumor regression and OS. We advise that combining RT with PD-1 and/or CTLA-4 blockade may be counterproductive in lymphocyte-depleted cancers, since these interventions drive Treg responses in this context. However, combining RT with CD86 blockade may promote the control of such tumors by enabling a CTL response.
Collapse
Affiliation(s)
- Elselien Frijlink
- Division of Tumor Biology and Immunology and Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Douwe M.T. Bosma
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Julia Busselaar
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Thomas W. Battaglia
- Division of Molecular Oncology and Immunology and Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Mo D. Staal
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Inge Verbrugge
- Division of Tumor Biology and Immunology and Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jannie Borst
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
2
|
Attias M, Piccirillo CA. The impact of Foxp3 + regulatory T-cells on CD8 + T-cell dysfunction in tumour microenvironments and responses to immune checkpoint inhibitors. Br J Pharmacol 2024. [PMID: 38325330 DOI: 10.1111/bph.16313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/23/2023] [Accepted: 01/01/2024] [Indexed: 02/09/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been a breakthrough in cancer therapy, inducing durable remissions in responding patients. However, they are associated with variable outcomes, spanning from disease hyperprogression to complete responses with the onset of immune-related adverse events. The consequences of checkpoint inhibition on Foxp3+ regulatory T (Treg ) cells remain unclear but could provide key insights into these variable outcomes. In this review, we first cover the mechanisms that underlie the development of hot and cold tumour microenvironments, which determine the efficacy of immunotherapy. We then outline how differences in tumour-intrinsic immunogenicity, T-cell trafficking, local metabolic environments and inhibitory checkpoint signalling differentially impair CD8+ T-cell function in tumour microenvironments, all the while promoting Treg -cell suppressive activity. Finally, we focus on the mechanisms that enable the induction of polyfunctional CD8+ T-cells upon checkpoint blockade and discuss the role of ICI-induced Treg -cell reactivation in acquired resistance to treatment.
Collapse
Affiliation(s)
- Mikhaël Attias
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
- Centre of Excellence in Translational Immunology (CETI), The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
- Centre of Excellence in Translational Immunology (CETI), The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
| |
Collapse
|
3
|
Kang JH, Zappasodi R. Modulating Treg stability to improve cancer immunotherapy. Trends Cancer 2023; 9:911-927. [PMID: 37598003 DOI: 10.1016/j.trecan.2023.07.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/21/2023]
Abstract
Immunosuppressive regulatory T cells (Tregs) provide a main mechanism of tumor immune evasion. Targeting Tregs, especially in the tumor microenvironment (TME), continues to be investigated to improve cancer immunotherapy. Recent studies have unveiled intratumoral Treg heterogeneity and plasticity, furthering the complexity of the role of Tregs in tumor immunity and immunotherapy response. The phenotypic and functional diversity of intratumoral Tregs can impact their response to therapy and may offer new targets to modulate specific Treg subsets. In this review we provide a unifying framework of critical factors contributing to Treg heterogeneity and plasticity in the TME, and we discuss how this information can guide the development of more specific Treg-targeting therapies for cancer immunotherapy.
Collapse
Affiliation(s)
- Jee Hye Kang
- Weill Cornell Medicine, Weill Cornell Medical College of Cornell University, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY, USA
| | - Roberta Zappasodi
- Weill Cornell Medicine, Weill Cornell Medical College of Cornell University, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY, USA.
| |
Collapse
|
4
|
Bergerhoff K, Pedersen M. Isolation and Analysis of Tumor-Infiltrating Treg. Methods Mol Biol 2023; 2559:51-63. [PMID: 36180626 DOI: 10.1007/978-1-0716-2647-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Besides their important function in immune homeostasis, autoimmunity, and peripheral tolerance, regulatory T cells (Tregs) also play a crucial role in cancer immune evasion, by assisting tumors to shield from antitumor responses by effector cells. Tregs are recruited to infiltrate tumors and upon finding favourable conditions in the tumor microenvironment, proliferate and suppress effector T cell function thereby promoting tumor escape and growth. In human cancer patients and mouse models, a low ratio of effector T cells to Tregs is a key feature of this immune-suppressive tumor microenvironment and correlates with poor prognosis. This chapter describes protocols for the isolation of tumor-infiltrating lymphocytes (TILs) from solid tumors, their quantification, and phenotyping via flow cytometry to assess the effector T cell:Treg ratio and the expression of relevant markers.
Collapse
Affiliation(s)
- Katharina Bergerhoff
- UCL Cancer Institute, Research Department of Haematology, Cancer Immunology Unit, London, UK.
- Institute of Cancer Research, Targeted Therapy Team, London, UK.
- Quell Therapeutics, London, UK.
| | - Malin Pedersen
- Institute of Cancer Research, Targeted Therapy Team, London, UK
| |
Collapse
|
5
|
McRitchie BR, Akkaya B. Exhaust the exhausters: Targeting regulatory T cells in the tumor microenvironment. Front Immunol 2022; 13:940052. [PMID: 36248808 PMCID: PMC9562032 DOI: 10.3389/fimmu.2022.940052] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022] Open
Abstract
The concept of cancer immunotherapy has gained immense momentum over the recent years. The advancements in checkpoint blockade have led to a notable progress in treating a plethora of cancer types. However, these approaches also appear to have stalled due to factors such as individuals' genetic make-up, resistant tumor sub-types and immune related adverse events (irAE). While the major focus of immunotherapies has largely been alleviating the cell-intrinsic defects of CD8+ T cells in the tumor microenvironment (TME), amending the relationship between tumor specific CD4+ T cells and CD8+ T cells has started driving attention as well. A major roadblock to improve the cross-talk between CD4+ T cells and CD8+ T cells is the immune suppressive action of tumor infiltrating T regulatory (Treg) cells. Despite their indispensable in protecting tissues against autoimmune threats, Tregs have also been under scrutiny for helping tumors thrive. This review addresses how Tregs establish themselves at the TME and suppress anti-tumor immunity. Particularly, we delve into factors that promote Treg migration into tumor tissue and discuss the unique cellular and humoral composition of TME that aids survival, differentiation and function of intratumoral Tregs. Furthermore, we summarize the potential suppression mechanisms used by intratumoral Tregs and discuss ways to target those to ultimately guide new immunotherapies.
Collapse
Affiliation(s)
- Bayley R. McRitchie
- Department of Neurology, The College of Medicine, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Billur Akkaya
- Department of Neurology, The College of Medicine, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
6
|
Aristin Revilla S, Kranenburg O, Coffer PJ. Colorectal Cancer-Infiltrating Regulatory T Cells: Functional Heterogeneity, Metabolic Adaptation, and Therapeutic Targeting. Front Immunol 2022; 13:903564. [PMID: 35874729 PMCID: PMC9304750 DOI: 10.3389/fimmu.2022.903564] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with one of the highest rates of incidence and mortality among cancers worldwide. Understanding the CRC tumor microenvironment (TME) is essential to improve diagnosis and treatment. Within the CRC TME, tumor-infiltrating lymphocytes (TILs) consist of a heterogeneous mixture of adaptive immune cells composed of mainly anti-tumor effector T cells (CD4+ and CD8+ subpopulations), and suppressive regulatory CD4+ T (Treg) cells. The balance between these two populations is critical in anti-tumor immunity. In general, while tumor antigen-specific T cell responses are observed, tumor clearance frequently does not occur. Treg cells are considered to play an important role in tumor immune escape by hampering effective anti-tumor immune responses. Therefore, CRC-tumors with increased numbers of Treg cells have been associated with promoting tumor development, immunotherapy failure, and a poorer prognosis. Enrichment of Treg cells in CRC can have multiple causes including their differentiation, recruitment, and preferential transcriptional and metabolic adaptation to the TME. Targeting tumor-associated Treg cell may be an effective addition to current immunotherapy approaches. Strategies for depleting Treg cells, such as low-dose cyclophosphamide treatment, or targeting one or more checkpoint receptors such as CTLA-4 with PD-1 with monoclonal antibodies, have been explored. These have resulted in activation of anti-tumor immune responses in CRC-patients. Overall, it seems likely that CRC-associated Treg cells play an important role in determining the success of such therapeutic approaches. Here, we review our understanding of the role of Treg cells in CRC, the possible mechanisms that support their homeostasis in the tumor microenvironment, and current approaches for manipulating Treg cells function in cancer.
Collapse
Affiliation(s)
- Sonia Aristin Revilla
- Center Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
- Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Onno Kranenburg
- Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Paul J. Coffer
- Center Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: Paul J. Coffer,
| |
Collapse
|
7
|
Docq M, Vétillard M, Gallego C, Jaracz-Ros A, Mercier-Nomé F, Bachelerie F, Schlecht-Louf G. Multi-Tissue Characterization of GILZ Expression in Dendritic Cell Subsets at Steady State and in Inflammatory Contexts. Cells 2021; 10:3153. [PMID: 34831376 PMCID: PMC8623566 DOI: 10.3390/cells10113153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DCs) are key players in the control of tolerance and immunity. Glucocorticoids (GCs) are known to regulate DC function by promoting their tolerogenic differentiation through the induction of inhibitory ligands, cytokines, and enzymes. The GC-induced effects in DCs were shown to critically depend on increased expression of the Glucocorticoid-Induced Leucine Zipper protein (GILZ). GILZ expression levels were further shown to control antigen-presenting cell function, as well as T-cell priming capacity of DCs. However, the pattern of GILZ expression in DC subsets across tissues remains poorly described, as well as the modulation of its expression levels in different pathological settings. To fill in this knowledge gap, we conducted an exhaustive analysis of GILZ relative expression levels in DC subsets from various tissues using multiparametric flow cytometry. This study was performed at steady state, in the context of acute as well as chronic skin inflammation, and in a model of cancer. Our results show the heterogeneity of GILZ expression among DC subsets as well as the complexity of its modulation, that varies in a cell subset- and context-specific manner. Considering the contribution of GILZ in the control of DC functions and its potential as an immune checkpoint in cancer settings, these results are of high relevance for optimal GILZ targeting in therapeutic strategies.
Collapse
Affiliation(s)
- Molène Docq
- Inserm U996, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, 92140 Clamart, France; (M.D.); (M.V.); (C.G.); (A.J.-R.); (F.M.-N.); (F.B.)
| | - Mathias Vétillard
- Inserm U996, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, 92140 Clamart, France; (M.D.); (M.V.); (C.G.); (A.J.-R.); (F.M.-N.); (F.B.)
| | - Carmen Gallego
- Inserm U996, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, 92140 Clamart, France; (M.D.); (M.V.); (C.G.); (A.J.-R.); (F.M.-N.); (F.B.)
| | - Agnieszka Jaracz-Ros
- Inserm U996, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, 92140 Clamart, France; (M.D.); (M.V.); (C.G.); (A.J.-R.); (F.M.-N.); (F.B.)
| | - Françoise Mercier-Nomé
- Inserm U996, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, 92140 Clamart, France; (M.D.); (M.V.); (C.G.); (A.J.-R.); (F.M.-N.); (F.B.)
- IPSIT SFR-UMS, CNRS, Inserm, Institut Paris Saclay d’Innovation Thérapeutique, Université Paris-Saclay, 92296 Chatenay-Malabry, France
| | - Françoise Bachelerie
- Inserm U996, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, 92140 Clamart, France; (M.D.); (M.V.); (C.G.); (A.J.-R.); (F.M.-N.); (F.B.)
| | - Géraldine Schlecht-Louf
- Inserm U996, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, 92140 Clamart, France; (M.D.); (M.V.); (C.G.); (A.J.-R.); (F.M.-N.); (F.B.)
| |
Collapse
|
8
|
Piccinni MP, Raghupathy R, Saito S, Szekeres-Bartho J. Cytokines, Hormones and Cellular Regulatory Mechanisms Favoring Successful Reproduction. Front Immunol 2021; 12:717808. [PMID: 34394125 PMCID: PMC8355694 DOI: 10.3389/fimmu.2021.717808] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/06/2021] [Indexed: 01/07/2023] Open
Abstract
Its semi-allogeneic nature renders the conceptus vulnerable to attack by the maternal immune system. Several protective mechanisms operate during gestation to correct the harmful effects of anti-fetal immunity and to support a healthy pregnancy outcome. Pregnancy is characterized by gross alterations in endocrine functions. Progesterone is indispensable for pregnancy and humans, and it affects immune functions both directly and via mediators. The progesterone-induced mediator - PIBF - acts in favor of Th2-type immunity, by increasing Th2 type cytokines production. Except for implantation and parturition, pregnancy is characterized by a Th2-dominant cytokine pattern. Progesterone and the orally-administered progestogen dydrogesterone upregulate the production of Th2-type cytokines and suppress the production of Th1 and Th17 cytokine production in vitro. This is particularly relevant to the fact that the Th1-type cytokines TNF-α and IFN-γ and the Th17 cytokine IL-17 have embryotoxic and anti-trophoblast activities. These cytokine-modulating effects and the PIBF-inducing capabilities of dydrogesterone may contribute to the demonstrated beneficial effects of dydrogesterone in recurrent spontaneous miscarriage and threatened miscarriage. IL-17 and IL-22 produced by T helper cells are involved in allograft rejection, and therefore could account for the rejection of paternal HLA-C-expressing trophoblast. Th17 cells (producing IL-17 and IL-22) and Th22 cells (producing IL-22) exhibit plasticity and could produce IL-22 and IL-17 in association with Th2-type cytokines or with Th1-type cytokines. IL-17 and IL-22 producing Th cells are not harmful for the conceptus, if they also produce IL-4. Another important protective mechanism is connected with the expansion and action of regulatory T cells, which play a major role in the induction of tolerance both in pregnant women and in tumour-bearing patients. Clonally-expanded Treg cells increase at the feto-maternal interface and in tumour-infiltrating regions. While in cancer patients, clonally-expanded Treg cells are present in peripheral blood, they are scarce in pregnancy blood, suggesting that fetal antigen-specific tolerance is restricted to the foeto-maternal interface. The significance of Treg cells in maintaining a normal materno-foetal interaction is underlined by the fact that miscarriage is characterized by a decreased number of total effector Treg cells, and the number of clonally-expanded effector Treg cells is markedly reduced in preeclampsia. In this review we present an overview of the above mechanisms, attempt to show how they are connected, how they operate during normal gestation and how their failure might lead to pregnancy pathologies.
Collapse
Affiliation(s)
- Marie-Pierre Piccinni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Raj Raghupathy
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Julia Szekeres-Bartho
- Department of Medical Biology, Medical School, Pecs University, Pecs, Hungary.,János Szentágothai Research Centre, Pecs University, Pecs, Hungary.,Endocrine Studies, Centre of Excellence, Pecs University, Pecs, Hungary.,MTA - PTE Human Reproduction Research Group, Pecs, Hungary.,National Laboratory for Human Reproduction, Pecs University, Pecs, Hungary
| |
Collapse
|
9
|
Scott EN, Gocher AM, Workman CJ, Vignali DAA. Regulatory T Cells: Barriers of Immune Infiltration Into the Tumor Microenvironment. Front Immunol 2021; 12:702726. [PMID: 34177968 PMCID: PMC8222776 DOI: 10.3389/fimmu.2021.702726] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells (Tregs) are key immunosuppressive cells that promote tumor growth by hindering the effector immune response. Tregs utilize multiple suppressive mechanisms to inhibit pro-inflammatory responses within the tumor microenvironment (TME) by inhibition of effector function and immune cell migration, secretion of inhibitory cytokines, metabolic disruption and promotion of metastasis. In turn, Tregs are being targeted in the clinic either alone or in combination with other immunotherapies, in efforts to overcome the immunosuppressive TME and increase anti-tumor effects. However, it is now appreciated that Tregs not only suppress cells intratumorally via direct engagement, but also serve as key interactors in the peritumor, stroma, vasculature and lymphatics to limit anti-tumor immune responses prior to tumor infiltration. We will review the suppressive mechanisms that Tregs utilize to alter immune and non-immune cells outside and within the TME and discuss how these mechanisms collectively allow Tregs to create and promote a physical and biological barrier, resulting in an immune-excluded or limited tumor microenvironment.
Collapse
Affiliation(s)
- Ellen N. Scott
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Angela M. Gocher
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
| | - Creg J. Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
| | - Dario A. A. Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Bhatt D, Kang B, Sawant D, Zheng L, Perez K, Huang Z, Sekirov L, Wolak D, Huang JY, Liu X, DeVoss J, Manzanillo PS, Pierce N, Zhang Z, Symons A, Ouyang W. STARTRAC analyses of scRNAseq data from tumor models reveal T cell dynamics and therapeutic targets. J Exp Med 2021; 218:212026. [PMID: 33900375 PMCID: PMC8077174 DOI: 10.1084/jem.20201329] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/18/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Single-cell RNA sequencing is a powerful tool to examine cellular heterogeneity, novel markers and target genes, and therapeutic mechanisms in human cancers and animal models. Here, we analyzed single-cell RNA sequencing data of T cells obtained from multiple mouse tumor models by PCA-based subclustering coupled with TCR tracking using the STARTRAC algorithm. This approach revealed various differentiated T cell subsets and activation states, and a correspondence of T cell subsets between human and mouse tumors. STARTRAC analyses demonstrated peripheral T cell subsets that were developmentally connected with tumor-infiltrating CD8+ cells, CD4+ Th1 cells, and T reg cells. In addition, large amounts of paired TCRα/β sequences enabled us to identify a specific enrichment of paired public TCR clones in tumor. Finally, we identified CCR8 as a tumor-associated T reg cell marker that could preferentially deplete tumor-associated T reg cells. We showed that CCR8-depleting antibody treatment provided therapeutic benefit in CT26 tumors and synergized with anti–PD-1 treatment in MC38 and B16F10 tumor models.
Collapse
Affiliation(s)
- Dev Bhatt
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| | - Boxi Kang
- Beijing Advanced Innovation Centre for Genomics, Peking-Tsinghua Centre for Life Sciences, Peking University, Beijing, China
| | - Deepali Sawant
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| | - Liangtao Zheng
- Beijing Advanced Innovation Centre for Genomics, Peking-Tsinghua Centre for Life Sciences, Peking University, Beijing, China
| | - Kristy Perez
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| | - Zhiyu Huang
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| | - Laura Sekirov
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| | - Dan Wolak
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| | - Julie Y Huang
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| | - Xian Liu
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| | - Jason DeVoss
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| | - Paolo S Manzanillo
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| | - Nathan Pierce
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| | - Zemin Zhang
- Beijing Advanced Innovation Centre for Genomics, Peking-Tsinghua Centre for Life Sciences, Peking University, Beijing, China
| | - Antony Symons
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| | - Wenjun Ouyang
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| |
Collapse
|
11
|
Sobhani N, Tardiel-Cyril DR, Davtyan A, Generali D, Roudi R, Li Y. CTLA-4 in Regulatory T Cells for Cancer Immunotherapy. Cancers (Basel) 2021; 13:1440. [PMID: 33809974 PMCID: PMC8005092 DOI: 10.3390/cancers13061440] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have obtained durable responses in many cancers, making it possible to foresee their potential in improving the health of cancer patients. However, immunotherapies are currently limited to a minority of patients and there is a need to develop a better understanding of the basic molecular mechanisms and functions of pivotal immune regulatory molecules. Immune checkpoint cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and regulatory T (Treg) cells play pivotal roles in hindering the anticancer immunity. Treg cells suppress antigen-presenting cells (APCs) by depleting immune stimulating cytokines, producing immunosuppressive cytokines and constitutively expressing CTLA-4. CTLA-4 molecules bind to CD80 and CD86 with a higher affinity than CD28 and act as competitive inhibitors of CD28 in APCs. The purpose of this review is to summarize state-of-the-art understanding of the molecular mechanisms underlining CTLA-4 immune regulation and the correlation of the ICI response with CTLA-4 expression in Treg cells from preclinical and clinical studies for possibly improving CTLA-4-based immunotherapies, while highlighting the knowledge gap.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Dana Rae Tardiel-Cyril
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Aram Davtyan
- Atomwise, 717 Market St, San Francisco, CA 94103, USA;
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34147 Trieste, Italy;
| | - Raheleh Roudi
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Yong Li
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
12
|
González-Navajas JM, Fan DD, Yang S, Yang FM, Lozano-Ruiz B, Shen L, Lee J. The Impact of Tregs on the Anticancer Immunity and the Efficacy of Immune Checkpoint Inhibitor Therapies. Front Immunol 2021; 12:625783. [PMID: 33717139 PMCID: PMC7952426 DOI: 10.3389/fimmu.2021.625783] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Although cancers arise from genetic mutations enabling cells to proliferate uncontrollably, they cannot thrive without failure of the anticancer immunity due in a large part to the tumor environment's influence on effector and regulatory T cells. The field of immune checkpoint inhibitor (ICI) therapy for cancer was born out of the fact that tumor environments paralyze the immune cells that are supposed to clear them by activating the immune checkpoint molecules such as PD-1. While various subsets of effector T cells work collaboratively to eliminate cancers, Tregs enriched in the tumor environment can suppress not only the native anticancer immunity but also diminish the efficacy of ICI therapies. Because of their essential role in suppressing autoimmunity, various attempts to specifically deplete tumor-associated Tregs are currently underway to boost the efficacy of ICI therapies without causing systemic autoimmune responses. A better understanding the roles of Tregs in the anti-cancer immunity and ICI therapies should provide more specific targets to deplete intratumoral Tregs. Here, we review the current understanding on how Tregs inhibit the anti-cancer immunity and ICI therapies as well as the advances in the targeted depletion of intratumoral Tregs.
Collapse
Affiliation(s)
- Jose M. González-Navajas
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, Madrid, Spain
- Department of Pharmacology, Pediatrics and Organic Chemistry, University Miguel Hernández, Elche, Spain
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), University Miguel Hernández, Elche, Spain
- Jose M. González-Navajas
| | - Dengxia Denise Fan
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shuang Yang
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Fengyuan Mandy Yang
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Beatriz Lozano-Ruiz
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, Madrid, Spain
| | - Liya Shen
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jongdae Lee
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jongdae Lee ;
| |
Collapse
|
13
|
Modulation of regulatory T cell function and stability by co-inhibitory receptors. Nat Rev Immunol 2020; 20:680-693. [PMID: 32269380 DOI: 10.1038/s41577-020-0296-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
Regulatory T (Treg) cells constitute a dynamic population that is essential for controlling immune responses in health and disease. Defects in Treg cell function and decreases in Treg cell numbers have been observed in patients with autoimmunity and the opposite effects on Treg cells occur in cancer settings. Current research on new therapies for these diseases is focused on modulating Treg cell function to increase or decrease suppressive activity in autoimmunity and cancer, respectively. In this regard, several co-inhibitory receptors that are preferentially expressed by Treg cells under homeostatic conditions have recently been shown to control Treg cell function and stability in different disease settings. These receptors could be amenable to therapeutic targeting aimed at modulating Treg cell function and plasticity. This Review summarizes recent data regarding the role of co-inhibitory molecules in the control of Treg cell function and stability, with a focus on their roles and potential therapeutic use in autoimmunity and cancer.
Collapse
|
14
|
Regulatory T cells in cancer immunosuppression - implications for anticancer therapy. Nat Rev Clin Oncol 2019; 16:356-371. [PMID: 30705439 DOI: 10.1038/s41571-019-0175-7] [Citation(s) in RCA: 999] [Impact Index Per Article: 166.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Regulatory T (Treg) cells, an immunosuppressive subset of CD4+ T cells characterized by the expression of the master transcription factor forkhead box protein P3 (FOXP3), are a component of the immune system with essential roles in maintaining self-tolerance. In addition, Treg cells can suppress anticancer immunity, thereby hindering protective immunosurveillance of neoplasia and hampering effective antitumour immune responses in tumour-bearing hosts, thus promoting tumour development and progression. Identification of the factors that are specifically expressed in Treg cells and/or that influence Treg cell homeostasis and function is important to understanding cancer pathogenesis and to identifying therapeutic targets. Immune-checkpoint inhibitors (ICIs) have provided a paradigm shift in the treatment of cancer. Most immune-checkpoint molecules are expressed in Treg cells, but the effects of ICIs on Treg cells, and thus the contributions of these cells to treatment responses, remain unclear. Notably, evidence indicates that ICIs targeting programmed cell death 1 (PD-1) might enhance the immunosuppressive function of Treg cells, whereas cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitors might deplete these cells. Thus, although manipulation of Treg cells is a promising anticancer therapeutic strategy, approaches to controlling these cells require further research. Herein, we discuss novel insights into the roles of Treg cells in cancer, which can hopefully be used to develop Treg cell-targeted therapies and facilitate immune precision medicine.
Collapse
|
15
|
Lim EL, Okkenhaug K. Phosphoinositide 3-kinase δ is a regulatory T-cell target in cancer immunotherapy. Immunology 2019; 157:210-218. [PMID: 31107985 PMCID: PMC6587315 DOI: 10.1111/imm.13082] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 12/15/2022] Open
Abstract
Tumour infiltration by regulatory T (Treg) cells contributes to suppression of the anti-tumour immune response, which limits the efficacy of immune-mediated cancer therapies. The phosphoinositide 3-kinase (PI3K) pathway has key roles in mediating the function of many immune cell subsets, including Treg cells. Treg function is context-dependent and depends on input from different cell surface receptors, many of which can activate the PI3K pathway. In this review, we explore how PI3Kδ contributes to signalling through several major immune cell receptors, including the T-cell receptor and co-stimulatory receptors such as CD28 and ICOS, but is antagonized by the immune checkpoint receptors CTLA-4 and PD-1. Understanding how PI3Kδ inhibition affects Treg signalling events will help to inform how best to use PI3Kδ inhibitors in clinical cancer treatment.
Collapse
Affiliation(s)
- Ee Lyn Lim
- Laboratory of Experimental ImmunologyImmunology Frontier Research CentreOsaka UniversitySuitaJapan
| | - Klaus Okkenhaug
- Division of ImmunologyDepartment of PathologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
16
|
Stockis J, Roychoudhuri R, Halim TYF. Regulation of regulatory T cells in cancer. Immunology 2019; 157:219-231. [PMID: 31032905 PMCID: PMC6587396 DOI: 10.1111/imm.13064] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/28/2022] Open
Abstract
The inflammatory response to transformed cells forms the cornerstone of natural or therapeutically induced protective immunity to cancer. Regulatory T (Treg) cells are known for their critical role in suppressing inflammation, and therefore can antagonize effective anti-cancer immune responses. As such, Treg cells can play detrimental roles in tumour progression and in the response to both conventional and immune-based cancer therapies. Recent advances in our understanding of Treg cells reveal complex niche-specific regulatory programmes and functions, which are likely to extrapolate to cancer. The regulation of Treg cells is reliant on upstream cues from haematopoietic and non-immune cells, which dictates their genetic, epigenetic and downstream functional programmes. In this review we will discuss how Treg cells are themselves regulated in normal and transformed tissues, and the implications of this cross talk on tumour growth.
Collapse
Affiliation(s)
- Julie Stockis
- CRUK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Rahul Roychoudhuri
- Laboratory of Lymphocyte Signalling and DevelopmentThe Babraham InstituteCambridgeUK
| | | |
Collapse
|
17
|
Abstract
With the advent of the concept of dominant tolerance and the subsequent discovery of CD4+ regulatory T cells expressing the transcription factor FOXP3 (Tregs), almost all productive as well as nonproductive immune responses can be compartmentalized to a binary of immune effector T cells and immune regulatory Treg populations. A beneficial immune response warrants the timely regulation by Tregs, whereas a nonproductive immune response indicates insufficient effector functions or an outright failure of tolerance. There are ample reports supporting role of Tregs in suppressing spontaneous auto-immune diseases as well as promoting immune evasion by cancers. To top up their importance, several non-immune functions like tissue homeostasis and regeneration are also being attributed to Tregs. Hence, after being in the center stage of basic and translational immunological research, Tregs are making the next jump towards clinical studies. Therefore, newer small molecules, biologics as well as adoptive cell therapy (ACT) approaches are being tested to augment or undermine Treg responses in the context of autoimmunity and cancer. In this brief review, we present the strategies to modulate Tregs towards a favorable clinical outcome.
Collapse
Affiliation(s)
- Amit Sharma
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS) , Pohang , Republic of Korea.,Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology (POSTECH) , Pohang , Republic of Korea
| | - Dipayan Rudra
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS) , Pohang , Republic of Korea.,Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology (POSTECH) , Pohang , Republic of Korea
| |
Collapse
|
18
|
Abstract
Inhibitory checkpoint blockade has significantly improved patient response rate across numerous tumor types. However, most patients remain unresponsive to immunotherapy, suggesting that unappreciated mechanisms of resistance exist. The tumor microenvironment (TME) is unique and composed of many suppressive cell populations that inhibit antitumor immune responses, including regulatory T cells (Tregs). The TME is nutrient poor, acidic, and hypoxic, creating a challenging microenvironment for immune cells to function and survive. Tregs suppress a wide variety of cell populations through multiple mechanisms and are tasked with limiting tissue damage. Tregs are now considered to be a barrier to effective antitumor immunity. Systemic Treg depletion is not favored because of their critical role in maintaining immune homeostasis and preventing autoimmunity. Reducing Treg function specifically within the TME may provide a more effective, targeted approach to limit the immunosuppressive environment within the tumor without inducing systemic adverse consequences. Targeting molecules that cause Treg instability, characterized by loss of critical Treg transcription factors such as Foxp3, could result in conversion into cells that cause immune pathology, tissue damage, and subsequent autoimmune side effects. Interferon-γ (IFNγ) can cause intratumoral Treg "fragility," which results in loss of suppressive activity and increased IFNγ production without loss of Foxp3 expression and gross Treg "identity." We reviewed the impact Tregs have on the TME and vice versa, and their implications for responsiveness to cancer immunotherapy. We propose that the extent to which intratumoral Tregs develop a "fragile" phenotype following immunotherapy will predict and dictate responsiveness. Cancer Immunol Res; 6(8); 882-7. ©2018 AACR.
Collapse
Affiliation(s)
| | - Dario A A Vignali
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Rao S, Gharib K, Han A. Cancer Immunosurveillance by T Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 342:149-173. [PMID: 30635090 DOI: 10.1016/bs.ircmb.2018.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer immunotherapy is based on the ability of the immune system to recognize tumors as foreign tissue. The idea of cancer immunosurveillance was first conceived over a century ago but remained controversial through much of the 20th century. In the past few decades, however, the field has progressed rapidly, and the concept of tumor immunosurveillance is now well established. With this chapter, we provide a historical background of immunosurveillance, the concept of immunoediting, and the role of different T-cell subsets in the tumor microenvironment. We also discuss the relationship between immune checkpoints, tumor antigens, T cell receptor repertoire, and immunosurveillance. Finally, we comment on the future of immunotherapy as it relates to T cell immunosurveillance.
Collapse
Affiliation(s)
- Samhita Rao
- Departments of Medicine and Microbiology and Immunology, Columbia Center for Translational Immunology, Columbia University, New York, NY, United States
| | - Karim Gharib
- Departments of Medicine and Microbiology and Immunology, Columbia Center for Translational Immunology, Columbia University, New York, NY, United States
| | - Arnold Han
- Departments of Medicine and Microbiology and Immunology, Columbia Center for Translational Immunology, Columbia University, New York, NY, United States
| |
Collapse
|
20
|
Faghih Z, Deihimi S, Talei A, Ghaderi A, Erfani N. Analysis of T cell receptor repertoire based on Vβ chain in patients with breast cancer. Cancer Biomark 2018; 22:733-745. [DOI: 10.3233/cbm-181295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Safoora Deihimi
- Perelman School of Medicine, University of Pennsylvania, Abramson Cancer Center, Philadelphia, PA, USA
| | - Abdolrasoul Talei
- Breast Disease Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrollah Erfani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Sharma A, Rudra D. Emerging Functions of Regulatory T Cells in Tissue Homeostasis. Front Immunol 2018; 9:883. [PMID: 29887862 PMCID: PMC5989423 DOI: 10.3389/fimmu.2018.00883] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/10/2018] [Indexed: 01/12/2023] Open
Abstract
CD4+Foxp3+ regulatory T-cells (Tregs) are a unique subset of helper T-cells, which regulate immune response and establish peripheral tolerance. Tregs not only maintain the tone and tenor of an immune response by dominant tolerance but, in recent years, have also been identified as key players in resolving tissue inflammation and as mediators of tissue healing. Apart from being diverse in their origin (thymic and peripheral) and location (lymphoid and tissue resident), Tregs are also phenotypically heterogeneous as per the orientation of ongoing immune response. In this review, we discuss the recent advances in the field of Treg biology in general, and non-lymphoid and tissue-resident Tregs in particular. We elaborate upon well-known visceral adipose tissue, colon, skin, and tumor-infiltrating Tregs and newly identified tissue Treg populations as in lungs, skeletal muscle, placenta, and other tissues. Our attempt is to differentiate Tregs based on distinctive properties of their location, origin, ligand specificity, chemotaxis, and specific suppressive mechanisms. Despite ever expanding roles in maintaining systemic homeostasis, Tregs are employed by large varieties of tumors to dampen antitumor immunity. Thus, a comprehensive understanding of Treg biology in the context of inflammation can be instrumental in effectively managing tissue transplantation, autoimmunity, and antitumor immune responses.
Collapse
Affiliation(s)
- Amit Sharma
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang, South Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Dipayan Rudra
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang, South Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| |
Collapse
|
22
|
Shitara K, Nishikawa H. Regulatory T cells: a potential target in cancer immunotherapy. Ann N Y Acad Sci 2018; 1417:104-115. [DOI: 10.1111/nyas.13625] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/11/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology; National Cancer Center Hospital East; Chiba Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/EPOC; National Cancer Center; Tokyo/Chiba Japan
- Department of Immunology; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
23
|
Terra M, Oberkampf M, Fayolle C, Rosenbaum P, Guillerey C, Dadaglio G, Leclerc C. Tumor-Derived TGFβ Alters the Ability of Plasmacytoid Dendritic Cells to Respond to Innate Immune Signaling. Cancer Res 2018. [PMID: 29523540 DOI: 10.1158/0008-5472.can-17-2719] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A growing number of observations has suggested that plasmacytoid dendritic cells (pDC) play a critical role in tumor biology. In patients, infiltration of tumors by pDCs generally correlates with a poor prognosis, suggesting that pDCs may play an important role in the host-tumor relationship. Here, we analyze the influence of pDCs in solid tumor development using two different tumor models: TC-1 and B16-OVA. Phenotypic and functional gene profiling analysis of tumor-associated pDCs showed that the tumor microenvironment affected their activation status and ability to produce cytokines and chemokines. In addition, tumor cells secreted factors that inhibit the ability of pDCs to produce type I IFN. Among the various cytokines and chemokines produced by the tumor cells, we demonstrate that TGFβ is the main factor responsible for this inhibition. Using a mouse model deficient for pDCs, we also show that pDCs promote TC-1 tumor growth and that natural killer (NK) cells and regulatory T cells are involved in the protumoral effect of pDCs. Overall, our results evidence the cross-talk among pDCs, NK, and regulatory T cells in the promotion of tumor growth and their role in the development of antitumor immune responses.Significance: These findings highlight the importance of pDCs in the cross-talk between tumor cells and the immune system. Cancer Res; 78(11); 3014-26. ©2018 AACR.
Collapse
Affiliation(s)
- Mariana Terra
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,INSERM U1041, Paris, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Marine Oberkampf
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,INSERM U1041, Paris, France
| | - Catherine Fayolle
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,INSERM U1041, Paris, France
| | - Pierre Rosenbaum
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,INSERM U1041, Paris, France
| | - Camille Guillerey
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,INSERM U1041, Paris, France
| | - Gilles Dadaglio
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France. .,INSERM U1041, Paris, France
| | - Claude Leclerc
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France. .,INSERM U1041, Paris, France
| |
Collapse
|
24
|
Liu X, Wu J. History, applications, and challenges of immune repertoire research. Cell Biol Toxicol 2018; 34:441-457. [PMID: 29484527 DOI: 10.1007/s10565-018-9426-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 02/14/2018] [Indexed: 12/19/2022]
Abstract
The diversity of T and B cells in terms of their receptor sequences is huge in the vertebrate's immune system and provides broad protection against the vast diversity of pathogens. Immune repertoire is defined as the sum of T cell receptors and B cell receptors (also named immunoglobulin) that makes the organism's adaptive immune system. Before the emergence of high-throughput sequencing, the studies on immune repertoire were limited by the underdeveloped methodologies, since it was impossible to capture the whole picture by the low-throughput tools. The massive paralleled sequencing technology suits perfectly the researches on immune repertoire. In this article, we review the history of immune repertoire studies, in terms of technologies and research applications. Particularly, we discuss several aspects of challenges in this field and highlight the efforts to develop potential solutions, in the era of high-throughput sequencing of the immune repertoire.
Collapse
Affiliation(s)
- Xiao Liu
- BGI-Shenzhen, Shenzhen, 518083, China.
| | | |
Collapse
|
25
|
Phenotypic and Functional Properties of Tumor-Infiltrating Regulatory T Cells. Mediators Inflamm 2017; 2017:5458178. [PMID: 29463952 PMCID: PMC5804416 DOI: 10.1155/2017/5458178] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/30/2022] Open
Abstract
Regulatory T (Treg) cells maintain immune homeostasis by suppressing excessive immune responses. Treg cells induce tolerance against self- and foreign antigens, thus preventing autoimmunity, allergy, graft rejection, and fetus rejection during pregnancy. However, Treg cells also infiltrate into tumors and inhibit antitumor immune responses, thus inhibiting anticancer therapy. Depleting whole Treg cell populations in the body to enhance anticancer treatments will produce deleterious autoimmune diseases. Therefore, understanding the precise nature of tumor-infiltrating Treg cells is essential for effectively targeting Treg cells in tumors. This review summarizes recent results relating to Treg cells in the tumor microenvironment, with particular emphasis on their accumulation, phenotypic, and functional properties, and targeting to enhance the efficacy of anticancer treatment.
Collapse
|
26
|
Chaoul N, Tang A, Desrues B, Oberkampf M, Fayolle C, Ladant D, Sainz-Perez A, Leclerc C. Lack of MHC class II molecules favors CD8 + T-cell infiltration into tumors associated with an increased control of tumor growth. Oncoimmunology 2017; 7:e1404213. [PMID: 29399403 PMCID: PMC5790350 DOI: 10.1080/2162402x.2017.1404213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022] Open
Abstract
Regulatory T-cells (Tregs) are crucial for the maintenance of immune tolerance and homeostasis as well as for preventing autoimmune diseases, but their impact on the survival of cancer patients remains controversial. In the TC-1 mouse model of human papillomavirus (HPV)-related carcinoma, we have previously demonstrated that the therapeutic efficacy of the CyaA-E7-vaccine, targeting the HPV-E7 antigen, progressively declines with tumor growth, in correlation with increased intratumoral recruitment of Tregs. In the present study, we demonstrated that these TC-1 tumor-infiltrating Tregs were highly activated, with increased expression of immunosuppressive molecules. Both intratumoral effector CD4+ T-cells (Teffs) and Tregs expressed high levels of PD-1, but anti-PD-1 antibody treatment did not impact the growth of the TC-1 tumor nor restore the therapeutic effect of the CyaA-E7 vaccine. To analyze the mechanisms by which Tregs are recruited to the tumor site, we used MHC-II KO mice with drastically reduced numbers of CD4+ effector T-cells. We demonstrated that these mice still had significant numbers of Tregs in their lymphoid organs which were recruited to the tumor. In MHC-II KO mice, the growth of the TC-1 tumor was delayed in correlation with a strong increase in the intratumoral recruitment of CD8+ T-cells. In addition, in mice that spontaneously rejected their tumors, the infiltration of E7-specific CD8+ T-cells was significantly higher than in MHC-II KO mice with a growing tumor. These results demonstrate that tumor-specific CD8+ T-cells can be efficiently activated and recruited in the absence of MHC class II molecules and of CD4+ T-cell help.
Collapse
Affiliation(s)
- Nada Chaoul
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| | - Alexandre Tang
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| | - Belinda Desrues
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| | - Marine Oberkampf
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| | - Catherine Fayolle
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| | - Daniel Ladant
- Département de biologie structurale et de chimie, Institut Pasteur, Unité de Biochimie des Interactions Macromoléculaires, Paris, France.,CNRS, UMR 3528, Paris, France
| | - Alexander Sainz-Perez
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| | - Claude Leclerc
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| |
Collapse
|
27
|
Abstract
The rapid development of immunomodulatory cancer therapies has led to a concurrent increase in the application of informatics techniques to the analysis of tumors, the tumor microenvironment, and measures of systemic immunity. In this review, the use of tumors to gather genetic and expression data will first be explored. Next, techniques to assess tumor immunity are reviewed, including HLA status, predicted neoantigens, immune microenvironment deconvolution, and T-cell receptor sequencing. Attempts to integrate these data are in early stages of development and are discussed in this review. Finally, we review the application of these informatics strategies to therapy development, with a focus on vaccines, adoptive cell transfer, and checkpoint blockade therapies.
Collapse
Affiliation(s)
- J Hammerbacher
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston
| | - A Snyder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
- Adaptive Biotechnologies, Seattle, USA
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW The genetic susceptibility and dominant protection for type 1 diabetes (T1D) associated with human leukocyte antigen (HLA) haplotypes, along with minor risk variants, have long been thought to shape the T cell receptor (TCR) repertoire and eventual phenotype of autoreactive T cells that mediate β-cell destruction. While autoantibodies provide robust markers of disease progression, early studies tracking autoreactive T cells largely failed to achieve clinical utility. RECENT FINDINGS Advances in acquisition of pancreata and islets from T1D organ donors have facilitated studies of T cells isolated from the target tissues. Immunosequencing of TCR α/β-chain complementarity determining regions, along with transcriptional profiling, offers the potential to transform biomarker discovery. Herein, we review recent studies characterizing the autoreactive TCR signature in T1D, emerging technologies, and the challenges and opportunities associated with tracking TCR molecular profiles during the natural history of T1D.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Amanda Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA.
| |
Collapse
|
29
|
Yang J, Li L. CD4 +CD25 + regulatory T-cells: a potential target for treating patients with chronic HBV infection. Cell Mol Immunol 2017; 14:800-801. [PMID: 28782756 PMCID: PMC5649111 DOI: 10.1038/cmi.2017.67] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 02/05/2023] Open
Affiliation(s)
- Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
30
|
|
31
|
Madi A, Poran A, Shifrut E, Reich-Zeliger S, Greenstein E, Zaretsky I, Arnon T, Laethem FV, Singer A, Lu J, Sun PD, Cohen IR, Friedman N. T cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences. eLife 2017; 6. [PMID: 28731407 PMCID: PMC5553937 DOI: 10.7554/elife.22057] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 07/14/2017] [Indexed: 01/09/2023] Open
Abstract
Diversity of T cell receptor (TCR) repertoires, generated by somatic DNA rearrangements, is central to immune system function. However, the level of sequence similarity of TCR repertoires within and between species has not been characterized. Using network analysis of high-throughput TCR sequencing data, we found that abundant CDR3-TCRβ sequences were clustered within networks generated by sequence similarity. We discovered a substantial number of public CDR3-TCRβ segments that were identical in mice and humans. These conserved public sequences were central within TCR sequence-similarity networks. Annotated TCR sequences, previously associated with self-specificities such as autoimmunity and cancer, were linked to network clusters. Mechanistically, CDR3 networks were promoted by MHC-mediated selection, and were reduced following immunization, immune checkpoint blockade or aging. Our findings provide a new view of T cell repertoire organization and physiology, and suggest that the immune system distributes its TCR sequences unevenly, attending to specific foci of reactivity. DOI:http://dx.doi.org/10.7554/eLife.22057.001
Collapse
Affiliation(s)
- Asaf Madi
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Asaf Poran
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eric Shifrut
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Erez Greenstein
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Irena Zaretsky
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Tomer Arnon
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.,Department of Physics and Astronomy, Alfred University, Alfred, United States
| | - Francois Van Laethem
- Experimental Immunology Branch, National Cancer Institute, Bethesda, United States
| | - Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, Bethesda, United States
| | - Jinghua Lu
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, United States
| | - Peter D Sun
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, United States
| | - Irun R Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
32
|
Wang H, Franco F, Ho PC. Metabolic Regulation of Tregs in Cancer: Opportunities for Immunotherapy. Trends Cancer 2017; 3:583-592. [PMID: 28780935 DOI: 10.1016/j.trecan.2017.06.005] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/18/2017] [Accepted: 06/20/2017] [Indexed: 02/06/2023]
Abstract
The promising outcomes observed in cancer immunotherapy are evidence that the immune system provides a powerful arsenal for the restriction of tumor outgrowth; however, the immunosuppressive tumor microenvironment (TME) is known to impair antitumor immunity and impede the efficacy of cancer immunotherapies. Regulatory T cells (Tregs), which prevent overt immune responses and autoimmunity, accumulate aberrantly in some types of tumor to suppress antitumor immunity and support the establishment of an immunosuppressive microenvironment. Ablation of Tregs has been shown to not only unleash antitumor immunity and interrupt formation of an immunosuppressive TME, but also lead to severe autoimmune disorders. Therefore, it is essential to develop approaches to specifically target intratumoral Tregs. Herein, we summarize the immunomodulatory functions of Tregs in the TME and discuss how metabolic regulation of Tregs can facilitate intratumoral Treg accumulation.
Collapse
Affiliation(s)
- Haiping Wang
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Vaud, Switzerland; Ludwig Lausanne Branch, Epalinges, Vaud, Switzerland
| | - Fabien Franco
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Vaud, Switzerland; Ludwig Lausanne Branch, Epalinges, Vaud, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Vaud, Switzerland; Ludwig Lausanne Branch, Epalinges, Vaud, Switzerland.
| |
Collapse
|
33
|
Scirka B, Szurek E, Pietrzak M, Rempala G, Kisielow P, Ignatowicz L, Miazek A. Anti-GITR Antibody Treatment Increases TCR Repertoire Diversity of Regulatory but not Effector T Cells Engaged in the Immune Response Against B16 Melanoma. Arch Immunol Ther Exp (Warsz) 2017. [PMID: 28638937 PMCID: PMC5688217 DOI: 10.1007/s00005-017-0479-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Crosslinking of glucocorticoid-induced TNF family-related receptor (GITR) with agonist antibodies restores cancer immunity by enhancing effector T cell (Teff) responses while interfering with intra-tumor regulatory T cell (Treg) stability and/or accumulation. However, how anti-GITR antibody infusion changes T cell receptor (TCR) repertoire of Teffs and Tregs engaged in anti-tumor immune response is unclear. Here, we used a transgenic mouse model (TCRmini) where T cells express naturally generated but limited TCR repertoire to trace the fate of individual T cells recognizing B16 melanoma in tumor-bearing mice, treated or non-treated with an anti-GITR monoclonal antibody DTA-1. Analysis of TCRs of CD4+ T cells from these mice revealed that the TCR repertoire of dominant tumor-reactive Teff clones remained rather similar in treated and non-treated mice. In contrast, both tumor-associated and peripheral TCR repertoire of Tregs, which were mostly distinct from that of Teffs, underwent DTA-1 mediated remodeling characterized by depletion of dominant clones and an emergence of more diverse, low-frequency clones bearing increased numbers of TCRs shared with Teffs. We conclude that the DTA-1 infusion eliminates activated Tregs engaged in the initial maintenance of tolerogenic niche for tumor growth, but over time, it favors tumor replenishment by Tregs expressing an array of TCRs able to compete with Teffs for recognition of the same tumor antigens which may prevent its complete eradication.
Collapse
Affiliation(s)
- Bozena Scirka
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wrocław, Poland
| | - Edyta Szurek
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, GA, USA
| | - Maciej Pietrzak
- Mathematical Biosciences Institute, College of Public Health, Ohio State University, Columbus, OH, USA
| | - Grzegorz Rempala
- Mathematical Biosciences Institute, College of Public Health, Ohio State University, Columbus, OH, USA
| | - Pawel Kisielow
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wrocław, Poland
| | - Leszek Ignatowicz
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wrocław, Poland. .,Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, GA, USA.
| | - Arkadiusz Miazek
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wrocław, Poland. .,Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland.
| |
Collapse
|
34
|
Togashi Y, Nishikawa H. Regulatory T Cells: Molecular and Cellular Basis for Immunoregulation. Curr Top Microbiol Immunol 2017; 410:3-27. [PMID: 28879523 DOI: 10.1007/82_2017_58] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD4+ regulatory T cells (Tregs) are a highly immune-suppressive subset of CD4+ T cells, characterized by expression of the master regulatory transcription factor FOXP3. Tregs are proven to play central roles in the maintenance of self-tolerance in healthy individuals. Tregs are involved in maintaining immune homeostasis: they protect hosts from developing autoimmune diseases and allergy, whereas in malignancies, they promote tumor progression by suppressing anti-tumor immunity. Elucidating factors influencing Treg homeostasis and function have important implications for understanding disease pathogenesis and identifying therapeutic opportunities. Thus, the manipulating Tregs for up- or down-regulation of their suppressive function is a new therapeutic strategy for treating various diseases including autoimmune disorders and cancer. This review will focus on recent advances in how Tregs integrate extracellular and intracellular signals to control their survival and stability. Deeper mechanistic understanding of disease-specific Treg development, maintenance, and function could make disease-specific Treg-targeted therapy more effective, resulting in an increase of efficacy and decrease of side effects related to manipulating Tregs.
Collapse
Affiliation(s)
- Yosuke Togashi
- Division of Cancer Immunology, Research Institute/EPOC, National Cancer Center, Tokyo, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/EPOC, National Cancer Center, Tokyo, Japan. .,Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
35
|
Abstract
The critical contribution of CD4+CD25+Foxp3+ T-regulatory cells (Treg) to immune suppression in the tumor microenvironment is well-established. Whereas the mechanisms that drive the generation and accumulation of Treg in tumors have been an active area of study, the information on their origin and population dynamics remains limited. In this review, we discuss the ontogeny of tumor-associated Treg in light of the recently identified lineage markers.
Collapse
Affiliation(s)
- Qingsheng Li
- a Department of Microbiology and Immunology , School of Medicine, University of Louisville , Louisville , KY , USA
| | - Nejat K Egilmez
- a Department of Microbiology and Immunology , School of Medicine, University of Louisville , Louisville , KY , USA
| |
Collapse
|
36
|
Yang J, Sheng G, Xiao D, Shi H, Wu W, Lu H, Cao H, Li L. The frequency and skewed T-cell receptor beta-chain variable patterns of peripheral CD4(+)CD25(+) regulatory T-cells are associated with hepatitis B e antigen seroconversion of chronic hepatitis B patients during antiviral treatment. Cell Mol Immunol 2016; 13:678-687. [PMID: 26899927 PMCID: PMC5037272 DOI: 10.1038/cmi.2015.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/07/2015] [Accepted: 11/08/2015] [Indexed: 02/08/2023] Open
Abstract
The frequency and T-cell receptor beta-chain variable (TCRBV) patterns of peripheral CD4(+)CD25(+) regulatory T-cells (Tregs) are ambiguously altered in chronic hepatitis B (CHB) patients following tenofovir disoproxil fumarate (TDF) treatment. Moreover, the clinical significance of these parameters in relation to hepatitis B e antigen (HBeAg) seroconversion (SC) is largely unknown. In this study, the circulation of Tregs in HBeAg-positive CHB patients was determined by flow cytometry, and the molecular profiles of frequent TCRBV patterns of Tregs were analyzed using a gene melting spectral pattern. The parameters, such as Treg frequency, the number of skewed TCRBV patterns, hepatitis B virus (HBV) DNA levels, and alanine aminotransferase (ALT) levels, were analyzed by comparing their associations in seroconverting and non-seroconverting patients following TDF treatment. The Treg frequency was significantly correlated with the ALT level in seroconverting but not in non-seroconverting patients. Similarly, skewed TCRBV patterns were remarkably associated with HBV DNA levels in the SC group. Six TCRBV families (BV3, BV11, BV12, BV14, BV20, and BV24) were more prevalent than other TCRBV members in seroconverting patients pretreated with TDF, while BV12, BV15, and BV22 were predominant in non-seroconverting patients during TDF treatment. Taken together, the preferential TCRBV patterns may be associated with immune responses related to SC. The dynamic frequency and skewed TCRBV patterns of peripheral Tregs could contribute to predicting SC in CHB patients. Moreover, the conserved TCRBV complementarity-determining region (CDR3) motif may be targeted to develop personalized immunotherapy for CHB patients.
Collapse
MESH Headings
- Adult
- Alanine Transaminase/metabolism
- Amino Acid Motifs
- Antigens, CD/metabolism
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Complementarity Determining Regions/immunology
- Conserved Sequence
- DNA, Viral/blood
- Hepatitis B e Antigens/immunology
- Hepatitis B, Chronic/blood
- Hepatitis B, Chronic/drug therapy
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/virology
- Humans
- Interleukin-2 Receptor alpha Subunit/metabolism
- Kinetics
- Longitudinal Studies
- Lymphocyte Count
- Middle Aged
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Seroconversion/drug effects
- T-Lymphocytes, Regulatory/immunology
- Young Adult
Collapse
|
37
|
T cell receptor signalling in the control of regulatory T cell differentiation and function. Nat Rev Immunol 2016; 16:220-33. [PMID: 27026074 DOI: 10.1038/nri.2016.26] [Citation(s) in RCA: 370] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulatory T cells (TReg cells), a specialized T cell lineage, have a pivotal function in the control of self tolerance and inflammatory responses. Recent studies have revealed a discrete mode of T cell receptor (TCR) signalling that regulates TReg cell differentiation, maintenance and function and that affects gene expression, metabolism, cell adhesion and migration of these cells. Here, we discuss the emerging understanding of TCR-guided differentiation of TReg cells in the context of their function in health and disease.
Collapse
|
38
|
Iglesia MD, Parker JS, Hoadley KA, Serody JS, Perou CM, Vincent BG. Genomic Analysis of Immune Cell Infiltrates Across 11 Tumor Types. J Natl Cancer Inst 2016; 108:djw144. [PMID: 27335052 DOI: 10.1093/jnci/djw144] [Citation(s) in RCA: 258] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/26/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Immune infiltration of the tumor microenvironment has been associated with improved survival for some patients with solid tumors. The precise makeup and prognostic relevance of immune infiltrates across a broad spectrum of tumors remain unclear. METHODS Using mRNA sequencing data from The Cancer Genome Atlas (TCGA) from 11 tumor types representing 3485 tumors, we evaluated lymphocyte and macrophage gene expression by tissue type and by genomic subtypes defined within and across tumor tissue of origin (Cox proportional hazards, Pearson correlation). We investigated clonal diversity of B-cell infiltrates through calculating B-cell receptor (BCR) repertoire sequence diversity. All statistical tests were two-sided. RESULTS High expression of T-cell and B-cell signatures predicted improved overall survival across many tumor types including breast, lung, and melanoma (breast CD8_T_Cells hazard ratio [HR] = 0.36, 95% confidence interval [CI] = 0.16 to 0.81, P = .01; lung adenocarcinoma B_Cell_60gene HR = 0.71, 95% CI = 0.58 to 0.87, P = 7.80E-04; melanoma LCK HR = 0.86, 95% CI = 0.79 to 0.94, P = 6.75E-04). Macrophage signatures predicted worse survival in GBM, as did B-cell signatures in renal tumors (Glioblastoma Multiforme [GBM]: macrophages HR = 1.62, 95% CI = 1.17 to 2.26, P = .004; renal: B_Cell_60gene HR = 1.17, 95% CI = 1.04 to 1.32, P = .009). BCR diversity was associated with survival beyond gene segment expression in melanoma (HR = 2.67, 95% CI = 1.32 to 5.40, P = .02) and renal cell carcinoma (HR = 0.36, 95% CI = 0.15 to 0.87, P = .006). CONCLUSIONS These data support existing studies suggesting that in diverse tissue types, heterogeneous immune infiltrates are present and typically portend an improved prognosis. In some tumor types, BCR diversity was also associated with survival. Quantitative genomic signatures of immune cells warrant further testing as prognostic markers and potential biomarkers of response to cancer immunotherapy.
Collapse
Affiliation(s)
- Michael D Iglesia
- Affiliations of authors: Lineberger Comprehensive Cancer Center (MDI, JSP, KAH, JSS, CMP, BGV), Curriculum in Genetics and Molecular Biology (MDI, JSP), Department of Medicine (JSS, BGV), Department of Genetics (KAH, CMP), Department of Microbiology and Immunology (JSS), and Department of Pathology & Laboratory Medicine (CMP), University of North Carolina, Chapel Hill, Chapel Hill, NC
| | - Joel S Parker
- Affiliations of authors: Lineberger Comprehensive Cancer Center (MDI, JSP, KAH, JSS, CMP, BGV), Curriculum in Genetics and Molecular Biology (MDI, JSP), Department of Medicine (JSS, BGV), Department of Genetics (KAH, CMP), Department of Microbiology and Immunology (JSS), and Department of Pathology & Laboratory Medicine (CMP), University of North Carolina, Chapel Hill, Chapel Hill, NC
| | - Katherine A Hoadley
- Affiliations of authors: Lineberger Comprehensive Cancer Center (MDI, JSP, KAH, JSS, CMP, BGV), Curriculum in Genetics and Molecular Biology (MDI, JSP), Department of Medicine (JSS, BGV), Department of Genetics (KAH, CMP), Department of Microbiology and Immunology (JSS), and Department of Pathology & Laboratory Medicine (CMP), University of North Carolina, Chapel Hill, Chapel Hill, NC
| | - Jonathan S Serody
- Affiliations of authors: Lineberger Comprehensive Cancer Center (MDI, JSP, KAH, JSS, CMP, BGV), Curriculum in Genetics and Molecular Biology (MDI, JSP), Department of Medicine (JSS, BGV), Department of Genetics (KAH, CMP), Department of Microbiology and Immunology (JSS), and Department of Pathology & Laboratory Medicine (CMP), University of North Carolina, Chapel Hill, Chapel Hill, NC
| | - Charles M Perou
- Affiliations of authors: Lineberger Comprehensive Cancer Center (MDI, JSP, KAH, JSS, CMP, BGV), Curriculum in Genetics and Molecular Biology (MDI, JSP), Department of Medicine (JSS, BGV), Department of Genetics (KAH, CMP), Department of Microbiology and Immunology (JSS), and Department of Pathology & Laboratory Medicine (CMP), University of North Carolina, Chapel Hill, Chapel Hill, NC
| | - Benjamin G Vincent
- Affiliations of authors: Lineberger Comprehensive Cancer Center (MDI, JSP, KAH, JSS, CMP, BGV), Curriculum in Genetics and Molecular Biology (MDI, JSP), Department of Medicine (JSS, BGV), Department of Genetics (KAH, CMP), Department of Microbiology and Immunology (JSS), and Department of Pathology & Laboratory Medicine (CMP), University of North Carolina, Chapel Hill, Chapel Hill, NC
| |
Collapse
|
39
|
Takeuchi Y, Nishikawa H. Roles of regulatory T cells in cancer immunity. Int Immunol 2016; 28:401-9. [PMID: 27160722 DOI: 10.1093/intimm/dxw025] [Citation(s) in RCA: 380] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023] Open
Abstract
CD4(+) regulatory T cells (Tregs) expressing the transcription factor FoxP3 are highly immune suppressive and play central roles in the maintenance of self-tolerance and immune homeostasis, yet in malignant tumors they promote tumor progression by suppressing effective antitumor immunity. Indeed, higher infiltration by Tregs is observed in tumor tissues, and their depletion augments antitumor immune responses in animal models. Additionally, increased numbers of Tregs and, in particular, decreased ratios of CD8(+) T cells to Tregs among tumor-infiltrating lymphocytes are correlated with poor prognosis in various types of human cancers. The recent success of cancer immunotherapy represented by immune checkpoint blockade has provided a new insight in cancer treatment, yet more than half of the treated patients did not experience clinical benefits. Identifying biomarkers that predict clinical responses and developing novel immunotherapies are therefore urgently required. Cancer patients whose tumors contain a large number of neoantigens stemming from gene mutations, which have not been previously recognized by the immune system, provoke strong antitumor T-cell responses associated with clinical responses following immune checkpoint blockade, depending on the resistance to Treg-mediated suppression. Thus, integration of a strategy restricting Treg-mediated immune suppression may expand the therapeutic spectrum of cancer immunotherapy towards patients with a lower number of neoantigens. In this review, we address the current understanding of Treg-mediated immune suppressive mechanisms in cancer, the involvement of Tregs in cancer immunotherapy, and strategies for effective and tolerable Treg-targeted therapy.
Collapse
Affiliation(s)
- Yoshiko Takeuchi
- Division of Cancer Immunology, EPOC, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan and
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, EPOC, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan and Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
40
|
Perez EA, Ballman KV, Tenner KS, Thompson EA, Badve SS, Bailey H, Baehner FL. Association of Stromal Tumor-Infiltrating Lymphocytes With Recurrence-Free Survival in the N9831 Adjuvant Trial in Patients With Early-Stage HER2-Positive Breast Cancer. JAMA Oncol 2016; 2:56-64. [PMID: 26469139 PMCID: PMC4713247 DOI: 10.1001/jamaoncol.2015.3239] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
IMPORTANCE The presence of tumor-infiltrating lymphocytes at diagnosis is reported to be prognostic in triple-negative breast cancer. OBJECTIVE To evaluate the association of stromal tumor-infiltrating lymphocytes (STILs) with recurrence-free survival (RFS) in women with human epidermal growth factor receptor 2 (HER2)-positive breast cancer treated with chemotherapy or chemotherapy plus trastuzumab in the N9831 trial. DESIGN, SETTING, AND PARTICIPANTS Hematoxylin-eosin-stained tumor slides from patients with early-stage HER2-positive breast cancer in 2 of the 3 arms of the N9831 trial were assessed for STILs at an academic medical center. The amounts of STILs were quantitated in deciles, and a level of at least 60% STILs was used for the prespecified categorical cutoff. The association between STILs and RFS was evaluated with Cox models. EXPOSURE Standard chemotherapy consisting of doxorubicin-cyclophosphamide followed by weekly paclitaxel (arm A) or doxorubicin-cyclophosphamide followed by weekly paclitaxel plus trastuzumab followed by trastuzumab alone (arm C). MAIN OUTCOMES AND MEASURES Stromal tumor-infiltrating lymphocytes and their association with RFS. RESULTS A total of 489 patients from arm A and 456 patients from arm C were assessed with a median (range) follow-up of 4.4 (0-13.6) years. The 10-year Kaplan-Meier estimates for RFS in arm A were 90.9% and 64.5% for patients with high and low levels of STILs, respectively (hazard ratio [HR], 0.23 [95% CI, 0.07-0.73]; P = .01). The 10-year estimates for RFS in arm C were 80.0% and 80.1% for patients with high and low levels of STILs, respectively (HR, 1.26 [95% CI, 0.50-3.17]; P = .63). The test for interaction between trastuzumab treatment and STIL status was statistically significant (P = .03). In a multivariable analysis, STIL status remained significantly associated with RFS in arm A and not significantly associated in arm C (HR, 1.01 [95% CI, 0.89-1.15]; interaction P = .04). CONCLUSIONS AND RELEVANCE This analysis of participants in the N9831 trial found that the presence of STILs was prognostically associated with RFS in patients treated with chemotherapy alone but not in patients treated with chemotherapy plus trastuzumab. High levels of STILs were associated with lack of trastuzumab therapy benefit, in contrast to a previously reported association between increased levels of STILs and increased trastuzumab benefit in HER2-positive patients. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00005970.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Frederick L. Baehner
- Genomic Health Inc., Redwood City, CA
- University of California, San Francisco, San Francisco, CA
| |
Collapse
|
41
|
Chaoul N, Fayolle C, Desrues B, Oberkampf M, Tang A, Ladant D, Leclerc C. Rapamycin Impairs Antitumor CD8+ T-cell Responses and Vaccine-Induced Tumor Eradication. Cancer Res 2015; 75:3279-91. [DOI: 10.1158/0008-5472.can-15-0454] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/14/2015] [Indexed: 11/16/2022]
|
42
|
Abstract
Research over the past decade has revealed the increasingly complex biologic features of the CD4(+) T-cell lineage. This T-cell subset, which was originally defined on the basis of helper activity in antibody responses, expresses receptors that recognize peptides that have been processed and presented by specialized antigen-presenting cells. At the core of the adaptive immune response, CD4 T cells display a large degree of plasticity and the ability to differentiate into multiple sublineages in response to developmental and environmental cues. These differentiated sublineages can orchestrate a broad range of effector activities during the initiation, expansion, and memory phase of an immune response. The contribution of CD4 cells to host defense against pathogenic invasion and regulation of autoimmunity is now well established. Emerging evidence suggests that CD4 cells also actively participate in shaping antitumor immunity. Here, we outline the biologic properties of CD4 T-cell subsets with an emphasis on their contribution to the antitumor response.
Collapse
Affiliation(s)
- Hye-Jung Kim
- Authors' Affiliations: Department of Microbiology & Immunobiology, Division of Immunology, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
43
|
Waight JD, Hofmeister R, Wilson NS. Response to comment on "cutting edge: epigenetic regulation of Foxp3 defines a stable population of CD4+ regulatory T cells in tumors from mice and humans". THE JOURNAL OF IMMUNOLOGY 2015; 194:3533-4. [PMID: 25848069 DOI: 10.4049/jimmunol.1500367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Jeremy D Waight
- Immuno-Oncology Platform, EMD Serono Research and Development Institute, Billerica, MA 01821; and Now Cancer Immunology Group, Agenus, Lexington, MA 02421
| | - Robert Hofmeister
- Immuno-Oncology Platform, EMD Serono Research and Development Institute, Billerica, MA 01821; and
| | - Nicholas S Wilson
- Immuno-Oncology Platform, EMD Serono Research and Development Institute, Billerica, MA 01821; and Now Cancer Immunology Group, Agenus, Lexington, MA 02421
| |
Collapse
|
44
|
Identification of peptide-specific TCR genes by in vitro peptide stimulation and CDR3 length polymorphism analysis. Cancer Lett 2015; 363:83-91. [PMID: 25890221 DOI: 10.1016/j.canlet.2015.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/10/2015] [Accepted: 04/05/2015] [Indexed: 12/21/2022]
Abstract
Identification of TCR genes specific for tumor-associated antigens (TAAs) is necessary for TCR gene modification of T cells, which is applied in anti-tumor adoptive T cell therapy (ACT). The usual identification methods are based on isolating single peptide-responding T cells and cloning the TCR gene by in vitro expansion or by single-cell RT-PCR. However, the long and exacting in vitro culture period and demanding operational requirements restrict the application of these methods. Immunoscope is an effective tool that profiles a repertoire of TCRs and identifies significantly expanded clones through CDR3 length analysis. In this study, a survivin-derived mutant peptide optimized for HLA-A2 binding was selected to load DCs and activate T cells. The monoclonal expansion of TCRA and TCRB genes was separately identified by Immunoscope analysis and following sequence identification, the properly paired TCR genes were transferred into T cells. Peptide recognition and cytotoxicity assays indicated that TCR-modified PBMCs could respond to both the mutant and wild type peptides and lyse target cells. These results show that combining Immunoscope with in vitro peptide stimulation provides an alternative and superior method for identifying specific TCR genes, which represents a significant advance for the application of TCR gene-modified T cells.
Collapse
|
45
|
Domagala-Kulawik J. The role of the immune system in non-small cell lung carcinoma and potential for therapeutic intervention. Transl Lung Cancer Res 2015; 4:177-90. [PMID: 25870800 DOI: 10.3978/j.issn.2218-6751.2015.01.11] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/21/2015] [Indexed: 12/27/2022]
Abstract
Over a hundred years after the first description of this disease, lung cancer represents one of the major challenges in oncology. Radical treatment cannot be introduced in more than 70% of cases and overall survival rate does not exceed 15%. The immunosurveillance of lung cancer may be effective in early oncogenesis but is inhibited in the course of developing a clinically detectable tumor. Very low and heterogonous antigenicity of lung cancer cells leads to passive escape from anti-cancer immune defense. The cytotoxic lymphocytes (CTLs) that play a main role in the anticancer response are actively suppressed in the tumor environment and following regulatory mechanisms inhibit the recognition of tumor antigens by antigen presenting cells. The population of regulatory T cells (Tregs) is augmented and the expression of transcription factor-Foxp3 is markedly increased on tumor cells and tumor infiltrating lymphocytes (TIL). It is accomplished by M2 macrophage polarization, the activity of myeloid derived suppressor cells (MDSCs) and a significantly elevated concentration of cytokines: transforming growth factor beta (TGFβ) and IL-10 in the tumor microenvironment. Very active suppression of immune protection is the predominant role of the programmed death 1 (PD-1)-PD-L1 pathway. The blockage of this pathway was found to be an effective treatment approach; therefore the monoclonal antibodies are being intensively investigated in lung cancer patients. Cytotoxic T lymphocyte antigen-4 (CTLA-4) is the molecule capable of inhibiting the activation signal. The antibody anti-CTLA-4 improves CTLs function in solid tumors and lung cancer patients may benefit from use of this agent. The second way in lung cancer immunotherapy is production of anti-cancer vaccines using recognized cancer antigens: MAGE-A3, membrane associated glycoprotein (MUC-1), and EGF. It was recently shown in ongoing clinical trials that combined therapies: immune- and chemotherapy, radiotherapy or targeted therapy seem to be effective. Immunotherapy in lung cancer has an individual character-there is a need to assess the patient's immune status prior to implementation of immunomodulating therapy.
Collapse
Affiliation(s)
- Joanna Domagala-Kulawik
- Department of Internal Diseases, Pneumonology and Allergology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
46
|
Jie HB, Schuler PJ, Lee SC, Srivastava RM, Argiris A, Ferrone S, Whiteside TL, Ferris RL. CTLA-4⁺ Regulatory T Cells Increased in Cetuximab-Treated Head and Neck Cancer Patients Suppress NK Cell Cytotoxicity and Correlate with Poor Prognosis. Cancer Res 2015; 75:2200-10. [PMID: 25832655 DOI: 10.1158/0008-5472.can-14-2788] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/19/2015] [Indexed: 12/16/2022]
Abstract
The EGFR-targeted antibody cetuximab is effective against head and neck cancer (HNSCC), but in only 15% to 20% of patients, and the variability and extent of cetuximab-mediated cellular immunity is not fully understood. We hypothesized that regulatory T cells (Treg) may exert a functional and clinical impact on antitumor immunity in cetuximab-treated individuals. The frequency, immunosuppressive phenotype, and activation status of Treg and natural killer (NK) cells were analyzed in the circulation and tumor microenvironment of cetuximab-treated patients with HNSCC enrolled in a novel neoadjuvant, single-agent cetuximab clinical trial. Notably, cetuximab treatment increased the frequency of CD4(+)FOXP3(+) intratumoral Treg expressing CTLA-4, CD39, and TGFβ. These Treg suppressed cetuximab-mediated antibody-dependent cellular cytotoxicity (ADCC) and their presence correlated with poor clinical outcome in two prospective clinical trial cohorts. Cetuximab expanded CTLA-4(+)FOXP3(+) Treg in vitro, in part, by inducing dendritic cell maturation, in combination with TGFβ and T-cell receptor triggering. Importantly, cetuximab-activated NK cells selectively eliminated intratumoral Treg but preserved effector T cells. In ex vivo assays, ipilimumab targeted CTLA-4(+) Treg and restored cytolytic functions of NK cells mediating ADCC. Taken together, our results argue that differences in Treg-mediated suppression contribute to the clinical response to cetuximab treatment, suggesting its improvement by adding ipilimumab or other strategies of Treg ablation to promote antitumor immunity.
Collapse
Affiliation(s)
- Hyun-Bae Jie
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick J Schuler
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania. University Duisburg-Essen, Department of Otorhinolaryngology, Essen, Germany
| | - Steve C Lee
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Athanassios Argiris
- Division of Hematology/Oncology, Department of Medicine, UT Health Science Center at San Antonio, Cancer Therapy and Research Center, San Antonio, Texas
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Theresa L Whiteside
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania. Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania. Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania. Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania. Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania. Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.
| |
Collapse
|
47
|
Domagala-Kulawik J, Osinska I, Hoser G. Mechanisms of immune response regulation in lung cancer. Transl Lung Cancer Res 2015; 3:15-22. [PMID: 25806277 DOI: 10.3978/j.issn.2218-6751.2013.11.03] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/25/2013] [Indexed: 12/12/2022]
Abstract
Lung cancer is a leading cause of cancer deaths. As a solid tumor with low antigenicity and heterogenic phenotype lung cancer evades host immune defense. The cytotoxic anticancer effect is suppressed by a complex mechanism in tumor microenvironment. The population of regulatory T cells (Tregs) plays a crucial role in this inhibition of immune response. Tregs are defined by presence of forkhead box P3 (Foxp3) molecule. The high expression of Foxp3 was found in lung cancer cells and in tumor infiltrating lymphocytes (TIL). Cytotoxic T-lymphocyte antigen 4 (CTLA4) is constitutively expressed on Tregs and suppresses T cell activation. The elevated CTLA4 expression in lymphocytes in patients with lung cancer was found. Recently the antibodies blocking CTLA4 showed some clinical efficacy in patients with lung cancer. Cancer cells and immune cells release many cytokines capable to show suppressive immune effect in cancer microenvironment. The most active are transforming growth factorβ (TGFβ) and IL-10. The pleiotropic function of Th17 population is TGFβ related. The myeloid lineage of suppressor cells in lung cancer is represented by tumor associated macrophages (TAM) with phenotype of M2 macrophages and some regulatory properties with releasing amounts of IL-10 and TGFβ. The myeloid derived suppressor cells (MDSCs) control cytotoxic T cell activity in mechanisms which are highly dependent on the context of tumor environment. The mechanisms of anticancer immune response regulation need further investigation as an important target to new way of treatment.
Collapse
Affiliation(s)
- Joanna Domagala-Kulawik
- 1 Department of Internal Diseases, Pneumonology and Allergology, Medical University of Warsaw, Warsaw, Poland ; 2 Department of Pathology, Medical University of Warsaw, Warsaw, Poland ; 3 Laboratory of Flow Cytometry, Medical Center of Postgraduate Education, Warsaw, Poland
| | - Iwona Osinska
- 1 Department of Internal Diseases, Pneumonology and Allergology, Medical University of Warsaw, Warsaw, Poland ; 2 Department of Pathology, Medical University of Warsaw, Warsaw, Poland ; 3 Laboratory of Flow Cytometry, Medical Center of Postgraduate Education, Warsaw, Poland
| | - Grazyna Hoser
- 1 Department of Internal Diseases, Pneumonology and Allergology, Medical University of Warsaw, Warsaw, Poland ; 2 Department of Pathology, Medical University of Warsaw, Warsaw, Poland ; 3 Laboratory of Flow Cytometry, Medical Center of Postgraduate Education, Warsaw, Poland
| |
Collapse
|
48
|
Zitvogel L, Tanchot C, Granier C, Tartour E. Following up tumor-specific regulatory T cells in cancer patients. Oncoimmunology 2014; 2:e25444. [PMID: 24073383 PMCID: PMC3782156 DOI: 10.4161/onci.25444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 06/18/2013] [Indexed: 01/13/2023] Open
Affiliation(s)
- Laurence Zitvogel
- INSERM, U1015; Villejuif, France ; Institut Gustave Roussy; Villejuif, France ; CICBT507; Villejuif, France ; Université Paris Sud; Le Kremlin Bicêtre, France
| | | | | | | |
Collapse
|
49
|
Shao H, Ou Y, Wang T, Shen H, Wu F, Zhang W, Tao C, Yuan Y, Bo H, Wang H, Huang S. Differences in TCR-Vβ repertoire and effector phenotype between tumor infiltrating lymphocytes and peripheral blood lymphocytes increase with age. PLoS One 2014; 9:e102327. [PMID: 25019226 PMCID: PMC4096599 DOI: 10.1371/journal.pone.0102327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/16/2014] [Indexed: 12/16/2022] Open
Abstract
Tumor infiltrating lymphocytes (TIL) reflect the host's anti-tumor immune response, and can be a valuable predictor of prognosis. However, many properties of TIL are not fully understood. In the present study, TCR-Vβ repertoires of cancer patients were primarily analyzed by flow cytometry. Abnormally expressed TCR-Vβ subfamilies were generally found in both TIL and peripheral blood lymphocytes (PBL) of each patient. Of note, increased patient age was associated with increasingly biased TCR-Vβ repertoire in TIL but not in PBL, and the dispersion degree of the differences of TCR-Vβ subfamilies between TIL and PBL correlated positively with age (P = 0.007). Utilizing immunoscope analysis, we identified the age-related reduction in TCR-Vβ diversity, but polyclonal pattern was predominant in significantly expanded TCR-Vβ subfamilies. In addition, we found that older patients possessed a decreased ratio of CD8+CD62L+ non-effector cells in TIL compared to PBL, implying age-related increase of CD8+CD62L- effector cells in TIL. The colocalization analysis of CD8 and CD3, however, suggested the suppressed activity of these effector cells in tumor microenvironment. These findings further elucidate the properties of TIL, showing an increasing difference between TIL and PBL with age, which may provide insight for the development of effective immunotherapies for cancer patients of different ages.
Collapse
Affiliation(s)
- Hongwei Shao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangzhou, China
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yusheng Ou
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangzhou, China
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Teng Wang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangzhou, China
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Shen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangzhou, China
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fenglin Wu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangzhou, China
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenfeng Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangzhou, China
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Changli Tao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangzhou, China
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yin Yuan
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangzhou, China
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huaben Bo
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangzhou, China
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hui Wang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangzhou, China
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shulin Huang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangzhou, China
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Southern Medical University, Guangzhou, China
- * E-mail:
| |
Collapse
|
50
|
Attridge K, Walker LSK. Homeostasis and function of regulatory T cells (Tregs) in vivo: lessons from TCR-transgenic Tregs. Immunol Rev 2014; 259:23-39. [PMID: 24712457 PMCID: PMC4237543 DOI: 10.1111/imr.12165] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The identification of CD25 and subsequently Forkhead box protein 3 (Foxp3) as markers for regulatory T cells (Tregs) has revolutionized our ability to explore this population experimentally. In a similar vein, our understanding of antigen-specific Treg responses in vivo owes much to the fortuitous generation of T-cell receptor (TCR)-transgenic Tregs. This has permitted tracking of Tregs with a defined specificity in vivo, facilitating analysis of how encounter with cognate antigen shapes Treg homeostasis and function. Here, we review the key lessons learned from a decade of analysis of TCR-transgenic Tregs and set this in the broader context of general progress in the field. Use of TCR-transgenic Tregs has led to an appreciation that Tregs are a highly dynamic proliferative population in vivo, rather than an anergic population as they were initially portrayed. It is now clear that Treg homeostasis is positively regulated by encounter with self-antigen expressed on peripheral tissues, which is likely to be relevant to the phenomenon of peripheral repertoire reshaping that has been described for Tregs and the observation that the Treg TCR specificities vary by anatomical location. Substantial evidence has also accumulated to support the role of CD28 costimulation and interleukin-2 in Treg homeostasis. The availability of TCR-transgenic Tregs has enabled analysis of Treg populations that are sufficient or deficient in particular genes, without the comparison being confounded by repertoire alterations. This approach has yielded insights into genes required for Treg function in vivo, with particular progress being made on the role of ctla-4 in this context. As the prospect of manipulating Treg populations in the clinic becomes reality, a full appreciation of the rules governing their homeostasis will prove increasingly important.
Collapse
Affiliation(s)
- Kesley Attridge
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | |
Collapse
|