1
|
Chen JF, Guo SJ, He B, Zheng W, Jiang WJ, Yuan Z, Xiang Y, Peng C, Xiong W, Shi JY. Advances of dual inhibitors based on ALK for the treatment of cancer. Bioorg Chem 2025; 159:108417. [PMID: 40168884 DOI: 10.1016/j.bioorg.2025.108417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
Anaplastic lymphoma kinase (ALK), which encodes a highly conserved receptor tyrosine kinase (RTK), is important for the development and progression of many tumors, especially non-small cell lung cancer (NSCLC). Currently, third-generation ALK inhibitors are used to treat ALK-mutant NSCLC, but the rapid emergence of resistance during treatment greatly limits their efficacy in clinic. In comparison to single-target inhibitors, ALK dual inhibitors offer the benefits of reducing the emergence of drug resistance, improving treatment efficacy, and optimizing pharmacokinetic features due to the synergistic function of ALK and other associated targets involved in tumor progression. Therefore, we outline the development of ALK dual inhibitors, highlight their design approaches and structure-activity relationship (SAR), and offer insights into new challenges and potential future directions in this area.
Collapse
Affiliation(s)
- Jin-Feng Chen
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731. China; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Shu-Jin Guo
- Department of Health Management Center, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bin He
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Wei Zheng
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Wen-Jie Jiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zhuo Yuan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wei Xiong
- Department of urology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu 610072, China.
| | - Jian-You Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
2
|
Varabyeva NA, Scherbakov AM, Salnikova DI, Sorokin DV, Khamidullina AI, Mikhaylova AL, Paulovich DI, Lakhvich FA, Piven YA. Novel N-(4,5,6,7-tetrahydrobenzisoxazol-4-yl)amides as HSP90 inhibitors: design, synthesis and biological evaluation. RSC Med Chem 2025:d4md00904e. [PMID: 40223823 PMCID: PMC11987037 DOI: 10.1039/d4md00904e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Novel N-(4,5,6,7-tetrahydrobenzisoxazol-4-yl)amide derivatives were designed and synthesized as potential HSP90 inhibitors. The synthetic pathway commenced with 6,7-dihydrobenzo[d]isoxazol-4(5H)-ones, utilizing the Ritter reaction as a key step. Molecular docking, molecular dynamics simulations, and MM/GBSA analysis guided the selection of compounds for synthesis and provided insights into the interaction mode of the most active compound with HSP90α. The synthesized compounds exhibited significant antiproliferative effects against breast cancer cell lines ERα+ MCF7 and HER2+ HCC1954. Lead compounds with submicromolar IC50 values, initially synthesized as racemates, were subsequently obtained and tested in their enantiopure forms. In HER2+ HCC1954 cancer cells, the molecular pathways regulated by compound (R)-8n were characterized. Treatment with compound (R)-8n resulted in the pronounced suppression of HSP90-related pathways, including key oncoreceptors (HER2, EGFR, c-MET) and mitogenic kinases (AKT, CDK4). Additionally, compound (R)-8n induced apoptosis, as evidenced by the accumulation of cleaved PARP. The inhibitory effect of compound (R)-8n on the HSP90 pathway was corroborated by molecular modeling and further validated through the observed suppression of client proteins, along with an upregulation of HSP70, a well-established marker of HSP90 inhibition. The activity of compound (R)-8n was associated with cell cycle arrest at the G2/M phases, ultimately leading to dose-dependent cell death. Notably, compound (R)-8n demonstrated substantial selectivity toward breast tumor cells. These findings suggest that N-(4,5,6,7-tetrahydrobenzisoxazol-4-yl)amides represent a promising class of HSP90 inhibitors for anticancer therapy.
Collapse
Affiliation(s)
- Nastassia A Varabyeva
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus Akad. Kuprevicha St. 5/2 Minsk 220084 Belarus
| | - Alexander M Scherbakov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology Kashirskoye shosse 24 Bld.15 Moscow 115522 Russia
- Gause Institute of New Antibiotics Bol'shaya Pirogovskaya ulitsa 11 Moscow 119021 Russia
| | - Diana I Salnikova
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology Kashirskoye shosse 24 Bld.15 Moscow 115522 Russia
| | - Danila V Sorokin
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology Kashirskoye shosse 24 Bld.15 Moscow 115522 Russia
| | - Alvina I Khamidullina
- Institute of Gene Biology, Russian Academy of Sciences Vavilova ulitsa 34/5 Moscow 119334 Russia
| | - Alexandra L Mikhaylova
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology Kashirskoye shosse 24 Bld.15 Moscow 115522 Russia
| | - Dzmitry I Paulovich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus Akad. Kuprevicha St. 5/2 Minsk 220084 Belarus
| | - Fedor A Lakhvich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus Akad. Kuprevicha St. 5/2 Minsk 220084 Belarus
| | - Yuri A Piven
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus Akad. Kuprevicha St. 5/2 Minsk 220084 Belarus
| |
Collapse
|
3
|
Gu J, He Y, He C, Zhang Q, Huang Q, Bai S, Wang R, You Q, Wang L. Advances in the structures, mechanisms and targeting of molecular chaperones. Signal Transduct Target Ther 2025; 10:84. [PMID: 40069202 PMCID: PMC11897415 DOI: 10.1038/s41392-025-02166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 03/15/2025] Open
Abstract
Molecular chaperones, a class of complex client regulatory systems, play significant roles in the prevention of protein misfolding and abnormal aggregation, the modulation of protein homeostasis, and the protection of cells from damage under constantly changing environmental conditions. As the understanding of the biological mechanisms of molecular chaperones has increased, their link with the occurrence and progression of disease has suggested that these proteins are promising targets for therapeutic intervention, drawing intensive interest. Here, we review recent advances in determining the structures of molecular chaperones and heat shock protein 90 (HSP90) chaperone system complexes. We also describe the features of molecular chaperones and shed light on the complicated regulatory mechanism that operates through interactions with various co-chaperones in molecular chaperone cycles. In addition, how molecular chaperones affect diseases by regulating pathogenic proteins has been thoroughly analyzed. Furthermore, we focus on molecular chaperones to systematically discuss recent clinical advances and various drug design strategies in the preclinical stage. Recent studies have identified a variety of novel regulatory strategies targeting molecular chaperone systems with compounds that act through different mechanisms from those of traditional inhibitors. Therefore, as more novel design strategies are developed, targeting molecular chaperones will significantly contribute to the discovery of new potential drugs.
Collapse
Affiliation(s)
- Jinying Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanyi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chenxi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qifei Huang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shangjun Bai
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial TCM Engineering Technology Research Center of Highly Efficient Drug Delivery Systems (DDSs), Nanjing, China.
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
4
|
Choi KM, Kim SJ, Ji MJ, Kim E, Kim JS, Park HM, Kim JY. Activity-based protein profiling and global proteome analysis reveal MASTL as a potential therapeutic target in gastric cancer. Cell Commun Signal 2024; 22:397. [PMID: 39138495 PMCID: PMC11323684 DOI: 10.1186/s12964-024-01783-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a prevalent malignancy with limited therapeutic options for advanced stages. This study aimed to identify novel therapeutic targets for GC by profiling HSP90 client kinases. METHODS We used mass spectrometry-based activity-based protein profiling (ABPP) with a desthiobiotin-ATP probe, combined with sensitivity analysis of HSP90 inhibitors, to profile kinases in a panel of GC cell lines. We identified kinases regulated by HSP90 in inhibitor-sensitive cells and investigated the impact of MASTL knockdown on GC cell behavior. Global proteomic analysis following MASTL knockdown was performed, and bioinformatics tools were used to analyze the resulting data. RESULTS Four kinases-MASTL, STK11, CHEK1, and MET-were identified as HSP90-regulated in HSP90 inhibitor-sensitive cells. Among these, microtubule-associated serine/threonine kinase-like (MASTL) was upregulated in GC and associated with poor prognosis. MASTL knockdown decreased migration, invasion, and proliferation of GC cells. Global proteomic profiling following MASTL knockdown revealed NEDD4-1 as a potential downstream mediator of MASTL in GC progression. NEDD4-1 was also upregulated in GC and associated with poor prognosis. Similar to MASTL inhibition, NEDD4-1 knockdown suppressed migration, invasion, and proliferation of GC cells. CONCLUSIONS Our multi-proteomic analyses suggest that targeting MASTL could be a promising therapy for advanced gastric cancer, potentially through the reduction of tumor-promoting proteins including NEDD4-1. This study enhances our understanding of kinase signaling pathways in GC and provides new insights for potential treatment strategies.
Collapse
Affiliation(s)
- Kyoung-Min Choi
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sung-Jin Kim
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Mi-Jung Ji
- Advanced Analysis and Data Center, Korea Institute of Science and Technology (KIST), Seoul, 02456, Republic of Korea
| | - Eunjung Kim
- Natural Product Informatics Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Jae-Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Hyun-Mee Park
- Advanced Analysis and Data Center, Korea Institute of Science and Technology (KIST), Seoul, 02456, Republic of Korea
| | - Jae-Young Kim
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
5
|
Lin Z, Pan R, Wu L, Zhu F, Fang Q, Kwok HF, Lu X. AFP-HSP90 mediated MYC/MET activation promotes tumor progression in hepatocellular carcinoma and gastric cancers. Cancer Cell Int 2024; 24:283. [PMID: 39135041 PMCID: PMC11321088 DOI: 10.1186/s12935-024-03455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Alpha-fetoprotein (AFP) elevation is a well-known biomarker in various diseases, particularly in the diagnosis of hepatocellular carcinoma (HCC). Intracellular AFP has been previously implicated in promoting tumorigenesis. In this study, we discovered that AFP enhances the stability of oncoproteins c-MYC and c-MET, thereby facilitating the progression of liver and gastric tumors. Our findings suggest that AFP acts by stabilizing these oncoproteins, which are clients of heat shock protein 90 (HSP90), and prevents their degradation through ubiquitination. Intriguingly, we identified AFP as a novel co-chaperone of HSP90, demonstrating its ability to regulate the stabilization of HSP90 client proteins. Furthermore, our results indicate that inhibiting AFP or HSP90 enhances the cytotoxicity of chemotherapeutic agents in AFP-producing HCC and gastric cancer cells. These findings have significant implications for the development of therapeutic strategies targeting AFP-producing tumors, as the AFP-HSP90-mediated activation of c-MYC and c-MET provides new insights into potential treatment approaches. In summary, this study sheds light on the role of AFP in promoting tumor progression by stabilizing oncoproteins through its interaction with HSP90. The identification of this mechanism opens up new avenues for therapeutic interventions in AFP-producing tumors.
Collapse
Affiliation(s)
- Ziqi Lin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Rulu Pan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Liyue Wu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Fangsheng Zhu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Qiwei Fang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China.
| | - Xincheng Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China.
| |
Collapse
|
6
|
Teranishi R, Takahashi T, Obata Y, Nishida T, Ohkubo S, Kazuno H, Saito Y, Serada S, Fujimoto M, Kurokawa Y, Saito T, Yamamoto K, Yamashita K, Tanaka K, Makino T, Nakajima K, Hirota S, Naka T, Eguchi H, Doki Y. Combination of pimitespib (TAS-116) with sunitinib is an effective therapy for imatinib-resistant gastrointestinal stromal tumors. Int J Cancer 2023; 152:2580-2593. [PMID: 36752576 DOI: 10.1002/ijc.34461] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/29/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023]
Abstract
Despite the effectiveness of imatinib, most gastrointestinal stromal tumors (GISTs) develop resistance to the treatment, mainly due to the reactivation of KIT tyrosine kinase activity. Sunitinib, which inhibits the phosphorylation of KIT and vascular endothelial growth factor (VEGF) receptor, has been established as second-line therapy for GISTs. The recently-developed heat shock protein 90 (HSP90) inhibitor pimitespib (PIM; TAS-116) demonstrated clinical benefits in some clinical trials; however, the effects were limited. The aim of our study was therefore to clarify the effectiveness and mechanism of the combination of PIM with sunitinib for imatinib-resistant GISTs. We evaluated the efficacy and mechanism of the combination of PIM with sunitinib against imatinib-resistant GIST using imatinib-resistant GIST cell lines and murine xenograft models. In vitro analysis demonstrated that PIM and sunitinib combination therapy strongly inhibited growth and induced apoptosis in imatinib-resistant GIST cell lines by inhibiting KIT signaling and decreasing auto-phosphorylated KIT in the Golgi apparatus. In addition, PIM and sunitinib combination therapy enhanced antitumor responses in the murine xenograft models compared to individual therapies. Further analysis of the xenograft models showed that the combination therapy not only downregulated the KIT signaling pathway but also decreased the tumor microvessel density. Furthermore, we found that PIM suppressed VEGF expression in GIST cells by suppressing protein kinase D2 and hypoxia-inducible factor-1 alpha, which are both HSP90 client proteins. In conclusion, the combination of PIM and sunitinib is effective against imatinib-resistant GIST via the downregulation of KIT signaling and angiogenic signaling pathways.
Collapse
Affiliation(s)
- Ryugo Teranishi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Yuuki Obata
- National Cancer Center Research Institute, Laboratory of Intracellular Traffic and Oncology, Tsukiji, Japan
| | - Toshirou Nishida
- Department of Surgery, Japan Community Health Care Organization Osaka Hospital, Osaka, Japan
| | - Shuichi Ohkubo
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Japan
| | - Hiromi Kazuno
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Japan
| | - Yurina Saito
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Satoshi Serada
- Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Minoru Fujimoto
- Division of Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Takuro Saito
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Kazuyoshi Yamamoto
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Kotaro Yamashita
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tetsuji Naka
- Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University School of Medicine, Yahaba, Japan.,Division of Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| |
Collapse
|
7
|
Abstract
The co-chaperone p50/Cdc37 is an important partner for Hsp90, assisting in molecular chaperone activities, particularly with regard to the regulation of protein kinases. Analysis of the structure of Hsp90-Cdc37-kinase complexes demonstrates the way in which Cdc37 interacts with and controls the folding of a large proportion of intracellular protein kinases. This co-chaperone thus stands at the hub of a multitude of intracellular signaling networks. Indeed, the influence of Cdc37 reaches beyond the housekeeping pathways of protein folding into the regulation of a wide range of cellular processes. This co-chaperone has attracted attention as a potential intermediate in carcinogenesis. Cdc37 is an attractive potential target in cancer due to (1) high expression in a number of tumor types and (2) control of multiple signaling pathways. These properties indicate (3) a potential for selectivity due to its elevated expression in malignant cells and (4) robustness, as the co-chaperone may control multiple growth signaling pathways and thus be less prone to evolution of resistance than less versatile oncoproteins. Cdc37 may also be involved in other aspects of pathophysiology and has been shown to be secreted in exosomes. Protein aggregation disorders have been linked to age-related declines in molecular chaperones and co-chaperones. Cdc37 also appears to be a potential agent in longevity due to its links to protein folding and autophagy, and it will be informative to study the role of Cdc37 maintenance/decline in aging organisms.
Collapse
Affiliation(s)
- Thomas L Prince
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ranok Therapeutics, Waltham, MA, USA
| | - Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yuka Okusha
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Pahwa R, Dubhashi J, Singh A, Jailwala P, Lobanov A, Thomas CJ, Ceribelli M, Wilson K, Ricketts CJ, Vocke CD, Wells C, Bottaro DP, Linehan WM, Neckers L, Srinivasan R. Inhibition of HSP 90 is associated with potent anti-tumor activity in Papillary Renal Cell Carcinoma. J Exp Clin Cancer Res 2022; 41:208. [PMID: 35754026 PMCID: PMC9235180 DOI: 10.1186/s13046-022-02416-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/11/2022] [Indexed: 12/24/2022] Open
Abstract
Background There is no universally accepted treatment for patients with advanced papillary renal cell carcinoma (PRCC). The presence of activating mutations in MET, as well as gain of chromosome 7, where the MET gene is located, are the most common genetic alterations associated with PRCC, leading to the clinical evaluation of MET tyrosine kinase inhibitors (TKIs) in this cancer. However, TKIs targeting MET selectively, as well as multitargeted TKIs with activity against MET demonstrate modest efficacy in PRCC and primary and secondary treatment failure is common; other approaches are urgently needed to improve outcomes in these patients. Methods High throughput screening with small molecule libraries identified HSP90 inhibitors as agents of interest based on antitumor activity against patient derived PRCC cell lines. We investigated the activity of the orally available HSP90 inhibitor, SNX2112 in vitro, using 2D/3D PRCC cell culture models and in vivo, in mice tumor xenograft models. The molecular pathways mediating antitumor activity of SNX2112 were assessed by Western blot analysis, Flow cytometry, RNA-seq analysis, Real Time qPCR and imaging approaches. Results SNX2112 significantly inhibited cellular proliferation, induced G2/M cell cycle arrest and apoptosis in PRCC lines overexpressing MET. In contrast to TKIs targeting MET, SNX2112 inhibited both MET and known downstream mediators of MET activity (AKT, pAKT1/2 and pERK1/2) in PRCC cell lines. RNAi silencing of AKT1/2 or ERK1/2 expression significantly inhibited growth in PRCC cells. Furthermore, SNX2112 inhibited a unique set of E2F and MYC targets and G2M-associated genes. Interestingly, interrogation of the TCGA papillary RCC cohort revealed that these genes were overexpressed in PRCC and portend a poor prognosis. Finally, SNX-2112 demonstrated strong antitumor activity in vivo and prolonged survival of mice bearing human PRCC xenograft. Conclusions These results demonstrate that HSP90 inhibition is associated with potent activity in PRCC, and implicate the PI3K/AKT and MEK/ERK1/2 pathways as important mediators of tumorigenesis. These data also provide the impetus for further clinical evaluation of HSP90, AKT, MEK or E2F pathway inhibitors in PRCC. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02416-z.
Collapse
|
9
|
Zhang J, Li H, Liu Y, Zhao K, Wei S, Sugarman ET, Liu L, Zhang G. Targeting HSP90 as a Novel Therapy for Cancer: Mechanistic Insights and Translational Relevance. Cells 2022; 11:cells11182778. [PMID: 36139353 PMCID: PMC9497295 DOI: 10.3390/cells11182778] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Heat shock protein (HSP90), a highly conserved molecular chaperon, is indispensable for the maturation of newly synthesized poly-peptides and provides a shelter for the turnover of misfolded or denatured proteins. In cancers, the client proteins of HSP90 extend to the entire process of oncogenesis that are associated with all hallmarks of cancer. Accumulating evidence has demonstrated that the client proteins are guided for proteasomal degradation when their complexes with HSP90 are disrupted. Accordingly, HSP90 and its co-chaperones have emerged as viable targets for the development of cancer therapeutics. Consequently, a number of natural products and their analogs targeting HSP90 have been identified. They have shown a strong inhibitory effect on various cancer types through different mechanisms. The inhibitors act by directly binding to either HSP90 or its co-chaperones/client proteins. Several HSP90 inhibitors—such as geldanamycin and its derivatives, gamitrinib and shepherdin—are under clinical evaluation with promising results. Here, we review the subcellular localization of HSP90, its corresponding mechanism of action in the malignant phenotypes, and the recent progress on the development of HSP90 inhibitors. Hopefully, this comprehensive review will shed light on the translational potential of HSP90 inhibitors as novel cancer therapeutics.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Houde Li
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Yu Liu
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong 999077, China
| | - Kejia Zhao
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Shiyou Wei
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Eric T. Sugarman
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Lunxu Liu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong 999077, China
- Correspondence:
| |
Collapse
|
10
|
Ren X, Li T, Zhang W, Yang X. Targeting Heat-Shock Protein 90 in Cancer: An Update on Combination Therapy. Cells 2022; 11:cells11162556. [PMID: 36010632 PMCID: PMC9406578 DOI: 10.3390/cells11162556] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Heat-shock protein 90 (HSP90) is an important molecule chaperone associated with tumorigenesis and malignancy. HSP90 is involved in the folding and maturation of a wide range of oncogenic clients, including diverse kinases, transcription factors and oncogenic fusion proteins. Therefore, it could be argued that HSP90 facilitates the malignant behaviors of cancer cells, such as uncontrolled proliferation, chemo/radiotherapy resistance and immune evasion. The extensive associations between HSP90 and tumorigenesis indicate substantial therapeutic potential, and many HSP90 inhibitors have been developed. However, due to HSP90 inhibitor toxicity and limited efficiency, none have been approved for clinical use as single agents. Recent results suggest that combining HSP90 inhibitors with other anticancer therapies might be a more advisable strategy. This review illustrates the role of HSP90 in cancer biology and discusses the therapeutic value of Hsp90 inhibitors as complements to current anticancer therapies.
Collapse
Affiliation(s)
- Xiude Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Wei Zhang
- Departments of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Correspondence: (W.Z.); (X.Y.)
| | - Xuejun Yang
- Department of Neurosurgery, Tsinghua University Beijing Tsinghua Changgung Hospital, Beijing 102218, China
- Correspondence: (W.Z.); (X.Y.)
| |
Collapse
|
11
|
Different HSP90 Inhibitors Exert Divergent Effect on Myxoid Liposarcoma In Vitro and In Vivo. Biomedicines 2022; 10:biomedicines10030624. [PMID: 35327426 PMCID: PMC8945459 DOI: 10.3390/biomedicines10030624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 12/10/2022] Open
Abstract
The therapeutic options for patients with relapsed or metastatic myxoid liposarcoma (MLS) remain scarce and there is currently no targeted therapy available. Inhibition of the HSP90 family of chaperones has been suggested as a possible therapeutic option for patients with MLS. However, the clinical effect of different HSP90 inhibitors vary considerably and no comparative study in MLS has been performed. Here, we evaluated the effects of the HSP90 inhibitors 17-DMAG, AUY922 and STA-9090 on MLS cell lines and in an MLS patient-derived xenograft (PDX) model. Albeit all drugs inhibited in vitro growth of MLS cell lines, the in vivo responses were discrepant. Whereas 17-DMAG inhibited tumor growth, AUY922 surprisingly led to increased tumor growth and a more aggressive morphological phenotype. In vitro, 17-DMAG and STA-9090 reduced the activity of the MAPK and PI3K/AKT signaling pathways, whereas AUY922 led to a compensatory upregulation of downstream ERK. Furthermore, all three tested HSP90 inhibitors displayed a synergistic combination effect with trabectidin, but not with doxorubicin. In conclusion, our results indicate that different HSP90 inhibitors, albeit having the same target, can vary significantly in downstream effects and treatment outcomes. These results should be considered before proceeding into clinical trials against MLS or other malignancies.
Collapse
|
12
|
Mehdipour T, Tohidkia MR, Ata Saei A, Kazemi A, Khajeh S, Rahim Rahimi AA, Nikfarjam S, Farhadi M, Halimi M, Soleimani R, Zubarev RA, Nouri M. Tailoring subtractive cell biopanning to identify diffuse gastric adenocarcinoma-associated antigens via human scFv antibodies. Immunology 2019; 159:96-108. [PMID: 31596953 DOI: 10.1111/imm.13129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022] Open
Abstract
Among various solid tumours, gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. Expansion into the peritoneal cavity, which results from dissemination of diffuse cancer cells, is the main cause of mortality in gastric adenocarcinoma patients. Therefore, investigation of putative biomarkers involved in metastasis is prerequisite for GC management. In an effort to discover potential tumour markers associated with peritoneal metastasis of GC, a semi-synthetic human scFv library (Tomlinson I) was used to isolate novel antibody fragments recognizing MKN-45, a poorly differentiated diffuse gastric adenocarcinoma cell line. Four rounds of subtractive selection each consisting of extensive pre-absorption of phage library with NIH-3T3 murine embryonic fibroblasts and AGS (a well-differentiated intestinal gastric adenocarcinoma) cell line were carried out prior to positive selection on MKN-45 target cells. ELISA-based screening of 192 phage-displayed scFv clones indicated 21 high-affinity binders with specific staining of MKN-45 compared with AGS cells. Diversity analysis of the selected phage-scFvs resulted in five distinct sequences with multiple frequency. Further analysis by ELISA and flow cytometry verified three clones that specifically recognized MKN-45 cells. Liquid chromatography-mass spectrometry analysis of the scFv-immunoprecipitated proteins has led to identification of c-Met, HSP90 α and HSP90 β as candidate biomarkers associated with diffuse GC. Immunohistochemistry revealed the capability of purified scFvs to differentiate diffuse and intestinal gastric adenocarcinoma. Taken together, the isolated MKN-45-specific scFv fragments and their cognate antigens would be beneficial in screening and management as well as targeting and therapy of the diffuse gastric adenocarcinoma.
Collapse
Affiliation(s)
- Tayebeh Mehdipour
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad R Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ata Saei
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Amir Kazemi
- Department of Microbiology, Islamic Azad University, Shahr-e-Qods Branch, Tehran, Iran
| | - Shirin Khajeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali A Rahim Rahimi
- Department of Microbiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Nikfarjam
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Farhadi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Halimi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Soleimani
- Department of Molecular Biology, Research and Diagnostic Laboratory of Dook, Sari, Iran
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mohammad Nouri
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Roles of Extracellular HSPs as Biomarkers in Immune Surveillance and Immune Evasion. Int J Mol Sci 2019; 20:ijms20184588. [PMID: 31533245 PMCID: PMC6770223 DOI: 10.3390/ijms20184588] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 12/17/2022] Open
Abstract
Extracellular heat shock proteins (ex-HSPs) have been found in exosomes, oncosomes, membrane surfaces, as well as free HSP in cancer and various pathological conditions, also known as alarmins. Such ex-HSPs include HSP90 (α, β, Gp96, Trap1), HSP70, and large and small HSPs. Production of HSPs is coordinately induced by heat shock factor 1 (HSF1) and hypoxia-inducible factor 1 (HIF-1), while matrix metalloproteinase 3 (MMP-3) and heterochromatin protein 1 are novel inducers of HSPs. Oncosomes released by tumor cells are a major aspect of the resistance-associated secretory phenotype (RASP) by which immune evasion can be established. The concepts of RASP are: (i) releases of ex-HSP and HSP-rich oncosomes are essential in RASP, by which molecular co-transfer of HSPs with oncogenic factors to recipient cells can promote cancer progression and resistance against stresses such as hypoxia, radiation, drugs, and immune systems; (ii) RASP of tumor cells can eject anticancer drugs, targeted therapeutics, and immune checkpoint inhibitors with oncosomes; (iii) cytotoxic lipids can be also released from tumor cells as RASP. ex-HSP and membrane-surface HSP (mHSP) play immunostimulatory roles recognized by CD91+ scavenger receptor expressed by endothelial cells-1 (SREC-1)+ Toll-like receptors (TLRs)+ antigen-presenting cells, leading to antigen cross-presentation and T cell cross-priming, as well as by CD94+ natural killer cells, leading to tumor cytolysis. On the other hand, ex-HSP/CD91 signaling in cancer cells promotes cancer progression. HSPs in body fluids are potential biomarkers detectable by liquid biopsies in cancers and tissue-damaged diseases. HSP-based vaccines, inhibitors, and RNAi therapeutics are also reviewed.
Collapse
|
14
|
Heat Shock Proteins Are Essential Components in Transformation and Tumor Progression: Cancer Cell Intrinsic Pathways and Beyond. Int J Mol Sci 2019; 20:ijms20184507. [PMID: 31514477 PMCID: PMC6769451 DOI: 10.3390/ijms20184507] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 02/08/2023] Open
Abstract
Heat shock protein (HSP) synthesis is switched on in a remarkably wide range of tumor cells, in both experimental animal systems and in human cancer, in which these proteins accumulate in high levels. In each case, elevated HSP concentrations bode ill for the patient, and are associated with a poor outlook in terms of survival in most cancer types. The significance of elevated HSPs is underpinned by their essential roles in mediating tumor cell intrinsic traits such as unscheduled cell division, escape from programmed cell death and senescence, de novo angiogenesis, and increased invasion and metastasis. An increased HSP expression thus seems essential for tumorigenesis. Perhaps of equal significance is the pronounced interplay between cancer cells and the tumor milieu, with essential roles for intracellular HSPs in the properties of the stromal cells, and their roles in programming malignant cells and in the release of HSPs from cancer cells to influence the behavior of the adjacent tumor and infiltrating the normal cells. These findings of a triple role for elevated HSP expression in tumorigenesis strongly support the targeting of HSPs in cancer, especially given the role of such stress proteins in resistance to conventional therapies.
Collapse
|
15
|
London CA, Acquaviva J, Smith DL, Sequeira M, Ogawa LS, Gardner HL, Bernabe LF, Bear MD, Bechtel SA, Proia DA. Consecutive Day HSP90 Inhibitor Administration Improves Efficacy in Murine Models of KIT-Driven Malignancies and Canine Mast Cell Tumors. Clin Cancer Res 2018; 24:6396-6407. [PMID: 30171047 DOI: 10.1158/1078-0432.ccr-18-0703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/03/2018] [Accepted: 08/27/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE STA-1474, prodrug of the heat shock protein 90 inhibitor (HSP90i) ganetespib, previously demonstrated activity in canine preclinical models of cancer; interestingly, prolonged infusions were associated with improved biologic activity. The purpose of this study was to identify the ideal treatment schedule for HSP90i in preclinical models of KIT-driven malignancies and in dogs with spontaneous mast cell tumors (MCT), where KIT is a known driver. EXPERIMENTAL DESIGN In vitro and murine xenograft experiments and clinical studies in dogs with MCTs were used to define the effects of HSP90i-dosing regimen on client protein downregulation and antitumor activity. RESULTS Continuous HSP90 inhibition led to durable destabilization of client proteins in vitro; however, transient exposure required >10× drug for comparable effects. In vivo, KIT was rapidly degraded following a single dose of HSP90i but returned to baseline levels within a day. HSP90 levels increased and stabilized 16 hours after HSP90i and were not elevated following a subsequent near-term exposure, providing a functional pool of chaperone to stabilize proteins and a means for greater therapeutic activity upon HSP90i reexposure. HSP90i administered on days 1 and 2 (D1/D2) demonstrated increased biologic activity compared with D1 treatment in KIT or EGFR-driven murine tumor models. In a trial of dogs with MCT, D1/D2 dosing of HSP90i was associated with sustained KIT downregulation, 50% objective response rate and 100% clinical benefit rate compared with D1 and D1/D4 schedules. CONCLUSIONS These data provide further evidence that prolonged HSP90i exposure improves biologic activity through sustained downregulation of client proteins.
Collapse
Affiliation(s)
- Cheryl A London
- Departments of Veterinary Biosciences and Clinical Sciences, The Ohio State University, Columbus, Ohio. .,Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts
| | | | | | | | | | - Heather L Gardner
- Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| | - Louis Feo Bernabe
- Departments of Veterinary Biosciences and Clinical Sciences, The Ohio State University, Columbus, Ohio
| | - Misty D Bear
- Departments of Veterinary Biosciences and Clinical Sciences, The Ohio State University, Columbus, Ohio
| | - Sandra A Bechtel
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | | |
Collapse
|
16
|
Miao Z, Hu Y, Zhang X, Yang X, Tang Y, Kang A, Zhu D. Screening and identification of ligand-protein interactions using functionalized heat shock protein 90-fluorescent mesoporous silica-indium phosphide/zinc sulfide quantum dot nanocomposites. J Chromatogr A 2018; 1562:1-11. [DOI: 10.1016/j.chroma.2018.05.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 01/06/2023]
|
17
|
Gibbs BK, Sourbier C. Detecting the Potential Pharmacological Synergy of Drug Combination by Viability Assays In Vitro. Methods Mol Biol 2018; 1709:129-137. [PMID: 29177656 DOI: 10.1007/978-1-4939-7477-1_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone necessary for the folding and proper function of multiple "client" proteins. HSP90 is involved in numerous biological processes and is critical to maintain proteostasis and to protect the cells from potentially harmful environmental stresses such as heat. However, in cancer, the role of HSP90, and other molecular chaperones, is corrupted as many of HSP90 clients are kinases and transcription factors whose aberrant activation or mutation drives tumor growth. Thus, developing a polytherapy, or combination therapy, that includes an HSP90 inhibitor in addition to targeting an oncogene or oncogenic pathway is an appealing therapeutic approach. This protocol will provide detailed methods on how to assess the potential synergy of polytherapy by viability assays in vitro.
Collapse
Affiliation(s)
- Benjamin K Gibbs
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Carole Sourbier
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
18
|
Design, synthesis and pharmacological evaluation of ALK and Hsp90 dual inhibitors bearing resorcinol and 2,4-diaminopyrimidine motifs. Eur J Med Chem 2018; 152:76-86. [DOI: 10.1016/j.ejmech.2018.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 01/21/2023]
|
19
|
Zaman A, Bivona TG. Emerging application of genomics-guided therapeutics in personalized lung cancer treatment. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:160. [PMID: 29911108 DOI: 10.21037/atm.2018.05.02] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In lung cancer, genomics-driven comprehensive molecular profiling has identified novel chemically and immunologically addressable vulnerabilities, resulting in an increasing application of precision medicine by targeted inactivation of tumor oncogenes and immunogenic activation of host anti-tumor surveillance as modes of treatment. However, initially profound response of these targeted therapies is followed by relapse due to therapy-resistant residual disease states. Although distinct mechanisms and frameworks for therapy resistance have been proposed, accounting for and upfront prediction of resistance trajectories has been challenging. In this review, we discuss in both non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), the current standing, and challenges associated with genomics-guided strategies for personalized therapy against both oncogenic alterations as well as post-therapy resistance mechanisms. In NSCLC, we catalog the targeted therapy approaches against most notable oncogenic alterations such as epidermal growth factor receptor (EGFR), serine/threonine-protein kinase b-raf (BRAF), Kirsten rat sarcoma viral proto-oncogene (KRAS), anaplastic lymphoma kinase (ALK), ROS1 proto-oncogene receptor tyrosine kinase (ROS1). For SCLC, currently highly recalcitrant to targeted therapy, we enumerate a range of exciting and maturing precision medicine approaches. Furthermore, we discuss a number of immunotherapy approaches, in combination or alone, that are being actively pursued clinically in lung cancer. This review not only highlights common mechanistic themes underpinning different classes of resistance and discusses tumor heterogeneity as a source of residual disease, but also discusses potential ways to overcome these barriers. We emphasize how an extensive understanding of these themes can predict and improve therapeutic strategies, such as through poly-therapy approaches, to forestall tumor evolution upfront.
Collapse
Affiliation(s)
- Aubhishek Zaman
- Department of Medicine, University of California, San Francisco, CA, USA.,UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, CA, USA.,UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
20
|
Hsp90 Inhibition Reduces TLR5 Surface Expression and NF- κB Activation in Human Myeloid Leukemia THP-1 Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4319369. [PMID: 29651431 PMCID: PMC5832108 DOI: 10.1155/2018/4319369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/07/2018] [Accepted: 01/17/2018] [Indexed: 01/19/2023]
Abstract
Tumors highly express active heat shock protein 90 (Hsp90), which is involved in tumor survival and progression. Enhanced Toll-like receptor (TLR) 5 expression and signaling were reported to be associated with acute myeloid leukemia. In the present study, we investigated the possible modulatory effects of Hsp90 inhibitors on TLR5 expression and signaling in the human myeloid leukemia cell line THP-1. Cells were pretreated with various concentrations of the Hsp90 inhibitor geldanamycin (GA) or the Hsp70 inhibitor VER155008, followed by stimulation with bacterial flagellin. Flagellin-induced nuclear factor-κB (NF-κB) activation was significantly reduced by treatment with GA or VER155008. To elucidate the underlying mechanism of this effect, mRNA and cell surface expression of TLR5 was examined. TLR5 mRNA expression was enhanced by both GA and VER155008, whereas cell surface expression of TLR5 was reduced by three different Hsp90 inhibitors, including GA, 17-(allylamino)-17-demethoxygeldanamycin, and radicicol, and an Hsp70 inhibitor. The inhibitory effect of Hsp90 inhibitors was much higher than that of Hsp70 inhibitor. Our results suggest that Hsp90 inhibitors suppress TLR5 surface expression and activation of NF-κB in THP-1 cells in response to TLR5 ligand, and these inhibitory effects may be associated with the possible mechanisms by which Hsp90 inhibitors suppress myeloid leukemia.
Collapse
|
21
|
Higuchi-Sanabria R, Frankino PA, Paul JW, Tronnes SU, Dillin A. A Futile Battle? Protein Quality Control and the Stress of Aging. Dev Cell 2018; 44:139-163. [PMID: 29401418 PMCID: PMC5896312 DOI: 10.1016/j.devcel.2017.12.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/30/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
There exists a phenomenon in aging research whereby early life stress can have positive impacts on longevity. The mechanisms underlying these observations suggest a robust, long-lasting induction of cellular defense mechanisms. These include the various unfolded protein responses of the endoplasmic reticulum (ER), cytosol, and mitochondria. Indeed, ectopic induction of these pathways, in the absence of stress, is sufficient to increase lifespan in organisms as diverse as yeast, worms, and flies. Here, we provide an overview of the protein quality control mechanisms that operate in the cytosol, mitochondria, and ER and discuss how they affect cellular health and viability during stress and aging.
Collapse
Affiliation(s)
- Ryo Higuchi-Sanabria
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Phillip Andrew Frankino
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joseph West Paul
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah Uhlein Tronnes
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
22
|
Burslem GM, Smith BE, Lai AC, Jaime-Figueroa S, McQuaid DC, Bondeson DP, Toure M, Dong H, Qian Y, Wang J, Crew AP, Hines J, Crews CM. The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study. Cell Chem Biol 2018; 25:67-77.e3. [PMID: 29129716 PMCID: PMC5831399 DOI: 10.1016/j.chembiol.2017.09.009] [Citation(s) in RCA: 455] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/07/2017] [Accepted: 09/27/2017] [Indexed: 01/05/2023]
Abstract
Proteolysis targeting chimera (PROTAC) technology has emerged over the last two decades as a powerful tool for targeted degradation of endogenous proteins. Herein we describe the development of PROTACs for receptor tyrosine kinases, a protein family yet to be targeted for induced protein degradation. The use of VHL-recruiting PROTACs against this protein family reveals several advantages of degradation over inhibition alone: direct comparisons of fully functional, target-degrading PROTACs with target-inhibiting variants that contain an inactivated E3 ligase-recruiting ligand show that degradation leads to more potent inhibition of cell proliferation and a more durable and sustained downstream signaling response, and thus addresses the kinome rewiring challenge seen with many receptor tyrosine kinase inhibitors. Combined, these findings demonstrate the ability to target receptor tyrosine kinases for degradation using the PROTAC technology and outline the advantages of this degradation-based approach.
Collapse
Affiliation(s)
- George M Burslem
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA
| | - Blake E Smith
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA
| | - Ashton C Lai
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA
| | - Saul Jaime-Figueroa
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA
| | - Daniel C McQuaid
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA
| | - Daniel P Bondeson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA
| | - Momar Toure
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA
| | - Hanqing Dong
- Arvinas, LLC, 5 Science Park, New Haven, CT, USA
| | - Yimin Qian
- Arvinas, LLC, 5 Science Park, New Haven, CT, USA
| | - Jing Wang
- Arvinas, LLC, 5 Science Park, New Haven, CT, USA
| | | | - John Hines
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA
| | - Craig M Crews
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA; Departments of Chemistry and Pharmacology, Yale University, New Haven, CT, USA.
| |
Collapse
|
23
|
Ye M, Zhang X, Li N, Zhang Y, Jing P, Chang N, Wu J, Ren X, Zhang J. ALK and ROS1 as targeted therapy paradigms and clinical implications to overcome crizotinib resistance. Oncotarget 2017; 7:12289-304. [PMID: 26802023 PMCID: PMC4914285 DOI: 10.18632/oncotarget.6935] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/12/2016] [Indexed: 12/14/2022] Open
Abstract
During the past decade, more than 10 targetable oncogenic driver genes have been validated in non-small cell lung cancer (NSCLC). Anaplastic lymphoma kinase (ALK) and ROS1 kinase are two new driver genes implicated in ALK- and ROS1-rearranged NSCLC. Inhibition of ALK and ROS1 by crizotinib has been reported to be highly effective and well tolerated in these patients. However, resistance to crizotinib emerges years after treatment, and increasing efforts have been made to overcome this issue. Here, we review the biology of ALK and ROS1 and their roles in cancer progression. We also summarize the ongoing and completed clinical trials validating ALK and ROS1 as targets for cancer treatment. In the last section of the review, we will discuss the molecular mechanisms of crizotinib resistance and focus approaches to overcome it. This review describes an exciting new area of research and may provide new insights for targeted cancer therapies.
Collapse
Affiliation(s)
- Mingxiang Ye
- Department of Pulmonary Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinxin Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Nan Li
- Department of Pulmonary Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yong Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pengyu Jing
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ning Chang
- Department of Pulmonary Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianxiong Wu
- Department of Pulmonary Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinling Ren
- Department of Pulmonary Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
24
|
Yan L, Zhang W, Zhang B, Xuan C, Wang D. BIIB021: A novel inhibitor to heat shock protein 90–addicted oncology. Tumour Biol 2017; 39:1010428317698355. [PMID: 28443462 DOI: 10.1177/1010428317698355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heat shock protein 90 is induced in response to the cell stress. Its overexpression has been reported in many cancers with poor prognosis. It acts as a chaperone to the client proteins, especially the activated oncoproteins in malignancies to protect them from degradation. Heat shock protein 90 inhibition represented anti-cancer effects in many studies. Previous natural product–based compounds are limited by their association with target toxicities. BIIB021 is an orally available, fully synthetic novel small-molecule heat shock protein 90 inhibitor that has shown strong antitumor activities in a large number of preclinical models and is now under clinical investigation. This review will summarize its therapeutic effects and highlight the prospect of targeting heat shock protein 90 in the cancer therapy.
Collapse
Affiliation(s)
- Liang Yan
- Department of Oncology, Binzhou People’s Hospital, Binzhou, People’s Republic of China
| | - Weiming Zhang
- Department of Oncology, The Affiliated Hospital of Binzhou Medical College, Binzhou, People’s Republic of China
| | - Beibei Zhang
- Department of Molecular Microbiology, Oslo University Hospital, Oslo, Norway
| | - Chao Xuan
- Department of Clinical Laboratory, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, People’s Republic of China
| | - Daogang Wang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| |
Collapse
|
25
|
Huang XX, Xie FF, Hou LJ, Chen XX, Ou RY, Yu JT, Qiu JG, Zhang WJ, Jiang QW, Yang Y, Zheng DW, Chen Y, Huang JR, Wang K, Wei MN, Li WF, Shi Z, Yan XJ. Crizotinib synergizes with cisplatin in preclinical models of ovarian cancer. Am J Transl Res 2017; 9:1667-1679. [PMID: 28469773 PMCID: PMC5411916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/04/2017] [Indexed: 06/07/2023]
Abstract
Crizotinib, a small molecule inhibitor of anaplastic lymphoma kinase (ALK), c-ros oncogene 1 (ROS1) and c-MET (also called MET or hepatocyte growth factor receptor), has been approved by the Food and Drug Administration for the treatment of patients with advanced non-small cell lung cancer whose tumors have rearrangements in the ALK or ROS1 gene. However, the anticancer effect of crizotinib on ovarian cancer is still unclear. In this study, our data show that crizotinib can actively induce cell growth inhibition, cell cycle arrest at G2/M phase and apoptosis with the decreasing phosphorylation of the downstream signaling effectors AKT and ERK in human ovarian cancer cells. Crizotinib also increases the intracellular reactive oxidative species (ROS) levels, and pretreating with ROS scavenger N-acety-L-cysteine partially reverses crizotinib-induced apoptosis. Moreover, crizotinib can synergistically inhibit ovarian cancer cells growth in vitro and in vivo when combines with cisplatin. Altogether, crizotinib potently potentiates the activity of cisplatin in ovarian cancer, suggesting the synergistic effect of crizotinib and cisplatin may be valuable for ovarian cancer patients' treatment.
Collapse
Affiliation(s)
- Xiao-Xiu Huang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Feng-Feng Xie
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Li-Jiao Hou
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Xiu-Xiu Chen
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Rong-Ying Ou
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Jiang-Tao Yu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Jian-Ge Qiu
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Wen-Ji Zhang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Qi-Wei Jiang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Yang Yang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Di-Wei Zheng
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Yao Chen
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Jia-Rong Huang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Kun Wang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Meng-Ning Wei
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Wen-Feng Li
- Department of Chemoradiotherapy, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Xiao-Jian Yan
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| |
Collapse
|
26
|
Rodina A, Wang T, Yan P, Gomes ED, Dunphy MPS, Pillarsetty N, Koren J, Gerecitano JF, Taldone T, Zong H, Caldas-Lopes E, Alpaugh M, Corben A, Riolo M, Beattie B, Pressl C, Peter RI, Xu C, Trondl R, Patel HJ, Shimizu F, Bolaender A, Yang C, Panchal P, Farooq MF, Kishinevsky S, Modi S, Lin O, Chu F, Patil S, Erdjument-Bromage H, Zanzonico P, Hudis C, Studer L, Roboz GJ, Cesarman E, Cerchietti L, Levine R, Melnick A, Larson SM, Lewis JS, Guzman ML, Chiosis G. The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature 2016; 538:397-401. [PMID: 27706135 DOI: 10.1038/nature19807] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/02/2016] [Indexed: 01/01/2023]
Abstract
Transient, multi-protein complexes are important facilitators of cellular functions. This includes the chaperome, an abundant protein family comprising chaperones, co-chaperones, adaptors, and folding enzymes-dynamic complexes of which regulate cellular homeostasis together with the protein degradation machinery. Numerous studies have addressed the role of chaperome members in isolation, yet little is known about their relationships regarding how they interact and function together in malignancy. As function is probably highly dependent on endogenous conditions found in native tumours, chaperomes have resisted investigation, mainly due to the limitations of methods needed to disrupt or engineer the cellular environment to facilitate analysis. Such limitations have led to a bottleneck in our understanding of chaperome-related disease biology and in the development of chaperome-targeted cancer treatment. Here we examined the chaperome complexes in a large set of tumour specimens. The methods used maintained the endogenous native state of tumours and we exploited this to investigate the molecular characteristics and composition of the chaperome in cancer, the molecular factors that drive chaperome networks to crosstalk in tumours, the distinguishing factors of the chaperome in tumours sensitive to pharmacologic inhibition, and the characteristics of tumours that may benefit from chaperome therapy. We find that under conditions of stress, such as malignant transformation fuelled by MYC, the chaperome becomes biochemically 'rewired' to form a network of stable, survival-facilitating, high-molecular-weight complexes. The chaperones heat shock protein 90 (HSP90) and heat shock cognate protein 70 (HSC70) are nucleating sites for these physically and functionally integrated complexes. The results indicate that these tightly integrated chaperome units, here termed the epichaperome, can function as a network to enhance cellular survival, irrespective of tissue of origin or genetic background. The epichaperome, present in over half of all cancers tested, has implications for diagnostics and also provides potential vulnerability as a target for drug intervention.
Collapse
Affiliation(s)
- Anna Rodina
- Program in Chemical Biology, Sloan Kettering Institute, New York, New York 10065, USA
| | - Tai Wang
- Program in Chemical Biology, Sloan Kettering Institute, New York, New York 10065, USA
| | - Pengrong Yan
- Program in Chemical Biology, Sloan Kettering Institute, New York, New York 10065, USA
| | - Erica DaGama Gomes
- Program in Chemical Biology, Sloan Kettering Institute, New York, New York 10065, USA
| | - Mark P S Dunphy
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | | | - John Koren
- Program in Chemical Biology, Sloan Kettering Institute, New York, New York 10065, USA
| | - John F Gerecitano
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Tony Taldone
- Program in Chemical Biology, Sloan Kettering Institute, New York, New York 10065, USA
| | - Hongliang Zong
- Haematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, USA
| | - Eloisi Caldas-Lopes
- Program in Chemical Biology, Sloan Kettering Institute, New York, New York 10065, USA
| | - Mary Alpaugh
- Program in Chemical Biology, Sloan Kettering Institute, New York, New York 10065, USA
| | - Adriana Corben
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Matthew Riolo
- Program in Chemical Biology, Sloan Kettering Institute, New York, New York 10065, USA
| | - Brad Beattie
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Christina Pressl
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Radu I Peter
- Department of Mathematics, Technical University of Cluj-Napoca, Cluj-Napoca 400114, Romania
| | - Chao Xu
- Program in Chemical Biology, Sloan Kettering Institute, New York, New York 10065, USA
| | - Robert Trondl
- Program in Chemical Biology, Sloan Kettering Institute, New York, New York 10065, USA
| | - Hardik J Patel
- Program in Chemical Biology, Sloan Kettering Institute, New York, New York 10065, USA
| | - Fumiko Shimizu
- Program in Chemical Biology, Sloan Kettering Institute, New York, New York 10065, USA
| | - Alexander Bolaender
- Program in Chemical Biology, Sloan Kettering Institute, New York, New York 10065, USA
| | - Chenghua Yang
- Program in Chemical Biology, Sloan Kettering Institute, New York, New York 10065, USA
| | - Palak Panchal
- Program in Chemical Biology, Sloan Kettering Institute, New York, New York 10065, USA
| | - Mohammad F Farooq
- Molecular, Cellular &Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Sarah Kishinevsky
- Program in Chemical Biology, Sloan Kettering Institute, New York, New York 10065, USA
| | - Shanu Modi
- Breast Cancer Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Oscar Lin
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Feixia Chu
- Molecular, Cellular &Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Sujata Patil
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Hediye Erdjument-Bromage
- Microchemistry and Proteomics Core, Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Pat Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Clifford Hudis
- Breast Cancer Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Lorenz Studer
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Gail J Roboz
- Haematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, USA
| | - Ethel Cesarman
- Haematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, USA
| | - Leandro Cerchietti
- Haematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, USA
| | - Ross Levine
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Ari Melnick
- Haematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, USA
| | - Steven M Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Monica L Guzman
- Haematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, USA
| | - Gabriela Chiosis
- Program in Chemical Biology, Sloan Kettering Institute, New York, New York 10065, USA.,Breast Cancer Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
27
|
Yamaoka T, Ohmori T, Ohba M, Arata S, Kishino Y, Murata Y, Kusumoto S, Ishida H, Shirai T, Hirose T, Ohnishi T, Sasaki Y. Acquired Resistance Mechanisms to Combination Met-TKI/EGFR-TKI Exposure in Met-Amplified EGFR-TKI-Resistant Lung Adenocarcinoma Harboring an Activating EGFR Mutation. Mol Cancer Ther 2016; 15:3040-3054. [PMID: 27612490 DOI: 10.1158/1535-7163.mct-16-0313] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/03/2016] [Accepted: 08/06/2016] [Indexed: 11/16/2022]
Abstract
Met-amplified EGFR-tyrosine kinase inhibitor (TKI)-resistant non-small cell lung cancer (NSCLC) harboring an activating EGFR mutation is responsive to concurrent EGFR-TKI and Met-TKI treatment in a preclinical model. Here, we determined that Met-amplified gefitinib-resistant cells acquire dual resistance to inhibition of EGFR and Met tyrosine kinase activities. PC-9 lung adenocarcinoma cells harboring 15-bp deletions (Del E746_A750) in EGFR exon 19 were treated with increasing concentrations of the Met-TKI PHA665752 and 1 μmol/L gefitinib for 1 year; three resistant clones were established via Met amplification. The three dual-resistance cell lines (PC-9DR2, PC-9DR4, and PC-9DR6, designated as DR2, DR4, and DR6, respectively) exhibited different mechanisms for evading both EGFR and Met inhibition. None of the clones harbored a secondary mutation of EGFR T790M or a Met mutation. Insulin-like growth factor (IGF)/IGF1 receptor activation in DR2 and DR4 cells acted as a bypass signaling pathway. Met expression was attenuated to a greater extent in DR2 than in PC-9 cells, but was maintained in DR4 cells by overexpression of IGF-binding protein 3. In DR6 cells, Met was further amplified by association with HSP90, which protected Met from degradation and induced SET and MYND domain-containing 3 (SMYD3)-mediated Met transcription. This is the first report describing the acquisition of dual resistance mechanisms in NSCLC harboring an activating EGFR mutation to Met-TKI and EGFR-TKI following previous EGFR-TKI treatment. These results might inform the development of more effective therapeutic strategies for NSCLC treatment. Mol Cancer Ther; 15(12); 3040-54. ©2016 AACR.
Collapse
Affiliation(s)
| | - Tohru Ohmori
- Institute of Molecular Oncology, Showa University, Tokyo, Japan
| | - Motoi Ohba
- Institute of Molecular Oncology, Showa University, Tokyo, Japan
| | - Satoru Arata
- Institute of Molecular Oncology, Showa University, Tokyo, Japan.,Center for Biotechnology, Showa University, Tokyo, Japan
| | - Yasunari Kishino
- Division of Allergology and Respiratory Medicine, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yasunori Murata
- Division of Allergology and Respiratory Medicine, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Sojiro Kusumoto
- Division of Allergology and Respiratory Medicine, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hiroo Ishida
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takao Shirai
- Division of Allergology and Respiratory Medicine, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takashi Hirose
- Division of Allergology and Respiratory Medicine, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tsukasa Ohnishi
- Division of Allergology and Respiratory Medicine, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yasutsuna Sasaki
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
TC-N19, a novel dual inhibitor of EGFR and cMET, efficiently overcomes EGFR-TKI resistance in non-small-cell lung cancer cells. Cell Death Dis 2016; 7:e2290. [PMID: 27362807 PMCID: PMC5108342 DOI: 10.1038/cddis.2016.192] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022]
Abstract
Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) show a clinical benefit when used to treat patients with EGFR-mutated non-small-cell lung cancer (NSCLC), but this treatment unfortunately fails in patients with TKI-resistant tumors. We here provide evidence that TC-N19 (N19), a novel dual inhibitor of EGFR and cMET, efficiently overcomes the EGFR-TKI resistance in EGFR-mutated NSCLC cells via simultaneous degradation of both proteins by ubiquitin proteasomes. Comparison with HSP90 inhibitor treatment and knockdown of EGFR and cMET by small hairpin RNAs reveal that the reduction of EGFR and cMET expression by N19 is responsible for overcoming the intrinsic TKI resistance mediated by paxillin (PXN) in high PXN-expressing cells, PXN-overexpressing PC9 cells (PC9-PXN), the EGFR-T790M-mediated TKI resistance in H1975 and CL97 cells, and the acquired resistance to gefitinib in gefitinib-resistant PC9 cells (PC9GR). Annexin V-PI staining assay showed that the induction of apoptosis in NSCLC cells by N19 depended on the reduction in levels of both proteins. Xenograft tumor formation in nude mice induced by a PC9-PXN-stable clone and by PC9GR cells was nearly completely suppressed by N19 treatment, with no changes in animal body weight. MTT assays of normal lung cells and reticulocytes showed no cytotoxicity responses to N19. In summary, N19 may act as a novel dual inhibitor of EGFR and cMET that induces apoptosis in TKI-resistant EGFR-mutated NSCLC cells and suppresses xenograft tumor formation. We suggest that N19 may be a potential new-generation TKI or HSP90 inhibitor used for treatment of NSCLC patients who show resistance to current TKI-targeting therapies.
Collapse
|
29
|
Calderwood SK, Gong J. Heat Shock Proteins Promote Cancer: It's a Protection Racket. Trends Biochem Sci 2016; 41:311-323. [PMID: 26874923 DOI: 10.1016/j.tibs.2016.01.003] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/06/2016] [Accepted: 01/19/2016] [Indexed: 12/20/2022]
Abstract
Heat shock proteins (HSP) are expressed at high levels in cancer and form a fostering environment that is essential for tumor development. Here, we review the recent data in this area, concentrating mainly on Hsp27, Hsp70, and Hsp90. The overriding role of HSPs in cancer is to stabilize the active functions of overexpressed and mutated cancer genes. Thus, elevated HSPs are required for many of the traits that underlie the morbidity of cancer, including increased growth, survival, and formation of secondary cancers. In addition, HSPs participate in the evolution of cancer treatment resistance. HSPs are also released from cancer cells and influence malignant properties by receptor-mediated signaling. Current data strongly support efforts to target HSPs in cancer treatment.
Collapse
Affiliation(s)
- Stuart K Calderwood
- Department of Radiation Oncology, Harvard Medical School at Beth Israel Deaconess Medical Center. CLS610, 300 Brookline Avenue, Boston, MA 02215, USA.
| | - Jianlin Gong
- Department of Medicine, Boston University, Boston, MA 02118, USA
| |
Collapse
|
30
|
Hsp90 as a "Chaperone" of the Epigenome: Insights and Opportunities for Cancer Therapy. Adv Cancer Res 2015; 129:107-40. [PMID: 26916003 DOI: 10.1016/bs.acr.2015.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The cellular functions of Hsp90 have historically been attributed to its ability to chaperone client proteins involved in signal transduction. Although numerous stimuli and the signaling cascades they activate contribute to cancer progression, many of these pathways ultimately require transcriptional effectors to elicit tumor-promoting effects. Despite this obvious connection, the majority of studies evaluating Hsp90 function in malignancy have focused upon its regulation of cytosolic client proteins, and particularly members of receptor and/or kinase families. However, in recent years, Hsp90 has emerged as a pivotal orchestrator of nuclear events. Discovery of an expanding repertoire of Hsp90 clients has illuminated a vital role for Hsp90 in overseeing nuclear events and influencing gene transcription. Hence, this chapter will cast a spotlight upon several regulatory themes involving Hsp90-dependent nuclear functions. Highlighted topics include a summary of chaperone-dependent regulation of key transcription factors (TFs) and epigenetic effectors in malignancy, as well as a discussion of how the complex interplay among a subset of these TFs and epigenetic regulators may generate feed-forward loops that further support cancer progression. This chapter will also highlight less recognized indirect mechanisms whereby Hsp90-supported signaling may impinge upon epigenetic regulation. Finally, the relevance of these nuclear events is discussed within the framework of Hsp90's capacity to enable phenotypic variation and drug resistance. These newly acquired insights expanding our understanding of Hsp90 function support the collective notion that nuclear clients are major beneficiaries of Hsp90 action, and their impairment is likely responsible for many of the anticancer effects elicited by Hsp90-targeted approaches.
Collapse
|
31
|
HSF1: Guardian of Proteostasis in Cancer. Trends Cell Biol 2015; 26:17-28. [PMID: 26597576 DOI: 10.1016/j.tcb.2015.10.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022]
Abstract
Proteomic instability is causally related to human diseases. In guarding proteome stability, the heat shock factor 1 (HSF1)-mediated proteotoxic stress response plays a pivotal role. Contrasting with its beneficial role of enhancing cell survival, recent findings have revealed a compelling pro-oncogenic role for HSF1. However, the mechanisms underlying the persistent activation and function of HSF1 within malignancy remain poorly understood. Emerging evidence reveals that oncogenic signaling mobilizes HSF1 and that cancer cells rely on HSF1 to avert proteomic instability and repress tumor-suppressive amyloidogenesis. In aggregate, these new developments suggest that cancer cells endure chronic proteotoxic stress and that proteomic instability is intrinsically associated with the malignant state, a characteristic that could be exploited to combat cancer.
Collapse
|
32
|
Butler LM, Ferraldeschi R, Armstrong HK, Centenera MM, Workman P. Maximizing the Therapeutic Potential of HSP90 Inhibitors. Mol Cancer Res 2015; 13:1445-51. [PMID: 26219697 PMCID: PMC4645455 DOI: 10.1158/1541-7786.mcr-15-0234] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/16/2015] [Indexed: 12/28/2022]
Abstract
HSP90 is required for maintaining the stability and activity of a diverse group of client proteins, including protein kinases, transcription factors, and steroid hormone receptors involved in cell signaling, proliferation, survival, oncogenesis, and cancer progression. Inhibition of HSP90 alters the HSP90-client protein complex, leading to reduced activity, misfolding, ubiquitination, and, ultimately, proteasomal degradation of client proteins. HSP90 inhibitors have demonstrated significant antitumor activity in a wide variety of preclinical models, with evidence of selectivity for cancer versus normal cells. In the clinic, however, the efficacy of this class of therapeutic agents has been relatively limited to date, with promising responses mainly observed in breast and lung cancer, but no major activity seen in other tumor types. In addition, adverse events and some significant toxicities have been documented. Key to improving these clinical outcomes is a better understanding of the cellular consequences of inhibiting HSP90 that may underlie treatment response or resistance. This review considers the recent progress that has been made in the study of HSP90 and its inhibitors and highlights new opportunities to maximize their therapeutic potential.
Collapse
Affiliation(s)
- Lisa M Butler
- School of Medicine and Freemasons Foundation Centre for Men's Health, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, Australia.
| | - Roberta Ferraldeschi
- The Institute of Cancer Research, London, United Kingdom. Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Heather K Armstrong
- School of Medicine and Freemasons Foundation Centre for Men's Health, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Margaret M Centenera
- School of Medicine and Freemasons Foundation Centre for Men's Health, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Paul Workman
- The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
33
|
Trendowski M. PU-H71: An improvement on nature's solutions to oncogenic Hsp90 addiction. Pharmacol Res 2015; 99:202-16. [DOI: 10.1016/j.phrs.2015.06.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/26/2022]
|
34
|
Schwartz H, Scroggins B, Zuehlke A, Kijima T, Beebe K, Mishra A, Neckers L, Prince T. Combined HSP90 and kinase inhibitor therapy: Insights from The Cancer Genome Atlas. Cell Stress Chaperones 2015; 20:729-41. [PMID: 26070366 PMCID: PMC4529871 DOI: 10.1007/s12192-015-0604-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 12/13/2022] Open
Abstract
The merging of knowledge from genomics, cellular signal transduction and molecular evolution is producing new paradigms of cancer analysis. Protein kinases have long been understood to initiate and promote malignant cell growth and targeting kinases to fight cancer has been a major strategy within the pharmaceutical industry for over two decades. Despite the initial success of kinase inhibitors (KIs), the ability of cancer to evolve resistance and reprogram oncogenic signaling networks has reduced the efficacy of kinase targeting. The molecular chaperone HSP90 physically supports global kinase function while also acting as an evolutionary capacitor. The Cancer Genome Atlas (TCGA) has compiled a trove of data indicating that a large percentage of tumors overexpress or possess mutant kinases that depend on the HSP90 molecular chaperone complex. Moreover, the overexpression or mutation of parallel activators of kinase activity (PAKA) increases the number of components that promote malignancy and indirectly associate with HSP90. Therefore, targeting HSP90 is predicted to complement kinase inhibitors by inhibiting oncogenic reprogramming and cancer evolution. Based on this hypothesis, consideration should be given by both the research and clinical communities towards combining kinase inhibitors and HSP90 inhibitors (H90Ins) in combating cancer. The purpose of this perspective is to reflect on the current understanding of HSP90 and kinase biology as well as promote the exploration of potential synergistic molecular therapy combinations through the utilization of The Cancer Genome Atlas.
Collapse
Affiliation(s)
- Harvey Schwartz
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Brad Scroggins
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Abbey Zuehlke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Toshiki Kijima
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Kristin Beebe
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Alok Mishra
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Thomas Prince
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| |
Collapse
|
35
|
Varela MA. Identification of sequences common to more than one therapeutic target to treat complex diseases: simulating the high variance in sequence interactivity evolved to modulate robust phenotypes. BMC Genomics 2015; 16:530. [PMID: 26187740 PMCID: PMC4506634 DOI: 10.1186/s12864-015-1727-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/26/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Genome-wide association studies show that most human traits and diseases are caused by a combination of environmental and genetic causes, with each one of these having a relatively small effect. In contrast, most therapies based on macromolecules like antibodies, antisense oligonucleotides or peptides focus on a single gene product. On the other hand, complex organisms seem to have a plethora of functional molecules able to bind specifically to multiple genes or genes products based on their sequences but the mechanisms that lead organisms to recruit these multispecific regulators remain unclear. RESULTS The mutational biases inferred from the genomic sequences of six organisms show an increase in the variance of sequence interactivity in complex organisms. The high variance in the interactivity of sequences presents an ideal evolutionary substrate to recruit sequence-specific regulators able to target multiple gene products. For example, here it is shown how the 3'UTR can fluctuate between sequences likely to be complementary to other sites in the genome in the search for advantageous interactions. A library of nucleotide- and peptide-based tools was built using a script to search for candidates (e.g. peptides, antigens to raise antibodies or antisense oligonucleotides) to target sequences shared by key pathways in human disorders, such as cancer and immune diseases. This resource will be accessible to the community at www.wikisequences.org . CONCLUSIONS This study describes and encourages the adoption of the same multitarget strategy (e.g., miRNAs, Hsp90) that has evolved in organisms to modify complex traits to treat diseases with robust pathological phenotypes. The increase in the variance of sequence interactivity detected in the human and mouse genomes when compared with less complex organisms could have expedited the evolution of regulators able to interact to multiple gene products and modulate robust phenotypes. The identification of sequences common to more than one therapeutic target carried out in this study could facilitate the design of new multispecific methods able to modify simultaneously key pathways to treat complex diseases.
Collapse
Affiliation(s)
- Miguel Angel Varela
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| |
Collapse
|
36
|
Kumai T, Matsuda Y, Ohkuri T, Oikawa K, Ishibashi K, Aoki N, Kimura S, Harabuchi Y, Celis E, Kobayashi H. c-Met is a novel tumor associated antigen for T-cell based immunotherapy against NK/T cell lymphoma. Oncoimmunology 2015; 4:e976077. [PMID: 25949874 DOI: 10.4161/2162402x.2014.976077] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/09/2014] [Indexed: 12/14/2022] Open
Abstract
Background: The expression of c-Met and its ligand HGF plays a critical role in cell proliferation and is involved in numerous malignancies. Because c-Met expression and its role in NK/T-cell lymphoma remain unclear, we studied the expression and function of c-Met in NK/T-cell lymphoma cells. In addition, we investigated the possibility that c-Met could function as a tumor-associated antigen for helper T lymphocytes (HTLs). Methods: We evaluated whether HGF and c-Met were expressed in NK/T-cell lymphoma and the capacity of predicted c-Met HTL epitopes to induce antitumor responses in vitro. In addition, c-Met inhibitor was evaluated for the ability to inhibit TGF-β production in tumor and subsequently increase HTL recognition. Results: c-Met and HGF were expressed in NK/T-cell lymphoma cell lines, nasal NK/T-cell lymphoma specimens and patient serum samples. Moreover, HGF was shown to promote NK/T cell lymphoma (NKTCL) proliferation in an autocrine manner. Furthermore, we have identified three novel c-Met HTL epitopes that were restricted by several HLA-DR molecules. Notably, peptide-induced HTL lines directly recognized and killed c-Met expressing NK/T-cell lymphomas and various epithelial solid tumors. The c-Met specific HTLs could also recognize dendritic cells (DCs) pulsed with c-Met expressing tumor cell lysates. In addition, we observed that c-Met inhibition augmented HTL recognition by decreasing TGF-β production by tumor cells. Lastly, autophagy partly regulated the HTL responses against tumors. Conclusions: We identified novel c-Met HTL epitopes that can elicit effective antitumor responses against tumors expressing c-Met. Our results provide the rationale of combining c-Met targeting therapy and immunotherapy for NKTCLs and epithelial tumors.
Collapse
Key Words
- APCs, antigen presenting cells
- CD4+ helper T lymphocytes
- DC, dendritic cell
- EBV, Epstein-Barr virus
- HNSCC, head and neck squamous cell carcinoma
- HPLC, high-performance liquid chromatography
- HSP, heat shock protein
- HTLs, helper CD4+ T cells
- L-cell, mouse fibroblast cell line
- LDH, lactate dehydrogenase
- NK/T cell lymphoma
- NKTCL, natural killer/ T cell lymphoma
- PBMC, peripheral blood mononuclear cell
- PBS, phosphate buffered saline
- TCR, T cell receptor
- TGF-β
- TKI, tyrosine kinase receptor inhibitor
- autophagy
- c-Met
- head and neck squamous cell carcinoma
- immunotherapy
- major histocompatibility complex class II
- tumor antigens
Collapse
Affiliation(s)
- Takumi Kumai
- Department of Pathology; Asahikawa Medical University ; Asahikawa, Japan ; Department of Otolaryngology; Head and Neck Surgery; Asahikawa Medical University ; Asahikawa, Japan ; Cancer Immunology; Inflammation and Tolerance Program; Georgia Regents University Cancer Center ; Augusta, GA USA
| | - Yoshinari Matsuda
- Department of Pathology; Asahikawa Medical University ; Asahikawa, Japan
| | - Takayuki Ohkuri
- Department of Pathology; Asahikawa Medical University ; Asahikawa, Japan
| | - Kensuke Oikawa
- Department of Pathology; Asahikawa Medical University ; Asahikawa, Japan
| | - Kei Ishibashi
- Department of Pathology; Asahikawa Medical University ; Asahikawa, Japan
| | - Naoko Aoki
- Department of Pathology; Asahikawa Medical University ; Asahikawa, Japan
| | - Shoji Kimura
- Department of Pathology; Asahikawa Medical University ; Asahikawa, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology; Head and Neck Surgery; Asahikawa Medical University ; Asahikawa, Japan
| | - Esteban Celis
- Cancer Immunology; Inflammation and Tolerance Program; Georgia Regents University Cancer Center ; Augusta, GA USA
| | - Hiroya Kobayashi
- Department of Pathology; Asahikawa Medical University ; Asahikawa, Japan
| |
Collapse
|
37
|
Hamilton G, Rath B, Burghuber O. Pharmacokinetics of crizotinib in NSCLC patients. Expert Opin Drug Metab Toxicol 2015; 11:835-42. [PMID: 25732197 DOI: 10.1517/17425255.2015.1021685] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION For a subpopulation of NSCLC patients genetic rearrangement of the anaplastic lymphoma kinase (ALK) was found as driver mutation, which can be targeted by the selective inhibitor crizotinib. AREAS COVERED This article presents an overview of the clinical studies that provided the characterization of the pharmacokinetic parameters for the administration of crizotinib to cancer patients and the factors influencing the clinical profiles of this drug. EXPERT OPINION Crizotinib is administered orally as a capsule and clinical studies indicated 250 mg crizotinib BID continuously as the maximal tolerated dose in cancer patients. Bioavailability is ∼ 40% and pharmacokinetic parameters are influenced by food only to a minor degree. This dose of the drug corresponds to a significant inhibition of the mutated ALK, retards tumor growth and achieves clinical responses in the majority of patients. Crizotinib lactam is the single metabolite with minor inhibitory activity for the ALK fusion protein. Metabolization is executed mainly by CYP3A4/5 and is modulated by other drugs interacting with this cytochrome oxidase. Despite the one-fits-all approach in administration of crizotinib at a fixed dose the pharmacokinetic parameters indicate a stable steady state upon continuous administration, which achieves sufficient inhibition of the ALK drug target.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Ludwig Boltzmann Cluster of Translational Oncology , 1090 Vienna , Austria +43 1 40400 66270 ; +43 1 40400 66270 ;
| | | | | |
Collapse
|
38
|
Chaperoning parasitism: the importance of molecular chaperones in pathogen virulence. Parasitology 2015; 141:1123-6. [PMID: 25004925 DOI: 10.1017/s0031182014000778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Henrich CJ, Brooks AD, Erickson KL, Thomas CL, Bokesch HR, Tewary P, Thompson CR, Pompei RJ, Gustafson KR, McMahon JB, Sayers TJ. Withanolide E sensitizes renal carcinoma cells to TRAIL-induced apoptosis by increasing cFLIP degradation. Cell Death Dis 2015; 6:e1666. [PMID: 25719250 PMCID: PMC4669816 DOI: 10.1038/cddis.2015.38] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 12/26/2022]
Abstract
Withanolide E, a steroidal lactone from Physalis peruviana, was found to be highly active for sensitizing renal carcinoma cells and a number of other human cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. Withanolide E, the most potent and least toxic of five TRAIL-sensitizing withanolides identified, enhanced death receptor-mediated apoptotic signaling by a rapid decline in the levels of cFLIP proteins. Other mechanisms by which TRAIL sensitizers have been reported to work: generation of reactive oxygen species (ROS), changes in pro-and antiapoptotic protein expression, death receptor upregulation, activation of intrinsic (mitochondrial) apoptotic pathways, ER stress, and proteasomal inhibition proved to be irrelevant to withanolide E activity. Loss of cFLIP proteins was not due to changes in expression, but rather destabilization and/or aggregation, suggesting impairment of chaperone proteins leading to degradation. Indeed, withanolide E treatment altered the stability of a number of HSP90 client proteins, but with greater apparent specificity than the well-known HSP90 inhibitor geldanamycin. As cFLIP has been reported to be an HSP90 client, this provides a potentially novel mechanism for sensitizing cells to TRAIL. Sensitization of human renal carcinoma cells to TRAIL-induced apoptosis by withanolide E and its lack of toxicity were confirmed in animal studies. Owing to its novel activity, withanolide E is a promising reagent for the analysis of mechanisms of TRAIL resistance, for understanding HSP90 function, and for further therapeutic development. In marked contrast to bortezomib, among the best currently available TRAIL sensitizers, withanolide E's more specific mechanism of action suggests minimal toxic side effects.
Collapse
Affiliation(s)
- C J Henrich
- Molecular Targets Laboratory, NCI-Frederick, Frederick, MD, USA
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - A D Brooks
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Laboratory for Experimental Immunology and Cancer Inflammation Program, NCI-Frederick, Frederick, MD, USA
| | - K L Erickson
- Molecular Targets Laboratory, NCI-Frederick, Frederick, MD, USA
- Department of Chemistry, Clark University, Worcester, MA, USA
| | - C L Thomas
- Molecular Targets Laboratory, NCI-Frederick, Frederick, MD, USA
| | - H R Bokesch
- Molecular Targets Laboratory, NCI-Frederick, Frederick, MD, USA
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - P Tewary
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Laboratory for Experimental Immunology and Cancer Inflammation Program, NCI-Frederick, Frederick, MD, USA
| | - C R Thompson
- Laboratory for Experimental Immunology and Cancer Inflammation Program, NCI-Frederick, Frederick, MD, USA
| | - R J Pompei
- Laboratory for Experimental Immunology and Cancer Inflammation Program, NCI-Frederick, Frederick, MD, USA
| | - K R Gustafson
- Molecular Targets Laboratory, NCI-Frederick, Frederick, MD, USA
| | - J B McMahon
- Molecular Targets Laboratory, NCI-Frederick, Frederick, MD, USA
| | - T J Sayers
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Laboratory for Experimental Immunology and Cancer Inflammation Program, NCI-Frederick, Frederick, MD, USA
| |
Collapse
|
40
|
Lilja A, Weeden CE, McArthur K, Nguyen T, Donald A, Wong ZX, Dousha L, Bozinovski S, Vlahos R, Burns CJ, Asselin-Labat ML, Anderson GP. HSP90 inhibition suppresses lipopolysaccharide-induced lung inflammation in vivo. PLoS One 2015; 10:e0114975. [PMID: 25615645 PMCID: PMC4304786 DOI: 10.1371/journal.pone.0114975] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/15/2014] [Indexed: 11/18/2022] Open
Abstract
Inflammation is an important component of cancer diathesis and treatment-refractory inflammation is a feature of many chronic degenerative lung diseases. HSP90 is a 90kDa protein which functions as an ATP-dependent molecular chaperone that regulates the signalling conformation and expression of multiple protein client proteins especially oncogenic mediators. HSP90 inhibitors are in clinical development as cancer therapies but the myeleosuppressive and neutropenic effect of first generation geldanamycin-class inhibitors has confounded studies on the effects on HSP90 inhibitors on inflammation. To address this we assessed the ability of Ganetespib, a non-geldanamycin HSP90 blocker, to suppress lipopolysaccharide (LPS)-induced cellular infiltrates, proteases and inflammatory mediator and transcriptional profiles. Ganetespib (10-100 mg/kg, i.v.) did not directly cause myelosuppression, as assessed by video micrography and basal blood cell count, but it strongly and dose-dependently suppressed LPS-induced neutrophil mobilization into blood and neutrophil- and mononuclear cell-rich steroid-refractory lung inflammation. Ganetespib also suppressed B cell and NK cell accumulation, inflammatory cytokine and chemokine induction and MMP9 levels. These data identify non-myelosuppresssive HSP90 inhibitors as potential therapies for inflammatory diseases refractory to conventional therapy, in particular those of the lung.
Collapse
Affiliation(s)
- Andrew Lilja
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, 3010 VIC, Australia
| | - Clare E. Weeden
- Division of ACRF Stem Cells and Cancer, the Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia
| | - Kate McArthur
- Division of Chemical Biology, the Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; The Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Thao Nguyen
- Division of Chemical Biology, the Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; The Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Alastair Donald
- Division of Chemical Biology, the Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; The Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Zi Xin Wong
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, 3010 VIC, Australia
| | - Lovisa Dousha
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, 3010 VIC, Australia
| | - Steve Bozinovski
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, 3010 VIC, Australia
| | - Ross Vlahos
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, 3010 VIC, Australia
| | - Christopher J. Burns
- Division of Chemical Biology, the Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; The Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Marie-Liesse Asselin-Labat
- Division of ACRF Stem Cells and Cancer, the Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia
- * E-mail: (GPA); (MLAL)
| | - Gary P. Anderson
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, 3010 VIC, Australia
- * E-mail: (GPA); (MLAL)
| |
Collapse
|
41
|
Targeting heat-shock protein 90 with ganetespib for molecularly targeted therapy of gastric cancer. Cell Death Dis 2015; 6:e1595. [PMID: 25590805 PMCID: PMC4669753 DOI: 10.1038/cddis.2014.555] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/22/2014] [Accepted: 11/26/2014] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) remains the fifth most common cancer worldwide. Heat-shock protein 90 (HSP90) has become an attractive therapeutic target in treating cancers, because of its abnormally high expression in cancers. Several successful cases of HSP90 inhibitors capable of inhibiting GC inspired us to try ganetespib, a clinically promising and actively investigated second-generation HSP90 inhibitor in GC treatment. In our study, we show that ganetespib markedly reduced the growth of MGC-803 and also significantly inhibited the growth of SGC-7901 and MKN-28 in a dose-dependent manner. It induced G2/M cell-cycle arrest and apoptosis in all three cell lines, together with the related markers affected significantly. Mechanistically, ganetespib caused pronounced decrease of expression of classic HSP90 client proteins. Specifically, it greatly affected epidermal growth factor receptor (EGFR) signaling cascades by markedly decreasing the levels of total EGFR and EGFR on cell membranes. EGFR knockdown also induced cell-cycle arrest and apoptosis accompanied with a decrease of several EGFR downstream proteins. These results strongly support that EGFR signaling greatly contributes to the ganetespib inhibitory effects. Besides, we found that the responses of GC cell lines to ganetespib correlated well with their EGFR expression levels: MGC-803, as well as AGS and BGC-803, with higher EGFR expression responded to ganetespib better, whereas SGC-7901 and MKN-28 with lower EGFR levels were much less sensitive to ganetespib. Although SGC-7901 and MKN-28 were not very sensitive to ganetespib, ganetespib worked synergistically with radiation and cisplatin in killing them. Importantly, ganetespib significantly inhibited the growth of xenograft tumors in vivo as a single agent or in combination with cisplatin. Results of hematoxylin/eosin staining, TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling) assays, and immunohistochemistry staining of phosphorylated cyclin-dependent kinase 1 (pCDK1), EGFR and Ki-67 revealed significant differences in ganetespib-treated tumors. Collectively, our data suggest that ganetespib, as a new potent treatment option, can be used for the molecularly targeted therapy of GC patients according to their expression profiles of EGFR.
Collapse
|
42
|
Tatokoro M, Koga F, Yoshida S, Kihara K. Heat shock protein 90 targeting therapy: state of the art and future perspective. EXCLI JOURNAL 2015; 14:48-58. [PMID: 26600741 DOI: 10.17179/excli2015-586] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/27/2014] [Indexed: 12/16/2022]
Abstract
Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone that plays a role in stabilizing and activating more than 200 client proteins. It is required for the stability and function of numerous oncogenic signaling proteins that determine the hallmarks of cancer. Since the initial discovery of the first Hsp90 inhibitor in the 1970s, multiple phase II and III clinical trials of several Hsp90 inhibitors have been undertaken. This review provides an overview of the current status on clinical trials of Hsp90 inhibitors and future perspectives on novel anticancer strategies using Hsp90 inhibitors.
Collapse
Affiliation(s)
- Manabu Tatokoro
- Department of Urology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Fumitaka Koga
- Department of Urology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
| | - Soichiro Yoshida
- Department of Urology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Kazunori Kihara
- Department of Urology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| |
Collapse
|
43
|
Tatokoro M, Koga F, Yoshida S, Kihara K. Heat shock protein 90 targeting therapy: state of the art and future perspective. EXCLI JOURNAL 2015. [PMID: 26600741 PMCID: PMC4652636 DOI: 10.17179/excli2014-586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone that plays a role in stabilizing and activating more than 200 client proteins. It is required for the stability and function of numerous oncogenic signaling proteins that determine the hallmarks of cancer. Since the initial discovery of the first Hsp90 inhibitor in the 1970s, multiple phase II and III clinical trials of several Hsp90 inhibitors have been undertaken. This review provides an overview of the current status on clinical trials of Hsp90 inhibitors and future perspectives on novel anticancer strategies using Hsp90 inhibitors.
Collapse
Affiliation(s)
- Manabu Tatokoro
- Department of Urology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Fumitaka Koga
- Department of Urology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan,*To whom correspondence should be addressed: Fumitaka Koga, Department of Urology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8677, Japan. Phone: +81-3-38232101 Fax: +81-3-38241552, E-mail:
| | - Soichiro Yoshida
- Department of Urology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Kazunori Kihara
- Department of Urology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| |
Collapse
|
44
|
Solárová Z, Mojžiš J, Solár P. Hsp90 inhibitor as a sensitizer of cancer cells to different therapies (review). Int J Oncol 2014; 46:907-26. [PMID: 25501619 DOI: 10.3892/ijo.2014.2791] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/22/2014] [Indexed: 11/06/2022] Open
Abstract
Hsp90 is a molecular chaperone that maintains the structural and functional integrity of various client proteins involved in signaling and many other functions of cancer cells. The natural inhibitors, ansamycins influence the Hsp90 chaperone function by preventing its binding to client proteins and resulting in their proteasomal degradation. N- and C-terminal inhibitors of Hsp90 and their analogues are widely tested as potential anticancer agents in vitro, in vivo as well as in clinical trials. It seems that Hsp90 competitive inhibitors target different tumor types at nanomolar concentrations and might have therapeutic benefit. On the contrary, some Hsp90 inhibitors increased toxicity and resistance of cancer cells induced by heat shock response, and through the interaction of survival signals, that occured as side effects of treatments, could be very effectively limited via combination of therapies. The aim of our review was to collect the data from experimental and clinical trials where Hsp90 inhibitor was combined with other therapies in order to prevent resistance as well as to potentiate the cytotoxic and/or antiproliferative effects.
Collapse
Affiliation(s)
- Zuzana Solárová
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, 040 01 Košice, Slovak Republic
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, 040 01 Košice, Slovak Republic
| | - Peter Solár
- Laboratory of Cell Biology, Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University, 040 01 Košice, Slovak Republic
| |
Collapse
|
45
|
HSP90 empowers evolution of resistance to hormonal therapy in human breast cancer models. Proc Natl Acad Sci U S A 2014; 111:18297-302. [PMID: 25489079 DOI: 10.1073/pnas.1421323111] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The efficacy of hormonal therapies for advanced estrogen receptor-positive breast cancers is limited by the nearly inevitable development of acquired resistance. Efforts to block the emergence of resistance have met with limited success, largely because the mechanisms underlying it are so varied and complex. Here, we investigate a new strategy aimed at the very processes by which cancers evolve resistance. From yeast to vertebrates, heat shock protein 90 (HSP90) plays a unique role among molecular chaperones by promoting the evolution of heritable new traits. It does so by regulating the folding of a diverse portfolio of metastable client proteins, many of which mediate adaptive responses that allow organisms to adapt and thrive in the face of diverse challenges, including those posed by drugs. Guided by our previous work in pathogenic fungi, in which very modest HSP90 inhibition impairs resistance to mechanistically diverse antifungals, we examined the effect of similarly modest HSP90 inhibition on the emergence of resistance to antiestrogens in breast cancer models. Even though this degree of inhibition fell below the threshold for proteotoxic activation of the heat-shock response and had no overt anticancer activity on its own, it dramatically impaired the emergence of resistance to hormone antagonists both in cell culture and in mice. Our findings strongly support the clinical testing of combined hormone antagonist-low-level HSP90 inhibitor regimens in the treatment of metastatic estrogen receptor-positive breast cancer. At a broader level, they also provide promising proof of principle for a generalizable strategy to combat the pervasive problem of rapidly emerging resistance to molecularly targeted therapeutics.
Collapse
|
46
|
Awad MM, Shaw AT. ALK inhibitors in non-small cell lung cancer: crizotinib and beyond. CLINICAL ADVANCES IN HEMATOLOGY & ONCOLOGY : H&O 2014; 12:429-39. [PMID: 25322323 PMCID: PMC4215402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The treatment of patients with advanced non-small cell lung cancer (NSCLC) harboring chromosomal rearrangements of anaplastic lymphoma kinase (ALK) has been revolutionized by the development of crizotinib, a small molecule inhibitor of the tyrosine kinases ALK, ROS1, and MET. Resistance to crizotinib invariably develops, however, through a variety of mechanisms. In the last few years, a flurry of new and more potent ALK inhibitors has emerged for the treatment of ALK-positive NSCLC, including ceritinib (LDK378), alectinib (RO5424802/CH5424802), AP26113, ASP3026, TSR-011, PF-06463922, RXDX-101, X-396, and CEP-37440. Cancers harboring ALK rearrangements may also be susceptible to treatment with heat shock protein 90 inhibitors. This review focuses on the pharmacologic and clinical properties of these compounds, either as monotherapies or in combination with other drugs. With so many ALK inhibitors in development, the challenges of how these agents should be studied and ultimately prescribed are also discussed.
Collapse
Affiliation(s)
- Mark M Awad
- Massachusetts General Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alice T Shaw
- Harvard Medical School and Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| |
Collapse
|
47
|
Vansteenkiste JF. Ceritinib for treatment of ALK-rearranged advanced non-small-cell lung cancer. Future Oncol 2014; 10:1925-39. [PMID: 24856155 DOI: 10.2217/fon.14.94] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The anaplastic lymphoma kinase (ALK) gene plays a key role in the pathogenesis of selected tumors, including non-small-cell lung cancer (NSCLC). Patients with ALK-rearranged NSCLC are initially sensitive to the ALK inhibitor crizotinib but eventually become resistant, limiting its therapeutic potential. Ceritinib is an oral second-generation ALK inhibitor with greater preclinical antitumor potency than crizotinib in ALK-positive NSCLC. A Phase I trial of ceritinib in ALK-positive tumors demonstrated good activity in patients with advanced NSCLC, including those who had progressed on crizotinib. Adverse events are similar to those seen with other ALK tyrosine kinase inhibitors and are generally manageable. Ongoing trials are evaluating ceritinib in patients with ALK-rearranged NSCLC treated with prior chemotherapy and/or crizotinib.
Collapse
Affiliation(s)
- Johan F Vansteenkiste
- University Hospital KU Leuven, Respiratory Oncology Unit (Pulmonology), Herestraat 49, Leuven B-3000, Belgium.
| |
Collapse
|
48
|
Abstract
Inhibitors of the molecular chaperone HSP90 have been in clinical development as anticancer agents since 1999. Recent clinical studies, including the work of Saif and colleagues in this issue of Clinical Cancer Research, demonstrate that significant progress has been made in overcoming the obstacles preventing regulatory approval.
Collapse
Affiliation(s)
- Len Neckers
- Authors' Affiliations: Urologic Oncology Branch and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | |
Collapse
|