1
|
Yang Y, Patel JM, Yang RS, Ma F, Niu X, Zhang Y, Niedringhaus T, Al-Sayah M, Yang X. Determination of the decapping efficiency of THIOMAB™ antibodies with the engineered cysteine in the Fc region for making antibody-drug conjugates by specific hinge fragmentation-liquid chromatography. Anal Bioanal Chem 2025; 417:847-859. [PMID: 39688670 DOI: 10.1007/s00216-024-05707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
The site-specific antibody-drug conjugates (ADCs), particularly those utilizing the engineered cysteine in Fc fragments of mAbs (THIOMAB™ antibodies), have emerged as a novel class of biotherapeutics for cancer treatment. The engineered cysteine residues in these antibodies are capped by cysteine or glutathione through a disulfide bond. Prior to conjugation with linker-payloads, these caps need to be removed through a reduction process. However, monitoring the efficiency of the decapping process has been challenging due to the lack of effective analytical methods. Intact reversed-phase liquid chromatography-mass spectrometry and hydrophobic interaction chromatography methods failed to separate decapped and capped intact THIOMAB™ mAbs in our study. Instead the fragmentation of mAbs provided a novel strategy to analyze the decapping effiency. After cleavage using a hinge specific enzyme, the generated Fc fragments with and without cysteine and/or glutathione caps displayed different hydrophobicity and were well separated by RPLC, allowing quantitative determination of the decapping efficiency. Enzymes that cleave both above and below the hinge disulfide bonds were tested. The use of FabALATICA can determine percentages of molecules with 0, 1, and 2 cysteine and/or glutathione caps, respectively, regardless of whether the antibody contains the hinge LALA mutations. On the other hand, FabRICATOR enzyme can only be utilized for antibodies without LALA mutations for the overall decapping percentage and cannot be used to estimate intact antibody each with 0, 1, and 2 caps. Therefore, FabALACTICA cleavage followed by RPLC provides a wider application of monitoring the decapping efficiency of all antibodies with the engineered cysteine in Fc.
Collapse
Affiliation(s)
- Yun Yang
- Discovery Analytical Research, Merck & Co., Inc, 213 E Grand Ave, South San Francisco, CA, 94080, USA
| | - Jaymin M Patel
- Biologics Analytical Research and Development (BARD), Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA
| | - Rong-Sheng Yang
- Analytical Research and Development, Merck & Co., Inc, 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA
| | - Fengfei Ma
- Discovery Analytical Research, Merck & Co., Inc, 213 E Grand Ave, South San Francisco, CA, 94080, USA
| | - Xiangfeng Niu
- Discovery Analytical Research, Merck & Co., Inc, 213 E Grand Ave, South San Francisco, CA, 94080, USA
| | - Yixiao Zhang
- Bioprocess Research & Development, Merck & Co., Inc, 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA
| | - Thomas Niedringhaus
- Biologics Analytical Research and Development (BARD), Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA
| | - Mohammad Al-Sayah
- Discovery Analytical Research, Merck & Co., Inc, 213 E Grand Ave, South San Francisco, CA, 94080, USA
| | - Xiaoyu Yang
- Discovery Analytical Research, Merck & Co., Inc, 213 E Grand Ave, South San Francisco, CA, 94080, USA.
- Biologics Analytical Research and Development (BARD), Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA.
| |
Collapse
|
2
|
Lin F, Yin S, Zhang Z, Yu Y, Fang H, Liang Z, Zhu R, Zhou H, Li J, Cao K, Guo W, Qin S, Zhang Y, Lu C, Li H, Liu S, Zhang H, Ye B, Lin J, Li Y, Kang X, Xi JJ, Chen PR. Multimodal targeting chimeras enable integrated immunotherapy leveraging tumor-immune microenvironment. Cell 2024; 187:7470-7491.e32. [PMID: 39504957 DOI: 10.1016/j.cell.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024]
Abstract
Although immunotherapy has revolutionized cancer treatment, its efficacy is affected by multiple factors, particularly those derived from the complexity and heterogeneity of the tumor-immune microenvironment (TIME). Strategies that simultaneously and synergistically engage multiple immune cells in TIME remain highly desirable but challenging. Herein, we report a multimodal and programmable platform that enables the integration of multiple therapeutic modules into single agents for tumor-targeted co-engagement of multiple immune cells within TIME. We developed the triple orthogonal linker (T-Linker) technology to integrate various therapeutic small molecules and biomolecules as multimodal targeting chimeras (Multi-TACs). The EGFR-CD3-PDL1 Multi-TAC facilitated T-dendritic cell co-engagement to target solid tumors with excellent efficacy, as demonstrated in vitro, in several humanized mouse models and in patient-derived tumor models. Furthermore, Multi-TACs were constructed to coordinate T cells with other immune cell types. The highly modular and programmable feature of our Multi-TACs may find broad applications in immunotherapy and beyond.
Collapse
Affiliation(s)
- Feng Lin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Shenyi Yin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Zijian Zhang
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing 210061, China
| | - Ying Yu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Haoming Fang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhen Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), First Department of Thoracic Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Rujie Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Haitao Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), First Department of Thoracic Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jianjie Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Kunxia Cao
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Weiming Guo
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shan Qin
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuxuan Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chenghao Lu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Han Li
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shibo Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Heng Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Buqing Ye
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Jian Lin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China.
| | - Yan Li
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210061, China; National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing 210061, China.
| | - Xiaozheng Kang
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), First Department of Thoracic Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, China.
| | - Jianzhong Jeff Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Shenzhen Bay Laboratory, Shenzhen 518055, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Kuznetsova AV, Glukhova XA, Popova OP, Beletsky IP, Ivanov AA. Contemporary Approaches to Immunotherapy of Solid Tumors. Cancers (Basel) 2024; 16:2270. [PMID: 38927974 PMCID: PMC11201544 DOI: 10.3390/cancers16122270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, the arrival of the immunotherapy industry has introduced the possibility of providing transformative, durable, and potentially curative outcomes for various forms of malignancies. However, further research has shown that there are a number of issues that significantly reduce the effectiveness of immunotherapy, especially in solid tumors. First of all, these problems are related to the protective mechanisms of the tumor and its microenvironment. Currently, major efforts are focused on overcoming protective mechanisms by using different adoptive cell therapy variants and modifications of genetically engineered constructs. In addition, a complex workforce is required to develop and implement these treatments. To overcome these significant challenges, innovative strategies and approaches are necessary to engineer more powerful variations of immunotherapy with improved antitumor activity and decreased toxicity. In this review, we discuss recent innovations in immunotherapy aimed at improving clinical efficacy in solid tumors, as well as strategies to overcome the limitations of various immunotherapies.
Collapse
Affiliation(s)
- Alla V. Kuznetsova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Xenia A. Glukhova
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Olga P. Popova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| | - Igor P. Beletsky
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Alexey A. Ivanov
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| |
Collapse
|
4
|
Fang J, Guo L, Zhang Y, Guo Q, Wang M, Wang X. The target atlas for antibody-drug conjugates across solid cancers. Cancer Gene Ther 2024; 31:273-284. [PMID: 38129681 DOI: 10.1038/s41417-023-00701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
Antibody-Drug Conjugates (ADCs) represent a rapidly advancing category of oncology therapeutics, spanning the targeted therapy for both hematologic malignancies and solid cancers. A crucial aspect of ADC research involves the identification of optimal surface antigens that can effectively differentiate target cells from most mammalian cell types. Herein, we have devised an algorithm and compiled an extensive dataset annotating cell membrane proteins. This dataset is derived from comprehensive transcriptomic, proteomic, and genomic data encompassing 19 types of solid cancer as well as normal tissues. The aim is to uncover potential therapeutic surface antigens for precise ADC targeting. The resulting target landscape comprises 165 combinations of targets and indications, along with 75 candidates of cell surface proteins. Notably, 35 of these candidates possess characteristics suitable for ADC targeting, and have not been previously reported in ADC research and development. Additionally, we have identified a total of 159 ADCs from a pool of 760 clinical trials. Of these, 72 ADCs are presently undergoing interventional evaluation for a variety of solid cancer types, targeting 36 unique antigens. We conducted an analysis of their expression in normal tissues using this comprehensive annotation dataset, revealing a diverse range of profiles for the current ADC targets. Moreover, we emphasize that the biological impacts of target antigens have the potential to enhance their clinical effectiveness. We propose a comprehensive assessment of the drugability of target antigens, considering multiple facets. This study represents a thorough exploration of pan-cancer ADC targets over the past two decades, underscoring the potential of a comprehensive solid cancer target atlas to broaden the scope of ADC therapies.
Collapse
Affiliation(s)
- Jiacheng Fang
- Interdisciplinary Institute of Medical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, RRS812, Kowloon Tong, Hong Kong SAR, China
| | - Lei Guo
- Interdisciplinary Institute of Medical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Yanhao Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Qing Guo
- Department of Chemistry, Hong Kong Baptist University, RRS812 Kowloon Tong, Hong Kong SAR, China
| | - Ming Wang
- College of Food Science & Engineering, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| | - Xiaoxiao Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, RRS812, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
5
|
Douez E, Allard-Vannier E, Amar IAM, Jolivet L, Boursin F, Maisonial-Besset A, Witkowski T, Chezal JM, Colas C, Letast S, Auvert E, Denevault-Sabourin C, Aubrey N, Joubert N. Branched pegylated linker-auristatin to control hydrophobicity for the production of homogeneous minibody-drug conjugate against HER2-positive breast cancer. J Control Release 2024; 366:567-584. [PMID: 38215985 DOI: 10.1016/j.jconrel.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Trastuzumab emtansine (Kadcyla®) was the first antibody-drug conjugate (ADC) approved by the Food and Drug Administration in 2013 against a solid tumor, and the first ADC to treat human epidermal growth factor receptor 2 positive (HER2+) breast cancer. However, this second generation ADC is burden by several limitations included heterogeneity, limited activity against heterogeneous tumor (regarding antigen expression) and suboptimal tumor penetration. To address this, different development strategies are oriented towards homogeneous conjugation, new drugs, optimized linkers and/or smaller antibody formats. To reach better developed next generation ADCs, a key parameter to consider is the management of the hydrophobicity associated with the linker-drug, increasing with and limiting the drug-to-antibody ratio (DAR) of the ADC. Here, an innovative branched pegylated linker was developed, to control the hydrophobicity of the monomethyl auristatin E (MMAE) and its cathepsin B-sensitive trigger. This branched pegylated linker-MMAE was then used for the efficient generation of internalizing homogeneous ADC of DAR 8 and minibody-drug conjugate of DAR 4, targeting HER2. Both immunoconjugates were then evaluated in vitro and in vivo on breast cancer models. Interestingly, this study highlighted that the minibody-MMAE conjugate of DAR 4 was the best immunoconjugate regarding in vitro cellular internalization and cytotoxicity, gamma imaging, ex vivo biodistribution profile in mice and efficient reduction of tumor size in vivo. These results are very promising and encourage us to explore further fragment-drug conjugate development.
Collapse
Affiliation(s)
- Emmanuel Douez
- UPR 4301 CBM, CNRS, University of Tours, University of Orléans, F-45071 Orléans, France; Pharmacy Department, Tours University Hospital, F-37200 Tours, France
| | - Emilie Allard-Vannier
- UPR 4301 CBM, CNRS, University of Tours, University of Orléans, F-45071 Orléans, France.
| | | | - Louis Jolivet
- UMR 1282 ISP, INRAE, University of Tours, Team BioMAP, F-37200 Tours, France
| | - Fanny Boursin
- UMR 1282 ISP, INRAE, University of Tours, Team BioMAP, F-37200 Tours, France
| | - Aurélie Maisonial-Besset
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Tiffany Witkowski
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Jean-Michel Chezal
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Cyril Colas
- UPR 4301 CBM, CNRS, University of Tours, University of Orléans, F-45071 Orléans, France; UMR 7311 ICOA, CNRS, University of Orléans, F-45067 Orléans, France
| | - Stéphanie Letast
- UMR 1100 CEPR, INSERM, University of Tours, F-37200 Tours, France
| | - Etienne Auvert
- UMR 1100 CEPR, INSERM, University of Tours, F-37200 Tours, France
| | | | - Nicolas Aubrey
- UMR 1282 ISP, INRAE, University of Tours, Team BioMAP, F-37200 Tours, France
| | - Nicolas Joubert
- UMR 1100 CEPR, INSERM, University of Tours, F-37200 Tours, France.
| |
Collapse
|
6
|
Shikalov A, Koman I, Kogan NM. Targeted Glioma Therapy-Clinical Trials and Future Directions. Pharmaceutics 2024; 16:100. [PMID: 38258110 PMCID: PMC10820492 DOI: 10.3390/pharmaceutics16010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of glioma, with a median survival of 14.6 months post-diagnosis. Understanding the molecular profile of such tumors allowed the development of specific targeted therapies toward GBM, with a major role attributed to tyrosine kinase receptor inhibitors and immune checkpoint inhibitors. Targeted therapeutics are drugs that work by specific binding to GBM-specific or overexpressed markers on the tumor cellular surface and therefore contain a recognition moiety linked to a cytotoxic agent, which produces an antiproliferative effect. In this review, we have summarized the available information on the targeted therapeutics used in clinical trials of GBM and summarized current obstacles and advances in targeted therapy concerning specific targets present in GBM tumor cells, outlined efficacy endpoints for major classes of investigational drugs, and discussed promising strategies towards an increase in drug efficacy in GBM.
Collapse
Affiliation(s)
| | | | - Natalya M. Kogan
- Department of Molecular Biology, Institute of Personalized and Translational Medicine, Ariel University, Ariel 40700, Israel; (A.S.); (I.K.)
| |
Collapse
|
7
|
Rodak A, Stadlbauer K, Bobbili MR, Smrzka O, Rüker F, Wozniak Knopp G. Development of a Cytotoxic Antibody-Drug Conjugate Targeting Membrane Immunoglobulin E-Positive Cells. Int J Mol Sci 2023; 24:14997. [PMID: 37834445 PMCID: PMC10573690 DOI: 10.3390/ijms241914997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
High numbers of membrane immunoglobulin E (IgE)-positive cells are characteristic of allergic conditions, atopic dermatitis, or IgE myeloma. Antibodies targeting the extracellular membrane-proximal domain of the membranous IgE-B-cell receptor (BCR) fragment can be used for specific depletion of IgE-BCR-positive cells. In this study, we derivatized such an antibody with a toxin and developed an antibody-drug conjugate (ADC) that showed strong cytotoxicity for an IgE-positive target cell line. Site-specific conjugation with maleimidocaproyl-valine-citrulline-p-aminobenzoyloxycarbonyl-monomethyl-auristatin E via a newly introduced single cysteine residue was used to prepare a compound with a drug-antibody ratio of 2 and favorable biophysical properties. The antibody was rapidly taken up by the target cells, showing almost complete internalization after 4 h of treatment. Its cytotoxic effect was potentiated upon cross-linking mediated by an anti-human IgG F(ab')2 fragment. Because of its fast internalization and strict target specificity, this antibody-drug conjugate presents a valuable starting point for the further development of an anti-IgE cell-depleting agent, operating by the combined action of receptor cross-linking and toxin-mediated cytotoxicity.
Collapse
Affiliation(s)
- Aleksandra Rodak
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (K.S.); (M.R.B.); (F.R.)
| | - Katharina Stadlbauer
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (K.S.); (M.R.B.); (F.R.)
| | - Madhusudhan Reddy Bobbili
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (K.S.); (M.R.B.); (F.R.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria
| | - Oskar Smrzka
- Ablevia Biotech GmbH, Maria Jacobi Gasse 1, 1030 Vienna, Austria;
| | - Florian Rüker
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (K.S.); (M.R.B.); (F.R.)
| | - Gordana Wozniak Knopp
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (K.S.); (M.R.B.); (F.R.)
| |
Collapse
|
8
|
Riccardi F, Dal Bo M, Macor P, Toffoli G. A comprehensive overview on antibody-drug conjugates: from the conceptualization to cancer therapy. Front Pharmacol 2023; 14:1274088. [PMID: 37790810 PMCID: PMC10544916 DOI: 10.3389/fphar.2023.1274088] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023] Open
Abstract
Antibody-Drug Conjugates (ADCs) represent an innovative class of potent anti-cancer compounds that are widely used in the treatment of hematologic malignancies and solid tumors. Unlike conventional chemotherapeutic drug-based therapies, that are mainly associated with modest specificity and therapeutic benefit, the three key components that form an ADC (a monoclonal antibody bound to a cytotoxic drug via a chemical linker moiety) achieve remarkable improvement in terms of targeted killing of cancer cells and, while sparing healthy tissues, a reduction in systemic side effects caused by off-tumor toxicity. Based on their beneficial mechanism of action, 15 ADCs have been approved to date by the market approval by the Food and Drug Administration (FDA), the European Medicines Agency (EMA) and/or other international governmental agencies for use in clinical oncology, and hundreds are undergoing evaluation in the preclinical and clinical phases. Here, our aim is to provide a comprehensive overview of the key features revolving around ADC therapeutic strategy including their structural and targeting properties, mechanism of action, the role of the tumor microenvironment and review the approved ADCs in clinical oncology, providing discussion regarding their toxicity profile, clinical manifestations and use in novel combination therapies. Finally, we briefly review ADCs in other pathological contexts and provide key information regarding ADC manufacturing and analytical characterization.
Collapse
Affiliation(s)
- Federico Riccardi
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| |
Collapse
|
9
|
Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Signal Transduct Target Ther 2023; 8:335. [PMID: 37669923 PMCID: PMC10480221 DOI: 10.1038/s41392-023-01589-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting "undruggable" proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein-protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
10
|
Cheung CHP, Chong TH, Wei T, Liu H, Li X. Guanidine Additive Enabled Intermolecular ortho-Phthalaldehyde-Amine-Thiol Three-Component Reactions for Modular Constructions. Angew Chem Int Ed Engl 2023; 62:e202217150. [PMID: 36624047 DOI: 10.1002/anie.202217150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Recently, ortho-phthalaldehyde (OPA) is experiencing a renascence for the modification of proteins and peptides through OPA-amine two-component reactions for bioconjugation and intramolecular OPA-amine-thiol three-component reactions for cyclization. Historically, small thiol molecules were used in large excess to allow for the intermolecular OPA-amine-thiol reaction forming 1-thio-isoindole derivatives. In this study, we discovered that guanidine could serve as an effective additive to switch the intermolecular OPA-amine-thiol three-component reaction to a stoichiometric process and enable the modular construction of peptide-peptide, and peptide-drug conjugate structures. Thus, 12 model peptide-peptide conjugates have been synthesized from unprotected peptides featuring all proteinogenic residues. Besides, 6 peptide-drug conjugates have been prepared in one step, with excellent conversions and isolated yields. In addition, a conjugate product has been further functionalized by utilizing a premodified OPA derivative, demonstrating the versatility and flexibility of this reaction.
Collapse
Affiliation(s)
- Carina Hey Pui Cheung
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Tin Hang Chong
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Tongyao Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China
| |
Collapse
|
11
|
Wu M, Huang W, Yang N, Liu Y. Learn from antibody–drug conjugates: consideration in the future construction of peptide-drug conjugates for cancer therapy. Exp Hematol Oncol 2022; 11:93. [DOI: 10.1186/s40164-022-00347-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractCancer is one of the leading causes of death worldwide due to high heterogeneity. Although chemotherapy remains the mainstay of cancer therapy, non-selective toxicity and drug resistance of mono-chemotherapy incur broad criticisms. Subsequently, various combination strategies have been developed to improve clinical efficacy, also known as cocktail therapy. However, conventional “cocktail administration” is just passable, due to the potential toxicities to normal tissues and unsatisfactory synergistic effects, especially for the combined drugs with different pharmacokinetic properties. The drug conjugates through coupling the conventional chemotherapeutics to a carrier (such as antibody and peptide) provide an alternative strategy to improve therapeutic efficacy and simultaneously reduce the unspecific toxicities, by virtue of the advantages of highly specific targeting ability and potent killing effect. Although 14 antibody–drug conjugates (ADCs) have been approved worldwide and more are being investigated in clinical trials so far, several limitations have been disclosed during clinical application. Compared with ADCs, peptide-drug conjugates (PDCs) possess several advantages, including easy industrial synthesis, low cost, high tissue penetration and fast clearance. So far, only a handful of PDCs have been approved, highlighting tremendous development potential. Herein, we discuss the progress and pitfalls in the development of ADCs and underline what can learn from ADCs for the better construction of PDCs in the future.
Collapse
|
12
|
Ji X, Zhu N, Ma Y, Liu J, Hu Y. Protein C-Terminal Tyrosine Conjugation via Recyclable Immobilized BmTYR. ACS OMEGA 2022; 7:40532-40539. [PMID: 36385814 PMCID: PMC9647846 DOI: 10.1021/acsomega.2c05794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Protein modification plays an essential role in biological and pharmaceutical research. Due to the ordinary selectivity and inevitable damage to proteins of chemical synthetic methods, increased efforts were focused on biocatalysts which exhibited high regioselectivity and mild reaction conditions. However, separation of the biocatalysts and modified proteins remained a problem, especially when scaling up. Here, we developed a simple method for site-specific protein modification with a recyclable biocatalyst. The immobilizing tyrosinase (BmTYR) on magnetic beads can oxidize C-terminal tyrosine residues of the target protein to o-quinone, followed by the spontaneous addition of different nucleophiles (e.g., aniline derivatives), resulting in a C-terminal modified protein. Compared to the homogeneous biocatalytic system reported before, this heterogeneous system leads to an easier separation. Furthermore, the solid-phase biocatalyst can be regenerated during separation, providing reusability and lower costs.
Collapse
Affiliation(s)
- Xingyu Ji
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Nanlin Zhu
- Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Yanjie Ma
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jia Liu
- Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, Hangzhou 310024, China
| | - Youhong Hu
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, Hangzhou 310024, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Lo CF, Chiu TY, Liu YT, Pan PY, Liu KL, Hsu CY, Fang MY, Huang YC, Yeh TK, Hsu TA, Chen CT, Huang LR, Tsou LK. Targeting the Phosphatidylserine-Immune Checkpoint with a Small-Molecule Maytansinoid Conjugate. J Med Chem 2022; 65:12802-12824. [PMID: 36153998 PMCID: PMC9574934 DOI: 10.1021/acs.jmedchem.2c00631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Ligand-targeting drug delivery systems have made significant
strides
for disease treatments with numerous clinical approvals in this era
of precision medicine. Herein, we report a class of small molecule-based
immune checkpoint-targeting maytansinoid conjugates. From the ligand
targeting ability, pharmacokinetics profiling, in vivo anti-pancreatic cancer, triple-negative breast cancer, and sorafenib-resistant
liver cancer efficacies with quantitative mRNA analysis of treated-tumor
tissues, we demonstrated that conjugate 40a not only
induced lasting regression of tumor growth, but it also rejuvenated
the once immunosuppressive tumor microenvironment to an “inflamed
hot tumor” with significant elevation of gene expressions that
were not accessible in the vehicle-treated tumor. In turn, the immune
checkpoint-targeting small molecule drug conjugate from this work
represents a new pharmacodelivery strategy that can be expanded with
combination therapy with existing immune-oncology treatment options.
Collapse
Affiliation(s)
- Chen-Fu Lo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| | - Tai-Yu Chiu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| | - Yu-Tzu Liu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| | - Pei-Yun Pan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| | - Kuan-Liang Liu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| | - Chia-Yu Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| | - Ming-Yu Fang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| | - Yu-Chen Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| | - Tsu-An Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| | - Li-Rung Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| | - Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli35053, Taiwan, ROC
| |
Collapse
|
14
|
Hooper AT, Marquette K, Chang CPB, Golas J, Jain S, Lam MH, Guffroy M, Leal M, Falahatpisheh H, Mathur D, Chen T, Kelleher K, Khandke K, Muszynska E, Loganzo F, Rosfjord E, Lucas J, Kan Z, Subramanyam C, O'Donnell C, Neri D, Gerber HP, May C, Sapra P. Anti-Extra Domain B Splice Variant of Fibronectin Antibody-Drug Conjugate Eliminates Tumors with Enhanced Efficacy When Combined with Checkpoint Blockade. Mol Cancer Ther 2022; 21:1462-1472. [PMID: 35793468 PMCID: PMC9446899 DOI: 10.1158/1535-7163.mct-22-0099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 01/07/2023]
Abstract
Extra domain B splice variant of fibronectin (EDB+FN) is an extracellular matrix protein (ECM) deposited by tumor-associated fibroblasts, and is associated with tumor growth, angiogenesis, and invasion. We hypothesized that EDB+FN is a safe and abundant target for therapeutic intervention with an antibody-drug conjugate (ADC). We describe the generation, pharmacology, mechanism of action, and safety profile of an ADC specific for EDB+FN (EDB-ADC). EDB+FN is broadly expressed in the stroma of pancreatic, non-small cell lung (NSCLC), breast, ovarian, head and neck cancers, whereas restricted in normal tissues. In patient-derived xenograft (PDX), cell-line xenograft (CLX), and mouse syngeneic tumor models, EDB-ADC, conjugated to auristatin Aur0101 through site-specific technology, demonstrated potent antitumor growth inhibition. Increased phospho-histone H3, a pharmacodynamic biomarker of response, was observed in tumor cells distal to the target site of tumor ECM after EDB-ADC treatment. EDB-ADC potentiated infiltration of immune cells, including CD3+ T lymphocytes into the tumor, providing rationale for the combination of EDB-ADC with immune checkpoint therapy. EDB-ADC and anti-PD-L1 combination in a syngeneic breast tumor model led to enhanced antitumor activity with sustained tumor regressions. In nonclinical safety studies in nonhuman primates, EDB-ADC had a well-tolerated safety profile without signs of either on-target toxicity or the off-target effects typically observed with ADCs that are conjugated through conventional conjugation methods. These data highlight the potential for EDB-ADC to specifically target the tumor microenvironment, provide robust therapeutic benefits against multiple tumor types, and enhance activity antitumor in combination with checkpoint blockade.
Collapse
Affiliation(s)
- Andrea T. Hooper
- Pfizer Worldwide Research, Development & Medicine, Oncology Research & Development, Pearl River, New York.,Corresponding Authors: Kimberly Marquette, BioMedicine Design, Pfizer Inc., 610 Main Street, Cambridge, MA 02139. E-mail: ; and Andrea T. Hooper,
| | - Kimberly Marquette
- Pfizer Worldwide Research, Development & Medicine, BioMedicine Design, Cambridge, Massachusetts.,Corresponding Authors: Kimberly Marquette, BioMedicine Design, Pfizer Inc., 610 Main Street, Cambridge, MA 02139. E-mail: ; and Andrea T. Hooper,
| | - Chao-Pei Betty Chang
- Pfizer Worldwide Research, Development & Medicine, Oncology Research & Development, Pearl River, New York
| | - Jonathon Golas
- Pfizer Worldwide Research, Development & Medicine, Oncology Research & Development, Pearl River, New York
| | - Sadhana Jain
- Pfizer Worldwide Research, Development & Medicine, BioMedicine Design, Cambridge, Massachusetts
| | - My-Hanh Lam
- Pfizer Worldwide Research, Development & Medicine, Oncology Research & Development, Pearl River, New York
| | - Magali Guffroy
- Pfizer Worldwide Research, Development & Medicine, Drug Safety Research & Development, Pearl River, New York
| | - Mauricio Leal
- Pfizer Worldwide Research, Development & Medicine, BioMedicine Design, Cambridge, Massachusetts
| | - Hadi Falahatpisheh
- Pfizer Worldwide Research, Development & Medicine, Drug Safety Research & Development, Pearl River, New York
| | - Divya Mathur
- Pfizer Worldwide Research, Development & Medicine, Oncology Research & Development, Pearl River, New York
| | - Ting Chen
- Pfizer Worldwide Research, Development & Medicine, BioMedicine Design, Cambridge, Massachusetts
| | - Kerry Kelleher
- Pfizer Worldwide Research, Development & Medicine, BioMedicine Design, Cambridge, Massachusetts
| | - Kiran Khandke
- Pfizer Worldwide Research, Development & Medicine, Oncology Research & Development, Pearl River, New York
| | - Elwira Muszynska
- Pfizer Worldwide Research, Development & Medicine, Oncology Research & Development, Pearl River, New York
| | - Frank Loganzo
- Pfizer Worldwide Research, Development & Medicine, Oncology Research & Development, Pearl River, New York
| | - Edward Rosfjord
- Pfizer Worldwide Research, Development & Medicine, Oncology Research & Development, Pearl River, New York
| | - Judy Lucas
- Pfizer Worldwide Research, Development & Medicine, Oncology Research & Development, Pearl River, New York
| | - Zhengyan Kan
- Pfizer Worldwide Research, Development & Medicine, Oncology Research & Development, Pearl River, New York
| | | | | | - Dario Neri
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Hans-Peter Gerber
- Pfizer Worldwide Research, Development & Medicine, Oncology Research & Development, Pearl River, New York
| | - Chad May
- Pfizer Worldwide Research, Development & Medicine, Oncology Research & Development, Pearl River, New York
| | - Puja Sapra
- Pfizer Worldwide Research, Development & Medicine, Oncology Research & Development, Pearl River, New York
| |
Collapse
|
15
|
Intra-Domain Cysteines (IDC), a New Strategy for the Development of Original Antibody Fragment–Drug Conjugates (FDCs). Pharmaceutics 2022; 14:pharmaceutics14081524. [PMID: 35893780 PMCID: PMC9331466 DOI: 10.3390/pharmaceutics14081524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Antibody–drug conjugates (ADCs) derived from a full immunoglobulin-G (IgG) are associated with suboptimal solid-tumor penetration and Fc-mediated toxicities. Antibody fragment–drug conjugates (FDCs) could be an alternative. Nevertheless, innovative solutions are needed to implant cysteines as conjugation sites in the single-chain fragment variable (scFv) format, which is the backbone from which many other antibody formats are built. In addition, the bioconjugation site has the utmost importance to optimize the safety and efficacy of bioconjugates. Our previous intra-tag cysteine (ITC) strategy consisted of introducing a bioconjugation motif at the C-terminal position of the 4D5.2 scFv, but this motif was subjected to proteolysis when the scFv was produced in CHO cells. Considering these data, using three intra-domain cysteine (IDC) strategies, several parameters were studied to assess the impact of different locations of a site-specific bioconjugation motif in the variable domains of an anti-HER2 scFv. In comparison to the ITC strategy, our new IDC strategy allowed us to identify new fragment–drug conjugates (FDCs) devoid of proteolysis and exhibiting enhanced stability profiles, better affinity, and better ability to kill selectively HER2-positive SK-BR-3 cells in vitro at picomolar concentrations. Thus, this work represents an important optimization step in the design of more complex and effective conjugates.
Collapse
|
16
|
Angenendt L, Mikesch JH, Schliemann C. Emerging antibody-based therapies for the treatment of acute myeloid leukemia. Cancer Treat Rev 2022; 108:102409. [DOI: 10.1016/j.ctrv.2022.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022]
|
17
|
Jin Y, Edalatian Zakeri S, Bahal R, Wiemer AJ. New Technologies Bloom Together for Bettering Cancer Drug Conjugates. Pharmacol Rev 2022; 74:680-711. [PMID: 35710136 PMCID: PMC9553120 DOI: 10.1124/pharmrev.121.000499] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug conjugates, including antibody-drug conjugates, are a step toward realizing Paul Ehrlich's idea from over 100 years ago of a "magic bullet" for cancer treatment. Through balancing selective targeting molecules with highly potent payloads, drug conjugates can target specific tumor microenvironments and kill tumor cells. A drug conjugate consists of three parts: a targeting agent, a linker, and a payload. In some conjugates, monoclonal antibodies act as the targeting agent, but new strategies for targeting include antibody derivatives, peptides, and even small molecules. Linkers are responsible for connecting the payload to the targeting agent. Payloads impact vital cellular processes to kill tumor cells. At present, there are 12 antibody-drug conjugates on the market for different types of cancers. Research on drug conjugates is increasing year by year to solve problems encountered in conjugate design, such as tumor heterogeneity, poor circulation, low drug loading, low tumor uptake, and heterogenous expression of target antigens. This review highlights some important preclinical research on drug conjugates in recent years. We focus on three significant areas: improvement of antibody-drug conjugates, identification of new conjugate targets, and development of new types of drug conjugates, including nanotechnology. We close by highlighting the critical barriers to clinical translation and the open questions going forward. SIGNIFICANCE STATEMENT: The development of anticancer drug conjugates is now focused in three broad areas: improvements to existing antibody drug conjugates, identification of new targets, and development of new conjugate forms. This article focuses on the exciting preclinical studies in these three areas and advances in the technology that improves preclinical development.
Collapse
Affiliation(s)
- Yiming Jin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | | | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
18
|
Collyer SE, Stack GD, Walsh JJ. Selective delivery of clinically approved tubulin binding agents through covalent conjugation to an active targeting moiety. Curr Med Chem 2022; 29:5179-5211. [DOI: 10.2174/0929867329666220401105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
The efficacy and tolerability of tubulin binding agents are hampered by their low specificity for cancer cells, like most clinically used anticancer agents. To improve specificity, tubulin binding agents have been covalently conjugated to agents which target cancer cells to give actively targeted drug conjugates. These conjugates are designed to increase uptake of the drug by cancer cells, while having limited uptake by normal cells thereby improving efficacy and tolerability.
Approaches used include attachment to small molecules, polysaccharides, peptides, proteins and antibodies that exploit the overexpression of receptors for these substances. Antibody targeted strategies have been the most successful to date with six such examples having gained clinical approval. Many other conjugate types, especially those targeting the folate receptor, have shown promising efficacy and toxicity profiles in pre-clinical models and in early-stage clinical studies. Presented herein is a discussion of the success or otherwise of the recent strategies used to form these actively targeted conjugates.
Collapse
Affiliation(s)
- Samuel E. Collyer
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | - Gary D. Stack
- Department of Nursing and Healthcare, Technological University of the Shannon: Midlands Midwest, Athlone, Ireland
| | - John J. Walsh
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Antibody–Drug Conjugates as an Emerging Therapy in Oncodermatology. Cancers (Basel) 2022; 14:cancers14030778. [PMID: 35159045 PMCID: PMC8833781 DOI: 10.3390/cancers14030778] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Currently, the therapeutic arsenal to fight cancers is extensive. Among these, antibody–drug conjugates (ADCs) consist in an antibody linked to a cytotoxic agent, allowing a specific delivery to tumor cells. ADCs are an emerging class of therapeutics, with twelve FDA- and EMA-approved drugs for hematological and solid cancers. In recent years, tremendous progress has been observed in therapeutic approaches for advanced skin cancer patients. ADCs appear as an emerging therapeutic option in oncodermatology. After providing an overview of ADC design and development, the goal of this article is to review the potential ADC indications in the field of oncodermatology. Abstract Antibody–drug conjugates (ADCs) are an emerging class of therapeutics, with twelve FDA- and EMA-approved drugs for hematological and solid cancers. Such drugs consist in a monoclonal antibody linked to a cytotoxic agent, allowing a specific cytotoxicity to tumor cells. In recent years, tremendous progress has been observed in therapeutic approaches for advanced skin cancer patients. In this regard, targeted therapies (e.g., kinase inhibitors) or immune checkpoint-blocking antibodies outperformed conventional chemotherapy, with proven benefit to survival. Nevertheless, primary and acquired resistances as well as adverse events remain limitations of these therapies. Therefore, ADCs appear as an emerging therapeutic option in oncodermatology. After providing an overview of ADC design and development, the goal of this article is to review the potential ADC indications in the field of oncodermatology.
Collapse
|
20
|
Ashman N, Bargh JD, Spring DR. Non-internalising antibody–drug conjugates. Chem Soc Rev 2022; 51:9182-9202. [DOI: 10.1039/d2cs00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This review introduces non-internalising Antibody–Drug Conjugates (ADCs), highlighting the linker chemistry that enables extracellular payload release.
Collapse
Affiliation(s)
- Nicola Ashman
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jonathan D. Bargh
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - David R. Spring
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
21
|
Al Ojaimi Y, Blin T, Lamamy J, Gracia M, Pitiot A, Denevault-Sabourin C, Joubert N, Pouget JP, Gouilleux-Gruart V, Heuzé-Vourc'h N, Lanznaster D, Poty S, Sécher T. Therapeutic antibodies - natural and pathological barriers and strategies to overcome them. Pharmacol Ther 2021; 233:108022. [PMID: 34687769 PMCID: PMC8527648 DOI: 10.1016/j.pharmthera.2021.108022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
Antibody-based therapeutics have become a major class of therapeutics with over 120 recombinant antibodies approved or under review in the EU or US. This therapeutic class has experienced a remarkable expansion with an expected acceleration in 2021-2022 due to the extraordinary global response to SARS-CoV2 pandemic and the public disclosure of over a hundred anti-SARS-CoV2 antibodies. Mainly delivered intravenously, alternative delivery routes have emerged to improve antibody therapeutic index and patient comfort. A major hurdle for antibody delivery and efficacy as well as the development of alternative administration routes, is to understand the different natural and pathological barriers that antibodies face as soon as they enter the body up to the moment they bind to their target antigen. In this review, we discuss the well-known and more under-investigated extracellular and cellular barriers faced by antibodies. We also discuss some of the strategies developed in the recent years to overcome these barriers and increase antibody delivery to its site of action. A better understanding of the biological barriers that antibodies have to face will allow the optimization of antibody delivery near its target. This opens the way to the development of improved therapy with less systemic side effects and increased patients' adherence to the treatment.
Collapse
Affiliation(s)
- Yara Al Ojaimi
- UMR 1253, iBrain, Inserm, 37000 Tours, France; University of Tours, 37000 Tours, France
| | - Timothée Blin
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| | - Juliette Lamamy
- University of Tours, 37000 Tours, France; GICC, EA7501, 37000 Tours, France
| | - Matthieu Gracia
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | - Aubin Pitiot
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| | | | - Nicolas Joubert
- University of Tours, 37000 Tours, France; GICC, EA7501, 37000 Tours, France
| | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | | | | | - Débora Lanznaster
- UMR 1253, iBrain, Inserm, 37000 Tours, France; University of Tours, 37000 Tours, France
| | - Sophie Poty
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | - Thomas Sécher
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| |
Collapse
|
22
|
Theocharopoulos C, Lialios PP, Samarkos M, Gogas H, Ziogas DC. Antibody-Drug Conjugates: Functional Principles and Applications in Oncology and Beyond. Vaccines (Basel) 2021; 9:1111. [PMID: 34696218 PMCID: PMC8538104 DOI: 10.3390/vaccines9101111] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/28/2022] Open
Abstract
In the era of precision medicine, antibody-based therapeutics are rapidly enriched with emerging advances and new proof-of-concept formats. In this context, antibody-drug conjugates (ADCs) have evolved to merge the high selectivity and specificity of monoclonal antibodies (mAbs) with the cytotoxic potency of attached payloads. So far, ten ADCs have been approved by FDA for oncological indications and many others are currently being tested in clinical and preclinical level. This paper summarizes the essential components of ADCs, from their functional principles and structure up to their limitations and resistance mechanisms, focusing on all latest bioengineering breakthroughs such as bispecific mAbs, dual-drug platforms as well as novel linkers and conjugation chemistries. In continuation of our recent review on anticancer implication of ADC's technology, further insights regarding their potential usage outside of the oncological spectrum are also presented. Better understanding of immunoconjugates could maximize their efficacy and optimize their safety, extending their use in everyday clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Dimitrios C. Ziogas
- First Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital, 115 27 Athens, Greece; (C.T.); (P.-P.L.); (M.S.); (H.G.)
| |
Collapse
|
23
|
Gallo F, Korsak B, Müller C, Hechler T, Yanakieva D, Avrutina O, Kolmar H, Pahl A. Enhancing the Pharmacokinetics and Antitumor Activity of an α-Amanitin-Based Small-Molecule Drug Conjugate via Conjugation with an Fc Domain. J Med Chem 2021; 64:4117-4129. [PMID: 33755471 DOI: 10.1021/acs.jmedchem.1c00003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herein we describe the design and biological evaluation of a novel antitumor therapeutic platform that combines the most favorable properties of small-molecule drug conjugates (SMDCs) and antibody drug conjugates (ADCs). Although the small size of SMDCs, compared to ADCs, is an appealing feature for their application in the treatment of solid tumors, SMDCs usually suffer from poor pharmacokinetics, which severely limits their therapeutic efficacy. To overcome this limitation, in this proof-of-concept study we grafted an α-amanitin-based SMDC that targets prostate cancer cells onto an immunoglobulin Fc domain via a two-step "program and arm" chemoenzymatic strategy. We demonstrated the superior pharmacokinetic properties and therapeutic efficacy of the resulting Fc-SMDC over the SMDC in a prostate cancer xenograft mouse model. This approach may provide a general strategy toward effective antitumor therapeutics combining small size with pharmacokinetic properties close to those of an ADC.
Collapse
Affiliation(s)
- Francesca Gallo
- Heidelberg Pharma Research GmbH, Heidelberg Pharma AG, Schriesheimer Str. 101, 68526 Ladenburg, Germany
| | - Barbara Korsak
- Heidelberg Pharma Research GmbH, Heidelberg Pharma AG, Schriesheimer Str. 101, 68526 Ladenburg, Germany
| | - Christoph Müller
- Heidelberg Pharma Research GmbH, Heidelberg Pharma AG, Schriesheimer Str. 101, 68526 Ladenburg, Germany
| | - Torsten Hechler
- Heidelberg Pharma Research GmbH, Heidelberg Pharma AG, Schriesheimer Str. 101, 68526 Ladenburg, Germany
| | - Desislava Yanakieva
- Department of Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Olga Avrutina
- Department of Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Harald Kolmar
- Department of Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Andreas Pahl
- Heidelberg Pharma Research GmbH, Heidelberg Pharma AG, Schriesheimer Str. 101, 68526 Ladenburg, Germany
| |
Collapse
|
24
|
Zhang D, Guo Y, Zhao Y, Yu L, Chang Z, Pei H, Huang J, Chen C, Xue H, Xu X, Pan Y, Li N, Zhu C, Zhao ZJ, Yu J, Chen Y. Expression of a recombinant FLT3 ligand and its emtansine conjugate as a therapeutic candidate against acute myeloid leukemia cells with FLT3 expression. Microb Cell Fact 2021; 20:67. [PMID: 33691697 PMCID: PMC7948335 DOI: 10.1186/s12934-021-01559-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/04/2021] [Indexed: 12/02/2022] Open
Abstract
Background Most patients with acute myeloid leukemia (AML) remain uncurable and require novel therapeutic methods. Gain-of-function FMS-like tyrosine kinase 3 (FLT3) mutations are present in 30–40% of AML patients and serve as an attractive therapeutic target. In addition, FLT3 is aberrantly expressed on blasts in > 90% of patients with AML, making the FLT3 ligand-based drug conjugate a promising therapeutic strategy for the treatment of patients with AML. Here, E. coli was used as a host to express recombinant human FLT3 ligand (rhFL), which was used as a specific vehicle to deliver cytotoxic drugs to FLT3 + AML cells. Methods Recombinant hFL was expressed and purified from induced recombinant BL21 (DE3) E. coli. Purified rhFL and emtansine (DM1) were conjugated by an N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP) linker. We evaluated the potency of the conjugation product FL-DM1 against FLT3-expressing AML cells by examining viability, apoptosis and the cell cycle. The activation of proteins related to the activation of FLT3 signaling and apoptosis pathways was detected by immunoblotting. The selectivity of FL-DM1 was assessed in our unique HCD-57 cell line, which was transformed with the FLT3 internal tandem duplication mutant (FLT3-ITD). Results Soluble rhFL was successfully expressed in the periplasm of recombinant E. coli. The purified rhFL was bioactive in stimulating FLT3 signaling in AML cells, and the drug conjugate FL-DM1 showed activity in cell signaling and internalization. FL-DM1 was effective in inhibiting the survival of FLT3-expressing THP-1 and MV-4-11 AML cells, with half maximal inhibitory concentration (IC50) of 12.9 nM and 1.1 nM. Additionally, FL-DM1 induced caspase-3-dependent apoptosis and arrested the cell cycle at the G2/M phase. Moreover, FL-DM1 selectively targeted HCD-57 cells transformed by FLT3-ITD but not parental HCD-57 cells without FLT3 expression. FL-DM1 can also induce obvious apoptosis in primary FLT3-positive AML cells ex vivo. Conclusions Our data demonstrated that soluble rhFL can be produced in a bioactive form in the periplasm of recombinant E. coli. FL can be used as a specific vehicle to deliver DM1 into FLT3-expressing AML cells. FL-DM1 exhibited cytotoxicity in FLT3-expressing AML cell lines and primary AML cells. FL-DM1 may have potential clinical applications in treating patients with FLT3-positive AML. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01559-6.
Collapse
Affiliation(s)
- Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Yuming Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Liuting Yu
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Zhiguang Chang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Hanzhong Pei
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Junbin Huang
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Chun Chen
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Hongman Xue
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Xiaojun Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Yihang Pan
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Ningning Li
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Chengming Zhu
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, 1100 N. Lindsay, Oklahoma City, OK, 73104, USA
| | - Jian Yu
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China.
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
25
|
Deonarain MP, Yahioglu G. Current strategies for the discovery and bioconjugation of smaller, targetable drug conjugates tailored for solid tumor therapy. Expert Opin Drug Discov 2021; 16:613-624. [PMID: 33275475 DOI: 10.1080/17460441.2021.1858050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Introduction: Antibody-Drug Conjugates (ADCs) have undergone a recent resurgence with 5 product approvals over the last 2 years but for those close to the field, it's been repeated cycles of setbacks and new innovations. A new wave of innovation is in the type of format used to deliver the cytotoxic payloads, with smaller bio-molecules being designed to have more optimal penetration and elimination properties tailored for solid tumors.Areas covered: In this review, the authors cover many of the recently described smaller-format drug conjugates (including formats such as diabodies, Fabs, scFvs, domain antibodies) with an emphasis on the types of conjugation technologies used to attach the chemical linker-payload.Expert opinion: Smaller formats are highly influenced by the structure of the linker-payload, arguably more-so than larger ADCs, so careful consideration is needed where solublising and pharmacokinetic modulation is required. High-quality conjugates are being developed with in vivo tumor efficacy and tolerability properties competitive with ADCs and with a few formats already in clinical development, we expect the pipeline to expand and to reach the market.
Collapse
Affiliation(s)
- Mahendra P Deonarain
- Antikor Biopharma Ltd, Stevenage Bioscience Catalyst, Hertfordshire, UK.,Department of Chemistry, Imperial College London, London, UK
| | - Gokhan Yahioglu
- Antikor Biopharma Ltd, Stevenage Bioscience Catalyst, Hertfordshire, UK.,Department of Chemistry, Imperial College London, London, UK
| |
Collapse
|
26
|
Patel TK, Adhikari N, Amin SA, Biswas S, Jha T, Ghosh B. Small molecule drug conjugates (SMDCs): an emerging strategy for anticancer drug design and discovery. NEW J CHEM 2021. [DOI: 10.1039/d0nj04134c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanisms of how SMDCs work. Small molecule drugs are conjugated with the targeted ligand using pH sensitive linkers which allow the drug molecule to get released at lower lysosomal pH. It helps to accumulate the chemotherapeutic agents to be localized in the tumor environment upon cleaving of the pH-labile bonds.
Collapse
Affiliation(s)
- Tarun Kumar Patel
- Epigenetic Research Laboratory, Department of Pharmacy
- BITS-Pilani
- Hyderabad
- India
| | - Nilanjan Adhikari
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
| | - Sk. Abdul Amin
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
| | - Swati Biswas
- Epigenetic Research Laboratory, Department of Pharmacy
- BITS-Pilani
- Hyderabad
- India
| | - Tarun Jha
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy
- BITS-Pilani
- Hyderabad
- India
| |
Collapse
|
27
|
Dean AQ, Luo S, Twomey JD, Zhang B. Targeting cancer with antibody-drug conjugates: Promises and challenges. MAbs 2021; 13:1951427. [PMID: 34291723 PMCID: PMC8300931 DOI: 10.1080/19420862.2021.1951427] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a rapidly expanding class of biotherapeutics that utilize antibodies to selectively deliver cytotoxic drugs to the tumor site. As of May 2021, the U.S. Food and Drug Administration (FDA) has approved ten ADCs, namely Adcetris®, Kadcyla®, Besponsa®, Mylotarg®, Polivy®, Padcev®, Enhertu®, Trodelvy®, Blenrep®, and Zynlonta™ as monotherapy or combinational therapy for breast cancer, urothelial cancer, myeloma, acute leukemia, and lymphoma. In addition, over 80 investigational ADCs are currently being evaluated in approximately 150 active clinical trials. Despite the growing interest in ADCs, challenges remain to expand their therapeutic index (with greater efficacy and less toxicity). Recent advances in the manufacturing technology for the antibody, payload, and linker combined with new bioconjugation platforms and state-of-the-art analytical techniques are helping to shape the future development of ADCs. This review highlights the current status of marketed ADCs and those under clinical investigation with a focus on translational strategies to improve product quality, safety, and efficacy.
Collapse
Affiliation(s)
- Alexis Q. Dean
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Shen Luo
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Julianne D. Twomey
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Baolin Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
28
|
Deonarain MP, Xue Q. Tackling solid tumour therapy with small-format drug conjugates. Antib Ther 2020; 3:237-245. [PMID: 33928231 DOI: 10.1093/abt/tbaa024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
The pharmacokinetic-pharmacodynamic relationship is extremely complex and tumour drug penetration is one key parameter influencing therapeutic efficacy. In the context of antibody-drug conjugates (ADCs), which has undergone many innovation cycles and witnessed many failures, this feature is being addressed by a number of alternative technologies. Immunoglobulin-based ADCs continue to dominate the industrial landscape, but smaller formats offer the promise of more-effective cytotoxic payload delivery to solid tumours, with a higher therapeutic window afforded by the more rapid clearance. To make these smaller formats viable as delivery vehicles, a number of strategies are being employed, which will be reviewed here. These include identifying the most-appropriate size to generate the larger therapeutic window, increasing the amount of functional, cytotoxic payload delivered through conjugation or half-life extending technologies or other ways of extending the dosing without inducing toxicity.
Collapse
Affiliation(s)
- Mahendra P Deonarain
- Antikor Biopharma Ltd, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG12FX, UK
| | - Quinn Xue
- Essex Biotechnology Ltd, Shun Tak Centre, Room 2818, China Merchants Tower, Connaught Road Central, Hong Kong 168-200, SAR China
| |
Collapse
|
29
|
Joubert N, Beck A, Dumontet C, Denevault-Sabourin C. Antibody-Drug Conjugates: The Last Decade. Pharmaceuticals (Basel) 2020; 13:ph13090245. [PMID: 32937862 PMCID: PMC7558467 DOI: 10.3390/ph13090245] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 01/01/2023] Open
Abstract
An armed antibody (antibody–drug conjugate or ADC) is a vectorized chemotherapy, which results from the grafting of a cytotoxic agent onto a monoclonal antibody via a judiciously constructed spacer arm. ADCs have made considerable progress in 10 years. While in 2009 only gemtuzumab ozogamicin (Mylotarg®) was used clinically, in 2020, 9 Food and Drug Administration (FDA)-approved ADCs are available, and more than 80 others are in active clinical studies. This review will focus on FDA-approved and late-stage ADCs, their limitations including their toxicity and associated resistance mechanisms, as well as new emerging strategies to address these issues and attempt to widen their therapeutic window. Finally, we will discuss their combination with conventional chemotherapy or checkpoint inhibitors, and their design for applications beyond oncology, to make ADCs the magic bullet that Paul Ehrlich dreamed of.
Collapse
Affiliation(s)
- Nicolas Joubert
- GICC EA7501, Equipe IMT, Université de Tours, UFR des Sciences Pharmaceutiques, 31 Avenue Monge, 37200 Tours, France;
- Correspondence:
| | - Alain Beck
- Institut de Recherche Pierre Fabre, Centre d’Immunologie Pierre Fabre, 5 Avenue Napoléon III, 74160 Saint Julien en Genevois, France;
| | - Charles Dumontet
- Cancer Research Center of Lyon (CRCL), INSERM, 1052/CNRS 5286/UCBL, 69000 Lyon, France;
- Hospices Civils de Lyon, 69000 Lyon, France
| | - Caroline Denevault-Sabourin
- GICC EA7501, Equipe IMT, Université de Tours, UFR des Sciences Pharmaceutiques, 31 Avenue Monge, 37200 Tours, France;
| |
Collapse
|
30
|
Antibody-Drug Conjugates in Thoracic Malignancies: Clinical Trials Reveal Both Promise and Challenges. Target Oncol 2020; 15:429-448. [PMID: 32725438 DOI: 10.1007/s11523-020-00740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thoracic malignancies are the main cause of cancer-related deaths worldwide. The need to develop new therapies is therefore urgent. The recognition of new potential therapeutic targets in thoracic malignancies has prompted the development of a number of antibody-drug conjugates. This new class of potent anticancer agents is supposed to more specifically and directly target the tumor while limiting toxicity for healthy tissues by delivering a toxic payload to tumor cells that are recognized by the presence of specific cell surface antigens. Progress in the development of antibody-drug conjugates over the last decade has been significant, with several promising advances. Unfortunately, many failures have also been encountered, often because of unexpectedly severe toxicities that contradicted the assumed mechanism of action, and major challenges remain. Various techniques to reduce the toxicities associated with antibody-drug conjugates are being studied, and the panorama of antibody-drug conjugates in clinical stages continues to increase and evolve. Current efforts in the conjugation and linker chemistries could result in the successful construction of clinically effective compounds. The future clinical development of antibody-drug conjugates could benefit from the identification of such payloads that can provide more safe and effective derivatives. Highly potent compounds with reasonable aqueous solubility, non-immunogenic profile, and stability in storage and the bloodstream should be important aspects of research into cytotoxic payloads.
Collapse
|
31
|
López Rivas P, Müller C, Breunig C, Hechler T, Pahl A, Arosio D, Belvisi L, Pignataro L, Dal Corso A, Gennari C. β-Glucuronidase triggers extracellular MMAE release from an integrin-targeted conjugate. Org Biomol Chem 2020; 17:4705-4710. [PMID: 31020985 DOI: 10.1039/c9ob00617f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A non-internalizing αvβ3 integrin ligand was conjugated to the anticancer drug MMAE through a β-glucuronidase-responsive linker. In the presence of β-glucuronidase, only the conjugate bearing a PEG4 spacer inhibited the proliferation of integrin-expressing cancer cells at low nanomolar concentrations, indicating important structural requirements for the efficacy of these therapeutics.
Collapse
Affiliation(s)
- Paula López Rivas
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi, 19 I-20133, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Trivedi M, Johri P, Singh A, Singh R, Tiwari RK. Latest Tools in Fight Against Cancer: Nanomedicines. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
33
|
Kommineni N, Pandi P, Chella N, Domb AJ, Khan W. Antibody drug conjugates: Development, characterization, and regulatory considerations. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4789] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nagavendra Kommineni
- Department of PharmaceuticsNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| | - Palpandi Pandi
- Department of PharmaceuticsNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| | - Naveen Chella
- Department of PharmaceuticsNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| | - Abraham J. Domb
- School of Pharmacy‐ Faculty of MedicineThe Hebrew University of Jerusalem Jerusalem Israel
| | - Wahid Khan
- Department of PharmaceuticsNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| |
Collapse
|
34
|
Deneka AY, Boumber Y, Beck T, Golemis EA. Tumor-Targeted Drug Conjugates as an Emerging Novel Therapeutic Approach in Small Cell Lung Cancer (SCLC). Cancers (Basel) 2019; 11:E1297. [PMID: 31484422 PMCID: PMC6769513 DOI: 10.3390/cancers11091297] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/25/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023] Open
Abstract
There are few effective therapies for small cell lung cancer (SCLC), a highly aggressive disease representing 15% of total lung cancers. With median survival <2 years, SCLC is one of the most lethal cancers. At present, chemotherapies and radiation therapy are commonly used for SCLC management. Few protein-targeted therapies have shown efficacy in improving overall survival; immune checkpoint inhibitors (ICIs) are promising agents, but many SCLC tumors do not express ICI targets such as PD-L1. This article presents an alternative approach to the treatment of SCLC: the use of drug conjugates, where a targeting moiety concentrates otherwise toxic agents in the vicinity of tumors, maximizing the differential between tumor killing and the cytotoxicity of normal tissues. Several tumor-targeted drug conjugate delivery systems exist and are currently being actively tested in the setting of SCLC. These include antibody-drug conjugates (ADCs), radioimmunoconjugates (RICs), small molecule-drug conjugates (SMDCs), and polymer-drug conjugates (PDCs). We summarize the basis of action for these targeting compounds, discussing principles of construction and providing examples of effective versus ineffective compounds, as established by preclinical and clinical testing. Such agents may offer new therapeutic options for the clinical management of this challenging disease in the future.
Collapse
Affiliation(s)
- Alexander Y Deneka
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
- Department of Biochemistry, Kazan Federal University, 420000 Kazan, Russia.
| | - Yanis Boumber
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Department of Biochemistry, Kazan Federal University, 420000 Kazan, Russia
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Tim Beck
- Cleveland Clinic, Cleveland, OH 44195, USA
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
35
|
Delahousse J, Skarbek C, Paci A. Prodrugs as drug delivery system in oncology. Cancer Chemother Pharmacol 2019; 84:937-958. [DOI: 10.1007/s00280-019-03906-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023]
|
36
|
Lingasamy P, Tobi A, Haugas M, Hunt H, Paiste P, Asser T, Rätsep T, Kotamraju VR, Bjerkvig R, Teesalu T. Bi-specific tenascin-C and fibronectin targeted peptide for solid tumor delivery. Biomaterials 2019; 219:119373. [PMID: 31374479 DOI: 10.1016/j.biomaterials.2019.119373] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/08/2019] [Accepted: 07/18/2019] [Indexed: 01/15/2023]
Abstract
Oncofetal fibronectin (FN-EDB) and tenascin-C C domain (TNC-C) are nearly absent in extracellular matrix of normal adult tissues but upregulated in malignant tissues. Both FN-EDB and TNC-C are developed as targets of antibody-based therapies. Here we used peptide phage biopanning to identify a novel targeting peptide (PL1, sequence: PPRRGLIKLKTS) that interacts with both FN-EDB and TNC-C. Systemic PL1-functionalized model nanoscale payloads [iron oxide nanoworms (NWs) and metallic silver nanoparticles] homed to glioblastoma (GBM) and prostate carcinoma xenografts, and to non-malignant angiogenic neovessels induced by VEGF-overexpression. Antibody blockage experiments demonstrated that PL1 tumor homing involved interactions with both receptor proteins. Treatment of GBM mice with PL1-targeted model therapeutic nanocarrier (NWs loaded with a proapoptotic peptide) resulted in reduced tumor growth and increased survival, whereas treatment with untargeted particles had no effect. PL1 peptide may have applications as an affinity ligand for delivery of diagnostic and therapeutic compounds to microenvironment of solid tumors.
Collapse
Affiliation(s)
- Prakash Lingasamy
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, 50411, Tartu, Estonia
| | - Allan Tobi
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, 50411, Tartu, Estonia
| | - Maarja Haugas
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, 50411, Tartu, Estonia
| | - Hedi Hunt
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, 50411, Tartu, Estonia
| | - Päärn Paiste
- Department of Geology, University of Tartu, 50411, Tartu, Estonia
| | - Toomas Asser
- Department of Neurosurgery, Tartu University Hospital, 50406, Tartu, Estonia
| | - Tõnu Rätsep
- Department of Neurosurgery, Tartu University Hospital, 50406, Tartu, Estonia
| | - Venkata Ramana Kotamraju
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, CA, USA; Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Rolf Bjerkvig
- Department of Biomedicine Translational Cancer Research, University of Bergen, 5020, Bergen, Norway
| | - Tambet Teesalu
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, 50411, Tartu, Estonia; Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, CA, USA; Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, 93106, CA, USA.
| |
Collapse
|
37
|
Zheng Y, Shen Y, Meng X, Wu Y, Zhao Y, Wu C. Stabilizing p-Dithiobenzyl Urethane Linkers without Rate-Limiting Self-Immolation for Traceless Drug Release. ChemMedChem 2019; 14:1196-1203. [PMID: 31020782 DOI: 10.1002/cmdc.201900248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 12/31/2022]
Abstract
Exploiting the redox sensitivity of disulfide bonds is a prevalent strategy in targeted prodrug designs. In contrast to aliphatic disulfides, p-thiobenzyl-based disulfides have rarely been used for prodrug designs, given their intrinsic instability caused by the low pKa of aromatic thiols. Here, we examined the interplay between steric hindrance and the low-pKa effect on thiol-disulfide exchange reactions and uncovered a new thiol-disulfide exchange process for the self-immolation of p-thiobenzyl-based disulfides. We observed a central leaving group shifting effect in the α,α-dimethyl-substituted p-dithiobenzyl urethane linkers (DMTB linkers), which leads to increased disulfide stability by more than two orders of magnitude, an extent that is significantly greater than that observed with typical aliphatic disulfides. In particular, the DMTB linkers display not only high stability, but also rapid self-immolation kinetics due to the low pKa of the aromatic thiol, which can be used as a general and robust linkage between targeting reagents and cytotoxic drugs for targeted prodrug designs. The unique and promising stability characteristics of the present DMTB linker will likely inspire the development of novel targeted prodrugs to achieve traceless release of drugs into cells.
Collapse
Affiliation(s)
- Yiwu Zheng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China
| | - Yang Shen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China
| | - Xiaoting Meng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China
| | - Yaqi Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China
| | - Yibing Zhao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China
| |
Collapse
|
38
|
Raposo Moreira Dias A, Bodero L, Martins A, Arosio D, Gazzola S, Belvisi L, Pignataro L, Steinkühler C, Dal Corso A, Gennari C, Piarulli U. Synthesis and Biological Evaluation of RGD and isoDGR-Monomethyl Auristatin Conjugates Targeting Integrin α V β 3. ChemMedChem 2019; 14:938-942. [PMID: 30840356 PMCID: PMC6593765 DOI: 10.1002/cmdc.201900049] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/26/2019] [Indexed: 11/09/2022]
Abstract
This work reports the synthesis of a series of small-molecule-drug conjugates containing the αV β3 -integrin ligand cyclo[DKP-RGD] or cyclo[DKP-isoDGR], a lysosomally cleavable Val-Ala (VA) linker or an "uncleavable" version devoid of this sequence, and monomethyl auristatin E (MMAE) or F (MMAF) as the cytotoxic agent. The conjugates were obtained via a straightforward synthetic scheme taking advantage of a copper-catalyzed azide-alkyne cycloaddition as the key step. The conjugates were tested for their binding affinity for the isolated αv β3 receptor and were shown to retain nanomolar IC50 values, in the same range as those of the free ligands. The cytotoxic activity of the conjugates was evaluated in cell viability assays with αv β3 integrin overexpressing human glioblastoma (U87) and human melanoma (M21) cells. The conjugates possess markedly lower cytotoxic activity than the free drugs, which is consistent with inefficient integrin-mediated internalization. In almost all cases the conjugates featuring isoDGR as integrin ligand exhibited higher potency than their RGD counterparts. In particular, the cyclo[DKP-isoDGR]-VA-MMAE conjugate has low nanomolar IC50 values in cell viability assays with both cancer cell lines tested (U87: 11.50±0.13 nm; M21: 6.94±0.09 nm) and is therefore a promising candidate for in vivo experiments.
Collapse
Affiliation(s)
| | - Lizeth Bodero
- Università degli Studi dell'InsubriaDipartimento di Scienza e Alta TecnologiaVia Valleggio, 1122100ComoItaly
| | - Ana Martins
- Exiris SrlVia di Castel Romano, 10000128RomeItaly
| | - Daniela Arosio
- CNRIstituto di Scienze e Tecnologie Molecolari (ISTM)Via C. Golgi, 1920133MilanItaly
| | - Silvia Gazzola
- Università degli Studi dell'InsubriaDipartimento di Scienza e Alta TecnologiaVia Valleggio, 1122100ComoItaly
| | - Laura Belvisi
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 1920133MilanItaly
- CNRIstituto di Scienze e Tecnologie Molecolari (ISTM)Via C. Golgi, 1920133MilanItaly
| | - Luca Pignataro
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 1920133MilanItaly
| | | | - Alberto Dal Corso
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 1920133MilanItaly
| | - Cesare Gennari
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 1920133MilanItaly
- CNRIstituto di Scienze e Tecnologie Molecolari (ISTM)Via C. Golgi, 1920133MilanItaly
| | - Umberto Piarulli
- Università degli Studi dell'InsubriaDipartimento di Scienza e Alta TecnologiaVia Valleggio, 1122100ComoItaly
| |
Collapse
|
39
|
Xu J, Tu H, Ao Z, Chen Y, Danehy R, Guo F. Acoustic disruption of tumor endothelium and on-demand drug delivery for cancer chemotherapy. NANOTECHNOLOGY 2019; 30:154001. [PMID: 30641501 DOI: 10.1088/1361-6528/aafe4e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chemotherapy has been the most widely used treatment against cancer, however, it is limited by its systemic toxicity as well as resistance developed by tumors' physical barriers. Herein, we propose a novel acoustically-mediated treatment regime to on-demand release therapeutics and disrupt tumor structures. By programming a high intensity focused ultrasound transducer, we can locally and digitally release gemcitabine (GEM) as well as open the local blood-tumor barrier or even tumor stroma to enhance intratumor drug delivery via acoustically-oscillating bubbles and liposomes. In our experiments, we modeled tumor endothelium by culturing a monolayer of murine endothelial cells (2H11) on transwell membrane. We locally disrupted the cultured endothelium to enhance drug penetration by using perfluorocarbon liquid droplets as breaking probes and protoporphyrin IX hybridized liposomes as drug carriers. We also demonstrated an on-demand release of GEM by digitally triggering the break of drug carriers. Moreover, we validated the acoustic tumor endothelium disruption in vivo by monitoring penetration of dye (Evans blue) in solid tumors. Therefore, we present an acoustically-mediated delivery method that both releases drug on-demand locally and opens the blood-tumor barrier to enhance drug penetration. This sets the ground for further clinical cancer therapy to improve many systemic cancer treatments.
Collapse
Affiliation(s)
- Junhua Xu
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States of America
| | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Jie Wang
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
41
|
A "Dual" Cell-Level Systems PK-PD Model to Characterize the Bystander Effect of ADC. J Pharm Sci 2019; 108:2465-2475. [PMID: 30790581 DOI: 10.1016/j.xphs.2019.01.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
Here, we have developed a cell-level systems PK-PD model to characterize the bystander effect of antibody-drug conjugates (ADCs). Cytotoxicity data generated following incubation of Trastuzumab-vc-MMAE in cocultures of high HER2-expressing N87 and low HER2-expressing GFP-MCF7 cells were used to build the model. Single-cell PK model for ADC was used to characterize the PK of trastuzumab-vc-MMAE and released MMAE in N87 and GFP-MCF7 cells. The 2 cell-level PK models were mechanistically integrated to mimic the coculture condition. MMAE-induced intracellular occupancy of tubulin was used to drive the efficacy of ADC, and improvement in the tubulin occupancy of GFP-MCF7 cells in the presence of N87 cells was used to drive the bystander effect of trastuzumab-vc-MMAE. The "dual" cell-level PK-PD model was able to capture the observed data reasonably well. It was found that similar and high occupancy of tubulin by MMAE was required to achieve the cytotoxic effect in each cell line. In addition, estimated model parameters suggested that ∼60% improvement in the tubulin occupancy was required to attain half of the maximum bystander killing effect by the ADC. The presented model provides foundation for in vivo systems PK-PD model to characterize and predict the bystander effect of ADCs.
Collapse
|
42
|
Raposo Moreira Dias A, Pina A, Dean A, Lerchen H, Caruso M, Gasparri F, Fraietta I, Troiani S, Arosio D, Belvisi L, Pignataro L, Dal Corso A, Gennari C. Neutrophil Elastase Promotes Linker Cleavage and Paclitaxel Release from an Integrin-Targeted Conjugate. Chemistry 2019; 25:1696-1700. [PMID: 30452790 PMCID: PMC6471013 DOI: 10.1002/chem.201805447] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/16/2018] [Indexed: 12/16/2022]
Abstract
This work takes advantage of one of the hallmarks of cancer, that is, the presence of tumor infiltrating cells of the immune system and leukocyte-secreted enzymes, to promote the activation of an anticancer drug at the tumor site. The peptidomimetic integrin ligand cyclo(DKP-RGD) was found to accumulate on the surface of αv β3 integrin-expressing human renal cell carcinoma 786-O cells. The ligand was conjugated to the anticancer drug paclitaxel through a Asn-Pro-Val (NPV) tripeptide linker, which is a substrate of neutrophil-secreted elastase. In vitro linker cleavage assays and cell antiproliferative experiments demonstrate the efficacy of this tumor-targeting conjugate, opening the way to potential therapeutic applications.
Collapse
Affiliation(s)
| | - Arianna Pina
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 19I-20133MilanItaly
| | - Amelia Dean
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 19I-20133MilanItaly
| | | | - Michele Caruso
- Nerviano Medical SciencesViale Pasteur, 10I-20014NervianoItaly
| | - Fabio Gasparri
- Nerviano Medical SciencesViale Pasteur, 10I-20014NervianoItaly
| | - Ivan Fraietta
- Nerviano Medical SciencesViale Pasteur, 10I-20014NervianoItaly
| | - Sonia Troiani
- Nerviano Medical SciencesViale Pasteur, 10I-20014NervianoItaly
| | - Daniela Arosio
- CNR, Istituto di Scienze e Tecnologie Molecolari (ISTM)Via C. Golgi, 19I-20133MilanItaly
| | - Laura Belvisi
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 19I-20133MilanItaly
- CNR, Istituto di Scienze e Tecnologie Molecolari (ISTM)Via C. Golgi, 19I-20133MilanItaly
| | - Luca Pignataro
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 19I-20133MilanItaly
| | - Alberto Dal Corso
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 19I-20133MilanItaly
| | - Cesare Gennari
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 19I-20133MilanItaly
- CNR, Istituto di Scienze e Tecnologie Molecolari (ISTM)Via C. Golgi, 19I-20133MilanItaly
| |
Collapse
|
43
|
Khera E, Thurber GM. Pharmacokinetic and Immunological Considerations for Expanding the Therapeutic Window of Next-Generation Antibody-Drug Conjugates. BioDrugs 2019; 32:465-480. [PMID: 30132210 DOI: 10.1007/s40259-018-0302-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibody-drug conjugate (ADC) development has evolved greatly over the last 3 decades, including the Food and Drug Administration (FDA) approval of several new drugs. However, translating ADCs from the design stage and preclinical promise to clinical success has been a major hurdle for the field, particularly for solid tumors. The challenge in clinical development can be attributed to the difficulty in connecting the design of these multifaceted agents with the impact on clinical efficacy, especially with the accelerated development of 'next-generation' ADCs containing a variety of innovative biophysical developments. Given their complex nature, there is an urgent need to integrate holistic ADC characterization approaches. This includes comprehensive in vivo assessment of systemic, intratumoral and cellular pharmacokinetics, pharmacodynamics, toxicodynamics, and interactions with the immune system, with the aim of optimizing the ADC therapeutic window. Pharmacokinetic/pharmacodynamic factors influencing the ADC therapeutic window include (1) selecting optimal target and ADC components for prolonged and stable plasma circulation to increase tumoral uptake with minimal non-specific systemic toxicity, (2) balancing homogeneous intratumoral distribution with efficient cellular uptake, and (3) translating improved ADC potency to better clinical efficacy. Balancing beneficial immunological effects such as Fc-mediated and payload-mediated immune cell activation against harmful immunogenic/toxic effects is also an emerging concern for ADCs. Here, we review practical considerations for tracking ADC efficacy and toxicity, as aided by high-resolution biomolecular and immunological tools, quantitative pharmacology, and mathematical models, all of which can elucidate the relative contributions of the multitude of interactions governing the ADC therapeutic window.
Collapse
Affiliation(s)
- Eshita Khera
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
44
|
Bargh JD, Isidro-Llobet A, Parker JS, Spring DR. Cleavable linkers in antibody–drug conjugates. Chem Soc Rev 2019; 48:4361-4374. [DOI: 10.1039/c8cs00676h] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This tutorial review summarises the advances in the field of cleavable linker technologies for antibody–drug conjugates (ADCs).
Collapse
Affiliation(s)
| | | | - Jeremy S. Parker
- Early Chemical Development
- Pharmaceutical Sciences
- IMED Biotech Unit
- AstraZeneca
- Macclesfield
| | - David R. Spring
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| |
Collapse
|
45
|
Maso K, Grigoletto A, Vicent MJ, Pasut G. Molecular platforms for targeted drug delivery. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:1-50. [DOI: 10.1016/bs.ircmb.2019.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Giansanti F, Capone E, Ponziani S, Piccolo E, Gentile R, Lamolinara A, Di Campli A, Sallese M, Iacobelli V, Cimini A, De Laurenzi V, Lattanzio R, Piantelli M, Ippoliti R, Sala G, Iacobelli S. Secreted Gal-3BP is a novel promising target for non-internalizing Antibody-Drug Conjugates. J Control Release 2018; 294:176-184. [PMID: 30553852 DOI: 10.1016/j.jconrel.2018.12.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022]
Abstract
Galectin-3-binding protein (Gal-3BP) has been identified as a cancer and metastasis-associated, secreted protein that is expressed by the large majority of cancers. The present study describes a special type of non-internalizing antibody-drug-conjugates that specifically target Gal-3BP. Here, we show that the humanized 1959 antibody, which specifically recognizes secreted Gal-3BP, selectively localized around tumor but not normal cells. A site specific disulfide linkage with thiol-maytansinoids to unpaired cysteine residues of 1959, resulting in a drug-antibody ratio of 2, yielded an ADC product, which cured A375m melanoma bearing mice. ADC products based on the non-internalizing 1959 antibody may be useful for the treatment of several human malignancies, as the cognate antigen is abundantly expressed and secreted by several cancers, while being present at low levels in most normal adult tissues.
Collapse
Affiliation(s)
| | - Emily Capone
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Sara Ponziani
- Department MESVA, University of L'Aquila, 67100 Coppito, Italy; MediaPharma s.r.l., Via della Colonnetta 50/A, 66100 Chieti, Italy
| | - Enza Piccolo
- MediaPharma s.r.l., Via della Colonnetta 50/A, 66100 Chieti, Italy
| | - Roberta Gentile
- MediaPharma s.r.l., Via della Colonnetta 50/A, 66100 Chieti, Italy
| | - Alessia Lamolinara
- Department of Medicine and Aging Cesi-Met, Via Polacchi 11, 66100 Chieti, Italy
| | - Antonella Di Campli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Michele Sallese
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Valentina Iacobelli
- Department of Gynecology & Obstetrics, Sapienza University of Rome, 00100 Rome, Italy
| | | | - Vincenzo De Laurenzi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Rossano Lattanzio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Mauro Piantelli
- MediaPharma s.r.l., Via della Colonnetta 50/A, 66100 Chieti, Italy
| | | | - Gianluca Sala
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy; MediaPharma s.r.l., Via della Colonnetta 50/A, 66100 Chieti, Italy.
| | | |
Collapse
|
47
|
Deonarain MP. Miniaturised 'antibody'-drug conjugates for solid tumours? DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 30:47-53. [PMID: 30553520 DOI: 10.1016/j.ddtec.2018.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 06/09/2023]
Abstract
With Antibody-Drug Conjugate strategies firmly focussed on the precise conjugation to the large protein Immunoglobulin-G format, it is easy to miss the more recent technological innovations in small-format drug conjugates. Here, the targeting ligand can be at 50-95% reduced in size, or even smaller if peptidic in nature. Antibody domains or alternative binding scaffolds, chemically-modified with ultra-potent cytotoxic payloads offer an alternative approach for oncology therapeutics, promising a wider therapeutic window by virtue of superior solid tumour penetration properties and more rapid system clearance. Many of the traditional ADC concepts still apply, but as these miniaturised ADCs enter the clinic over the next 2-3 years, we will learn whether these new features translate to patient benefits.
Collapse
Affiliation(s)
- Mahendra P Deonarain
- Antikor Biopharma Ltd, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, UK; Dept. of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
48
|
Richards DA. Exploring alternative antibody scaffolds: Antibody fragments and antibody mimics for targeted drug delivery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 30:35-46. [PMID: 30553519 DOI: 10.1016/j.ddtec.2018.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 05/20/2023]
Abstract
The field of targeted therapeutics has benefitted immeasurably from the development of high-affinity antibodies. These important ligands have facilitated the development of effective therapies, particularly when conjugated to potent cytotoxic payloads i.e. in antibody-drug conjugates (ADCs). The success of ADCs is evidenced by rapid adoption within the pharmaceuticals community; many major companies have dedicated ADC research programmes. However, despite the advantages, the field of ADCs has failed to live up to its full potential. Studies have emerged suggesting that traditional IgG scaffolds may not be the optimal format for targeted payload delivery. In response, the protein engineering community has begun to explore alternative high-binding protein scaffolds as antibody mimics. In this short review I will summarise the generation, modification, and application of emerging antibody fragments and synthetic antibody mimics, with a focus on their use as drug carriers. The review aims to highlight the advantages of antibody mimics, and how they could be employed to overcome the issues and limitations of traditional ADCs.
Collapse
Affiliation(s)
- Daniel A Richards
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
49
|
Cazzamalli S, Figueras E, Pethő L, Borbély A, Steinkühler C, Neri D, Sewald N. In Vivo Antitumor Activity of a Novel Acetazolamide-Cryptophycin Conjugate for the Treatment of Renal Cell Carcinomas. ACS OMEGA 2018; 3:14726-14731. [PMID: 30533574 PMCID: PMC6276201 DOI: 10.1021/acsomega.8b02350] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/25/2018] [Indexed: 06/09/2023]
Abstract
Traditional chemotherapeutics used in cancer therapy do not preferentially accumulate in tumor tissues. The conjugation to delivery vehicles like antibodies or small molecules has been proposed as a strategy to increase the tumor uptake and improve the therapeutic window of these drugs. Here, we report the synthesis and the biological evaluation of a novel small molecule-drug conjugate (SMDC) comprising a high-affinity bidentate acetazolamide derivative, targeting carbonic anhydrase IX (CAIX), and cryptophycin, a potent microtubule destabilizer. The biological activity of the novel SMDC was evaluated in vitro, measuring binding to the CAIX antigen by surface plasmon resonance and cytotoxicity against SKRC-52 cells. In vivo studies showed a delayed growth of tumors in nude mice bearing SKRC-52 renal cell carcinomas.
Collapse
Affiliation(s)
- Samuele Cazzamalli
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Eduard Figueras
- Department
of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Lilla Pethő
- Department
of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
- MTA-ELTE
Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, H-1117 Budapest, Hungary
| | - Adina Borbély
- Department
of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | | | - Dario Neri
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Norbert Sewald
- Department
of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
50
|
Staudacher AH, Li Y, Liapis V, Hou JJC, Chin D, Dolezal O, Adams TE, van Berkel PH, Brown MP. APOMAB Antibody–Drug Conjugates Targeting Dead Tumor Cells are Effective In Vivo. Mol Cancer Ther 2018; 18:335-345. [DOI: 10.1158/1535-7163.mct-18-0842] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/05/2018] [Accepted: 11/05/2018] [Indexed: 11/16/2022]
|