1
|
Song S, Qiu X, Huang S, Tian H, Pu R, Huang J, Su J, Tang YL, Huang L, Luo X, He W, Ni Q, Zhang W. Cystine-Modified Lignin-Copper Coordination Nanocarriers Improve the Therapeutic Efficacy of Tyrosine Kinase Inhibition via Cuproptosis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9074-9086. [PMID: 39874587 DOI: 10.1021/acsami.4c20305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The clinical application of tyrosine kinase inhibitors (TKIs) is rapidly growing and has emerged as a cornerstone in the treatment of both solid tumors and hematologic malignancies. However, resistance to TKI targets and disease progression remain inevitable. Nanocarrier-mediated delivery has emerged as a promising strategy to overcome the limitations of the TKI application. We utilized the facile modification of lignin polyhydroxyl groups to synthesize cystine-grafted lignin-copper coordinated nanoparticles for TKI delivery via the Mannich reaction. The materials exhibited a stable, uniform morphology and effectively encapsulated and delivered a variety of TKI inhibitors. Moreover, we optimized the fabrication process and found that the material could release the encapsulated drug in response to both pH and GSH. These nanoparticles significantly enhanced the therapeutic activity of TKIs both in vitro and in vivo through cuproptosis while demonstrating good biosafety. We propose a novel strategy for the targeted delivery of TKI inhibitors by combining cuproptosis with modified lignin. This approach not only offers new strategies for the clinical application of TKIs but also provides novel insights and inspiration for the modified use of lignin.
Collapse
Affiliation(s)
- Shiyao Song
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xingfeng Qiu
- Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Shaoqing Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Huixuan Tian
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ruihan Pu
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jingyi Huang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jiayin Su
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Department of Pediatrics, The University of Hongkong-Shenzhen Hospital, Shenzhen 518000, China
| | - Yan-Lai Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Libin Huang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xuequn Luo
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Qingfeng Ni
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P. R. China
| | - Weijing Zhang
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, Guangdong 510060, P. R. China
| |
Collapse
|
2
|
El-Sheshtawy AM, Werida RH, Bahgat MH, El-Etreby S, El-Bassiouny NA. Pharmacogenomic insights: IL-23R and ATG-10 polymorphisms in Sorafenib response for hepatocellular carcinoma. Clin Exp Med 2025; 25:51. [PMID: 39921803 PMCID: PMC11807022 DOI: 10.1007/s10238-025-01576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/23/2025] [Indexed: 02/10/2025]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Sorafenib is the first FDA-approved systemic therapy for advanced HCC. This study investigates the influence of IL-23R (rs7517847) and ATG-10 (rs10514231) genetic polymorphisms on Sorafenib response, survival outcomes, average tolerable dose, and adverse events. This prospective open-label cohort study included 100 HCC patients, assessing IL-23R and ATG-10 genotypes via real-time polymerase chain reaction (RT-PCR). Patient's responses were evaluated using modified RECIST criteria. Statistical analyses evaluated the association of genetic variants with response, progression-free survival (PFS), overall survival (OS), average tolerable Sorafenib dose, and adverse events. IL-23R TT carriers had the highest Sorafenib response rate (80%) compared to GT (13.3%) and GG (6.7%) (P = 0.021), while ATG-10 TT carriers had a 13.9-fold increased response likelihood (P = 0.001). The T allele in ATG-10 significantly predicted longer PFS (P = 0.025) and OS (P = 0.011), suggesting a potential prognostic role. IL-23R GG carriers received significantly higher Sorafenib doses than TT (P = 0.0174) and GT (P = 0.0227), whereas ATG-10 had no effect on dosage. However, its CT genotype was significantly associated with a higher risk of Hand-Foot Syndrome (P = 0.012), and independent of dose (P = 0.0018). IL-23R and ATG-10 polymorphisms influence Sorafenib response, survival, and tolerability in HCC patients. Genetic screening may improve personalized treatment strategies by optimizing Sorafenib efficacy and minimizing toxicity.This trial was registered on clinicaltrials.gov with registration number NCT06030895, registered on "September 11th, 2023," retrospectively.
Collapse
Affiliation(s)
- Asmaa M El-Sheshtawy
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.
| | - Rehab H Werida
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Monir Hussein Bahgat
- Department of Hepatology and Gastroenterology, Mansoura Specialized Medical Hospital, Mansoura, Egypt
| | - Shahira El-Etreby
- Department of Hepatology and Gastroenterology, Mansoura Specialized Medical Hospital, Mansoura, Egypt
| | - Noha A El-Bassiouny
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
3
|
Li J, Wang J, Chen Z. Emerging role of exosomes in cancer therapy: progress and challenges. Mol Cancer 2025; 24:13. [PMID: 39806451 PMCID: PMC11727182 DOI: 10.1186/s12943-024-02215-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025] Open
Abstract
This review highlights recent progress in exosome-based drug delivery for cancer therapy, covering exosome biogenesis, cargo selection mechanisms, and their application across multiple cancer types. As small extracellular vesicles, exosomes exhibit high biocompatibility and low immunogenicity, making them ideal drug delivery vehicles capable of efficiently targeting cancer cells, minimizing off-target damage and side effects. This review aims to explore the potential of exosomes in cancer therapy, with a focus on applications in chemotherapy, gene therapy, and immunomodulation. Additionally, challenges related to exosome production and standardization are analyzed, highlighting the importance of addressing these issues for their clinical application. In conclusion, exosome-based drug delivery systems offer promising potential for future cancer therapies. Further research should aim to enhance production efficiency and facilitate clinical translation, paving the way for innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Jiale Li
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Jiachong Wang
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
| | - Zigui Chen
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
| |
Collapse
|
4
|
Gawi Ermi A, Sarkar D. Resistance to Tyrosine Kinase Inhibitors in Hepatocellular Carcinoma (HCC): Clinical Implications and Potential Strategies to Overcome the Resistance. Cancers (Basel) 2024; 16:3944. [PMID: 39682130 DOI: 10.3390/cancers16233944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, and the development of effective treatment strategies remains a significant challenge in the management of advanced HCC patients. The emergence of tyrosine kinase inhibitors (TKIs) has been a significant advancement in the treatment of HCC, as these targeted therapies have shown promise in prolonging the survival of patients with advanced disease. Although immunotherapy is currently considered as the first line of treatment for advanced HCC patients, many such patients do not meet the clinical criteria to be eligible for immunotherapy, and in many parts of the world there is still lack of accessibility to immunotherapy. As such, TKIs still serve as the first line of treatment and play a major role in the treatment repertoire for advanced HCC patients. However, the development of resistance to these agents is a major obstacle that must be overcome. In this review, we explore the underlying mechanisms of resistance to TKIs in HCC, the clinical implications of this resistance, and the potential strategies to overcome or prevent the emergence of resistance.
Collapse
Affiliation(s)
- Ali Gawi Ermi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
5
|
Zhou Q, Tao C, Ge Y, Yuan J, Pan F, Lin X, Wang R. A novel single-cell model reveals ferroptosis-associated biomarkers for individualized therapy and prognostic prediction in hepatocellular carcinoma. BMC Biol 2024; 22:133. [PMID: 38853238 PMCID: PMC11163722 DOI: 10.1186/s12915-024-01931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a prevalent malignancy with a pressing need for improved therapeutic response and prognosis prediction. This study delves into a novel predictive model related to ferroptosis, a regulated cell death mechanism disrupting metabolic processes. RESULTS Single-cell sequencing data analysis identified subpopulations of HCC cells exhibiting activated ferroptosis and distinct gene expression patterns compared to normal tissues. Utilizing the LASSO-Cox algorithm, we constructed a model with 10 single-cell biomarkers associated with ferroptosis, namely STMN1, S100A10, FABP5, CAPG, RGCC, ENO1, ANXA5, UTRN, CXCR3, and ITM2A. Comprehensive analyses using these biomarkers revealed variations in immune infiltration, tumor mutation burden, drug sensitivity, and biological functional profiles between risk groups. Specific associations were established between particular immune cell subtypes and certain gene expression patterns. Treatment response analyses indicated potential benefits from anti-tumor immune therapy for the low-risk group and chemotherapy advantages for the high-risk group. CONCLUSIONS The integration of this single-cell level model with clinicopathological features enabled accurate overall survival prediction and effective risk stratification in HCC patients. Our findings illuminate the potential of ferroptosis-related genes in tailoring therapy and prognosis prediction for HCC, offering novel insights into the intricate interplay among ferroptosis, immune response, and HCC progression.
Collapse
Affiliation(s)
- Qiong Zhou
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210093, PR China
| | - Chunyu Tao
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210093, PR China
| | - Yuli Ge
- Department of Medical Oncology, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210023, PR China
| | - Jiakai Yuan
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210093, PR China
| | - Fan Pan
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210093, PR China
| | - Xinrong Lin
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210093, PR China
| | - Rui Wang
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210093, PR China.
| |
Collapse
|
6
|
Chava S, Ekmen N, Ferraris P, Aydin Y, Moroz K, Wu T, Thung SN, Dash S. Mechanisms of Sorafenib Resistance in HCC Culture Relate to the Impaired Membrane Expression of Organic Cation Transporter 1 (OCT1). J Hepatocell Carcinoma 2024; 11:839-855. [PMID: 38741679 PMCID: PMC11090194 DOI: 10.2147/jhc.s452152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Sorafenib, an FDA-approved drug for advanced hepatocellular carcinoma (HCC) treatment, encounters resistance in many patients. Deciphering the mechanisms underlying sorafenib resistance is crucial for devising alternative strategies to overcome it. Aim This study aimed to investigate sorafenib resistance mechanisms using a diverse panel of HCC cell lines. Methods HCC cell lines were subjected to continuous sorafenib treatment, and stable cell lines (Huh 7.5 and Huh 7PX) exhibiting sustained growth in its presence were isolated. The investigation of drug resistance mechanisms involved a comparative analysis of drug-targeted signal transduction pathways (EGFR/RAF/MEK/ERK/Cyclin D), sorafenib uptake, and membrane expression of the drug uptake transporter. Results HCC cell lines (Huh 7.5 and Huh 7PX) with a higher IC50 (10μM) displayed a more frequent development of sorafenib resistance compared to those with a lower IC50 (2-4.8μM), indicating a potential impact of IC50 variation on initial treatment response. Our findings reveal that activated overexpression of Raf1 kinases and impaired sorafenib uptake, mediated by reduced membrane expression of organic cation transporter-1 (OCT1), contribute to sorafenib resistance in HCC cultures. Stable expression of the drug transporter OCT1 through cDNA transfection or adenoviral delivery of OCT1 mRNA increased sorafenib uptake and successfully overcame sorafenib resistance. Additionally, consistent with sorafenib resistance in HCC cultures, cirrhotic liver-associated human HCC tumors often exhibited impaired membrane expression of OCT1 and OCT3. Conclusion Intrinsic differences among HCC cell clones, affecting sorafenib sensitivity at the expression level of Raf kinases, drug uptake, and OCT1 transporters, were identified. This study underscores the potential of HCC tumor targeted OCT1 expression to enhance sorafenib treatment response.
Collapse
Affiliation(s)
- Srinivas Chava
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Nergiz Ekmen
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Pauline Ferraris
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Yucel Aydin
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Krzysztof Moroz
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Swan N Thung
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| |
Collapse
|
7
|
Ladd AD, Duarte S, Sahin I, Zarrinpar A. Mechanisms of drug resistance in HCC. Hepatology 2024; 79:926-940. [PMID: 36680397 DOI: 10.1097/hep.0000000000000237] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/21/2022] [Indexed: 01/22/2023]
Abstract
HCC comprises ∼80% of primary liver cancer. HCC is the only major cancer for which death rates have not improved over the last 10 years. Most patients are diagnosed with advanced disease when surgical and locoregional treatments are not feasible or effective. Sorafenib, a multikinase inhibitor targeting cell growth and angiogenesis, was approved for advanced unresectable HCC in 2007. Since then, other multikinase inhibitors have been approved. Lenvatinib was found to be noninferior to sorafenib as a first-line agent. Regorafenib, cabozantinib, and ramucirumab were shown to prolong survival as second-line agents. Advances in immunotherapy for HCC have also added hope for patients, but their efficacy remains limited. A large proportion of patients with advanced HCC gain no long-term benefit from systemic therapy due to primary and acquired drug resistance, which, combined with its rising incidence, keeps HCC a highly fatal disease. This review summarizes mechanisms of primary and acquired resistance to therapy and includes methods for bypassing resistance. It addresses recent advancements in immunotherapy, provides new perspectives on the linkage between drug resistance and molecular etiology of HCC, and evaluates the role of the microbiome in drug resistance. It also discusses alterations in signaling pathways, dysregulation of apoptosis, modulations in the tumor microenvironment, involvement of cancer stem cells, changes in drug metabolism/transport, tumor hypoxia, DNA repair, and the role of microRNAs in drug resistance. Understanding the interplay among these factors will provide guidance on the development of new therapeutic strategies capable of improving patient outcomes.
Collapse
Affiliation(s)
- Alexandra D Ladd
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Sergio Duarte
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ilyas Sahin
- Division of Hematology/Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ali Zarrinpar
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
8
|
Cheng T, Zhou C, Bian S, Sobeck K, Liu Y. Coordinated activation of DNMT3a and TET2 in cancer stem cell-like cells initiates and sustains drug resistance in hepatocellular carcinoma. Cancer Cell Int 2024; 24:110. [PMID: 38528605 PMCID: PMC10962188 DOI: 10.1186/s12935-024-03288-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Resistance to targeted therapies represents a significant hurdle to successfully treating hepatocellular carcinoma (HCC). While epigenetic abnormalities are critical determinants of HCC relapse and therapeutic resistance, the underlying mechanisms are poorly understood. We aimed to address whether and how dysregulated epigenetic regulators have regulatory and functional communications in establishing and maintaining drug resistance. METHODS HCC-resistant cells were characterized by CCK-8, IncuCyte Live-Cell analysis, flow cytometry and wound-healing assays. Target expression was assessed by qPCR and Western blotting. Global and promoter DNA methylation was measured by dotblotting, methylated-DNA immunoprecipitation and enzymatic digestion. Protein interaction and promoter binding of DNMT3a-TET2 were investigated by co-immunoprecipitation, ChIP-qPCR. The regulatory and functional roles of DNMT3a and TET2 were studied by lentivirus infection and puromycin selection. The association of DNMT and TET expression with drug response and survival of HCC patients was assessed by public datasets, spearman correlation coefficients and online tools. RESULTS We identified the coordination of DNMT3a and TET2 as an actionable mechanism of drug resistance in HCC. The faster growth and migration of resistant HCC cells were attributed to DNMT3a and TET2 upregulation followed by increased 5mC and 5hmC production. HCC patients with higher DNMT3a and TET2 had a shorter survival time with a less favorable response to sorafenib therapy than those with lower expression. Cancer stem cell-like cells (CSCs) displayed DNMT3a and TET2 overexpression, which were insensitive to sorafenib. Either genetic or pharmacological suppression of DNMT3a or/and TET2 impaired resistant cell growth and oncosphere formation, and restored sorafenib sensitivity. Mechanistically, DNMT3a did not establish a regulatory circuit with TET2, but formed a complex with TET2 and HDAC2. This complex bound the promoters of oncogenes (i.e., CDK1, CCNA2, RASEF), and upregulated them without involving promoter DNA methylation. In contrast, DNMT3a-TET2 crosstalk silences tumor suppressors (i.e., P15, SOCS2) through a corepressor complex with HDAC2 along with increased promoter DNA methylation. CONCLUSIONS We demonstrate that DNMT3a and TET2 act coordinately to regulate HCC cell fate in DNA methylation-dependent and -independent manners, representing strong predictors for drug resistance and poor prognosis, and thus are promising therapeutic targets for refractory HCC.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Hepatobiliary and Pancreas Surgery, First Hospital of Jilin University, Changchun, Jilin, 130021, P.R. China
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Changli Zhou
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
- MetroHealth Research Institute, Case Western Reserve University, Cleveland, OH, 44109, USA
| | - Sicheng Bian
- MetroHealth Research Institute, Case Western Reserve University, Cleveland, OH, 44109, USA
| | - Kelsey Sobeck
- The Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yahui Liu
- Department of Hepatobiliary and Pancreas Surgery, First Hospital of Jilin University, Changchun, Jilin, 130021, P.R. China.
| |
Collapse
|
9
|
Gao J, Lu Q, Zhong J, Li Z, Pan L, Feng C, Tang S, Wang X, Tao Y, Zhou X, Wang Q. Identification and validation of an H2AZ1-based index model: a novel prognostic tool for hepatocellular carcinoma. Aging (Albany NY) 2024; 16:2542-2562. [PMID: 38305811 PMCID: PMC10911386 DOI: 10.18632/aging.205497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024]
Abstract
The H2A.Z variant histone 1 (H2AZ1) is aberrantly expressed in various tumors, correlating with an unfavorable prognosis. However, its role in hepatocellular carcinoma (HCC) remains unclear. We aimed to elucidate the pathways affected by H2AZ1 and identify promising therapeutic targets for HCC. Following bioinformatic analysis of gene expression and clinical data from The Cancer Genome Atlas and Gene Expression Omnibus database, we found 6,344 dysregulated genes related to H2AZ1 overexpression in HCC tissues (P < 0.05). We performed weighted gene co-expression network analysis to identify the gene module most related to H2AZ1. The H2AZ1-based index was further developed using Cox regression analysis, which revealed that the poor prognosis in the high H2AZ1-based index group could be attributed to elevated tumor stemness (P < 0.05). Moreover, the clinical model showed good prognostic potential (AUC > 0.7). We found that H2AZ1 knockdown led to reduced superoxide dismutase (SOD) activity, elevated malondialdehyde (MDA) levels, and increased apoptosis rate in tumor cells (P < 0.001). Thus, we developed an H2AZ1-based index model with the potential to predict the prognosis of patients with HCC. Our findings provide initial evidence that H2AZ1 overexpression plays a pivotal role in HCC initiation and progression.
Collapse
Affiliation(s)
- Jiamin Gao
- Laboratory of Infectious Disease, Nanning Infectious Disease Hospital Affiliated to Guangxi Medical University and The Fourth People’s Hospital of Nanning, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Qinchen Lu
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Jialing Zhong
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhijian Li
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lixin Pan
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Chao Feng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Shaomei Tang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Xi Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Yuting Tao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Xianguo Zhou
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Department of Blood Transfusion, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| |
Collapse
|
10
|
Liu J, Qu H, Hang L, Sun Y, Li W, Chen Y, Li H, Wen W, Feng Y, Jiang G. Dual-targeting nanotheranostics for MRI-guided enhanced chemodynamic therapy of hepatoma via regulating the tumor microenvironment. Dalton Trans 2023; 52:16433-16441. [PMID: 37872809 DOI: 10.1039/d3dt02715e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chemodynamic therapy (CDT), as a reactive oxygen species (ROS)-based therapeutic modality, has attracted much attention in recent years. However, the insufficient therapeutic effect of CDT is due to the antioxidant system in the tumor microenvironment, such as high levels of glutathione (GSH). In this study, we developed a biological/physical dual-targeting nanotheranostic agent (relaxation rate, r1: 6.3 mM-1 s-1 and r2: 13.11 mM-1 s-1) for enhanced CDT of SMCC-7721 tumors. This nanotheranostic agent is composed of a homologous tumor cell membrane (TCM), magnetic ferric oxide, and manganese oxide and is denoted as FM@TCM nanoparticles (NPs). A favorable effect of in vitro CDT on SMCC-7721 cells (IC50: 20 μg mL-1) is demonstrated, attributed to the Fenton reaction and oxidative stress resulting from the reduction of the GSH level. In vivo T1/T2 magnetic resonance imaging (MRI) confirms that the tumor accumulation of FM@TCM NPs is promoted by concurrent bioactive targeting of the homologous TCM and physico-magnetic targeting of tumor tissues with an external magnetic field. Impressive chemodynamic therapeutic effects on SMCC-7721 tumors are demonstrated through the catalysis of endogenous hydrogen peroxide and depletion of GSH to generate high levels of ROS. Dual-targeting FM@TCM NPs inhibit SMCC-7721 tumor growth (∼90.9%) in vivo without any biotoxicity. This nanotheranostic agent has great potential for use in MRI-guided CDT.
Collapse
Affiliation(s)
- Jinwu Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510282, P. R. China.
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China.
| | - Hong Qu
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China.
- School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Lifeng Hang
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China.
| | - Yiqiang Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Wuming Li
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China.
| | - Yiyu Chen
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China.
| | - Hong Li
- School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Wei Wen
- College of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, P. R. China.
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510282, P. R. China.
| | - Guihua Jiang
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China.
- School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
11
|
Zhou C, Sun BY, Zhou PY, Yang ZF, Wang ZT, Liu G, Gan W, Wang Z, Zhou J, Fan J, Yi Y, Ren N, Qiu SJ. MAIT cells confer resistance to Lenvatinib plus anti-PD1 antibodies in hepatocellular carcinoma through TNF-TNFRSF1B pathway. Clin Immunol 2023; 256:109770. [PMID: 37717672 DOI: 10.1016/j.clim.2023.109770] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 08/20/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
The combination of antiangiogenic agents and immune checkpoint inhibitors is more efficient than monotherapy in the management of hepatocellular carcinoma (HCC). Lenvatinib plus anti-PD1 antibodies have become the mainstay in HCC treatment. However, more than half the patients with HCC are non-responsive, and the mechanisms underlying drug resistance are unknown. To address this issue, we performed single-cell sequencing on samples from six HCC patients, aiming to explore cellular signals and molecular pathways related to the effect of lenvatinib plus anti-PD1 antibody treatment. GSVA analysis revealed that treatment with lenvatinib plus anti-PD1 antibody led to an increase in the TNF-NFKB pathway across all immune cell types, as compared to the non-treatment group. Mucosal-associated invariant T (MAIT) cells were found to secrete TNF, which activates TNFRSF1B on regulatory T cells, thereby promoting immunosuppression. Additionally, TNFSF9 was highly expressed in anticancer immune cells, including CD8+ effector T cells, MAIT, and γδ T cells in the treatment group. We also detected CD3+ macrophages in both HCC and pan-cancer tissues. Overall, our findings shed light on the potential mechanisms behind the effectiveness of lenvatinib plus anti-PD1 antibody treatment in HCC patients. By understanding these mechanisms better, we may be able to develop more effective treatment strategies for patients who do not respond to current therapies.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bao-Ye Sun
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pei-Yun Zhou
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhang-Fu Yang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhu-Tao Wang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gao Liu
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Gan
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Wang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China..
| | - Ning Ren
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.; Institute of Fudan Minhang Academic Health System, and Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer, Minhang Hospital & AHS, Fudan University, Shanghai, China.
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China..
| |
Collapse
|
12
|
Gouda MA, Janku F, Somaiah N, Hunt KK, Yedururi S, Subbiah V. Multi-disciplinary management of recurrent gastrointestinal stromal tumor harboring KIT exon 11 mutation with the switch-control kinase inhibitor ripretinib and surgery. Oncoscience 2023; 10:38-43. [PMID: 37736254 PMCID: PMC10511119 DOI: 10.18632/oncoscience.586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Ripretinib is a tyrosine kinase inhibitor that was approved by the United States FDA in 2020 for treatment of advanced gastrointestinal stromal tumor (GIST) in patients who received prior treatment with three or more tyrosine kinase inhibitors. In this case report, we show the durable clinical benefit achieved in a patient with GIST by using ripretinib and repeated timely surgical resection of limited disease progression. The total time on ripretinib was 43 months which is longer than the current reported data from ripretinib clinical trials. Such approach for using multi-disciplinary disease management can improve the durability of response to tyrosine kinase inhibitors, including ripretinib, and associated clinical outcomes.
Collapse
Affiliation(s)
- Mohamed A. Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Filip Janku
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kelly K. Hunt
- Departments of Breast Surgical Oncology and Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sireesha Yedururi
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Sarah Cannon Research Institute, Nashville, TN 37203, USA
| |
Collapse
|
13
|
Zhou Q, Tao C, Yuan J, Pan F, Wang R. Ferroptosis, a subtle talk between immune system and cancer cells: To be or not to be? Biomed Pharmacother 2023; 165:115251. [PMID: 37523985 DOI: 10.1016/j.biopha.2023.115251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
Ferroptosis, an established form of programmed cell death discovered in 2012, is characterized by an imbalance in iron metabolism, lipid metabolism, and antioxidant metabolism. Activated CD8 + T cells can trigger ferroptosis in tumor cells by releasing interferon-γ, which initiates the ferroptosis program. Despite the remarkable progress made in treating various tumors with immunotherapy, such as anti-PD1/PDL1, there are still significant challenges to overcome, including limited treatment options and drug resistance. In this review, we exam the potential biological significance of the ferroptosis phenotype using bioinformatics and review the latest advancements in understanding the mechanism of ferroptosis-mediated anti-tumor immunotherapy. Furthermore, we revisit the host immune system, immune microenvironment, ferroptotic defense system, metabolic reprogramming, and key genes that regulate the occurrence and resistance of ferroptosis of tumor cell. Additionally, several immune-combined ferroptosis treatment strategies were put forward to improve immunotherapy efficacy and to provide new insights into reversing anti-tumor immune drug resistance.
Collapse
Affiliation(s)
- Qiong Zhou
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| | - Chunyu Tao
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| | - Jiakai Yuan
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| | - Fan Pan
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| |
Collapse
|
14
|
Wang Z, Chen X, Zhang J, Chen X, Peng J, Huang W. Based on disulfidptosis-related glycolytic genes to construct a signature for predicting prognosis and immune infiltration analysis of hepatocellular carcinoma. Front Immunol 2023; 14:1204338. [PMID: 37680641 PMCID: PMC10482091 DOI: 10.3389/fimmu.2023.1204338] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) comprises several distinct molecular subtypes with varying prognostic implications. However, a comprehensive analysis of a prognostic signature for HCC based on molecular subtypes related to disulfidptosis and glycolysis, as well as associated metabolomics and the immune microenvironment, is yet to be fully explored. Methods Based on the differences in the expression of disulfide-related glycolytic genes (DRGGs), patients with HCC were divided into different subtypes by consensus clustering. Establish and verify a risk prognosis signature. Finally, the expression level of the key gene SLCO1B1 in the signature was evaluated using immunohistochemistry (IHC) and quantitative real-time PCR (qRT-PCR) in HCC. The association between this gene and immune cells was explored using multiplex immunofluorescence. The biological functions of the cell counting kit-8, wound healing, and colony formation assays were studied. Results Different subtypes of patients have specific clinicopathological features, prognosis and immune microenvironment. We identified seven valuable genes and constructed a risk-prognosis signature. Analysis of the risk score revealed that compared to the high-risk group, the low-risk group had a better prognosis, higher immune scores, and more abundant immune-related pathways, consistent with the tumor subtypes. Furthermore, IHC and qRT-PCR analyses showed decreased expression of SLCO1B1 in HCC tissues. Functional experiments revealed that SLCO1B1 overexpression inhibited the proliferation, migration, and invasion of HCC cells. Conclusion We developed a prognostic signature that can assist clinicians in predicting the overall survival of patients with HCC and provides a reference value for targeted therapy.
Collapse
Affiliation(s)
- Zhijian Wang
- Department of General Practice, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuenuo Chen
- Department of Infectious Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Zhang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuanxin Chen
- Department of Infectious Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiayi Peng
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxiang Huang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Zhou C, Yang ZF, Sun BY, Yi Y, Wang Z, Zhou J, Fan J, Gan W, Ren N, Qiu SJ. Lenvatinib Induces Immunogenic Cell Death and Triggers Toll-Like Receptor-3/4 Ligands in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:697-712. [PMID: 37138764 PMCID: PMC10149778 DOI: 10.2147/jhc.s401639] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
Purpose Immunogenic cell death (ICD) is a cell death modality that plays a vital role in anticancer therapy. In this study, we investigated whether lenvatinib induces ICD in hepatocellular carcinoma and how it affects cancer cell behavior. Patients and Methods Hepatoma cells were treated with 0.5 μM lenvatinib for two weeks, and damage-associated molecular patterns were assessed using the expression of calreticulin, high mobility group box 1, and ATP secretion. Transcriptome sequencing was performed to investigate the effects of lenvatinib on hepatocellular carcinoma. Additionally, CU CPT 4A and TAK-242 were used to inhibit TLR3 and TLR4 expressions, respectively. Flow cytometry was used to assess PD-L1 expression. Kaplan-Meier and Cox regression models were applied for prognosis assessment. Results After treatment with lenvatinib, there was a significant increase in ICD-associated damage-associated molecular patterns, such as calreticulin on the cell membrane, extracellular ATP, and high mobility group box 1, in hepatoma cells. Following treatment with lenvatinib, there was a significant increase in the downstream immunogenic cell death receptors, including TLR3 and TLR4. Furthermore, lenvatinib increased the expression of PD-L1, which was later inhibited by TLR4. Interestingly, inhibiting TLR3 in MHCC-97H and Huh7 cells strengthened their proliferative capacity. Moreover, TLR3 inhibition was identified as an independent risk factor for overall survival and recurrence-free survival in patients with hepatocellular carcinoma. Conclusion Our study revealed that lenvatinib induced ICD in hepatocellular carcinoma and upregulated PD-L1 expression through TLR4 while promoting cell apoptosis through TLR3. Antibodies against PD-1/PD-L1 can enhance the efficacy of lenvatinib in the management of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Zhang-Fu Yang
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Bao-Ye Sun
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yong Yi
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Zheng Wang
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jia Fan
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Wei Gan
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Ning Ren
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Institute of Fudan Minhang Academic Health System & Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Minhang Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Correspondence: Shuang-Jian Qiu, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200030, People’s Republic of China, Tel +86 13916625289, Email
| |
Collapse
|
16
|
Irawan A, Prabowo E, Riwanto I, Atmodjo WL. Anti-angiogenic effect of the combination of low-dose sorafenib and EGCG in HCC-induced Wistar rats. F1000Res 2022; 11:289. [PMID: 36726605 PMCID: PMC9843086 DOI: 10.12688/f1000research.109142.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Sorafenib is a standard drug used for advanced hepatocellular carcinoma but is often resistant and toxic. Its combination with epigallo-3-catechin gallate leads to reduced resistance and toxicity but an equally effective anti-angiogenic effect.Therefore, this study aims to assess the anti-angiogenic effect of standard-dose Sorafenib compared to the combination of low-dose Sorafenib and epigallo-3-catechin gallate. Methods: We conducted an animal study and double-blind, randomized controlled trials. A total of 25 male Wistar rats (7-weeks-old) were randomly divided into four groups, namely Sham (K), Control (O), a combination of low-dose Sorafenib and epigallo-3-catechin gallate group (X1), and standard-dose Sorafenib group (X2). All groups were injected with N-Nitrosodiethylamine 70 mg/kg body weight (BW) intraperitoneally for ten weeks, except the Sham group. After the development of hepatocellular carcinoma, X1 and X2 were treated for two weeks. Subsequently, liver tissues were examined for vascular endothelial growth factor (VEGF) level and microvascular density expression. Results: There was a significant difference (p=0.007) in the level of VEGF between group X1 (low dose Sorafenib + EGCG) and X2 (Standard dose Sorafenib). However, the differences in VEGF levels of group X1 and X2 compared to group O(Control) were significantly lower, with values p=0.000136 and p=0.019, respectively. The expression of microvascular density between groups X1 and X2 was not entirely different. Meanwhile, a significant difference (p<0.05) was discovered when both groups were compared with the control group. Conclusion: The combination of low-dose Sorafenib with epigallo-3-catechin gallate is superior in reducing the level of VEGF compared to standard-dose Sorafenib and is better than the control. Standard-dose Sorafenib and the combination of low-dose Sorafenib and epigallo-3-catechin gallate have similar effectivity in reducing the expression of microvascular density and could prevent resistance and lower toxicity effects.
Collapse
Affiliation(s)
- Andry Irawan
- Department of Digestive Surgery, Diponegoro University, Semarang, Central Java, Indonesia,
| | - Erik Prabowo
- Department of Digestive Surgery, Diponegoro University, Semarang, Central Java, Indonesia
| | - Ignatius Riwanto
- Department of Digestive Surgery, Diponegoro University, Semarang, Central Java, Indonesia
| | | |
Collapse
|
17
|
Yang Q, Xu J, Gu J, Shi H, Zhang J, Zhang J, Chen Z, Fang X, Zhu T, Zhang X. Extracellular Vesicles in Cancer Drug Resistance: Roles, Mechanisms, and Implications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201609. [PMID: 36253096 PMCID: PMC9731723 DOI: 10.1002/advs.202201609] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived nanosized vesicles that mediate cell-to-cell communication via transporting bioactive molecules and thus are critically involved in various physiological and pathological conditions. EVs contribute to different aspects of cancer progression, such as cancer growth, angiogenesis, metastasis, immune evasion, and drug resistance. EVs induce the resistance of cancer cells to chemotherapy, radiotherapy, targeted therapy, antiangiogenesis therapy, and immunotherapy by transferring specific cargos that affect drug efflux and regulate signaling pathways associated with epithelial-mesenchymal transition, autophagy, metabolism, and cancer stemness. In addition, EVs modulate the reciprocal interaction between cancer cells and noncancer cells in the tumor microenvironment (TME) to develop therapy resistance. EVs are detectable in many biofluids of cancer patients, and thus are regarded as novel biomarkers for monitoring therapy response and predicting prognosis. Moreover, EVs are suggested as promising targets and engineered as nanovehicles to deliver drugs for overcoming drug resistance in cancer therapy. In this review, the biological roles of EVs and their mechanisms of action in cancer drug resistance are summarized. The preclinical studies on using EVs in monitoring and overcoming cancer drug resistance are also discussed.
Collapse
Affiliation(s)
- Qiurong Yang
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| | - Jing Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| | - Jianmei Gu
- Departmemt of Clinical Laboratory MedicineNantong Tumor HospitalNantongJiangsu226361China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| | - Jiayin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| | - Jianye Zhang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical PharmacologySchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdong511436China
| | - Zhe‐Sheng Chen
- College of Pharmacy and Health SciencesSt. John's UniversityQueensNY11439USA
| | - Xinjian Fang
- Department of OncologyLianyungang Hospital Affiliated to Jiangsu UniversityLianyungangJiangsu222000China
| | - Taofeng Zhu
- Department of Pulmonary and Critical Care MedicineYixing Hospital affiliated to Jiangsu UniversityYixingJiangsu214200China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| |
Collapse
|
18
|
Li B, Zhang Y, Cao K, Li C, Chen Q, Jiang Y, Luo L, Zuo S. WD
repeat domain 48 promotes hepatocellular carcinoma progression by stabilizing
c‐Myc. J Cell Mol Med 2022; 26:5755-5766. [DOI: 10.1111/jcmm.17583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Bo Li
- Department of Clinical Medicine Guizhou Medical University Guiyang Guizhou China
- Department of Hepatobiliary Surgery The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| | - Ye‐wei Zhang
- Department of Clinical Medicine Guizhou Medical University Guiyang Guizhou China
| | - Kun Cao
- Department of Hepatobiliary Surgery The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| | - Chao Li
- Department of General Surgery The First People's Hospital of Fuquan Fuquan Guizhou China
| | - Qian Chen
- Department of Clinical Medicine Guizhou Medical University Guiyang Guizhou China
| | - Yi‐heng Jiang
- Department of Hepatobiliary Surgery The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| | - Lu‐ling Luo
- Department of Clinical Medicine Guizhou Medical University Guiyang Guizhou China
| | - Shi Zuo
- Department of Clinical Medicine Guizhou Medical University Guiyang Guizhou China
- Department of Hepatobiliary Surgery The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| |
Collapse
|
19
|
Malik IA, Rajput M, Werner R, Fey D, Salehzadeh N, von Arnim CAF, Wilting J. Differential in vitro effects of targeted therapeutics in primary human liver cancer: importance for combined liver cancer. BMC Cancer 2022; 22:1193. [PMCID: PMC9675209 DOI: 10.1186/s12885-022-10247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/29/2022] [Indexed: 11/21/2022] Open
Abstract
The incidence of primary liver tumors, hepatocellular carcinoma (HCC), intrahepatic cholangiocellular carcinoma (ICC), and combined HCC/ICC (cHCC/CC) is increasing. For ICC, targeted therapy exists only for a small subpopulation of patients, while for HCC, Sorafenib and Lenvatinib are in use. Diagnosis of cHCC/CC is a great challenge and its incidence is underestimated, bearing the risk of unintended non-treatment of ICC. Here, we investigated effects of targeted inhibitors on human ICC cell lines (HUH28, RBE, SSP25), in comparison to extrahepatic (E)CC lines (EGI1, CCC5, TFK1), and HCC/hepatoblastoma cell lines (HEP3B, HUH7, HEPG2). Cells were challenged with: AKT inhibitor MK-2206; multikinase inhibitors Sorafenib, Lenvatinib and Dasatinib; PI3-kinase inhibitors BKM-120, Wortmannin, LY294002, and CAL-101; and mTOR inhibitor Rapamycin. Dosage of the substances was based on the large number of published data of recent years. Proliferation was analyzed daily for four days. All cell lines were highly responsive to MK-2206. Thereby, MK-2206 reduced expression of phospho(p)-AKT in all ICC, ECC, and HCC lines, which mostly corresponded to reduction of p-mTOR, whereas p-ERK1/2 was upregulated in many cases. Lenvatinib showed inhibitory effects on the two HCC cell lines, but not on HEPG2, ICCs and ECCs. Sorafenib inhibited proliferation of all cells, except the ECC line CCC5. However, at reduced dosage, we observed increased cell numbers in some ICC experiments. Dasatinib was highly effective especially in ICC cell lines. Inhibitory effects were observed with all four PI3-kinase inhibitors. However, cell type-specific differences were also evident here. Rapamycin was most effective in the two HCC cell lines. Our studies show that the nine inhibitors differentially target ICC, ECC, and HCC/hepatoblastoma lines. Caution should be taken with Lenvatinib and Sorafenib administration in patients with cHCC/CC as the drugs may have no effects on, or might even stimulate, ICC.
Collapse
Affiliation(s)
- Ihtzaz Ahmed Malik
- grid.411984.10000 0001 0482 5331Department of Geriatrics, University Medical Center Goettingen, Waldweg 33, D-37073 Goettingen, Germany
| | - Mansi Rajput
- grid.411984.10000 0001 0482 5331Department of Geriatrics, University Medical Center Goettingen, Waldweg 33, D-37073 Goettingen, Germany
| | - Rieke Werner
- grid.411984.10000 0001 0482 5331Department of Anatomy and Cell Biology, University Medical Center Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany
| | - Dorothea Fey
- grid.411984.10000 0001 0482 5331Department of Geriatrics, University Medical Center Goettingen, Waldweg 33, D-37073 Goettingen, Germany ,grid.411984.10000 0001 0482 5331Department of Anatomy and Cell Biology, University Medical Center Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany
| | - Niloofar Salehzadeh
- grid.411984.10000 0001 0482 5331Department of Geriatrics, University Medical Center Goettingen, Waldweg 33, D-37073 Goettingen, Germany ,grid.411984.10000 0001 0482 5331Department of Anatomy and Cell Biology, University Medical Center Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany
| | - Christine A. F. von Arnim
- grid.411984.10000 0001 0482 5331Department of Geriatrics, University Medical Center Goettingen, Waldweg 33, D-37073 Goettingen, Germany
| | - Jörg Wilting
- grid.411984.10000 0001 0482 5331Department of Anatomy and Cell Biology, University Medical Center Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany
| |
Collapse
|
20
|
Zhao T, Li X, Chen Y, Du J, Chen X, Wang D, Wang L, Zhao S, Wang C, Meng Q, Sun H, Liu K, Wu J. Risk assessment and molecular mechanism study of drug-drug interactions between rivaroxaban and tyrosine kinase inhibitors mediated by CYP2J2/3A4 and BCRP/P-gp. Front Pharmacol 2022; 13:914842. [PMID: 36071847 PMCID: PMC9441481 DOI: 10.3389/fphar.2022.914842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer patients generally has a high risk of thrombotic diseases. However, anticoagulant therapy always aggravates bleeding risks. Rivaroxaban is one of the most widely used direct oral anticoagulants, which is used as anticoagulant treatment or prophylaxis in clinical practice. The present study aimed to systemically estimate the combination safety of rivaroxaban with tyrosine kinase inhibitors (TKIs) based on human cytochrome P450 (CYPs) and efflux transporters and to explore the drug–drug interaction (DDI) mechanisms in vivo and in vitro. In vivo pharmacokinetic experiments and in vitro enzyme incubation assays and bidirectional transport studies were conducted. Imatinib significantly increased the rivaroxaban Cmax value by 90.43% (p < 0.05) and the area under the curve value by 119.96% (p < 0.01) by inhibiting CYP2J2- and CYP3A4-mediated metabolism and breast cancer resistance protein (BCRP)- and P-glycoprotein (P-gp)-mediated efflux transportation in the absorption phase. In contrast, the combination of sunitinib with rivaroxaban reduced the exposure in vivo by 62.32% (p < 0.05) and the Cmax value by 72.56% (p < 0.05). In addition, gefitinib potently inhibited CYP2J2- and CYP3A4-mediated rivaroxaban metabolism with Ki values of 2.99 μΜ and 4.91 μΜ, respectively; however, it almost did not affect the pharmacokinetics of rivaroxaban in vivo. Taken together, clinically significant DDIs were observed in the combinations of rivaroxaban with imatinib and sunitinib. Imatinib increased the bleeding risks of rivaroxaban, while sunitinib had a risk of reducing therapy efficiency. Therefore, more attention should be paid to aviod harmful DDIs in the combinations of rivaroxaban with TKIs.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xuening Li
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yanwei Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jie Du
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaodong Chen
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Dalong Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Liyan Wang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shan Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, China
- *Correspondence: Jingjing Wu,
| |
Collapse
|
21
|
Zhang Z, Li D, Yun H, Tong J, Liu W, Chai K, Zeng T, Gao Z, Xie Y. Opportunities and challenges of targeting c-Met in the treatment of digestive tumors. Front Oncol 2022; 12:923260. [PMID: 35978812 PMCID: PMC9376446 DOI: 10.3389/fonc.2022.923260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
At present, a large number of studies have demonstrated that c-Met generally exerts a crucial function of promoting tumor cells proliferation and differentiation in digestive system tumors. c-Met also mediates tumor progression and drug resistance by signaling interactions with other oncogenic molecules and then activating downstream pathways. Therefore, c-Met is a promising target for the treatment of digestive system tumors. Many anti-tumor therapies targeting c-Met (tyrosine kinase inhibitors, monoclonal antibodies, and adoptive immunotherapy) have been developed in treating digestive system tumors. Some drugs have been successfully applied to clinic, but most of them are defective due to their efficacy and complications. In order to promote the clinical application of targeting c-Met drugs in digestive system tumors, it is necessary to further explore the mechanism of c-Met action in digestive system tumors and optimize the anti-tumor treatment of targeting c-Met drugs. Through reading a large number of literatures, the author systematically reviewed the biological functions and molecular mechanisms of c-Met associated with tumor and summarized the current status of targeting c-Met in the treatment of digestive system tumors so as to provide new ideas for the treatment of digestive system tumors.
Collapse
Affiliation(s)
- Zhengchao Zhang
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Dong Li
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Heng Yun
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Jie Tong
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Wei Liu
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Keqiang Chai
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Tongwei Zeng
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Zhenghua Gao
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- *Correspondence: Yongqiang Xie, ; Zhenghua Gao,
| | - Yongqiang Xie
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- *Correspondence: Yongqiang Xie, ; Zhenghua Gao,
| |
Collapse
|
22
|
Zakaria S, Allam S, El-Sisi AE. Perindopril sensitizes hepatocellular carcinoma to chemotherapy: A possible role of leptin / Wnt/ β-catenin axis with subsequent inhibition of liver cancer stem cells. Saudi Pharm J 2022; 30:1170-1180. [PMID: 36164573 PMCID: PMC9508642 DOI: 10.1016/j.jsps.2022.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death. The major challenge in managing HCC is the resistance to chemotherapy. Leptin hormone is associated with different oncogenic pathways implicated in drug resistance. Angiotensin II was found to decrease the production and secretion of leptin. Objective This study investigated the potential role of an ACEI perindopril as a chemosensitizer agent to sorafenib. Method HCC was induced in mice using a single dose of diethylnitrosamine DENA (200 mg/kg) followed by phenobarbital 0.05% in drinking water for 16 weeks. Mice were then treated with perindopril (1 mg/kg/day), Sorafenib (30 mg/kg/day), or both of them for another four weeks. Leptin, VEGF, MMP-9, Cyclin D1, EpCAM, and β-catenin were measured using immunoassay while Wnt and ALDH1 were assayed using western blotting assay. Results Perindopril whether alone or in combination with sorafenib decrease liver enzymes and preserve the liver architecture. Our study revealed that perindopril significantly increased the antineoplastic, antiangiogenic as well as anti-metastatic effects of sorafenib. This effect was correlated with the downregulation of the leptin / Wnt / β-catenin pathway and overexpression of ALDH1 while downregulation of EpCAM Conclusion This study presents perindopril as a potential chemosensitizer agent that works through decreased expression of the leptin / Wnt / β-catenin pathway.
Collapse
Affiliation(s)
- Sherin Zakaria
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kaferelsheikh University, 33516, Kaferelsheikh, Egypt
- Corresponding author.at: Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kaferelsheikh University, Kafer elsheikh, Egypt
| | - Shady Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, 32511, Menoufia, Egypt
| | - Alaa E. El-Sisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, 31512, Tanta, Egypt
| |
Collapse
|
23
|
Swetha M, Keerthana CK, Rayginia TP, Nath LR, Haritha NH, Shabna A, Kalimuthu K, Thangarasu AK, Aiswarya SU, Jannet S, Pillai S, Harikumar KB, Sundaram S, Anto NP, Wu DH, Lankalapalli RS, Towner R, Isakov N, Deepa SS, Anto RJ. Augmented Efficacy of Uttroside B over Sorafenib in a Murine Model of Human Hepatocellular Carcinoma. Pharmaceuticals (Basel) 2022; 15:636. [PMID: 35631464 PMCID: PMC9143354 DOI: 10.3390/ph15050636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/21/2022] [Accepted: 04/30/2022] [Indexed: 12/03/2022] Open
Abstract
We previously reported the remarkable potency of uttroside B (Utt-B), saponin-isolated and characterized in our lab from Solanum nigrum Linn, against HCC. Recently, the U.S. FDA approved Utt-B as an 'orphan drug' against HCC. The current study validates the superior anti-HCC efficacy of Utt-B over sorafenib, the first-line treatment option against HCC. The therapeutic efficacies of Utt-B vs. sorafenib against HCC were compared in vitro, using various liver cancer cell lines and in vivo, utilizing NOD.CB17-Prkdcscid/J mice bearing human HCC xenografts. Our data indicate that Utt-B holds an augmented anti-HCC efficacy over sorafenib. Our previous report demonstrated the pharmacological safety of Utt-B in Chang Liver, the normal immortalized hepatocytes, and in the acute and chronic toxicity murine models even at elevated Utt-B concentrations. Here, we show that higher concentrations of sorafenib induce severe toxicity, in Chang Liver, as well as in acute and chronic in vivo models, indicating that, apart from the superior therapeutic benefit over sorafenib, Utt-B is a pharmacologically safer molecule, and the drug-induced undesirable effects can, thus, be substantially alleviated in the context of HCC chemotherapy. Clinical studies in HCC patients utilizing Utt-B, is a contiguous key step to promote this drug to the clinic.
Collapse
Affiliation(s)
- Mundanattu Swetha
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (M.S.); (C.K.K.); (T.P.R.); (L.R.N.); (N.H.H.); (A.S.); (K.K.); (S.U.A.); (S.J.); (K.B.H.)
- Department of Biotechnology, University of Kerala, Thiruvananthapuram 695011, Kerala, India
| | - Chenicheri K. Keerthana
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (M.S.); (C.K.K.); (T.P.R.); (L.R.N.); (N.H.H.); (A.S.); (K.K.); (S.U.A.); (S.J.); (K.B.H.)
- Department of Biotechnology, University of Kerala, Thiruvananthapuram 695011, Kerala, India
| | - Tennyson P. Rayginia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (M.S.); (C.K.K.); (T.P.R.); (L.R.N.); (N.H.H.); (A.S.); (K.K.); (S.U.A.); (S.J.); (K.B.H.)
- Department of Biotechnology, University of Kerala, Thiruvananthapuram 695011, Kerala, India
| | - Lekshmi R. Nath
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (M.S.); (C.K.K.); (T.P.R.); (L.R.N.); (N.H.H.); (A.S.); (K.K.); (S.U.A.); (S.J.); (K.B.H.)
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| | - Nair Hariprasad Haritha
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (M.S.); (C.K.K.); (T.P.R.); (L.R.N.); (N.H.H.); (A.S.); (K.K.); (S.U.A.); (S.J.); (K.B.H.)
| | - Anwar Shabna
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (M.S.); (C.K.K.); (T.P.R.); (L.R.N.); (N.H.H.); (A.S.); (K.K.); (S.U.A.); (S.J.); (K.B.H.)
| | - Kalishwaralal Kalimuthu
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (M.S.); (C.K.K.); (T.P.R.); (L.R.N.); (N.H.H.); (A.S.); (K.K.); (S.U.A.); (S.J.); (K.B.H.)
| | - Arun K. Thangarasu
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; (A.K.T.); (R.S.L.)
| | - Sreekumar U. Aiswarya
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (M.S.); (C.K.K.); (T.P.R.); (L.R.N.); (N.H.H.); (A.S.); (K.K.); (S.U.A.); (S.J.); (K.B.H.)
| | - Somaraj Jannet
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (M.S.); (C.K.K.); (T.P.R.); (L.R.N.); (N.H.H.); (A.S.); (K.K.); (S.U.A.); (S.J.); (K.B.H.)
| | - Sreekumar Pillai
- Department of Surgical Oncology, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India;
| | - Kuzhuvelil B. Harikumar
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (M.S.); (C.K.K.); (T.P.R.); (L.R.N.); (N.H.H.); (A.S.); (K.K.); (S.U.A.); (S.J.); (K.B.H.)
| | - Sankar Sundaram
- Department of Pathology, Government Medical College, Kottayam 686008, Kerala, India;
| | - Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel; (N.P.A.); (N.I.)
| | - Dee H. Wu
- Section of Medical Physics, Department of Radiological Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- School of Computer Science, Gallogly College of Engineering, University of Oklahoma, Norman, OK 731019, USA
- School of Electrical and Computer Engineering, Gallogly College of Engineering, University of Oklahoma, Norman, OK 731019, USA
| | - Ravi S. Lankalapalli
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; (A.K.T.); (R.S.L.)
| | - Rheal Towner
- Departments of Pathology and Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel; (N.P.A.); (N.I.)
| | - Sathyaseelan S. Deepa
- Department of Biochemistry and Molecular Biology, and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (M.S.); (C.K.K.); (T.P.R.); (L.R.N.); (N.H.H.); (A.S.); (K.K.); (S.U.A.); (S.J.); (K.B.H.)
| |
Collapse
|
24
|
YOKOTA S, YONEZAWA T, MOMOI Y, MAEDA S. Sorafenib inhibits tumor cell growth and angiogenesis in canine transitional cell carcinoma. J Vet Med Sci 2022; 84:666-674. [PMID: 35387955 PMCID: PMC9177404 DOI: 10.1292/jvms.21-0478] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/22/2022] [Indexed: 11/22/2022] Open
Abstract
Canine transitional cell carcinoma (cTCC) is the most common naturally occurring bladder cancer and accounts for 1-2% of canine tumors. The prognosis is poor due to the high rate of invasiveness and metastasis at diagnosis. Sorafenib is a multi-kinase inhibitor that targets rapidly accelerated fibrosarcoma (RAF), vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, VEGFR-3, platelet-derived growth factor receptor-β (PDGFR-β), and KIT. In previous studies, a somatic mutation of B-rapidly accelerated fibrosarcoma (BRAF) and expressions of VEGFR-2 and PDGFR-β were observed in over 80% of patients with cTCC. Therefore, in this study, we investigated the anti-tumor effects of sorafenib on cTCC. Five cTCC cell lines were used in the in vitro experiments. All five cTCC cell lines expressed VEGFR-2 and PDGFR-β and sorafenib showed growth inhibitory effect on cTCC cell lines. Cell cycle arrest at the G0/G1 phase and subsequent apoptosis were observed following sorafenib treatment. In the in vivo experiments, cTCC (Sora) cells were subcutaneously injected into nude mice. Mice were orally administered with sorafenib (30 mg/kg daily) for 14 days. Sorafenib inhibited tumor growth compared to vehicle control. The necrotic area in the tumor tissues was increased in the sorafenib-treated group. Sorafenib also inhibited angiogenesis in the tumor microenvironment. Thus, sorafenib may be potential therapeutic agent for cTCC via its direct anti-tumor effect and inhibition of angiogenesis.
Collapse
Affiliation(s)
- Shohei YOKOTA
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro YONEZAWA
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki MOMOI
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shingo MAEDA
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Tian Y, Lei Y, Fu Y, Sun H, Wang J, Xia F. Molecular Mechanisms of Resistance to Tyrosine Kinase Inhibitors Associated with Hepatocellular Carcinoma. Curr Cancer Drug Targets 2022; 22:454-462. [PMID: 35362393 DOI: 10.2174/1568009622666220330151725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/29/2021] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death, which can be attributed to the high incidence and first diagnosis at an advanced stage. Tyrosine kinase inhibitors (TKIs), a class of small-molecule targeting drugs, are primarily used for the clinical treatment of HCC after chemotherapy because they show significant clinical efficacy and low incidence of clinical adverse reactions. However, resistance to sorafenib and other TKIs, which can be used to treat advanced HCC, poses a significant challenge. Recent mechanistic studies have shown that epithelial-mesenchymal transition or transformation (EMT), ATP binding cassette (ABC) transporters, hypoxia, autophagy, and angiogenesis are involved in apoptosis, angiogenesis, HCC cell proliferation, and TKI resistance in patients with HCC. Exploring and overcoming such resistance mechanisms is essential to extend the therapeutic benefits of TKIs to patients with TKI-resistant HCC. This review aims to summarize the potential resistance mechanism proposed in recent years and methods to reverse TKI resistance in the context of HCC.
Collapse
Affiliation(s)
- Yichen Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, 400038, China
| | - Yongrong Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, 400038, China
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Feng Xia
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, 400038, China
| |
Collapse
|
26
|
Wang W, Hao LP, Song H, Chu XY, Wang R. The Potential Roles of Exosomal Non-Coding RNAs in Hepatocellular Carcinoma. Front Oncol 2022; 12:790916. [PMID: 35280805 PMCID: PMC8912917 DOI: 10.3389/fonc.2022.790916] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth highest-incidence cancer and the 4th most deadly cancer all over the world, with a high fatality and low diagnostic rate. Nowadays, Excessive alcohol consumption, type-2 diabetes, smoking and obesity have become some primary risk factors of HCC. As intercellular messenger transporting information cargoes between cells, exosomes are a type of extracellular vesicles (EVs) released by most types of cells including tumor cells and non-tumor cells and play a pivotal role in establishing an HCC microenvironment. Exosomes, and more generally EVs, contain different molecules, including messenger RNAs (mRNAs), non-coding RNAs (ncRNAs), proteins, lipids and transcription factors. The three main ncRNAs in exosomes are microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs). NcRNAs, identified as essential components, are selectively sorted into exosomes and exosomal ncRNAs show great potential in regulating tumor development, including proliferation, invasion, angiogenesis, metastasis, immune escape and drug resistance. Here, we chiefly review the formation and uptake of exosomes, classification of exosomal ncRNAs and current research on the roles of exosomal ncRNAs in HCC progression. We also explored their clinical applications as new diagnostic biomarkers and therapeutic avenues in HCC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Li-Ping Hao
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Haizhu Song
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Xiao-Yuan Chu
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
27
|
Song HY, Xia JS, Chen YG, Chen L. Cytochrome P450 3A5 polymorphism affects the metabolism of sorafenib and its toxicity for hepatocellular carcinoma cells in vitro. Hum Exp Toxicol 2022; 41:9603271221080236. [PMID: 35099304 DOI: 10.1177/09603271221080236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Cytochrome P450 3A5 (CYP3A5) is a highly polymorphic gene and the encoded protein variants differ in catalytic activity, leading to inter-individual variation in metabolic ability. The aim of the current study was to investigate the effects of seven allelic variants on the ability of CYP3A5 to metabolize sorafenib in vitro and further explore the impacts of CYP3A5 polymorphism on the proliferation and apoptosis of hepatocellular carcinoma cell line (HepG2) induced by sorafenib. METHODS Wild-type and variant CYP3A5 enzymes were expressed in Spodoptera frugiperda insect cells using a baculovirus dual-expression system, and protein expression was checked by western blot. The enzymes were incubated with sorafenib at 37°C for 30 min, and formation of the major metabolite sorafenib N-oxide was assayed using ultra-performance liquid chromatography and tandem mass spectrometry. Intrinsic clearance values (Vmax/Km) were calculated for each enzyme. Additionally, recombinant HepG2 cells transfecting with CYP3A5 variants were used to investigate the effects of sorafenib on the proliferation of HepG2 cells. RESULTS Intrinsic clearance of the six variants CYP3A5*2, CYP3A5*3A, CYP3A5*3C, CYP3A5*4, CYP3A5*5, and CYP3A5*7 was 26.41-71.04% of the wild-type (CYP3A5*1) value. In contrast, the clearance value of the variant CYP3A5*6 was significantly higher (174.74%). Additionally, the decreased ATP levels and cell viability and the increased cell apoptosis in HepG2 cells transfected with CYP3A5*2, CYP3A5*3A, CYP3A5*3C, CYP3A5*4, CYP3A5*5, and CYP3A5*7 were observed, whereas, the increased ATP levels and cell viability and the reduced cell apoptosis in HepG2 cells transfected with CYP3A5*6 were also investigated when compared to CYP3A5*1. CONCLUSION Our results suggest that CYP3A5 polymorphism influences sorafenib metabolism and pharmacotherapeutic effect in hepatic carcinomas. These data may help explain differential response to drug therapy for hepatocellular carcinoma, and they support the need for individualized treatment.
Collapse
Affiliation(s)
- Hong-Yan Song
- Department of Pharmacy, 12390Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| | - Jing-Sheng Xia
- Department of Pharmacy, 12390Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| | - Yong-Gang Chen
- Department of Pharmacy, 12390Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| | - Ling Chen
- Department of Pharmacy, 12390Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| |
Collapse
|
28
|
Chen Y, Shang H, Wang C, Zeng J, Zhang S, Wu B, Cheng W. RNA-Seq Explores the Mechanism of Oxygen-Boosted Sonodynamic Therapy Based on All-in-One Nanobubbles to Enhance Ferroptosis for the Treatment of HCC. Int J Nanomedicine 2022; 17:105-123. [PMID: 35027829 PMCID: PMC8752973 DOI: 10.2147/ijn.s343361] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The combination of sonodynamic therapy and oxygenation strategy is widely used in cancer treatment. However, due to the complexity, heterogeneity and irreversible hypoxic environment produced by hepatocellular carcinoma (HCC) tissues, oxygen-enhancing sonodynamic therapy (SDT) has failed to achieve the desired results. With the emergence of ferroptosis with reactive oxygen species (ROS) cytotoxicity, this novel cell death method has attracted widespread attention. METHODS In this study, nanobubbles (NBs) were connected with the sonosensitizer Indocyanine green (ICG) to construct a 2-in-1 nanoplatform loaded with RAS-selective lethal (RSL3, ferroptosis promoter) (RSL3@O2-ICG NBs), combined with oxygen-enhanced SDT and potent ferroptosis. In addition, nanobubbles (NBs) combined with low-frequency ultrasound (LFUS) are called ultrasound-targeted nanobubble destruction (UTND) to ensure specific drug release and improve safety. RESULTS MDA/GSH and other related experimental results show that RSL3@O2-ICG NBs can enhance SDT and ferroptosis. Through RNA sequencing (RNA-seq), the differential expression of LncRNA and mRNA before and after synergistic treatment was identified, and then GO and KEGG pathways were used to enrich and analyze target genes and pathways related ferroptosis sensitivity. We found that they were significantly enriched in the ferroptosis-related pathway MAPK cascade and cell proliferation. Then, we searched for the expression of differentially expressed genes in the TCGA Hepatocellular carcinoma cohort. At the same time, we evaluated the proportion of immune cell infiltration and the identification of co-expression network modules and related prognostic analysis. We found that it was significantly related to the tumor microenvironment of hepatocellular carcinoma. The prognostic risk genes "SLC37A2" and "ITGB7" may represent new hepatocellular carcinoma ferroptosis-inducing markers and have guiding significance for treating hepatocellular carcinoma. CONCLUSION The therapeutic effect of the in vitro synergistic treatment has been proven to be significant, revealing the prospect of 2-in-1 nanobubbles combined with SDT and ferroptosis in treating HCC.
Collapse
Affiliation(s)
- Yichi Chen
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Haitao Shang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Chunyue Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Jiaqi Zeng
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - Shentao Zhang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Bolin Wu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
- Department of Interventional Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
- Department of Interventional Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| |
Collapse
|
29
|
Song HY, Xia JS, Chen YG, Chen L. Cytochrome P450 3A5 polymorphism affects the metabolism of sorafenib and its toxicity for hepatocellular carcinoma cells in vitro. Hum Exp Toxicol 2021; 40:S646-S653. [PMID: 34784831 DOI: 10.1177/09603271211052989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Cytochrome P450 3A5 (CYP3A5) is a highly polymorphic gene and the encoded protein variants differ in catalytic activity, leading to inter-individual variation in metabolic ability. The aim of the current study was to investigate the effects of seven allelic variants on the ability of CYP3A5 to metabolize sorafenib in vitro and further explore the impacts of CYP3A5 polymorphism on the proliferation and apoptosis of hepatocellular carcinoma cell line (HepG2) induced by sorafenib. METHODS Wild-type and variant CYP3A5 enzymes were expressed in Spodoptera frugiperda insect cells using a baculovirus dual-expression system, and protein expression was checked by western blot. The enzymes were incubated with sorafenib at 37°C for 30 min, and formation of the major metabolite sorafenib N-oxide was assayed using ultra-performance liquid chromatography and tandem mass spectrometry. Intrinsic clearance values (Vmax/Km) were calculated for each enzyme. Additionally, recombinant HepG2 cells transfecting with CYP3A5 variants were used to investigate the effects of sorafenib on the proliferation of HepG2 cells. RESULTS Intrinsic clearance of the six variants CYP3A5*2, CYP3A5*3A, CYP3A5*3C, CYP3A5*4, CYP3A5*5, and CYP3A5*7 was 26.41-71.04% of the wild-type (CYP3A5*1) value. In contrast, the clearance value of the variant CYP3A5*6 was significantly higher (174.74%). Additionally, the decreased ATP levels and cell viability and the increased cell apoptosis in HepG2 cells transfected with CYP3A5*2, CYP3A5*3A, CYP3A5*3C, CYP3A5*4, CYP3A5*5, and CYP3A5*7 were observed, whereas, the increased ATP levels and cell viability and the reduced cell apoptosis in HepG2 cells transfected with CYP3A5*6 were also investigated when compared to CYP3A5*1. CONCLUSION Our results suggest that CYP3A5 polymorphism influences sorafenib metabolism and pharmacotherapeutic effect in hepatic carcinomas. These data may help explain differential response to drug therapy for hepatocellular carcinoma, and they support the need for individualized treatment.
Collapse
Affiliation(s)
- Hong-Yan Song
- Department of Pharmacy, 12390Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| | - Jing-Sheng Xia
- Department of Pharmacy, 12390Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| | - Yong-Gang Chen
- Department of Pharmacy, 12390Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| | - Ling Chen
- Department of Pharmacy, 12390Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| |
Collapse
|
30
|
Takeda T, Tsubaki M, Kato N, Genno S, Ichimura E, Enomoto A, Imano M, Satou T, Nishida S. Sorafenib treatment of metastatic melanoma with c-Kit aberration reduces tumor growth and promotes survival. Oncol Lett 2021; 22:827. [PMID: 34691254 DOI: 10.3892/ol.2021.13089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Melanomas are highly malignant tumors that readily metastasize and have poor prognosis. Targeted therapy is a cornerstone of treatment for patients with melanoma. Although c-Kit gene aberration has found in 5-10% of melanoma cases, research on c-Kit inhibitors for melanoma with c-Kit aberration have been disappointing. Sorafenib is a tyrosine kinase inhibitor, whose targets include c-Kit, platelet derived growth factor receptor (PDGFR), VEGFR and RAF. The present study aimed to examine the effect of sorafenib on metastatic melanoma with c-Kit aberration. Cell viability was assessed via trypan blue assay. Migration and invasion were analyzed using cell culture inserts. The anti-metastatic effects and antitumour activity of sorafenib were determined in an in vivo model. Protein expression was detected via western blotting, and the expression of MMP and very late antigen (VLA) was detected via reverse transcription-quantitative PCR. It was identified that sorafenib decreased cell viability, migration and invasion in vitro. Furthermore, sorafenib inhibited metastasis and tumor growth in vivo. Mechanistically, sorafenib inhibited c-Kit, PDGFR, VEGFR, B-Raf and c-Raf phosphorylation both in vitro and in vivo. In addition, sorafenib reduced the expression levels of MMPs and VLA. Importantly, there was a significant effect of sorafenib treatment on overall survival in mice. Collectively, this study suggests that sorafenib may serve as a novel therapeutic option for melanoma with c-Kit dysregulation.
Collapse
Affiliation(s)
- Tomoya Takeda
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka 577-8502, Japan
| | - Masanobu Tsubaki
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka 577-8502, Japan
| | - Natsuki Kato
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shuji Genno
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka 577-8502, Japan
| | - Eri Ichimura
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka 577-8502, Japan
| | - Aya Enomoto
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka 577-8502, Japan
| | - Motohiro Imano
- Department of Surgery, Kindai University School of Medicine, Osakasayama, Osaka 589-0014, Japan
| | - Takao Satou
- Department of Pathology, Kindai University School of Medicine, Osakasayama, Osaka 589-0014, Japan
| | - Shozo Nishida
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
31
|
Bian J, Zhang D, Wang Y, Qin H, Yang W, Cui R, Sheng J. Mitochondrial Quality Control in Hepatocellular Carcinoma. Front Oncol 2021; 11:713721. [PMID: 34589426 PMCID: PMC8473831 DOI: 10.3389/fonc.2021.713721] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/27/2021] [Indexed: 12/28/2022] Open
Abstract
Mitochondria participate in the progression of hepatocellular carcinoma (HCC) by modifying processes including but not limited to redox homeostasis, metabolism, and the cell death pathway. These processes depend on the health status of the mitochondria. Quality control processes in mitochondria can repair or eliminate “unhealthy mitochondria” at the molecular, organelle, or cellular level and form an efficient integrated network that plays an important role in HCC tumorigenesis, patient survival, and tumor progression. Here, we review the influence of mitochondria on the biological behavior of HCC. Based on this information, we further highlight the need for determining the role and mechanism of interaction between different levels of mitochondrial quality control in regulating HCC occurrence and progression as well as resistance development. This information may lead to the development of precision medicine approaches against targets involved in various mitochondrial quality control-related pathways.
Collapse
Affiliation(s)
- Jinda Bian
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yicun Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
32
|
Meng W, Chen T. Association between the HGF/c‑MET signaling pathway and tumorigenesis, progression and prognosis of hepatocellular carcinoma (Review). Oncol Rep 2021; 46:191. [PMID: 34278495 DOI: 10.3892/or.2021.8142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/10/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive and lethal malignancies with a rising incidence, and is characterized by rapid progression, frequent metastasis, late diagnosis, high postoperative recurrence and poor prognosis. Therefore, novel treatment strategies for HCC, particularly advanced HCC, are urgently required. The hepatocyte growth factor (HGF)/c‑mesenchymal‑epithelial transition receptor (c‑MET) axis is a key signaling pathway in HCC and is strongly associated with its highly malignant features. Available treatments based on HGF/c‑MET inhibition may prolong the lifespan of patients with HCC; however, they do not achieve the desired therapeutic effects. The aim of the present article was to review the basic knowledge regarding the role of the HGF/c‑MET signaling pathway in HCC, and examine the association between the HGF/c‑MET signaling pathway and the tumorigenesis, progression and prognosis of HCC.
Collapse
Affiliation(s)
- Wei Meng
- School of Medicine, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Tao Chen
- School of Medicine, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| |
Collapse
|
33
|
Sorop A, Constantinescu D, Cojocaru F, Dinischiotu A, Cucu D, Dima SO. Exosomal microRNAs as Biomarkers and Therapeutic Targets for Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22094997. [PMID: 34066780 PMCID: PMC8125948 DOI: 10.3390/ijms22094997] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the second most common cause of cancer-related death globally. This type of liver cancer is frequently detected at a late stage by current biomarkers because of the high clinical and biological heterogeneity of HCC tumours. From a plethora of molecules and cellular compounds, small nanoparticles with an endosomal origin are valuable cancer biomarkers or cargos for novel treatments. Despite their small sizes, in the range of 40–150 nm, these particles are delimited by a lipid bilayer membrane with a specific lipid composition and carry functional information—RNA, proteins, miRNAs, long non-coding RNAs (lncRNAs), or DNA fragments. This review summarizes the role of exosomal microRNA (miRNA) species as biomarkers in HCC therapy. After we briefly introduce the exosome biogenesis and the methods of isolation and characterization, we discuss miRNA’s correlation with the diagnosis and prognosis of HCC, either as single miRNA species, or as specific panels with greater clinical impact. We also review the role of exosomal miRNAs in the tumourigenic process and in the cell communication pathways through the delivery of cargos, including proteins or specific drugs.
Collapse
Affiliation(s)
- Andrei Sorop
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.S.); (D.C.); (S.O.D.)
- Department DAFAB, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (F.C.); (A.D.)
| | - Diana Constantinescu
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.S.); (D.C.); (S.O.D.)
| | - Florentina Cojocaru
- Department DAFAB, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (F.C.); (A.D.)
| | - Anca Dinischiotu
- Department DAFAB, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (F.C.); (A.D.)
| | - Dana Cucu
- Department DAFAB, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (F.C.); (A.D.)
- Correspondence: ; Tel.: +40-728-257-607
| | - Simona Olimpia Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.S.); (D.C.); (S.O.D.)
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, 022238 Bucharest, Romania
| |
Collapse
|
34
|
Wang P, Shen Y, Zhao L. Chitosan nanoparticles loaded with aspirin and 5-fluororacil enable synergistic antitumour activity through the modulation of NF-κB/COX-2 signalling pathway. IET Nanobiotechnol 2021; 14:479-484. [PMID: 32755957 DOI: 10.1049/iet-nbt.2020.0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Based on the enhancement of synergistic antitumour activity to treat cancer and the correlation between inflammation and carcinogenesis, the authors designed chitosan nanoparticles for co-delivery of 5-fluororacil (5-Fu: an as anti-cancer drug) and aspirin (a non-steroidal anti-inflammatory drug) and induced synergistic antitumour activity through the modulation of the nuclear factor kappa B (NF-κB)/cyclooxygenase-2 (COX-2) signalling pathways. The results showed that aspirin at non-cytotoxic concentrations synergistically sensitised hepatocellular carcinoma cells to 5-Fu in vitro. It demonstrated that aspirin inhibited NF-κB activation and suppressed NF-κB regulated COX-2 expression and prostaglandin E2 (PGE2) synthesis. Furthermore, the proposed results clearly indicated that the combination of 5-Fu and aspirin by chitosan nanoparticles enhanced the intracellular concentration of drugs and exerted synergistic growth inhibition and apoptosis induction on hepatocellular carcinoma cells by suppressing NF-κB activation and inhibition of expression of COX-2.
Collapse
Affiliation(s)
- Peng Wang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Yaping Shen
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, People's Republic of China.
| |
Collapse
|
35
|
Lee S, Kim JH, Moon H, Lee HJ, Han JK. Combined treatment of sorafenib and doxorubicin-loaded microbubble-albumin nanoparticle complex for hepatocellular carcinoma: A feasibility study. PLoS One 2020; 15:e0243815. [PMID: 33306731 PMCID: PMC7732110 DOI: 10.1371/journal.pone.0243815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose To assess the feasibility of the combined sorafenib (SOR) and doxorubicin-loaded microbubble-albumin nanoparticle complex (DOX-MAC) treatment effect in an orthotopic rat model of hepatocellular carcinoma (HCC). Materials and methods Sixty-two rats with N1-S1 hepatoma were divided into four groups according to the treatment methods, i.e. G1 (SOR and DOX-MAC; n = 12), G2 (SOR; n = 15), G3 (DOX-MAC; n = 12), G4 (DOX; n = 11), and G5 (normal saline; n = 12). We performed the theragnostic, contrast-enhanced ultrasound examination and treatment at the baseline, one-week, and two-weeks. Tumor volume and perfusion parameters were compared at each time point and the differences between all of the groups over time were analyzed using repeated measures ANOVA. We also analyzed the apoptotic index and microvessel density (MVD) per each tumor specimen in all of the groups. Results The tumors increased from the beginning in all of the groups to the final follow-up, whereas the tumor growth in the G1 group and the G2 group was inhibited during the treatment period compared to the baseline tumor volume (P = 0.016 and P = 0.031). The G1 group resulted in tumor growth inhibition compared to the control group (P = 0.008). The G1 group showed that the peak enhancement and wash-in area under the curve were lower than that of the G4 group (P = 0.010 and 0.022). However, there was no difference in perfusion parameters in the other treated group compared to control group. The MVD of the G1 group tumor was lower than that of the G4 group (P = .016). Conclusion Our results suggest that the combination therapy of SOR and DOX-MAC can cause inhibition of tumor growth after treatment and that this therapy can be adequately monitored using the theragnostic DOX-MAC agent.
Collapse
Affiliation(s)
- Seunghyun Lee
- Department of Radiology, Seoul National University Hospital, Jongno-gu, Seoul, Republic of Korea
| | - Jung Hoon Kim
- Department of Radiology, Seoul National University Hospital, Jongno-gu, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Jongno-gu, Seoul, Republic of Korea
- * E-mail:
| | - Hyungwon Moon
- IMGT Co., Ltd., Bundang-gu, Seongnam, Republic of Korea
| | - Hak Jong Lee
- Department of Radiology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
- IMGT Co., Ltd., Bundang-gu, Seongnam, Republic of Korea
- Department of Radiology, Seoul National University Bundang Hospital, Bundang-gu, Seongnam, Republic of Korea
| | - Joon Koo Han
- Department of Radiology, Seoul National University Hospital, Jongno-gu, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Jongno-gu, Seoul, Republic of Korea
| |
Collapse
|
36
|
Jian C, Fu J, Cheng X, Shen LJ, Ji YX, Wang X, Pan S, Tian H, Tian S, Liao R, Song K, Wang HP, Zhang X, Wang Y, Huang Z, She ZG, Zhang XJ, Zhu L, Li H. Low-Dose Sorafenib Acts as a Mitochondrial Uncoupler and Ameliorates Nonalcoholic Steatohepatitis. Cell Metab 2020; 31:892-908.e11. [PMID: 32375062 PMCID: PMC9375823 DOI: 10.1016/j.cmet.2020.04.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/18/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is becoming one of the leading causes of hepatocellular carcinoma (HCC). Sorafenib is the only first-line therapy for advanced HCC despite its serious adverse effects. Here, we report that at an equivalent of approximately one-tenth the clinical dose for HCC, sorafenib treatment effectively prevents the progression of NASH in both mice and monkeys without any observed significant adverse events. Mechanistically, sorafenib's benefit in NASH is independent of its canonical kinase targets in HCC, but involves the induction of mild mitochondrial uncoupling and subsequent activation of AMP-activated protein kinase (AMPK). Collectively, our findings demonstrate a previously unappreciated therapeutic effect and signaling mechanism of low-dose sorafenib treatment in NASH. We envision that this new therapeutic strategy for NASH has the potential to translate into a beneficial anti-NASH therapy with fewer adverse events than is observed in the drug's current use in HCC.
Collapse
Affiliation(s)
- Chongshu Jian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Jiajun Fu
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xu Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Li-Jun Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Yan-Xiao Ji
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaoming Wang
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Shan Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Han Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Song Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Rufang Liao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Kehan Song
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hai-Ping Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Xin Zhang
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yibin Wang
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Zan Huang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China.
| | - Lihua Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
37
|
Juengpanich S, Topatana W, Lu C, Staiculescu D, Li S, Cao J, Lin J, Hu J, Chen M, Chen J, Cai X. Role of cellular, molecular and tumor microenvironment in hepatocellular carcinoma: Possible targets and future directions in the regorafenib era. Int J Cancer 2020; 147:1778-1792. [PMID: 32162677 DOI: 10.1002/ijc.32970] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) remains as one of the major causes of cancer-related mortality, despite the recent development of new therapeutic options. Regorafenib, an oral multikinase inhibitor, is the first systemic therapy that has a survival benefit for patients with advanced HCC that have a poor response to sorafenib. Even though regorafenib has been approved by the FDA, the clinical trial for regorafenib treatment does not show significant improvement in overall survival. The impaired efficacy of regorafenib caused by various resistance mechanisms, including epithelial-mesenchymal transitions, inflammation, angiogenesis, hypoxia, oxidative stress, fibrosis and autophagy, still needs to be resolved. In this review, we provide insight on regorafenib microenvironmental, molecular and cellular mechanisms and interactions in HCC treatment. The aim of this review is to help physicians select patients that would obtain the maximal benefits from regorafenib in HCC therapy.
Collapse
Affiliation(s)
- Sarun Juengpanich
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Lu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Daniel Staiculescu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jiacheng Lin
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiang Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Kaewnoonual N, Itharat A, Pongsawat S, Nilbu-Nga C, Kerdput V, Pradidarcheep W. Anti-angiogenic and anti-proliferative effects of Benja-ummarit extract in rats with hepatocellular carcinoma. Biomed Rep 2020; 12:109-120. [PMID: 32042419 PMCID: PMC7006111 DOI: 10.3892/br.2020.1272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
The herbal extract Benja-ummarit (BU) is a traditional Thai medicine with a putative cancer-suppressing effect. However, this effect has only been tested in vitro in human hepatocarcinoma cell lines. The present study determined the efficacy of a BU extract to treat hepatocellular carcinoma (HCC) in rats in vivo and established its anti-angiogenic and anti-proliferative properties. The BU extract was prepared in 95% ethanol and its composition determined using liquid chromatography-mass spectrometry. HCC was induced in Wistar rats by an injection of diethylnitrosamine (DEN), followed 2 weeks later by injections of thioacetamide (TAA) thrice weekly for 4 weeks. Following 2 months, the DEN-TAA-treated rats were divided into 6 groups that were treated orally for another 2 months with: i) No treatment; ii) vehicle; iii) 30 mg/kg sorafenib (SF); iv) 1 mg/kg BU; v) 10 mg/kg BU; or vi) 50 mg/kg BU. Liver samples were collected for gross morphological, histological, reverse transcription-quantitative PCR and western blot analyses, and serum samples were collected for liver function tests. The size and number of the cancer nodules were reduced ~10-fold in BU-treated HCC groups and ~14-fold in the SF-treated group compared with the HCC group. Furthermore, the serum parameters of liver damage were lower in BU-compared with SF-treated rats. These results indicate that while each of these formulations strongly reduce HCC expansion, BU extract results in less liver damage. Vascular endothelial growth factor expression was reduced significantly in the BU-and SF-treated HCC groups compared with the HCC group (P<0.05). BU extract antagonizes HCC growth in vivo potently through inhibiting tumor angiogenesis. BU, therefore, qualifies as a promising medical herb requiring further evaluation as a treatment of HCC.
Collapse
Affiliation(s)
- Nattpawit Kaewnoonual
- Biomedical Science Program, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Arunporn Itharat
- Center of Excellence in Applied Thai Traditional Medicine Research, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Suriya Pongsawat
- Department of Pathology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Cheng Nilbu-Nga
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Vichununt Kerdput
- Biomedical Science Program, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Wisuit Pradidarcheep
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
39
|
Mebendazole augments sensitivity to sorafenib by targeting MAPK and BCL-2 signalling in n-nitrosodiethylamine-induced murine hepatocellular carcinoma. Sci Rep 2019; 9:19095. [PMID: 31836811 PMCID: PMC6911098 DOI: 10.1038/s41598-019-55666-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Sorafenib (SO) is a multi-kinase inhibitor that targets upstream signals in the MAPK pathway. Drug resistance and transient survival benefits are the main obstacles associated with SO treatment in Hepatocellular carcinoma (HCC) patients. Mebendazole (MBZ), an anthelmintic agent, has demonstrated activity against various cancer types. Therefore, we aimed to investigate the possible mechanisms of MBZ other than its anti-tubulin activity. MBZ (100 mg/kg/day, P.O.) was administered to N-nitrosodiethylamine-induced HCC mice as a monotherapeutic agent or in combination with SO. Our results revealed that MBZ decreased AFP levels, improved liver function and histology and increased survival in HCC mice, particularly when administered in combination with SO. MBZ also reduced hepatic inflammation and fibrogenesis as evidenced by reductions in TNF-α and TGF-β1 levels, respectively. Increased hepatic caspases-3 and -9 and decreased BCL-2 levels suggest induced-cell death. In addition, MBZ demonstrated anti-angiogenic, anti-metastatic, and anti-proliferative effects, as indicated by reduced VEGF levels, MMP-2:TIMP-1 ratios, and reduced cyclin D1 levels and Ki67 immunostaining, respectively. Our main finding was that MBZ targeted downstream signal of the MAPK pathway by inhibiting ERK1/2 phosphorylation. Targeting downstream MAPK signalling by MBZ and upstream signalling by SO is a novel approach to minimizing resistance and prolonging survival.
Collapse
|
40
|
Wang H, Lu Z, Zhao X. Tumorigenesis, diagnosis, and therapeutic potential of exosomes in liver cancer. J Hematol Oncol 2019; 12:133. [PMID: 31815633 PMCID: PMC6902437 DOI: 10.1186/s13045-019-0806-6] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC, also called primary liver cancer) is one of the most fatal cancers in the world. Due to the insidiousness of the onset of HCC and the lack of effective treatment methods, the prognosis of HCC is extremely poor, and the 5-year average survival rate is less than 10%. Exosomes are nano-sized microvesicle and contain various components such as nucleic acids, proteins, and lipids. Exosomes are important carriers for signal transmission or transportation of material from cell to cell or between cells and tissues. In recent years, exosomes have been considered as potential therapeutic targets of HCC. A large number of reports indicate that exosomes play a key role in the establishment of an HCC microenvironment, as well as the development, progression, invasion, metastasis, and even the diagnosis, treatment, and prognosis of HCC. However, the exact molecular mechanisms and roles of exosomes in these processes remain unclear. We believe that elucidation of the regulatory mechanism of HCC-related exosomes and its signaling pathway and analysis of its clinical applications in the diagnosis and treatment of HCC can provide useful clues for future treatment regimens for HCC. This article discusses and summarizes the research progress of HCC-related exosomes and their potential clinical applications.
Collapse
Affiliation(s)
- Hongbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
41
|
Wang H, Lu Z, Zhao X. Tumorigenesis, diagnosis, and therapeutic potential of exosomes in liver cancer. J Hematol Oncol 2019; 12:133. [DOI: doi10.1186/s13045-019-0806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/17/2019] [Indexed: 09/01/2023] Open
Abstract
AbstractHepatocellular carcinoma (HCC, also called primary liver cancer) is one of the most fatal cancers in the world. Due to the insidiousness of the onset of HCC and the lack of effective treatment methods, the prognosis of HCC is extremely poor, and the 5-year average survival rate is less than 10%. Exosomes are nano-sized microvesicle and contain various components such as nucleic acids, proteins, and lipids. Exosomes are important carriers for signal transmission or transportation of material from cell to cell or between cells and tissues. In recent years, exosomes have been considered as potential therapeutic targets of HCC. A large number of reports indicate that exosomes play a key role in the establishment of an HCC microenvironment, as well as the development, progression, invasion, metastasis, and even the diagnosis, treatment, and prognosis of HCC. However, the exact molecular mechanisms and roles of exosomes in these processes remain unclear. We believe that elucidation of the regulatory mechanism of HCC-related exosomes and its signaling pathway and analysis of its clinical applications in the diagnosis and treatment of HCC can provide useful clues for future treatment regimens for HCC. This article discusses and summarizes the research progress of HCC-related exosomes and their potential clinical applications.
Collapse
|
42
|
Hua X, Sanjiv K, Gad H, Pham T, Gokturk C, Rasti A, Zhao Z, He K, Feng M, Zang Y, Zhang J, Xia Q, Helleday T, Warpman Berglund U. Karonudib is a promising anticancer therapy in hepatocellular carcinoma. Ther Adv Med Oncol 2019; 11:1758835919866960. [PMID: 31489034 PMCID: PMC6710815 DOI: 10.1177/1758835919866960] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/30/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the most common form of liver cancer and is generally caused by viral infections or consumption of mutagens, such as alcohol. While liver transplantation and hepatectomy is curative for some patients, many relapse into disease with few treatment options such as tyrosine kinase inhibitors, for example, sorafenib or lenvatinib. The need for novel systemic treatment approaches is urgent. Methods: MTH1 expression profile was first analyzed in a HCC database and MTH1 mRNA/protein level was determined in resected HCC and paired paracancerous tissues with polymerase chain reaction (PCR) and immunohistochemistry. HCC cancer cell lines were exposed in vitro to MTH1 inhibitors or depleted of MTH1 by siRNA. 8-oxoG was measured by the modified comet assay. The effect of MTH1 inhibition on tumor growth was explored in HCC xenograft in vivo models. Results: MTH1 protein level is elevated in HCC tissue compared with paracancerous liver tissue and indicates poor prognosis. The MTH1 inhibitor Karonudib (TH1579) and siRNA effectively introduce toxic oxidized nucleotides into DNA, 8-oxoG, and kill HCC cell lines in vitro. Furthermore, we demonstrate that HCC growth in a xenograft mouse model in vivo is efficiently suppressed by Karonudib. Conclusion: Altogether, these data suggest HCC relies on MTH1 for survival, which can be targeted and may open up a novel treatment option for HCC in the future.
Collapse
Affiliation(s)
- Xiangwei Hua
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kumar Sanjiv
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Helge Gad
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Therese Pham
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Gokturk
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Azita Rasti
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Zhenjun Zhao
- Department of Liver Surgery and Liver Transplantation Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kang He
- Department of Liver Surgery and Liver Transplantation Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingxuan Feng
- Department of Liver Surgery and Liver Transplantation Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yunjin Zang
- Department of Liver Surgery and Liver Transplantation Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Zhang
- Center of Organ Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Xia
- Department of Liver Surgery and Liver Transplantation Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Tomtebodav.23A, Stockholm, 171 21, Sweden
| |
Collapse
|
43
|
Chen F, Fang Y, Zhao R, Le J, Zhang B, Huang R, Chen Z, Shao J. Evolution in medicinal chemistry of sorafenib derivatives for hepatocellular carcinoma. Eur J Med Chem 2019; 179:916-935. [PMID: 31306818 DOI: 10.1016/j.ejmech.2019.06.070] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Traditional chemotherapy drugs are hard to reach a satisfactory therapeutic effect since advanced HCC is highly chemo-resistant. Sorafenib is an oral multikinase inhibitor that can suppress tumor cell proliferation, angiogenesis and induce cancer cell apoptosis. However, the poor solubility, rapid metabolism and low bioavailability of sorafenib greatly restricted its further clinical application. During the past decade, numerous sorafenib derivatives have been designed and synthesized to overcome its disadvantages and improve its clinical performance. This article focuses on the therapeutic effects and mechanisms of various sorafenib derivatives with modifications on the N-methylpicolinamide group, urea group, central aromatic ring or others. More importantly, this review summarizes the current status of the structure-activity relationship (SAR) of reported sorafenib derivatives, which can provide some detailed information of future directions for further structural modifications of sorafenib to discovery new anti-tumor drugs with improved clinical performance.
Collapse
Affiliation(s)
- Fangmin Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yifan Fang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Ruirui Zhao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Jingqing Le
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Bingchen Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Rui Huang
- Marine Drug R&D Center, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Zixuan Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350116, China; Marine Drug R&D Center, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
44
|
Bort A, Sánchez BG, Mateos-Gómez PA, Vara-Ciruelos D, Rodríguez-Henche N, Díaz-Laviada I. Targeting AMP-activated kinase impacts hepatocellular cancer stem cells induced by long-term treatment with sorafenib. Mol Oncol 2019; 13:1311-1331. [PMID: 30959553 PMCID: PMC6487713 DOI: 10.1002/1878-0261.12488] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/07/2019] [Accepted: 04/04/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. HCC treatment is hindered by the frequent emergence of chemoresistance to the multikinase inhibitor sorafenib, which has been related to the presence of cancer stem cells (CSCs) that self‐renew and often escape therapy. The key metabolic sensor AMP‐activated kinase (AMPK) has recently been recognized as a tumour growth regulator. In this study, we aimed to elucidate the role of AMPK in the development of a stem cell phenotype in HCC cells. To this end, we enriched the CSC population in HCC cell lines that showed increased expression of drug resistance (ALDH1A1, ABCB1A) and stem cell (CD133, Nanog, Oct4, alpha fetoprotein) markers and demonstrated their stemness phenotype. These cells were refractory to sorafenib‐induced cell death. We report that sorafenib‐resistant cells had lower levels of total and phosphorylated AMPK as well as its downstream substrate, ACC, compared with the parental cells. Interestingly, AMPK knockdown with siRNA or inhibition with dorsomorphin increased the expression of stem cell markers in parental cells and blocked sorafenib‐induced cell death. Conversely, the upregulation of AMPK, either by transfection or by pharmacological activation with A‐769662, decreased the expression of ALDH1A1, ABCB1A, CD133, Nanog, Oct4, and alpha fetoprotein, and restored sensitivity to sorafenib. Analysis of the underlying mechanism points to hypoxia‐inducible factor HIF‐1α as a regulator of stemness. In vivo studies in a xenograft mouse model demonstrated that stem‐like cells have greater tumourigenic capacity. AMPK activation reduced xenograft tumour growth and decreased the expression of stem cell markers. Taken together, these results indicate that AMPK may serve as a novel target to overcome chemoresistance in HCC.
Collapse
Affiliation(s)
- Alicia Bort
- Department of Systems Biology, School of Medicine, University of Alcala, Alcalá de Henares, Madrid, Spain
| | - Belén G Sánchez
- Department of Systems Biology, School of Medicine, University of Alcala, Alcalá de Henares, Madrid, Spain
| | - Pedro A Mateos-Gómez
- Department of Systems Biology, School of Medicine, University of Alcala, Alcalá de Henares, Madrid, Spain
| | - Diana Vara-Ciruelos
- Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, UK
| | - Nieves Rodríguez-Henche
- Department of Systems Biology, School of Medicine, University of Alcala, Alcalá de Henares, Madrid, Spain
| | - Inés Díaz-Laviada
- Department of Systems Biology, School of Medicine, University of Alcala, Alcalá de Henares, Madrid, Spain.,Chemical Research Institute 'Andrés M. del Río' (IQAR), Alcalá University, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
45
|
Cao J, Zhao M, Liu J, Zhang X, Pei Y, Wang J, Yang X, Shen B, Zhang J. RACK1 Promotes Self-Renewal and Chemoresistance of Cancer Stem Cells in Human Hepatocellular Carcinoma through Stabilizing Nanog. Theranostics 2019; 9:811-828. [PMID: 30809310 PMCID: PMC6376462 DOI: 10.7150/thno.29271] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
Targeting cancer stem cells (CSCs) has been proposed as a new strategy to eradicate malignancies, including hepatocellular carcinoma (HCC). However, the mechanisms by which CSCs sustain their self-renewal and chemoresistance remain elusive. Nanog is a master transcriptional regulator of stemness, especially in CSCs. Its expression is tightly regulated by the ubiquitin-proteasome system in embryonic stem cells (ESCs). Whether the suppression of Nanog ubiquitination contributes to its over-expression in CSCs has not been explored. In addition, the role of receptor for activated C kinase 1 (RACK1), an adaptor protein implicated in HCC growth, in liver CSC-like traits remains to be determined. Methods: In vitro and in vivo assays were performed to investigate the role of RACK1 in liver CSC-like phenotype and murine ESC function. How RACK1 regulates Nanog expression was explored by immunoblotting and immunohistochemistry. The interaction of RACK1 with Nanog and the consequent effects on Nanog ubiquitination and stemness were then analyzed. Results: RACK1 promotes self-renewal and chemoresistance of human liver CSCs and maintains murine ESC function. Consistently, RACK1 enhances the expression of Nanog in human HCC cells and murine ESCs. The protein levels of RACK1 in clinical HCC tissues positively correlate with those of Nanog. Further exploration indicates that RACK1 directly binds to Nanog, which prevents its recruitment of E3 ubiquitin ligase FBXW8 and ubiquitin-dependent degradation. The interaction with Nanog is essential for RACK1 to promote stemness. Conclusions: Our data provide novel insights into the regulation of Nanog protein levels, as well the key role of RACK1 to enhance self-renewal and chemoresistance of CSCs in human HCC.
Collapse
|
46
|
Wei PL, Huang CY, Chang YJ. Propyl gallate inhibits hepatocellular carcinoma cell growth through the induction of ROS and the activation of autophagy. PLoS One 2019; 14:e0210513. [PMID: 30653551 PMCID: PMC6336332 DOI: 10.1371/journal.pone.0210513] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/23/2018] [Indexed: 12/19/2022] Open
Abstract
The poor prognosis of hepatocellular carcinoma (HCC) has been attributed to a high frequency of tumor metastasis and recurrence even after successful surgical resection. With less than 30% of patients benefiting from curative treatment, alternative treatment regimens for patients with advanced HCC are needed. Propyl gallate (PG), a synthetic antioxidant used in preserving food and medicinal preparations, has been shown to induce cancer cell death, but the anticancer effects of PG in HCC are unclear. In the present study, we demonstrated that PG inhibited HCC cell proliferation in vitro and in zebrafish models in vivo in a dose- and time-dependent manner. PG also induced cell apoptosis and increased the number of necrotic cells in a time- and dose-dependent manner as determined using a high-content analysis system. We found that PG also increased the intracellular levels of superoxide and reactive oxidative stress as well as the formation of autophagosomes and lysosomes. Regarding the molecular mechanism, PG did not alter the levels of autophagy-related 5 (ATG5), ATG5/12 or Beclin-1 but increased the rate of the LC3-I to LC3-II conversion, suggesting autophagy induction. PG exposure increased the levels of the pro-apoptotic proteins cleaved caspase-3, cleaved PARP, Bax, and Bad and a decreased level of the anti-apoptotic protein Bcl-2. In conclusion, we demonstrate that PG inhibits HCC cell proliferation through enhanced ROS production and autophagy activation. Finally, PG-treated cells induced cell apoptosis and may be a new candidate for HCC therapy.
Collapse
Affiliation(s)
- Po-Li Wei
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chien-Yu Huang
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
- * E-mail: (YJC); (CYH)
| | - Yu-Jia Chang
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- International PhD Program in Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail: (YJC); (CYH)
| |
Collapse
|
47
|
Cho ES, Kang HE, Kim NH, Yook JI. Therapeutic implications of cancer epithelial-mesenchymal transition (EMT). Arch Pharm Res 2019; 42:14-24. [PMID: 30649699 DOI: 10.1007/s12272-018-01108-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/27/2018] [Indexed: 12/19/2022]
Abstract
The epithelial-mesenchymal transition (EMT) comprises an essential biological process involving cancer progression as well as initiation. While the EMT has been regarded as a phenotypic conversion from epithelial to mesenchymal cells, recent evidence indicates that it plays a critical role in stemness, metabolic reprogramming, immune evasion and therapeutic resistance of cancer cells. Interestingly, several transcriptional repressors including Snail (SNAI1), Slug (SNAI2) and the ZEB family constitute key players for EMT in cancer as well as in the developmental process. Note that the dynamic conversion between EMT and epithelial reversion (mesenchymal-epithelial transition, MET) occurs through variable intermediate-hybrid states rather than being a binary process. Given the close connection between oncogenic signaling and EMT repressors, the EMT has emerged as a therapeutic target or goal (in terms of MET reversion) in cancer therapy. Here we review the critical role of EMT in therapeutic resistance and the importance of EMT as a therapeutic target for human cancer.
Collapse
Affiliation(s)
- Eunae Sandra Cho
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Hee Eun Kang
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Nam Hee Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea.
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea.
| |
Collapse
|
48
|
Li H, Yang C, Shi Y, Zhao L. Exosomes derived from siRNA against GRP78 modified bone-marrow-derived mesenchymal stem cells suppress Sorafenib resistance in hepatocellular carcinoma. J Nanobiotechnology 2018; 16:103. [PMID: 30572882 PMCID: PMC6300915 DOI: 10.1186/s12951-018-0429-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Sorafenib is an effective clinical drug in therapy of hepatocellular carcinoma, having led to improved prognosis in hepatocellular carcinoma patients. However acquired resistance is still being encountered. So, it is urgently to develop alternative strategies to overcome drug resistance. Exosomes can be modified with a variety of molecules, thereby acting as a vehicle for the delivery of therapeutic agents. The GRP78 is overexpressed in Sorafenib resistant cancer cells compared to Sorafenib sensitive cancer cells and thus is able to act as a target for therapy of hepatocellular carcinoma. RESULTS In this study, we modified BM-MSCs to express the exosomal siGRP78. And we show that siGRP78 modified exosomes combined with Sorafenib is able to target GRP78 in hepatocellular carcinoma cells and inhibit the growth and invasion of the cancer cells in vitro. Further, siGRP78 modified exosomes combined with Sorafenib also inhibit the growth and metastasis of the cancer cells in vivo. CONCLUSIONS siGRP78 modified exosomes could sensitize Sorafenib resistant cancer cells to Sorafenib and reverse the drug resistance.
Collapse
Affiliation(s)
- Hongdan Li
- Life Science Institute, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China.
| | - Cheng Yang
- Department of General Surgery 2, Central Hospital of Jinzhou City, Jinzhou, 121000, People's Republic of China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China.
| |
Collapse
|
49
|
Dai B, Shi X, Ma N, Ma W, Zhang Y, Yang T, Zhang J, He L. HMQ-T-B10 induces human liver cell apoptosis by competitively targeting EphrinB2 and regulating its pathway. J Cell Mol Med 2018; 22:5231-5243. [PMID: 30589500 PMCID: PMC6201340 DOI: 10.1111/jcmm.13729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/18/2018] [Indexed: 12/28/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly prevalent cancer worldwide and it is necessary to discover and develop novel preventive strategies and therapeutic approaches for HCC. Herein, we report that EphrinB2 expression is correlated with liver cancer progression. Moreover, by using phosphorylated proteomics array, we reveal a pro-apoptosis protein whose phosphorylation and activation levels are up-regulated upon EphrinB2 knockdown. These results suggest that EphrinB2 may act as an anti-apoptotic protein in liver cancer cells. We also explored the therapeutic potential of HMQ-T-B10 (B10), which was designed and synthesized in our laboratory, for HCC and its underlying mechanisms in vitro and in vivo. Our data demonstrate that B10 could bind EphrinB2 and show inhibitory activity on human liver cancer cells. Moreover, induction of human liver cancer cell apoptosis by B10 could be augmented upon EphrinB2 knockdown. B10 inhibited HCC cell growth and induced HCC cell apoptosis by repressing the EphrinB2 and VEGFR2 signalling pathway. Growth of xenograft tumours derived from Hep3B in nude mice was also significantly inhibited by B10. Collectively, these findings highlight the potential molecular mechanisms of B10 and its potential as an effective antitumour agent for HCC.
Collapse
Affiliation(s)
- Bingling Dai
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Xianpeng Shi
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Nan Ma
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Weina Ma
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Yanmin Zhang
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Tianfeng Yang
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Jie Zhang
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Langchong He
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
50
|
HGF/c-MET: A Promising Therapeutic Target in the Digestive System Cancers. Int J Mol Sci 2018; 19:ijms19113295. [PMID: 30360560 PMCID: PMC6274736 DOI: 10.3390/ijms19113295] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023] Open
Abstract
The HGF/c-MET pathway is active in the development of digestive system cancers, indicating that inhibition of HGF/c-MET signaling may have therapeutic potential. Various HGF/c-MET signaling inhibitors, mainly c-MET inhibitors, have been tested in clinical trials. The observed efficacy and adverse events of some c-MET inhibitors were not very suitable for treating digestive system cancers. The development of new HGF/c-MET inhibitors in preclinical studies may bring promising treatments and synergistic combination (traditional anticancer drugs and c-MET inhibitors) strategies provided anacceptable safety and tolerability. Insights into miRNA biology and miRNA therapeutics have made miRNAs attractive tools to inhibit HGF/c-MET signaling. Recent reports show that several microRNAs participate in inhibiting HGF/c-MET signaling networks through antagonizing c-MET or HGF in digestive system cancers, and the miRNAs-HGF/c-MET axis plays crucial and novel roles for cancer treatment. In the current review, we will discuss recent findings about inhibitors of HGF/c-MET signaling in treating digestive system cancers, and how miRNAs regulate digestive system cancers via mediating HGF/c-MET pathway.
Collapse
|