1
|
Chatupheeraphat C, Kaewsai N, Anuwongcharoen N, Phanus-Umporn C, Pornsuwan S, Eiamphungporn W. Penfluridol synergizes with colistin to reverse colistin resistance in Gram-negative bacilli. Sci Rep 2025; 15:16114. [PMID: 40341530 PMCID: PMC12062240 DOI: 10.1038/s41598-025-01303-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025] Open
Abstract
The growing prevalence of antibiotic resistance in multidrug-resistant Gram-negative bacteria (MDR-GNB), exacerbated by the misuse of antibiotics, presents a critical global health challenge. Colistin, a last-resort antibiotic for severe MDR-GNB infections, has faced diminishing efficacy due to the emergence of colistin-resistant (COL-R) strains. This study evaluates the potential of penfluridol (PF), an antipsychotic drug with notable antibacterial and antibiofilm properties, to restore colistin activity against COL-R GNB in vitro. PF alone exhibited limited antibacterial activity against COL-R GNB; however, its combination with colistin demonstrated strong synergistic effects, significantly reducing colistin's minimum inhibitory concentrations (MICs) by 4-128 times. Time-kill assays confirmed the combination's superior bactericidal activity compared to either agent alone. Membrane permeability assays revealed that PF enhanced colistin's ability to disrupt bacterial membranes, likely by facilitating colistin binding to lipopolysaccharide. Furthermore, PF significantly inhibited the development of colistin resistance over a 30-day resistance development assay. In addition to its antibacterial effects, PF exhibited notable antibiofilm activity. The combination of PF and colistin effectively inhibited biofilm formation and eradicated mature biofilms in most of the tested COL-R GNB strains. These findings mark the first report of PF's synergistic interaction with colistin against GNB biofilms, offering a promising strategy to combat biofilm-associated infections. Overall, the colistin/PF combination holds potential as an effective therapeutic strategy to enhance colistin efficacy, delay resistance development, and manage biofilm-associated infections in MDR-GNB.
Collapse
Affiliation(s)
- Chawalit Chatupheeraphat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Noramon Kaewsai
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Nuttapat Anuwongcharoen
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Chuleeporn Phanus-Umporn
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sudarat Pornsuwan
- International Center for Medical and Radiological Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Warawan Eiamphungporn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
2
|
Kim WJ, Ryu JY, Chang CS, Cho YJ, Choi JJ, Hwang JR, Choi JY, Lee JW. Anticancer effect of the antipsychotic agent penfluridol on epithelial ovarian cancer. J Gynecol Oncol 2025; 36:e28. [PMID: 39223944 PMCID: PMC11964974 DOI: 10.3802/jgo.2025.36.e28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/26/2024] [Accepted: 07/14/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Chemoresistant-epithelial ovarian cancer (EOC) has a poor prognosis, prompting the search for new therapeutic drugs. The diphenylbutylpiperidine (DPBP) class of antipsychotic drugs used in schizophrenia has shown anticancer effects. This study aimed to investigate the preclinical efficacy of penfluridol, fluspirilene, and pimozide (DPBP) using in vitro and in vivo models of EOC. METHODS Human EOC cell lines A2780, HeyA8, SKOV3ip1, A2780-CP20, HeyA8-MDR, and SKOV3-TR were treated with penfluridol, fluspirilene, and pimozide, and cell proliferation, apoptosis, and migration were assessed. The preclinical efficacy of DPBP was also investigated using in vivo mouse models, including cell lines and patient-derived xenografts (PDX) of EOC. RESULTS DPBP drugs significantly decreased cell proliferation in chemosensitive (A2780, HeyA8, and SKOV3ip1) and chemoresistant (A2780-CP20, HeyA8-MDR, and SKOV3-TR) cell lines. Among these drugs, penfluridol exerted a relatively stronger cytotoxic effect on all cell lines. Penfluridol significantly increased apoptosis and inhibited migration of EOC cells. In the cell line xenograft mouse model with HeyA8, the penfluridol group showed significantly decreased tumor weight compared with the control group. In the paclitaxel-resistant model with HeyA8-MDR, the penfluridol group had significantly decreased tumor weight compared with the paclitaxel or control groups. Penfluridol exerted anticancer effects on the PDX model. CONCLUSION Penfluridol exerted significant anticancer effects on EOC cells and xenograft models, including PDX. Thus, penfluridol therapy, as a drug repurposing strategy, might be a potential therapeutic for EOCs.
Collapse
Affiliation(s)
- Won-Ji Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji-Yoon Ryu
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chi-Son Chang
- Department of Obstetrics and Gynecology, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, Korea
| | - Young-Jae Cho
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung-Joo Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Ryoung Hwang
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ju-Yeon Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Lazovic A, Markovic BS, Corovic I, Markovic T, Andjelkovic M, Stojanovic B, Jovanovic I, Mitrovic M. Unlocking the molecular mechanisms of anticancer and immunomodulatory potentials of cariprazine in triple negative breast cancer. Biomed Pharmacother 2025; 184:117931. [PMID: 39978031 DOI: 10.1016/j.biopha.2025.117931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/05/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025] Open
Abstract
Triple-negative breast cancer (TNBC), a highly invasive type of cancer, is difficult to treat due to insufficient specific targets and low survival rates. Current therapy often encounters drug resistance or relapse; thus, repurposing existing drugs could revolutionize cancer treatment. This study examined the anticancer effects of the antipsychotics Cariprazine (CAR), Olanzapine (OLZ), and Clozapine (CLZ), and the immunomodulatory potential of CAR, in vitro and in vivo in TNBC models. In vitro, CAR, OLZ, and CLZ significantly inhibited the proliferation of TNBC cells. This inhibition occurred via the induction of mitochondrial apoptosis, G0/G1 cell cycle arrest, and the suppression of autophagy, as evidenced by the down-regulation of Bcl-2, p62, and pAKT; the upregulation of Bax and active caspase 3; the decrease of ΔΨM; and the promotion of cytochrome c release. In addition, CAR inhibited MDA-MB-231 cells migration. In vivo, CAR inhibited tumor growth in the 4T1 xenograft model without causing adverse effects and resulted in the mRNA upregulation caspase 9, p53, p21, and Beclin-1. In addition, CAR influenced the immune response by promoting the production of proinflammatory cytokines TNF-α, IFN-γ, IL-17, and IL-1β and increasing the percentage of TNF-α+, IL-17+, IL-1β+, and IFN-γ+ CD3+ splenocytes. In conclusion, compared with other antipsychotics, 5-FU, and cisplatin, CAR exerted the most potent anticancer activity in TNBC in vitro and in vivo. This efficacy may be attributed to its ability to regulate apoptosis and autophagy, promote G0/G1 cell cycle arrest, and modulate antitumor immune response, suggesting its therapeutic potential in breast cancer.
Collapse
Affiliation(s)
- Aleksandar Lazovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, Svetozar Markovic 69, Kragujevac 34000, Serbia.
| | - Bojana Simovic Markovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozar Markovic 69, Kragujevac 34000, Serbia.
| | - Irfan Corovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozar Markovic 69, Kragujevac 34000, Serbia; General Hospital of Novi Pazar, Department of Internal Medicine, General Živković 1, Novi Pazar 36300, Serbia.
| | - Tijana Markovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozar Markovic 69, Kragujevac 34000, Serbia.
| | - Marija Andjelkovic
- Department of Medical Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića, 69, Kragujevac 34000, Serbia.
| | - Bojan Stojanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, Svetozar Markovic 69, Kragujevac 34000, Serbia.
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozar Markovic 69, Kragujevac 34000, Serbia.
| | - Marina Mitrovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozar Markovic 69, Kragujevac 34000, Serbia; Department of Medical Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića, 69, Kragujevac 34000, Serbia.
| |
Collapse
|
4
|
Lampros M, Vlachos N, Lianos GD, Bali C, Alexiou GA. Editorial: Drug repurposing for cancer treatment: current and future directions. Front Oncol 2025; 15:1550672. [PMID: 40012550 PMCID: PMC11861434 DOI: 10.3389/fonc.2025.1550672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/21/2025] [Indexed: 02/28/2025] Open
Affiliation(s)
- Marios Lampros
- Department of Neurosurgery, University of Ioannina, Ioannina, Greece
| | - Nikolaos Vlachos
- Department of Neurosurgery, University of Ioannina, Ioannina, Greece
| | | | - Christina Bali
- Department of Surgery, University Hospital of Ioannina, Ioannina, Greece
| | - George A. Alexiou
- Department of Surgery, University Hospital of Ioannina, Ioannina, Greece
| |
Collapse
|
5
|
Wikerholmen T, Taule EM, Rigg E, Berle BF, Sættem M, Sarnow K, Saed HS, Sundstrøm T, Thorsen F. Repurposing neuroleptics: clozapine as a novel, adjuvant therapy for melanoma brain metastases. Clin Exp Metastasis 2025; 42:12. [PMID: 39856383 PMCID: PMC11761981 DOI: 10.1007/s10585-025-10328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/01/2025] [Indexed: 01/27/2025]
Abstract
The blood-brain barrier and the distinct brain immunology provide challenges in translating commonly used chemotherapeutics to treat intracranial tumors. Previous reports suggest anti-tumoral effects of antipsychotics, encouraging investigations into potential treatment effects of neuroleptics on brain metastases. For the first time, the therapeutic potential of the antipsychotic drug clozapine in treating melanoma brain metastases (MBM) was investigated using three human MBM cell lines. Through in vitro cell culture and viability experiments, clozapine displayed potent anti-tumoral effects on MBM cells with an exploitable therapeutic window when compared to normal human astrocytes or rat brain organoids. Further, it was shown that clozapine inhibited migration, proliferation, and colony formation in a dose-dependent manner. Through flow cytometry and proteome screening, we found that clozapine induced apoptosis in MBM cells and potentially altered the tumor immunological environment by upregulating proteins such as macrophage inflammatory protein-1 alpha (MIP-1α) and interleukin-8 (IL-8). In conclusion, clozapine shows significant and selective anti-tumoral effects on MBM cell lines in vitro. Further in vivo experiments are warranted to translate these results into clinical use.
Collapse
Affiliation(s)
- Tobias Wikerholmen
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, Bergen, 5009, Norway
| | - Erlend Moen Taule
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, Bergen, 5009, Norway
| | - Emma Rigg
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, Bergen, 5009, Norway
| | - Birgitte Feginn Berle
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, Bergen, 5009, Norway
| | - Magnus Sættem
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, Bergen, 5009, Norway
| | - Katharina Sarnow
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, Bergen, 5009, Norway
- Department of Neurosurgery, Boston Children's Hospital, 300 longwood Ave, Boston, MA, 02115, USA
| | - Halala Sdik Saed
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, Bergen, 5009, Norway
| | - Terje Sundstrøm
- Department of Neurosurgery, Haukeland University Hospital, Haukelandsveien 22, Bergen, 5021, Norway
- Department of Clinical Medicine, University of Bergen, Jonas Lies Vei 87, Bergen, 5009, Norway
| | - Frits Thorsen
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, Bergen, 5009, Norway.
- Department of Neurosurgery, Haukeland University Hospital, Haukelandsveien 22, Bergen, 5021, Norway.
- Department of Clinical Medicine, University of Bergen, Jonas Lies Vei 87, Bergen, 5009, Norway.
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, Bergen, 5009, Norway.
| |
Collapse
|
6
|
Li Z, Shao R, Xin H, Zhu Y, Jiang S, Wu J, Yan H, Jia T, Ge M, Shi X. Paxillin and Kindlin: Research Progress and Biological Functions. Biomolecules 2025; 15:173. [PMID: 40001476 PMCID: PMC11853175 DOI: 10.3390/biom15020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/21/2024] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Paxillin and kindlin are essential regulatory proteins involved in cell adhesion, migration, and signal transduction. Paxillin influences cytoskeletal dynamics by interacting with multiple signaling proteins, while kindlin regulates integrin activation, affecting adhesion and motility. This review examines the structures and functions of these proteins, focusing on their roles in cancer progression, immune response, and therapeutic potential. The cooperation between paxillin and kindlin in integrin activation and focal adhesion dynamics offers valuable insights into tumor metastasis, immune function, and tissue repair.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiaofeng Shi
- The Second Affiliated Hospital of Nanjing Medical University, No.262, North Zhongshan Road, Nanjing 210003, China; (Z.L.)
| |
Collapse
|
7
|
Song L, Wu H, Sun X, Liu X, Ling X, Ni W, Li L, Liu B, Wei J, Li X, Li J, Wang Y, Mao F. Penfluridol targets septin7 to suppress endometrial cancer by septin7-Orai/IP3R-Ca 2+-PIK3CA pathway. iScience 2025; 28:111640. [PMID: 39850355 PMCID: PMC11754080 DOI: 10.1016/j.isci.2024.111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/31/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Phenotypic screening of existing drugs is a good strategy to discover new drugs. Herein, 33 psychotherapeutic drugs in our drug library were screened by phenotypic screening and penfluridol (PFD) was found to exhibit excellent anti-endometrial cancer (EC) activity both in vitro and in vivo. Furthermore, the molecular target of PFD was identified as septin7, a tumor suppressor in EC. In septin7-deficient EC cells and xenograft mouse models, PFD exhibited weaker anti-cancer properties, indicating that septin7 was essential for the tumor inhibitory activity. Notably, PFD could induce cell apoptosis by regulating the septin7-Orai/IP3R-Ca2+-PIK3CA pathway. In addition, PFD attenuates the interaction of septin7-tubulin, thereby inhibiting microtubule polymerization. In summary, this study revealed a target and mechanistic insights into EC therapeutic strategies and identified a potential candidate agent for the treatment of EC.
Collapse
Affiliation(s)
- Lingyi Song
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Huiwen Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiao Sun
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaohu Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xianwu Ling
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Ni
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lijuan Li
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Beibei Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlian Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou 570228, China
| | - Yudong Wang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai 200030, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Ali Ibrahim Mze A, Abdul Rahman A. Repurposing the antipsychotic drug penfluridol for cancer treatment (Review). Oncol Rep 2024; 52:174. [PMID: 39513619 PMCID: PMC11541647 DOI: 10.3892/or.2024.8833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Cancer is one of the most prevalent diseases and the leading cause of death worldwide. Despite the improved survival rates of cancer in recent years, the current available treatments often face resistance and side effects. Drug repurposing represents a cost‑effective and efficient alternative to cancer treatment. Recent studies revealed that penfluridol (PF), an antipsychotic drug, is a promising anticancer agent. In the present study, a scoping review was conducted to ascertain the anticancer properties of PF. For this, a literature search was performed using the Scopus, PubMed and Web of Science databases with the search string 'penfluridol' AND 'cancer'. A total of 23 original articles with in vivo and/or in vitro studies on the effect of PF on cancer were included in the scoping review. The outcome of the analysis demonstrated the anticancer potential of PF. PF significantly inhibited cell proliferation, metastasis and invasion while inducing apoptosis and autophagy in vivo and across a spectrum of cancer cell lines, including breast, lung, pancreatic, glioblastoma, gallbladder, bladder, oesophageal, leukaemia and renal cancers. However, research on PF derivatives with high anticancer activities and reduced neurological side effects may be necessary.
Collapse
Affiliation(s)
- Asma Ali Ibrahim Mze
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Sungai Buloh, Selangor 47000, Malaysia
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Sungai Buloh, Sungai Buloh, Selangor 47000, Malaysia
| | - Amirah Abdul Rahman
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Sungai Buloh, Selangor 47000, Malaysia
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Sungai Buloh, Sungai Buloh, Selangor 47000, Malaysia
| |
Collapse
|
9
|
Nguyen MT, Lee GJ, Kim B, Kim HJ, Tak J, Park MK, Kim EJ, Kang GJ, Rho SB, Lee H, Lee K, Kim SG, Lee CH. Penfluridol suppresses MYC-driven ANLN expression and liver cancer progression by disrupting the KEAP1-NRF2 interaction. Pharmacol Res 2024; 210:107512. [PMID: 39643070 DOI: 10.1016/j.phrs.2024.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/05/2024] [Accepted: 11/16/2024] [Indexed: 12/09/2024]
Abstract
Hepatocellular carcinoma (HCC) comprises the majority of primary liver cancers and possesses a low 5-year survival rate when in the advanced stages. Anillin (ANLN), a key player in cell growth and cytokinesis, is implicated in HCC development. Currently, no treatment agents are known to suppress ANLN. Analysis of The Cancer Genome Atlas data showed that high ANLN expression is associated with poor prognosis and survival in HCC patients. ANLN knockdown was shown to inhibit proliferation, cell cycle progression, and PD-L1 expression in liver cancer cells. The antipsychotic drug penfluridol was identified to suppress ANLN expression in the Connectivity Map analysis. Penfluridol downregulated ANLN at both the mRNA and protein levels, leading to G2/M cell cycle arrest and reduced colony formation in liver cancer cells. Mechanistically, penfluridol inhibited the transcription factor MYC from binding to an E-box motif in the ANLN promoter. This process was mediated by penfluridol-induced upregulation of NRF2, which competitively bound and sequestered MYC away from the ANLN promoter. Penfluridol inhibited the interaction between NRF2 and KEAP1, increasing NRF2. In a syngeneic mouse model, penfluridol suppressed liver tumour growth accompanied by increased NRF2 and decreased MYC and ANLN expression. These findings suggest penfluridol can be applied as the first ANLN blocker to modulate the MYC/NRF2/KEAP1 axis.
Collapse
Affiliation(s)
- Minh Tuan Nguyen
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Gi Jeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Boram Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Hyun Ji Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Jihoon Tak
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Mi Kyung Park
- Department of Bio-Healthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Eun Ji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seung Bae Rho
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Ho Lee
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Kyung Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Sang Geon Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Chang Hoon Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
10
|
Xu F, Li J, Ai M, Zhang T, Ming Y, Li C, Pu W, Yang Y, Li Z, Qi Y, Xu X, Sun Q, Yuan Z, Xia Y, Peng Y. Penfluridol inhibits melanoma growth and metastasis through enhancing von Hippel‒Lindau tumor suppressor-mediated cancerous inhibitor of protein phosphatase 2A (CIP2A) degradation. MedComm (Beijing) 2024; 5:e758. [PMID: 39399646 PMCID: PMC11470999 DOI: 10.1002/mco2.758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024] Open
Abstract
Melanoma's high metastatic potential, especially to the brain, poses significant challenges to patient survival. The blood‒brain barrier (BBB) is a major obstacle to the effective treatment of melanoma brain metastases. We screened antipsychotic drugs capable of crossing the BBB and identified penfluridol (PF) as the most active candidate. PF reduced melanoma cell viability and induced apoptosis. In animal models, PF effectively inhibited melanoma growth and metastasis to the lung and brain. Using immunoprecipitation combined with high-resolution mass spectrometry, and other techniques such as drug affinity responsive target stability, we identified CIP2A as a direct binding protein of PF. CIP2A is highly expressed in melanoma and its metastases, and is linked to poor prognosis. PF can restore Protein Phosphatase 2A activity by promoting CIP2A degradation, thereby inhibiting several key oncogenic pathways, including AKT and c-Myc. Additionally, von Hippel‒Lindau (VHL) is the endogenous E3 ligase for CIP2A, and PF enhances the interaction between VHL and CIP2A, promoting the ubiquitin‒proteasome degradation of CIP2A, thereby inhibiting melanoma growth and metastasis. Overall, this study not only suggests PF's potential in treating melanoma and its brain metastases but also highlights CIP2A degradation as a therapeutic strategy for melanoma.
Collapse
Affiliation(s)
- Fuyan Xu
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jiao Li
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Min Ai
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Tingting Zhang
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yue Ming
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Cong Li
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Wenchen Pu
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yang Yang
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Zhang Li
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yucheng Qi
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xiaomin Xu
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Qingxiang Sun
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Zhu Yuan
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yong Xia
- Rehabilitation Medicine CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yong Peng
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduChina
| |
Collapse
|
11
|
Gaikwad S, Srivastava SK. Reprogramming tumor immune microenvironment by milbemycin oxime results in pancreatic tumor growth suppression and enhanced anti-PD-1 efficacy. Mol Ther 2024; 32:3145-3162. [PMID: 39097773 PMCID: PMC11403213 DOI: 10.1016/j.ymthe.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a survival rate of 12%, and multiple clinical trials testing anti-PD-1 therapies against PDAC have failed, suggesting a need for a novel therapeutic strategy. In this study, we evaluated the potential of milbemycin oxime (MBO), an antiparasitic compound, as an immunomodulatory agent in PDAC. Our results show that MBO inhibited the growth of multiple PDAC cell lines by inducing apoptosis. In vivo studies showed that the oral administration of 5 mg/kg MBO inhibited PDAC tumor growth in both subcutaneous and orthotopic models by 49% and 56%, respectively. Additionally, MBO treatment significantly increased the survival of tumor-bearing mice by 27 days as compared to the control group. Interestingly, tumors from MBO-treated mice had increased infiltration of CD8+ T cells. Notably, depletion of CD8+ T cells significantly reduced the anti-tumor efficacy of MBO in mice. Furthermore, MBO significantly augmented the efficacy of anti-PD-1 therapy, and the combination treatment resulted in a greater proportion of active cytotoxic T cells within the tumor microenvironment. MBO was safe and well tolerated in all our preclinical toxicological studies. Overall, our study provides a new direction for the use of MBO against PDAC and highlights the potential of repurposing MBO for enhancing anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Shreyas Gaikwad
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Center for Tumor Immunology and Targeted Cancer Therapy, Jerry H. Hodge School of Pharmacy, Abilene, TX 79601, USA
| | - Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Center for Tumor Immunology and Targeted Cancer Therapy, Jerry H. Hodge School of Pharmacy, Abilene, TX 79601, USA.
| |
Collapse
|
12
|
Zeng X, Lin GX, Zeng X, Zheng J, Ren C, Luo Z, Xiao K, Sun N, Zhang L, Rui G, Chen X. Penfluridol regulates p62 / Keap1 / Nrf2 signaling pathway to induce ferroptosis in osteosarcoma cells. Biomed Pharmacother 2024; 177:117094. [PMID: 38996707 DOI: 10.1016/j.biopha.2024.117094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
The cure rate for patients with osteosarcoma (OS) has stagnated over the past few decades. Penfluridol, a first-generation antipsychotic, has demonstrated to prevent lung and esophageal malignancies from proliferation and metastasis. However, the effect of penfluridol on OS and its underlying molecular mechanism remains unclear. This study revealed that penfluridol effectively inhibited cell proliferation and migration, and induced G2/M phase arrest in OS cells. In addition, penfluridol treatment was found to increased reactive oxygen species (ROS) levels in OS cells. Combined with the RNA-Seq results, the anti-OS effect of penfluridol was hypothesized to be attributed to the induction of ferroptosis. Western blot results showed that penfluridol promoted intracellular Fe2+ concentration, membrane lipid peroxidation, and decreased intracellular GSH level to induce ferroptosis. Further studies showed that p62/Keap1/Nrf2 signaling pathway was implicated in penfluridol-induced ferroptosis in OS cells. Overexpression of p62 effectively reversed penfluridol-induced ferroptosis. In vivo, penfluridol effectively inhibited proliferation and prolonged survival in xenograft tumor model. Therefore, penfluridol is a promising drug targeting OS in the future.
Collapse
Affiliation(s)
- Xiangchen Zeng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China
| | - Guang-Xun Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xianhui Zeng
- Department of Infectious Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou 570206, China
| | - Jiyuan Zheng
- The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Chong Ren
- School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zhong Luo
- School of Medicine, Xiamen University, Xiamen 361102, China
| | - Keyi Xiao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China
| | - Naikun Sun
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China
| | - Long Zhang
- Department of Pain, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
| | - Gang Rui
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Xiaohui Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
13
|
Xu W, Wang Y, Zhang N, Lin X, Zhu D, Shen C, Wang X, Li H, Xue J, Yu Q, Lu X, Zhou L, He Q, Tang Z, He S, Fan J, Pan J, Tang J, Jiang W, Ye M, Lu F, Li Z, Dang Y. The Antipsychotic Drug Penfluridol Inhibits N-Linked Glycoprotein Processing and Enhances T-cell-Mediated Tumor Immunity. Mol Cancer Ther 2024; 23:648-661. [PMID: 37963566 DOI: 10.1158/1535-7163.mct-23-0449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/19/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
Aberrant N-linked glycosylation is a prominent feature of cancers. Perturbance of oligosaccharide structure on cell surfaces directly affects key processes in tumor development and progression. In spite of the critical role played by N-linked glycans in tumor biology, the discovery of small molecules that specifically disturbs the N-linked glycans is still under investigation. To identify more saccharide-structure-perturbing compounds, a repurposed drug screen by using a library consisting of 1530 FDA-approved drugs was performed. Interestingly, an antipsychotic drug, penfluridol, was identified as being able to decrease cell surface wheat germ agglutinin staining. In the presence of penfluridol, cell membrane glycoproteins programmed death-ligand 1 (PD-L1) shifted to a lower molecular weight. Further studies demonstrated that penfluridol treatment caused an accumulation of high-mannose oligosaccharides, especially Man5-7GlcNAc2 glycan structures. Mechanistically, this effect is due to direct targeting of MAN1A1 mannosidase, a Golgi enzyme involved in N-glycan maturation. Moreover, we found that altered glycosylation of PD-L1 caused by penfluridol disrupted interactions between programmed cell death protein 1 and PD-L1, resulting in activation of T-cell tumor immunity. In a mouse xenograft and glioma model, penfluridol enhanced the antitumor effect of the anti-PD-L1 antibody in vivo. Overall, these findings revealed an important biological activity of the antipsychotic drug penfluridol as an inhibitor of glycan processing and proposed a repurposed use of penfluridol in antitumor therapy through activation of T-cell immunity.
Collapse
Affiliation(s)
- Wenlong Xu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuqi Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Na Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
| | - Xiaofeng Lin
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Di Zhu
- Lab of Tumor Immunology, Department of Human Anatomy, Histology and Embryology, Basic Medical School of Fudan University, Shanghai, China
| | - Cheng Shen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaobo Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haiyang Li
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinjiang Xue
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Qian Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyi Lu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu Zhou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Qingli He
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhijun Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Shaodan He
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Jianjun Fan
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Jianbo Pan
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Jiangjiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
| | - Fanghui Lu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Zengxia Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Zhang Y, Huang Q, Xu Q, Jia C, Xia Y. Pimavanserin tartrate induces apoptosis and cytoprotective autophagy and synergizes with chemotherapy on triple negative breast cancer. Biomed Pharmacother 2023; 168:115665. [PMID: 37832400 DOI: 10.1016/j.biopha.2023.115665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Triple negative breast cancer (TNBC) poses a significant clinical challenge due to its lack of targeted therapy options and the frequent development of chemotherapy resistance. Metastasis remains a primary cause of mortality in late-stage TNBC patients, underscoring the urgent need for alternative treatments. Repurposing existing drugs offers a promising strategy for the discovery of novel therapies. In this study, we investigated the potential of pimavanserin tartrate (PVT) as a treatment for TNBC. While previous studies have highlighted PVT's anticancer effects in various cancer types, its activity in TNBC remains unclear. Our investigation aimed to elucidate the anticancer effects and underlying mechanisms of PVT in TNBC. We evaluated the impact of PVT and combination treatments involving PVT on TNBC cell viability, apoptosis, autophagy, and associated signaling pathways. Our findings revealed that PVT may induce mitochondria-dependent intrinsic apoptosis and caused cytoprotective autophagy via the PI3K/Akt/mTOR pathway in TNBC cells in vitro. Notably, our study demonstrated strong synergistic anti-TNBC effects when combining PVT with doxorubicin. We also found PVT showed some efficacies to inhibit TNBC tumor growth in vivo. These results provided valuable insights into the potential of PVT as an anti-TNBC therapeutic and a possible option for enhancing the sensitivity of TNBC cells to conventional chemotherapy drugs. Further studies are needed to determine the activity and mechanism of PVT in inhibiting TNBC.
Collapse
Affiliation(s)
- Yiqian Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qianrui Huang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qisi Xu
- School of Food and Bioengineering, Xihua University, Chengdu 610041, China
| | - Chengsen Jia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu 610041, China.
| |
Collapse
|
15
|
Yuzhalin AE, Yu D. Critical functions of extracellular matrix in brain metastasis seeding. Cell Mol Life Sci 2023; 80:297. [PMID: 37728789 PMCID: PMC10511571 DOI: 10.1007/s00018-023-04944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Human brain is characterized by extremely sparse extracellular matrix (ECM). Despite its low abundance, the significance of brain ECM in both physiological and pathological conditions should not be underestimated. Brain metastasis is a serious complication of cancer, and recent findings highlighted the contribution of ECM in brain metastasis development. In this review, we provide a comprehensive outlook on how ECM proteins promote brain metastasis seeding. In particular, we discuss (1) disruption of the blood-brain barrier in brain metastasis; (2) role of ECM in modulating brain metastasis dormancy; (3) regulation of brain metastasis seeding by ECM-activated integrin signaling; (4) functions of brain-specific ECM protein reelin in brain metastasis. Lastly, we consider the possibility of targeting ECM for brain metastasis management.
Collapse
Affiliation(s)
- Arseniy E Yuzhalin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Unit 108, Houston, TX, 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Unit 108, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
McDonald B, Barth K, Schmidt MHH. The origin of brain malignancies at the blood-brain barrier. Cell Mol Life Sci 2023; 80:282. [PMID: 37688612 PMCID: PMC10492883 DOI: 10.1007/s00018-023-04934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
Despite improvements in extracranial therapy, survival rate for patients suffering from brain metastases remains very poor. This is coupled with the incidence of brain metastases continuing to rise. In this review, we focus on core contributions of the blood-brain barrier to the origin of brain metastases. We first provide an overview of the structure and function of the blood-brain barrier under physiological conditions. Next, we discuss the emerging idea of a pre-metastatic niche, namely that secreted factors and extracellular vesicles from a primary tumor site are able to travel through the circulation and prime the neurovasculature for metastatic invasion. We then consider the neurotropic mechanisms that circulating tumor cells possess or develop that facilitate disruption of the blood-brain barrier and survival in the brain's parenchyma. Finally, we compare and contrast brain metastases at the blood-brain barrier to the primary brain tumor, glioma, examining the process of vessel co-option that favors the survival and outgrowth of brain malignancies.
Collapse
Affiliation(s)
- Brennan McDonald
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany.
| | - Kathrin Barth
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| |
Collapse
|
17
|
Drabczyk AK, Kułaga D, Zaręba P, Tylińska W, Bachowski W, Archała A, Wnorowski A, Tzani A, Detsi A, Jaśkowska J. Eco-friendly synthesis of new olanzapine derivatives and evaluation of their anticancer potential. RSC Adv 2023; 13:20467-20476. [PMID: 37435368 PMCID: PMC10331126 DOI: 10.1039/d3ra03926a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023] Open
Abstract
New derivatives of the known antipsychotic drug olanzapine have been obtained as potential compounds with anticancer activity in two metabolically different breast cancer cell lines: MCF-7 and triple negative MDA-MB-231. The compounds were obtained under phase transfer catalysis (PTC) in the presence of microwave irradiation (MW) or ultrasound (")))"), evaluating the effect of solvents such as dimethylformamide, water, or choline chloride/urea (natural deep eutectic solvent, NaDES). In the best option, the compounds were obtained within 2 minutes with a yield of 57-86% in MW. Two of the obtained compounds which have a naphthalimide moiety and a pentyl (7) or hexyl chain (8) show pronounced cytotoxicity. Interestingly, neither olanzapine nor desmethylolanzapine (DOLA), which was one of the substrates for the synthesis reaction, showed any significant activity in the study.
Collapse
Affiliation(s)
- Anna K Drabczyk
- Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Cracow University of Technology 24 Warszawska Street 31-155 Cracow Poland
| | - Damian Kułaga
- Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Cracow University of Technology 24 Warszawska Street 31-155 Cracow Poland
| | - Przemysław Zaręba
- Faculty of Chemical Engineering and Technology, Department of Organic Chemistry and Technology, Cracow University of Technology 24 Warszawska Street 31-155 Cracow Poland
| | - Wiktoria Tylińska
- Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Cracow University of Technology 24 Warszawska Street 31-155 Cracow Poland
| | - Wojciech Bachowski
- Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Cracow University of Technology 24 Warszawska Street 31-155 Cracow Poland
| | - Aneta Archała
- Department of Biopharmacy, Medical University of Lublin 4a Chodzki Street 20-059 Lublin Poland
| | - Artur Wnorowski
- Department of Biopharmacy, Medical University of Lublin 4a Chodzki Street 20-059 Lublin Poland
| | - Andromachi Tzani
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens 15780 Zografou Athens Greece
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens 15780 Zografou Athens Greece
| | - Jolanta Jaśkowska
- Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Cracow University of Technology 24 Warszawska Street 31-155 Cracow Poland
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens 15780 Zografou Athens Greece
| |
Collapse
|
18
|
Xun C, Zhang Y, Zheng X, Qin S. A novel AKR1C3 specific prodrug AST-3424 and its combination therapy in hepatocellular carcinoma. J Pharmacol Sci 2023; 152:69-75. [PMID: 37169481 DOI: 10.1016/j.jphs.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/08/2023] [Accepted: 03/27/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVE AST-3424 is a novel specific aldo-keto reductase 1C3 (AKR1C3) prodrug that releases a DNA alkylating reagent upon reduction by AKR1C3. This study aimed to evaluate the efficacy and safety of AST-3424 in patient-derived tumor xenograft (PDTX) model and orthotopic model against hepatocellular carcinoma (HCC). MATERIALS AND METHOD PDTX models derived from three HCC patients and orthotopic mice models using HepG2 cells were developed. The mice were treated with AST-3424 alone or combined with other drugs (oxaliplatin, apatinib, sorafenib and elemene in PDTX models, oxaliplatin and 5- fluorouracil in orthotopic models). The tumor volume and weight, as well as the mice weight were assessed. The liver tumor and transplanted tumor were removed for histological, immunohistochemical and Western blot detection in orthotopic model experiments. RESULTS AST-3424 could inhibit tumor growth in HCC PDTX models and orthotopic models, with no difference in safety compared with other marketed drugs, and the drug combination did not increase toxicity. The inhibitory effect of combination treatment was more obvious than which used alone. The reduction of AKR1C3 expression was negatively correlated with AST-3424 dose. CONCLUSION AST-3424 had a promising effect against HCC in PDTX model and orthotopic model with good safety. It could promote the sensitivity of other drugs without increasing toxicity. Clinical trials are warranted to further certify its antitumor effect and safety.
Collapse
Affiliation(s)
- Chen Xun
- Department of Medical Oncology Center, Bayi Affiliated Hospital of Nanjing University of Chinese Medicine; Yanggongjing 34 Biao No. 34, Qinhuai Distrct, Nanjing City, Jiangsu Province, 210002, China
| | - Yu Zhang
- Nanjing University of Chinese Medicine; No. 138 Xianlin Road, Qixia District, Nanjing City, Jiangsu Province, 210023, China
| | - Xia Zheng
- Department of Oncology, Jiangsu Provincial Hospital of Chinese Medicine; No. 200 Xianlin Road, Qixia District, Nanjing City, Jiangsu Province, 210023, China
| | - Shukui Qin
- Department of Medical Oncology Center, Bayi Affiliated Hospital of Nanjing University of Chinese Medicine; Yanggongjing 34 Biao No. 34, Qinhuai Distrct, Nanjing City, Jiangsu Province, 210002, China.
| |
Collapse
|
19
|
Liu B, Chen R, Zhang Y, Huang J, Luo Y, Rosthøj S, Zhao C, Jäättelä M. Cationic amphiphilic antihistamines inhibit STAT3 via Ca 2+-dependent lysosomal H + efflux. Cell Rep 2023; 42:112137. [PMID: 36807142 PMCID: PMC9989825 DOI: 10.1016/j.celrep.2023.112137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/08/2022] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Commonly used antihistamines and other cationic amphiphilic drugs (CADs) are emerging as putative cancer drugs. Their unique chemical structure enables CADs to accumulate rapidly inside lysosomes, where they increase lysosomal pH, alter lysosomal lipid metabolism, and eventually cause lysosomal membrane permeabilization. Here, we show that CAD-induced rapid elevation in lysosomal pH is caused by a lysosomal H+ efflux that requires P2RX4-mediated lysosomal Ca2+ release and precedes the lysosomal membrane permeabilization. The subsequent cytosolic acidification triggers the dephosphorylation, lysosomal translocation, and inactivation of the oncogenic signal transducer and activator of transcription 3 (STAT3) transcription factor. Moreover, CAD-induced lysosomal H+ efflux sensitizes cancer cells to apoptosis induced by STAT3 inhibition and acts synergistically with STAT3 inhibition in restricting the tumor growth of A549 non-small cell lung carcinoma xenografts. These findings identify lysosomal H+ efflux and STAT3 inhibition as anticancer mechanisms of CADs and reinforce the repurposing of safe and inexpensive CADs as cancer drugs with a drug combination strategy.
Collapse
Affiliation(s)
- Bin Liu
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100 Copenhagen, Denmark.
| | - Ran Chen
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100 Copenhagen, Denmark
| | - Yidan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266555, China
| | - Jinrong Huang
- BGI-Shenzhen, Shenzhen 518083, China; Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark; Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao 266555, China
| | - Yonglun Luo
- BGI-Shenzhen, Shenzhen 518083, China; Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao 266555, China; Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Susanne Rosthøj
- Statistics and Data Analysis, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266555, China
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100 Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
20
|
Rivera-Caraballo KA, Nair M, Lee TJ, Kaur B, Yoo JY. The complex relationship between integrins and oncolytic herpes Simplex Virus 1 in high-grade glioma therapeutics. Mol Ther Oncolytics 2022; 26:63-75. [PMID: 35795093 PMCID: PMC9233184 DOI: 10.1016/j.omto.2022.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
High-grade gliomas (HGGs) are lethal central nervous system tumors that spread quickly through the brain, making treatment challenging. Integrins are transmembrane receptors that mediate cell-extracellular matrix (ECM) interactions, cellular adhesion, migration, growth, and survival. Their upregulation and inverse correlation in HGG malignancy make targeting integrins a viable therapeutic option. Integrins also play a role in herpes simplex virus 1 (HSV-1) entry. Oncolytic HSV-1 (oHSV) is the most clinically advanced oncolytic virotherapy, showing a superior safety and efficacy profile over standard cancer treatment of solid cancers, including HGG. With the FDA-approval of oHSV for melanoma and the recent conditional approval of oHSV for malignant glioma in Japan, usage of oHSV for HGG has become of great interest. In this review, we provide a systematic overview of the role of integrins in relation to oHSV, with a special focus on its therapeutic potential against HGG. We discuss the pros and cons of targeting integrins during oHSV therapy: while integrins play a pro-therapeutic role by acting as a gateway for oHSV entry, they also mediate the innate antiviral immune responses that hinder oHSV therapeutic efficacy. We further discuss alternative strategies to regulate the dual functionality of integrins in the context of oHSV therapy.
Collapse
Affiliation(s)
- Kimberly Ann Rivera-Caraballo
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Mitra Nair
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Tae Jin Lee
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ji Young Yoo
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
21
|
Brown JS. Treatment of cancer with antipsychotic medications: Pushing the boundaries of schizophrenia and cancer. Neurosci Biobehav Rev 2022; 141:104809. [PMID: 35970416 DOI: 10.1016/j.neubiorev.2022.104809] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
Over a century ago, the phenothiazine dye, methylene blue, was discovered to have both antipsychotic and anti-cancer effects. In the 20th-century, the first phenothiazine antipsychotic, chlorpromazine, was found to inhibit cancer. During the years of elucidating the pharmacology of the phenothiazines, reserpine, an antipsychotic with a long historical background, was likewise discovered to have anti-cancer properties. Research on the effects of antipsychotics on cancer continued slowly until the 21st century when efforts to repurpose antipsychotics for cancer treatment accelerated. This review examines the history of these developments, and identifies which antipsychotics might treat cancer, and which cancers might be treated by antipsychotics. The review also describes the molecular mechanisms through which antipsychotics may inhibit cancer. Although the overlap of molecular pathways between schizophrenia and cancer have been known or suspected for many years, no comprehensive review of the subject has appeared in the psychiatric literature to assess the significance of these similarities. This review fills that gap and discusses what, if any, significance the similarities have regarding the etiology of schizophrenia.
Collapse
|
22
|
Liu T, Wen X, Zhao QJ, Bai Y, Tian QG. The Effect of Nano Albumin Combined with Paclitaxel on Drug Resistance of Breast Cancer Through Regulating ATP Binding Cassette Subfamily B Member 1 (ABCB1). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The paclitaxel is a common-used chemotherapy drug and its combination with nano albumin reduces drug side effect. However, whether nab-paclitaxel affects drug resistance of breast cancer remains unclear. This study intends to discuss the mechanism of drug resistance induced by nab-paclitaxel.
The drug resistance of MCF-7/nab-paclitaxel in MCF-7 cell and cell proliferation was detected by MTT along with analysis of ABCB1 expression, cell cycle, and apoptosis. There was stronger drug resistance of nab-paclitaxel in the MCF-7/nab-paclitaxel cell group through be adopted with different
concentration of nab-paclitaxel at the 0th hour, 24th hour and 48th hour. There was remarkable abnormal expression of the ABCB1 in the MCF-7/nab-paclitaxel cell group. The si-ABCB1 could release the quantity of the MCF-7/nab-paclitaxel cell blocked at S period. And the si-ABCB1 could reduce
the expression of cyclin D1 and CDK2 in the MCF-7/nab-paclitaxel cell notably. But the expression level of p21 was increased when there was high concentration of si-ABCB1. The si-ABCB1 could increase the quantity of the MCF-7/nab-paclitaxel cell at the later period of cell apoptosis notably.
The rat’s tumor growth was delayed obviously at the MCF-7/nabpaclitaxel cell group treated by si-ABCB1. But the inhibiting effect of the MCF-7/nab-paclitaxel cell on tumor growth was less. There was stronger drug resistance of cell for the nano albumin combined with paclitaxel. The function
of cell proliferation in breast cancer was restrained by the nano albumin combined with paclitaxel mainly through inducing the expression of ABCB1, adjusting the growth of cell cycle and the expression of P21/BCL-2 protein.
Collapse
Affiliation(s)
- Tao Liu
- Department of Oncology, Baotou Fourth Hospital, Baotou, Inner Mongolia Autonomous Region, 014000, China
| | - Xiang Wen
- Department of Minimally Invasive Intervention, Baotou Tumor Hospital, Baotou, Inner Mongolia Autonomous Region, 014000, China
| | - Qi-Jun Zhao
- Department of Oncology, Baotou Fourth Hospital, Baotou, Inner Mongolia Autonomous Region, 014000, China
| | - Ying Bai
- Department of Oncology, Baotou Fourth Hospital, Baotou, Inner Mongolia Autonomous Region, 014000, China
| | - Qing-Gang Tian
- Department of Oncology, Baotou Fourth Hospital, Baotou, Inner Mongolia Autonomous Region, 014000, China
| |
Collapse
|
23
|
Huang CY, Nicholson MW, Wang JY, Ting CY, Tsai MH, Cheng YC, Liu CL, Chan DZH, Lee YC, Hsu CC, Hsu YH, Yang CF, Chang CMC, Ruan SC, Lin PJ, Lin JH, Chen LL, Hsieh ML, Cheng YY, Hsu WT, Lin YL, Chen CH, Hsu YH, Wu YT, Hacker TA, Wu JC, Kamp TJ, Hsieh PCH. Population-based high-throughput toxicity screen of human iPSC-derived cardiomyocytes and neurons. Cell Rep 2022; 39:110643. [PMID: 35385754 DOI: 10.1016/j.celrep.2022.110643] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/13/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022] Open
Abstract
In this study, we establish a population-based human induced pluripotent stem cell (hiPSC) drug screening platform for toxicity assessment. After recruiting 1,000 healthy donors and screening for high-frequency human leukocyte antigen (HLA) haplotypes, we identify 13 HLA-homozygous "super donors" to represent the population. These "super donors" are also expected to represent at least 477,611,135 of the global population. By differentiating these representative hiPSCs into cardiomyocytes and neurons we show their utility in a high-throughput toxicity screen. To validate hit compounds, we demonstrate dose-dependent toxicity of the hit compounds and assess functional modulation. We also show reproducible in vivo drug toxicity results using mouse models with select hit compounds. This study shows the feasibility of using a population-based hiPSC drug screening platform to assess cytotoxicity, which can be used as an innovative tool to study inter-population differences in drug toxicity and adverse drug reactions in drug discovery applications.
Collapse
Affiliation(s)
- Ching Ying Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | | | - Jyun Yuan Wang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chien Yu Ting
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Ming Heng Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yu Che Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chun Lin Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Darien Z H Chan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yi Chan Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Ching Chuan Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yu Hung Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chiou Fong Yang
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Cindy M C Chang
- Cardiovascular Physiology Core Facility, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Shu Chian Ruan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Po Ju Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Jen Hao Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Li Lun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Marvin L Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Cardiovascular Physiology Core Facility, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yuan Yuan Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Wan Tseng Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yi Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chien Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yu Hsiang Hsu
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Ying Ta Wu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Timothy A Hacker
- Cardiovascular Physiology Core Facility, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Timothy J Kamp
- Department of Medicine and Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Patrick C H Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Department of Medicine and Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Institute of Medical Genomics and Proteomics and Institute of Clinical Medicine, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
24
|
Zheng C, Yu X, Liang Y, Zhu Y, He Y, Liao L, Wang D, Yang Y, Yin X, Li A, He Q, Li B. Targeting PFKL with penfluridol inhibits glycolysis and suppresses esophageal cancer tumorigenesis in an AMPK/FOXO3a/BIM-dependent manner. Acta Pharm Sin B 2022; 12:1271-1287. [PMID: 35530161 PMCID: PMC9069409 DOI: 10.1016/j.apsb.2021.09.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
As one of the hallmarks of cancer, metabolic reprogramming leads to cancer progression, and targeting glycolytic enzymes could be useful strategies for cancer therapy. By screening a small molecule library consisting of 1320 FDA-approved drugs, we found that penfluridol, an antipsychotic drug used to treat schizophrenia, could inhibit glycolysis and induce apoptosis in esophageal squamous cell carcinoma (ESCC). Gene profiling and Ingenuity Pathway Analysis suggested the important role of AMPK in action mechanism of penfluridol. By using drug affinity responsive target stability (DARTS) technology and proteomics, we identified phosphofructokinase, liver type (PFKL), a key enzyme in glycolysis, as a direct target of penfluridol. Penfluridol could not exhibit its anticancer property in PFKL-deficient cancer cells, illustrating that PFKL is essential for the bioactivity of penfluridol. High PFKL expression is correlated with advanced stages and poor survival of ESCC patients, and silencing of PFKL significantly suppressed tumor growth. Mechanistically, direct binding of penfluridol and PFKL inhibits glucose consumption, lactate and ATP production, leads to nuclear translocation of FOXO3a and subsequent transcriptional activation of BIM in an AMPK-dependent manner. Taken together, PFKL is a potential prognostic biomarker and therapeutic target in ESCC, and penfluridol may be a new therapeutic option for management of this lethal disease.
Collapse
|
25
|
Malik JA, Ahmed S, Jan B, Bender O, Al Hagbani T, Alqarni A, Anwar S. Drugs repurposed: An advanced step towards the treatment of breast cancer and associated challenges. Biomed Pharmacother 2021; 145:112375. [PMID: 34863612 DOI: 10.1016/j.biopha.2021.112375] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 02/09/2023] Open
Abstract
Breast cancer (BC) is mostly observed in women and is responsible for huge mortality in women subjects globally. Due to the continued development of drug resistance and other contributing factors, the scientific community needs to look for new alternatives, and drug repurposing is one of the best opportunities. Here we light upon the drug repurposing with a major focus on breast cancer. BC is a division of cancer known as the leading cause of death of 2.3 million women globally, with 685,000 fatalities. This number is steadily rising, necessitating the development of a treatment that can extend survival time. All available treatments for BC are very costly as well as show side effects. This unfulfilled requirement of the anti-cancer drugs ignited an enthusiasm for drug repositioning, which means finding out the anti-cancer use of already marketed drugs for other complications. With the advancement in proteomics, genomics, and computational approaches, the drug repurposing process hastens. So many drugs are repurposed for the BC, including alkylating agents, antimetabolite, anthracyclines, an aromatase inhibitor, mTOR, and many more. The drug resistance in breast cancer is rising, so reviewing how the challenges in breast cancer can be combated with drug repurposing. This paper provides the updated information on all the repurposed drugs candidates for breast cancer with the molecular mechanism responsible for their anti-tumor activity. Additionally, all the challenges that occur during the repurposing of the drugs are discussed.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India; Department of Biomedical engineering, Indian Institute of Technology (IIT), Ropar, Punjab, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Bisma Jan
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
| | - Onur Bender
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Aali Alqarni
- Pharmaceutical Chemistry Department, Pharmacology unit, College of Clinical Pharmacy, Al Baha University, Saudi Arabia
| | - Sirajudheen Anwar
- Pharmacology and Toxicology Department, College of Pharmacy, University of Hail, Hail, Saudi Arabia.
| |
Collapse
|
26
|
Repurposing Antipsychotics for Cancer Treatment. Biomedicines 2021; 9:biomedicines9121785. [PMID: 34944601 PMCID: PMC8698939 DOI: 10.3390/biomedicines9121785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022] Open
Abstract
Cancer is a leading cause of death worldwide, with approximately 19 million new cases each year. Lately, several novel chemotherapeutic drugs have been introduced, efficiently inhibiting tumor growth and proliferation. However, developing a new drug is a time- and money-consuming process, requiring around 1 billion dollars and nearly ten years, with only a minority of the initially effective anti-cancer drugs experimentally finally being efficient in human clinical trials. Drug repurposing for cancer treatment is an optimal alternative as the safety of these drugs has been previously tested, and thus, in case of successful preclinical studies, can be introduced faster and with a lower cost into phase 3 clinical trials. Antipsychotic drugs are associated with anti-cancer properties and, lately, there has been an increasing interest in their role in cancer treatment. In the present review, we discussed in detail the in-vitro and in-vivo properties of the most common typical and atypical antipsychotics, along with their mechanism of action.
Collapse
|
27
|
Hung WY, Lee WJ, Cheng GZ, Tsai CH, Yang YC, Lai TC, Chen JQ, Chung CL, Chang JH, Chien MH. Blocking MMP-12-modulated epithelial-mesenchymal transition by repurposing penfluridol restrains lung adenocarcinoma metastasis via uPA/uPAR/TGF-β/Akt pathway. Cell Oncol (Dordr) 2021; 44:1087-1103. [PMID: 34319576 DOI: 10.1007/s13402-021-00620-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/11/2021] [Indexed: 01/30/2023] Open
Abstract
PURPOSE Metastasis of lung adenocarcinoma (LADC) is a crucial factor determining patient survival. Repurposing of the antipsychotic agent penfluridol has been found to be effective in the inhibition of growth of various cancers. As yet, however, the anti-metastatic effect of penfluridol on LADC has rarely been investigated. Herein, we addressed the therapeutic potential of penfluridol on the invasion/metastasis of LADC cells harboring different epidermal growth factor receptor (EGFR) mutation statuses. METHODS MTS viability, transwell migration and invasion, and tumor endothelium adhesion assays were employed to determine cytotoxic and anti-metastatic effects of penfluridol on LADC cells. Protease array, Western blot, immunohistochemistry (IHC), immunofluorescence (IF) staining, and expression knockdown by shRNA or exogenous overexpression by DNA plasmid transfection were performed to explore the underlying mechanisms, both in vitro and in vivo. RESULTS We found that nontoxic concentrations of penfluridol reduced the migration, invasion and adhesion of LADC cells. Protease array screening identified matrix metalloproteinase-12 (MMP-12) as a potential target of penfluridol to modulate the motility and adhesion of LADC cells. In addition, we found that MMP-12 exhibited the most significantly adverse prognostic effect in LADC among 39 cancer types. Mechanistic investigations revealed that penfluridol inhibited the urokinase plasminogen activator (uPA)/uPA receptor/transforming growth factor-β/Akt axis to downregulate MMP-12 expression and, subsequently, reverse MMP-12-induced epithelial-mesenchymal transition (EMT). Subsequent analysis of clinical LADC samples revealed a positive correlation between MMP12 and mesenchymal-related gene expression levels. A lower survival rate was found in LADC patients with a SNAl1high/MMP12high profile compared to those with a SNAl1low/MMP12low profile. CONCLUSIONS Our results indicate that MMP-12 may serve as a useful biomarker for predicting LADC progression and as a promising penfluridol target for treating metastatic LADC.
Collapse
Affiliation(s)
- Wen-Yueh Hung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 11031, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Guo-Zhou Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 11031, Taipei, Taiwan
| | - Ching-Han Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 11031, Taipei, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 11031, Taipei, Taiwan
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Tsung-Ching Lai
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Hsing Long Road, Section 3, Taipei, 11696, Taiwan
| | - Ji-Qing Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 11031, Taipei, Taiwan
- Department of Cancer Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Chi-Li Chung
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jer-Hwa Chang
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Hsing Long Road, Section 3, Taipei, 11696, Taiwan.
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 11031, Taipei, Taiwan.
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
28
|
Liu Y, She P, Xu L, Chen L, Li Y, Liu S, Li Z, Hussain Z, Wu Y. Antimicrobial, Antibiofilm, and Anti-persister Activities of Penfluridol Against Staphylococcus aureus. Front Microbiol 2021; 12:727692. [PMID: 34489917 PMCID: PMC8418195 DOI: 10.3389/fmicb.2021.727692] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus has increasingly attracted global attention as a major opportunistic human pathogen owing to the emergence of biofilms (BFs) and persisters that are known to increase its antibiotic resistance. However, there are still no effective antimicrobial agents in clinical settings. This study investigated the antimicrobial activity of penfluridol (PF), a long-acting antipsychotic drug, against S. aureus and its clinical isolates via drug repurposing. PF exhibited strong bactericidal activity against S. aureus, with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 4–8 and 16–32 μg/ml, respectively. PF could significantly inhibit biofilm formation and eradicate 24 h preformed biofilms of S. aureus in a dose-dependent manner. Furthermore, PF could effectively kill methicillin-resistant S. aureus (MRSA) persister cells and demonstrated considerable efficacy in a mouse model of subcutaneous abscess, skin wound infection, and acute peritonitis caused by MRSA. Notably, PF exerted almost no hemolysis activity on human erythrocytes, with limited cytotoxicity and low tendency to cause resistance. Additionally, PF induced bacterial membrane permeability and ATP release and further caused membrane disruption, which may be the underlying antibacterial mechanism of PF. In summary, our findings suggest that PF has the potential to serve as a novel antimicrobial agent against S. aureus biofilm- or persister-related infections.
Collapse
Affiliation(s)
- Yaqian Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei She
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lanlan Xu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Chen
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yimin Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shasha Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zehao Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zubair Hussain
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yong Wu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Gupta N, Srivastava SK. Atovaquone Suppresses the Growth of Metastatic Triple-Negative Breast Tumors in Lungs and Brain by Inhibiting Integrin/FAK Signaling Axis. Pharmaceuticals (Basel) 2021; 14:521. [PMID: 34071408 PMCID: PMC8229709 DOI: 10.3390/ph14060521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is considered to be the most aggressive and malignant neoplasm and is highly metastatic in nature. In the current study, we investigated the anti-metastatic potential of atovaquone, a protozoal drug prescribed for Pneumocystis pneumonia. We showed that atovaquone induced apoptosis and reduced the survival of several aggressive metastatic TNBC cell lines including metastatic patient-derived cells by reducing the expression of integrin α6, integrin β4, FAK, Src, and Vimentin. In order to study the efficacy of atovaquone in suppressing metastasized breast tumor cells in brain and lungs, we performed three in vivo experiments. We demonstrated that oral administration of 50 mg/kg of atovaquone suppressed MDA-MB-231 breast tumor growth by 90% in lungs in an intravenous metastatic tumor model. Anti-metastatic effect of atovaquone was further determined by intracardiac injection of 4T1-luc breast tumor cells into the left ventricle of mouse heart. Our results showed that atovaquone treatment suppressed the growth of metastatic tumors in lungs, liver and brain by 70%, 50% and 30% respectively. In an intracranial model, the growth of HCC1806-luc brain tumors in atovaquone treated mice was about 55% less than that of control. Taken together, our results indicate the anti-metastatic effects of atovaquone in vitro and in vivo in various breast tumor metastasis models.
Collapse
Affiliation(s)
- Nehal Gupta
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA;
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sanjay K. Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA;
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| |
Collapse
|
30
|
Weissenrieder JS, Reed JL, Moldovan G, Johnson MT, Trebak M, Neighbors JD, Mailman RB, Hohl RJ. Antipsychotic drugs elicit cytotoxicity in glioblastoma multiforme in a calcium-dependent, non-D 2 receptor-dependent, manner. Pharmacol Res Perspect 2021; 9:e00689. [PMID: 34003586 PMCID: PMC8130568 DOI: 10.1002/prp2.689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022] Open
Abstract
Dopamine D2 -like receptor antagonists have been suggested as being potential anticancer therapeutics with specific utility for central nervous system cancers due to their ability to cross the blood-brain barrier. Despite a plethora of data reporting anticancer effects for D2 R antagonists in cell or animal studies, the ligand concentrations or doses required to achieve such effects greatly exceed the levels known to cause high degrees of occupancy of the D2 receptor. To resolve this conundrum, we interrogated a panel of glioblastoma multiforme (GBM) cell lines using D2 antagonists of varying chemotype. We studied the cytotoxic effects of these compounds, and also ascertained the expression of D2 receptors (D2 R) on these cells. Although several chemotypes of D2 R antagonists, including phenothiazines and phenylbutylpiperidines, were effective against GBM cell line cultures, the highly selective antagonist remoxipride had no anticancer activity at biologically relevant concentrations. Moreover the D2 R antagonist-induced cytotoxicity in monolayer cultures was independent of whether the cells expressed D2 R. Instead, cytotoxicity was associated with a rapid, high-magnitude calcium flux into the cytoplasm and mitochondria, which then induced depolarization and apoptosis. Blocking this flux protected the GBM cell lines U87MG, U251MG, and A172. Together, these data suggest that the cytotoxicity of these D2 R antagonists involves calcium signaling mechanisms, not D2 R antagonism. Repurposing of existing drugs should focus on the former, not latter, mechanism.
Collapse
Affiliation(s)
- Jillian S. Weissenrieder
- Department of MedicinePenn State College of MedicineHersheyPAUSA
- Department of PharmacologyPenn State College of MedicineHersheyPAUSA
- Penn State Cancer InstituteHersheyPAUSA
| | - Jessie L. Reed
- Department of MedicinePenn State College of MedicineHersheyPAUSA
- Department of PharmacologyPenn State College of MedicineHersheyPAUSA
- Penn State Cancer InstituteHersheyPAUSA
| | - George‐Lucian Moldovan
- Penn State Cancer InstituteHersheyPAUSA
- Department of Biochemistry and Molecular BiologyPenn State College of MedicineHersheyPAUSA
| | - Martin T. Johnson
- Penn State Cancer InstituteHersheyPAUSA
- Department of Cellular and Molecular PhysiologyPenn State College of MedicineHersheyPAUSA
| | - Mohamed Trebak
- Penn State Cancer InstituteHersheyPAUSA
- Department of Cellular and Molecular PhysiologyPenn State College of MedicineHersheyPAUSA
| | - Jeffrey D. Neighbors
- Department of MedicinePenn State College of MedicineHersheyPAUSA
- Department of PharmacologyPenn State College of MedicineHersheyPAUSA
- Penn State Cancer InstituteHersheyPAUSA
| | | | - Raymond J. Hohl
- Department of MedicinePenn State College of MedicineHersheyPAUSA
- Department of PharmacologyPenn State College of MedicineHersheyPAUSA
- Penn State Cancer InstituteHersheyPAUSA
| |
Collapse
|
31
|
Kwan A, Winder N, Atkinson E, Al-Janabi H, Allen RJ, Hughes R, Moamin M, Louie R, Evans D, Hutchinson M, Capper D, Cox K, Handley J, Wilshaw A, Kim T, Tazzyman SJ, Srivastava S, Ottewell P, Vadakekolathu J, Pockley G, Lewis CE, Brown JE, Danson SJ, Conner J, Muthana M. Macrophages Mediate the Antitumor Effects of the Oncolytic Virus HSV1716 in Mammary Tumors. Mol Cancer Ther 2021; 20:589-601. [PMID: 33298589 DOI: 10.1158/1535-7163.mct-20-0748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/25/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022]
Abstract
Oncolytic viruses (OV) have been shown to activate the antitumor functions of specific immune cells like T cells. Here, we show OV can also reprogram tumor-associated macrophage (TAM) to a less immunosuppressive phenotype. Syngeneic, immunocompetent mouse models of primary breast cancer were established using PyMT-TS1, 4T1, and E0771 cell lines, and a metastatic model of breast cancer was established using the 4T1 cell line. Tumor growth and overall survival was assessed following intravenous administration of the OV, HSV1716 (a modified herpes simplex virus). Infiltration and function of various immune effector cells was assessed by NanoString, flow cytometry of dispersed tumors, and immunofluorescence analysis of tumor sections. HSV1716 administration led to marked tumor shrinkage in primary mammary tumors and a decrease in metastases. This was associated with a significant increase in the recruitment/activation of cytotoxic T cells, a reduction in the presence of regulatory T cells and the reprograming of TAMs towards a pro-inflammatory, less immunosuppressive phenotype. These findings were supported by in vitro data demonstrating that human monocyte-derived macrophages host HSV1716 replication, and that this led to immunogenic macrophage lysis. These events were dependent on macrophage expression of proliferating cell nuclear antigen (PCNA). Finally, the antitumor effect of OV was markedly diminished when TAMs were depleted using clodronate liposomes. Together, our results show that TAMs play an essential role in support of the tumoricidal effect of the OV, HSV1716-they both host viral replication via a novel, PCNA-dependent mechanism and are reprogramed to express a less immunosuppressive phenotype.
Collapse
Affiliation(s)
- Amy Kwan
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Natalie Winder
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Emer Atkinson
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Haider Al-Janabi
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Richard J Allen
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Russell Hughes
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Mohammed Moamin
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Rikah Louie
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Dhanajay Evans
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Matthew Hutchinson
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Drew Capper
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Katie Cox
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Joshua Handley
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Adam Wilshaw
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Taewoo Kim
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Simon J Tazzyman
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Sanjay Srivastava
- Department of Immunotherapeutics and Biotechnology and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, Texas
| | - Penelope Ottewell
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Jayakumar Vadakekolathu
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- Centre for Health and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- Centre for Health and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Claire E Lewis
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
- Sheffield ECMC, Cancer Clinical Trials Centre, Weston Park Hospital, Sheffield, United Kingdom
| | - Janet E Brown
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
- Sheffield ECMC, Cancer Clinical Trials Centre, Weston Park Hospital, Sheffield, United Kingdom
| | - Sarah J Danson
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
- Sheffield ECMC, Cancer Clinical Trials Centre, Weston Park Hospital, Sheffield, United Kingdom
| | - Joe Conner
- Virttu Biologics Ltd., BioCity Scotland, Newhouse, United Kingdom
| | - Munitta Muthana
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom.
- Sheffield ECMC, Cancer Clinical Trials Centre, Weston Park Hospital, Sheffield, United Kingdom
| |
Collapse
|
32
|
Understanding the role of integrins in breast cancer invasion, metastasis, angiogenesis, and drug resistance. Oncogene 2021; 40:1043-1063. [PMID: 33420366 DOI: 10.1038/s41388-020-01588-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/11/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022]
Abstract
Integrins are cell adhesion receptors, which are typically transmembrane glycoproteins that connect to the extracellular matrix (ECM). The function of integrins regulated by biochemical events within the cells. Understanding the mechanisms of cell growth by integrins is important in elucidating their effects on tumor progression. One of the major events in integrin signaling is integrin binding to extracellular ligands. Another event is distant signaling that gathers chemical signals from outside of the cell and transmit the signals upon cell adhesion to the inside of the cell. In normal breast tissue, integrins function as checkpoints to monitor effects on cell proliferation, while in cancer tissue these functions altered. The combination of tumor microenvironment and its associated components determines the cell fate. Hypoxia can increase the expression of several integrins. The exosomal integrins promote the growth of metastatic cells. Expression of certain integrins is associated with increased metastasis and decreased prognosis in cancers. In addition, integrin-binding proteins promote invasion and metastasis in breast cancer. Targeting specific integrins and integrin-binding proteins may provide new therapeutic approaches for breast cancer therapies. This review will examine the current knowledge of integrins' role in breast cancer.
Collapse
|
33
|
Xia Y, Xu F, Xiong M, Yang H, Lin W, Xie Y, Xi H, Xue Q, Ye T, Yu L. Repurposing of antipsychotic trifluoperazine for treating brain metastasis, lung metastasis and bone metastasis of melanoma by disrupting autophagy flux. Pharmacol Res 2021; 163:105295. [PMID: 33176207 DOI: 10.1016/j.phrs.2020.105295] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/10/2020] [Accepted: 11/03/2020] [Indexed: 02/05/2023]
Abstract
Targeted therapies and immunotherapy have brought substantial benefits to patients with melanoma. However, brain metastases remain the biggest threat to the survival and quality of life of melanoma patients. One of the major challenges to an effective therapy is the inability of drugs to penetrate the blood-brain barrier (BBB). Anti-schizophrenic drugs can cross the BBB, and many of them have demonstrated anti-cancer effects. Repurposing existing drugs for new clinical indications is an alluring strategy for anticancer drug discovery. Herein, we applied this strategy and screened a small collection of existing anti-schizophrenic drugs to use as anti-melanoma agents. Among them, trifluoperazine dihydrochloride (TFP) exhibited promising potencies for suppressing the growth and metastasis of melanoma, both in vitro and in vivo. TFP obviously suppressed the viability of melanoma cells within the micromolar range and inhibited the growth of melanoma in the subcutaneous mice models. Notably, intraperitoneal (i.p.) administration of TFP (40 mg/kg/day) obviously inhibited the growth of intra-carotid-injection established melanoma brain metastasis and extended the survival of brain metastasis-bearing mice. Moreover, TFP significantly suppressed lung metastasis and bone metastasis of melanoma in preclinical metastasis models. Mechanistically, TFP caused G0/G1 cell cycle arrest and mitochondrial-dependent intrinsic apoptosis of melanoma cells. In addition, TFP treatment increased the expression of microtubule associated protein 1 light chain 3 beta-II (LC3B-II) and p62 in vitro, suggesting an inhibition of autophagic flux. TFP decreased LysoTracker Red uptake after treatment, indicating impaired acidification of lysosomes. Moreover, the colocalization of LC3 with lysosomal-associated membrane protein 1 (LAMP1), a lysosome marker, was also suppressed after TFP treatment, suggesting that TFP might block the fusion of autophagosomes with lysosomes, which led to autophagosome accumulation. Taken together, our data highlight the potential of repurposing TFP as a new adjuvant drug for treating melanoma patients with brain, lung, and bone metastases.
Collapse
Affiliation(s)
- Yong Xia
- Department of Rehabilitation Medicine and Laboratory of Liver Surgery, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Fuyan Xu
- Department of Rehabilitation Medicine and Laboratory of Liver Surgery, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Meiping Xiong
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Hao Yang
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Wentao Lin
- Department of Plastic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yao Xie
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Huizhi Xi
- Department of Rehabilitation Medicine and Laboratory of Liver Surgery, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Xue
- Department of Rehabilitation Medicine and Laboratory of Liver Surgery, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghong Ye
- Department of Rehabilitation Medicine and Laboratory of Liver Surgery, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Luoting Yu
- Department of Rehabilitation Medicine and Laboratory of Liver Surgery, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
34
|
Ashraf-Uz-Zaman M, Shahi S, Akwii R, Sajib MS, Farshbaf MJ, Kallem RR, Putnam W, Wang W, Zhang R, Alvina K, Trippier PC, Mikelis CM, German NA. Design, synthesis and structure-activity relationship study of novel urea compounds as FGFR1 inhibitors to treat metastatic triple-negative breast cancer. Eur J Med Chem 2021; 209:112866. [PMID: 33039722 PMCID: PMC7744370 DOI: 10.1016/j.ejmech.2020.112866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive type of cancer characterized by higher metastatic and reoccurrence rates, where approximately one-third of TNBC patients suffer from the metastasis in the brain. At the same time, TNBC shows good responses to chemotherapy, a feature that fuels the search for novel compounds with therapeutic potential in this area. Recently, we have identified novel urea-based compounds with cytotoxicity against selected cell lines and with the ability to cross the blood-brain barrier in vivo. We have synthesized and analyzed a library of more than 40 compounds to elucidate the key features responsible for the observed activity. We have also identified FGFR1 as a molecular target that is affected by the presence of these compounds, confirming our data using in silico model. Overall, we envision that these compounds can be further developed for the potential treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Md Ashraf-Uz-Zaman
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Sadisna Shahi
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Racheal Akwii
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | | | - Raja Reddy Kallem
- Clinical Pharmacology & Experimental Therapeutics Center, Texas Tech University Health Sciences Center, Dallas, TX, USA
| | - William Putnam
- Clinical Pharmacology & Experimental Therapeutics Center, Texas Tech University Health Sciences Center, Dallas, TX, USA
| | - Wei Wang
- College of Pharmacy, University of Houston, Houston, TX, USA
| | - Ruiwen Zhang
- College of Pharmacy, University of Houston, Houston, TX, USA
| | - Karina Alvina
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Nadezhda A German
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
35
|
Shaw V, Srivastava S, Srivastava SK. Repurposing antipsychotics of the diphenylbutylpiperidine class for cancer therapy. Semin Cancer Biol 2021; 68:75-83. [PMID: 31618686 PMCID: PMC7152558 DOI: 10.1016/j.semcancer.2019.10.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/18/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023]
Abstract
The recent development of high throughput compound screening has allowed drug repurposing to emerge as an effective avenue for discovering novel treatments for cancer. FDA-approved antipsychotic drugs fluspirilene, penfluridol, and pimozide are clinically used for the treatment of psychotic disorders, primarily schizophrenia. These compounds, belong to diphenylbutylpiperidine class of antipsychotic drugs, are the potent inhibitors of dopamine D2 receptor and calcium channel. A correlation has been found that patients treated for schizophrenia have lower incidences of certain types of cancer, such as respiratory, prostate, and bladder cancers. These compounds have also been shown to inhibit cancer proliferation in a variety of cancer cells, including melanoma, lung carcinoma, breast cancer, pancreatic cancer, glioma, and prostate cancer, among others. Antipsychotic drugs induce apoptosis and suppress metastasis in in vitro and in vivo models through mechanisms involving p53, STAT3, STAT5, protein phosphatase 2A, cholesterol homeostasis, integrins, autophagy, USP1, wnt/β-catenin signaling, and DNA repair. Additionally, pre-clinical evidence suggests that penfluridol and pimozide act synergistically with existing chemotherapeutic agents, such as dasatinib, temozolomide, and cisplatin. Some studies have also reported that the cytotoxic activity of the antipsychotics is selective for dividing cells. Based on this growing body of evidence and the availability and previous FDA-approval of the drugs, the compounds appear to be promising anti-cancer agents.
Collapse
Affiliation(s)
- Vikram Shaw
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Suyash Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA; Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA.
| |
Collapse
|
36
|
Kaushik I, Ramachandran S, Prasad S, Srivastava SK. Drug rechanneling: A novel paradigm for cancer treatment. Semin Cancer Biol 2021; 68:279-290. [PMID: 32437876 PMCID: PMC7786449 DOI: 10.1016/j.semcancer.2020.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/15/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022]
Abstract
Cancer continues to be one of the leading contributors towards global disease burden. According to NIH, cancer incidence rate per year will increase to 23.6 million by 2030. Even though cancer continues to be a major proportion of the disease burden worldwide, it has the lowest clinical trial success rate amongst other diseases. Hence, there is an unmet need for novel, affordable and effective anti-neoplastic medications. As a result, a growing interest has sparkled amongst researchers towards drug repurposing. Drug repurposing follows the principle of polypharmacology, which states, "any drug with multiple targets or off targets can present several modes of action". Drug repurposing also known as drug rechanneling, or drug repositioning is an economic and reliable approach that identifies new disease treatment of already approved drugs. Repurposing guarantees expedited access of drugs to the patients as these drugs are already FDA approved and their safety and toxicity profile is completely established. Epidemiological studies have identified the decreased occurrence of oncological or non-oncological conditions in patients undergoing treatment with FDA approved drugs. Data from multiple experimental studies and clinical observations have depicted that several non-neoplastic drugs have potential anticancer activity. In this review, we have summarized the potential anti-cancer effects of anti-psychotic, anti-malarial, anti-viral and anti-emetic drugs with a brief overview on their mechanism and pathways in different cancer types. This review highlights promising evidences for the repurposing of drugs in oncology.
Collapse
Affiliation(s)
- Itishree Kaushik
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sharavan Ramachandran
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sahdeo Prasad
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
37
|
Zeng X, She P, Zhou L, Li S, Hussain Z, Chen L, Wu Y. Drug repurposing: Antimicrobial and antibiofilm effects of penfluridol against Enterococcus faecalis. Microbiologyopen 2020; 10:e1148. [PMID: 33345466 PMCID: PMC7884926 DOI: 10.1002/mbo3.1148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
The bacterium Enterococcus faecalis has increasingly attracted global attention as an important opportunistic pathogen due to its ability to form biofilms that are known to increase drug resistance. However, there are still no effective antibiofilm drugs in clinical settings. Here, by drug repurposing, we investigated the antibacterial activity of penfluridol (PF), an oral long‐acting antipsychotic approved by the FDA, against E. faecalis type strain and its clinical isolates. It was found that PF inhibited the growth of E. faecalis planktonic cells with the MIC and MBC of 7.81 µg/ml and 15.63 ~ 62.50 µg/ml, respectively. Moreover, PF could significantly prevent the biofilm formation of E. faecalis at the concentration of 1 × MIC. Furthermore, PF significantly eradicated 24 h pre‐formed biofilms of E. faecalis in a dose‐dependent manner, with a concentration range of 1 × MIC to 8 × MIC. Here, through the checkerboard method with other tested conventional antibiotics, we also determined that gentamycin, penicillin G, and amikacin showed partial synergistic antibacterial effects with PF. Also, PF showed almost no hemolysis on human erythrocytes. In a mouse peritonitis model, a single dose of 20 mg/kg of PF treatment could significantly reduce the bacterial colonization in the liver (~5‐fold reduction) and spleen (~3‐fold reduction). In conclusion, these findings indicated that after structural optimization, PF has the potential as a new antibacterial agent against E. faecalis.
Collapse
Affiliation(s)
- Xianghai Zeng
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Pengfei She
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Linying Zhou
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shijia Li
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zubair Hussain
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lihua Chen
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yong Wu
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
38
|
Ramachandran S, Srivastava SK. Repurposing Pimavanserin, an Anti-Parkinson Drug for Pancreatic Cancer Therapy. Mol Ther Oncolytics 2020; 19:19-32. [PMID: 33024816 PMCID: PMC7527685 DOI: 10.1016/j.omto.2020.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Despite major advances in cancer treatment, pancreatic cancer is still incurable and the treatment outcomes are limited. The aggressive and therapy-resistant nature of pancreatic cancer warrants the need for novel treatment options for pancreatic cancer management. Drug repurposing is emerging as an effectual strategy in the treatment of various diseases, including cancer. In the present study, we evaluated the anticancer effects of pimavanserin tartrate (PVT), an antipsychotic drug used for the treatment of Parkinson disease psychosis. PVT significantly suppressed the proliferation and induced apoptosis in various pancreatic cancer cells and gemcitabine-resistant cells with minimal effects on normal pancreatic epithelial cells and lung fibroblasts. Growth-suppressive and apoptotic effects of PVT were mediated by the inhibition of the Akt/Gli1 signaling axis. The oral administration of PVT suppressed subcutaneous and orthotopic pancreatic tumor xenografts by 51%-77%. The chronic administration of PVT did not demonstrate any general signs of toxicity or change in behavioral activity of mice. Our results indicate that pancreatic tumor growth suppression by PVT was orchestrated by the inhibition of Akt/Gli1 signaling. Since PVT is already available in the clinic with an established safety profile, our results will accelerate its clinical development for the treatment of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Sharavan Ramachandran
- Department of Immunotherapeutics and Biotechnology, Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sanjay K. Srivastava
- Department of Immunotherapeutics and Biotechnology, Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| |
Collapse
|
39
|
John Jayakumar JAK, Panicker MM, Basu B. Serotonin 2A (5-HT 2A) receptor affects cell-matrix adhesion and the formation and maintenance of stress fibers in HEK293 cells. Sci Rep 2020; 10:21675. [PMID: 33303826 PMCID: PMC7728786 DOI: 10.1038/s41598-020-78595-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/24/2020] [Indexed: 12/04/2022] Open
Abstract
5-HT2A, a G-protein coupled receptor, is widely expressed in the human body, including in the gastrointestinal tract, platelets and the nervous system. It mediates various functions, for e.g. learning, memory, mood regulation, platelet aggregation and vasoconstriction, but its involvement in cell-adhesion remains largely unknown. Here we report a novel role for 5-HT2A in cell–matrix adhesion. In HEK293 cells, which are loosely adherent, expression and stimulation of human or rat 5-HT2A receptor by agonists such as serotonin or 2,5-dimethoxy-4-iodoamphetamine (DOI) led to a significant increase in adhesion, while inhibition of 5-HT2A by antipsychotics, such as risperidone, olanzapine or chlorpromazine prevented it. 5-HT2A activation gave rise to stress fibers in these cells and was also required for their maintenance. Mechanistically, the 5-HT2A-mediated adhesion was mediated by downstream PKC and Rho signaling. Since 5-HT2A is associated with many disorders such as dementia, depression and schizophrenia, its role in cell–matrix adhesion could have implications for neural circuits.
Collapse
Affiliation(s)
- Joe Anand Kumar John Jayakumar
- Manipal Academy of Higher Education, Manipal, India. .,National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| | - Mitradas M Panicker
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Basudha Basu
- Manipal Academy of Higher Education, Manipal, India. .,National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India. .,Leeds Institute of Medical Research at St. James's, Faculty of Medicine and Health, Leeds University, Leeds, UK.
| |
Collapse
|
40
|
Explicating the Pivotal Pathogenic, Diagnostic, and Therapeutic Biomarker Potentials of Myeloid-Derived Suppressor Cells in Glioblastoma. DISEASE MARKERS 2020; 2020:8844313. [PMID: 33204365 PMCID: PMC7657691 DOI: 10.1155/2020/8844313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 11/17/2022]
Abstract
Glioblastoma (GBM) is a malignant and aggressive central nervous tumor that originates from astrocytes. These pathogenic astrocytes divide rapidly and are sustained by enormous network of blood vessels via which they receive requisite nutrients. It well proven that GBM microenvironment is extremely infiltrated by myeloid-derived suppressor cells (MDSCs). MDSCs are a heterogeneous cluster of immature myeloid progenitors. They are key mediates in immune suppression as well as sustenance glioma growth, invasion, vascularization, and upsurge of regulatory T cells via different molecules. MDSCs are often elevated in the peripheral blood of patients with GBM. MDSCs in the peripheral blood as well as those infiltrating the GBM microenvironment correlated with poor prognosis. Also, an upsurge in circulating MDSCs in the peripheral blood of patients with GBM was observed compared to benign and grade I/II glioma patients. GBM patients with good prognosis presented with reduced MDSCs as well as augmented dendritic cells. Almost all chemotherapeutic medication for GBM has shown no obvious improvement in overall survival in patients. Nevertheless, low-dose chemotherapies were capable of suppressing the levels of MDSCs in GBM as well as multiple tumor models with metastatic to the brain. Thus, MDSCs are potential diagnostic as well as therapeutic biomarkers for GBM patients.
Collapse
|
41
|
van der Horst G, van de Merbel AF, Ruigrok E, van der Mark MH, Ploeg E, Appelman L, Tvingsholm S, Jäätelä M, van Uhm J, Kruithof-de Julio M, Thalmann GN, Pelger RCM, Bangma CH, Boormans JL, van der Pluijm G, Zwarthoff EC. Cationic amphiphilic drugs as potential anticancer therapy for bladder cancer. Mol Oncol 2020; 14:3121-3134. [PMID: 32896947 PMCID: PMC7718956 DOI: 10.1002/1878-0261.12793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022] Open
Abstract
More effective therapy for patients with either muscle‐invasive or high‐risk non‐muscle‐invasive urothelial carcinoma of the bladder (UCB) is an unmet clinical need. For this, drug repositioning of clinically approved drugs represents an interesting approach. By repurposing existing drugs, alternative anticancer therapies can be introduced in the clinic relatively fast, because the safety and dosing of these clinically approved pharmacological agents are generally well known. Cationic amphiphilic drugs (CADs) dose‐dependently decreased the viability of a panel of human UCB lines in vitro. CADs induced lysosomal puncta formation, a hallmark of lysosomal leakage. Intravesical instillation of the CAD penfluridol in an orthotopic mouse xenograft model of human UCB resulted in significantly reduced intravesical tumor growth and metastatic progression. Furthermore, treatment of patient‐derived ex vivo cultured human UCB tissue caused significant partial or complete antitumor responses in 97% of the explanted tumor tissues. In conclusion, penfluridol represents a promising treatment option for bladder cancer patients and warrants further clinical evaluation.
Collapse
Affiliation(s)
| | | | - Eline Ruigrok
- Department of Urology, Leiden University Medical Center, The Netherlands
| | | | - Emily Ploeg
- Department of Urology, Leiden University Medical Center, The Netherlands
| | - Laura Appelman
- Department of Urology, Leiden University Medical Center, The Netherlands
| | - Siri Tvingsholm
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marja Jäätelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Janneke van Uhm
- Department of Urology, Leiden University Medical Center, The Netherlands
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Switzerland.,Department of Urology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - George N Thalmann
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Switzerland.,Department of Urology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Rob C M Pelger
- Department of Urology, Leiden University Medical Center, The Netherlands
| | - Chris H Bangma
- Department of Urology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Joost L Boormans
- Department of Urology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Ellen C Zwarthoff
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
42
|
Ranjan A, Kaushik I, Srivastava SK. Pimozide Suppresses the Growth of Brain Tumors by Targeting STAT3-Mediated Autophagy. Cells 2020; 9:2141. [PMID: 32971907 PMCID: PMC7563195 DOI: 10.3390/cells9092141] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/23/2022] Open
Abstract
Brain tumors are considered as one of the most aggressive and incurable forms of cancer. The majority of the patients with brain tumors have a median survival rate of 12%. Brain tumors are lethal despite the availability of advanced treatment options such as surgical removal, chemotherapy, and radiotherapy. In this study, we have evaluated the anti-cancer effects of pimozide, which is a neuroleptic drug used for the treatment of schizophrenia and chronic psychosis. Pimozide significantly reduced the proliferation of U-87MG, Daoy, GBM 28, and U-251MG brain cancer cell lines by inducing apoptosis with IC50 (Inhibitory concentration 50) ranging from 12 to 16 μM after 48 h of treatment. Our Western blotting analysis indicated that pimozide suppressed the phosphorylation of STAT3 at Tyr705 and Src at Tyr416, and it inhibited the expression of anti-apoptotic markers c-Myc, Mcl-1, and Bcl-2. Significant autophagy induction was observed with pimozide treatment. LC3B, Beclin-1, and ATG5 up-regulation along with autolysosome formation confirmed the induction of autophagy with pimozide treatment. Inhibiting autophagy using 3-methyladenine or LC3B siRNA significantly blocked the apoptosis-inducing effects of pimozide, suggesting that pimozide mediated its apoptotic effects by inducing autophagy. Oral administration of 25 mg/kg pimozide suppressed the intracranially implanted U-87MG tumor growth by 45% in athymic nude mice. The chronic administration of pimozide showed no general signs of toxicity, and the behavioral activity of the mice remained unchanged. Taken together, these results indicate that pimozide inhibits the growth of brain cancer by autophagy-mediated apoptosis.
Collapse
Affiliation(s)
- Alok Ranjan
- Department of Biomedical Science, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (A.R.); (I.K.)
| | - Itishree Kaushik
- Department of Biomedical Science, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (A.R.); (I.K.)
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Center for Tumor Immunology and Targeted Cancer Therapy, Abilene, TX 79601, USA
| | - Sanjay K. Srivastava
- Department of Biomedical Science, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (A.R.); (I.K.)
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Center for Tumor Immunology and Targeted Cancer Therapy, Abilene, TX 79601, USA
| |
Collapse
|
43
|
Wang NN, Zhang PZ, Zhang J, Wang HN, Li L, Ren F, Dai PF, Li H, Lv XF. Penfluridol triggers mitochondrial-mediated apoptosis and suppresses glycolysis in colorectal cancer cells through down-regulating hexokinase-2. Anat Rec (Hoboken) 2020; 304:520-530. [PMID: 32470200 DOI: 10.1002/ar.24464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/01/2020] [Accepted: 03/22/2020] [Indexed: 01/22/2023]
Abstract
Penfluridol, a commonly used antipsychotic agent in a clinical setting, exhibits potential anticancer properties against various human malignancies. Here, we investigated the effect of penfluridol on the biological behavior of colorectal cancer (CRC) cells. Cell viability and clonogenic potential were detected by the cell counting kit-8 and colony formation assay. The cell apoptosis and cell cycle distribution were quantified through flow cytometry. Caspase-3 activity, glucose consumption, lactate production, and intracellular ATP levels were evaluated using the corresponding commercial detection kits. The protein levels of related genes were detected through western blotting. Mitochondrial membrane potential was detected using JC-1 staining. A CRC xenograft tumor model was used to validate the antitumor activity of penfluridol in vivo. Penfluridol reduced cell survival and promoted apoptotic cell death effectively through the mitochondria-mediated intrinsic pathway in a dose-dependent manner. Furthermore, the process of glycolysis in HCT-116 and HT-29 cells was inhibited upon penfluridol treatment, as evidenced by the decrease in glucose consumption, lactate production, and intracellular ATP levels. Further mechanistic studies revealed that penfluridol influenced cell apoptosis and glycolysis in CRC cells by downregulating hexokinase-2 (HK-2). The proapoptotic effect and glycolytic inhibition-induced by penfluridol were effectively reversed by HK-2 overexpression. Consistent with in vitro results, penfluridol could also suppress tumor growth and trigger apoptosis in vivo. Penfluridol triggers mitochondrial-mediated apoptosis and induces glycolysis inhibition via modulating HK-2 in CRC and provides a theoretical basis to support penfluridol as a repurposed drug for CRC patients.
Collapse
Affiliation(s)
- Ning-Ning Wang
- Department of Intervention Diagnosis and Treatment, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Peng-Zhen Zhang
- Department of Intervention Diagnosis and Treatment, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Jing Zhang
- Department of Intervention Diagnosis and Treatment, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Hai-Ning Wang
- Department of Cosmetic Surgery, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Ling Li
- Department of Outpatient, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Feng Ren
- Endoscopic Consulting Room, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Peng-Fei Dai
- Coronary Care Unit, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Hui Li
- Hemodialysis Room, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Xiao-Feng Lv
- Department of Pharmacy, Reproductive Medicine Center of Zibo Maternity and Child Health Hospital, Zibo, China
| |
Collapse
|
44
|
Costa B, Amorim I, Gärtner F, Vale N. Understanding Breast cancer: from conventional therapies to repurposed drugs. Eur J Pharm Sci 2020; 151:105401. [PMID: 32504806 DOI: 10.1016/j.ejps.2020.105401] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Breast cancer is the most common cancer among women and is considered a developed country disease. Moreover, is a heterogenous disease, existing different types and stages of breast cancer development, therefore, better understanding of cancer biology, helps to improve the development of therapies. The conventional treatments accessible after diagnosis, have the main goal of controlling the disease, by improving survival. In more advance stages the aim is to prolong life and symptom palliation care. Surgery, radiation therapy and chemotherapy are the main options available, which must be adapted to each person individually. However, patients are developing resistance to the conventional therapies. This resistance is due to alterations in important regulatory pathways such as PI3K/AKt/mTOR, this pathway contributes to trastuzumab resistance, a reference drug to treat breast cancer. Therefore, is proposed the repurposing of drugs, instead of developing drugs de novo, for example, to seek new medical treatments within the drugs available, to be used in breast cancer treatment. Providing safe and tolerable treatments to patients, and new insights to efficacy and efficiency of breast cancer treatments. The economic and social burden of cancer is enormous so it must be taken measures to relieve this burden and to ensure continued access to therapies to all patients. In this review we focus on how conventional therapies against breast cancer are leading to resistance, by reviewing those mechanisms and discussing the efficacy of repurposed drugs to fight breast cancer.
Collapse
Affiliation(s)
- Bárbara Costa
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Fátima Gärtner
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo 228, 4050-313 Porto, Portugal; Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal.
| |
Collapse
|
45
|
Kirtonia A, Gala K, Fernandes SG, Pandya G, Pandey AK, Sethi G, Khattar E, Garg M. Repurposing of drugs: An attractive pharmacological strategy for cancer therapeutics. Semin Cancer Biol 2020; 68:258-278. [PMID: 32380233 DOI: 10.1016/j.semcancer.2020.04.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Human malignancies are one of the major health-related issues though out the world and anticipated to rise in the future. The development of novel drugs/agents requires a huge amount of cost and time that represents a major challenge for drug discovery. In the last three decades, the number of FDA approved drugs has dropped down and this led to increasing interest in drug reposition or repurposing. The present review focuses on recent concepts and therapeutic opportunities for the utilization of antidiabetics, antibiotics, antifungal, anti-inflammatory, antipsychotic, PDE inhibitors and estrogen receptor antagonist, Antabuse, antiparasitic and cardiovascular agents/drugs as an alternative approach against human malignancies. The repurposing of approved non-cancerous drugs is an effective strategy to develop new therapeutic options for the treatment of cancer patients at an affordable cost in clinics. In the current scenario, most of the countries throughout the globe are unable to meet the medical needs of cancer patients because of the high cost of the available cancerous drugs. Some of these drugs displayed potential anti-cancer activity in preclinic and clinical studies by regulating several key molecular mechanisms and oncogenic pathways in human malignancies. The emerging pieces of evidence indicate that repurposing of drugs is crucial to the faster and cheaper discovery of anti-cancerous drugs.
Collapse
Affiliation(s)
- Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India; Equal contribution
| | - Kavita Gala
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India; Equal contribution
| | - Stina George Fernandes
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India; Equal contribution
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India; Equal contribution
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Haryana, 122413, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
46
|
Zhou M, Wang X, Xia J, Cheng Y, Xiao L, Bei Y, Tang J, Huang Y, Xiang Q, Huang S. A Mansonone Derivative Coupled with Monoclonal Antibody 4D5-Modified Chitosan Inhibit AKR1C3 to Treat Castration-Resistant Prostate Cancer. Int J Nanomedicine 2020; 15:3087-3098. [PMID: 32431503 PMCID: PMC7200237 DOI: 10.2147/ijn.s241324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Aldo-ketoreductase (AKR) 1C3 is crucial for testosterone synthesis. Abnormally high expression/activity of AKR1C3 can promote castration-resistant prostate cancer (CRPC). A mansonone derivative and AKR1C3 inhibitor, 6e, was combined with 4D5 (extracellular fragment of the monoclonal antibody of human epidermal growth factor receptor-2)-modified chitosan to achieve a nanodrug-delivery system (CS-4D5/6e) to treat CRPC. Materials and Methods Morphologies/properties of CS-4D5/6e were characterized by atomic force microscopy, zeta-potential analysis, and Fourier transform-infrared spectroscopy. CS-4D5/6e uptake was measured by immunofluorescence under confocal laser scanning microscopy. Testosterone in LNCaP cells overexpressing human AKR1C3 (LNCaP-AKR1C3) and cell lysates was measured to reflect AKR1C3 activity. Androgen receptor (AR) and prostate-specific antigen (PSA) expression was measured by Western blotting. CS-4D5/6e-based inhibition of AKR1C3 was evaluated in tumor-xenografted mice. Results CS-4D5/6e was oblate, with a particle size of 200-300 nm and thickness of 1-5 nm. Zeta potential was 1.39±0.248 mV. 6e content in CS-4D5/6e was 7.3±1.4% and was 18±3.6% for 4D5. 6e and CS-4D5/6e inhibited testosterone production significantly in a concentration-dependent manner in LNCaP-AKR1C3 cells, and a decrease in expression of AKR1C3, PSA, and AR was noted. Half-maximal inhibitory concentration of CS-4D5/6e on LNCaP-AKR1C3 cells was significantly lower than that in LNCaP cells (P<0.05). CS-4D5/6e significantly reduced growth of 22Rv1 tumor xenografts by 57.00% compared with that in the vehicle group (P<0.01). Conclusion We demonstrated the antineoplastic activity of a potent AKR1C3 inhibitor (6e) and its nanodrug-delivery system (CS-4D5/6e). First, CS-4D5/6e targeted HER2-positive CRPC cells. Second, it transferred 6e (an AKR1C3 inhibitor) to achieve a reduction in intratumoral testosterone production. Compared with 6e, CS-4D5/6e showed lower systemic toxicity. CS-4D5/6e inhibited tumor growth effectively in mice implanted with tumor xenografts by downregulating testosterone production mediated by intratumoral AKR1C3. These results showed a promising strategy for treatment of the CRPC that develops invariably in prostate-cancer patients.
Collapse
Affiliation(s)
- Meng Zhou
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiaoyu Wang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jie Xia
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Yating Cheng
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, People's Republic of China
| | - Lichun Xiao
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yu Bei
- Biopharmaceutical R&D Center of Jinan University, Guangzhou 510630, People's Republic of China
| | - Jianzhong Tang
- Biopharmaceutical R&D Center of Jinan University, Guangzhou 510630, People's Republic of China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, People's Republic of China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou 510630, People's Republic of China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, People's Republic of China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou 510630, People's Republic of China
| | - Shiliang Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
47
|
Dandawate P, Kaushik G, Ghosh C, Standing D, Sayed AAA, Choudhury S, Subramaniam D, Manzardo A, Banerjee T, Santra S, Ramamoorthy P, Butler M, Padhye SB, Baranda J, Kasi A, Sun W, Tawfik O, Coppola D, Malafa M, Umar S, Soares MJ, Saha S, Weir SJ, Dhar A, Jensen RA, Thomas SM, Anant S. Diphenylbutylpiperidine Antipsychotic Drugs Inhibit Prolactin Receptor Signaling to Reduce Growth of Pancreatic Ductal Adenocarcinoma in Mice. Gastroenterology 2020; 158:1433-1449.e27. [PMID: 31786131 PMCID: PMC7103550 DOI: 10.1053/j.gastro.2019.11.279] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/04/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Prolactin (PRL) signaling is up-regulated in hormone-responsive cancers. The PRL receptor (PRLR) is a class I cytokine receptor that signals via the Janus kinase (JAK)-signal transducer and activator of transcription and mitogen-activated protein kinase pathways to regulate cell proliferation, migration, stem cell features, and apoptosis. Patients with pancreatic ductal adenocarcinoma (PDAC) have high plasma levels of PRL. We investigated whether PRLR signaling contributes to the growth of pancreatic tumors in mice. METHODS We used immunohistochemical analyses to compare levels of PRL and PRLR in multitumor tissue microarrays. We used structure-based virtual screening and fragment-based drug discovery to identify compounds likely to bind PRLR and interfere with its signaling. Human pancreatic cell lines (AsPC-1, BxPC-3, Panc-1, and MiaPaCa-2), with or without knockdown of PRLR (clustered regularly interspaced short palindromic repeats or small hairpin RNA), were incubated with PRL or penfluridol and analyzed in proliferation and spheroid formation. C57BL/6 mice were given injections of UNKC-6141 cells, with or without knockdown of PRLR, into pancreas, and tumor development was monitored for 4 weeks, with some mice receiving penfluridol treatment for 21 days. Human pancreatic tumor tissues were implanted into interscapular fat pads of NSG mice, and mice were given injections of penfluridol daily for 28 days. Nude mice were given injections of Panc-1 cells, xenograft tumors were grown for 2 weeks, and mice were then given intraperitoneal penfluridol for 35 days. Tumors were collected from mice and analyzed by histology, immunohistochemistry, and immunoblots. RESULTS Levels of PRLR were increased in PDAC compared with nontumor pancreatic tissues. Incubation of pancreatic cell lines with PRL activated signaling via JAK2-signal transducer and activator of transcription 3 and extracellular signal-regulated kinase, as well as formation of pancospheres and cell migration; these activities were not observed in cells with PRLR knockdown. Pancreatic cancer cells with PRLR knockdown formed significantly smaller tumors in mice. We identified several diphenylbutylpiperidine-class antipsychotic drugs as agents that decreased PRL-induced JAK2 signaling; incubation of pancreatic cancer cells with these compounds reduced their proliferation and formation of panco spheres. Injections of 1 of these compounds, penfluridol, slowed the growth of xenograft tumors in the different mouse models, reducing proliferation and inducing autophagy of the tumor cells. CONCLUSIONS Levels of PRLR are increased in PDAC, and exposure to PRL increases proliferation and migration of pancreatic cancer cells. Antipsychotic drugs, such as penfluridol, block PRL signaling in pancreatic cancer cells to reduce their proliferation, induce autophagy, and slow the growth of xenograft tumors in mice. These drugs might be tested in patients with PDAC.
Collapse
Affiliation(s)
- Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Gaurav Kaushik
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160
| | - Chandrayee Ghosh
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Afreen Asif Ali Sayed
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Sonali Choudhury
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | | | - Ann Manzardo
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66160
| | - Tuhina Banerjee
- Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Santimukul Santra
- Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Prabhu Ramamoorthy
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Merlin Butler
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66160
| | - Subhash B. Padhye
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, Interdisciplinary Science and Technology Research Academy, Abeda Inamdar College, University of Pune, Pune 411001
| | - Joaquina Baranda
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Anup Kasi
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Weijing Sun
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ossama Tawfik
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Domenico Coppola
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160
| | - Michael J. Soares
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, Center for Perinatal Research, Children’s Research Institute, Children’s Mercy-Kansas City, MO 64108
| | - Subhrajit Saha
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Scott J. Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Animesh Dhar
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Roy A. Jensen
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Sufi Mary Thomas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas; Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas; Interdisciplinary Science and Technology Research Academy, Abeda Inamdar College, University of Pune, Pune.
| |
Collapse
|
48
|
Dees S, Pontiggia L, Jasmin JF, Mercier I. Phosphorylated STAT3 (Tyr705) as a biomarker of response to pimozide treatment in triple-negative breast cancer. Cancer Biol Ther 2020; 21:506-521. [PMID: 32164483 PMCID: PMC7515519 DOI: 10.1080/15384047.2020.1726718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) displays an aggressive clinical course, heightened metastatic potential, and is linked to poor survival rates. Through its lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), this subtype remains unresponsive to traditional targeted therapies. Undesirable and sometimes life-threatening side effects associated with current chemotherapeutic agents warrant the development of more targeted treatment options. Targeting signal transducer and activator of transcription 3 (STAT3), a transcription factor implicated in breast cancer (BCa) progression, has proven to be an efficient approach to halt cancer growth in vitro and in vivo. Currently, there are no FDA-approved STAT3 inhibitors for TNBC. Although pimozide, a FDA-approved antipsychotic drug, has been attributed a role as a STAT3 inhibitor in several cancers, its role on this pathway remains unexplored in TNBC. As a "one size fits all" approach cannot be applied to TNBC therapies due to the heterogeneous nature of this aggressive cancer, we hypothesized that STAT3 could be a novel biomarker of response to guide pimozide therapy. Using human cell lines representative of four TNBC subtypes (basal-like 1, basal-like 2, mesenchymal-like, mesenchymal stem-like), our current report demonstrates that pimozide significantly reduced their invasion and migration, an effect that was predicted by STAT3 phosphorylation on tyrosine residue 705 (Tyr705). Mechanistically, phosphorylated STAT3 (Tyr705) inhibition resulting from pimozide treatment caused a downregulation of downstream transcriptional targets such as matrix metalloproteinase-9 (MMP-9) and vimentin, both implicated in invasion and migration. The identification of biomarkers of response to TNBC treatments is an active area of research in the field of precision medicine and our results propose phosphorylated STAT3 (Tyr705) as a novel biomarker to guide pimozide treatment as an inhibitor of invasion and migration.
Collapse
Affiliation(s)
- Sundee Dees
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Laura Pontiggia
- Department of Mathematics, Physics and Statistics, Misher College of Arts and Sciences, University of the Sciences, Philadelphia, PA, USA
| | - Jean-Francois Jasmin
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Isabelle Mercier
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA.,Program in Personalized Medicine and Targeted Therapeutics, University of the Sciences, Philadelphia, PA, USA
| |
Collapse
|
49
|
Srivastava S, Zahra FT, Gupta N, Tullar PE, Srivastava SK, Mikelis CM. Low Dose of Penfluridol Inhibits VEGF-Induced Angiogenesis. Int J Mol Sci 2020; 21:755. [PMID: 31979394 PMCID: PMC7036977 DOI: 10.3390/ijms21030755] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 12/23/2022] Open
Abstract
: Metastasis is considered a major burden in cancer, being responsible for more than 90% of cancer-related deaths. Tumor angiogenesis is one of the main processes that lead to tumor metastasis. Penfluridol is a classic and commonly used antipsychotic drug, which has a great ability to cross the blood-brain barrier. Recent studies have revealed that penfluridol has significant anti-cancer activity in diverse tumors, such as metastatic breast cancer and glioblastoma. Here, we aim to identify the effect of low doses of penfluridol on tumor microenvironment and compare it with its effect on tumor cells. Although low concentration of penfluridol was not toxic for endothelial cells, it blocked angiogenesis in vitro and in vivo. In vitro, penfluridol inhibited VEGF-induced primary endothelial cell migration and tube formation, and in vivo, it blocked VEGF- and FGF-induced angiogenesis in the matrigel plug assay. VEGF-induced VEGFR2 phosphorylation and the downstream p38 and ERK signaling pathways were not affected in endothelial cells, although VEGF-induced Src and Akt activation were abrogated by penfluridol treatment. When cancer cells were treated with the same low concentration of penfluridol, basal Src activation levels were mildly impaired, thus impacting their cell migration and wound healing efficiency. The potential of cancer-induced paracrine effect on endothelial cells was explored, although that did not seem to be a player for angiogenesis. Overall, our data demonstrates that low penfluridol levels, similar to the ones clinically used for anti-psychotic conditions, suppress angiogenic efficiency in the tumor microenvironment.
Collapse
Affiliation(s)
- Suyash Srivastava
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA (F.T.Z.); (N.G.)
| | - Fatema Tuz Zahra
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA (F.T.Z.); (N.G.)
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Nehal Gupta
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA (F.T.Z.); (N.G.)
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Paul E. Tullar
- Department of Obstetrics and Gynecology, School of Medicine, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA;
| | - Sanjay K. Srivastava
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA (F.T.Z.); (N.G.)
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Constantinos M. Mikelis
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA (F.T.Z.); (N.G.)
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
50
|
Dai C, Liu P, Wang X, Yin Y, Jin W, Shen L, Chen Y, Chen Z, Wang Y. The Antipsychotic Agent Sertindole Exhibited Antiproliferative Activities by Inhibiting the STAT3 Signaling Pathway in Human Gastric Cancer Cells. J Cancer 2020; 11:849-857. [PMID: 31949488 PMCID: PMC6959018 DOI: 10.7150/jca.34847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related death. Although the therapeutic approaches have improved, the 5-year survival rate of GC patients after surgical resection remains low due to the high rates of metastasis and recurrence. Patients with schizophrenia have significantly lower incidences of cancer after long-term drug treatment, suggesting the potential or partially ameliorate the risk of cancer development of antipsychotic drugs. The goal of this study was to explore antipsychotic drugs with an optional effective therapy against gastric cellular carcinoma. We found that sertindole, an atypical antipsychotic, exhibited anti-tumor efficacy on human GC cells in vitro and in vivo. Moreover, sertindole in combination with cisplatin dramatically enhanced apoptosis-induction in GC cells. In addition, the pro-apoptotic effect of sertindole on GC might in part, involved in inhibition of STAT3 activation and downstream signals, including Mcl1, surviving, c-Myc, cyclin D1. Collectively, these results suggested that sertindole could be a potential anticancer reagent and be an attractive therapeutic adjuvant for the treatment of human GC.
Collapse
Affiliation(s)
- Chunyan Dai
- Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, China
| | - Pei Liu
- Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, China
| | - Xi Wang
- Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, China
| | - Yifei Yin
- Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, China
| | - Weiyang Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310006, China
| | - Li Shen
- Institute of Basic Theory of TCM, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuzong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy and Center for Computational Science and Engineering, National University of Singapore, 117543, Singapore
| | - Zhe Chen
- Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, China
| | - Yiping Wang
- Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, China.,Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diagnosis and Treatment of Digestive System Tumor, the First Affiliated Hospital of Zhejiang Chinese Medical University,54 Youdian Road, Hangzhou, 310006, China
| |
Collapse
|