1
|
Milenkovic J, Stojanovic D, Velickovic S, Djordjevic B, Marjanovic G, Milojkovic M. Low Renalase Levels in Newly Diagnosed CML: Dysregulation Sensitive to Modulation by Tyrosine Kinase Inhibitors. PATHOPHYSIOLOGY 2024; 31:787-796. [PMID: 39728688 DOI: 10.3390/pathophysiology31040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/23/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Background: A dysregulated proinflammatory microenvironment is considered one of the reasons why current therapies of chronic myeloid leukemia (CML) with tyrosine kinase inhibitors (TKI) do not secure disease control. Therefore, the development of BCR-ABL1-independent therapies is encouraged. Renalase (RNLS) is a multifunctional protein that exhibits both enzymatic and non-enzymatic cytokine-like properties, along with potent anti-inflammatory and anti-apoptotic effects. It is expressed in various tissues, including tumors. Methods: We investigated the levels of RNLS in the blood of CML patients in the chronic phase, treatment naïve patients, and those in remission under TKI treatment (either imatinib or nilotinib) and compared them to healthy individuals. Results: Renalase concentration was markedly decreased in treatment-naive CML patients compared to other groups (p = 0.000), while lower levels in the TKI group were not statistically significant compared to controls. The levels correlated negatively with the total leukocyte and neutrophil count (p < 0.05), while a positive correlation was present with CRP levels in treatment naïve patients. Conclusions: Dynamic regulation of RNLS expression and activity is coupled with transcription factors NF-κB and STAT3. Interpretation of our results might rely on differential requirements of activated STATs (STAT3/5) during CML clone development and maintenance, including the observation of RNLS rise upon TKI introduction. Overall, our research provides new insights into the field of hematological malignancies. Unlike other malignancies studied, RNLS plasma levels are significantly decreased in CML. In future perspectives, RNLS could potentially serve as a diagnostic, prognostic, or therapeutic option for these patients.
Collapse
Affiliation(s)
- Jelena Milenkovic
- Department of Pathophysiology, University of Nis, Faculty of Medicine, 18000 Nis, Serbia
| | - Dijana Stojanovic
- Department of Pathophysiology, University of Nis, Faculty of Medicine, 18000 Nis, Serbia
| | - Sanja Velickovic
- Clinic of Hematology, Allergology and Clinical Immunology, University Clinical Center in Nis, 18000 Nis, Serbia
| | - Branka Djordjevic
- Department of Biochemistry, University of Nis, Faculty of Medicine, 18000 Nis, Serbia
| | - Goran Marjanovic
- Clinic of Hematology, Allergology and Clinical Immunology, University Clinical Center in Nis, 18000 Nis, Serbia
| | - Maja Milojkovic
- Department of Pathophysiology, University of Nis, Faculty of Medicine, 18000 Nis, Serbia
| |
Collapse
|
2
|
Wu Y, Feng Y, Yu Y, Bai Y, Diao Z, Liu W. Renalase protects against podocyte injury by inhibiting oxidative stress and apoptosis in diabetic nephropathy. Open Life Sci 2024; 19:20220940. [PMID: 39588120 PMCID: PMC11588010 DOI: 10.1515/biol-2022-0940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 11/27/2024] Open
Abstract
Diabetic nephropathy (DN) presents a significant public health challenge due to its high rate of incidence and severe health consequences. Renalase has been identified as having renal-protective properties. A key contributor to albuminuria in DN patients is podocyte loss. The function of Renalase in DN in relation to podocyte activity needs to be explored further. In this study, we assessed the therapeutic efficacy of Renalase by monitoring changes in urine protein levels and podocyte health in db/db mice. We also induced hyperglycemia (HG) to stimulate podocyte clone 5 (MPC5) cells to create a model of podocyte loss in DN. Through co-culturing these cells with Renalase or H2O2, we investigated the process by which Renalase prevents podocyte loss in vitro. In db/db mice, Renalase expression was significantly reduced, and adenoviral-mediated Renalase expression markedly alleviated DN symptoms and proteinuria. Furthermore, podocytopathy in db/db mice was significantly mitigated. In vitro, Renalase improved the expression of podocyte marker proteins, podocin, and nephrin, which are reduced by HG, as well as decreased oxidative stress and restrained apoptosis. Our findings suggest that Renalase can mitigate DN by reducing proteinuria through podocyte protection, potentially by inhibiting oxidative stress and apoptosis. These data suggest that Renalase may serve as a novel therapeutic agent in suppressing DN.
Collapse
Affiliation(s)
- Yiru Wu
- Department of Nephrology, Faculty of Kidney Diseases, Beijing Friendship Hospital, Capital Medical University,
Beijing, 100050, People’s Republic of China
| | - Yiduo Feng
- Department of Nephrology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People’s Republic of China
| | - Yue Yu
- Department of Nephrology, Liangxiang Hospital, Fangshan District, Beijing, 102401, People’s Republic of China
| | - Yu Bai
- Department of Nephrology, Faculty of Kidney Diseases, Beijing Friendship Hospital, Capital Medical University,
Beijing, 100050, People’s Republic of China
| | - Zongli Diao
- Department of Nephrology, Faculty of Kidney Diseases, Beijing Friendship Hospital, Capital Medical University,
Beijing, 100050, People’s Republic of China
| | - Wenhu Liu
- Department of Nephrology, Faculty of Kidney Diseases, Beijing Friendship Hospital, Capital Medical University,
Beijing, 100050, People’s Republic of China
| |
Collapse
|
3
|
Jin L, Wang W, Zhang R, Shen J, Li Y, Zhang Y. The early diagnostic value of serum renalase level in diabetic kidney disease and diabetic macroangiopathy: a retrospective case-control study. Ther Adv Chronic Dis 2024; 15:20406223241286677. [PMID: 39429975 PMCID: PMC11487514 DOI: 10.1177/20406223241286677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/30/2024] [Indexed: 10/22/2024] Open
Abstract
Background Diabetic kidney disease (DKD) is a severe complication of diabetes mellitus and is associated with an increased risk of end-stage renal disease (ESRD) and cardiovascular events. Early diagnosis and monitoring of DKD are crucial for implementing appropriate interventions. This study aimed to investigate the relationship between serum renalase (RNLS) levels, DKD, and diabetic macroangiopathy in patients with type 2 diabetes mellitus (T2DM). Objectives This study aims to evaluate the diagnostic value of serum renalase levels in DKD and diabetic macroangiopathy. Design This is a retrospective case-control study. Methods A total of 233 participants were recruited for the study, including 115 T2DM patients without DKD or diabetic retinopathy, and 118 T2DM patients with DKD. Serum RNLS levels were measured using an enzyme-linked immunosorbent assay. Kidney function parameters and diabetic macroangiopathy risk factors were evaluated in relation to serum RNLS levels. Results Serum RNLS levels were significantly higher in DKD patients compared to T2DM controls (34.82 (31.68, 39.37) vs 30.52 (28.58, 33.16), p < 0.01). Multiple linear regression analysis indicated that kidney function parameters and carotid intima-media thickness were independently related to RNLS levels. The study population was divided into four groups: no DKD and no diabetic macroangiopathy, DKD without diabetic macroangiopathy, diabetic macroangiopathy without DKD, and both DKD and diabetic macroangiopathy. Analysis results showed that patients with both DKD and diabetic macroangiopathy had the highest RNLS levels. Receiver operating characteristic curve analysis demonstrated the diagnostic value of RNLS for DKD (0.76 (95% confidence interval (CI) = 0.70-0.82, p < 0.01)) and diabetic macroangiopathy (0.75 (95% CI = 0.66-0.84, p < 0.01)). Conclusion Circulating RNLS levels were significantly increased in patients with DKD and diabetic macroangiopathy, suggesting that RNLS may serve as an early diagnostic marker.
Collapse
Affiliation(s)
- Li Jin
- Department of Endocrinology and Metabolism, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wensu Wang
- Department of Geriatrics, The Second Affiliated Hospital of Guizhou University of TCM, Guizhou, Guiyang, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jianguo Shen
- Department of Endocrinology and Metabolism, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yangyang Li
- Shanghai Diabetes Institute, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Yi Zhang
- Shanghai Diabetes Institute, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
4
|
Kolodecik TR, Guo X, Shugrue CA, Guo X, Desir GV, Wen L, Gorelick F. Renalase peptides reduce pancreatitis severity in mice. Am J Physiol Gastrointest Liver Physiol 2024; 327:G466-G480. [PMID: 39010833 PMCID: PMC11427088 DOI: 10.1152/ajpgi.00143.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Acute pancreatitis, an acute inflammatory injury of the pancreas, lacks a specific treatment. The circulatory protein renalase is produced by the kidney and other tissues and has potent anti-inflammatory and prosurvival properties. Recombinant renalase can reduce the severity of mild cerulein pancreatitis; the activity is contained in a conserved 20 aa renalase site (RP220). Here, we investigated the therapeutic effects of renalase on pancreatitis using two clinically relevant models of acute pancreatitis. The ability of peptides containing the RP220 site to reduce injury in a 1-day post-endoscopic retrograde cholangiopancreatography (ERCP) and a 2-day severe cerulein induced in mice was examined. The initial dose of renalase peptides was given either prophylactically (before) or therapeutically (after) the initiation of the disease. Samples were collected to determine early pancreatitis responses (tissue edema, plasma amylase, active zymogens) and later histologic tissue injury and inflammatory changes. In both preclinical models, renalase peptides significantly reduced histologic damage associated with pancreatitis, especially inflammation, necrosis, and overall injury. Quantifying inflammation using specific immunohistochemical markers demonstrated that renalase peptides significantly reduced overall bone marrow-derived inflammation and neutrophils and macrophage populations in both models. In the severe cerulein model, administering a renalase peptide with or without pretreatment significantly reduced injury. Pancreatitis and renalase peptide effects appeared to be the same in female and male mice. These studies suggest renalase peptides that retain the anti-inflammatory and prosurvival properties of recombinant renalase can reduce the severity of acute pancreatitis and might be attractive candidates for therapeutic development.NEW & NOTEWORTHY Renalase is a secretory protein. The prosurvival and anti-inflammatory effects of the whole molecule are contained in a 20 aa renalase site (RP220). Systemic treatment with peptides containing this renalase site reduced the severity of post-endoscopic retrograde cholangiopancreatography (ERCP) and severe cerulein pancreatitis in mouse models.
Collapse
Affiliation(s)
- Thomas R Kolodecik
- Veterans Affairs Health Care System, Yale University, New Haven, Connecticut, United States
- Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| | - Xiaoyu Guo
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, People's Republic of China
- Center for Biomarker Discovery and Validation, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, People's Republic of China
| | - Christine A Shugrue
- Veterans Affairs Health Care System, Yale University, New Haven, Connecticut, United States
- Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| | - Xiaojia Guo
- Veterans Affairs Health Care System, Yale University, New Haven, Connecticut, United States
- Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| | - Gary V Desir
- Veterans Affairs Health Care System, Yale University, New Haven, Connecticut, United States
- Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| | - Li Wen
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, People's Republic of China
- Center for Biomarker Discovery and Validation, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, People's Republic of China
| | - Fred Gorelick
- Veterans Affairs Health Care System, Yale University, New Haven, Connecticut, United States
- Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
5
|
Zaman S, Gorelick FS, Chrobrutskiy A, Chobrutskiy BI, Desir GV, Blanck G. Chemical complementarity of tumor resident, T-cell receptor CDR3s and renalase-1 correlates with increased melanoma survival. Oncotarget 2024; 15:550-561. [PMID: 39102218 PMCID: PMC11299663 DOI: 10.18632/oncotarget.28633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
Overexpression of the secretory protein renalase-1 negatively impacts the survival of melanoma and pancreatic cancer patients, while inhibition of renalase-1 signaling drives tumor rejection by promoting T-cell activation. Thus, we investigated the chemical complementarity between melanoma-resident, T-cell receptor (TCR) complementarity-determining region 3 (CDR3) amino acid sequences (AAs) and the renalase-1 protein. Increasing complementarity of TCR CDR3s to renalase-1 AAs, as assessed by a chemical complementarity scoring algorithm, was associated with improved overall survival (OS) in melanoma patients. The expression levels of several immune signature genes were significantly, positively correlated with increasing TCR CDR3-renalase-1 complementarity scores. Additionally, the survival association observed with high complementarity of TCR CDR3s to renalase-1 AAs was more robust in cases with low renalase-1 gene expression levels. Mapping of TCR CDR3-renalase-1 in silico interaction sites identified major epitope candidates including RP220, the signaling module of the renalase-1 protein, consistent with the fact that a monoclonal antibody to RP220 is a potent inhibitor of melanoma growth. These findings indicate that renalase-1 is a potential antigen for TCR recognition in melanoma and could be considered as a target for immunotherapy.
Collapse
Affiliation(s)
- Saif Zaman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Fred S. Gorelick
- Veteran’s Administration Healthcare System, CT 06516, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Andrea Chrobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, OR 97239, USA
| | - Boris I. Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, OR 97239, USA
| | - Gary V. Desir
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
- Veteran’s Administration Healthcare System, CT 06516, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, FL 33612, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
6
|
Robertson BM, Fane ME, Weeraratna AT, Rebecca VW. Determinants of resistance and response to melanoma therapy. NATURE CANCER 2024; 5:964-982. [PMID: 39020103 DOI: 10.1038/s43018-024-00794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/05/2024] [Indexed: 07/19/2024]
Abstract
Metastatic melanoma is among the most enigmatic advanced cancers to clinically manage despite immense progress in the way of available therapeutic options and historic decreases in the melanoma mortality rate. Most patients with metastatic melanoma treated with modern targeted therapies (for example, BRAFV600E/K inhibitors) and/or immune checkpoint blockade (for example, anti-programmed death 1 therapy) will progress, owing to profound tumor cell plasticity fueled by genetic and nongenetic mechanisms and dichotomous host microenvironmental influences. Here we discuss the determinants of tumor heterogeneity, mechanisms of therapy resistance and effective therapy regimens that hold curative promise.
Collapse
Affiliation(s)
- Bailey M Robertson
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mitchell E Fane
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Vito W Rebecca
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
7
|
Du M, Sun L, Guo J, Lv H. Macrophages and tumor-associated macrophages in the senescent microenvironment: From immunosuppressive TME to targeted tumor therapy. Pharmacol Res 2024; 204:107198. [PMID: 38692466 DOI: 10.1016/j.phrs.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
In-depth studies of the tumor microenvironment (TME) have helped to elucidate its cancer-promoting mechanisms and inherent characteristics. Cellular senescence, which acts as a response to injury and can the release of senescence-associated secretory phenotypes (SASPs). These SASPs release various cytokines, chemokines, and growth factors, remodeling the TME. This continual development of a senescent environment could be associated with chronic inflammation and immunosuppressive TME. Additionally, SASPs could influence the phenotype and function of macrophages, leading to the recruitment of tumor-associated macrophages (TAMs). This contributes to tumor proliferation and metastasis in the senescent microenvironment, working in tandem with immune regulation, angiogenesis, and therapeutic resistance. This comprehensive review covers the evolving nature of the senescent microenvironment, macrophages, and TAMs in tumor development. We also explored the links between chronic inflammation, immunosuppressive TME, cellular senescence, and macrophages. Moreover, we compiled various tumor-specific treatment strategies centered on cellular senescence and the current challenges in cellular senescence research. This study aimed to clarify the mechanism of macrophages and the senescent microenvironment in tumor progression and advance the development of targeted tumor therapies.
Collapse
Affiliation(s)
- Ming Du
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Lu Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jinshuai Guo
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Huina Lv
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
8
|
Xiao C, Wu X, Gallagher CS, Rasooly D, Jiang X, Morton CC. Genetic contribution of reproductive traits to risk of uterine leiomyomata: a large-scale, genome-wide, cross-trait analysis. Am J Obstet Gynecol 2024; 230:438.e1-438.e15. [PMID: 38191017 DOI: 10.1016/j.ajog.2023.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/03/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Although phenotypic associations between female reproductive characteristics and uterine leiomyomata have long been observed in epidemiologic investigations, the shared genetic architecture underlying these complex phenotypes remains unclear. OBJECTIVE We aimed to investigate the shared genetic basis, pleiotropic effects, and potential causal relationships underlying reproductive traits (age at menarche, age at natural menopause, and age at first birth) and uterine leiomyomata. STUDY DESIGN With the use of large-scale, genome-wide association studies conducted among women of European ancestry for age at menarche (n=329,345), age at natural menopause (n=201,323), age at first birth (n=418,758), and uterine leiomyomata (ncases/ncontrols=35,474/267,505), we performed a comprehensive, genome-wide, cross-trait analysis to examine systematically the common genetic influences between reproductive traits and uterine leiomyomata. RESULTS Significant global genetic correlations were identified between uterine leiomyomata and age at menarche (rg, -0.17; P=3.65×10-10), age at natural menopause (rg, 0.23; P=3.26×10-07), and age at first birth (rg, -0.16; P=1.96×10-06). Thirteen genomic regions were further revealed as contributing significant local correlations (P<.05/2353) to age at natural menopause and uterine leiomyomata. A cross-trait meta-analysis identified 23 shared loci, 3 of which were novel. A transcriptome-wide association study found 15 shared genes that target tissues of the digestive, exo- or endocrine, nervous, and cardiovascular systems. Mendelian randomization suggested causal relationships between a genetically predicted older age at menarche (odds ratio, 0.88; 95% confidence interval, 0.85-0.92; P=1.50×10-10) or older age at first birth (odds ratio, 0.95; 95% confidence interval, 0.90-0.99; P=.02) and a reduced risk for uterine leiomyomata and between a genetically predicted older age at natural menopause and an increased risk for uterine leiomyomata (odds ratio, 1.08; 95% confidence interval, 1.06-1.09; P=2.30×10-27). No causal association in the reverse direction was found. CONCLUSION Our work highlights that there are substantial shared genetic influences and putative causal links that underlie reproductive traits and uterine leiomyomata. The findings suggest that early identification of female reproductive risk factors may facilitate the initiation of strategies to modify potential uterine leiomyomata risk.
Collapse
Affiliation(s)
- Changfeng Xiao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueyao Wu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | - Danielle Rasooly
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Xia Jiang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Solna, Stockholm, Sweden.
| | - Cynthia Casson Morton
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Manchester Centre for Audiology and Deafness, Manchester Academic Health Science Center, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
9
|
Fu R, You N, Li R, Zhao X, Li Y, Li X, Jiang W. Renalase mediates macrophage-to-fibroblast crosstalk to attenuate pressure overload-induced pathological myocardial fibrosis. J Hypertens 2024; 42:629-643. [PMID: 38230609 DOI: 10.1097/hjh.0000000000003635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
A potential antifibrotic mechanism in pathological myocardial remodeling is the recruitment of beneficial functional subpopulations of macrophages or the transformation of their phenotype. Macrophages are required to activate molecular cascades that regulate fibroblast behavior. Identifying mediators that activate the antifibrotic macrophage phenotype is tantamount to identifying the button that retards pathological remodeling of the myocardium; however, relevant studies are inadequate. Circulating renalase (RNLS) is mainly of renal origin, and cardiac myocytes also secrete it autonomously. Our previous studies revealed that RNLS delivers cell signaling to exert multiple cardiovascular protective effects, including the improvement of myocardial ischemia, and heart failure. Here, we further investigated the potential mechanism by which macrophage phenotypic transformation is targeted by RNLS to mediate stress load-induced myocardial fibrosis. Mice subjected to transverse aortic constriction (TAC) were used as a model of myocardial fibrosis. The co-incubation of macrophages and cardiac fibroblasts was used to study intercellular signaling. The results showed that RNLS co-localized with macrophages and reduced protein expression after cardiac pressure overload. TAC mice exhibited improved cardiac function and alleviated left ventricular fibrosis when exogenous RNLS was administered. Flow sorting showed that RNLS is essential for macrophage polarization towards a restorative phenotype (M2-like), thereby inhibiting myofibroblast activation, as proven by both mouse RAW264.7 and bone marrow-derived macrophage models. Mechanistically, we found that activated protein kinase B is a major pathway by which RNLS promotes M2 polarization in macrophages. RNLS may serve as a prognostic biomarker and a potential clinical candidate for the treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Ru Fu
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Jahandideh A, Yarizadeh M, Noei-Khesht Masjedi M, Fatehnejad M, Jahandideh R, Soheili R, Eslami Y, Zokaei M, Ahmadvand A, Ghalamkarpour N, Kumar Pandey R, Nabi Afjadi M, Payandeh Z. Macrophage's role in solid tumors: two edges of a sword. Cancer Cell Int 2023; 23:150. [PMID: 37525217 PMCID: PMC10391843 DOI: 10.1186/s12935-023-02999-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023] Open
Abstract
The tumor microenvironment is overwhelmingly dictated by macrophages, intimately affiliated with tumors, exercising pivotal roles in multiple processes, including angiogenesis, extracellular matrix reconfiguration, cellular proliferation, metastasis, and immunosuppression. They further exhibit resilience to chemotherapy and immunotherapy via meticulous checkpoint blockades. When appropriately stimulated, macrophages can morph into a potent bidirectional component of the immune system, engulfing malignant cells and annihilating them with cytotoxic substances, thus rendering them intriguing candidates for therapeutic targets. As myelomonocytic cells relentlessly amass within tumor tissues, macrophages rise as prime contenders for cell therapy upon the development of chimeric antigen receptor effector cells. Given the significant incidence of macrophage infiltration correlated with an unfavorable prognosis and heightened resistance to chemotherapy in solid tumors, we delve into the intricate role of macrophages in cancer propagation and their promising potential in confronting four formidable cancer variants-namely, melanoma, colon, glioma, and breast cancers.
Collapse
Affiliation(s)
- Arian Jahandideh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Usern Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahsa Yarizadeh
- Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Maryam Noei-Khesht Masjedi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Fatehnejad
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Romina Jahandideh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roben Soheili
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Yeganeh Eslami
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Zokaei
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ardavan Ahmadvand
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nogol Ghalamkarpour
- Department of Clinical Laboratory Sciences, School of Allied Medicine, Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Rajan Kumar Pandey
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
11
|
Stojanovic D, Stojanovic M, Milenkovic J, Velickov A, Ignjatovic A, Milojkovic M. The Multi-Faceted Nature of Renalase for Mitochondrial Dysfunction Improvement in Cardiac Disease. Cells 2023; 12:1607. [PMID: 37371077 DOI: 10.3390/cells12121607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The cellular mechanisms and signaling network that guide the cardiac disease pathophysiology are inextricably intertwined, which explains the current scarcity of effective therapy and to date remains the greatest challenge in state-of-the-art cardiovascular medicine. Accordingly, a novel concept has emerged in which cardiomyocytes are the centerpiece of therapeutic targeting, with dysregulated mitochondria as a critical point of intervention. Mitochondrial dysfunction pluralism seeks a multi-faceted molecule, such as renalase, to simultaneously combat the pathophysiologic heterogeneity of mitochondria-induced cardiomyocyte injury. This review provides some original perspectives and, for the first time, discusses the functionality spectrum of renalase for mitochondrial dysfunction improvement within cardiac disease, including its ability to preserve mitochondrial integrity and dynamics by suppressing mitochondrial ΔΨm collapse; overall ATP content amelioration; a rise of mtDNA copy numbers; upregulation of mitochondrial genes involved in oxidative phosphorylation and cellular vitality promotion; mitochondrial fission inhibition; NAD+ supplementation; sirtuin upregulation; and anti-oxidant, anti-apoptotic, and anti-inflammatory traits. If verified that renalase, due to its multi-faceted nature, behaves like the "guardian of mitochondria" by thwarting pernicious mitochondrial dysfunction effects and exerting therapeutic potential to target mitochondrial abnormalities in failing hearts, it may provide large-scale benefits for cardiac disease patients, regardless of the underlying causes.
Collapse
Affiliation(s)
- Dijana Stojanovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Miodrag Stojanovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
- Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, 18000 Nis, Serbia
| | - Jelena Milenkovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Aleksandra Velickov
- Department of Histology and Embryology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Aleksandra Ignjatovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
- Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, 18000 Nis, Serbia
| | - Maja Milojkovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| |
Collapse
|
12
|
Renalase Challenges the Oxidative Stress and Fibroproliferative Response in COVID-19. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4032704. [PMID: 36132227 PMCID: PMC9484957 DOI: 10.1155/2022/4032704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 01/08/2023]
Abstract
The hallmark of the coronavirus disease 2019 (COVID-19) pathophysiology was reported to be an inappropriate and uncontrolled immune response, evidenced by activated macrophages, and a robust surge of proinflammatory cytokines, followed by the release of reactive oxygen species, that synergistically result in acute respiratory distress syndrome, fibroproliferative lung response, and possibly even death. For these reasons, all identified risk factors and pathophysiological processes of COVID-19, which are feasible for the prevention and treatment, should be addressed in a timely manner. Accordingly, the evolving anti-inflammatory and antifibrotic therapy for severe COVID-19 and hindering post-COVID-19 fibrosis development should be comprehensively investigated. Experimental evidence indicates that renalase, a novel amino-oxidase, derived from the kidneys, exhibits remarkable organ protection, robustly addressing the most powerful pathways of cell trauma: inflammation and oxidative stress, necrosis, and apoptosis. As demonstrated, systemic renalase administration also significantly alleviates experimentally induced organ fibrosis and prevents adverse remodeling. The recognition that renalase exerts cytoprotection via sirtuins activation, by raising their NAD+ levels, provides a “proof of principle” for renalase being a biologically impressive molecule that favors cell protection and survival and maybe involved in the pathogenesis of COVID-19. This premise supports the rationale that renalase's timely supplementation may prove valuable for pathologic conditions, such as cytokine storm and related acute respiratory distress syndrome. Therefore, the aim for this review is to acknowledge the scientific rationale for renalase employment in the experimental model of COVID-19, targeting the acute phase mechanisms and halting fibrosis progression, based on its proposed molecular pathways. Novel therapies for COVID-19 seek to exploit renalase's multiple and distinctive cytoprotective mechanisms; therefore, this review should be acknowledged as the thorough groundwork for subsequent research of renalase's employment in the experimental models of COVID-19.
Collapse
|
13
|
Renalase: a novel regulator of cardiometabolic and renal diseases. Hypertens Res 2022; 45:1582-1598. [PMID: 35941358 PMCID: PMC9358379 DOI: 10.1038/s41440-022-00986-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/26/2022] [Accepted: 06/05/2022] [Indexed: 11/13/2022]
Abstract
Renalase is a ~38 kDa flavin-adenine dinucleotide (FAD) domain-containing protein that can function as a cytokine and an anomerase. It is emerging as a novel regulator of cardiometabolic diseases. Expressed mainly in the kidneys, renalase has been reported to have a hypotensive effect and may control blood pressure through regulation of sympathetic tone. Furthermore, genetic variations in the renalase gene, such as a functional missense polymorphism (Glu37Asp), have implications in the cardiovascular and renal systems and can potentially increase the risk of cardiometabolic disorders. Research on the physiological functions and biochemical actions of renalase over the years has indicated a role for renalase as one of the key proteins involved in various disease states, such as diabetes, impaired lipid metabolism, and cancer. Recent studies have identified three transcription factors (viz., Sp1, STAT3, and ZBP89) as key positive regulators in modulating the expression of the human renalase gene. Moreover, renalase is under the post-transcriptional regulation of two microRNAs (viz., miR-29b, and miR-146a), which downregulate renalase expression. While renalase supplementation may be useful for treating hypertension, inhibition of renalase signaling may be beneficial to patients with cancerous tumors. However, more incisive investigations are required to unravel the potential therapeutic applications of renalase. Based on the literature pertaining to the function and physiology of renalase, this review attempts to consolidate and comprehend the role of renalase in regulating cardiometabolic and renal disorders. ![]()
Collapse
|
14
|
Wang S, Liu G, Li Y, Pan Y. Metabolic Reprogramming Induces Macrophage Polarization in the Tumor Microenvironment. Front Immunol 2022; 13:840029. [PMID: 35874739 PMCID: PMC9302576 DOI: 10.3389/fimmu.2022.840029] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/09/2022] [Indexed: 12/18/2022] Open
Abstract
Macrophages are one of the most important cells in the innate immune system, they are converted into two distinct subtypes with completely different molecular phenotypes and functional features under different stimuli of the microenvironment: M1 macrophages induced by IFN-γ/lipopolysaccharides(LPS) and M2 macrophages induced by IL-4/IL-10/IL-13. Tumor-associated macrophages (TAMs) differentiate from macrophages through various factors in the tumor microenvironment (TME). TAMs have the phenotype and function of M2 macrophages and are capable of secreting multiple cytokines to promote tumor progression. Both tumor cells and macrophages can meet the energy needs for rapid cell growth and proliferation through metabolic reprogramming, so a comprehensive understanding of pro-tumor and antitumor metabolic switches in TAM is essential to understanding immune escape mechanisms. This paper focuses on the functions of relevant signaling pathways and cytokines during macrophage polarization and metabolic reprogramming, and briefly discusses the effects of different microenvironments and macrophage pathogenicity, in addition to describing the research progress of inhibitory drugs for certain metabolic and polarized signaling pathways.
Collapse
Affiliation(s)
- Shilin Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Stojanovic D, Mitic V, Stojanovic M, Milenkovic J, Ignjatovic A, Milojkovic M. The Scientific Rationale for the Introduction of Renalase in the Concept of Cardiac Fibrosis. Front Cardiovasc Med 2022; 9:845878. [PMID: 35711341 PMCID: PMC9193824 DOI: 10.3389/fcvm.2022.845878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
Cardiac fibrosis represents a redundant accumulation of extracellular matrix proteins, resulting from a cascade of pathophysiological events involved in an ineffective healing response, that eventually leads to heart failure. The pathophysiology of cardiac fibrosis involves various cellular effectors (neutrophils, macrophages, cardiomyocytes, fibroblasts), up-regulation of profibrotic mediators (cytokines, chemokines, and growth factors), and processes where epithelial and endothelial cells undergo mesenchymal transition. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. The most effective anti-fibrotic strategy will have to incorporate the specific targeting of the diverse cells, pathways, and their cross-talk in the pathogenesis of cardiac fibroproliferation. Additionally, renalase, a novel protein secreted by the kidneys, is identified. Evidence demonstrates its cytoprotective properties, establishing it as a survival element in various organ injuries (heart, kidney, liver, intestines), and as a significant anti-fibrotic factor, owing to its, in vitro and in vivo demonstrated pleiotropy to alleviate inflammation, oxidative stress, apoptosis, necrosis, and fibrotic responses. Effective anti-fibrotic therapy may seek to exploit renalase’s compound effects such as: lessening of the inflammatory cell infiltrate (neutrophils and macrophages), and macrophage polarization (M1 to M2), a decrease in the proinflammatory cytokines/chemokines/reactive species/growth factor release (TNF-α, IL-6, MCP-1, MIP-2, ROS, TGF-β1), an increase in anti-apoptotic factors (Bcl2), and prevention of caspase activation, inflammasome silencing, sirtuins (1 and 3) activation, and mitochondrial protection, suppression of epithelial to mesenchymal transition, a decrease in the pro-fibrotic markers expression (’α-SMA, collagen I, and III, TIMP-1, and fibronectin), and interference with MAPKs signaling network, most likely as a coordinator of pro-fibrotic signals. This review provides the scientific rationale for renalase’s scrutiny regarding cardiac fibrosis, and there is great anticipation that these newly identified pathways are set to progress one step further. Although substantial progress has been made, indicating renalase’s therapeutic promise, more profound experimental work is required to resolve the accurate underlying mechanisms of renalase, concerning cardiac fibrosis, before any potential translation to clinical investigation.
Collapse
Affiliation(s)
- Dijana Stojanovic
- Institute of Pathophysiology, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Valentina Mitic
- Department of Cardiovascular Rehabilitation, Institute for Treatment and Rehabilitation "Niska Banja", Niska Banja, Serbia
| | - Miodrag Stojanovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Niš, Niš, Serbia.,Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, Niš, Serbia
| | - Jelena Milenkovic
- Institute of Pathophysiology, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Aleksandra Ignjatovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Niš, Niš, Serbia.,Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, Niš, Serbia
| | - Maja Milojkovic
- Institute of Pathophysiology, Faculty of Medicine, University of Niš, Niš, Serbia
| |
Collapse
|
16
|
Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J Hematol Oncol 2022; 15:61. [PMID: 35585567 PMCID: PMC9118588 DOI: 10.1186/s13045-022-01282-8] [Citation(s) in RCA: 255] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/03/2022] [Indexed: 02/08/2023] Open
Abstract
Immunotherapies like the adoptive transfer of gene-engineered T cells and immune checkpoint inhibitors are novel therapeutic modalities for advanced cancers. However, some patients are refractory or resistant to these therapies, and the mechanisms underlying tumor immune resistance have not been fully elucidated. Immunosuppressive cells such as myeloid-derived suppressive cells, tumor-associated macrophages, tumor-associated neutrophils, regulatory T cells (Tregs), and tumor-associated dendritic cells are critical factors correlated with immune resistance. In addition, cytokines and factors secreted by tumor cells or these immunosuppressive cells also mediate the tumor progression and immune escape of cancers. Thus, targeting these immunosuppressive cells and the related signals is the promising therapy to improve the efficacy of immunotherapies and reverse the immune resistance. However, even with certain success in preclinical studies or in some specific types of cancer, large perspectives are unknown for these immunosuppressive cells, and the related therapies have undesirable outcomes for clinical patients. In this review, we comprehensively summarized the phenotype, function, and potential therapeutic targets of these immunosuppressive cells in the tumor microenvironment.
Collapse
|
17
|
Guo X, Jessel S, Qu R, Kluger Y, Chen TM, Hollander L, Safirstein R, Nelson B, Cha C, Bosenberg M, Jilaveanu LB, Rimm D, Rothlin CV, Kluger HM, Desir GV. Inhibition of renalase drives tumour rejection by promoting T cell activation. Eur J Cancer 2022; 165:81-96. [PMID: 35219026 PMCID: PMC8940682 DOI: 10.1016/j.ejca.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Although programmed cell death protein 1 (PD-1) inhibitors have revolutionised treatment for advanced melanoma, not all patients respond. We previously showed that inhibition of the flavoprotein renalase (RNLS) in preclinical melanoma models decreases tumour growth. We hypothesised that RNLS inhibition promotes tumour rejection by effects on the tumour microenvironment (TME). METHODS We used two distinct murine melanoma models, studied in RNLS knockout (KO) or wild-type (WT) mice. WT mice were treated with the anti-RNLS antibody, m28, with or without anti-PD-1. 10X single-cell RNA-sequencing was used to identify transcriptional differences between treatment groups, and tumour cell content was interrogated by flow cytometry. Samples from patients treated with immunotherapy were examined for RNLS expression by quantitative immunofluorescence. RESULTS RNLS KO mice injected with wild-type melanoma cells reject their tumours, supporting the importance of RNLS in cells in the TME. This effect was blunted by anti-cluster of differentiation 3. However, MØ-specific RNLS ablation was insufficient to abrogate tumour formation. Anti-RNLS antibody treatment of melanoma-bearing mice resulted in enhanced T cell infiltration and activation and resulted in immune memory on rechallenging mice with injection of melanoma cells. At the single-cell level, treatment with anti-RNLS antibodies resulted in increased tumour density of MØ, neutrophils and lymphocytes and increased expression of IFNγ and granzyme B in natural killer cells and T cells. Intratumoural Forkhead Box P3 + CD4 cells were decreased. In two distinct murine melanoma models, we showed that melanoma-bearing mice treated with anti-RNLS antibodies plus anti-PD-1 had superior tumour shrinkage and survival than with either treatment alone. Importantly, in pretreatment samples from patients treated with PD-1 inhibitors, high RNLS expression was associated with decreased survival (log-rank P = 0.006), independent of other prognostic variables. CONCLUSIONS RNLS KO results in melanoma tumour regression in a T-cell-dependent fashion. Anti-RNLS antibodies enhance anti-PD-1 activity in two distinct aggressive murine melanoma models resistant to PD-1 inhibitors, supporting the development of anti-RNLS antibodies with PD-1 inhibitors as a novel approach for melanomas poorly responsive to anti-PD-1.
Collapse
Affiliation(s)
- Xiaojia Guo
- Department of Medicine Section of Nephrology, Yale University, New Haven, CT, USA
| | - Shlomit Jessel
- Department of Medicine Section of Medical Oncology, Yale University, New Haven, CT, USA
| | - Rihao Qu
- Department of Medicine Pathology, Yale University, New Haven, CT, USA
| | - Yuval Kluger
- Department of Medicine Pathology, Yale University, New Haven, CT, USA
| | - Tian-Min Chen
- Department of Medicine Section of Nephrology, Yale University, New Haven, CT, USA
| | - Lindsay Hollander
- Department of Medicine Section of Nephrology, Yale University, New Haven, CT, USA
| | - Robert Safirstein
- Department of Medicine Section of Nephrology, Yale University, New Haven, CT, USA; Department of Medicine VACHS, Yale University, New Haven, CT, USA
| | - Bryce Nelson
- Department of Medicine Pharmacology, Yale University, New Haven, CT, USA
| | - Charles Cha
- Department of Medicine Surgery, Yale University, New Haven, CT, USA
| | - Marcus Bosenberg
- Department of Medicine Section of Medical Oncology, Yale University, New Haven, CT, USA
| | - Lucia B Jilaveanu
- Department of Medicine Section of Medical Oncology, Yale University, New Haven, CT, USA
| | - David Rimm
- Department of Medicine Pathology, Yale University, New Haven, CT, USA
| | - Carla V Rothlin
- Department of Medicine Immunology, Yale University, New Haven, CT, USA
| | - Harriet M Kluger
- Department of Medicine Section of Medical Oncology, Yale University, New Haven, CT, USA
| | - Gary V Desir
- Department of Medicine Section of Nephrology, Yale University, New Haven, CT, USA; Department of Medicine VACHS, Yale University, New Haven, CT, USA; Department of Medicine Yale School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
18
|
Wang M, Silva T, Toothaker JM, McCourt BT, Shugrue C, Desir G, Gorelick F, Konnikova L. Renalase and its receptor, PMCA4b, are expressed in the placenta throughout the human gestation. Sci Rep 2022; 12:4953. [PMID: 35322081 PMCID: PMC8943056 DOI: 10.1038/s41598-022-08817-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/07/2022] [Indexed: 01/03/2023] Open
Abstract
Placental function requires organized growth, transmission of nutrients, and an anti-inflammatory milieu between the maternal and fetal interface, but placental factors important for its function remain unclear. Renalase is a pro-survival, anti-inflammatory flavoprotein found to be critical in other tissues. We examined the potential role of renalase in placental development. PCR, bulk RNA sequencing, immunohistochemistry, and immunofluorescence for renalase and its binding partners, PMCA4b and PZP, were performed on human placental tissue from second-trimester and full-term placentas separated into decidua, placental villi and chorionic plates. Quantification of immunohistochemistry was used to localize renalase across time course from 17 weeks to term. Endogenous production of renalase was examined in placental tissue and organoids. Renalase and its receptor PMCA4b transcripts and proteins were present in all layers of the placenta. Estimated RNLS protein levels did not change with gestation in the decidual samples. However, placental villi contained more renalase immunoreactive cells in fetal than full-term placental samples. RNLS co-labeled with markers for Hofbauer cells and trophoblasts within the placental villi. Endogenous production of RNLS, PMCA4b, and PZP by trophoblasts was validated in placental organoids. Renalase is endogenously expressed throughout placental tissue and specifically within Hofbauer cells and trophoblasts, suggesting a potential role for renalase in placental development and function. Future studies should assess renalase's role in normal and diseased human placenta.
Collapse
Affiliation(s)
- Melinda Wang
- Yale University School of Medicine, 375 Congress Ave, LSOG 405B, New Haven, CT, 06519, USA
| | - Tatiana Silva
- Yale University School of Medicine, 375 Congress Ave, LSOG 405B, New Haven, CT, 06519, USA
| | - Jessica M Toothaker
- Yale University School of Medicine, 375 Congress Ave, LSOG 405B, New Haven, CT, 06519, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Blake T McCourt
- Yale University School of Medicine, 375 Congress Ave, LSOG 405B, New Haven, CT, 06519, USA
- Department of Pediatrics, Yale University, New Haven, CT, 06520, USA
| | - Christine Shugrue
- Yale University School of Medicine, 375 Congress Ave, LSOG 405B, New Haven, CT, 06519, USA
- Department of Internal Medicine, Yale University, New Haven, CT, 06520, USA
| | - Gary Desir
- Yale University School of Medicine, 375 Congress Ave, LSOG 405B, New Haven, CT, 06519, USA
- Department of Internal Medicine, Yale University, New Haven, CT, 06520, USA
- VA CT Medical Center, Yale University, New Haven, CT, 06520, USA
| | - Fred Gorelick
- Yale University School of Medicine, 375 Congress Ave, LSOG 405B, New Haven, CT, 06519, USA
- Department of Internal Medicine, Yale University, New Haven, CT, 06520, USA
- VA CT Medical Center, Yale University, New Haven, CT, 06520, USA
- Department of Cell Biology, Yale University, New Haven, CT, 06520, USA
| | - Liza Konnikova
- Yale University School of Medicine, 375 Congress Ave, LSOG 405B, New Haven, CT, 06519, USA.
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Pediatrics, Yale University, New Haven, CT, 06520, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT, 06520, USA.
- Program in Human and Translational Immunology, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
19
|
Safdar B, Wang M, Guo X, Cha C, Chun HJ, Deng Y, Dziura J, El-Khoury JM, Gorelick F, Ko AI, Lee AI, Safirstein R, Simonov M, Zhou B, Desir GV. Association of renalase with clinical outcomes in hospitalized patients with COVID-19. PLoS One 2022; 17:e0264178. [PMID: 35259186 PMCID: PMC8903289 DOI: 10.1371/journal.pone.0264178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/04/2022] [Indexed: 12/27/2022] Open
Abstract
Renalase is a secreted flavoprotein with anti-inflammatory and pro-cell survival properties. COVID-19 is associated with disordered inflammation and apoptosis. We hypothesized that blood renalase levels would correspond to severe COVID-19 and survival. In this retrospective cohort study, clinicopathologic data and blood samples were collected from hospitalized COVID-19 subjects (March—June 2020) at a single institution tertiary hospital. Plasma renalase and cytokine levels were measured and clinical data abstracted from health records. Of 3,450 COVID-19 patients, 458 patients were enrolled. Patients were excluded if <18 years, or opted out of research. The primary composite outcome was intubation or death within 180 days. Secondary outcomes included mortality alone, intensive care unit admission, use of vasopressors, and CPR. Enrolled patients had mean age 64 years (SD±17), were 53% males, and 48% non-whites. Mean renalase levels was 14,108·4 ng/ml (SD±8,137 ng/ml). Compared to patients with high renalase, those with low renalase (< 8,922 ng/ml) were more likely to present with hypoxia, increased ICU admission (54% vs. 33%, p < 0.001), and cardiopulmonary resuscitation (10% vs. 4%, p = 0·023). In Cox proportional hazard model, every 1000 ng/ml increase in renalase decreased the risk of death or intubation by 5% (HR 0·95; 95% CI 0·91–0·98) and increased survival alone by 6% (HR 0·95; CI 0·90–0·98), after adjusting for socio-demographics, initial disease severity, comorbidities and inflammation. Patients with high renalase-low IL-6 levels had the best survival compared to other groups (p = 0·04). Renalase was independently associated with reduced intubation and mortality in hospitalized COVID-19 patients. Future studies should assess the pathophysiological relevance of renalase in COVID-19 disease.
Collapse
Affiliation(s)
- Basmah Safdar
- Department of Emergency Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| | - Melinda Wang
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Xiaojia Guo
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- VA CT HealthCare, West Haven, Connecticut, United States of America
| | - Charles Cha
- Department of Surgery, Hartford HealthCare, Hartford, Connecticut, United States of America
| | - Hyung J. Chun
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Yanhong Deng
- Yale Center of Analytics Sciences, New Haven, Connecticut, United States of America
| | - James Dziura
- Department of Emergency Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Center of Analytics Sciences, New Haven, Connecticut, United States of America
| | - Joe M. El-Khoury
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Fred Gorelick
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Center of Analytics Sciences, New Haven, Connecticut, United States of America
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Alfred I. Lee
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Robert Safirstein
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- VA CT HealthCare, West Haven, Connecticut, United States of America
| | - Michael Simonov
- Yale Center of Analytics Sciences, New Haven, Connecticut, United States of America
| | - Bin Zhou
- Yale Center of Analytics Sciences, New Haven, Connecticut, United States of America
| | - Gary V. Desir
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- VA CT HealthCare, West Haven, Connecticut, United States of America
| |
Collapse
|
20
|
Wang Y, Chen C, Hu GL, Chu C, Zhang XY, Du MF, Zou T, Zhou Q, Liao YY, Ma Q, Wang KK, Sun Y, Wang D, Yan Y, Li Y, Jia H, Niu ZJ, Zhang X, Wang L, Man ZY, Gao WH, Li CH, Zhang J, Gao K, Li HX, Chang J, Desir GV, Lu WH, Mu JJ. Associations of Renalase With Blood Pressure and Hypertension in Chinese Adults. Front Cardiovasc Med 2022; 9:800427. [PMID: 35282385 PMCID: PMC8907541 DOI: 10.3389/fcvm.2022.800427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Objective Renalase, a novel secretory flavoprotein with amine oxidase activity, is secreted into the blood by the kidneys and is hypothesized to participate in blood pressure (BP) regulation. We investigated the associations of renalase with BP and the risk of hypertension by examining renalase single nucleopeptide polymorphism (SNPs), serum renalase levels, and renal expression of renalase in humans. Methods ① Subjects (n = 514) from the original Baoji Salt-Sensitive Study cohort were genotyped to investigate the association of renalase SNPs with longitudinal BP changes and the risk of hypertension during 14 years of follow-up. ② Two thousand three hundred and ninety two participants from the Hanzhong Adolescent Hypertension Study cohort were used to examine the association of serum renalase levels with hypertension. Renalase expression in renal biopsy specimens from 193 patients were measured by immunohistochemistry. ③ Renalase expression was compared in hypertensive vs. normotensive patients. Results ① SNP rs7922058 was associated with 14-year change in systolic BP, and rs10887800, rs796945, rs1935582, rs2296545, and rs2576178 were significantly associated with 14-year change in diastolic BP while rs1935582 and rs2576178 were associated with mean arterial pressure change over 14 years. In addition, SNPs rs796945, rs1935582, and rs2576178 were significantly associated with hypertension incidence. Gene-based analysis found that renalase gene was significantly associated with hypertension incidence over 14-year follow-up after adjustment for multiple measurements. ② Hypertensive subjects had higher serum renalase levels than normotensive subjects (27.2 ± 0.4 vs. 25.1 ± 0.2 μg/mL). Serum renalase levels and BPs showed a linear correlation. In addition, serum renalase was significantly associated with the risk of hypertension [OR = 1.018 (1.006–1.030)]. ③ The expression of renalase in human renal biopsy specimens significantly decreased in hypertensive patients compared to non-hypertensive patients (0.030 ± 0.001 vs. 0.038 ± 0.004). Conclusions These findings indicate that renalase may play an important role in BP progression and development of hypertension.
Collapse
Affiliation(s)
- Yang Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Chen Chen
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Gui-Lin Hu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chao Chu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Xiao-Yu Zhang
- Department of Cardiology, Northwest Women's and Children's Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ming-Fei Du
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ting Zou
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qing Zhou
- National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| | - Yue-Yuan Liao
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Qiong Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Ke-Ke Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Yue Sun
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Dan Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Yan
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Yan Li
- Department of Nephrology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Jia
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ze-Jiaxin Niu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xi Zhang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lan Wang
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, China
| | - Zi-Yue Man
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Wei-Hua Gao
- Department of Cardiology, Xi'an No.1 Hospital, Xi'an, China
| | - Chun-Hua Li
- Department of Ophthalmology, Xi'an People's Hospital, Xi'an, China
| | - Jie Zhang
- Department of Cardiology, Xi'an People's Hospital, Xi'an, China
| | - Ke Gao
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui-Xian Li
- Department of Nephrology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - John Chang
- Department of Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Medicine, Veterans Administration Healthcare System, West Haven, CT, United States
| | - Gary V. Desir
- Department of Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Medicine, Veterans Administration Healthcare System, West Haven, CT, United States
| | - Wan-Hong Lu
- Department of Nephrology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Wan-Hong Lu
| | - Jian-Jun Mu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
- Jian-Jun Mu
| |
Collapse
|
21
|
Zhang H, Chen Z, Zhang A, Gupte AA, Hamilton DJ. The Role of Calcium Signaling in Melanoma. Int J Mol Sci 2022; 23:ijms23031010. [PMID: 35162934 PMCID: PMC8835635 DOI: 10.3390/ijms23031010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Calcium signaling plays important roles in physiological and pathological conditions, including cutaneous melanoma, the most lethal type of skin cancer. Intracellular calcium concentration ([Ca2+]i), cell membrane calcium channels, calcium related proteins (S100 family, E-cadherin, and calpain), and Wnt/Ca2+ pathways are related to melanogenesis and melanoma tumorigenesis and progression. Calcium signaling influences the melanoma microenvironment, including immune cells, extracellular matrix (ECM), the vascular network, and chemical and physical surroundings. Other ionic channels, such as sodium and potassium channels, are engaged in calcium-mediated pathways in melanoma. Calcium signaling serves as a promising pharmacological target in melanoma treatment, and its dysregulation might serve as a marker for melanoma prediction. We documented calcium-dependent endoplasmic reticulum (ER) stress and mitochondria dysfunction, by targeting calcium channels and influencing [Ca2+]i and calcium homeostasis, and attenuated drug resistance in melanoma management.
Collapse
Affiliation(s)
- Haoran Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.Z.); (A.Z.); (A.A.G.)
- Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Zhe Chen
- Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Aijun Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.Z.); (A.Z.); (A.A.G.)
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, TX 77030, USA
| | - Anisha A. Gupte
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.Z.); (A.Z.); (A.A.G.)
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, TX 77030, USA
| | - Dale J. Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.Z.); (A.Z.); (A.A.G.)
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-(713)-441-4483
| |
Collapse
|
22
|
Desir GV. RENALASE: DISCOVERY, BIOLOGY, AND THERAPEUTIC APPLICATIONS. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2022; 132:117-125. [PMID: 36196172 PMCID: PMC9480547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
While investigating the mechanisms that could mediate the significant burden of cardiovascular complications observed in persons with chronic kidney disease (CKD) and end stage renal disease (ESRD), we identified a previously unknown protein, which we named renalase (RNLS). Over the past 15 years, our understanding of the biology, physiology, and pathophysiology of RNLS has matured. Here we aim to highlight that RNLS is a bifunctional protein. It metabolizes intracellular nicotinamide adenine dinucleotide (NADH), modulates mitochondrial function, and protects energy metabolism. When secreted outside the cell, independent of its enzymatic properties, it functions as a signaling molecule that mediates resistance to stressful stimuli and promotes cell and organ survival. RNLS has been shown to modulate the severity of acute injury to the pancreas, liver, kidney, and heart. It also protects against the development of chronic injury, and here we highlight the potential use of exogenous RNLS peptide agonists to prevent cisplatin-mediated CKD (CP-CKD).
Collapse
|
23
|
Wang L, Lu Q, Gao W, Yu S. Recent advancement on development of drug-induced macrophage polarization in control of human diseases. Life Sci 2021; 284:119914. [PMID: 34453949 DOI: 10.1016/j.lfs.2021.119914] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022]
Abstract
Macrophages, an important part of human immune system, possess a high plasticity and heterogeneity (macrophage polarization) as classically activated macrophages (M1) and alternatively activated macrophages (M2), which exert pro-inflammatory/anti-tumor and anti-inflammatory/pro-tumor effects, respectively. Thus, drug development in induction of macrophage polarization could be used to treat different human diseases. This review summarizes the recent advancement on modulation of macrophage polarization and its related molecular mechanisms induced by a number of agents. Research on the anti-inflammatory drugs to regulate the macrophage polarization accounts for a large proportion in the field and types of diseases investigated could include atherosclerosis, enteritis, nephritis, and the nervous system and skeletal diseases, while study of the anti-tumor agents to modify macrophage polarization is a novel area of research. Future study of the molecular mechanisms by which the different agents regulate the macrophage polarization could lead to an effective control of various human diseases, including inflammation and cancers.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacy, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250013, China; School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qi Lu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacy, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Wenwen Gao
- Department of Pharmacy, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250013, China
| | - Shuwen Yu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacy, Qilu Hospital of Shandong University, Clinical Trial Center, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
24
|
Gao Y, Wang M, Guo X, Hu J, Chen TM, Finn SMB, Lacy J, Kunstman JW, Cha CH, Bellin MD, Robert ME, Desir GV, Gorelick FS. Renalase is a novel tissue and serological biomarker in pancreatic ductal adenocarcinoma. PLoS One 2021; 16:e0250539. [PMID: 34587190 PMCID: PMC8480607 DOI: 10.1371/journal.pone.0250539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
Dysregulated expression of the secretory protein renalase can promote pancreatic ductal adenocarcinoma (PDAC) growth in animal models. We characterized renalase expression in premalignant and malignant PDAC tissue and investigated whether plasma renalase levels corresponded to clinical PDAC characteristics. Renalase immunohistochemistry was used to determine the presence and distribution of renalase in normal pancreas, chronic pancreatitis, PDAC precursor lesions, and PDAC tissues. Associations between pretreatment plasma renalase and PDAC clinical status were assessed in patients with varied clinical stages of PDAC and included tumor characteristics, surgical resection in locally advanced/borderline resectable PDAC, and overall survival. Data were retrospectively obtained and correlated using non-parametric analysis. Little to no renalase was detected by histochemistry in the normal pancreatic head in the absence of abdominal trauma. In chronic pancreatitis, renalase immunoreactivity localized to peri-acinar spindle-shaped cells in some samples. It was also widely present in PDAC precursor lesions and PDAC tissue. Among 240 patients with PDAC, elevated plasma renalase levels were associated with worse tumor characteristics, including greater angiolymphatic invasion (80.0% vs. 58.1%, p = 0.012) and greater node positive disease (76.5% vs. 56.5%, p = 0.024). Overall survival was worse in patients with high plasma renalase levels with median follow-up of 27.70 months vs. 65.03 months (p < 0.001). Renalase levels also predicted whether patients with locally advanced/borderline resectable PDAC underwent resection (AUC 0.674; 95%CI 0.42-0.82, p = 0.04). Overall tissue renalase was increased in both premalignant and malignant PDAC tissues compared to normal pancreas. Elevated plasma renalase levels were associated with advanced tumor characteristics, decreased overall survival, and reduced resectability in patients with locally advanced/borderline resectable PDAC. These studies show that renalase levels are increased in premalignant pancreatic tissues and that its levels in plasma correspond to the clinical behavior of PDAC.
Collapse
Affiliation(s)
- Yasheen Gao
- Yale University, New Haven, Connecticut, United States of America
- Department of Medicine, Veterans Affairs Connecticut Health System, Yale University School of Medicine, West Haven, Connecticut, United States of America
| | - Melinda Wang
- Department of Medicine, Veterans Affairs Connecticut Health System, Yale University School of Medicine, West Haven, Connecticut, United States of America
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Xiaojia Guo
- Department of Medicine, Veterans Affairs Connecticut Health System, Yale University School of Medicine, West Haven, Connecticut, United States of America
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Joanna Hu
- Yale Cancer Center, New Haven, Connecticut, United States of America
| | - Tian-min Chen
- Department of Medicine, Veterans Affairs Connecticut Health System, Yale University School of Medicine, West Haven, Connecticut, United States of America
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sade´ M. B. Finn
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Jill Lacy
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - John W. Kunstman
- Department of Surgery, Yale University School of Medicine and VA Connecticut, New Haven, Connecticut, United States of America
| | - Charles H. Cha
- Department of Surgery, Hartford Healthcare Saint Vincent’s Medical Center, Bridgeport, Connecticut, United States of America
| | - Melena D. Bellin
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Marie E. Robert
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Gary V. Desir
- Department of Medicine, Veterans Affairs Connecticut Health System, Yale University School of Medicine, West Haven, Connecticut, United States of America
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Fred S. Gorelick
- Department of Medicine, Veterans Affairs Connecticut Health System, Yale University School of Medicine, West Haven, Connecticut, United States of America
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
25
|
Czerwińska K, Poręba R, Gać P. Renalase-A new understanding of its enzymatic and non-enzymatic activity and its implications for future research. Clin Exp Pharmacol Physiol 2021; 49:3-9. [PMID: 34545616 DOI: 10.1111/1440-1681.13594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 01/09/2023]
Abstract
Renalase was first described in 2005 and since then it became an object of scientific interest because of its proposed ability to catalyse circulating neurotransmitters and its promising antihypertensive effects. However, further research on the enzymatic activity of renalase did not confirm these initial findings and yielded that renalase serves to oxidize isomeric forms of β-NAD(P)H and recycle them by forming β-NAD(P)+. Moreover, in contrast to initial assumptions, it is indicated that renalase's enzymatic activity is confined to the cell and that extracellular renalase loses its enzymatic properties. These new reports led scientists to question as to whether renalase, as an enzyme, still has the potential to influence various systemic physiological responses (e.g. blood pressure). It was also put into question whether many physiological discoveries published based on the notion that renalase is secreted into the blood and acts by oxidation of catecholamines can still be considered valid. In this article, we attempt to review the literature to confront these doubts and find further possible directions of research on the importance of renalase. Our aim was to evaluate recent reports of non-enzymatic activity for renalase.
Collapse
Affiliation(s)
| | - Rafał Poręba
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Paweł Gać
- Department of Hygiene, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
26
|
Pointer TC, Gorelick FS, Desir GV. Renalase: A Multi-Functional Signaling Molecule with Roles in Gastrointestinal Disease. Cells 2021; 10:2006. [PMID: 34440775 PMCID: PMC8391834 DOI: 10.3390/cells10082006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 01/11/2023] Open
Abstract
The survival factor renalase (RNLS) is a recently discovered secretory protein with potent prosurvival and anti-inflammatory effects. Several evolutionarily conserved RNLS domains are critical to its function. These include a 20 aa site that encodes for its prosurvival effects. Its prosurvival effects are shown in GI disease models including acute cerulein pancreatitis. In rodent models of pancreatic cancer and human cancer tissues, increased RNLS expression promotes cancer cell survival but shortens life expectancy. This 37 kD protein can regulate cell signaling as an extracellular molecule and probably also at intracellular sites. Extracellular RNLS signals through a specific plasma membrane calcium export transporter; this interaction appears most relevant to acute injury and cancer. Preliminary studies using RNLS agonists and antagonists, as well as various preclinical disease models, suggest that the immunologic and prosurvival effects of RNLS will be relevant to diverse pathologies that include acute organ injuries and select cancers. Future studies should define the roles of RNLS in intestinal diseases, characterizing the RNLS-activated pathways linked to cell survival and developing therapeutic agents that can increase or decrease RNLS in relevant clinical settings.
Collapse
Affiliation(s)
- Thomas C. Pointer
- Department of Medicine, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA; (T.C.P.); (F.S.G.)
| | - Fred S. Gorelick
- Department of Medicine, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA; (T.C.P.); (F.S.G.)
- VA Connecticut Health Care System, 950 Campbell Avenue, West Haven, CT 06516, USA
| | - Gary V. Desir
- Department of Medicine, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA; (T.C.P.); (F.S.G.)
- VA Connecticut Health Care System, 950 Campbell Avenue, West Haven, CT 06516, USA
| |
Collapse
|
27
|
Park SM, An JH, Lee JH, Kim KB, Chae HK, Oh YI, Song WJ, Youn HY. Extracellular vesicles derived from DFO-preconditioned canine AT-MSCs reprogram macrophages into M2 phase. PLoS One 2021; 16:e0254657. [PMID: 34310627 PMCID: PMC8312919 DOI: 10.1371/journal.pone.0254657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background Mesenchymal stem/stromal cells (MSCs) are effective therapeutic agents that ameliorate inflammation through paracrine effect; in this regard, extracellular vesicles (EVs) have been frequently studied. To improve the secretion of anti-inflammatory factors from MSCs, preconditioning with hypoxia or hypoxia-mimetic agents has been attempted and the molecular changes in preconditioned MSC-derived EVs explored. In this study, we aimed to investigate the increase of hypoxia-inducible factor 1-alpha (HIF-1α)/cyclooxygenase-2 (COX-2) in deferoxamine (DFO)-preconditioned canine MSC (MSCDFO) and whether these molecular changes were reflected on EVs. Furthermore, we focused on MSCDFO derived EVs (EVDFO) could affect macrophage polarization via the transfer function of EVs. Results In MSCDFO, accumulation of HIF-1α were increased and production of COX-2 were activated. Also, Inside of EVDFO were enriched with COX-2 protein. To evaluate the transferring effect of EVs to macrophage, the canine macrophage cell line, DH82, was treated with EVs after lipopolysaccharide (LPS) stimulation. Polarization changes of DH82 were evaluated with quantitative real-time PCR and immunofluorescence analyses. When LPS-induced DH82 was treated with EVDFO, phosphorylation of signal transducer and transcription3 (p-STAT3), which is one of key factor of inducing M2 phase, expression was increased in DH82. Furthermore, treated with EVDFO in LPS-induced DH82, the expression of M1 markers were reduced, otherwise, M2 surface markers were enhanced. Comparing with EVDFO and EVnon. Conclusion DFO preconditioning in MSCs activated the HIF-1α/COX-2 signaling pathway; Transferring COX-2 through EVDFO could effectively reprogram macrophage into M2 phase by promoting the phosphorylation of STAT3.
Collapse
Affiliation(s)
- Su-Min Park
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ju-Hyun An
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Hwa Lee
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Bo Kim
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyung-Kyu Chae
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ye-In Oh
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Woo-Jin Song
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
- * E-mail: (WJS); (HYY)
| | - Hwa-Young Youn
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- * E-mail: (WJS); (HYY)
| |
Collapse
|
28
|
Renalase improves pressure overload-induced heart failure in rats by regulating extracellular signal-regulated protein kinase 1/2 signaling. Hypertens Res 2021; 44:481-488. [PMID: 33420473 DOI: 10.1038/s41440-020-00599-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/13/2020] [Accepted: 11/10/2020] [Indexed: 01/11/2023]
Abstract
Renalase, a novel flavoprotein that is mainly expressed in the kidney and heart, plays a crucial role in hypertension. Recent studies have shown that renalase is expressed at low levels in the serum of patients with heart failure, while the role of renalase and its mechanism in cardiac failure is unclear. Adult Sprague-Dawley (SD) rats were used to investigate the role and function of renalase in the pathological process of transverse aortic constriction (TAC)-induced heart failure. Renalase-human protein chip analysis showed that renalase was directly associated with P38 and extracellular signal-regulated protein kinase 1/2 (ERK1/2) signaling. We further used lentivirus-mediated RNA interference to study the role of renalase in the progression of pathological ventricular hypertrophy and found that renalase inhibition attenuated the noradrenaline-induced hypertrophic response in vitro or the pressure overload-induced hypertrophic response in vivo. Recombinant renalase protein significantly alleviated pressure overload-induced cardiac failure and was associated with P38 and ERK1/2 signaling. These findings demonstrate that renalase is a potential biomarker of hypertrophy and that exogenous recombinant renalase is a potential and novel drug for heart failure.
Collapse
|
29
|
Akkoc RF, Aydin S, Goksu M, Ozcan Yildirim S, Eroksuz Y, Ogeturk M, Ugur K, Dagli AF, Yakar B, Sahin I, Aydin S. Can renalase be a novel candidate biomarker for distinguishing renal tumors? Biotech Histochem 2020; 96:520-525. [PMID: 33956551 DOI: 10.1080/10520295.2020.1825805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Renalase (RNLS) is synthesized mainly in renal tissues. The function of RNLS in cancerous renal tissues has not been investigated. We investigated the synthesis of RNLS in chromophobe renal cell carcinoma, papillary renal cell carcinoma and clear cell renal cell carcinoma with Fuhrman grades (FG): FG1, nucleoli are absent or inconspicuous and basophilic; FG2, nucleoli are conspicuous and eosinophilic and visible but not prominent; FG3, nucleoli are conspicuous and eosinophilic; FG4, extreme nuclear pleomorphism, multinucleate giant cells, and/or rhabdoid and/or sarcomatoid differentiation. We used 90 tissue samples including 15 healthy controls, 15 chromophobe renal cell carcinoma tissues and 10 papillary renal cell carcinoma renal tissues: 12 FG1, 14 FG 2, 14 FG 3 and 10 FG4. RNLS in the tissue samples was measured using enzyme linked immunosorbent assay and immunostaining of RNLS in these tissues. RNLS was significantly greater in the chromophobe renal cell carcinoma and papillary renal cell carcinoma tissues than the control. The least amount of RNLS was found in the renal tissues of clear cell renal cell carcinoma FG1; the amount of RNLS increased as the FG grades increased. Because RNLS increased significantly in renal tissues due to cancer, except for clear cell renal cell carcinoma FG1, RNLS may be useful biomarker for distinguishing grades of renal cancer. Because RNLS increases cell survival, anti-RNLS preparations may be useful for treating cancer in the future.
Collapse
Affiliation(s)
- R F Akkoc
- Department of Anatomy, School of Medicine, Firat University, Elazig, Turkey
| | - S Aydin
- Department of Cardiovascular Surgery, Elazig Fethi Sekin City Hospital, Elazig, Turkey
| | - M Goksu
- Department of Pediatric Surgery, School of Medicine, Adiyaman University, Adiyaman, Turkey
| | - S Ozcan Yildirim
- Department of Histology and Embryology, School of Medicine, Firat University, Elazig, Turkey
| | - Y Eroksuz
- Department of Pathology, School of Veterinary Medicine, Firat University, Elazig, Turkey
| | - M Ogeturk
- Department of Anatomy, School of Medicine, Firat University, Elazig, Turkey
| | - K Ugur
- Department of Endocrinology and Metabolism Disease, School of Medicine, Firat University, Elazig, Turkey
| | - A F Dagli
- Department of Pathology, School of Medicine, Firat University, Elazig, Turkey
| | - B Yakar
- Department of Family Medicine, School of Medicine, Firat University, Elazig, Turkey
| | - I Sahin
- Department of Medical Biochemistry and Clinical Biochemistry, Firat Hormones Research Group, School of Medicine, Firat University Elazig, Elazig, Turkey.,Department of Medical Biology, School of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - S Aydin
- Department of Medical Biochemistry and Clinical Biochemistry, Firat Hormones Research Group, School of Medicine, Firat University Elazig, Elazig, Turkey
| |
Collapse
|
30
|
Abstract
Ca2+ is a ubiquitous and dynamic second messenger molecule that is induced by many factors including receptor activation, environmental factors, and voltage, leading to pleiotropic effects on cell function including changes in migration, metabolism and transcription. As such, it is not surprising that aberrant regulation of Ca2+ signals can lead to pathological phenotypes, including cancer progression. However, given the highly context-specific nature of Ca2+-dependent changes in cell function, delineation of its role in cancer has been a challenge. Herein, we discuss the distinct roles of Ca2+ signaling within and between each type of cancer, including consideration of the potential of therapeutic strategies targeting these signaling pathways.
Collapse
Affiliation(s)
- Scott Gross
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Pranava Mallu
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hinal Joshi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Bryant Schultz
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Christina Go
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States; Department of Medical Genetics & Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| |
Collapse
|
31
|
Yu Y, Cui H, Zhang C, Zhang D, Yin J, Wen G, Chai Y. Human nail bed extracellular matrix facilitates bone regeneration via macrophage polarization mediated by the JAK2/STAT3 pathway. J Mater Chem B 2020; 8:4067-4079. [PMID: 32242565 DOI: 10.1039/c9tb02910a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Critical-sized bone defects caused by trauma, tumor resection or serious infection represent one of the most challenging problems faced by orthopedic surgeons. However, the construction of bone grafts with good osteointegration and osteoinductivity is a clinical challenge. It has been elaborated that the nail bed tissue is an essential element for digit tip regeneration, suggesting that the nail bed may serve as a new material to manipulate bone regeneration. Herein, it was found that human nail bed extracellular matrix derived from amputated patients stimulates macrophage polarization toward a pro-healing phenotype and the expression of BMP2, to facilitate the osteogenic differentiation of bone marrow stromal cells (BMSCs) in vitro. The in vivo osteogenic capacity of decellularized nail bed scaffolds was then confirmed using a rat model of critical-sized calvarial defects. The in-depth analysis of immune responses to implanted scaffolds revealed that macrophage polarization toward the pro-regenerative M2 phenotype directs osteogenesis, as confirmed by macrophage depletion. A combination of proteomics analysis and RNA interference verified that the JAK2/STAT3 pathway is the positive regulator of macrophage polarization initiated by the decellularized nail bed during the promoted osteogenesis process. Thus, the decellularized human nail bed scaffold developed in this work is a promising biomaterial for bone regeneration.
Collapse
Affiliation(s)
- Yaling Yu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Yin J, Liu X, Zhao T, Liang R, Wu R, Zhang F, Kong Y, Liu L, Xing T, Wang N, Zhao Q, Wang F. A protective role of renalase in diabetic nephropathy. Clin Sci (Lond) 2020; 134:75-85. [PMID: 31899483 DOI: 10.1042/cs20190995] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/12/2019] [Accepted: 01/03/2020] [Indexed: 01/09/2023]
Abstract
Renalase, a recently discovered secreted flavoprotein, exerts anti-apoptotic and anti-inflammatory effects against renal injury in acute and chronic animal models. However, whether Renalase elicits similar effects in the development of diabetic nephropathy (DN) remains unclear. The studies presented here tested the hypothesis that Renalase may play a key role in the development of DN and may have therapeutic potential for DN. Renalase expression was measured in human kidney biopsies with DN and in kidneys of db/db mice. The role of Renalase in the development of DN was examined using a genetically engineered mouse model: Renalase knockout mice with db/db background. The renoprotective effects of Renalase in DN was evaluated in db/db mice with Renalase overexpression. In addition, the effects of Renalase on high glucose-induced mesangial cells were investigated. Renalase was down-regulated in human diabetic kidneys and in kidneys of db/db mice compared with healthy controls or db/m mice. Renalase homozygous knockout increased arterial blood pressure significantly in db/db mice while heterozygous knockout did not. Renalase heterozygous knockout resulted in elevated albuminuria and increased renal mesangial expansion in db/db mice. Mesangial hypertrophy, renal inflammation, and pathological injury in diabetic Renalase heterozygous knockout mice were significantly exacerbated compared with wild-type littermates. Moreover, Renalase overexpression significantly ameliorated renal injury in db/db mice. Mechanistically, Renalase attenuated high glucose-induced profibrotic gene expression and p21 expression through inhibiting extracellular regulated protein kinases (ERK1/2). The present study suggested that Renalase protected against the progression of DN and might be a novel therapeutic target for the treatment of DN.
Collapse
Affiliation(s)
- Jianyong Yin
- Department of Nephrology, Jiangsu University Affiliated Shanghai Eigth People's Hospital, Shanghai 200233, China
| | - Xuanchen Liu
- Department of Nephrology, Jiangsu University Affiliated Shanghai Eigth People's Hospital, Shanghai 200233, China
| | - Ting Zhao
- Department of Nephrology, Jiangsu University Affiliated Shanghai Eigth People's Hospital, Shanghai 200233, China
| | - Rulian Liang
- Department of Nephrology, Jiangsu University Affiliated Shanghai Eigth People's Hospital, Shanghai 200233, China
| | - Rui Wu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Fangfei Zhang
- Department of Nephrology, Jiangsu University Affiliated Shanghai Eigth People's Hospital, Shanghai 200233, China
| | - Yiwei Kong
- Biomedical School, Medical College of Wisconsin, Milwaukee, WI 53226, U.S.A
| | - Limei Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Tao Xing
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Niansong Wang
- Department of Nephrology, Jiangsu University Affiliated Shanghai Eigth People's Hospital, Shanghai 200233, China
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Qing Zhao
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Feng Wang
- Department of Nephrology, Jiangsu University Affiliated Shanghai Eigth People's Hospital, Shanghai 200233, China
| |
Collapse
|
33
|
Huang SP, Guan X, Kai GY, Xu YZ, Xu Y, Wang HJ, Pang T, Zhang LY, Liu Y. Broussonin E suppresses LPS-induced inflammatory response in macrophages via inhibiting MAPK pathway and enhancing JAK2-STAT3 pathway. Chin J Nat Med 2020; 17:372-380. [PMID: 31171272 DOI: 10.1016/s1875-5364(19)30043-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Indexed: 02/07/2023]
Abstract
Macrophages play an important role in inflammation, and excessive and chronic activation of macrophages leads to systemic inflammatory diseases, such as atherosclerosis and rheumatoid arthritis. In this paper, we explored the anti-inflammatory effect of broussonin E, a novel phenolic compound isolated from the barks ofBroussonetia kanzinoki, and its underlying molecular mechanisms. We discovered that Broussonin E could suppress the LPS-induced pro-inflammatory production in RAW264.7 cells, involving TNF-α, IL-1β, IL-6, COX-2 and iNOS. And broussonin E enhanced the expressions of anti-inflammatory mediators such as IL-10, CD206 and arginase-1 (Arg-1) in LPS-stimulated RAW264.7 cells. Further, we demonstrated that broussonin E inhibited the LPS-stimulated phosphorylation of ERK and p38 MAPK. Moreover, we found that broussonin E could activate janus kinase (JAK) 2, signal transducer and activator of transcription (STAT) 3. Downregulated pro-inflammatory cytokines and upregulated anti-inflammatory factors by broussonin E were abolished by using the inhibitor of JAK2-STAT3 pathway, WP1066. Taken together, our results showed that broussonin E could suppress inflammation by modulating macrophages activation statevia inhibiting the ERK and p38 MAPK and enhancing JAK2-STAT3 signaling pathway, and can be further developed as a promising drug for the treatment of inflammation-related diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Shao-Peng Huang
- School of Basic Medicine, Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006,China
| | - Xin Guan
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, China; Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Guo-Yin Kai
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Ya-Zhou Xu
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan Xu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hao-Jie Wang
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Pang
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lu-Yong Zhang
- School of Basic Medicine, Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006,China; Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Ying Liu
- School of Basic Medicine, Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006,China.
| |
Collapse
|
34
|
Potts L, Phillips C, Hwang M, Fulcher S, Choi H. Rescue of human corneal epithelial cells after alkaline insult using renalase derived peptide, RP-220. Int J Ophthalmol 2019; 12:1667-1673. [PMID: 31741852 DOI: 10.18240/ijo.2019.11.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022] Open
Abstract
AIM To study the effect of renalase peptide, RP-220, on cell viability of human corneal epithelial cells after alkali insult. METHODS A dose-response relationship between cell viability and exposure to NaOH solution were characterized using cultured human corneal epithelial cells. Viability of corneal epithelial cells was determined using commercially available MTT and CyQUANT® assays. RESULTS At a concentration of 6 mmol/L, insult with NaOH leads to reduced corneal epithelial cell viability by approximately 30%. This reduced viability was prevented by treating the cells after initial insult with the 20-amino acid renalase derived peptide (RP-220). CONCLUSION RP-220 has a pro-survival role for RP-220 following alkaline insult to corneal epithelial cells.
Collapse
Affiliation(s)
- Luke Potts
- Department of Ophthalmology and Surgery, Scott and White Eye Institute, Temple, Texas 76508, USA
| | - Casie Phillips
- Central Texas Veterans Research Foundation, Temple, Texas 76504, USA
| | - Munok Hwang
- Department of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Samuel Fulcher
- Department of Surgery, Central Texas Veterans Health Care System, Temple, Texas 76054, USA.,Department of Medicine, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Hosoon Choi
- Central Texas Veterans Research Foundation, Temple, Texas 76504, USA.,Department of Medicine, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
35
|
Genomic variants associated with the number and diameter of muscle fibers in pigs as revealed by a genome-wide association study. Animal 2019; 14:475-481. [PMID: 31610816 DOI: 10.1017/s1751731119002374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Muscle fiber characteristics comprise a set of complex traits that influence the meat quality and lean meat production of livestock. However, the genetic and biological mechanisms regulating muscle fiber characteristics are largely unknown in pigs. Based on a genome-wide association study (GWAS) performed on 421 Large White × Min pig F2 individuals presenting well-characterized phenotypes, this work aimed to detect genome variations and candidate genes for five muscle fiber characteristics: percentage of type I fibers (FIB1P), percentage of type IIA fibers (FIB2AP), percentage of type IIB fibers (FIB2BP), diameter of muscle fibers (DIAMF) and number of muscle fibers per unit area (NUMMF). The GWAS used the Illumina Porcine SNP60K genotypic data, which were analyzed by a mixed model. Seven and 10 single nucleotide polymorphisms (SNPs) were significantly associated with DIAMF and NUMMF, respectively (P < 1.10E-06); no SNP was significantly associated with FIB1P, FIB2AP or FIB2B. For DIAMF, the significant SNPs on chromosome 4 were located in the previously reported quantitative trait loci (QTL) interval. Because the significant SNPs on chromosome 6 were not mapped in the previously reported QTL interval, a putative novel QTL was suggested for this locus. None of the previously reported QTL intervals on chromosomes 6 and 14 harbored significant SNPs for NUMMF; thus, new potential QTLs on these two chromosomes are suggested in the present work. The most significant SNPs associated with DIAMF (ALGA0025682) and NUMMF (MARC0046984) explained 12.02% and 11.59% of the phenotypic variation of these traits, respectively. In addition, both SNPs were validated as associated with DIAMF and NUMMF in Beijing Black pigs (P < 0.01). Some candidate genes or non-coding RNAs, such as solute carrier family 44 member 5 and miR-124a-1 for DIAMF, and coiled-coil serine rich protein 2 for NUMMF, were identified based on their close location to the significant SNPs. This study revealed some genome-wide association variants for muscle fiber characteristics, and it provides valuable information to discover the genetic mechanisms controlling these traits in pigs.
Collapse
|
36
|
Safdar B, Guo X, Johnson C, D'Onofrio G, Dziura J, Sinusas AJ, Testani J, Rao V, Desir G. Elevated renalase levels in patients with acute coronary microvascular dysfunction - A possible biomarker for ischemia. Int J Cardiol 2019; 279:155-161. [PMID: 30630613 PMCID: PMC6482834 DOI: 10.1016/j.ijcard.2018.12.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
Abstract
AIMS We explored the relationship between inflammation, renalase an anti-inflammatory protein, and acute chest pain with coronary microvascular dysfunction (CMD). METHODS AND RESULTS We used cardiac Rb-82 PET/CT imaging to diagnose coronary artery disease (CAD/CALC) (defect or coronary calcification) and CMD (depressed coronary flow reserve without CAD) in patients with chest pain in an emergency department (ED). Blood samples were collected pre-imaging within 24 h of ED presentation and were analyzed for renalase and inflammatory markers including C-reactive protein, interleukins, interferon gamma, tumor necrosis factor, vascular endothelial growth factor, and metalloproteinases. Exclusions were age ≤30 years, myocardial infarction, hemodynamic instability, hypertensive crisis, heart failure or dialysis. Between 6/2014 and 11/2015, 80 patients undergoing PET/CT provided blood and were categorized as normal (18%), CAD/CALC (27%) and CMD (55%). Median renalase values were highest in patients with CMD (5503 ng/ml; IQR 3070) compared to patients with normal flows (4266 ng/ml; IQR 1503; p = 0.02) or CAD/CALC (4069 ng/ml IQR 1850; p = 0.004). CMD patients had similar median values for inflammatory markers as normal patients (p > 0.05). Renalase remained an independent predictor of CMD (OR 1.34; 95% CI = 1.1-1.7, per 1000 ng/ml) after adjustment for smoking, family history, obesity and Framingham risk score. In a model for CMD diagnosis with Framingham risk score, typical angina history and CRP, renalase improved discrimination from C-statistic = 0.60 (95% CI 0.47, 0.73) to 0.70 (95% CI, 0.59-0.82). CONCLUSION We found elevated renalase in response to ischemia from acute CMD. Its role as a biomarker needs validation in larger trials.
Collapse
Affiliation(s)
- Basmah Safdar
- Department of Emergency Medicine, New Haven, CT, United States of America.
| | - Xiaojia Guo
- Department of Internal Medicine (Section of Nephrology), New Haven, CT, United States of America
| | - Caitlin Johnson
- Department of Emergency Medicine, New Haven, CT, United States of America
| | - Gail D'Onofrio
- Department of Emergency Medicine, New Haven, CT, United States of America
| | - James Dziura
- Yale Center for Analytical Sciences, New Haven, CT, United States of America
| | - Albert J Sinusas
- Department of Internal Medicine (Section of Cardiology), New Haven, CT, United States of America
| | - Jeffrey Testani
- Department of Internal Medicine (Section of Cardiology), New Haven, CT, United States of America
| | - Veena Rao
- Department of Internal Medicine (Section of Nephrology), New Haven, CT, United States of America; Department of Internal Medicine (Section of Cardiology), New Haven, CT, United States of America
| | - Gary Desir
- Department of Internal Medicine (Section of Nephrology), New Haven, CT, United States of America
| |
Collapse
|
37
|
Influence of acute exercise on renalase and its regulatory mechanism. Life Sci 2018; 210:235-242. [PMID: 30056018 DOI: 10.1016/j.lfs.2018.07.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/13/2018] [Accepted: 07/21/2018] [Indexed: 01/19/2023]
Abstract
AIMS Renalase expression in the kidneys and liver is regulated by nuclear factor (NF)-κB, Sp1, and hypoxia-inducible factor (HIF)-1α. The dynamics of renalase expression in acute exercise, and its mechanism and physiological effects are unclear. We evaluated the effect of different exercise intensities on renalase expression and examined its mechanism and physiological effects. MAIN METHODS 21 male Wistar rats ran for 30 min on a treadmill after resting for 15 min. The sedentary group rested on the treadmill while the exercise group ran for 30 min at 10 or 30 m/min. Skeletal muscles, the kidney, heart, liver, and blood samples were collected after exercise. The expression of renalase and phosphate IkB-α and Akt was measured by western blotting, while HIF-1α, Sp1, MuRF-1, and MAFbx were measured in the skeletal muscle by real-time RT-PCR. KEY FINDINGS Renalase expression in skeletal muscles increased after acute exercise, while its expression in the kidneys, heart, and liver decreased. NF-κB regulated renalase expression in the plantaris muscle and that of HIF-1α in the soleus muscle. Phosphate Akt in the plantaris muscle significantly increased in the 30 m/min group compared with that in the sedentary group. MuRF-1 in the plantaris did not change between these groups. SIGNIFICANCE Renalase expression in skeletal muscles increased after acute exercise but decreased in other tissues. This increase may be a response to exercise-induced oxidative stress. Furthermore, NF-κB in the plantaris muscle may mainly regulate renalase expression, and support a relationship with the cell protective effects of renalase.
Collapse
|
38
|
Tang M, Liu B, Bu X, Zhao P. Cross-talk between ovarian cancer cells and macrophages through periostin promotes macrophage recruitment. Cancer Sci 2018. [PMID: 29527764 PMCID: PMC5980394 DOI: 10.1111/cas.13567] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Tumor‐associated macrophages (TAMs) contribute to tumor progression, but it is not clear how they are recruited to tumor sites. Here we showed that periostin (POSTN) was present at high levels in ovarian cancer ascetic fluids and was correlated with CD163+TAMs. The high POSTN level and macrophage infiltration were inversely associated with relapse‐free survival for ovarian cancer patients. In vitro studies showed that coculture with macrophages significantly increased POSTN production in ovarian cancer cells. Further investigation found that POSTN production in ovarian cancer cells was promoted by transforming growth factor‐β generated by macrophages. Moreover, siRNA of POSTN and POSTN neutralizing antibody treatment showed that ovarian cancer cell‐derived POSTN promoted the recruitment of macrophages and modulated their cytokine secretion profile. Collectively, these data indicated that POSTN was an important factor for macrophage recruitment in the tumor microenvironment and is involved in the interactions between macrophages and ovarian cancer cells.
Collapse
Affiliation(s)
- Meng Tang
- Department of Thoracic Surgery, Qingdao Central Hospital, The Second Clinical Hospital of Qingdao University, Qingdao, China
| | - Bingji Liu
- Department of Nuclear Medicine, Qingdao Central Hospital, The Second Clinical Hospital of Qingdao University, Qingdao, China
| | - Xiaocui Bu
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Peng Zhao
- Biotherapy Center, Qingdao Central Hospital, The Second Clinical Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
39
|
Pieniazek M, Matkowski R, Donizy P. Macrophages in skin melanoma-the key element in melanomagenesis. Oncol Lett 2018; 15:5399-5404. [PMID: 29552183 PMCID: PMC5840697 DOI: 10.3892/ol.2018.8021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/16/2017] [Indexed: 01/08/2023] Open
Abstract
Cutaneous melanoma is an aggressive cancer and its onset and growth are associated, through direct and indirect interactions, with the cancer microenvironment. The microenvironment comprises a dynamic complex of numerous types of cells (due to histogenesis) that constantly interact with each other through multiple cytokines and signaling proteins. Macrophages are one of the most thoroughly studied pleiotropic cells of the immune system. One of their major cytophysiological functions is their involvement in phagocytosis. Previous studies examining the microenvironment of melanomas and tumor-associated macrophages have revealed that they are involved in all stages of melanomagenesis. In the case of cancer initiation, they form an inflammatory microenvironment and then suppress the anticancer activity of the immune system, stimulate angiogenesis, enhance migration and invasion of the cancer cells, and ultimately contribute to the metastatic process. The present review provides a detailed overview on the function of macrophages in the melanoma microenvironment.
Collapse
Affiliation(s)
- Malgorzata Pieniazek
- Department of Clinical Oncology, Tadeusz Koszarowski Regional Oncology Centre, Opole 45-061, Poland
| | - Rafal Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Wroclaw 50-367, Poland
- Department of Surgical Oncology, Lower Silesian Oncology Centre, Wroclaw 53-413, Poland
| | - Piotr Donizy
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw 50-556, Poland
| |
Collapse
|
40
|
Yu X, Han P, Wang J, Sun H, Shao M. Renalase overexpression in ER-positive breast cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1297-1307. [PMID: 31938225 PMCID: PMC6958126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/27/2018] [Indexed: 06/10/2023]
Abstract
OBJECTIVES To explore the expression and pathologic significance of renalase in tumor tissues of different molecular subtypes of breast cancer. DESIGN Immunofluorescence methods and laser confocal scanning microscope observations were used to detect expression of renalase, estrogen receptor (ER), phospho-extracellular signal-regulated kinase 1 and 2 (p-ERK1/2), and phospho-signal transducer and activator of transcription (p-STAT3) in 58 cases of breast cancer tissue, 11 normal tissues, and 14 benign fibroadenomas. Statistical analysis of its expression in different molecular subtypes of breast cancer was employed. RESULTS Compared with control tissue (benign lesions and normal breast tissue), renalase was highly expressed in invasive breast cancer and the difference was significant (P<0.0001). Renalase was also expressed significantly higher in ER-positive breast cancer, compared with control tissue (P<0.0001). There was a positive correlation between renalase and ER expression in breast cancer tissues (R=0.7246, P<0.0001) and a positive correlation between renalase and p-ERK 1/2 expression (R=0.6599, P<0.0001). Renalase had no significant correlation with p-STAT3 protein expression. CONCLUSION Renalase is a new molecular marker for ER-positive breast cancer and may become a potential therapeutic target for the ER-positive/HER2-negative subtype breast cancer. Renalase may promote high ER expression and breast cancer cell proliferation and growth through the p-ERK1/2 pathway.
Collapse
Affiliation(s)
- Xuewen Yu
- Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineChina
| | - Pengxun Han
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineChina
| | - Jiachuan Wang
- Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineChina
| | - Huili Sun
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineChina
| | - Mumin Shao
- Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineChina
| |
Collapse
|
41
|
Renalase contributes to protection against renal fibrosis via inhibiting oxidative stress in rats. Int Urol Nephrol 2018; 50:1347-1354. [DOI: 10.1007/s11255-018-1820-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/04/2018] [Indexed: 12/13/2022]
|
42
|
(+)-Borneol improves the efficacy of edaravone against DSS-induced colitis by promoting M2 macrophages polarization via JAK2-STAT3 signaling pathway. Int Immunopharmacol 2017; 53:1-10. [DOI: 10.1016/j.intimp.2017.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/27/2017] [Accepted: 10/01/2017] [Indexed: 12/15/2022]
|
43
|
Kolodecik TR, Reed AM, Date K, Shugrue CA, Patel V, Chung SL, Desir GV, Gorelick FS. The serum protein renalase reduces injury in experimental pancreatitis. J Biol Chem 2017; 292:21047-21059. [PMID: 29042438 DOI: 10.1074/jbc.m117.789776] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
Acute pancreatitis is a disease associated with inflammation and tissue damage. One protein that protects against acute injury, including ischemic injury to both the kidney and heart, is renalase, which is secreted into the blood by the kidney and other tissues. However, whether renalase reduces acute injury associated with pancreatitis is unknown. Here, we used both in vitro and in vivo murine models of acute pancreatitis to study renalase's effects on this condition. In isolated pancreatic lobules, pretreatment with recombinant human renalase (rRNLS) blocked zymogen activation caused by cerulein, carbachol, and a bile acid. Renalase also blocked cerulein-induced cell injury and histological changes. In the in vivo cerulein model of pancreatitis, genetic deletion of renalase resulted in more severe disease, and administering rRNLS to cerulein-exposed WT mice after pancreatitis onset was protective. Because pathological increases in acinar cell cytosolic calcium levels are central to the initiation of acute pancreatitis, we also investigated whether rRNLS could function through its binding protein, plasma membrane calcium ATPase 4b (PMCA4b), which excretes calcium from cells. We found that PMCA4b is expressed in both murine and human acinar cells and that a PMCA4b-selective inhibitor worsens pancreatitis-induced injury and blocks the protective effects of rRNLS. These findings suggest that renalase is a protective plasma protein that reduces acinar cell injury through a plasma membrane calcium ATPase. Because exogenous rRNLS reduces the severity of acute pancreatitis, it has potential as a therapeutic agent.
Collapse
Affiliation(s)
- Thomas R Kolodecik
- From the Yale University School of Medicine, New Haven, Connecticut 06510.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| | - Anamika M Reed
- From the Yale University School of Medicine, New Haven, Connecticut 06510.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| | - Kimie Date
- Ochanomizu University, Tokyo 112-8610, Japan
| | - Christine A Shugrue
- From the Yale University School of Medicine, New Haven, Connecticut 06510.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| | - Vikhil Patel
- From the Yale University School of Medicine, New Haven, Connecticut 06510.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| | - Shang-Lin Chung
- From the Yale University School of Medicine, New Haven, Connecticut 06510.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| | - Gary V Desir
- From the Yale University School of Medicine, New Haven, Connecticut 06510.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| | - Fred S Gorelick
- From the Yale University School of Medicine, New Haven, Connecticut 06510, .,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| |
Collapse
|
44
|
Moran GR, Hoag MR. The enzyme: Renalase. Arch Biochem Biophys 2017; 632:66-76. [PMID: 28558965 DOI: 10.1016/j.abb.2017.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 02/06/2023]
Abstract
Within the last two years catalytic substrates for renalase have been identified, some 10 years after its initial discovery. 2- and 6-dihydronicotinamide (2- and 6-DHNAD) isomers of β-NAD(P)H (4-dihydroNAD(P)) are rapidly oxidized by renalase to form β-NAD(P)+. The two electrons liberated are then passed to molecular oxygen by the renalase FAD cofactor forming hydrogen peroxide. This activity would appear to serve an intracellular detoxification/metabolite repair function that alleviates inhibition of primary metabolism dehydrogenases by 2- and 6-DHNAD molecules. This activity is supported by the complete structural assignment of the substrates, comprehensive kinetic analyses, defined species specific substrate specificity profiles and X-ray crystal structures that reveal ligand complexation consistent with this activity. This apparently intracellular function for the renalase enzyme is not allied with the majority of the renalase research that holds renalase to be a secreted mammalian protein that functions in blood to elicit a broad array of profound physiological changes. In this review a description of renalase as an enzyme is presented and an argument is offered that its enzymatic function can now reasonably be assumed to be uncoupled from whole organism physiological influences.
Collapse
Affiliation(s)
- Graham R Moran
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer St, Milwaukee, WI 53211-3209, United States.
| | - Matthew R Hoag
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer St, Milwaukee, WI 53211-3209, United States
| |
Collapse
|
45
|
Zhao T, Jia H, Cheng Q, Xiao Y, Li M, Ren W, Li C, Feng Y, Feng Z, Wang H, Zheng J. Nifuroxazide prompts antitumor immune response of TCL-loaded DC in mice with orthotopically-implanted hepatocarcinoma. Oncol Rep 2017; 37:3405-3414. [PMID: 28498414 DOI: 10.3892/or.2017.5629] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/13/2017] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive malignancy with a poor prognosis and high mortality. At present, vaccination with tumor cell lysate (TCL) loaded dendritic cells (DC) has been shown to be an effective therapy against HCC. However, the ability of promoting the specific T cell immune response is rather weak, influencing the antitumor response. Thus, it is necessary to find a strategy to improve the antitumor effect of TCL-loaded DC. Activation of signal transducer and activator of transcription 3 (STAT3) significantly inhibits antitumor immune response and DC maturity. Nifuroxazide, an antidiarrheal agent, has been proved to directly inhibit STAT3 activation. Thus, we investigated whether nifuroxazide could improve the antitumor immune response in mice vaccinated with TCL-loaded DC. The study provides the theoretical and experimental basis for developing an effective adjuvant for DC vaccine to treat HCC. Our results showed that the administration of nifuroxazide and DC-loaded TCL could significantly improve the survival rate, inhibit the tumor growth, and prompt the antitumor immune responses in mice with orthotopically implanted hepatocarcinomas, thus, possibly providing a new combination strategy to treat HCC.
Collapse
Affiliation(s)
- Tiesuo Zhao
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Huijie Jia
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Qian Cheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Yali Xiao
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Minming Li
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Wenjing Ren
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Chen Li
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yuchen Feng
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhiwei Feng
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Hui Wang
- Research Center for Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Junnian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
46
|
Wang Y, Safirstein R, Velazquez H, Guo XJ, Hollander L, Chang J, Chen TM, Mu JJ, Desir GV. Extracellular renalase protects cells and organs by outside-in signalling. J Cell Mol Med 2017; 21:1260-1265. [PMID: 28238213 PMCID: PMC5487909 DOI: 10.1111/jcmm.13062] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/18/2016] [Indexed: 01/07/2023] Open
Abstract
Renalase was discovered as a protein synthesized by the kidney and secreted in blood where it circulates at a concentration of approximately 3-5 μg/ml. Initial reports suggested that it functioned as an NAD(P)H oxidase and could oxidize catecholamines. Administration of renalase lowers blood pressure and heart rate and also protects cells and organs against ischaemic and toxic injury. Although renalase's protective effect was initially ascribed to its oxidase properties, a paradigm shift in our understanding of the cellular actions of renalase is underway. We now understand that, independent of its enzymatic properties, renalase functions as a cytokine that provides protection to cells, tissues and organs by interacting with its receptor to activate protein kinase B, JAK/STAT, and the mitogen-activated protein kinase pathways. In addition, recent studies suggest that dysregulated renalase signalling may promote survival of several tumour cells due to its capacity to augment expression of growth-related genes. In this review, we focus on the cytoprotective actions of renalase and its capacity to sustain cancer cell growth and also the translational opportunities these findings represent for the development of novel therapeutic strategies for organ injury and cancer.
Collapse
Affiliation(s)
- Yang Wang
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT, USA.,Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Robert Safirstein
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT, USA
| | - Heino Velazquez
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT, USA
| | - Xiao-Jia Guo
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT, USA
| | - Lindsay Hollander
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT, USA.,Department of Surgery, University of Connecticut, Farmington, CT, USA
| | - John Chang
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT, USA
| | - Tian-Min Chen
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT, USA
| | - Jian-Jun Mu
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Gary V Desir
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT, USA
| |
Collapse
|
47
|
Beaupre BA, Roman JV, Hoag MR, Meneely KM, Silvaggi NR, Lamb AL, Moran GR. Ligand binding phenomena that pertain to the metabolic function of renalase. Arch Biochem Biophys 2016; 612:46-56. [PMID: 27769837 PMCID: PMC5522708 DOI: 10.1016/j.abb.2016.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 01/07/2023]
Abstract
Renalase catalyzes the oxidation of isomers of β-NAD(P)H that carry the hydride in the 2 or 6 positions of the nicotinamide base to form β-NAD(P)+. This activity is thought to alleviate inhibition of multiple β-NAD(P)-dependent enzymes of primary and secondary metabolism by these isomers. Here we present evidence for a variety of ligand binding phenomena relevant to the function of renalase. We offer evidence of the potential for primary metabolism inhibition with structures of malate dehydrogenase and lactate dehydrogenase bound to the 6-dihydroNAD isomer. The previously observed preference of renalase from Pseudomonas for NAD-derived substrates over those derived from NADP is accounted for by the structure of the enzyme in complex with NADPH. We also show that nicotinamide nucleosides and mononucleotides reduced in the 2- and 6-positions are renalase substrates, but bind weakly. A seven-fold enhancement of acquisition (kred/Kd) for 6-dihydronicotinamide riboside was observed for human renalase in the presence of ADP. However, generally the addition of complement ligands, AMP for mononucleotide or ADP for nucleoside substrates, did not enhance the reductive half-reaction. Non-substrate nicotinamide nucleosides or nucleotides bind weakly suggesting that only β-NADH and β-NADPH compete with dinucleotide substrates for access to the active site.
Collapse
Affiliation(s)
- Brett A. Beaupre
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer St, Milwaukee, Wisconsin 53211-3209
| | - Joseph V. Roman
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer St, Milwaukee, Wisconsin 53211-3209
| | - Matthew R. Hoag
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer St, Milwaukee, Wisconsin 53211-3209
| | - Kathleen M. Meneely
- Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66049
| | - Nicholas R. Silvaggi
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer St, Milwaukee, Wisconsin 53211-3209
| | - Audrey L. Lamb
- Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66049
| | - Graham R. Moran
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer St, Milwaukee, Wisconsin 53211-3209.,To whom correspondence should be addressed: Ph: (414) 940 0059, Fax: (414) 229 5530,
| |
Collapse
|
48
|
Affiliation(s)
- Frank J Giordano
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, United States
| | - Yang Wang
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Gary V Desir
- Department of Medicine, Section of Nephrology, Yale University School of Medicine, United States.
| |
Collapse
|