1
|
Ren J, Chen X, Li J, Zan Y, Wang S, Tan Y, Ding Y. TET1 inhibits the migration and invasion of cervical cancer cells by regulating autophagy. Epigenetics 2024; 19:2323751. [PMID: 38431880 PMCID: PMC10913696 DOI: 10.1080/15592294.2024.2323751] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Methylation modifications play pertinent roles in regulating gene expression and various biological processes. The silencing of the demethylase enzyme TET1 can affect the expressions of key oncogenes or tumour suppressor genes, thus contributing to tumour formation. Nonetheless, how TET1 affects the progression of cervical cancer is yet to be elucidated. In this study, we found that the expression of TET1 was significantly downregulated in cervical cancer tissues. Functionally, TET1 knockdown in cervical cancer cells can promote cell proliferation, migration, invasion, cervical xenograft tumour formation and EMT. On the contrary, its overexpression can reverse the aforementioned processes. Moreover, the autophagy level of cervical cancer cells can be enhanced after TET1 knockdown. Mechanistically, methylated DNA immunoprecipitation (MeDIP)-sequencing and MeDIP quantitative real-time PCR revealed that TET1 mediates the methylation of autophagy promoter regions. These findings suggest that TET1 affects the autophagy of cervical cancer cells by altering the methylation levels of NKRF or HIST1H2AK, but the specific mechanism needs to be investigated further.
Collapse
Affiliation(s)
- Ji Ren
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Hubei University of Medicine, Shiyan, Hubei, China
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiuying Chen
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Hubei University of Medicine, Shiyan, Hubei, China
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Tongren city people’s hospital, Tongren, Guizhou, China
| | - Jing Li
- Gynecology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxin Zan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shan Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yujie Tan
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Yan Ding
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
2
|
Zheng K, Lyu Z, Chen J, Chen G. 5-Hydroxymethylcytosine: Far Beyond the Intermediate of DNA Demethylation. Int J Mol Sci 2024; 25:11780. [PMID: 39519332 PMCID: PMC11546248 DOI: 10.3390/ijms252111780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Epigenetics plays a pivotal role in regulating gene expression and cellular differentiation. DNA methylation, involving the addition of methyl groups to specific cytosine bases, is a well-known epigenetic modification. The recent discovery of 5-hydroxymethylcytosine (5hmC) has provided new insights into cytosine modifications. 5hmC, derived from the oxidation of 5-methylcytosine (5mC), serves as both an intermediate in demethylation and a stable chemical modification in the genome. In this comprehensive review, we summarize the recent research advancements regarding the functions of 5hmC in development and disease. We discuss its implications in gene expression regulation, cellular differentiation, and its potential role as a diagnostic and prognostic marker in various diseases. Additionally, we highlight the challenges associated with accurately detecting and quantifying 5hmC and present the latest methodologies employed for its detection. Understanding the functional role of 5hmC in epigenetic regulation and further advancing our understanding of gene expression dynamics and cellular processes hold immense promise for the development of novel therapeutic strategies and precision medicine approaches.
Collapse
Affiliation(s)
- Kaixi Zheng
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (K.Z.); (Z.L.); (J.C.)
- School of Life Sciences, Central South University, Changsha 410031, China
| | - Zhengbing Lyu
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (K.Z.); (Z.L.); (J.C.)
| | - Jianqing Chen
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (K.Z.); (Z.L.); (J.C.)
| | - Guodong Chen
- School of Life Sciences, Central South University, Changsha 410031, China
| |
Collapse
|
3
|
Zhong J, Xu Z, Ding N, Wang Y, Chen W. The biological function of demethylase ALKBH1 and its role in human diseases. Heliyon 2024; 10:e33489. [PMID: 39040364 PMCID: PMC11260981 DOI: 10.1016/j.heliyon.2024.e33489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
AlkB homolog 1 (ALKBH1) is a member of the AlkB family of dioxygenases that are dependent on Fe(II) and α-ketoglutarate. Mounting evidence demonstrates that ALKBH1 exhibits enzymatic activity against various substrates, including N6-methyladenosine (m6A), N1-methyladenosine (m1A), N3-methylcytidine (m3C), 5-methylcytosine (m5C), N6-methyladenine (N6-mA, 6mA), and H2A, indicating its dual roles in different biological processes and involvement in human diseases. Up to the present, there is ongoing debate regarding ALKBH1's enzymatic activity. In this review, we present a comprehensive summary of recent research on ALKBH1, including its substrate diversity and pathological roles in a wide range of human disorders, the underlying mechanisms of its functions, and its dysregulation. We also explored the potential of ALKBH1 as a prognostic target.
Collapse
Affiliation(s)
- Jing Zhong
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310009, China
| | - Zhengyang Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310009, China
| | - Ning Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310009, China
| | - Yanting Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310009, China
| | - Wenwen Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
4
|
Tong Y, Qi Y, Xiong G, Li J, Scott TL, Chen J, He D, Li L, Wang C, Lane AN, Xu R. The PLOD2/succinate axis regulates the epithelial-mesenchymal plasticity and cancer cell stemness. Proc Natl Acad Sci U S A 2023; 120:e2214942120. [PMID: 37155842 PMCID: PMC10194013 DOI: 10.1073/pnas.2214942120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/08/2023] [Indexed: 05/10/2023] Open
Abstract
Aberrant accumulation of succinate has been detected in many cancers. However, the cellular function and regulation of succinate in cancer progression is not completely understood. Using stable isotope-resolved metabolomics analysis, we showed that the epithelial mesenchymal transition (EMT) was associated with profound changes in metabolites, including elevation of cytoplasmic succinate levels. The treatment with cell-permeable succinate induced mesenchymal phenotypes in mammary epithelial cells and enhanced cancer cell stemness. Chromatin immunoprecipitation and sequence analysis showed that elevated cytoplasmic succinate levels were sufficient to reduce global 5-hydroxymethylcytosinene (5hmC) accumulation and induce transcriptional repression of EMT-related genes. We showed that expression of procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2) was associated with elevation of cytoplasmic succinate during the EMT process. Silencing of PLOD2 expression in breast cancer cells reduced succinate levels and inhibited cancer cell mesenchymal phenotypes and stemness, which was accompanied by elevated 5hmC levels in chromatin. Importantly, exogenous succinate rescued cancer cell stemness and 5hmC levels in PLOD2-silenced cells, suggesting that PLOD2 promotes cancer progression at least partially through succinate. These results reveal the previously unidentified function of succinate in enhancing cancer cell plasticity and stemness.
Collapse
Affiliation(s)
- Yuxin Tong
- Markey Cancer Center, University of Kentucky, Lexington, KY40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40536
| | - Yifei Qi
- Markey Cancer Center, University of Kentucky, Lexington, KY40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40536
| | - Gaofeng Xiong
- Markey Cancer Center, University of Kentucky, Lexington, KY40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40536
| | - Junyan Li
- Markey Cancer Center, University of Kentucky, Lexington, KY40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40536
| | - Timothy L. Scott
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY40536
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY40536
| | - Jie Chen
- Markey Cancer Center, University of Kentucky, Lexington, KY40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40536
| | - Daheng He
- Markey Cancer Center, University of Kentucky, Lexington, KY40536
| | - Linzhang Li
- Markey Cancer Center, University of Kentucky, Lexington, KY40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40536
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY40536
| | - Andrew N. Lane
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY40536
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY40536
| | - Ren Xu
- Markey Cancer Center, University of Kentucky, Lexington, KY40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40536
| |
Collapse
|
5
|
Rubio K, Hernández-Cruz EY, Rogel-Ayala DG, Sarvari P, Isidoro C, Barreto G, Pedraza-Chaverri J. Nutriepigenomics in Environmental-Associated Oxidative Stress. Antioxidants (Basel) 2023; 12:771. [PMID: 36979019 PMCID: PMC10045733 DOI: 10.3390/antiox12030771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Complex molecular mechanisms define our responses to environmental stimuli. Beyond the DNA sequence itself, epigenetic machinery orchestrates changes in gene expression induced by diet, physical activity, stress and pollution, among others. Importantly, nutrition has a strong impact on epigenetic players and, consequently, sustains a promising role in the regulation of cellular responses such as oxidative stress. As oxidative stress is a natural physiological process where the presence of reactive oxygen-derived species and nitrogen-derived species overcomes the uptake strategy of antioxidant defenses, it plays an essential role in epigenetic changes induced by environmental pollutants and culminates in signaling the disruption of redox control. In this review, we present an update on epigenetic mechanisms induced by environmental factors that lead to oxidative stress and potentially to pathogenesis and disease progression in humans. In addition, we introduce the microenvironment factors (physical contacts, nutrients, extracellular vesicle-mediated communication) that influence the epigenetic regulation of cellular responses. Understanding the mechanisms by which nutrients influence the epigenome, and thus global transcription, is crucial for future early diagnostic and therapeutic efforts in the field of environmental medicine.
Collapse
Affiliation(s)
- Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Estefani Y. Hernández-Cruz
- Postgraduate in Biological Sciences, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad de Mexico 04510, Mexico
| | - Diana G. Rogel-Ayala
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | | | - Ciro Isidoro
- Department of Health Sciences, Università del Piemonte Orientale, Via Paolo Solaroli 17, 28100 Novara, Italy
| | - Guillermo Barreto
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad de Mexico 04510, Mexico
| |
Collapse
|
6
|
Dutta P, Basu M, Roy A, Mandal RK, Panda CK. High nuclear expression of DNMT1 in correlation with inactivation of TET1 portray worst prognosis among the cervical carcinoma patients: clinical implications. J Mol Histol 2023; 54:89-102. [PMID: 36692670 DOI: 10.1007/s10735-023-10114-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/15/2023] [Indexed: 01/25/2023]
Abstract
In this study, we aimed to understand the interplay of the epigenetic modifier genes DNMT1 and TET1 along with HPV infection in the cervical epithelium and how it changes during tumorigenesis. For this purpose, initially the bioinformatical analysis (methylation and expression profile) of DNMT1 and TET1 was analyzed in the TCGA dataset. Next genetic (deletion) and epigenetic profiling (promoter methylation) of DNMT1 and TET1 were done in our sample pool and also validated in CACX cell lines as well. The results were further correlated with different clinicopathological parameters. Our data revealed that HPV infection in basal/parabasal layers of cervical epithelium actually disrupts the epigenetic homeostasis of DNMT1 and TET1 proteins which ultimately leads to the high expression of DNMT1 along with further reduction in TET1 protein during the development of carcinoma. Further, in-depth look into the results revealed that comparatively low methylation frequency of DNMT1 coupled with high promoter methylation and deletion frequency [22-46%] of TET1 were the plausible reasons of their antagonistic expression profile during the progression of the disease. Interestingly, the prevalence of DNMT1 [9.1%] and TET1 promoter methylation [22.7%] found in both the plasma DNA of the respective CACX patients implicated its diagnostic importance in this study. Lastly, molecular alteration of TET1 alone or in combination with DNMT1 showed the worst overall survival among the patients. Hence, it may be concluded that an inverse molecular profile of DNMT1 and TET1 genes seen in the proliferative basal-parabasal layers of the cervical epithelium was aggravated during the development of CACX along with genetic and epigenetic changes due to HPV infection.
Collapse
Affiliation(s)
- Priyanka Dutta
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Mukta Basu
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Anup Roy
- Department of Pathology, Nil Ratan Sircar Medical College and Hospital, Kolkata, 700014, India
| | - Ranajit Kumar Mandal
- Department of Gynaecologic Oncology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
7
|
Multi-Omics Approaches in Colorectal Cancer Screening and Diagnosis, Recent Updates and Future Perspectives. Cancers (Basel) 2022; 14:cancers14225545. [PMID: 36428637 PMCID: PMC9688479 DOI: 10.3390/cancers14225545] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022] Open
Abstract
Colorectal cancer (CRC) is common Cancer as well as the third leading cause of mortality around the world; its exact molecular mechanism remains elusive. Although CRC risk is significantly correlated with genetic factors, the pathophysiology of CRC is also influenced by external and internal exposures and their interactions with genetic factors. The field of CRC research has recently benefited from significant advances through Omics technologies for screening biomarkers, including genes, transcripts, proteins, metabolites, microbiome, and lipidome unbiasedly. A promising application of omics technologies could enable new biomarkers to be found for the screening and diagnosis of CRC. Single-omics technologies cannot fully understand the molecular mechanisms of CRC. Therefore, this review article aims to summarize the multi-omics studies of Colorectal cancer, including genomics, transcriptomics, proteomics, microbiomics, metabolomics, and lipidomics that may shed new light on the discovery of novel biomarkers. It can contribute to identifying and validating new CRC biomarkers and better understanding colorectal carcinogenesis. Discovering biomarkers through multi-omics technologies could be difficult but valuable for disease genotyping and phenotyping. That can provide a better knowledge of CRC prognosis, diagnosis, and treatments.
Collapse
|
8
|
Joshi K, Liu S, Breslin S J P, Zhang J. Mechanisms that regulate the activities of TET proteins. Cell Mol Life Sci 2022; 79:363. [PMID: 35705880 DOI: 10.1007/s00018-022-04396-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/08/2023]
Abstract
The ten-eleven translocation (TET) family of dioxygenases consists of three members, TET1, TET2, and TET3. All three TET enzymes have Fe+2 and α-ketoglutarate (α-KG)-dependent dioxygenase activities, catalyzing the 1st step of DNA demethylation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), and further oxidize 5hmC to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Gene knockout studies demonstrated that all three TET proteins are involved in the regulation of fetal organ generation during embryonic development and normal tissue generation postnatally. TET proteins play such roles by regulating the expression of key differentiation and fate-determining genes via (1) enzymatic activity-dependent DNA methylation of the promoters and enhancers of target genes; and (2) enzymatic activity-independent regulation of histone modification. Interacting partner proteins and post-translational regulatory mechanisms regulate the activities of TET proteins. Mutations and dysregulation of TET proteins are involved in the pathogenesis of human diseases, specifically cancers. Here, we summarize the research on the interaction partners and post-translational modifications of TET proteins. We also discuss the molecular mechanisms by which these partner proteins and modifications regulate TET functioning and target gene expression. Such information will help in the design of medications useful for targeted therapy of TET-mutant-related diseases.
Collapse
Affiliation(s)
- Kanak Joshi
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Shanhui Liu
- School of Life Sciences, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Peter Breslin S J
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Departments of Pathology and Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
9
|
Alzahayqa M, Jamous A, Khatib AAH, Salah Z. TET1 Isoforms Have Distinct Expression Pattern, Localization and Regulation in Breast Cancer. Front Oncol 2022; 12:848544. [PMID: 35646706 PMCID: PMC9133332 DOI: 10.3389/fonc.2022.848544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/08/2022] [Indexed: 12/22/2022] Open
Abstract
TET1 regulates gene expression by demethylating their regulatory sequences through the conversion of 5-methylcytosine to 5-hyroxymethylcytosine. TET1 plays important roles in tissue homeostasis. In breast cancer, TET1 was shown to play controversial roles. Moreover, TET1 has at least two isoforms (long and short) that have distinct expression pattern and apparently different functions in tissue development and disease including breast cancer. We hypothesized that TET1 isoforms have different expression patterns, localization and regulation in different types of breast cancer. To prove our hypothesis, we studied the expression of TET1 isoforms in basal and luminal breast cancer cell lines, as well as in basal and luminal breast cancer animal models. We also studied the effect of different hormones on the expression of the two isoforms. Moreover, we assessed the distribution of the isoforms between the cytoplasm and nucleus. Finally, we overexpressed the full length in a breast cancer cell line and tested its effect on cancer cell behavior. In this study, we demonstrate that while Estrogen and GnRH downregulate the expression of long TET1, they lead to upregulation of short TET1 expression. In addition, we uncovered that luminal cells show higher expression level of the long isoform. We also show that while all TET1 isoforms are almost depleted in a basal breast cancer animal model, the expression of the short isoform is induced in luminal breast cancer model. The short form is expressed mainly in the cytoplasm while the long isoform is expressed mainly in the nucleus. Finally, we show that long TET1 overexpression suppresses cell oncogenic phenotypes. In conclusion, our data suggest that TET1 isoforms have distinct expression pattern, localization and regulation in breast cancer and that long TET1 suppresses oncogenic phenotypes, and that further studies are necessary to elucidate the functional roles of different TET1 isoforms in breast cancer.
Collapse
Affiliation(s)
| | - Abrar Jamous
- Department of Molecular Biology and Biochemistry, Al Quds University, Jerusalem, Palestine
| | - Areej A H Khatib
- Women Health Research Unit, McGill University Health Center, Montreal, QC, Canada
| | - Zaidoun Salah
- Molecular Genetics and Genetic Toxicology Program, Arab American University, Ramallah, Palestine
| |
Collapse
|
10
|
Shang Y, Jiang T, Ran L, Hu W, Wu Y, Ye J, Peng Z, Chen L, Wang R. TET2-BCLAF1 transcription repression complex epigenetically regulates the expression of colorectal cancer gene Ascl2 via methylation of its promoter. J Biol Chem 2022; 298:102095. [PMID: 35660018 PMCID: PMC9251787 DOI: 10.1016/j.jbc.2022.102095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
Ascl2 has been shown to be involved in tumorigenesis in colorectal cancer (CRC), although its epigenetic regulatory mechanism is largely unknown. Here, we found that methylation of the Ascl2 promoter (bp -1670 ∼ -1139) was significantly increased compared to the other regions of the Ascl2 locus in CRC cells and was associated with elevated Ascl2 mRNA expression. Furthermore, we found that promoter methylation was predictive of CRC patient survival after analyzing DNA methylation data, RNA-Seq data, and clinical data of 410 CRC patient samples from the MethHC database, the MEXPRESS database, and the Cbioportal website. Using the established TET methylcytosine dioxygenase 2 (TET2) knockdown and ectopic TET2 catalytic domain–expression cell models, we performed glucosylated hydroxymethyl–sensitive quatitative PCR (qPCR), real-time PCR, and Western blot assays to further confirm that hypermethylation of the Ascl2 promoter, and elevated Ascl2 expression in CRC cells was partly due to the decreased expression of TET2. Furthermore, BCLAF1 was identified as a TET2 interactor in CRC cells by LC-MS/MS, coimmunoprecipitation, immunofluorescence colocalization, and proximity ligation assays. Subsequently, we found the TET2–BCLAF1 complex bound to multiple elements around CCGG sites at the Ascl2 promoter and further restrained its hypermethylation by inducing its hydroxymethylation using chromatin immunoprecipitation-qPCR and glucosylated hydroxymethyl-qPCR assays. Finally, we demonstrate that TET2-modulated Ascl2-targeted stem gene expression in CRC cells was independent of Wnt signaling. Taken together, our data suggest an additional option for inhibiting Ascl2 expression in CRC cells through TET2–BCLAF1–mediated promoter methylation, Ascl2-dependent self-renewal of CRC progenitor cells, and TET2–BCLAF1–related CRC progression.
Collapse
Affiliation(s)
- Yangyang Shang
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University) Chongqing 400038, China
| | - Tao Jiang
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University) Chongqing 400038, China
| | - Lijian Ran
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University) Chongqing 400038, China
| | - Wenjing Hu
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University) Chongqing 400038, China
| | - Yun Wu
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University) Chongqing 400038, China
| | - Jun Ye
- Department of Gastroenterology of 958 Hospital, Army Medical University (Third Military Medical University) Chongqing 400038, China
| | - Zhihong Peng
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University) Chongqing 400038, China
| | - Lei Chen
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University) Chongqing 400038, China
| | - Rongquan Wang
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University) Chongqing 400038, China.
| |
Collapse
|
11
|
Lin Q, Chen JW, Yin H, Li MA, Zhou CR, Hao TF, Pan T, Wu C, Li ZR, Zhu D, Wang HF, Huang MS. DNA N6-methyladenine involvement and regulation of hepatocellular carcinoma development. Genomics 2022; 114:110265. [PMID: 35032618 DOI: 10.1016/j.ygeno.2022.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/09/2021] [Accepted: 01/08/2022] [Indexed: 11/30/2022]
Abstract
DNA N6-methyladenine (6 mA) is a new type of DNA methylation identified in various eukaryotic cells. However, its alteration and genomic distribution features in hepatocellular carcinoma (HCC) remain elusive. In this study, we found that N6AMT1 overexpression increased HCC cell viability, suppressed apoptosis, and enhanced migration and invasion, whereas ALKBH1 overexpression induced the opposite effects. Further, 23,779 gain-of-6 mA regions and 11,240 loss-of-6 mA regions were differentially identified in HCC tissues. The differential gain and loss of 6 mA regions were considerably enriched in intergenic regions. Moreover, 7% of the differential 6 mA modifications were associated with tumors, with 60 associated with oncogenes and 57 with tumor suppressor genes (TSGs), and 17 were common to oncogenes and TSGs. The candidate genes affected by 6 mA were filtered by gene ontology (GO) and RNA-seq. Using quantitative polymerase chain reaction (qPCR), BCL2 and PARTICL were found to be correlated with DNA 6 mA in certain HCC processes.
Collapse
Affiliation(s)
- Qu Lin
- Department of Medical Oncology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China; Department of Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jun-Wei Chen
- Department of Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Interventional Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Hao Yin
- Department of Project, Forevergen Biosciences Co., Guangzhou 510300, China
| | - Ming-An Li
- Department of Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Interventional Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Chu-Ren Zhou
- Department of Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Interventional Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Tao-Fang Hao
- Department of Project, Forevergen Biosciences Co., Guangzhou 510300, China
| | - Tao Pan
- Department of Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Interventional Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Chun Wu
- Department of Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Interventional Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Zheng-Ran Li
- Department of Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Interventional Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Duo Zhu
- Department of Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Interventional Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Hao-Fan Wang
- Department of Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Interventional Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Ming-Sheng Huang
- Department of Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Interventional Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| |
Collapse
|
12
|
Shen Y, Wang L, Ou J, Wang B, Cen X. Loss of 5-hydroxymethylcytosine as a Poor Prognostic Factor for Primary Testicular Diffuse Large B-cell Lymphoma. Int J Med Sci 2022; 19:225-232. [PMID: 35165508 PMCID: PMC8795795 DOI: 10.7150/ijms.65517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/14/2021] [Indexed: 11/20/2022] Open
Abstract
Background: 5-Hydroxymethylcytosine (5-hmC), a stable epigenetic marker, is closely related to tumor staging, recurrence and survival, but the prognostic value of 5-hmC in primary testicular diffuse large B-cell lymphoma (PT-DLBCL) remains unclear. This study aimed to investigate the 5-hmC expression in PT-DLBCL and evaluate its prognostic value. Methods: A total of 34 patients with PT-DLBCL treated in the Department of Hematology from August 2000 to August 2020 were included in this study. The expression of 5-hmC in PT-DLBCL tissues and normal testicular tissues were assessed by immunohistochemistry. 5-hmC staining is estimated as a percentage under every nuclear staining intensity score (0-3), 0 or 1 of which were regarded as 5-hmC reduction. The quantification of 5-hmC reduction is defined as the percentage of cells with 5-hmC staining scores of 0 and 1. According 5-hmC reduction of 80%, a 5-hmC reduction of <80% is regarded as "5-hmC high-level group", and a 5-hmC reduction of ≥80% is regarded as "5-hmC low-level group". Furthermore, Cox regression model was used to evaluate the prognostic value of all covariates. Results: The median percentage of 5-hmC reduction in the PT-DLBCL group was 77.50% (60%-90%), the median 5-hmC reduction in the normal testicular tissues was 30% (20%-50%). Compared with normal testicular tissue, 5-hmC levels in PT-DLBCL tissue were significantly decreased (p<0.05). Of the 34 PT-DLBCL patients, 17 had tumors with relatively low 5-hmC expression (5-hmC reduction of ≥80%) and 17 had tumors with relatively high 5-hmC expression (5-hmC reduction of < 80%). 5-hmC expression was negatively correlated with international prognostic index (p = 0.037), while there was no significant difference in 5-hmC decrease among different groups of age at diagnosis, lactate dehydrogenase, testicular lymphoma involvement (unilateral or bilateral), Ki-67 and tumor diameter. Relatively low 5-hmC expression indicated shorter overall survival (OS) (5-year OS 50.2% vs 81.3%, p=0.022) and progression-free survival (PFS) (5-year PFS 38.5% vs 70.7%, p=0.001). Cox multivariate analysis of IPI (2-3 vs. 0-1), intrathecal prophylaxis (No vs. Yes), and 5-hmC reduction (≥80% vs. <80%) showed that 5-hmC reduction ≥80% (hazard ratio: 7.252, p = 0.005) and not receiving intrathecal prophylaxis (hazard ratio: 7.207, p =0.001) are independent risk factors for poor prognosis of PT-DLBCL. Conclusion: Our results suggested that 5-hmC decline can be identified as a poor prognostic predictor for PT-DLBCL. It is necessary to further explore the underlying mechanism of this epigenetic marker to identify methods to re-establish 5-hmC levels and provide new targets for cancer therapy.
Collapse
Affiliation(s)
- Ye Shen
- Department of Hematology, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, China, 100034
| | - Lihong Wang
- Department of Hematology, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, China, 100034
| | - Jinping Ou
- Department of Hematology, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, China, 100034
| | - Bingjie Wang
- Department of Hematology, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, China, 100034
| | - Xinan Cen
- Department of Hematology, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, China, 100034
| |
Collapse
|
13
|
Stapińska-Syniec A, Grabiec M, Rylski M, Acewicz A, Sobstyl M. DNA hydroxymethylation in high-grade gliomas. J Neurol Surg A Cent Eur Neurosurg 2021; 83:568-572. [PMID: 34872125 DOI: 10.1055/a-1713-7699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Background and Study Aims Since the new WHO classification of nervous system tumors (2016 revised 4th edition) has been released, gliomas are classified depending on molecular and genetic markers in connection with histopathology, instead of histopathology itself as it was in the previous classification. Over the last years, epigenetic analysis has taken on increased importance in the diagnosis and treatment of different cancers. Multiple studies confirmed that DNA methylation and hydroxymethylation play an important role in the regulation of gene expression during carcinogenesis. In this review, we aim to present the current state of knowledge on DNA hydroxymethylation in human high-grade gliomas (WHO grade III and IV). Results The correlation of DNA hydroxymethylation and survival in glioblastoma patients was evaluated by different studies. The majority of them showed that the expression of 5-hydroxymethylcytosine (5-hmC) and Ten-eleven translocation (TET) enzymes were significantly reduced, sometimes almost undetectable in high-grade gliomas in comparison with the control brain. A decreased level of 5-hmC was associated with poor survival in patients, but high expression of the TET3 enzyme was related to a better prognosis for GBM patients. This points to the relevance of DNA hydroxymethylation in molecular diagnostics of human gliomas, including survival estimation or differentiating patients in terms of response to the treatment. Conclusion Future studies may shed some more light on this epigenetic mechanism involved in the pathogenesis of human high-grade gliomas and help to develop new targeted therapies.
Collapse
Affiliation(s)
| | - Marta Grabiec
- Department of Clinical Cytology, Centrum Medyczne Ksztalcenia Podyplomowego, Warszawa, Poland
| | - Marcin Rylski
- Department of Clinical Cytology, Centrum Medyczne Ksztalcenia Podyplomowego, Warszawa, Poland.,Department of Neuroradiology, Instytut Psychiatrii i Neurologii, Warsaw, Poland
| | - Albert Acewicz
- Department of Neuropathology, Instytut Psychiatrii i Neurologii, Warsaw, Poland
| | - Michał Sobstyl
- Department of Neurosurgery, Instytut Psychiatrii i Neurologii, Warsaw, Poland
| |
Collapse
|
14
|
The IVF-generated human embryonic microenvironment reverses progestin resistance in endometrial cancer cells by inducing cancer stem cell differentiation. Cancer Lett 2021; 526:311-321. [PMID: 34775003 DOI: 10.1016/j.canlet.2021.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022]
Abstract
Progestin resistance is a critical factor that prevents patients with endometrial cancer (EC) from receiving conservative therapy. However, the etiology remains elusive. Cancer stem cells (CSCs) may be a contributing factor to progestin resistance in EC. These cells share similar stemness properties with embryonic stem cells that have a multipotent but differential naïve phenotype. Embryonic stem cells are programed to self-renew, to differentiate and to show plasticity toward a normal cellular phenotype in their defined microenvironment. However, whether this microenvironment may promote CSC differentiation toward a better responsive phenotype and reverse progestin resistance has not yet been clarified. In the current study, we found that progestin resistance of endometrial CSCs can be improved or reversed by using in vitro fertilization (IVF)-generated embryonic sac-derived fluid containing the embryonic microenvironment. Furthermore, suppression or reversal of progestin resistance was mediated by placental alkaline phosphatase (ALPP), a factor secreted into the embryonic microenvironment by IVF-generated blastocysts. ALPP significantly reversed progestin resistance by facilitating endometrial CSC differentiation through downregulating the stemness genes NANOG, OCT4 and SOX2. We further showed that the downregulation of NANOG, OCT4 and SOX2 by ALPP was carried out by TET1/2-mediated epigenetic modulation of the promoter regions of these genes. Such changes at the molecular level initiated endometrial CSC differentiation and promoted a better responsive endometrial cancer phenotype. In fact, their response to progestin treatment was similar to that of well-differentiated endometrioid carcinoma cells without CSCs. ALPP could be a novel target in the process to overcome progestin resistance, and such findings may provide a new approach for the conservative treatment of endometrial cancer.
Collapse
|
15
|
Liu W, Wu G, Xiong F, Chen Y. Advances in the DNA methylation hydroxylase TET1. Biomark Res 2021; 9:76. [PMID: 34656178 PMCID: PMC8520278 DOI: 10.1186/s40364-021-00331-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/03/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The ten-eleven translocation 1 (TET1) protein is a 5-methylcytosine hydroxylase that belongs to the TET protein family of human α-ketoglutarate oxygenases. TET1 recognizes and binds to regions of high genomic 5'-CpG-3' dinucleotide density, such as CpG islands, initiates the DNA demethylation program, and maintains DNA methylation and demethylation balance to maintain genomic methylation homeostasis and achieve epigenetic regulation. This article reviews the recent research progress of TET1 in the mechanism of demethylation, stem cells and immunity, various malignant tumours and other clinical diseases. CONCLUSION TET1 acts as a key factor mediating demethylation, the mechanism of which still remains to be investigated in detail. TET1 is also critical in maintaining the differentiation pluripotency of embryonic stem cells and plays anti- or oncogenic roles in combination with different signalling pathways in different tumours. In certain tumours, its role is still controversial. In addition, the noncatalytic activity of TET1 has gradually attracted attention and has become a new direction of research in recent years.
Collapse
Affiliation(s)
- Wenzheng Liu
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Guanhua Wu
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Fei Xiong
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yongjun Chen
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
16
|
Song X, Wang TX, Zhu XN, Tan SK. Immunological and prognostic significance of CBX2 expression in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2021; 29:1118-1129. [DOI: 10.11569/wcjd.v29.i19.1118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The number of cases of hepatocellular carcinoma (HCC), the sixth most common malignancy and the third leading cause of cancer death worldwide, has risen from 1.6 to 4.6 per 100000 people worldwide over the past 30 years. Guangxi has a high incidence of HCC in China, and its death rate ranks first in the spectrum of causes of tumor death in Guangxi, accounting for about 40% of all deaths from malignant tumors. Exploring the role of chromobox homolog 2 (CBX2) in HCC immunity will provide potential value for the treatment of this malignancy.
AIM To investigate the expression of CBX2 and analyze its immunological and prognostic significance in HCC.
METHODS The expression of CBX2 in 75 cases of HCC and matched non-tumor tissues was detected by tissue microarray and immunohistochemistry. The relationship of CBX2 expression with the clinicopathologic features of HCC and survival prognosis was analyzed. Then, the differential expression of CBX2 between HCC and normal tissues was verified in The Cancer Genomic Atlas (TCGA). Next, we explored the association between CBX2 expression and immunocyte infiltration, determined the relationship between CBX2 expression and immunosuppressors and immunostimulators, and identified the immune events that CBX2 was involved in through relevant GO and KEGG pathway enrichment analyses. A multi-gene risk prediction model was developed using a COX regression model, thereby generating a risk score that is an independent predictor of survival prognosis. ROC analysis was performed to assess the predictive accuracy of the risk score. Finally, a prognostic model with a calibration curve was constructed to predict the patients' survival probability at 3 and 5 years.
RESULTS The positive expression of CBX2 in HCC tissue was 66.7% (50/75), which was significantly higher than that in matched non-tumor tissues (25.3% (19/75); P < 0.01). The expression of CBX2 was associated with TNM stage and AFP status (P < 0.05). The survival time of patients in the CBX2 positive group was significantly lower than that of the CBX2 negative group, suggesting that CBX2 positive expression may be related to the prognosis of HCC patients. TCGA database verification reached the same conclusion. The expression of CBX2 was positively correlated with the infiltration levels of T helper 2 cells. CBX2 was identified to be associated with 10 immunosuppressors and 23 immunostimulators, and enriched analysis of related GO and KEGG pathways showed that CBX2 was associated with immune events such as intestinal immune network for immunoglobulin A production, cytokine-cytokine receptor interactions, cell adhesion molecules, and rheumatoid arthritis.
CONCLUSION CBX2 positive expression may be a prognostic risk factor in HCC patients. Our findings provide evidence for the role of CBX2 in tumor immunity in HCC, suggesting that CBX2 may be a potential immunoprognostic marker for HCC.
Collapse
Affiliation(s)
- Xin Song
- School of Public Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Tian-Xian Wang
- School of Public Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Nian Zhu
- School of Public Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Sheng-Kui Tan
- School of Public Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
17
|
Ruiz de la Cruz M, de la Cruz Montoya AH, Rojas Jiménez EA, Martínez Gregorio H, Díaz Velásquez CE, Paredes de la Vega J, de la Cruz Hernández-Hernández F, Vaca Paniagua F. Cis-Acting Factors Causing Secondary Epimutations: Impact on the Risk for Cancer and Other Diseases. Cancers (Basel) 2021; 13:cancers13194807. [PMID: 34638292 PMCID: PMC8508567 DOI: 10.3390/cancers13194807] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 12/25/2022] Open
Abstract
Epigenetics affects gene expression and contributes to disease development by alterations known as epimutations. Hypermethylation that results in transcriptional silencing of tumor suppressor genes has been described in patients with hereditary cancers and without pathogenic variants in the coding region of cancer susceptibility genes. Although somatic promoter hypermethylation of these genes can occur in later stages of the carcinogenic process, constitutional methylation can be a crucial event during the first steps of tumorigenesis, accelerating tumor development. Primary epimutations originate independently of changes in the DNA sequence, while secondary epimutations are a consequence of a mutation in a cis or trans-acting factor. Secondary epimutations have a genetic basis in cis of the promoter regions of genes involved in familial cancers. This highlights epimutations as a novel carcinogenic mechanism whose contribution to human diseases is underestimated by the scarcity of the variants described. In this review, we provide an overview of secondary epimutations and present evidence of their impact on cancer. We propose the necessity for genetic screening of loci associated with secondary epimutations in familial cancer as part of prevention programs to improve molecular diagnosis, secondary prevention, and reduce the mortality of these diseases.
Collapse
Affiliation(s)
- Miguel Ruiz de la Cruz
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Avenida Instituto Politécnico Nacional # 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, C.P. Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | | | - Ernesto Arturo Rojas Jiménez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico;
| | - Héctor Martínez Gregorio
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico;
| | - Clara Estela Díaz Velásquez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
| | - Jimena Paredes de la Vega
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico;
| | - Fidel de la Cruz Hernández-Hernández
- Avenida Instituto Politécnico Nacional # 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, C.P. Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | - Felipe Vaca Paniagua
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico;
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico
- Correspondence: ; Tel.: +52-55-5623-1333 (ext. 39788)
| |
Collapse
|
18
|
Zhou Y, Zhang F, Jiang H, Xu D, Deng D. Fumaric acid and succinic acid treat gestational hypertension by downregulating the expression of KCNMB1 and TET1. Exp Ther Med 2021; 22:1072. [PMID: 34447465 PMCID: PMC8355717 DOI: 10.3892/etm.2021.10506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 11/11/2019] [Indexed: 11/19/2022] Open
Abstract
The present study hypothesized that fumaric acid and succinic acid may exhibit therapeutic effects on gestational hypertension. During pregnancy, estrogen upregulates ten-eleven translocation 1 (TET1) expression, which subsequently increases calcium-activated potassium channel subunit β1 (KCNMB1) expression. KCNMB1 is associated with hypertension. Fumaric acid and succinic acid are understood to inhibit TET. Therefore, the present study investigated whether fumaric acid and succinic acid exhibit therapeutic effects on gestational hypertension and whether these effects are mediated by TET1 and KCNMB1. Nω-Nitro-L-arginine methyl ester hydrochloride was injected into rats to establish a gestational hypertension model. Dimethyl fumarate (DMF) and succinic acid were administrated into rats to treat gestational hypertension. Rats were divided into five groups: i) Control; ii) model; iii) DMF; iv) succinic acid; and v) DMF + succinic acid. Blood pressure was monitored by a noninvasive meter and urinary protein was determined using a urinary protein kit. Placenta pathology was examined by hematoxylin-eosin staining. Compared with the control group, urinary protein and blood pressure in the model group increased significantly. The placental cells in the control group were arranged orderly. However, in the model group, decidual cellular edema of placenta and vacuolar degeneration were observed, and the intervascular membrane was markedly thicker with plenty of fibrin deposition. These results indicate successful establishment of a gestational hypertension model. However, compared with the model group, urinary protein, blood pressure, edema, vacuoles and fibrin deposition were markedly reduced in the DMF, succinic acid and DMF + succinic acid groups. mRNA and protein levels of TET1 and KCNMB1 in placenta were evaluated by immunohistochemical analysis, reverse transcription-quantitative polymerase chain reaction and western blotting. The TET1 and KCNMB1 levels in the model group were markedly increased compared with those in the control group. However, compared with the model group, the expression levels were markedly downregulated in the DMF, succinic acid and DMF + succinic acid groups. In conclusion, fumaric acid and succinic acid may treat gestational hypertension by downregulating the expression of KCNMB1 and TET1.
Collapse
Affiliation(s)
- Yiyuan Zhou
- Department of Obstetrics, The First Affliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, P.R. China
| | - Fang Zhang
- Department of Obstetrics, The First Affliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, P.R. China
| | - Huijiao Jiang
- Department of Obstetrics, The First Affliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, P.R. China
| | - Di Xu
- Department of Obstetrics, The First Affliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, P.R. China
| | - Dongyang Deng
- Department of Obstetrics, The First Affliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, P.R. China
| |
Collapse
|
19
|
Peng XF, Huang SF, Chen LJ, Xu L, Ye WC. Targeting epigenetics and lncRNAs in liver disease: From mechanisms to therapeutics. Pharmacol Res 2021; 172:105846. [PMID: 34438063 DOI: 10.1016/j.phrs.2021.105846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Early onset and progression of liver diseases can be driven by aberrant transcriptional regulation. Different transcriptional regulation processes, such as RNA/DNA methylation, histone modification, and ncRNA-mediated targeting, can regulate biological processes in healthy cells, as well also under various pathological conditions, especially liver disease. Numerous studies over the past decades have demonstrated that liver disease has a strong epigenetic component. Therefore, the epigenetic basis of liver disease has challenged our knowledge of epigenetics, and epigenetics field has undergone an important transformation: from a biological phenomenon to an emerging focus of disease research. Furthermore, inhibitors of different epigenetic regulators, such as m6A-related factors, are being explored as potential candidates for preventing and treating liver diseases. In the present review, we summarize and discuss the current knowledge of five distinct but interconnected and interdependent epigenetic processes in the context of hepatic diseases: RNA methylation, DNA methylation, histone methylation, miRNAs, and lncRNAs. Finally, we discuss the potential therapeutic implications and future challenges and ongoing research in the field. Our review also provides a perspective for identifying therapeutic targets and new hepatic biomarkers of liver disease, bringing precision research and disease therapy to the modern era of epigenetics.
Collapse
Affiliation(s)
- Xiao-Fei Peng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Shi-Feng Huang
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Ling-Juan Chen
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Lingqing Xu
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Wen-Chu Ye
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China.
| |
Collapse
|
20
|
Bai X, Zhang H, Zhou Y, Nagaoka K, Meng J, Ji C, Liu D, Dong X, Cao K, Mulla J, Cheng Z, Mueller W, Bay A, Hildebrand G, Lu S, Wallace J, Wands JR, Sun B, Huang CK. Ten-Eleven Translocation 1 Promotes Malignant Progression of Cholangiocarcinoma With Wild-Type Isocitrate Dehydrogenase 1. Hepatology 2021; 73:1747-1763. [PMID: 32740973 PMCID: PMC7855500 DOI: 10.1002/hep.31486] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is a highly lethal disease without effective therapeutic approaches. The whole-genome sequencing data indicate that about 20% of patients with CCA have isocitrate dehydrogenase 1 (IDH1) mutations, which have been suggested to target 2-oxoglutarate (OG)-dependent dioxygenases in promoting CCA carcinogenesis. However, the clinical study indicates that patients with CCA and mutant IDH1 have better prognosis than those with wild-type IDH1, further complicating the roles of 2-OG-dependent enzymes. APPROACH AND RESULTS This study aimed to clarify if ten-eleven translocation 1 (TET1), which is one of the 2-OG-dependent enzymes functioning in regulating 5-hydroxymethylcytosine (5hmC) formation, is involved in CCA progression. By analyzing The Cancer Genome Atlas (TCGA) data set, TET1 mRNA was found to be substantially up-regulated in patients with CCA when compared with noncancerous bile ducts. Additionally, TET1 protein expression was significantly elevated in human CCA tumors. CCA cells were challenged with α-ketoglutarate (α-KG) and dimethyl-α-KG (DM-α-KG), which are cosubstrates for TET1 dioxygenase. The treatments with α-KG and DM-α-KG promoted 5hmC formation and malignancy of CCA cells. Molecular and pharmacological approaches were used to inhibit TET1 activity, and these treatments substantially suppressed 5hmC and CCA carcinogenesis. Mechanistically, it was found that knockdown of TET1 may suppress CCA progression by targeting cell growth and apoptosis through epigenetic regulation. Consistently, targeting TET1 significantly inhibited CCA malignant progression in a liver orthotopic xenograft model by targeting cell growth and apoptosis. CONCLUSIONS Our data suggest that expression of TET1 is highly associated with CCA carcinogenesis. It will be important to evaluate TET1 expression in CCA tumors before application of the IDH1 mutation inhibitor because the inhibitor suppresses 2-hydroxyglutarate expression, which may result in activation of TET, potentially leading to CCA malignancy.
Collapse
Affiliation(s)
- Xuewei Bai
- Department of Pancreatic and Biliary Surgery, First
Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Liver
Research Center, Division of Gastroenterology & Liver Research Center, Warren
Alpert Medical School of Brown University and Rhode Island Providence, RI, USA,Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - Hongyu Zhang
- Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - Yamei Zhou
- Department of Pancreatic and Biliary Surgery, First
Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Liver
Research Center, Division of Gastroenterology & Liver Research Center, Warren
Alpert Medical School of Brown University and Rhode Island Providence, RI, USA,Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - Katsuya Nagaoka
- Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of
Anhui Medical University; Institute of Urology & Anhui Province Key Laboratory
of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Chengcheng Ji
- Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - Dan Liu
- Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - Xianghui Dong
- Department of Pathology, The First Affiliated Hospital of
Harbin Medical University, Harbin 150001, Heilongjiang Province, P.R. China
| | - Kevin Cao
- Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - Joud Mulla
- Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - Zhixiang Cheng
- Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - William Mueller
- Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - Amalia Bay
- Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - Grace Hildebrand
- Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - Shaolei Lu
- Department of Pathology and Laboratory Medicine, Warren
Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI,
USA
| | - Joselynn Wallace
- Center for Computational Biology of Human Disease and
Center for Computation and Visualization, Brown University, Providence, RI,
USA
| | - Jack R. Wands
- Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, First
Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Liver
Research Center, Division of Gastroenterology & Liver Research Center, Warren
Alpert Medical School of Brown University and Rhode Island Providence, RI, USA,Correspondence to: Chiung-Kuei Huang,
Ph.D., Liver Research Center, Rhode Island Hospital, Brown Alpert Medical
School, Brown University, 55 Claverick Street, Providence, RI 02903,
; Bei Sun, M.D., Ph.D. Department
of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin
Medical University. Key Laboratory of Hepatosplenic Surgery, Ministry of
Education, The First Affiliated Hospital of Harbin Medical University, No. 23
Youzheng Road, Nangang District, Harbin 150081, Heilongjiang Province, P.R.
China. Tel: 86-451-85555721; Fax: 86-451-53643849;
| | - Chiung-Kuei Huang
- Liver Research Center, Division of Gastroenterology &
Liver Research Center, Warren Alpert Medical School of Brown University and Rhode
Island Hospital, Providence, RI, USA,Correspondence to: Chiung-Kuei Huang,
Ph.D., Liver Research Center, Rhode Island Hospital, Brown Alpert Medical
School, Brown University, 55 Claverick Street, Providence, RI 02903,
; Bei Sun, M.D., Ph.D. Department
of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin
Medical University. Key Laboratory of Hepatosplenic Surgery, Ministry of
Education, The First Affiliated Hospital of Harbin Medical University, No. 23
Youzheng Road, Nangang District, Harbin 150081, Heilongjiang Province, P.R.
China. Tel: 86-451-85555721; Fax: 86-451-53643849;
| |
Collapse
|
21
|
Wang F, Malnassy G, Qiu W. The Epigenetic Regulation of Microenvironment in Hepatocellular Carcinoma. Front Oncol 2021; 11:653037. [PMID: 33791228 PMCID: PMC8005717 DOI: 10.3389/fonc.2021.653037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal and complex malignancy strongly influenced by the surrounding tumor microenvironment. The HCC microenvironment comprises hepatic stellate cells (HSCs), tumor-associated macrophages (TAMs), stromal and endothelial cells, and the underlying extracellular matrix (ECM). Emerging evidence demonstrates that epigenetic regulation plays a crucial role in altering numerous components of the HCC tumor microenvironment. In this review, we summarize the current understanding of the mechanisms of epigenetic regulation of the microenvironment in HCC. We review recent studies demonstrating how specific epigenetic mechanisms (DNA methylation, histone regulation, and non-coding RNAs mediated regulation) in HSCs, TAMs, and ECM, and how they contribute to HCC development, so as to gain new insights into the treatment of HCC via regulating epigenetic regulation in the tumor microenvironment.
Collapse
Affiliation(s)
- Fang Wang
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States.,Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| | - Greg Malnassy
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States.,Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| | - Wei Qiu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States.,Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| |
Collapse
|
22
|
Sharapova T, Talaty N, Buck WR, Fossey S, Liguori MJ, Van Vleet TR. Reduced hepatic global hydroxymethylation in mice treated with non-genotoxic carcinogens is transiently reversible with a methyl supplemented diet. Toxicol Appl Pharmacol 2021; 415:115439. [PMID: 33549593 DOI: 10.1016/j.taap.2021.115439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 01/05/2023]
Abstract
Non-genotoxic carcinogens (NGCs) are known to cause perturbations in DNA methylation, which can be an early event leading to changes in gene expression and the onset of carcinogenicity. Phenobarbital (PB) has been shown to alter liver DNA methylation and hydroxymethylation patterns in mice in a time dependent manner. The goals of this study were to assess if clofibrate (CFB), a well-studied rodent NGC, would produce epigenetic changes in mice similar to PB, and if a methyl donor supplementation (MDS) would modulate epigenetic and gene expression changes induced by phenobarbital. CByB6F1 mice were treated with 0.5% clofibrate or 0.14% phenobarbital for 7 and 28 days. A subgroup of PB treated and control mice were also fed MDS diet. Liquid Chromatography-Ionization Mass Spectrometry (LC-MS) was used to quantify global liver 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) levels. Gene expression analysis was conducted using Affymetrix microarrays. A decrease in liver 5hmC but not 5mC levels was observed upon treatment with both CFB and PB with varying time of onset. We observed moderate increases in 5hmC levels in PB-treated mice when exposed to MDS diet and lower expression levels of several phenobarbital induced genes involved in cell proliferation, growth, and invasion, suggesting an early modulating effect of methyl donor supplementation. Overall, epigenetic profiling can aid in identifying early mechanism-based biomarkers of non-genotoxic carcinogenicity and increases the quality of cancer risk assessment for candidate drugs. Global DNA methylation assessment by LC-MS is an informative first step toward understanding the risk of carcinogenicity.
Collapse
Affiliation(s)
- T Sharapova
- Investigative Toxicology and Pathology, AbbVie Inc., North Chicago, IL, United States.
| | - N Talaty
- Discovery Platform Technologies, AbbVie Inc., North Chicago, IL, United States
| | - W R Buck
- Investigative Toxicology and Pathology, AbbVie Inc., North Chicago, IL, United States
| | - S Fossey
- Investigative Toxicology and Pathology, AbbVie Inc., North Chicago, IL, United States
| | - M J Liguori
- Investigative Toxicology and Pathology, AbbVie Inc., North Chicago, IL, United States
| | - T R Van Vleet
- Investigative Toxicology and Pathology, AbbVie Inc., North Chicago, IL, United States
| |
Collapse
|
23
|
Yang C, Ota-Kurogi N, Ikeda K, Okumura T, Horie-Inoue K, Takeda S, Inoue S. MicroRNA-191 regulates endometrial cancer cell growth via TET1-mediated epigenetic modulation of APC. J Biochem 2021; 168:7-14. [PMID: 32003827 DOI: 10.1093/jb/mvaa014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Endometrial cancer (EC) is a common gynecological malignancy with relatively favourable prognosis, although alternative diagnostic and therapeutic options remain to be explored for advanced disease. Recent studies enabled to apply microRNAs (miRs) to clinical cancer management as promising diagnostic and therapeutic biomarkers. We here aimed to identify proliferation-associated miRNAs and characterize their functions in EC cells. Our small RNA-sequencing analysis showed that miR-191 is abundantly expressed in HEC-1A and Ishikawa EC cells along with the high expression of miR-182, which was previously characterized as an EC proliferation-related miRNA in EC. We showed that miR-191 was upregulated in EC tissues than in adjacent normal tissues and its knockdown repressed EC cell proliferation. In silico miRNA target screening identified that ten-eleven translocation 1 (TET1) is one of the putative miR-191 targets. TET1 expression could be downregulated by miR-191 through the mRNA-miRNA interaction in the 3'-untranslated region of TET1. In line with TET1 functions as a methylcytosine dioxygenase, which removes genome-wide DNA methylation marks, decreased TET1 expression resulted in hypermethylation in the promotor region of tumour suppressor adenomatous polyposis coli. Taken together, miR-191 could function as an oncogenic miRNA in EC and serve as a prospective diagnostic and therapeutic target for advanced disease.
Collapse
Affiliation(s)
- Chiujung Yang
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan.,Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Natsuki Ota-Kurogi
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan.,Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Toshiyuki Okumura
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan.,Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
24
|
Sinton MC, Meseguer-Ripolles J, Lucendo-Villarin B, Wernig-Zorc S, Thomson JP, Carter RN, Lyall MJ, Walker PD, Thakker A, Meehan RR, Lavery GG, Morton NM, Ludwig C, Tennant DA, Hay DC, Drake AJ. A human pluripotent stem cell model for the analysis of metabolic dysfunction in hepatic steatosis. iScience 2021; 24:101931. [PMID: 33409477 PMCID: PMC7773967 DOI: 10.1016/j.isci.2020.101931] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/20/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently the most prevalent form of liver disease worldwide. This term encompasses a spectrum of pathologies, from benign hepatic steatosis to non-alcoholic steatohepatitis, which have, to date, been challenging to model in the laboratory setting. Here, we present a human pluripotent stem cell (hPSC)-derived model of hepatic steatosis, which overcomes inherent challenges of current models and provides insights into the metabolic rewiring associated with steatosis. Following induction of macrovesicular steatosis in hepatocyte-like cells using lactate, pyruvate, and octanoate (LPO), respirometry and transcriptomic analyses revealed compromised electron transport chain activity. 13C isotopic tracing studies revealed enhanced TCA cycle anaplerosis, with concomitant development of a compensatory purine nucleotide cycle shunt leading to excess generation of fumarate. This model of hepatic steatosis is reproducible, scalable, and overcomes the challenges of studying mitochondrial metabolism in currently available models.
Collapse
Affiliation(s)
- Matthew C. Sinton
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Jose Meseguer-Ripolles
- Centre for Regenerative Medicine, University of Edinburgh, Institute for Regeneration and Repair, Edinburgh BioQuarter, 5 Little France Crescent, Edinburgh, EH16 4UU, UK
| | - Baltasar Lucendo-Villarin
- Centre for Regenerative Medicine, University of Edinburgh, Institute for Regeneration and Repair, Edinburgh BioQuarter, 5 Little France Crescent, Edinburgh, EH16 4UU, UK
| | - Sara Wernig-Zorc
- Department of Biochemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - John P. Thomson
- Human Genetics Unit, University of Edinburgh, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4, 2XU, UK
| | - Roderick N. Carter
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Marcus J. Lyall
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Paul D. Walker
- Institute of Metabolism and Systems Research, IBR Tower, College of Medical and Dental Sciences, Edgbaston, University of Birmingham, Birmingham, B15 2TT,, UK
| | - Alpesh Thakker
- Institute of Metabolism and Systems Research, IBR Tower, College of Medical and Dental Sciences, Edgbaston, University of Birmingham, Birmingham, B15 2TT,, UK
| | - Richard R. Meehan
- Human Genetics Unit, University of Edinburgh, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4, 2XU, UK
| | - Gareth G. Lavery
- Institute of Metabolism and Systems Research, IBR Tower, College of Medical and Dental Sciences, Edgbaston, University of Birmingham, Birmingham, B15 2TT,, UK
| | - Nicholas M. Morton
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, IBR Tower, College of Medical and Dental Sciences, Edgbaston, University of Birmingham, Birmingham, B15 2TT,, UK
| | - Daniel A. Tennant
- Institute of Metabolism and Systems Research, IBR Tower, College of Medical and Dental Sciences, Edgbaston, University of Birmingham, Birmingham, B15 2TT,, UK
| | - David C. Hay
- Centre for Regenerative Medicine, University of Edinburgh, Institute for Regeneration and Repair, Edinburgh BioQuarter, 5 Little France Crescent, Edinburgh, EH16 4UU, UK
| | - Amanda J. Drake
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
25
|
Feng C, Huang X, Li X, Mao J. The Roles of Base Modifications in Kidney Cancer. Front Oncol 2020; 10:580018. [PMID: 33282735 PMCID: PMC7691527 DOI: 10.3389/fonc.2020.580018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/19/2020] [Indexed: 11/26/2022] Open
Abstract
Epigenetic modifications including histone modifications and DNA and RNA modifications are involved in multiple biological processes and human diseases. One disease, kidney cancer, includes a common type of tumor, accounts for about 2% of all cancers, and usually has poor prognosis. The molecular mechanisms and therapeutic strategy of kidney cancer are still under intensive study. Understanding the roles of epigenetic modifications and underlying mechanisms in kidney cancer is critical to its diagnosis and clinical therapy. Recently, the function of DNA and RNA modifications has been uncovered in kidney tumor. In the present review, we summarize recent findings about the roles of epigenetic modifications (particularly DNA and RNA modifications) in the incidence, progression, and metastasis of kidney cancer, especially the renal cell carcinomas.
Collapse
Affiliation(s)
- Chunyue Feng
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaoli Huang
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Xuekun Li
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China.,Institute of Translational Medicine of Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
26
|
Hirao-Suzuki M, Takeda S, Sakai G, Waalkes MP, Sugihara N, Takiguchi M. Cadmium-stimulated invasion of rat liver cells during malignant transformation: Evidence of the involvement of oxidative stress/TET1-sensitive machinery. Toxicology 2020; 447:152631. [PMID: 33188856 DOI: 10.1016/j.tox.2020.152631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/22/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
Cadmium (Cd) is recognized as a highly toxic heavy metal for humans in part because it is a multi-organ carcinogen. To clarify the mechanism of Cd carcinogenicity, we have established an experimental system using rat liver TRL1215 cells exposed to 2.5 μM Cd for 10 weeks and then cultured in Cd-free medium for an additional 4 weeks (total 14 weeks). Recently, we demonstrated, by using this experimental system, that 1) Cd stimulates cell invasion by suppression of apolipoprotein E (ApoE) expression, and 2) Cd induces DNA hypermethylation of the regulatory region of the ApoE gene. However, the underlying mechanism(s) as well as other potential genetic participants in the Cd-stimulated invasion are undefined. In the present work, we found that concurrent with enhanced invasion, Cd induced oxidative stress, coupled with the production of oxidative stress-sensitive metallothionein 2A (MT2A), which lead to down-modulation of ten-eleven translocation methylcytosine dioxygenase 1 (TET1: DNA demethylation) in addition to ApoE, without impacting DNA methyltransferases (DNMTs: DNA methylation) levels. Furthermore, the expression of tissue inhibitor of metalloproteinase 2 and 3 (TIMP2 and TIMP3) that are positively regulated by TET1, were decreased by Cd. The genes (ApoE/TET1/TIMP2/TIMP3) suppressed by Cd were further suppressed by hydroquinone (HQ; a reactive oxygen species [ROS] producer), whereas N-acetyl-l-cysteine (NAC; a ROS scavenger) prevented the suppression of their expression by HQ. In addition, NAC reversed their expression suppressed by Cd. Cd-stimulated cell invasion was clearly dampened by NAC in a concentration-dependent manner. Overall these findings suggest that 1) altered TET1 expression and activity together with ApoE are likely involved in the enhanced invasiveness due to Cd exposure, and 2) Cd down-regulation of TET1 likely evokes a reduction in ApoE expression (possible by DNA hypermethylation), and 3) anti-oxidants are effective in abrogation of the enhanced invasiveness that occurs concurrently with Cd-induced malignant transformation.
Collapse
Affiliation(s)
- Masayo Hirao-Suzuki
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), 5-1-1 Hiro-koshingai, Kure, Hiroshima, 737-0112, Japan
| | - Shuso Takeda
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), 5-1-1 Hiro-koshingai, Kure, Hiroshima, 737-0112, Japan; Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzou 1, Gakuen-cho, Fukuyama, Hiroshima, 729-0292, Japan.
| | - Genki Sakai
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), 5-1-1 Hiro-koshingai, Kure, Hiroshima, 737-0112, Japan; Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzou 1, Gakuen-cho, Fukuyama, Hiroshima, 729-0292, Japan
| | | | - Narumi Sugihara
- Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzou 1, Gakuen-cho, Fukuyama, Hiroshima, 729-0292, Japan
| | - Masufumi Takiguchi
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), 5-1-1 Hiro-koshingai, Kure, Hiroshima, 737-0112, Japan.
| |
Collapse
|
27
|
Li HJ, Wang Y, Li BX, Yang Y, Guan F, Pang XC, Li X. Roles of ten-eleven translocation family proteins and their O-linked β-N-acetylglucosaminylated forms in cancer development. Oncol Lett 2020; 21:1. [PMID: 33240407 PMCID: PMC7681232 DOI: 10.3892/ol.2020.12262] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Members of the ten-eleven translocation (TET) protein family of which three mammalian TET proteins have been discovered so far, catalyze the sequential oxidation of 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine which serve an important role in embryonic development and tumor progression. O-GlcNAcylation (O-linked β-N-acetylglucosaminylation) is a reversible post-translational modification known to serve important roles in tumorigenesis and metastasis especially in hematopoietic malignancies such as myelodysplastic syndromes, chronic myelomonocytic leukemia and acute myeloid leukemia. O-GlcNAcylation activity requires only two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). OGT catalyzes attachment of GlcNAc sugar to serine, threonine and cytosine residues in proteins, while OGA hydrolyzes O-GlcNAc attached to proteins. Numerous recent studies have demonstrated that TETs can be O-GlcNAcylated by OGT, with consequent alteration of TET activity and stability. The present review focuses on the cellular, biological and biochemical functions of TET and its O-GlcNAcylated form and proposes a model of the role of TET/OGT complex in regulation of target proteins during cancer development. In addition, the present review provides directions for future research in this area.
Collapse
Affiliation(s)
- Hong-Jiao Li
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China.,Hematology Institute, School of Medicine, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yi Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, Shaanxi 710069, P.R. China
| | - Bing-Xin Li
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China.,Hematology Institute, School of Medicine, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Xing-Chen Pang
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China.,Hematology Institute, School of Medicine, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China.,Hematology Institute, School of Medicine, Northwest University, Xi'an, Shaanxi 710069, P.R. China.,Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214000, P.R. China
| |
Collapse
|
28
|
Li H, Jiang W, Liu XN, Yuan LY, Li TJ, Li S, Xu SS, Zhang WH, Gao HL, Han X, Wang WQ, Wu CT, Yu XJ, Xu HX, Liu L. TET1 downregulates epithelial-mesenchymal transition and chemoresistance in PDAC by demethylating CHL1 to inhibit the Hedgehog signaling pathway. Oncogene 2020; 39:5825-5838. [PMID: 32753651 DOI: 10.1038/s41388-020-01407-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/05/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
Chemoresistance is a major obstacle to prolonging pancreatic ductal adenocarcinoma (PDAC) patient survival. TET1 is identified as the most important epigenetic modification enzyme that facilitates chemoresistance in cancers. However, the chemoresistance mechanism of TET1 in PDAC is unknown. This study aimed to determine the role of TET1 in the chemoresistance of PDAC. TET1-associated chemoresistance in PDAC was investigated in vitro and in vivo. The clinical significance of TET1 was analyzed in 228 PDAC patients by tissue microarray profiling. We identified that TET1 downregulation is caused by its promoter hypermethylation and correlates with poor survival in PDAC patients. In vitro and in vivo functional studies performed by silencing or overexpressing TET1 suggested that TET1 is able to suppress epithelial-mesenchymal transition (EMT) and sensitize PDAC cells to 5FU and gemcitabine. Then RNA-seq, whole genome bisulfite sequencing (WGBS) and ChIP-seq were used to explore the TET1-associated pathway, and showed that TET1 promotes the transcription of CHL1 by binding and demethylating the CHL1 promoter, which consequently inhibits the Hedgehog pathway. Additionally, inhibiting Hedgehog signaling by CHL1 overexpression or the Hedgehog pathway inhibitor, GDC-0449, reversed the chemoresistance induced by TET1 silencing. Regarding clinical significance, we found that high TET1 and high CHL1 expression predicted a better prognosis in resectable PDAC patients. In summary, we demonstrated that TET1 reverses chemoresistance in PDAC by downregulating the CHL1-associated Hedgehog signaling pathway. PDAC patients with a high expression levels of TET1 and CHL1 have a better prognosis.
Collapse
MESH Headings
- Biomarkers, Tumor
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Cell Adhesion Molecules/genetics
- Cell Line, Tumor
- CpG Islands
- DNA Methylation
- Drug Resistance, Neoplasm/genetics
- Epithelial-Mesenchymal Transition/genetics
- Fluorouracil/pharmacology
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Hedgehog Proteins/metabolism
- Humans
- Mixed Function Oxygenases/genetics
- Models, Biological
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Prognosis
- Promoter Regions, Genetic
- Proto-Oncogene Proteins/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Hao Li
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wang Jiang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xue-Ni Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Yun Yuan
- Bio-Med Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tian-Jiao Li
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shuo Li
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shuai-Shuai Xu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wu-Hu Zhang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - He-Li Gao
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xuan Han
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chun-Tao Wu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Hua-Xiang Xu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Dang Y, Hu D, Xu J, Li C, Tang Y, Yang Z, Liu Y, Zhou W, Zhang L, Xu H, Xu Y, Ji G. Comprehensive analysis of 5-hydroxymethylcytosine in zw10 kinetochore protein as a promising biomarker for screening and diagnosis of early colorectal cancer. Clin Transl Med 2020; 10:e125. [PMID: 32628818 PMCID: PMC7418801 DOI: 10.1002/ctm2.125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As a new epigenetic biomarker, 5-hydroxymethylcytosine (5hmC) is broadly involved in various diseases including cancers. However, the function and diagnostic performance of 5hmC in colorectal cancer (CRC) remain unclear. RESULTS High-throughput sequencing was used to profile 5hmC levels in adjacent normal colon, advanced adenomas, and CRC. The expression and 5hmC levels in zw10 kinetochore protein (ZW10) were significantly increased in the tissues and blood samples for patients with advanced adenoma and CRC, and were much higher in the early stages of CRC (I and II). The receiver operating characteristic analysis had potential diagnostic value for CRC. The area under the curve (AUC) of ZW10 5hmC levels in tissue samples of CRC was 0.901. In blood samples, the AUC was 0.748 for CRC. In addition, the ZW10 5hmC level had much higher diagnostic performance in early stages of CRC (AUC = 0.857) than it did in advanced stages (AUC = 0.594). Compared with FHC cell, ZW10 expression in HT29 cell was significantly increased. The ZW10 knockdown could inhibit cell proliferation and the ZW10 overexpression could promote cell proliferation in HT-29 cell. Furthermore, ZW10 knockdown inhibited AKT and mTOR phosphorylation, and ZW10 overexpression promoted AKT and mTOR phosphorylation. CONCLUSIONS The ZW10 5hmC level may serve as an effective epigenetic biomarker for minimally invasive screening and diagnosis of CRC, and it has higher diagnostic performance in early stages of CRC than it does in advanced stages. In addition, ZW10 could regulate CRC progression through the AKT-mTOR signaling.
Collapse
Affiliation(s)
- Yanqi Dang
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Dan Hu
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- Department of Traditional Chinese MedicineSeventh People's Hospital of Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jingjuan Xu
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Chunlin Li
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yingjue Tang
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zhenhua Yang
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- Digestive Endoscopy DepartmentLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yang Liu
- Department of General SurgeryLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Wenjun Zhou
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Li Zhang
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hanchen Xu
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yangxian Xu
- Department of General SurgeryLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guang Ji
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
30
|
Rodríguez-Aguilera JR, Ecsedi S, Goldsmith C, Cros MP, Domínguez-López M, Guerrero-Celis N, Pérez-Cabeza de Vaca R, Chemin I, Recillas-Targa F, Chagoya de Sánchez V, Hernández-Vargas H. Genome-wide 5-hydroxymethylcytosine (5hmC) emerges at early stage of in vitro differentiation of a putative hepatocyte progenitor. Sci Rep 2020; 10:7822. [PMID: 32385352 PMCID: PMC7210258 DOI: 10.1038/s41598-020-64700-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 04/15/2020] [Indexed: 12/23/2022] Open
Abstract
A basic question linked to differential patterns of gene expression is how cells reach different fates despite using the same DNA template. Since 5-hydroxymethylcytosine (5hmC) emerged as an intermediate metabolite in active DNA demethylation, there have been increasing efforts to elucidate its function as a stable modification of the genome, including a role in establishing such tissue-specific patterns of expression. Recently we described TET1-mediated enrichment of 5hmC on the promoter region of the master regulator of hepatocyte identity, HNF4A, which precedes differentiation of liver adult progenitor cells in vitro. Here, we studied the genome-wide distribution of 5hmC at early in vitro differentiation of human hepatocyte-like cells. We found a global increase in 5hmC as well as a drop in 5-methylcytosine after one week of in vitro differentiation from bipotent progenitors, at a time when the liver transcript program is already established. 5hmC was overall higher at the bodies of overexpressed genes. Furthermore, by modifying the metabolic environment, an adenosine derivative prevents 5hmC enrichment and impairs the acquisition of hepatic identity markers. These results suggest that 5hmC could be a marker of cell identity, as well as a useful biomarker in conditions associated with cell de-differentiation such as liver malignancies.
Collapse
Affiliation(s)
- Jesús Rafael Rodríguez-Aguilera
- Department of Cellular Biology and Development, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Cd. Mx., Mexico
| | - Szilvia Ecsedi
- Institute of Biology Valrose (iBV), The National Center for Scientific Research (CNRS) - National Institute of Health and Medical Research (Inserm), Université Côte d'Azur, Nice, France
| | - Chloe Goldsmith
- Department of Immunity, Virus and Inflammation. Cancer Research Centre of Lyon (CRCL), Inserm U 1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 28 rue Laennec, 69373, Lyon, CEDEX 08, France
| | - Marie-Pierre Cros
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France
| | - Mariana Domínguez-López
- Department of Cellular Biology and Development, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Cd. Mx., Mexico
| | - Nuria Guerrero-Celis
- Department of Cellular Biology and Development, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Cd. Mx., Mexico
| | - Rebeca Pérez-Cabeza de Vaca
- Department of Cellular Biology and Development, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Cd. Mx., Mexico
- Division of Biomedical Research, Centro Médico Nacional "20 de noviembre", ISSSTE, San Lorenzo 502, Benito Juárez, 03100, Cd. Mx., Mexico
| | - Isabelle Chemin
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon Université Claude Bernard, Lyon, France
| | - Félix Recillas-Targa
- Department of Molecular Genetics, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Cd. Mx., Mexico
| | - Victoria Chagoya de Sánchez
- Department of Cellular Biology and Development, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Cd. Mx., Mexico.
| | - Héctor Hernández-Vargas
- Department of Immunity, Virus and Inflammation. Cancer Research Centre of Lyon (CRCL), Inserm U 1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 28 rue Laennec, 69373, Lyon, CEDEX 08, France.
- Department of Translational Research and Innovation. Centre Léon Bérard, 28 rue Laennec, 69373, Lyon, CEDEX 08, France.
| |
Collapse
|
31
|
Dunican DS, Mjoseng HK, Duthie L, Flyamer IM, Bickmore WA, Meehan RR. Bivalent promoter hypermethylation in cancer is linked to the H327me3/H3K4me3 ratio in embryonic stem cells. BMC Biol 2020; 18:25. [PMID: 32131813 PMCID: PMC7057567 DOI: 10.1186/s12915-020-0752-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Thousands of mammalian promoters are defined by co-enrichment of the histone tail modifications H3K27me3 (repressive) and H3K4me3 (activating) and are thus termed bivalent. It was previously observed that bivalent genes in human ES cells (hESC) are frequent targets for hypermethylation in human cancers, and depletion of DNA methylation in mouse embryonic stem cells has a marked impact on H3K27me3 distribution at bivalent promoters. However, only a fraction of bivalent genes in stem cells are targets of hypermethylation in cancer, and it is currently unclear whether all bivalent promoters are equally sensitive to DNA hypomethylation and whether H3K4me3 levels play a role in the interplay between DNA methylation and H3K27me3. RESULTS We report the sub-classification of bivalent promoters into two groups-promoters with a high H3K27me3:H3K4me3 (hiBiv) ratio or promoters with a low H3K27me3:H3K4me3 ratio (loBiv). HiBiv are enriched in canonical Polycomb components, show a higher degree of local intrachromosomal contacts and are highly sensitive to DNA hypomethylation in terms of H3K27me3 depletion from broad Polycomb domains. In contrast, loBiv promoters are enriched in non-canonical Polycomb components, show lower intrachromosomal contacts and are less sensitive to DNA hypomethylation at the same genomic resolution. Multiple systems reveal that hiBiv promoters are more depleted of Polycomb complexes than loBiv promoters following a reduction in DNA methylation, and we demonstrate that H3K27me3 re-accumulates at promoters when DNA methylation is restored. In human cancer, we show that hiBiv promoters lose H3K27me3 and are more susceptible to DNA hypermethylation than loBiv promoters. CONCLUSION We conclude that bivalency as a general term to describe mammalian promoters is an over-simplification and our sub-classification has revealed novel insights into the interplay between the largely antagonistic presence of DNA methylation and Polycomb systems at bivalent promoters. This approach redefines molecular pathologies underlying disease in which global DNA methylation is aberrant or where Polycomb mutations are present.
Collapse
Affiliation(s)
- Donnchadh S. Dunican
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU Scotland
| | - Heidi K. Mjoseng
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU Scotland
| | - Leanne Duthie
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU Scotland
| | - Ilya M. Flyamer
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU Scotland
| | - Wendy A. Bickmore
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU Scotland
| | - Richard R. Meehan
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU Scotland
| |
Collapse
|
32
|
Morin A, Goncalves J, Moog S, Castro-Vega LJ, Job S, Buffet A, Fontenille MJ, Woszczyk J, Gimenez-Roqueplo AP, Letouzé E, Favier J. TET-Mediated Hypermethylation Primes SDH-Deficient Cells for HIF2α-Driven Mesenchymal Transition. Cell Rep 2020; 30:4551-4566.e7. [DOI: 10.1016/j.celrep.2020.03.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 01/24/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
|
33
|
Chen S, Zhou Q, Liu T, Zhang W, Zeng XT, Guo Z. Prognostic value of downregulated 5-hydroxymethylcytosine expression in renal cell carcinoma: a 10 year follow-up retrospective study. J Cancer 2020; 11:1212-1222. [PMID: 31956367 PMCID: PMC6959072 DOI: 10.7150/jca.38283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/02/2019] [Indexed: 01/10/2023] Open
Abstract
5-hydroxymethylcytosine (5hmC) is converted from DNA methylation of cytosine (5mC) by the catalysis of TET proteins, and proposed to be involved in tumorigenesis. However, the prognostic value of 5hmC in renal cell carcinoma (RCC) is still unclear. This study aimed to define the clinical significance of 5hmC in RCC. We performed dot blot assays to measure the relative expression of 5hmC in RCC. We reviewed the clinical records of 310 RCC patients and performed immunohistochemical (IHC) staining of 5hmC. The overall survival (OS) and cancer specific survival (CSS) of all patients were recorded over a 10-year follow-up period. Effective prognostic nomograms which contained 5hmC were established to provide individualized OS and CSS in RCC. 5hmC expression level was significantly decreased in RCC tissues compared with those in the normal counterparts. Kaplan-Meier curves revealed that high 5hmC expression had a good prognostic impact on RCC patients. Cox multivariate survival analyses further indicated 5hmC was an independent prognostic factor for RCC survival. Nomograms constructed based on cox regression analysis were available to calculate the survival probability directly. Calibration curves displayed good agreements. The findings were validated with an independent external cohort included 77 RCC cases. Thus, we believe we have found a significative prognostic factor for RCC.
Collapse
Affiliation(s)
- Song Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qiang Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tongzu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Weibing Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xian-Tao Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhongqiang Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
34
|
Aloia L, McKie MA, Vernaz G, Cordero-Espinoza L, Aleksieva N, van den Ameele J, Antonica F, Font-Cunill B, Raven A, Aiese Cigliano R, Belenguer G, Mort RL, Brand AH, Zernicka-Goetz M, Forbes SJ, Miska EA, Huch M. Epigenetic remodelling licences adult cholangiocytes for organoid formation and liver regeneration. Nat Cell Biol 2019; 21:1321-1333. [PMID: 31685987 PMCID: PMC6940196 DOI: 10.1038/s41556-019-0402-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022]
Abstract
Following severe or chronic liver injury, adult ductal cells (cholangiocytes) contribute to regeneration by restoring both hepatocytes and cholangiocytes. We recently showed that ductal cells clonally expand as self-renewing liver organoids that retain their differentiation capacity into both hepatocytes and ductal cells. However, the molecular mechanisms by which adult ductal-committed cells acquire cellular plasticity, initiate organoids and regenerate the damaged tissue remain largely unknown. Here, we describe that ductal cells undergo a transient, genome-wide, remodelling of their transcriptome and epigenome during organoid initiation and in vivo following tissue damage. TET1-mediated hydroxymethylation licences differentiated ductal cells to initiate organoids and activate the regenerative programme through the transcriptional regulation of stem-cell genes and regenerative pathways including the YAP-Hippo signalling. Our results argue in favour of the remodelling of genomic methylome/hydroxymethylome landscapes as a general mechanism by which differentiated cells exit a committed state in response to tissue damage.
Collapse
Affiliation(s)
- Luigi Aloia
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Mikel Alexander McKie
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Grégoire Vernaz
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Lucía Cordero-Espinoza
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Niya Aleksieva
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Jelle van den Ameele
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Francesco Antonica
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Berta Font-Cunill
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Alexander Raven
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | | | - German Belenguer
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Richard L Mort
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Bailrigg, Lancaster, UK
| | - Andrea H Brand
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA, USA
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Eric A Miska
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Meritxell Huch
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
35
|
Vitobello A, Perner J, Beil J, Zhu J, Del Río-Espínola A, Morawiec L, Westphal M, Dubost V, Altorfer M, Naumann U, Mueller A, Kapur K, Borowsky M, Henderson C, Wolf CR, Schwarz M, Moggs J, Terranova R. Drug-induced chromatin accessibility changes associate with sensitivity to liver tumor promotion. Life Sci Alliance 2019; 2:e201900461. [PMID: 31615920 PMCID: PMC6795216 DOI: 10.26508/lsa.201900461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 12/27/2022] Open
Abstract
Liver cancer susceptibility varies amongst humans and between experimental animal models because of multiple genetic and epigenetic factors. The molecular characterization of such susceptibilities has the potential to enhance cancer risk assessment of xenobiotic exposures and disease prevention strategies. Here, using DNase I hypersensitivity mapping coupled with transcriptomic profiling, we investigate perturbations in cis-acting gene regulatory elements associated with the early stages of phenobarbital (PB)-mediated liver tumor promotion in susceptible versus resistant mouse strains (B6C3F1 versus C57BL/6J). Integrated computational analyses of strain-selective changes in liver chromatin accessibility underlying PB response reveal differential epigenetic regulation of molecular pathways associated with PB-mediated tumor promotion, including Wnt/β-catenin signaling. Complementary transcription factor motif analyses reveal mouse strain-selective gene regulatory networks and a novel role for Stat, Smad, and Fox transcription factors in the early stages of PB-mediated tumor promotion. Mapping perturbations in cis-acting gene regulatory elements provides novel insights into the molecular basis for susceptibility to xenobiotic-induced rodent liver tumor promotion and has the potential to enhance mechanism-based cancer risk assessments of xenobiotic exposures.
Collapse
Affiliation(s)
- Antonio Vitobello
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
- Inserm, Unité Mixte de Recherche (UMR) 1231, Université de Bourgogne-Franche Comté, Dijon, France
| | - Juliane Perner
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Johanna Beil
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | | | | | - Laurent Morawiec
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | | | - Valérie Dubost
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Marc Altorfer
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Ulrike Naumann
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Arne Mueller
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Karen Kapur
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | | | - Colin Henderson
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Innovative Medicines Initiative MARCAR Consortium (http://www.imi-marcar.eu/index.php)
| | - C Roland Wolf
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Innovative Medicines Initiative MARCAR Consortium (http://www.imi-marcar.eu/index.php)
| | - Michael Schwarz
- Department of Toxicology, University of Tübingen, Tübingen, Germany
- Innovative Medicines Initiative MARCAR Consortium (http://www.imi-marcar.eu/index.php)
| | - Jonathan Moggs
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
- Innovative Medicines Initiative MARCAR Consortium (http://www.imi-marcar.eu/index.php)
| | - Rémi Terranova
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| |
Collapse
|
36
|
Zhao J, Chen HQ, Yang HF, Li Y, Chen DJ, Huang YJ, He LX, Zheng CF, Wang LQ, Wang J, Zhang N, Cao J, Liu JY, Shu WQ, Liu WB. Epigenetic silencing of ALX4 regulates microcystin-LR induced hepatocellular carcinoma through the P53 pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:317-330. [PMID: 31132711 DOI: 10.1016/j.scitotenv.2019.05.144] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Recent studies have shown that microcystin-LR (MC-LR) is one of the principal factors that cause liver cancer. Previously we have found that Aristaless-like Homeobox 4 (ALX4) was differentially expressed in MC-LR-induced malignant transformed L02 cells. However, the expression regulation, role and molecular mechanism of ALX4 during the process of liver cancer induced by MC-LR are still unclear. The expression of ALX4 was detected by quantitative reverse-transcription PCR and Western blot in MC-LR induced malignantly transformed cell and rat models. Methylation status of ALX4 promoter region was evaluated by methylation-specific PCR and bisulfite genomic sequencing. The anti-tumor effects of ALX4 on MC-LR induced liver cancer were identified in vitro and in vivo. ALX4 expression was progressively down-regulated in MC-LR-induced malignantly transformed L02 cells and the MC-LR exposed rat models. ALX4 promoter regions were highly methylated in malignantly transformed cells, while treatment with demethylation agent 5-aza-dC significantly increased ALX4 expression. Functional studies showed that overexpression of ALX4 inhibits cell proliferation, migration, invasion and metastasis in vitro and in vivo, blocks the G1/S phase and promotes the apoptosis. Conversely, knockdown of ALX4 promotes cell proliferation, migration and invasion. Mechanism study found that ALX4 exerts its antitumor function through the P53 pathway, C-MYC and MMP9. More importantly, ALX4 expression level showed a negative relation with serum MC-LR levels in patients with hepatocellular carcinoma. Our results suggested that ALX4 was inactivated by DNA methylation and played a tumor suppressor function through the P53 pathway in MC-LR induced liver cancer.
Collapse
Affiliation(s)
- Ji Zhao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, PR China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Hui-Fang Yang
- College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yan Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; The Calmette International Hospital, Kunming 650224, PR China
| | - Dong-Jiao Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yu-Jing Huang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Li-Xiong He
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Chuan-Fen Zheng
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Ling-Qiao Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Jia Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Na Zhang
- College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, PR China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Wei-Qun Shu
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.
| |
Collapse
|
37
|
Liebig M, Dannenberger D, Vollmar B, Abshagen K. n-3 PUFAs reduce tumor load and improve survival in a NASH-tumor mouse model. Ther Adv Chronic Dis 2019; 10:2040622319872118. [PMID: 31523414 PMCID: PMC6728677 DOI: 10.1177/2040622319872118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
Background With 9.1% of all cancer deaths, hepatocellular carcinoma is the second leading cause of cancer deaths worldwide. Due to the increasing prevalence of metabolic syndrome, nonalcoholic fatty liver disease (NAFLD) has evolved into a major risk factor for hepatocellular carcinoma development. Herein, we investigated whether a dietary n-3 polyunsaturated fatty acid (PUFA) supplementation improves the outcome of progressive NAFLD. Methods Feeding three high-fat diets, differing in n-3 and n-6 PUFA contents and ratios (n-3/n-6: 1:8, 1:1, 5:1), the impact of n-3 PUFAs and n-3/n-6 PUFA ratios on NAFLD-related liver fibrosis and tumorigenesis was analyzed in 12- and 20-week-old streptozotocin/high-fat diet (STZ/HFD)-treated mice. Results Feeding of n-3 PUFA-rich diets (1:1 and 5:1) resulted in increased hepatic n-3 PUFA content and n-3/n-6 PUFA ratio with decreased hepatic lipid accumulation. In 20-week-old mice, n-3 PUFA-rich diets alleviated tumor load significantly, with reduced liver/body weight index, tumor size, and tumor number. Finally, these effects were accompanied by a significant improvement of survival of these mice. Conclusions Herein, we showed that increased n-3 PUFA content and n-3/n-6 PUFA ratios lead to improved survival and attenuated tumor progression in STZ/HFD-treated mice. Thus, n-3 PUFAs could be the basis for new therapeutic options against NAFLD-related tumorigenesis.
Collapse
Affiliation(s)
- Marie Liebig
- Institute for Experimental Surgery, University Medicine Rostock, Germany
| | - Dirk Dannenberger
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University Medicine Rostock, Germany
| | - Kerstin Abshagen
- Institute for Experimental Surgery, University Medicine Rostock, Germany
| |
Collapse
|
38
|
Lyall MJ, Thomson JP, Cartier J, Ottaviano R, Kendall TJ, Meehan RR, Drake AJ. Non-alcoholic fatty liver disease (NAFLD) is associated with dynamic changes in DNA hydroxymethylation. Epigenetics 2019; 15:61-71. [PMID: 31389294 PMCID: PMC6961686 DOI: 10.1080/15592294.2019.1649527] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now the commonest cause of liver disease in developed countries affecting 25-33% of the general population and up to 75% of those with obesity. Recent data suggest that alterations in DNA methylation may be related to NAFLD pathogenesis and progression and we have previously shown that dynamic changes in the cell lineage identifier 5-hydroxymethylcytosine (5hmC) may be important in the pathogenesis of liver disease. We used a model of diet-induced obesity, maintaining male mice on a high-fat diet (HFD) to generate hepatic steatosis. We profiled hepatic gene expression, global and locus-specific 5hmC and additionally investigated the effects of weight loss on the phenotype. HFD led to increased weight gain, fasting hyperglycaemia, glucose intolerance, insulin resistance and hepatic periportal macrovesicular steatosis. Diet-induced hepatic steatosis associated with reversible 5hmC changes at a discrete number of functionally important genes. We propose that 5hmC profiles are a useful signature of gene transcription and a marker of cell state in NAFLD and suggest that 5hmC profiles hold potential as a biomarker of abnormal liver physiology.
Collapse
Affiliation(s)
- Marcus J Lyall
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - John P Thomson
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Jessy Cartier
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Raffaele Ottaviano
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Timothy J Kendall
- MRC Centre for Inflammation Research, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.,Division of Pathology, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Richard R Meehan
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
39
|
Sinton MC, Hay DC, Drake AJ. Metabolic control of gene transcription in non-alcoholic fatty liver disease: the role of the epigenome. Clin Epigenetics 2019; 11:104. [PMID: 31319896 PMCID: PMC6637519 DOI: 10.1186/s13148-019-0702-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/09/2019] [Indexed: 01/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is estimated to affect 24% of the global adult population. NAFLD is a major risk factor for the development of cirrhosis and hepatocellular carcinoma, as well as being strongly associated with type 2 diabetes and cardiovascular disease. It has been proposed that up to 88% of obese adults have NAFLD, and with global obesity rates increasing, this disease is set to become even more prevalent. Despite intense research in this field, the molecular processes underlying the pathology of NAFLD remain poorly understood. Hepatic intracellular lipid accumulation may lead to dysregulated tricarboxylic acid (TCA) cycle activity and associated alterations in metabolite levels. The TCA cycle metabolites alpha-ketoglutarate, succinate and fumarate are allosteric regulators of the alpha-ketoglutarate-dependent dioxygenase family of enzymes. The enzymes within this family have multiple targets, including DNA and chromatin, and thus may be capable of modulating gene transcription in response to intracellular lipid accumulation through alteration of the epigenome. In this review, we discuss what is currently understood in the field and suggest areas for future research which may lead to the development of novel preventative or therapeutic interventions for NAFLD.
Collapse
Affiliation(s)
- Matthew C Sinton
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
40
|
Carella A, Tejedor JR, García MG, Urdinguio RG, Bayón GF, Sierra M, López V, García‐Toraño E, Santamarina‐Ojeda P, Pérez RF, Bigot T, Mangas C, Corte‐Torres MD, Sáenz‐de‐Santa‐María I, Mollejo M, Meléndez B, Astudillo A, Chiara MD, Fernández AF, Fraga MF. Epigenetic downregulation of TET3 reduces genome‐wide 5hmC levels and promotes glioblastoma tumorigenesis. Int J Cancer 2019; 146:373-387. [DOI: 10.1002/ijc.32520] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/13/2019] [Accepted: 06/04/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Antonella Carella
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA)Universidad de Oviedo Oviedo Spain
| | - Juan R. Tejedor
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA)Universidad de Oviedo Oviedo Spain
- Fundación para la Investigación Biosanitaria de Asturias (FINBA)Instituto de Investigación Sanitaria del Principado de Asturias (ISPA) Oviedo Spain
| | - María G. García
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA)Universidad de Oviedo Oviedo Spain
| | - Rocío G. Urdinguio
- Nanomaterials and Nanotechnology Research Center (CINN‐CSIC)Universidad de Oviedo Oviedo Spain
| | - Gustavo F. Bayón
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA)Universidad de Oviedo Oviedo Spain
| | - Marta Sierra
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA)Universidad de Oviedo Oviedo Spain
| | - Virginia López
- Nanomaterials and Nanotechnology Research Center (CINN‐CSIC)Universidad de Oviedo Oviedo Spain
| | - Estela García‐Toraño
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA)Universidad de Oviedo Oviedo Spain
| | - Pablo Santamarina‐Ojeda
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA)Universidad de Oviedo Oviedo Spain
- Fundación para la Investigación Biosanitaria de Asturias (FINBA)Instituto de Investigación Sanitaria del Principado de Asturias (ISPA) Oviedo Spain
| | - Raúl F. Pérez
- Nanomaterials and Nanotechnology Research Center (CINN‐CSIC)Universidad de Oviedo Oviedo Spain
| | - Timothée Bigot
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA)Universidad de Oviedo Oviedo Spain
- Fundación para la Investigación Biosanitaria de Asturias (FINBA)Instituto de Investigación Sanitaria del Principado de Asturias (ISPA) Oviedo Spain
| | - Cristina Mangas
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA)Universidad de Oviedo Oviedo Spain
| | - María D. Corte‐Torres
- Hospital Universitario Central de Asturias (HUCA)Biobanco del Principado de Asturias Oviedo Spain
| | - Inés Sáenz‐de‐Santa‐María
- Hospital Universitario Central de Asturias (HUCA), Servicio de Otorrinolaringología, Instituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de Oviedo, CIBERONC Oviedo Spain
| | - Manuela Mollejo
- Departamento de PatologíaHospital Virgen de la Salud (CHT) Toledo Spain
| | - Bárbara Meléndez
- Departamento de PatologíaHospital Virgen de la Salud (CHT) Toledo Spain
| | - Aurora Astudillo
- Departamento de Anatomía PatológicaHospital Universitario Central de Asturias (HUCA) Oviedo Spain
| | - María D. Chiara
- Hospital Universitario Central de Asturias (HUCA), Servicio de Otorrinolaringología, Instituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de Oviedo, CIBERONC Oviedo Spain
| | - Agustín F. Fernández
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA)Universidad de Oviedo Oviedo Spain
- Fundación para la Investigación Biosanitaria de Asturias (FINBA)Instituto de Investigación Sanitaria del Principado de Asturias (ISPA) Oviedo Spain
| | - Mario F. Fraga
- Nanomaterials and Nanotechnology Research Center (CINN‐CSIC)Universidad de Oviedo Oviedo Spain
| |
Collapse
|
41
|
Zhu X, Dresser K, Chen BJ. Loss of 5‐hydroxymethylcytosine immunohistochemical expression is a useful diagnostic aid for distinguishing hepatocellular carcinoma in cytology fine needle aspiration specimens. Cytopathology 2019; 30:492-498. [DOI: 10.1111/cyt.12719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaoqin Zhu
- Department of Pathology UMass Memorial Medical Center University of Massachusetts Medical School Worcester Massachusetts
| | - Karen Dresser
- Department of Pathology UMass Memorial Medical Center University of Massachusetts Medical School Worcester Massachusetts
| | - Benjamin J. Chen
- Department of Pathology UMass Memorial Medical Center University of Massachusetts Medical School Worcester Massachusetts
| |
Collapse
|
42
|
Wang P, Yan Y, Yu W, Zhang H. Role of ten-eleven translocation proteins and 5-hydroxymethylcytosine in hepatocellular carcinoma. Cell Prolif 2019; 52:e12626. [PMID: 31033072 PMCID: PMC6668972 DOI: 10.1111/cpr.12626] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022] Open
Abstract
In mammals, methylation of the 5th position of cytosine (5mC) seems to be a major epigenetic modification of DNA. This process can be reversed (resulting in cytosine) with high efficiency by dioxygenases of the ten‐eleven translocation (TET) family, which perform oxidation of 5mC to 5‐hydroxymethylcytosine (5hmC), 5‐formylcytosine and 5‐carboxylcytosine. It has been demonstrated that these 5mC oxidation derivatives are in a dynamic state and have pivotal regulatory functions. Here, we comprehensively summarized the recent research progress in the understanding of the physiological functions of the TET proteins and their mechanisms of regulation of DNA methylation and transcription. Among the three TET genes, TET1 and TET2 expression levels have frequently been shown to be low in hepatocellular carcinoma (HCC) tissues and received most attention. The modulation of TET1 also correlates with microRNAs in a post‐transcriptional regulatory process. Additionally, recent studies revealed that global genomic 5hmC levels are down‐regulated in HCC tissues and cell lines. Combined with the reported results, identification of 5hmC signatures in HCC tissues and in circulating cell‐free DNA will certainly contribute to early detection and should help to design therapeutic strategies against HCC. 5hmC might also be a novel prognostic biomarker of HCC. Thus, a detailed understanding of the molecular mechanisms resulting in the premalignant and aggressive transformation of TET proteins and cells with 5hmC disruption might help to develop novel epigenetic therapies for HCC.
Collapse
Affiliation(s)
- Penghui Wang
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yunmeng Yan
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Yu
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hongyi Zhang
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
43
|
Mono-ADP-ribosylation of H3R117 traps 5mC hydroxylase TET1 to impair demethylation of tumor suppressor gene TFPI2. Oncogene 2019; 38:3488-3503. [PMID: 30651599 PMCID: PMC6756014 DOI: 10.1038/s41388-018-0671-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 11/12/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023]
Abstract
Recently, nuclear poly-ADP-ribosylation had aroused research interest in epigenetics, but little attempt to explore functions of mono-ADP-ribosylation of histone, the major formation of histone ADP-ribosylated modification. We have previously reported a novel mono-ADP-ribosylation of H3R117, which promoted proliferation of LoVo cells. Here we showed that mono-ADP-ribosylated H3R117 of LoVo cells depressed demethylation of tumor suppressor TFPI2 promoter by suppressing TET1 expression and adjusting H3K9me3 enrichment of TFPI2 promoter to attenuate affinity of TET1, besides, since high H3K27me3 level was associated with hypermethylation, mono-ADP-ribosylated-H3R117-depended-H3K27me3 of TFPI2 promoter may contribute to hypermethylation of TFPI2. However, H3R117A mutation increased poly-ADP-ribosylated modification of TET1 promoter not TFPI2 promoter, which resulted in boosting transcription and expression of TET1 by altering DNA methylated modification, chromatin accessibility, and histone-methylated modification of TET1 promoter, while knockout TET1 of H3R117A LoVo cells directly led to hypermethylation of TFPI2 promoter and depression of TFPI2 secretion as well as enhanced proliferation, suggested that TET1 played a key role in demethylation of TFPI2, production of TFPI2, and cell proliferation. Bioinformatics analyses reveal prevalent hypermethylation of TFPI2 was an early event in tumorigenesis of colorectal caner, and expression of TET1 and TFPI2 was positive correlation in colorectal cancer and normal tissue. These data suggested that mono-ADP-ribosylation of H3R117 upregulated methylation of TFPI2 by impact TET1, since hypermethyaltion of TFPI2 was an early event in tumorigenesis, selectively target mono-ADP-ribosylation of H3R117 deficiency could be a feasible way to block tumorigenesis of colorectal cancer.
Collapse
|
44
|
Wernig-Zorc S, Yadav MP, Kopparapu PK, Bemark M, Kristjansdottir HL, Andersson PO, Kanduri C, Kanduri M. Global distribution of DNA hydroxymethylation and DNA methylation in chronic lymphocytic leukemia. Epigenetics Chromatin 2019; 12:4. [PMID: 30616658 PMCID: PMC6322269 DOI: 10.1186/s13072-018-0252-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/23/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) has been a good model system to understand the functional role of 5-methylcytosine (5-mC) in cancer progression. More recently, an oxidized form of 5-mC, 5-hydroxymethylcytosine (5-hmC) has gained lot of attention as a regulatory epigenetic modification with prognostic and diagnostic implications for several cancers. However, there is no global study exploring the role of 5-hydroxymethylcytosine (5-hmC) levels in CLL. Herein, using mass spectrometry and hMeDIP-sequencing, we analysed the dynamics of 5-hmC during B cell maturation and CLL pathogenesis. RESULTS We show that naïve B-cells had higher levels of 5-hmC and 5-mC compared to non-class switched and class-switched memory B-cells. We found a significant decrease in global 5-mC levels in CLL patients (n = 15) compared to naïve and memory B cells, with no changes detected between the CLL prognostic groups. On the other hand, global 5-hmC levels of CLL patients were similar to memory B cells and reduced compared to naïve B cells. Interestingly, 5-hmC levels were increased at regulatory regions such as gene-body, CpG island shores and shelves and 5-hmC distribution over the gene-body positively correlated with degree of transcriptional activity. Importantly, CLL samples showed aberrant 5-hmC and 5-mC pattern over gene-body compared to well-defined patterns in normal B-cells. Integrated analysis of 5-hmC and RNA-sequencing from CLL datasets identified three novel oncogenic drivers that could have potential roles in CLL development and progression. CONCLUSIONS Thus, our study suggests that the global loss of 5-hmC, accompanied by its significant increase at the gene regulatory regions, constitute a novel hallmark of CLL pathogenesis. Our combined analysis of 5-mC and 5-hmC sequencing provided insights into the potential role of 5-hmC in modulating gene expression changes during CLL pathogenesis.
Collapse
Affiliation(s)
- Sara Wernig-Zorc
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mukesh Pratap Yadav
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| | - Pradeep Kumar Kopparapu
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Hallgerdur Lind Kristjansdottir
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg University, Gothenburg, Sweden
| | - Per-Ola Andersson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg University, Gothenburg, Sweden.,Department of Internal Medicine, Södra Älvsborg Hospital, Borås, Sweden
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Meena Kanduri
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden.
| |
Collapse
|
45
|
Liu Y, Zhu H, Zhang Z, Tu C, Yao D, Wen B, Jiang R, Li X, Yi P, Zhan J, Hu J, Ding J, Jiang L, Zhang F. Effects of a single transient transfection of Ten-eleven translocation 1 catalytic domain on hepatocellular carcinoma. PLoS One 2018; 13:e0207139. [PMID: 30551127 PMCID: PMC6294611 DOI: 10.1371/journal.pone.0207139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/25/2018] [Indexed: 12/22/2022] Open
Abstract
Tumor suppressor genes (TSGs), including Ten-eleven translocation 1 (TET1), are hypermethylated in hepatocellular carcinoma (HCC). TET1 catalytic domain (TET1-CD) induces genome-wide DNA demethylation to activate TSGs, but so far, anticancer effects of TET1-CD are unclear. Here we showed that after HCC cells were transiently transfected with TET1-CD, the methylation levels of TSGs, namely APC, p16, RASSF1A, SOCS1 and TET1, were distinctly reduced, and their mRNA levels were significantly increased and HCC cells proliferation, migration and invasion were suppressed, but the methylation and mRNA levels of oncogenes, namely C-myc, Bmi1, EMS1, Kpna2 and c-fos, were not significantly change. Strikingly, HCC subcutaneous xenografts in nude mice remained to be significantly repressed even 54 days after transient transfection of TET1-CD. So, transient transfection of TET1-CD may be a great advance in HCC treatment due to its activation of multiple TSGs and persistent anticancer effects.
Collapse
Affiliation(s)
- Yuying Liu
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Hui Zhu
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Zhenxue Zhang
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Changchun Tu
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Dongyuan Yao
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Bin Wen
- The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Ru Jiang
- Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Xing Li
- Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Pengfei Yi
- Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, P.R. China
| | - Jiejie Zhan
- Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, P.R. China
| | - Jiaping Hu
- The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Jianwu Ding
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Liping Jiang
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Fanglin Zhang
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
- * E-mail:
| |
Collapse
|
46
|
Hu B, Shi G, Li Q, Li W, Zhou H. Long noncoding RNA XIST participates in bladder cancer by downregulating p53 via binding to TET1. J Cell Biochem 2018; 120:6330-6338. [PMID: 30362292 DOI: 10.1002/jcb.27920] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Bo Hu
- Department of Urology The Fifth People's Hospital of Shanghai, Fudan University Shanghai China
| | - Guowei Shi
- Department of Urology The Fifth People's Hospital of Shanghai, Fudan University Shanghai China
| | - Qian Li
- Department of Urology Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| | - Wei Li
- Department of Urology Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| | - Hui Zhou
- Department of Urology, Huai'an People's Hospital of Hongze District Huai'an China
| |
Collapse
|
47
|
Sun L, Li K, Liu G, Xu Y, Zhang A, Lin D, Zhang H, Zhao X, Jin B, Li N, Zhang Y. Distinctive pattern of AHNAK methylation level in peripheral blood mononuclear cells and the association with HBV-related liver diseases. Cancer Med 2018; 7:5178-5186. [PMID: 30259695 PMCID: PMC6198198 DOI: 10.1002/cam4.1778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/17/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023] Open
Abstract
The purpose of this study was to investigate the correlation between AHNAK methylation level in peripheral blood mononuclear cells (PBMC) and the progression of hepatitis B virus (HBV)‐related liver disease. Bioinformatics methods were applied to evaluate the AHNAK methylation level in PBMC and T cells at different stages of HBV related liver disease, to investigate the correlation between AHNAK methylation and clinical features, as well as to compare the methylation site of AHNAK in cancer tissues and adjacent tissues. Subsequently, the differentially expressed gene analysis technique was used to analyze the liver disease‐related genes and immune‐related pathways in hepatitis B patients with different pathological changes. Finally, promoter methylation and mRNA expression of AHNAK gene in liver cancer and adjacent tissues were determined by quantitative polymerase chain reaction (Q‐PCR), and the diagnostic value of AHNAK methylation level in hepatopathy was evaluated by receiver operating characteristic (ROC) curve. The promoter methylation level of AHNAK gene in PBMCs decreased with the progression of HBV‐related liver disease, and showed significant difference among the patients with various HBV‐related liver diseases (P = 0.0001). The AHNAK methylation level in PBMCs and T cells was negatively associated with age, white blood cell count, CREA, drinking, and positively associated with APTT and HbsAg. Higher mRNA expression of AHNAK was found in liver cancer tissues than that of adjacent tissues (P < 0.001), and the methylation level in PBMC decreased with the progression of hepatitis B‐related liver disease. The area under the ROC curve (ROC) was 0.883 (P < 0.001) in diagnosis of chronic hepatitis B (CHB), 0.885 (P < 0.001) in diagnosis of compensatory liver cirrhosis, 0.955 (P < 0.001) in diagnosis of decompensated liver cirrhosis, 0.981 (P < 0.001) in diagnosis of hepatocellular carcinoma. Our results revealed that AHNAK methylation level in peripheral blood decreases with the progression of hepatitis B‐related liver disease. This provided a potential differential diagnostic method for HBV‐related hepatopathies, and thus an early detective tool for liver cancer.
Collapse
Affiliation(s)
- Libo Sun
- Department of Hepatobiliary Surgery, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Kang Li
- Biomedical Information Center, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Guihai Liu
- Biomedical Information Center, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Yuan Xu
- Department of Hepatobiliary Surgery, Beijing You'an Hospital, Capital Medical University, Beijing, China.,Department of Community Science, University of Calgary, Calgary, Alberta, Canada
| | - Aiying Zhang
- Beijing Institute of Hepatology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Dongdong Lin
- Department of Hepatobiliary Surgery, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Haitao Zhang
- Department of Hepatobiliary Surgery, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Xiaofei Zhao
- Department of Hepatobiliary Surgery, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Boxun Jin
- Department of Hepatobiliary Surgery, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Ning Li
- Department of Hepatobiliary Surgery, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Yonghong Zhang
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
48
|
Ji C, Nagaoka K, Zou J, Casulli S, Lu S, Cao KY, Zhang H, Iwagami Y, Carlson RI, Brooks K, Lawrence J, Mueller W, Wands JR, Huang CK. Chronic ethanol-mediated hepatocyte apoptosis links to decreased TET1 and 5-hydroxymethylcytosine formation. FASEB J 2018; 33:1824-1835. [PMID: 30188753 DOI: 10.1096/fj.201800736r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The 5-hydroxymethylcytosine (5hmc) is a newly identified epigenetic modification thought to be regulated by the TET family of proteins. Little information is available about how ethanol consumption may modulate 5hmC formation and alcoholic liver disease (ALD) progression. A rat ALD model was used to study 5hmC in relationship to hepatocyte apoptosis. Human ALD liver samples were also used to validate these findings. It was found that chronic ethanol feeding significantly reduced 5hmC formation in a rat ALD model. There were no significant changes in TET2 and TET3 between the control- and ethanol-fed animals. In contrast, methylcytosine dioxygenase TET1 (TET1) expression was substantially reduced in the ethanol-fed rats and was accompanied by increased hepatocyte apoptosis. Similarly, knockdown of TET1 in human hepatocyte-like cells also significantly promoted apoptosis. Down-regulation of TET1 resulted in elevated expression of the DNA damage marker, suggesting a role for 5hmc in hepatocyte DNA damage as well. Mechanistic studies revealed that inhibition of TET1 promoted apoptotic gene expression. Similarly, targeting TET1 activity by removing cosubstrate promoted apoptosis and DNA damage. Furthermore, treatment with 5-azacitidine significantly mimics these effects, suggesting that chronic ethanol consumption promotes hepatocyte apoptosis and DNA damage by diminishing TET1-mediated 5hmC formation and DNA methylation. In summary, the current study provides a novel molecular insight that TET1-mediated 5hmC is involved in hepatocyte apoptosis in ALD progression.-Ji, C., Nagaoka, K., Zou, J., Casulli, S., Lu, S., Cao, K. Y., Zhang, H., Iwagami, Y., Carlson, R. I., Brooks, K., Lawrence, J., Mueller, W., Wands, J. R., Huang, C.-K. Chronic ethanol-mediated hepatocyte apoptosis links to decreased TET1 and 5-hydroxymethylcytosine formation.
Collapse
Affiliation(s)
- Chengcheng Ji
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.,Critical Care Center, Beijing 302 Hospital, Beijing, China
| | - Katsuya Nagaoka
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Jing Zou
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.,Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sarah Casulli
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Shaolei Lu
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Kevin Y Cao
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Hongyu Zhang
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Yoshifumi Iwagami
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Rolf I Carlson
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Keri Brooks
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Jonathan Lawrence
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - William Mueller
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Jack R Wands
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Chiung-Kuei Huang
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
49
|
Zhang J, Han X, Gao C, Xing Y, Qi Z, Liu R, Wang Y, Zhang X, Yang YG, Li X, Sun B, Tian X. 5-Hydroxymethylome in Circulating Cell-free DNA as A Potential Biomarker for Non-small-cell Lung Cancer. GENOMICS PROTEOMICS & BIOINFORMATICS 2018; 16:187-199. [PMID: 30010036 PMCID: PMC6076378 DOI: 10.1016/j.gpb.2018.06.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
Non-small-cell lung cancer (NSCLC), the most common type of lung cancer accounting for 85% of the cases, is often diagnosed at advanced stages owing to the lack of efficient early diagnostic tools. 5-Hydroxymethylcytosine (5hmC) signatures in circulating cell-free DNA (cfDNA) that carries the cancer-specific epigenetic patterns may represent the valuable biomarkers for discriminating tumor and healthy individuals, and thus could be potentially useful for NSCLC diagnosis. Here, we employed a sensitive and reliable method to map genome-wide 5hmC in the cfDNA of Chinese NSCLC patients and detected a significant 5hmC gain in both the gene bodies and promoter regions in the blood samples from tumor patients compared with healthy controls. Specifically, we identified six potential biomarkers from 66 patients and 67 healthy controls (mean decrease accuracy >3.2, P < 3.68E−19) using machine-learning-based tumor classifiers with high accuracy. Thus, the unique signature of 5hmC in tumor patient’s cfDNA identified in our study may provide valuable information in facilitating the development of new diagnostic and therapeutic modalities for NSCLC.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Xiao Han
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunchun Gao
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yurong Xing
- Physical Examination Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zheng Qi
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ruijuan Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Yueqin Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Yun-Gui Yang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, School of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangnan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Baofa Sun
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, School of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
50
|
Lyall MJ, Cartier J, Thomson JP, Cameron K, Meseguer-Ripolles J, O'Duibhir E, Szkolnicka D, Villarin BL, Wang Y, Blanco GR, Dunn WB, Meehan RR, Hay DC, Drake AJ. Modelling non-alcoholic fatty liver disease in human hepatocyte-like cells. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0362. [PMID: 29786565 PMCID: PMC5974453 DOI: 10.1098/rstb.2017.0362] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease in developed countries. An in vitro NAFLD model would permit mechanistic studies and enable high-throughput therapeutic screening. While hepatic cancer-derived cell lines are a convenient, renewable resource, their genomic, epigenomic and functional alterations mean their utility in NAFLD modelling is unclear. Additionally, the epigenetic mark 5-hydroxymethylcytosine (5hmC), a cell lineage identifier, is rapidly lost during cell culture, alongside expression of the Ten-eleven-translocation (TET) methylcytosine dioxygenase enzymes, restricting meaningful epigenetic analysis. Hepatocyte-like cells (HLCs) derived from human embryonic stem cells can provide a non-neoplastic, renewable model for liver research. Here, we have developed a model of NAFLD using HLCs exposed to lactate, pyruvate and octanoic acid (LPO) that bear all the hallmarks, including 5hmC profiles, of liver functionality. We exposed HLCs to LPO for 48 h to induce lipid accumulation. We characterized the transcriptome using RNA-seq, the metabolome using ultra-performance liquid chromatography-mass spectrometry and the epigenome using 5-hydroxymethylation DNA immunoprecipitation (hmeDIP) sequencing. LPO exposure induced an NAFLD phenotype in HLCs with transcriptional and metabolomic dysregulation consistent with those present in human NAFLD. HLCs maintain expression of the TET enzymes and have a liver-like epigenome. LPO exposure-induced 5hmC enrichment at lipid synthesis and transport genes. HLCs treated with LPO recapitulate the transcriptional and metabolic dysregulation seen in NAFLD and additionally retain TET expression and 5hmC. This in vitro model of NAFLD will be useful for future mechanistic and therapeutic studies.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- Marcus J Lyall
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Jessy Cartier
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - John P Thomson
- MRC Human Genetics Unit, IGMM, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Kate Cameron
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | | | - Eoghan O'Duibhir
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Dagmara Szkolnicka
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | | | - Yu Wang
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Giovanny Rodriguez Blanco
- Phenome Centre Birmingham, School of Biosciences and Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Warwick B Dunn
- Phenome Centre Birmingham, School of Biosciences and Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Richard R Meehan
- MRC Human Genetics Unit, IGMM, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|