1
|
Meech R, Hu DG, Hulin JA, Mackenzie PI. Sex-specific UGT expression and function: prevalence, potential mechanisms and significance. Expert Opin Drug Metab Toxicol 2025:1-8. [PMID: 40081416 DOI: 10.1080/17425255.2025.2476794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
INTRODUCTION Sex and gender influence pharmacotherapy outcomes, including adverse drug effects which are nearly twice as common in women. Sex differences in drug responses involve factors as diverse as body composition, physiology, and prescribing patterns. Many drugs show higher exposure in women, which can be partly attributed to sex-differences in processes that control drug disposition such as metabolism and transport. AREAS COVERED This article reviews sex differences in the expression and function of the critical phase II drug-metabolizing enzymes, UDP-glucuronosyltransferases (UGTs). We curate the literature on sex-biased UGT expression in human tissues, describe the evidence for UGT-mediated sex-differences in drug exposure, and critically evaluate whether UGTs contribute to different drug outcomes in males and females. Relevant literature was identified by searching PubMed with terms including UDP-glucuronosyltransferase/UGT, glucuronidation/glucuronide, sex, gender, male, female, men, and women. EXPERT OPINION Several examples of sex-biased UGT expression and drug glucuronidation were identified; however, evidence of clinical impact was more limited. Significant data gaps limit our understanding of the prevalence and importance of sex-biased glucuronidation. Novel methodologies for tissue-level metabolite sampling together with increased sex-aware analysis of clinical/preclinical data, could help address gaps and reveal new avenues for enhancing pharmacotherapy outcomes for all genders.
Collapse
Affiliation(s)
- Robyn Meech
- Discipline of Pharmacology, College of Medicine and Public Health, Flinders Health and Medical Research Institution (FHMRI), Flinders University, Bedford Park, Adelaide, Australia
| | - Dong Gui Hu
- Discipline of Pharmacology, College of Medicine and Public Health, Flinders Health and Medical Research Institution (FHMRI), Flinders University, Bedford Park, Adelaide, Australia
| | - Julie-Ann Hulin
- Discipline of Pharmacology, College of Medicine and Public Health, Flinders Health and Medical Research Institution (FHMRI), Flinders University, Bedford Park, Adelaide, Australia
| | - Peter I Mackenzie
- Discipline of Pharmacology, College of Medicine and Public Health, Flinders Health and Medical Research Institution (FHMRI), Flinders University, Bedford Park, Adelaide, Australia
| |
Collapse
|
2
|
Xue J, Li Q, Wang Y, Yin R, Zhang J. Insight into the structure, oligomerization, and the role in drug resistance of human UDP-glucuronosyltransferases. Arch Toxicol 2025; 99:1153-1165. [PMID: 39812829 DOI: 10.1007/s00204-024-03929-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025]
Abstract
Human UDP-glucuronosyltransferases (UGTs) are pivotal phase II metabolic enzymes facilitating the transfer of glucuronic acid from UDP-glucuronic acid (UDPGA) to various substrates. UGTs are classic type I transmembrane glycoproteins, mainly localized in the endoplasmic reticulum (ER) membrane. This review comprehensively explores UGTs, encompassing gene expression, functional characteristics, substrate specificity, and metabolic mechanisms. A recent analysis of C-terminal structures, compared with original data, underscores the pivotal role of α3, α4, and β4 functional domains in selectively recognizing diverse glycosyl donors. Accumulating evidence suggests that UGTs function as homo- and heterodimers, with oligomers likely stabilizing UGTs and modulating their activity. The review sheds light on the implications of UGT oligomerization on substrate glucuronidation and the interplay between protein-protein interaction and glucuronidation activity. UGT-mediated drug resistance, often underestimated, emerges as a clinically relevant form of chemical resistance, with delineated outcomes in tumors and other diseases. This review provides a multifaceted exploration of the physiological significance of UGTs, spanning genetics, proteins, oligomerization, drug resistance, and more, offering insights into their metabolic mechanisms. Understanding interactions between UGT isoforms is crucial for predicting drug-drug interactions, preventing drug toxicity, and enabling precision treatment.
Collapse
Affiliation(s)
- Jia Xue
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiuyi Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruxi Yin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Zheng X, Chen Z, Liang M, Zhou L, Wang M, Zhang S, Zhang S, Ma L, Yi W, Liu X. Targeting UGT2B15 and NR1H4 interaction: a novel therapeutic strategy for polycystic ovary syndrome using naftopidil enantiomers. J Ovarian Res 2025; 18:13. [PMID: 39856707 PMCID: PMC11760714 DOI: 10.1186/s13048-025-01598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder among women of reproductive age. It is characterized by hyperandrogenism, ovulatory dysfunction, and the presence of polycystic ovarian morphology (PCOM) on ultrasound, often accompanied by metabolic disturbances such as insulin resistance and obesity. Current treatments, including oral contraceptives and anti-androgen medications, often yield limited efficacy and undesirable side effects. This study investigates the role of UGT2B15, an essential enzyme for androgen metabolism, in PCOS pathogenesis and its potential as a therapeutic target. METHODS We used RNA sequencing to examine the effects of UGT2B15 knockdown in KGN cells. To modulate UGT2B15 expression, we employed siRNA and (R)/(S)-NAF (naftopidil), a chemical inducer of UGT2B15 identified in our previous studies on a prostate hyperplasia model. The effects of siRNA and (R)/(S)-NAF on dihydrotestosterone (DHT) levels, cell apoptosis, and the expression of apoptosis-related proteins in KGN cells were evaluated. In a PCOS mouse model, we assessed the effects of (R)-NAF and (S)-NAF on serum androgen levels, menstrual cycles, ovarian morphology, and UGT2Bs expression. Additionally, luciferase reporter and ChIP assays were utilized to study UGT2B15 regulation by NR1H4. RESULTS Elevated androgens were found to suppress UGT2B15 expression in ovarian granulosa cells, leading to DHT accumulation and apoptosis. (R)-NAF and (S)-NAF treatments reversed these effects, alleviating PCOS symptoms in mice such as hyperandrogenism, irregular menstrual cycles, and the presence of ovarian cysts. NR1H4 negatively regulated the transcription of UGT2B15 in KGN cells. (R)-NAF and (S)-NAF disrupted NR1H4 binding to the UGT2B15 promoter without affecting its protein levels, indicating direct interference with its regulation. CONCLUSIONS UGT2B15 represents a promising target for novel PCOS therapies by modulating androgen metabolism and protecting ovarian granulosa cells from apoptosis. (R)-NAF and (S)-NAF regulate UGT2B15 by disrupting NR1H4's binding to its promoter, implying potential therapeutic compounds for PCOS treatment.
Collapse
Affiliation(s)
- Xiufen Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Zikai Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Miao Liang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Liting Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Miaoru Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Silin Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Shuyun Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Lei Ma
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Xiawen Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| |
Collapse
|
4
|
Chen H. UDP-glucuronosyltransferases 2A3 as a biomarker for ulcerative colitis and colon cancer. Front Genet 2024; 15:1419755. [PMID: 39717480 PMCID: PMC11663933 DOI: 10.3389/fgene.2024.1419755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Background Ulcerative colitis has a serious impact on the quality of life of patients and is more likely to progress to colon cancer. Therefore, early diagnosis and timely intervention are of considerable importance. Methods Gene expression data of active ulcerative colitis were downloaded from the Gene Expression Omnibus (GEO) database, and genes with significant differential expression were identified. Biochemical markers with diagnostic significance were selected through machine learning methods. The expression differences of the selected markers between colon adenocarcinoma (COAD) and healthy control groups in The Cancer Genome Atlas (TCGA) database were analyzed to evaluate their diagnostic value. In addition, the correlation between the selected markers and clinical indicators, as well as their predictive efficacy for the survival of COAD patients, was explored. Results Through machine learning and LASSO regression analysis, UGT2A3 was finally determined as a diagnostic marker for ulcerative colitis. It demonstrated high diagnostic accuracy in both the training set and the external validation set. Furthermore, UGT2A3 was significantly downregulated in COAD tissues compared to normal control tissues. The ROC curve suggested that UGT2A3 could serve as a diagnostic marker for COAD with excellent performance, achieving an AUC of 0.969. Immune infiltration analysis indicated a significant negative correlation between the expression of UGT2A3 and neutrophils. Correlation analysis suggested a link between UGT2A3 and the pathological classification of colon cancer. Survival analysis showed that UGT2A3 is negatively correlated with OS, PPS, and RFS in colon cancer. Conclusion The author identified UGT2A3 as a diagnostic marker for ulcerative colitis through bioinformatics methods, and verified its significant downregulation in colon cancer, as well as its predictive role in the survival of COAD patients. These findings suggest that UGT2A3 may serve not only as a diagnostic marker for ulcerative colitis and colon cancer but also as a potential prognostic indicator for colon cancer.
Collapse
Affiliation(s)
- Hao Chen
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
5
|
Lethe MCL, Paris V, Wang X, Chan CTY. Similarities in Structure and Function of UDP-Glycosyltransferase Homologs from Human and Plants. Int J Mol Sci 2024; 25:2782. [PMID: 38474028 PMCID: PMC10932239 DOI: 10.3390/ijms25052782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
The uridine diphosphate glycosyltransferase (UGT) superfamily plays a key role in the metabolism of xenobiotics and metabolic wastes, which is essential for detoxifying those species. Over the last several decades, a huge effort has been put into studying human and mammalian UGT homologs, but family members in other organisms have been explored much less. Potentially, other UGT homologs can have desirable substrate specificity and biological activities that can be harnessed for detoxification in various medical settings. In this review article, we take a plant UGT homology, UGT71G1, and compare its structural and biochemical properties with the human homologs. These comparisons suggest that even though mammalian and plant UGTs are functional in different environments, they may support similar biochemical activities based on their protein structure and function. The known biological functions of these homologs are discussed so as to provide insights into the use of UGT homologs from other organisms for addressing human diseases related to UGTs.
Collapse
Affiliation(s)
- Mary Caroline L. Lethe
- Department of Biomedical Engineering, College of Engineering, University of North Texas, 3940 N Elm Street, Denton, TX 76207, USA (V.P.)
| | - Vincent Paris
- Department of Biomedical Engineering, College of Engineering, University of North Texas, 3940 N Elm Street, Denton, TX 76207, USA (V.P.)
| | - Xiaoqiang Wang
- Department of Biological Sciences, College of Science, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA;
- BioDiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| | - Clement T. Y. Chan
- Department of Biomedical Engineering, College of Engineering, University of North Texas, 3940 N Elm Street, Denton, TX 76207, USA (V.P.)
- BioDiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| |
Collapse
|
6
|
Wang S, Huang W, Li M, Wang N, Liu X, Chen M, Peng X. RpUGT344J7 is involved in the reproduction switch of Rhopalosiphum padi with holocyclic life cycle. INSECT SCIENCE 2024. [PMID: 38282241 DOI: 10.1111/1744-7917.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
Abstract
Many aphid species exhibit both cyclical parthenogenesis (CP) and the obligate parthenogenesis (OP) life history, which are genetically determined. In CP aphid lineages, the parthenogenetic individuals can switch from asexual to sexual reproduction quickly in response to environmental factors such as changes in photoperiod and temperature. However, the OP aphid lineages do not undergo sexual reproduction under any conditions. So far, mechanisms underlying the reproduction switch in CP aphids have not been fully elucidated. Rhopalosiphum padi, a serious worldwide insect pest of wheat, has both CP and OP lineages. Uridine diphosphate-glycosyltransferases (UGTs) are enzymes that participate in the metabolic detoxification of xenobiotics. Here, we identified 43 RpUGT genes from R. padi genome and transcriptome sequences, and found that: (1) the UGT content of the CP lineage was significantly higher than that in the OP lineage at the key time points when CP lineage mainly produce virginoparae, gynoparae, and males under inducing condition, while there were no significant difference under normal conditions; (2) RpUGT344J7 gene was highly expressed during the time points when CP lineages produce gynopara and males; (3) the critical time points for CP lineages to produce virginoparaee, gynoparae, and males were affected when the CP lineages were injected with dsRpUGT344J7; (4) the knockdown of RpUGT344J7 caused a significant reduction in the total number of virginoparae, gynoparae, and males in the offspring under inducing condition. The findings contribute to our understanding of the molecular mechanisms underlying the quick shift from asexual to sexual reproduction in aphid species.
Collapse
Affiliation(s)
- Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Wenjie Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Mengtian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Ni Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| |
Collapse
|
7
|
Asemota S, Effah W, Young KL, Holt J, Cripe L, Ponnusamy S, Thiyagarajan T, Hwang DJ, He Y, Mcnamara K, Johnson D, Wang Y, Grimes B, Khosrosereshki Y, Hollingsworth TJ, Fleming MD, Pritchard FE, Hendrix A, Khan F, Fan M, Makowski L, Yin Z, Sasano H, Hayes DN, Pfeffer LM, Miller DD, Narayanan R. Identification of a targetable JAK-STAT enriched androgen receptor and androgen receptor splice variant positive triple-negative breast cancer subtype. Cell Rep 2023; 42:113461. [PMID: 37979170 PMCID: PMC10872270 DOI: 10.1016/j.celrep.2023.113461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype with no targeted therapeutics. The luminal androgen receptor (LAR) subtype constitutes 15% of TNBC and is enriched for androgen receptor (AR) and AR target genes. Here, we show that a cohort of TNBC not only expresses AR at a much higher rate (∼80%) but also expresses AR splice variants (AR-SVs) (∼20%), further subclassifying LAR-TNBC. Higher AR and AR-SV expression and corresponding aggressive phenotypes are observed predominantly in specimens obtained from African American women. LAR TNBC specimens are enriched for interferon, Janus kinase (JAK)-signal activator and transducer (STAT), and androgen signaling pathways, which are exclusive to AR-expressing epithelial cancer cells. AR- and AR-SV-expressing TNBC cell proliferation and xenograft and patient-tumor explant growth are inhibited by AR N-terminal domain-binding selective AR degrader or by a JAK inhibitor. Biochemical analysis suggests that STAT1 is an AR coactivator. Collectively, our work identifies pharmacologically targetable TNBC subtypes and identifies growth-promoting interaction between AR and JAK-STAT signaling.
Collapse
Affiliation(s)
- Sarah Asemota
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Wendy Effah
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Kirsten L Young
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Jeremiah Holt
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Linnea Cripe
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Suriyan Ponnusamy
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Thirumagal Thiyagarajan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Yali He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Keely Mcnamara
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8577, Japan
| | - Daniel Johnson
- Molecular Bioinformatics Core, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Yinan Wang
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Brandy Grimes
- West Cancer Center and Research Institute, Memphis, TN 38138, USA
| | - Yekta Khosrosereshki
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - T J Hollingsworth
- Department of Ophthalmology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Martin D Fleming
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Frances E Pritchard
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Ashley Hendrix
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Farhan Khan
- Department of Pathology, Methodist Hospital, Memphis, TN 38104, USA
| | - Meiyun Fan
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Liza Makowski
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Zheng Yin
- Biomedical and Informatics Services Core, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8577, Japan
| | - D Neil Hayes
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Lawrence M Pfeffer
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Ramesh Narayanan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA.
| |
Collapse
|
8
|
Miziak P, Baran M, Błaszczak E, Przybyszewska-Podstawka A, Kałafut J, Smok-Kalwat J, Dmoszyńska-Graniczka M, Kiełbus M, Stepulak A. Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel) 2023; 15:4689. [PMID: 37835383 PMCID: PMC10572081 DOI: 10.3390/cancers15194689] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Estrogen receptor (ER) signaling is a critical regulator of cell proliferation, differentiation, and survival in breast cancer (BC) and other hormone-sensitive cancers. In this review, we explore the mechanism of ER-dependent downstream signaling in BC and the role of estrogens as growth factors necessary for cancer invasion and dissemination. The significance of the clinical implications of ER signaling in BC, including the potential of endocrine therapies that target estrogens' synthesis and ER-dependent signal transmission, such as aromatase inhibitors or selective estrogen receptor modulators, is discussed. As a consequence, the challenges associated with the resistance to these therapies resulting from acquired ER mutations and potential strategies to overcome them are the critical point for the new treatment strategies' development.
Collapse
Affiliation(s)
- Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Marzena Baran
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Ewa Błaszczak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland;
| | - Magdalena Dmoszyńska-Graniczka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| |
Collapse
|
9
|
Collodet C, Blust K, Gkouma S, Ståhl E, Chen X, Hartman J, Hedhammar M. Development and characterization of a recombinant silk network for 3D culture of immortalized and fresh tumor-derived breast cancer cells. Bioeng Transl Med 2023; 8:e10537. [PMID: 37693069 PMCID: PMC10487315 DOI: 10.1002/btm2.10537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 09/12/2023] Open
Abstract
Traditional cancer models rely on 2D cell cultures or 3D spheroids, which fail to recapitulate cell-extracellular matrix (ECM) interactions, a key element of tumor development. Existing hydrogel-based 3D alternatives lack mechanical support for cell growth and often suffer from low reproducibility. Here we report a novel strategy to make 3D models of breast cancer using a tissue-like, well-defined network environment based on recombinant spider silk, functionalized with a cell adhesion motif from fibronectin (FN-silk). With this approach, the canonical cancer cells SK-BR-3, MCF-7, and MDA-MB-231, maintain their characteristic expression of markers (i.e., ERα, HER2, and PGR) while developing distinct morphology. Transcriptomic analyses demonstrate how culture in the FN-silk networks modulates the biological processes of cell adhesion and migration while affecting physiological events involved in malignancy, such as inflammation, remodeling of the ECM, and resistance to anticancer drugs. Finally, we show that integration in FN-silk networks promotes the viability of cells obtained from the superficial scraping of patients' breast tumors.
Collapse
Affiliation(s)
- Caterina Collodet
- Division of Protein TechnologySchool of Biotechnology, KTH Royal Institute of TechnologyStockholmSweden
| | - Kelly Blust
- Division of Protein TechnologySchool of Biotechnology, KTH Royal Institute of TechnologyStockholmSweden
| | - Savvini Gkouma
- Division of Protein TechnologySchool of Biotechnology, KTH Royal Institute of TechnologyStockholmSweden
| | - Emmy Ståhl
- Division of Protein TechnologySchool of Biotechnology, KTH Royal Institute of TechnologyStockholmSweden
| | - Xinsong Chen
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
| | - Johan Hartman
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Department of Clinical Pathology and Cancer DiagnosticsKarolinska University HospitalStockholmSweden
| | - My Hedhammar
- Division of Protein TechnologySchool of Biotechnology, KTH Royal Institute of TechnologyStockholmSweden
| |
Collapse
|
10
|
Li L, Zheng S, Chen M, Chi W, Xue J, Wu J. The Prognostic Values of Androgen Receptor in Breast Cancer. Arch Pathol Lab Med 2023; 147:1075-1085. [PMID: 36508355 DOI: 10.5858/arpa.2021-0590-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2022] [Indexed: 09/01/2023]
Abstract
CONTEXT.— Whether androgen receptor (AR) expression can predict prognosis in breast cancer is under debate. OBJECTIVE.— To analyze, retrospectively, the prognostic and treatment-predictive ability of AR status in breast cancer. DESIGN.— A total of 5765 patients diagnosed with primary invasive breast cancer without distant metastasis in the adjuvant setting were analyzed. The propensity score-matching method was used to develop a new cohort of 3978 patients (1989 patients each) in which important prognostic factors were balanced. RESULTS.— Positive AR expression is an independent prognostic factor for disease-free survival and overall survival. Estrogen receptor (ER)+ and progesterone receptor (PR)+ AR+ breast cancer patients had the longest survival, whereas ER-PR-AR- breast cancer patients had the shortest survival. The ER/PR/AR combinations could not predict the treatment effects for adjuvant trastuzumab but could be used for adjuvant chemotherapy and endocrine therapy selection. The worst survival was found in ER+PR-AR- patients receiving toremifene, ER+PR-AR+ patients receiving exemestane, ER+PR+AR- patients receiving anthracycline, and ER-PR-AR+ patients receiving taxanes. ER+PR-AR-, ER-PR-AR+, and ER-PR-AR- patients were associated with the worst survival among those who received radiotherapy and anthracycline plus taxanes. CONCLUSIONS.— AR in combination with ER and PR could predict the prognosis and treatment effects of chemotherapy, endocrine therapy, and radiotherapy in the adjuvant setting.
Collapse
Affiliation(s)
- Lun Li
- From the Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China (Li, Zheng, Chen, Chi, Xue, Wu)
- The Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (Li, Zheng, Chen, Chi, Xue, Wu)
- The Department of Breast Surgery, The Second Xiangya Hospital, Central South University, Changsha, China (Li)
| | - Shuyue Zheng
- From the Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China (Li, Zheng, Chen, Chi, Xue, Wu)
- The Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (Li, Zheng, Chen, Chi, Xue, Wu)
| | - Ming Chen
- From the Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China (Li, Zheng, Chen, Chi, Xue, Wu)
- The Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (Li, Zheng, Chen, Chi, Xue, Wu)
| | - Weiru Chi
- From the Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China (Li, Zheng, Chen, Chi, Xue, Wu)
- The Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (Li, Zheng, Chen, Chi, Xue, Wu)
| | - Jingyan Xue
- From the Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China (Li, Zheng, Chen, Chi, Xue, Wu)
- The Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (Li, Zheng, Chen, Chi, Xue, Wu)
| | - Jiong Wu
- From the Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China (Li, Zheng, Chen, Chi, Xue, Wu)
- The Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (Li, Zheng, Chen, Chi, Xue, Wu)
- The Collaborative Innovation Center for Cancer Medicine, Shanghai, China (Wu)
| |
Collapse
|
11
|
Miners JO, Polasek TM, Hulin JA, Rowland A, Meech R. Drug-drug interactions that alter the exposure of glucuronidated drugs: Scope, UDP-glucuronosyltransferase (UGT) enzyme selectivity, mechanisms (inhibition and induction), and clinical significance. Pharmacol Ther 2023:108459. [PMID: 37263383 DOI: 10.1016/j.pharmthera.2023.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Drug-drug interactions (DDIs) arising from the perturbation of drug metabolising enzyme activities represent both a clinical problem and a potential economic loss for the pharmaceutical industry. DDIs involving glucuronidated drugs have historically attracted little attention and there is a perception that interactions are of minor clinical relevance. This review critically examines the scope and aetiology of DDIs that result in altered exposure of glucuronidated drugs. Interaction mechanisms, namely inhibition and induction of UDP-glucuronosyltransferase (UGT) enzymes and the potential interplay with drug transporters, are reviewed in detail, as is the clinical significance of known DDIs. Altered victim drug exposure arising from modulation of UGT enzyme activities is relatively common and, notably, the incidence and importance of UGT induction as a DDI mechanism is greater than generally believed. Numerous DDIs are clinically relevant, resulting in either loss of efficacy or an increased risk of adverse effects, necessitating dose individualisation. Several generalisations relating to the likelihood of DDIs can be drawn from the known substrate and inhibitor selectivities of UGT enzymes, highlighting the importance of comprehensive reaction phenotyping studies at an early stage of drug development. Further, rigorous assessment of the DDI liability of new chemical entities that undergo glucuronidation to a significant extent has been recommended recently by regulatory guidance. Although evidence-based approaches exist for the in vitro characterisation of UGT enzyme inhibition and induction, the availability of drugs considered appropriate for use as 'probe' substrates in clinical DDI studies is limited and this should be research priority.
Collapse
Affiliation(s)
- John O Miners
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Thomas M Polasek
- Certara, Princeton, NJ, USA; Centre for Medicines Use and Safety, Monash University, Melbourne, Australia
| | - Julie-Ann Hulin
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Andrew Rowland
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Robyn Meech
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
12
|
Leo J, Dondossola E, Basham KJ, Wilson NR, Alhalabi O, Gao J, Kurnit KC, White MG, McQuade JL, Westin SN, Wellberg EA, Frigo DE. Stranger Things: New Roles and Opportunities for Androgen Receptor in Oncology Beyond Prostate Cancer. Endocrinology 2023; 164:bqad071. [PMID: 37154098 PMCID: PMC10413436 DOI: 10.1210/endocr/bqad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
The androgen receptor (AR) is one of the oldest therapeutic targets in oncology and continues to dominate the treatment landscape for advanced prostate cancer, where nearly all treatment regimens include some form of AR modulation. In this regard, AR remains the central driver of prostate cancer cell biology. Emerging preclinical and clinical data implicate key roles for AR in additional cancer types, thereby expanding the importance of this drug target beyond prostate cancer. In this mini-review, new roles for AR in other cancer types are discussed as well as their potential for treatment with AR-targeted agents. Our understanding of these additional functions for AR in oncology expand this receptor's potential as a therapeutic target and will help guide the development of new treatment approaches.
Collapse
Affiliation(s)
- Javier Leo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Eleonora Dondossola
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Nathaniel R Wilson
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Omar Alhalabi
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katherine C Kurnit
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, The University of Chicago, Chicago, IL 60637, USA
| | - Michael G White
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer L McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth A Wellberg
- Department of Pathology, Harold Hamm Diabetes Center, and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
13
|
Significance of UGT1A6, UGT1A9, and UGT2B7 genetic variants and their mRNA expression in the clinical outcome of renal cell carcinoma. Mol Cell Biochem 2022:10.1007/s11010-022-04637-4. [PMID: 36571650 DOI: 10.1007/s11010-022-04637-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 12/07/2022] [Indexed: 12/27/2022]
Abstract
UDP-glucuronosyltransferase (UGT) metabolizes a number of endogenous and exogenous substrates. Renal cells express high amounts of UGT; however, the significance of UGT in patients with renal cell carcinoma (RCC) remains unknown. In this study, we profile the mRNA expression of UGT subtypes (UGT1A6, UGT1A9, and UGT2B7) and their genetic variants in the kidney tissue of 125 Japanese patients with RCC (Okayama University Hospital, Japan). In addition, we elucidate the association between the UGT variants and UGT mRNA expression levels and clinical outcomes in these patients. The three representative genetic variants, namely, UGT1A6 541A > G, UGT1A9 i399C > T, and UGT2B7-161C > T, were genotyped, and their mRNA expression levels in each tissue were determined. We found that the mRNA expression of the three UGTs (UGT1A6, UGT1A9, and UGT2B7) are significantly downregulated in RCC tissues. Moreover, in patients with RCC, the UGT2B7-161C > T variant and high UGT2B7 mRNA expression are significantly correlated with preferable cancer-specific survival (CSS) and overall survival (OS), respectively. As such, the UGT2B7-161C > T variant and UGT2B7 mRNA expression level were identified as significant independent prognostic factors of CSS and CSS/OS, respectively. Taken together, these findings indicate that UGT2B7 has a role in RCC progression and may, therefore, represent a potential prognostic biomarker for patients with RCC.
Collapse
|
14
|
Identification of UDP-Glucuronosyltransferase 2B15 (UGT2B15) as a Target for IGF1 and Insulin Action. Cells 2022; 11:cells11101627. [PMID: 35626664 PMCID: PMC9139319 DOI: 10.3390/cells11101627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Normal growth and development in mammals are tightly controlled by numerous genetic factors and metabolic conditions. The growth hormone (GH)-insulin-like growth factor-1 (IGF1) hormonal axis is a key player in the regulation of these processes. Dysregulation of the GH-IGF1 endocrine system is linked to a number of pathologies, ranging from growth deficits to cancer. Laron syndrome (LS) is a type of dwarfism that results from mutation of the GH receptor (GHR) gene, leading to GH resistance and short stature as well as a number of metabolic abnormalities. Of major clinical relevance, epidemiological studies have shown that LS patients do not develop cancer. While the mechanisms associated with cancer protection in LS have not yet been elucidated, genomic analyses have identified a series of metabolic genes that are over-represented in LS patients. We hypothesized that these genes might constitute novel targets for IGF1 action. With a fold-change of 11.09, UDP-glucuronosyltransferase 2B15 (UGT2B15) was the top up-regulated gene in LS. The UGT2B15 gene codes for an enzyme that converts xenobiotic substances into lipophilic compounds and thereby facilitates their clearance from the body. We investigated the regulation of UGT2B15 gene expression by IGF1 and insulin. Both hormones inhibited UGT2B15 mRNA levels in endometrial and breast cancer cell lines. Regulation of UGT2B15 protein levels by IGF1/insulin, however, was more complex and not always correlated with mRNA levels. Furthermore, UGT2B15 expression was dependent on p53 status. Thus, UGT2B15 mRNA levels were higher in cell lines expressing a wild-type p53 compared to cells containing a mutated p53. Animal studies confirmed an inverse correlation between UGT2B15 and p53 levels. In summary, increased UGT2B15 levels in LS might confer upon patient’s protection from genotoxic damage.
Collapse
|
15
|
Mehrgou A, Teimourian S. Update of gene expression/methylation and MiRNA profiling in colorectal cancer; application in diagnosis, prognosis, and targeted therapy. PLoS One 2022; 17:e0265527. [PMID: 35333898 PMCID: PMC8956198 DOI: 10.1371/journal.pone.0265527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/02/2022] [Indexed: 01/22/2023] Open
Abstract
Background
Colorectal cancer is one of the most deadliest malignancies worldwide. Due to the dearth of appropriate biomarkers, the diagnosis of this mortal disease is usually deferred, in its turn, culminating in the failure of prevention. By the same token, proper biomarkers are at play in determining the quality of prognosis. In other words, the survival rate is contingent upon the regulation of such biomarkers.
Materials and methods
The information regarding expression (GSE41258, and GSE31905), methylation (GSE101764), and miRNA (dbDEMC) were downloaded. MEXPRESS and GEPIA confirmed the validated differentially expressed/methylated genes using TCGA data. Taking advantage of the correlation plots and receiver-operating-characteristic (ROC) curves, expression and methylation profiles were compared. The interactions between validated differentially expressed genes and differentially expressed miRNA were recognized and visualized by miRTarBase and Cytoscape, respectively. Then, the protein-protein interaction (PPI) network and hub genes were established via STRING and Cytohubba plugin. Utilizing R packages (DOSE, Enrichplot, and clusterProfiler) and DAVID database, the Functional Enrichment analysis and the detection of KEGG pathways were performed. Ultimately, in order to recognize the prognostic value of found biomarkers, they were evaluated through drawing survival plots for CRC patients.
Results
In this research, we found an expression profile (with 13 novel genes), a methylation profile (with two novel genes), and a miRNA profile with diagnostic value. Concerning diagnosis, the expression profile was evaluated more powerful in comparison with the methylation profile. Furthermore, a prognosis-related expression profile was detected.
Conclusion
In addition to diagnostic- and prognostic-applicability, the discerned profiles can assist in targeted therapy and current therapeutic strategies.
Collapse
Affiliation(s)
- Amir Mehrgou
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- * E-mail:
| |
Collapse
|
16
|
Zhao N, Zhang Y, Cheng R, Zhang D, Li F, Guo Y, Qiu Z, Dong X, Ban X, Sun B, Zhao X. Spatial maps of hepatocellular carcinoma transcriptomes highlight an unexplored landscape of heterogeneity and a novel gene signature for survival. Cancer Cell Int 2022; 22:57. [PMID: 35109839 PMCID: PMC8812006 DOI: 10.1186/s12935-021-02430-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/24/2021] [Indexed: 01/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) often presents with satellite nodules, rendering current curative treatments ineffective in many patients. The heterogeneity of HCC is a major challenge in personalized medicine. The emergence of spatial transcriptomics (ST) provides a powerful strategy for delineating the complex molecular landscapes of tumours. Methods In this study, the heterogeneity of tissue-wide gene expression in tumour and adjacent nonneoplastic tissues using ST technology were investigated. The transcriptomes of nearly 10,820 tissue regions and identified the main gene expression clusters and their specific marker genes (differentially expressed genes, DEGs) in patients were analysed. The DEGs were analysed from two perspectives. First, two distinct gene profiles were identified to be associated with satellite nodules and conducted a more comprehensive analysis of both gene profiles. Their clinical relevance in human HCC was validated with Kaplan–Meier (KM) Plotter. Second, DEGs were screened with The Cancer Genome Atlas (TCGA) database to divide the HCC cohort into high- and low-risk groups according to Cox analysis. HCC patients from the International Cancer Genome Consortium (ICGC) cohort were used for validation. KM analysis was used to compare the overall survival (OS) between the high- and low-risk groups. Univariate and multivariate Cox analyses were applied to determine the independent predictors for OS. Results Novel markers for the prediction of satellite nodules were identified and a tumour clusters-specific marker gene signature model (6 genes) for HCC prognosis was constructed. Conclusion The establishment of marker gene profiles may be an important step towards an unbiased view of HCC, and the 6-gene signature can be used for prognostic prediction in HCC. This analysis will help us to clarify one of the possible sources of HCC heterogeneity and uncover pathogenic mechanisms and novel antitumour drug targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02430-9.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Yanhui Zhang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Runfen Cheng
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Fan Li
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Yuhong Guo
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Zhiqiang Qiu
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Xinchao Ban
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China. .,Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China. .,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China.
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China. .,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China.
| |
Collapse
|
17
|
Takagi K, Yamaguchi M, Miyashita M, Sasano H, Suzuki T. Diverse role of androgen action in human breast cancer. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2022; 2:R102-R111. [PMID: 37435447 PMCID: PMC10259322 DOI: 10.1530/eo-22-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 07/13/2023]
Abstract
Breast cancer is a hormone-dependent cancer, and sex steroids play a pivotal role in breast cancer progression. Estrogens are strongly associated with breast cancers, and the estrogen receptor (estrogen receptor α; ERα) is expressed in 70-80% of human breast carcinoma tissues. Although antiestrogen therapies (endocrine therapies) have significantly improved clinical outcomes in ERα-positive breast cancer patients, some patients experience recurrence after treatment. In addition, patients with breast carcinoma lacking ERα expression do not benefit from endocrine therapy. The androgen receptor (AR) is also expressed in >70% of breast carcinoma tissues. Growing evidence supports this novel therapeutic target for the treatment of triple-negative breast cancers that lack ERα, progesterone receptor, and human EGF receptor 2, and ERα-positive breast cancers, which are resistant to conventional endocrine therapy. However, the clinical significance of AR expression is still controversial and the biological function of androgens in breast cancers is unclear. In this review, we focus on the recent findings concerning androgen action in breast cancers and the contributions of androgens to improved breast cancer therapy.
Collapse
Affiliation(s)
- Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mio Yamaguchi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Pathology, Tohoku University Hospital, Sendai, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
18
|
Hu DG, Marri S, Mackenzie PI, Hulin JA, McKinnon RA, Meech R. The Expression Profiles and Deregulation of UDP-Glycosyltransferase ( UGT) Genes in Human Cancers and Their Association with Clinical Outcomes. Cancers (Basel) 2021; 13:4491. [PMID: 34503303 PMCID: PMC8430925 DOI: 10.3390/cancers13174491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022] Open
Abstract
The human UDP-glycosyltransferase (UGTs) superfamily has 22 functional enzymes that play a critical role in the metabolism of small lipophilic compounds, including carcinogens, drugs, steroids, lipids, fatty acids, and bile acids. The expression profiles of UGT genes in human cancers and their impact on cancer patient survival remains to be systematically investigated. In the present study, a comprehensive analysis of the RNAseq and clinical datasets of 9514 patients from 33 different TCGA (the Genome Cancer Atlas) cancers demonstrated cancer-specific UGT expression profiles with high interindividual variability among and within individual cancers. Notably, cancers derived from drug metabolizing tissues (liver, kidney, gut, pancreas) expressed the largest number of UGT genes (COAD, KIRC, KIRP, LIHC, PAAD); six UGT genes (1A6, 1A9, 1A10, 2A3, 2B7, UGT8) showed high expression in five or more different cancers. Kaplan-Meier plots and logrank tests revealed that six UGT genes were significantly associated with increased overall survival (OS) rates [UGT1A1 (LUSC), UGT1A6 (ACC), UGT1A7 (ACC), UGT2A3 (KIRC), UGT2B15 (BLCA, SKCM)] or decreased OS rates [UGT2B15 (LGG), UGT8 (UVM)] in specific cancers. Finally, differential expression analysis of 611 patients from 12 TCGA cancers identified 16 UGT genes (1A1, 1A3, 1A6, 1A7, 1A8, 1A9, 1A10, 2A1, 2A3, 2B4, 2B7, 2B11, 2B15, 3A1, 3A2, UGT8) that were up/downregulated in at least one cancer relative to normal tissues. In conclusion, our data show widespread expression of UGT genes in cancers, highlighting the capacity for intratumoural drug metabolism through the UGT conjugation pathway. The data also suggests the potentials for specific UGT genes to serve as prognostic biomarkers or therapeutic targets in cancers.
Collapse
Affiliation(s)
- Dong Gui Hu
- Dicipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (P.I.M.); (J.-A.H.); (R.A.M.); (R.M.)
| | - Shashikanth Marri
- Dicipline of Molecular Medicine and Pathology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia;
| | - Peter I. Mackenzie
- Dicipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (P.I.M.); (J.-A.H.); (R.A.M.); (R.M.)
| | - Julie-Ann Hulin
- Dicipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (P.I.M.); (J.-A.H.); (R.A.M.); (R.M.)
| | - Ross A. McKinnon
- Dicipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (P.I.M.); (J.-A.H.); (R.A.M.); (R.M.)
| | - Robyn Meech
- Dicipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (P.I.M.); (J.-A.H.); (R.A.M.); (R.M.)
| |
Collapse
|
19
|
Correlation between Androgen Receptor Expression and Immunohistochemistry Type as Prognostic Factors in a Cohort of Breast Cancer Patients: Result from a Single-Center, Cross Sectional Study. Healthcare (Basel) 2021; 9:healthcare9030277. [PMID: 33802610 PMCID: PMC7998173 DOI: 10.3390/healthcare9030277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background: We investigated the correlation between the androgen receptor (AR) and immunohistochemistry (IHC) as a prognostic factor in breast cancer (BC). AR is expressed in 60–80% of BC. Methods: We evaluated the prognostic values of AR expression among 143 patients with BC for 36 months. The protocol was amended to measure androgen, estrogen and progesterone receptor expression by IHC and the percentage of hormone positive nuclei was quantified. We determined and quantified the Her2/neu status using IHC and in situ hybridization. The methodology consisted in using a Kaplan–Meier analysis and restricted mean survival time up to 36 months. The principal endpoints of the study were overall survival (OS) and progression free survival (PFS). Results: 57% of patients (n = 82) from our group had AR+ (≥ 1%). Patients with AR+ had better OS, 35.50 vs. 33.40 months, with p = 0.027. Moreover, PFS was prolonged for patients AR+, 32.60 vs. 30.50 months, with p = 0.38. Triple negative breast cancer (TNBC) patients had lower OS and no difference was observed for PFS. Conclusions: Both OS and PFS were favorably influenced by the presence of AR. TNBC had worse outcomes compared with patients with hormonal or/and Her 2/neu positive disease in terms of OS.
Collapse
|
20
|
Hickey TE, Selth LA, Chia KM, Laven-Law G, Milioli HH, Roden D, Jindal S, Hui M, Finlay-Schultz J, Ebrahimie E, Birrell SN, Stelloo S, Iggo R, Alexandrou S, Caldon CE, Abdel-Fatah TM, Ellis IO, Zwart W, Palmieri C, Sartorius CA, Swarbrick A, Lim E, Carroll JS, Tilley WD. The androgen receptor is a tumor suppressor in estrogen receptor-positive breast cancer. Nat Med 2021; 27:310-320. [PMID: 33462444 DOI: 10.1038/s41591-020-01168-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/03/2020] [Indexed: 01/28/2023]
Abstract
The role of the androgen receptor (AR) in estrogen receptor (ER)-α-positive breast cancer is controversial, constraining implementation of AR-directed therapies. Using a diverse, clinically relevant panel of cell-line and patient-derived models, we demonstrate that AR activation, not suppression, exerts potent antitumor activity in multiple disease contexts, including resistance to standard-of-care ER and CDK4/6 inhibitors. Notably, AR agonists combined with standard-of-care agents enhanced therapeutic responses. Mechanistically, agonist activation of AR altered the genomic distribution of ER and essential co-activators (p300, SRC-3), resulting in repression of ER-regulated cell cycle genes and upregulation of AR target genes, including known tumor suppressors. A gene signature of AR activity positively predicted disease survival in multiple clinical ER-positive breast cancer cohorts. These findings provide unambiguous evidence that AR has a tumor suppressor role in ER-positive breast cancer and support AR agonism as the optimal AR-directed treatment strategy, revealing a rational therapeutic opportunity.
Collapse
Affiliation(s)
- Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
- Freemason's Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Kee Ming Chia
- Garvan Institute of Medical Research & St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Geraldine Laven-Law
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Heloisa H Milioli
- Garvan Institute of Medical Research & St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel Roden
- Garvan Institute of Medical Research & St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Shalini Jindal
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Mun Hui
- Garvan Institute of Medical Research & St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Esmaeil Ebrahimie
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Stephen N Birrell
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Suzan Stelloo
- Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Richard Iggo
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Institut Bergonié, University of Bordeaux, Bordeaux, France
| | - Sarah Alexandrou
- Garvan Institute of Medical Research & St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - C Elizabeth Caldon
- Garvan Institute of Medical Research & St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | - Wilbert Zwart
- Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Carlo Palmieri
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool & Clatterbridge Centre NHS Foundation Trust, Liverpool, UK
| | | | - Alex Swarbrick
- Garvan Institute of Medical Research & St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Elgene Lim
- Garvan Institute of Medical Research & St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.
- Freemason's Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
21
|
The Expression Profiles of ADME Genes in Human Cancers and Their Associations with Clinical Outcomes. Cancers (Basel) 2020; 12:cancers12113369. [PMID: 33202946 PMCID: PMC7697355 DOI: 10.3390/cancers12113369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
ADME genes are a group of genes that are involved in drug absorption, distribution, metabolism, and excretion (ADME). The expression profiles of ADME genes within tumours is proposed to impact on cancer patient survival; however, this has not been systematically examined. In this study, our comprehensive analyses of pan-cancer datasets from the Cancer Genome Atlas (TCGA) revealed differential intratumoral expression profiles for ADME genes in 21 different cancer types. Most genes also showed high interindividual variability within cancer-specific patient cohorts. Using Kaplan-Meier plots and logrank tests, we showed that intratumoral expression levels of twenty of the thirty-two core ADME genes were associated with overall survival (OS) in these cancers. Of these genes, five showed significant association with unfavourable OS in three cancers, including SKCM (ABCC2, GSTP1), KIRC (CYP2D6, CYP2E1), PAAD (UGT2B7); sixteen showed significant associations with favourable OS in twelve cancers, including BLCA (UGT2B15), BRCA (CYP2D6), COAD (NAT1), HNSC (ABCB1), KIRC (ABCG2, CYP3A4, SLC22A2, SLC22A6), KIRP (SLC22A2), LIHC (CYP2C19, CYP2C8, CYP2C9, CYP3A5, SLC22A1), LUAD (SLC15A2), LUSC (UGT1A1), PAAD (ABCB1), SARC (ABCB1), and SKCM (ABCB1, DYPD). Overall, these data provide compelling evidence supporting ADME genes as prognostic biomarkers and potential therapeutic targets. We propose that intratumoral expression of ADME genes may impact cancer patient survival by multiple mechanisms that can include metabolizing/transporting anticancer drugs, activating anticancer drugs, and metabolizing/transporting a variety of endogenous molecules involved in metabolically fuelling cancer cells and/or controlling pro-growth signalling pathways.
Collapse
|
22
|
Yoon G, Carroll RJ, Gaynanova I. Sparse semiparametric canonical correlation analysis for data of mixed types. Biometrika 2020; 107:609-625. [PMID: 34621080 PMCID: PMC8494134 DOI: 10.1093/biomet/asaa007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Canonical correlation analysis investigates linear relationships between two sets of variables, but often works poorly on modern datasets due to high-dimensionality and mixed data types (continuous/binary/zero-inflated). We propose a new approach for sparse canonical correlation analysis of mixed data types that does not require explicit parametric assumptions. Our main contribution is the use of truncated latent Gaussian copula to model the data with excess zeroes, which allows us to derive a rank-based estimator of latent correlation matrix without the estimation of marginal transformation functions. The resulting semiparametric sparse canonical correlation analysis method works well in high-dimensional settings as demonstrated via numerical studies, and application to the analysis of association between gene expression and micro RNA data of breast cancer patients.
Collapse
Affiliation(s)
- Grace Yoon
- Department of Statistics, Texas A&M University, College Station, Texas 77843, U.S.A
| | - Raymond J Carroll
- Department of Statistics, Texas A&M University, College Station, Texas 77843, U.S.A
| | - Irina Gaynanova
- Department of Statistics, Texas A&M University, College Station, Texas 77843, U.S.A
| |
Collapse
|
23
|
Zhang H, Wolford C, Basit A, Li AP, Fan PW, Murray BP, Takahashi RH, Khojasteh SC, Smith BJ, Thummel KE, Prasad B. Regional Proteomic Quantification of Clinically Relevant Non-Cytochrome P450 Enzymes along the Human Small Intestine. Drug Metab Dispos 2020; 48:528-536. [PMID: 32350063 DOI: 10.1124/dmd.120.090738] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/18/2020] [Indexed: 02/13/2025] Open
Abstract
Current challenges in accurately predicting intestinal metabolism arise from the complex nature of the intestine, leading to limited applicability of available in vitro tools as well as knowledge deficits in intestinal physiology, including enzyme abundance. In particular, information on regional enzyme abundance along the small intestine is lacking, especially for non-cytochrome P450 enzymes such as carboxylesterases (CESs), UDP-glucuronosyltransferases (UGTs), and sulfotransferases (SULTs). We used cryopreserved human intestinal mucosa samples from nine donors as an in vitro surrogate model for the small intestine and performed liquid chromatography tandem mass spectrometry-based quantitative proteomics for 17 non-cytochrome P450 enzymes using stable isotope-labeled peptides. Relative protein quantification was done by normalization with enterocyte marker proteins, i.e., villin-1, sucrase isomaltase, and fatty acid binding protein 2, and absolute protein quantification is reported as picomoles per milligram of protein. Activity assays in glucuronidations and sequential metabolisms were conducted to validate the proteomics findings. Relative or absolute quantifications are reported for CES1, CES2, five UGTs, and four SULTs along the small intestine: duodenum, jejunum, and ileum for six donors and in 10 segments along the entire small intestine (A-J) for three donors. Relative quantification using marker proteins may be beneficial in further controlling for technical variabilities. Absolute quantification data will allow for scaling factor generation and in vivo extrapolation of intestinal clearance using physiologically based pharmacokinetic modeling. SIGNIFICANCE STATEMENT: Current knowledge gaps exist in intestinal protein abundance of non-cytochrome P450 enzymes. Here, we employ quantitative proteomics to measure non-cytochrome P450 enzymes along the human small intestine in nine donors using cryopreserved human intestinal mucosa samples. Absolute and relative abundances reported here will allow better scaling of intestinal clearance.
Collapse
Affiliation(s)
- Haeyoung Zhang
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.Z., C.W., A.B., K.E.T., B.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.); Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Genentech Inc., South San Francisco, California (R.H.T., S.C.K.); and Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (B.J.S., B.P.M.)
| | - Chris Wolford
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.Z., C.W., A.B., K.E.T., B.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.); Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Genentech Inc., South San Francisco, California (R.H.T., S.C.K.); and Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (B.J.S., B.P.M.)
| | - Abdul Basit
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.Z., C.W., A.B., K.E.T., B.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.); Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Genentech Inc., South San Francisco, California (R.H.T., S.C.K.); and Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (B.J.S., B.P.M.)
| | - Albert P Li
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.Z., C.W., A.B., K.E.T., B.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.); Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Genentech Inc., South San Francisco, California (R.H.T., S.C.K.); and Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (B.J.S., B.P.M.)
| | - Peter W Fan
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.Z., C.W., A.B., K.E.T., B.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.); Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Genentech Inc., South San Francisco, California (R.H.T., S.C.K.); and Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (B.J.S., B.P.M.)
| | - Bernard P Murray
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.Z., C.W., A.B., K.E.T., B.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.); Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Genentech Inc., South San Francisco, California (R.H.T., S.C.K.); and Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (B.J.S., B.P.M.)
| | - Ryan H Takahashi
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.Z., C.W., A.B., K.E.T., B.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.); Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Genentech Inc., South San Francisco, California (R.H.T., S.C.K.); and Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (B.J.S., B.P.M.)
| | - S Cyrus Khojasteh
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.Z., C.W., A.B., K.E.T., B.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.); Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Genentech Inc., South San Francisco, California (R.H.T., S.C.K.); and Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (B.J.S., B.P.M.)
| | - Bill J Smith
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.Z., C.W., A.B., K.E.T., B.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.); Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Genentech Inc., South San Francisco, California (R.H.T., S.C.K.); and Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (B.J.S., B.P.M.)
| | - Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.Z., C.W., A.B., K.E.T., B.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.); Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Genentech Inc., South San Francisco, California (R.H.T., S.C.K.); and Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (B.J.S., B.P.M.)
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.Z., C.W., A.B., K.E.T., B.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.); Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Genentech Inc., South San Francisco, California (R.H.T., S.C.K.); and Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (B.J.S., B.P.M.)
| |
Collapse
|
24
|
Pawłowska M, Kwaśniewska A, Mazerska Z, Augustin E. Enhanced Activity of P4503A4 and UGT1A10 Induced by Acridinone Derivatives C-1305 and C-1311 in MCF-7 and HCT116 Cancer Cells: Consequences for the Drugs' Cytotoxicity, Metabolism and Cellular Response. Int J Mol Sci 2020; 21:ijms21113954. [PMID: 32486425 PMCID: PMC7312182 DOI: 10.3390/ijms21113954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/13/2023] Open
Abstract
Activity modulation of drug metabolism enzymes can change the biotransformation of chemotherapeutics and cellular responses induced by them. As a result, drug-drug interactions can be modified. Acridinone derivatives, represented here by C-1305 and C-1311, are potent anticancer drugs. Previous studies in non-cellular systems showed that they are mechanism-based inhibitors of cytochrome P4503A4 and undergo glucuronidation via UDP-glucuronosyltranspherase 1A10 isoenzyme (UGT1A10). Therefore, we investigated the potency of these compounds to modulate P4503A4 and UGT1A10 activity in breast MCF-7 and colon HCT116 cancer cells and their influence on cytotoxicity and cellular response in cells with different expression levels of studied isoenzymes. We show that C-1305 and C-1311 are inducers of not only P4503A4 but also UGT1A10 activity. MCF-7 and HCT116 cells with high P4503A4 activity are more sensitive to acridinone derivatives and undergo apoptosis/necrosis to a greater extent. UGT1A10 was demonstrated to be responsible for C-1305 and C-1311 glucuronidation in cancer cells and glucuronide products were excreted outside the cell very fast. Finally, we show that glucuronidation of C-1305 antitumor agent enhances its pro-apoptotic properties in HCT116 cells, while the cytotoxicity and cellular response induced by C-1311 did not change after drug glucuronidation in both cell lines.
Collapse
Affiliation(s)
- Monika Pawłowska
- Department of Pharmaceutical Technology and Biochemistry, Chemical Faculty, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (Z.M.); (E.A.)
- Correspondence: ; Tel.: +48-58-347-12-97; Fax: +48-58-347-11-44
| | - Anna Kwaśniewska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Zofia Mazerska
- Department of Pharmaceutical Technology and Biochemistry, Chemical Faculty, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (Z.M.); (E.A.)
| | - Ewa Augustin
- Department of Pharmaceutical Technology and Biochemistry, Chemical Faculty, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (Z.M.); (E.A.)
| |
Collapse
|
25
|
Mikolajczyk K, Kaczmarek R, Czerwinski M. How glycosylation affects glycosylation: the role of N-glycans in glycosyltransferase activity. Glycobiology 2020; 30:941-969. [PMID: 32363402 DOI: 10.1093/glycob/cwaa041] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
N-glycosylation is one of the most important posttranslational modifications of proteins. It plays important roles in the biogenesis and functions of proteins by influencing their folding, intracellular localization, stability and solubility. N-glycans are synthesized by glycosyltransferases, a complex group of ubiquitous enzymes that occur in most kingdoms of life. A growing body of evidence shows that N-glycans may influence processing and functions of glycosyltransferases, including their secretion, stability and substrate/acceptor affinity. Changes in these properties may have a profound impact on glycosyltransferase activity. Indeed, some glycosyltransferases have to be glycosylated themselves for full activity. N-glycans and glycosyltransferases play roles in the pathogenesis of many diseases (including cancers), so studies on glycosyltransferases may contribute to the development of new therapy methods and novel glycoengineered enzymes with improved properties. In this review, we focus on the role of N-glycosylation in the activity of glycosyltransferases and attempt to summarize all available data about this phenomenon.
Collapse
Affiliation(s)
- Krzysztof Mikolajczyk
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Radoslaw Kaczmarek
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Marcin Czerwinski
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
26
|
Mackenzie P, Meyers J, Hulin JA, Hu DG, Mubarokah S, McKinnon R, Meech R. Potential Novel Role of UDP Glucuronosyltransferases 2B11 and 2B28 in Crosstalk Between Androgen and Lipid Signalling. FASEB J 2020. [DOI: 10.1096/fasebj.2020.34.s1.04907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. Br J Cancer 2020; 122:1277-1287. [PMID: 32047295 PMCID: PMC7188667 DOI: 10.1038/s41416-019-0722-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/06/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
The best-known role of UDP-glucuronosyltransferase enzymes (UGTs) in cancer is the metabolic inactivation of drug therapies. By conjugating glucuronic acid to lipophilic drugs, UGTs impair the biological activity and enhance the water solubility of these agents, driving their elimination. Multiple clinical observations support an expanding role for UGTs as modulators of the drug response and in mediating drug resistance in numerous cancer types. However, accumulating evidence also suggests an influence of the UGT pathway on cancer progression. Dysregulation of the expression and activity of UGTs has been associated with the progression of several cancers, arguing for UGTs as possible mediators of oncogenic pathways and/or disease accelerators in a drug-naive context. The consequences of altered UGT activity on tumour biology are incompletely understood. They might be associated with perturbed levels of bioactive endogenous metabolites such as steroids and bioactive lipids that are inactivated by UGTs or through non-enzymatic mechanisms, thereby eliciting oncogenic signalling cascades. This review highlights the evidence supporting dual roles for the UGT pathway, affecting cancer progression and drug resistance. Pharmacogenomic testing of UGT profiles in patients and the development of therapeutic options that impair UGT actions could provide useful prognostic and predictive biomarkers and enhance the efficacy of anti-cancer drugs.
Collapse
|
28
|
Ostano P, Mello-Grand M, Sesia D, Gregnanin I, Peraldo-Neia C, Guana F, Jachetti E, Farsetti A, Chiorino G. Gene Expression Signature Predictive of Neuroendocrine Transformation in Prostate Adenocarcinoma. Int J Mol Sci 2020; 21:ijms21031078. [PMID: 32041153 PMCID: PMC7037893 DOI: 10.3390/ijms21031078] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/20/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) can arise de novo, but much more commonly occurs as a consequence of a selective pressure from androgen deprivation therapy or androgen receptor antagonists used for prostate cancer (PCa) treatment. The process is known as neuroendocrine transdifferentiation. There is little molecular characterization of NEPCs and consequently there is no standard treatment for this kind of tumors, characterized by highly metastases rates and poor survival. For this purpose, we profiled 54 PCa samples with more than 10-years follow-up for gene and miRNA expression. We divided samples into two groups (NE-like vs. AdenoPCa), according to their clinical and molecular features. NE-like tumors were characterized by a neuroendocrine fingerprint made of known neuroendocrine markers and novel molecules, including long non-coding RNAs and components of the estrogen receptor signaling. A gene expression signature able to predict NEPC was built and tested on independently published datasets. This study identified molecular features (protein-coding, long non-coding, and microRNAs), at the time of surgery, that may anticipate the NE transformation process of prostate adenocarcinoma. Our results may contribute to improving the diagnosis and treatment of this subgroup of tumors for which traditional therapy regimens do not show beneficial effects.
Collapse
Affiliation(s)
- Paola Ostano
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900 Biella, Italy; (P.O.); (M.M.-G.); (D.S.); (I.G.); (C.P.-N.); (F.G.)
| | - Maurizia Mello-Grand
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900 Biella, Italy; (P.O.); (M.M.-G.); (D.S.); (I.G.); (C.P.-N.); (F.G.)
| | - Debora Sesia
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900 Biella, Italy; (P.O.); (M.M.-G.); (D.S.); (I.G.); (C.P.-N.); (F.G.)
| | - Ilaria Gregnanin
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900 Biella, Italy; (P.O.); (M.M.-G.); (D.S.); (I.G.); (C.P.-N.); (F.G.)
| | - Caterina Peraldo-Neia
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900 Biella, Italy; (P.O.); (M.M.-G.); (D.S.); (I.G.); (C.P.-N.); (F.G.)
| | - Francesca Guana
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900 Biella, Italy; (P.O.); (M.M.-G.); (D.S.); (I.G.); (C.P.-N.); (F.G.)
| | - Elena Jachetti
- Department of Research, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Antonella Farsetti
- National Research Council - Institute of Analysis, Systems and Computer Science –CNR-IASI, 00185 Rome, Italy;
| | - Giovanna Chiorino
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900 Biella, Italy; (P.O.); (M.M.-G.); (D.S.); (I.G.); (C.P.-N.); (F.G.)
- Correspondence:
| |
Collapse
|
29
|
Cao J, Yang X, Li J, Wu H, Li P, Yao Z, Dong Z, Tian J. Screening and Identifying Immune-Related Cells and Genes in the Tumor Microenvironment of Bladder Urothelial Carcinoma: Based on TCGA Database and Bioinformatics. Front Oncol 2020; 9:1533. [PMID: 32010623 PMCID: PMC6974676 DOI: 10.3389/fonc.2019.01533] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Bladder cancer is the most common cancer of the urinary system and its treatment has scarcely progressed for nearly 30 years. Advances in checkpoint inhibitor research have seemingly provided a new approach for treatment. However, there have been issues predicting immunotherapeutic biomarkers and identifying new therapeutic targets. We downloaded the gene expression profile and clinical data of 408 cases bladder urinary cancer from the Cancer Genome Atlas (TCGA) portal, and the abundance ratio of immune cells for each sample was obtained via the "Cell Type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT)" algorithm. Then, four survival-related immune cells were obtained via Kaplan-Meier survival analysis, and 933 immune-related genes were obtained via a variance analysis. Enrichment, protein-protein interaction, and co-expression analyses were performed for these genes. Lastly, 4 survival-related immune cells and 24 hub genes were identified, four of which were related to overall survival. More importantly, these immune cells and genes were closely related to the clinical features. These cells and genes may have research value and clinical application in bladder cancer immunotherapy. Our study not only provides cell and gene targets for bladder cancer immunotherapy, but also provides new ideas for researchers to explore the immunotherapy of various tumors.
Collapse
Affiliation(s)
- Jinlong Cao
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Urological Diseases of Gansu Provincial, Lanzhou, China
| | - Xin Yang
- Reproductive Medicine Center, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Jianpeng Li
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Urological Diseases of Gansu Provincial, Lanzhou, China
| | - Hao Wu
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Urological Diseases of Gansu Provincial, Lanzhou, China
| | - Pan Li
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Urological Diseases of Gansu Provincial, Lanzhou, China
| | - Zhiqiang Yao
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Urological Diseases of Gansu Provincial, Lanzhou, China
| | - Zhichun Dong
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Urological Diseases of Gansu Provincial, Lanzhou, China
| | - Junqiang Tian
- Key Laboratory of Urological Diseases of Gansu Provincial, Lanzhou, China
| |
Collapse
|
30
|
Liu Y, Badée J, Takahashi RH, Schmidt S, Parrott N, Fowler S, Mackenzie PI, Coughtrie MWH, Collier AC. Coexpression of Human Hepatic Uridine Diphosphate Glucuronosyltransferase Proteins: Implications for Ontogenetic Mechanisms and Isoform Coregulation. J Clin Pharmacol 2019; 60:722-733. [DOI: 10.1002/jcph.1571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/02/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Yuejian Liu
- Faculty of Pharmaceutical SciencesThe University of British Columbia Vancouver British Columbia Canada
| | - Justine Badée
- Novartis Institutes for BioMedical Research–Translational Medicine PK Sciences–Modeling & Simulation PBPK Novartis Campus Basel Switzerland
| | | | - Stephan Schmidt
- Center for Pharmacometrics & Systems PharmacologyDepartment of Pharmaceutics Lake Nona (Orlando)University of Florida Orlando Florida USA
| | - Neil Parrott
- Pharmaceutical SciencesRoche Pharma Research and Early DevelopmentRoche Innovation Centre Basel Basel Switzerland
| | - Stephen Fowler
- Pharmaceutical SciencesRoche Pharma Research and Early DevelopmentRoche Innovation Centre Basel Basel Switzerland
| | - Peter I. Mackenzie
- Department of Clinical PharmacologyFlinders University of South Australia Adelaide Australia
| | - Michael W. H. Coughtrie
- Faculty of Pharmaceutical SciencesThe University of British Columbia Vancouver British Columbia Canada
| | - Abby C. Collier
- Faculty of Pharmaceutical SciencesThe University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
31
|
Zhang CY, Calvo EL, Yang CQ, Liu J, Sang XY, Lin SX. Transcriptome of 17β-hydroxysteroid dehydrogenase type 2 plays both hormone-dependent and hormone-independent roles in MCF-7 breast cancer cells. J Steroid Biochem Mol Biol 2019; 195:105471. [PMID: 31513846 DOI: 10.1016/j.jsbmb.2019.105471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/11/2022]
Abstract
Breast cancer is a major cause of cancer-related death for women in western countries. 17β-Hydroxysteroid dehydrogenases (17β-HSDs) play important roles in the last step of sex-hormone activation and the first step of sex-hormone inactivation. 17β-HSD2 is responsible for oxidizing the sex hormones. We used microarray technology to analyze the effect of 17β-HSD2 on the MCF-7 cell transcript profile after knocking down 17β-HSD2. Five hundred forty-two genes were regulated 1.5-fold or higher after treatment with 17β-HSD2 siRNA. Knocking down 17β-HSD2 interrupted nucleosome assembly. Pathway-Act-Network analysis showed that the MAPK and apoptosis signaling pathways were most regulated. In the gene-gene interaction network analysis, UGT2B15, which is involved in hormone metabolism, was the most regulated core gene. FOS, GREB1, and CXCL12 were the most regulated genes, and CXCL12 was related to tumor migration. Following 17β-HSD2 knock-down, the cell viability decreased to 75.9%. The S-phase percentage decreased by 19.4%, the Q2-phase percentage in cell apoptosis testing increased by 1.5 times, and cell migration decreased to 66.0%. These results were consistent with our gene chip analysis and indicated that 17β-HSD2 plays both hormone-dependent and hormone-independent enzymatic roles. In-depth investigations of this enzyme on the genomic level will help clarify its related molecular mechanisms.
Collapse
Affiliation(s)
- Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China; Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL) and Department of Molecular Medicine, Québec G1V 4G2, Canada
| | - Ezequiel-Luis Calvo
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL) and Department of Molecular Medicine, Québec G1V 4G2, Canada
| | - Chang-Qing Yang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Xiao-Ye Sang
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL) and Department of Molecular Medicine, Québec G1V 4G2, Canada
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL) and Department of Molecular Medicine, Québec G1V 4G2, Canada.
| |
Collapse
|
32
|
Hu DG, Hulin JUA, Nair PC, Haines AZ, McKinnon RA, Mackenzie PI, Meech R. The UGTome: The expanding diversity of UDP glycosyltransferases and its impact on small molecule metabolism. Pharmacol Ther 2019; 204:107414. [PMID: 31647974 DOI: 10.1016/j.pharmthera.2019.107414] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/17/2019] [Indexed: 01/23/2023]
Abstract
The UDP glycosyltransferase (UGT) superfamily of enzymes is responsible for the metabolism and clearance of thousands of lipophilic chemicals including drugs, toxins and endogenous signaling molecules. They provide a protective interface between the organism and its chemical-rich environment, as well as controlling critical signaling pathways to maintain healthy tissue function. UGTs are associated with drug responses and interactions, as well as a wide range of diseases including cancer. The human genome contains 22 UGT genes; however as befitting their exceptionally diverse substrate ranges and biological activities, the output of these UGT genes is functionally diversified by multiple processes including alternative splicing, post-translational modification, homo- and hetero-oligomerization, and interactions with other proteins. All UGT genes are subject to extensive alternative splicing generating variant/truncated UGT proteins with altered functions including the capacity to dominantly modulate/inhibit cognate full-length forms. Heterotypic oligomerization of different UGTs can alter kinetic properties relative to monotypic complexes, and potentially produce novel substrate specificities. Moreover, the recently profiled interactions of UGTs with non-UGT proteins may facilitate coordination between different metabolic processes, as well as providing opportunities for UGTs to engage in novel 'moonlighting' functions. Herein we provide a detailed and comprehensive review of all known modes of UGT functional diversification and propose a UGTome model to describe the resulting expansion of metabolic capacity and its potential to modulate drug/xenobiotic responses and cell behaviours in normal and disease contexts.
Collapse
Affiliation(s)
- Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - J Ulie-Ann Hulin
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Pramod C Nair
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z Haines
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I Mackenzie
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Robyn Meech
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia.
| |
Collapse
|
33
|
Tonsing-Carter E, Hernandez KM, Kim CR, Harkless RV, Oh A, Bowie KR, West-Szymanski DC, Betancourt-Ponce MA, Green BD, Lastra RR, Fleming GF, Chandarlapaty S, Conzen SD. Glucocorticoid receptor modulation decreases ER-positive breast cancer cell proliferation and suppresses wild-type and mutant ER chromatin association. Breast Cancer Res 2019; 21:82. [PMID: 31340854 PMCID: PMC6651939 DOI: 10.1186/s13058-019-1164-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/25/2019] [Indexed: 12/25/2022] Open
Abstract
Background Non-ER nuclear receptor activity can alter estrogen receptor (ER) chromatin association and resultant ER-mediated transcription. Consistent with GR modulation of ER activity, high tumor glucocorticoid receptor (GR) expression correlates with improved relapse-free survival in ER+ breast cancer (BC) patients. Methods In vitro cell proliferation assays were used to assess ER-mediated BC cell proliferation following GR modulation. ER chromatin association following ER/GR co-liganding was measured using global ChIP sequencing and directed ChIP analysis of proliferative gene enhancers. Results We found that GR liganding with either a pure agonist or a selective GR modulator (SGRM) slowed estradiol (E2)-mediated proliferation in ER+ BC models. SGRMs that antagonized transcription of GR-unique genes both promoted GR chromatin association and inhibited ER chromatin localization at common DNA enhancer sites. Gene expression analysis revealed that ER and GR co-activation decreased proliferative gene activation (compared to ER activation alone), specifically reducing CCND1, CDK2, and CDK6 gene expression. We also found that ligand-dependent GR occupancy of common ER-bound enhancer regions suppressed both wild-type and mutant ER chromatin association and decreased corresponding gene expression. In vivo, treatment with structurally diverse SGRMs also reduced MCF-7 Y537S ER-expressing BC xenograft growth. Conclusion These studies demonstrate that liganded GR can suppress ER chromatin occupancy at shared ER-regulated enhancers, including CCND1 (Cyclin D1), regardless of whether the ligand is a classic GR agonist or antagonist. Resulting GR-mediated suppression of ER+ BC proliferative gene expression and cell division suggests that SGRMs could decrease ER-driven gene expression. Electronic supplementary material The online version of this article (10.1186/s13058-019-1164-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eva Tonsing-Carter
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Kyle M Hernandez
- Center for Research Informatics, The University of Chicago, Chicago, IL, 60637, USA.,Department of Pediatrics, The University of Chicago, Chicago, IL, 60637, USA
| | - Caroline R Kim
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Ryan V Harkless
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Alyce Oh
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Kathleen R Bowie
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | | | | | - Bradley D Green
- Ben May Department for Cancer Research, The University of Chicago, 900 E 57th St, Chicago, IL, 60637, USA
| | - Ricardo R Lastra
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - Gini F Fleming
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Suzanne D Conzen
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA. .,Ben May Department for Cancer Research, The University of Chicago, 900 E 57th St, Chicago, IL, 60637, USA.
| |
Collapse
|
34
|
Creevey L, Bleach R, Madden SF, Toomey S, Bane FT, Varešlija D, Hill AD, Young LS, McIlroy M. Altered Steroid Milieu in AI-Resistant Breast Cancer Facilitates AR Mediated Gene-Expression Associated with Poor Response to Therapy. Mol Cancer Ther 2019; 18:1731-1743. [PMID: 31289138 DOI: 10.1158/1535-7163.mct-18-0791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/23/2018] [Accepted: 07/03/2019] [Indexed: 11/16/2022]
Abstract
Divergent roles for androgen receptor (AR) in breast cancer have been reported. Following aromatase inhibitor (AI) treatment, the conversion of circulating androgens into estrogens can be diminished by >99%. We wished to establish whether the steroid environment can dictate the role of AR and the implications of this for subsequent therapy. This study utilizes models of AI resistance to explore responsiveness to PI3K/mTOR and anti-AR therapy when cells are exposed to unconverted weak androgens. Transcriptomic alterations driven by androstenedione (4AD) were assessed by RNA-sequencing. AR and estrogen receptor (ER) recruitment to target gene promoters was evaluated using ChIP, and relevance to patient profiles was performed using publicly available data sets. Although BEZ235 showed decreased viability across AI-sensitive and -resistant cell lines, anti-AR treatment elicited a decrease in cell viability only in the AI-resistant model. Serum and glucocorticoid-regulated kinase 3 (SGK3) and cAMP-dependent protein kinase inhibitor β (PKIB) were confirmed to be regulated by 4AD and shown to be mediated by AR; crucially, reexposure to estradiol suppressed expression of these genes. Meta-analysis of transcript levels showed high expression of SGK3 and PKIB to be associated with poor response to endocrine therapy (HR = 2.551, P = 0.003). Furthermore, this study found levels of SGK3 to be sustained in patients who do not respond to AI therapy. This study highlights the importance of the tumor steroid environment. SGK3 and PKIB are associated with poor response to endocrine therapy and could have utility in tailoring therapeutic approaches.
Collapse
Affiliation(s)
- Laura Creevey
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Rachel Bleach
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Stephen F Madden
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sinead Toomey
- Department of Oncology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Fiona T Bane
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Damir Varešlija
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Arnold D Hill
- Department of Surgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Leonie S Young
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Marie McIlroy
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.
| |
Collapse
|
35
|
Wang Y, Liu S, Dong W, Qu X, Huang C, Yan T, Du J. Combination of hesperetin and platinum enhances anticancer effect on lung adenocarcinoma. Biomed Pharmacother 2019; 113:108779. [DOI: 10.1016/j.biopha.2019.108779] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/03/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
|
36
|
Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, Rowland A, Mackenzie PI. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol Rev 2019; 99:1153-1222. [DOI: 10.1152/physrev.00058.2017] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UDP-glycosyltransferases (UGTs) catalyze the covalent addition of sugars to a broad range of lipophilic molecules. This biotransformation plays a critical role in elimination of a broad range of exogenous chemicals and by-products of endogenous metabolism, and also controls the levels and distribution of many endogenous signaling molecules. In mammals, the superfamily comprises four families: UGT1, UGT2, UGT3, and UGT8. UGT1 and UGT2 enzymes have important roles in pharmacology and toxicology including contributing to interindividual differences in drug disposition as well as to cancer risk. These UGTs are highly expressed in organs of detoxification (e.g., liver, kidney, intestine) and can be induced by pathways that sense demand for detoxification and for modulation of endobiotic signaling molecules. The functions of the UGT3 and UGT8 family enzymes have only been characterized relatively recently; these enzymes show different UDP-sugar preferences to that of UGT1 and UGT2 enzymes, and to date, their contributions to drug metabolism appear to be relatively minor. This review summarizes and provides critical analysis of the current state of research into all four families of UGT enzymes. Key areas discussed include the roles of UGTs in drug metabolism, cancer risk, and regulation of signaling, as well as the transcriptional and posttranscriptional control of UGT expression and function. The latter part of this review provides an in-depth analysis of the known and predicted functions of UGT3 and UGT8 enzymes, focused on their likely roles in modulation of levels of endogenous signaling pathways.
Collapse
Affiliation(s)
- Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A. McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Siti Nurul Mubarokah
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z. Haines
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Pramod C. Nair
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I. Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
37
|
Centenera MM, Selth LA, Ebrahimie E, Butler LM, Tilley WD. New Opportunities for Targeting the Androgen Receptor in Prostate Cancer. Cold Spring Harb Perspect Med 2018; 8:a030478. [PMID: 29530945 PMCID: PMC6280715 DOI: 10.1101/cshperspect.a030478] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent genomic analyses of metastatic prostate cancer have provided important insight into adaptive changes in androgen receptor (AR) signaling that underpin resistance to androgen deprivation therapies. Novel strategies are required to circumvent these AR-mediated resistance mechanisms and thereby improve prostate cancer survival. In this review, we present a summary of AR structure and function and discuss mechanisms of AR-mediated therapy resistance that represent important areas of focus for the development of new therapies.
Collapse
Affiliation(s)
- Margaret M Centenera
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide SA 5001, Australia
| | - Luke A Selth
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Esmaeil Ebrahimie
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide SA 5001, Australia
| | - Wayne D Tilley
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
38
|
Li SN, Cao YF, Sun XY, Yang K, Liang YJ, Gao SS, Fu ZW, Liu YZ, Yang K, Fang ZZ. Hydroxy metabolites of polychlorinated biphenyls (OH-PCBs) exhibit inhibitory effects on UDP-glucuronosyltransferases (UGTs). CHEMOSPHERE 2018; 212:513-522. [PMID: 30165278 DOI: 10.1016/j.chemosphere.2018.08.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
Hydroxy metabolites of polychlorinated biphenyls (OH-PCBs) are important substance basis for the toxicity of PCBs. This study aims to investigate the inhibition of OH-PCBs on the activity of UDP-glucuronosyltransferases (UGTs), trying to elucidate the toxicity mechanism of PCBs from a new perspective. In vitrohuman recombinant UGTs-catalyzed glucuronidation of 4-methylumbelliferone (4-MU) was used as the probe reaction. The number of chlorine atom can affect the inhibition potential of OH-PCBs towards different isoforms of UGTs, and complex structure-activity relationship was found for the inhibition of OH-PCBs on the activities of UGT isoforms. For the inhibition kinetic determination, 2'OHPCB106 and 4'OHPCB106 were selected as the representative OH-PCBs, and UGT1A1, 1A7, and 2B7 were chosen as the representative UGT isoforms. Competitive inhibition of 2'OHPCB106 and 4'OHPCB106 on the activities of UGT1A1, UGT1A7, and UGT2B7 was found. For 2'OHPCB106, the inhibition kinetic parameters (Ki) were calculated to be 0.4 μM for UGT1A1, 1.3 μM for UGT1A7, and 2.7 μM for UGT2B7, respectively. For 4'OHPCB106, Ki values were calculated to be 0.7 μM for UGT1A1, 6.8 μM for UGT1A7, and 4.8 μM for UGT2B7, respectively. In silico docking method was utilized to elucidate the inhibition difference of UGT1A1 by four OH-PCBs with similar structures (4'OHPCB9, 4'OHPCB26, 4'OHPCB112 and 4'OHPCB165). In conclusion, these data will be helpful for understanding the toxicity mechanisms of PCBs from a view of metabolic interference.
Collapse
Affiliation(s)
- Sai-Nan Li
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, China
| | - Yun-Feng Cao
- Key Laboratory of Contraceptives and Devices Research (NPFPC), Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China; Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, China
| | | | - Kai Yang
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, China
| | - Ying-Jie Liang
- General Hospital of Liaohe Oil Field for China Petroleum, China
| | - Shi-Shuang Gao
- General Hospital of Liaohe Oil Field for China Petroleum, China
| | - Zhi-Wei Fu
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, China
| | - Yong-Zhe Liu
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, China
| | - Kun Yang
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, China.
| | - Zhong-Ze Fang
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, China.
| |
Collapse
|
39
|
Truong TH, Lange CA. Deciphering Steroid Receptor Crosstalk in Hormone-Driven Cancers. Endocrinology 2018; 159:3897-3907. [PMID: 30307542 PMCID: PMC6236424 DOI: 10.1210/en.2018-00831] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/04/2018] [Indexed: 12/27/2022]
Abstract
Steroid hormone receptors (SRs) have a multitude of functions in human biology and disease progression. The SR family of related ligand-activated transcription factors includes androgen, estrogen, glucocorticoid, mineralocorticoid, and progesterone receptors. Antiestrogen or estrogen receptor (ER)-targeted therapies to block ER action remain the primary treatment of luminal breast cancers. Although this strategy is successful, ∼40% of patients eventually relapse due to endocrine resistance. The majority of hormone-independent tumors retain some level of SR expression, but sidestep hormone ablation treatments. SRs are known to crosstalk extensively with kinase signaling pathways, and this interplay has been shown to bypass ER-targeted therapies in part by providing alternative proliferation and survival signals that enable hormone independence. Modified receptors adopt alternate conformations that resist antagonism or promote agonism. SR-regulated transcription and SR-binding events have been classically studied as single receptor events using single hormones. However, it is becoming increasingly evident that individual steroids and SRs rarely act alone. Emerging evidence shows that coexpressed SRs crosstalk with each other in hormone-driven cancers, such as breast and prostate. Crosstalk between related SRs allows them to modulate signaling and transcriptional responses to noncognate ligands. This flexibility can lead to altered genomic binding and subsequent changes in SR target gene expression. This review will discuss recent mechanistic advances in elucidating SR crosstalk and the implications for treating hormone-driven cancers. Understanding this crosstalk (i.e., both opposing and collaborative) is a critical step toward expanding and modernizing endocrine therapies and will ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Thu H Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
40
|
Bleach R, McIlroy M. The Divergent Function of Androgen Receptor in Breast Cancer; Analysis of Steroid Mediators and Tumor Intracrinology. Front Endocrinol (Lausanne) 2018; 9:594. [PMID: 30416486 PMCID: PMC6213369 DOI: 10.3389/fendo.2018.00594] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022] Open
Abstract
Androgen receptor (AR) is the most widely expressed steroid receptor protein in normal breast tissue and is detectable in approximately 90% of primary breast cancers and 75% of metastatic lesions. However, the role of AR in breast cancer development and progression is mired in controversy with evidence suggesting it can either inhibit or promote breast tumorigenesis. Studies have shown it to antagonize estrogen receptor alpha (ERα) DNA binding, thereby preventing pro-proliferative gene transcription; whilst others have demonstrated AR to take on the mantle of a pseudo ERα particularly in the setting of triple negative breast cancer. Evidence for a potentiating role of AR in the development of endocrine resistant breast cancer has also been mounting with reports associating high AR expression with poor response to endocrine treatment. The resurgence of interest into the function of AR in breast cancer has resulted in various emergent clinical trials evaluating anti-AR therapy and selective androgen receptor modulators in the treatment of advanced breast cancer. Trials have reported varied response rates dependent upon subtype with overall clinical benefit rates of ~19-29% for anti-androgen monotherapy, suggesting that with enhanced patient stratification AR could prove efficacious as a breast cancer therapy. Androgens and AR have been reported to facilitate tumor stemness in some cancers; a process which may be mediated through genomic or non-genomic actions of the AR, with the latter mechanism being relatively unexplored in breast cancer. Steroidogenic ligands of the AR are produced in females by the gonads and as sex-steroid precursors secreted from the adrenal glands. These androgens provide an abundant reservoir from which all estrogens are subsequently synthesized and their levels are undiminished in the event of standard hormonal therapeutic intervention in breast cancer. Steroid levels are known to be altered by lifestyle factors such as diet and exercise; understanding their potential role in dictating the function of AR in breast cancer development could therefore have wide-ranging effects in prevention and treatment of this disease. This review will outline the endogenous biochemical drivers of both genomic and non-genomic AR activation and how these may be modulated by current hormonal therapies.
Collapse
Affiliation(s)
| | - Marie McIlroy
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
41
|
Hu DG, Hulin JA, Wijayakumara DD, McKinnon RA, Mackenzie PI, Meech R. Intergenic Splicing between Four Adjacent UGT Genes ( 2B15, 2B29P2, 2B17, 2B29P1) Gives Rise to Variant UGT Proteins That Inhibit Glucuronidation via Protein-Protein Interactions. Mol Pharmacol 2018; 94:938-952. [PMID: 29959221 DOI: 10.1124/mol.118.111773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/08/2018] [Indexed: 02/14/2025] Open
Abstract
Recent studies have investigated alternative splicing profiles of UDP-glucuronosyltransferase (UGT) genes and identified over 130 different alternatively spliced UGT transcripts. Although UGT genes are highly clustered, the formation of chimeric transcripts by intergenic splicing between two or more UGT genes has not yet been reported. This study identified 12 chimeric transcripts (chimeras A-L) containing exons from two or three genes of the four neighboring UGT genes (UGT2B15, UGT2B29P2, UGT2B17, and UGT2B29P1) in human liver and prostate cancer cells. These chimeras typically contain the first five exons of UGT2B15 or UGT2B17 (exons 1-5) spliced to a terminal exon (exon 6) from a downstream UGT gene. Hence they encode truncated UGTs with novel C-terminal peptides. Functional assays of representative chimeric UGT proteins (termed chimeric UGT2B15 and chimeric UGT2B17) showed that they are inactive and can repress the activity of wild-type UGTs. Coimmunoprecipitation assays demonstrated heterotypic interactions between chimeric UGT2B15 (or chimeric UGT2B17) and the UGT2B7 protein. Thus oligomerization of the chimeric UGTs with wild-type UGTs may explain their inhibitory activity. Studies in breast and prostate cancer cells showed that both wild-type and chimeric UGT2B15 and UGT2B17 transcripts are regulated in a similar way at the transcriptional level by sex hormones through their canonical promoters but are differentially regulated at the post-transcriptional level by micro-RNA 376c via their unique 3'-untranslated regions. In conclusion, the formation of chimeric transcripts by intergenic splicing among UGT genes represents a novel mechanism contributing to the diversity of the human UGT transcriptome and proteome. The differential post-transcriptional regulation of wild-type and variant transcripts by micro-RNAs may contribute to their deregulated expression in cancer.
Collapse
Affiliation(s)
- Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia
| | - Julie-Ann Hulin
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia
| | - Dhilushi D Wijayakumara
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia
| | - Peter I Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia
| | - Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia
| |
Collapse
|
42
|
Li L, Liu S, Liu L, Ma Z, Feng M, Ye C, Zhou W, Wang Y, Liu L, Wang F, Yu L, Zhou F, Xiang Y, Huang S, Fu Q, Zhang Q, Gao D, Yu Z. Impact of phosphorylated insulin-like growth factor-1 receptor on the outcome of breast cancer patients and the prognostic value of its alteration during neoadjuvant chemotherapy. Exp Ther Med 2018; 16:2949-2959. [PMID: 30233667 PMCID: PMC6143873 DOI: 10.3892/etm.2018.6584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/20/2018] [Indexed: 12/19/2022] Open
Abstract
The expression of insulin-like growth factor-1 receptor (IGF-1R), which is involved in the genesis and progression of breast cancer, is thought to be associated with the overall survival (OS) of patients. However, the predictive and prognostic significance of the IGF-1R expression in breast cancer remains controversial. The present study aimed to identify the factors associated with the levels of phosphorylated (p)-IGF-1R in breast cancer, their impact on the outcomes of breast cancer patients, and the prognostic value of alterations of p-IGF-1R during neoadjuvant chemotherapy (NAC). The present study included 348 female breast cancer patients whose paraffin-embedded tumor tissue sections had been collected by biopsy and/or resection, among which the pre-NAC and post-NAC sections were available from 40 patients. Human epidermal growth factor receptor 2 (HER2) positivity and molecular subtype were significantly associated with the presence of p-IGF-1R in the tumor tissue (P<0.05). Patients with p-IGF-1R present in the tumor tissue had a shorter OS (P=0.003). The p-IGF-1R levels in the tumor after NAC differed significantly from those prior to NAC (P=0.005); however, this alteration in p-IGF-1R levels was not associated with a shorter OS. In parallel with HER2, p-IGF-1R appears to be a promising indicator for predicting clinical outcomes and may be an attractive target for improving the efficacy of antitumor therapy, particularly for patients with HER2-negative, estrogen receptor-positive and luminal B tumors.
Collapse
Affiliation(s)
- Liang Li
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shuchen Liu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Department of General Surgery, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Liyuan Liu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhongbing Ma
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Man Feng
- Department of Pathology, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong 250031, P.R. China
| | - Chunmiao Ye
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Department of General Surgery, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wenzhong Zhou
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Department of General Surgery, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yongjiu Wang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Lu Liu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Department of General Surgery, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Fei Wang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Lixiang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Fei Zhou
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yujuan Xiang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shuya Huang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Qinye Fu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Qiang Zhang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Dezong Gao
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
43
|
Chen X, Li D, Wang N, Yang M, Liao A, Wang S, Hu G, Zeng B, Yao Y, Liu D, Liu H, Zhou W, Xiao W, Li P, Ming C, Ping S, Chen P, Jing L, Bai Y, Yao J. Bioinformatic analysis suggests that UGT2B15 activates the Hippo‑YAP signaling pathway leading to the pathogenesis of gastric cancer. Oncol Rep 2018; 40:1855-1862. [PMID: 30066917 PMCID: PMC6111708 DOI: 10.3892/or.2018.6604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/25/2018] [Indexed: 01/01/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies that threatens human health. As the molecular mechanisms unerlying GC are not completely understood, identification of genes related to GC could provide new insights into gene function as well as potential treatment targets. We discovered that UGT2B15 may contribute to the pathogenesis and progression of GC using GEO data and bioinformatic analysis. Using TCGA data, UGT2B15 mRNA was found to be significantly overexpressed in GC tissues; patients with higher UGT2B15 had a poorer prognosis. It was further discovered that UGT2B15 and FOXA1 were both upregulated, and UGT2B15 and Foxa1 were positively correlated in GC. It is known that Foxa1 is a vital threshold to activate the Hippo-YAP signaling pathway. In addition, we suggest that a potential molecular mechanisms includes UGT2B15 which may upregulate Foxa1, activate the Hippo-YAP signaling pathway and contribute to the development of GC. Taken together, our findings demonstrate that UGT2B15 may be an oncogene in GC and is a promising therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Xuanmin Chen
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Defeng Li
- Department of Gastroenterology, The 2nd Clinical Μedicine College (Shenzhen People's Hospital) of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Nannan Wang
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Meifeng Yang
- Department of Hematology, The First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Aijun Liao
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shuling Wang
- Department of Gastroenterology, Shanghai Hospital, Second Military Medical University, Shanghai 200433
| | - Guangsheng Hu
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Bing Zeng
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yuhong Yao
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Diqun Liu
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Han Liu
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Weiwei Zhou
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Weisheng Xiao
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Peiyuan Li
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Chen Ming
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Song Ping
- Department of Hematology, The First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Pingfang Chen
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Li Jing
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yu Bai
- Department of Gastroenterology, Shanghai Hospital, Second Military Medical University, Shanghai 200433
| | - Jun Yao
- Department of Gastroenterology, The 2nd Clinical Μedicine College (Shenzhen People's Hospital) of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
44
|
Bhatt DK, Basit A, Zhang H, Gaedigk A, Lee SB, Claw KG, Mehrotra A, Chaudhry AS, Pearce RE, Gaedigk R, Broeckel U, Thornton TA, Nickerson DA, Schuetz EG, Amory JK, Leeder JS, Prasad B. Hepatic Abundance and Activity of Androgen- and Drug-Metabolizing Enzyme UGT2B17 Are Associated with Genotype, Age, and Sex. Drug Metab Dispos 2018; 46:888-896. [PMID: 29602798 PMCID: PMC5938891 DOI: 10.1124/dmd.118.080952] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/29/2018] [Indexed: 01/06/2023] Open
Abstract
The major objective of this study was to investigate the association of genetic and nongenetic factors with variability in protein abundance and in vitro activity of the androgen-metabolizing enzyme UGT2B17 in human liver microsomes (n = 455). UGT2B17 abundance was quantified by liquid chromatography-tandem mass spectrometry proteomics, and enzyme activity was determined by using testosterone and dihydrotestosterone as in vitro probe substrates. Genotyping or gene resequencing and mRNA expression were also evaluated. Multivariate analysis was used to test the association of UGT2B17 copy number variation, single nucleotide polymorphisms (SNPs), age, and sex with its mRNA expression, abundance, and activity. UGT2B17 gene copy number and SNPs (rs7436962, rs9996186, rs28374627, and rs4860305) were associated with gene expression, protein levels, and androgen glucuronidation rates in a gene dose-dependent manner. UGT2B17 protein (mean ± S.D. picomoles per milligram of microsomal protein) is sparsely expressed in children younger than 9 years (0.12 ± 0.24 years) but profoundly increases from age 9 years to adults (∼10-fold) with ∼2.6-fold greater abundance in males than in females (1.2 vs. 0.47). Association of androgen glucuronidation with UGT2B15 abundance was observed only in the low UGT2B17 expressers. These data can be used to predict variability in the metabolism of UGT2B17 substrates. Drug companies should include UGT2B17 in early phenotyping assays during drug discovery to avoid late clinical failures.
Collapse
Affiliation(s)
- Deepak Kumar Bhatt
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Abdul Basit
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Haeyoung Zhang
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Andrea Gaedigk
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Seung-Been Lee
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Katrina G Claw
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Aanchal Mehrotra
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Amarjit Singh Chaudhry
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Robin E Pearce
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Roger Gaedigk
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Ulrich Broeckel
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Timothy A Thornton
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Deborah A Nickerson
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Erin G Schuetz
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - John K Amory
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - J Steven Leeder
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| | - Bhagwat Prasad
- Departments of Pharmaceutics (D.K.B., A.B., H.Z., K.G.C., A.M., B.P.), Genome Sciences (S.L., D.A.N.), Biostatistics (T.A.T.), and Medicine (J.K.A.), University of Washington, Seattle, Washington; Division of Pediatric Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (A.G., R.E.P., R.G., J.S.L.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); and Section of Genomic Pediatrics, Department of Pediatrics, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin (U.B.)
| |
Collapse
|
45
|
Wijayakumara DD, Mackenzie PI, McKinnon RA, Hu DG, Meech R. Regulation of UDP-Glucuronosyltransferase 2B15 by miR-331-5p in Prostate Cancer Cells Involves Canonical and Noncanonical Target Sites. J Pharmacol Exp Ther 2018; 365:48-59. [PMID: 29367276 DOI: 10.1124/jpet.117.245936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/30/2017] [Indexed: 01/08/2023] Open
Abstract
UGT2B15 is an important androgen-metabolizing UDP-glucuronosyltransferase (UGT) and the mechanisms controlling its expression are of considerable interest. Recent studies showed that miR-376c regulates UGT2B15 in prostate cancer cells via a canonical target site in the 3' untranslated region (3'UTR). The UGT2B15 3'UTR also contains a canonical miR-331-5p target site; previous work indicated that deleting this site reduced, but did not abolish, the ability of miR-331-5p to repress a luciferase reporter carrying the UGT2B15 3'UTR We report here the discovery and characterization of a second, noncanonical miR-331-5p target site in the UGT2B15 3'UTR miR-331-5p-mediated repression of a UGT2B15 3'UTR-reporter was partly inhibited by mutating either of the two miR-331-5p target sites separately, but completely abolished by mutating the two sites simultaneously, indicating that the two sites act cooperatively. miR-331-5p mimics significantly reduced both UGT2B15 mRNA levels and glucuronidation activity in prostate cancer cells, confirming that the native transcript is a miR-331-5p target. Transfection of either miR-331-5p or miR-376c mimics repressed the activity of the UGT2B15 3'UTR-reporter; however, cotransfection of both microRNAs (miRNAs) further reduced activity, indicating cooperative regulation by these two miRNAs. A significant negative correlation between miR-331 and UGT2B15 mRNA levels was observed in a tissue RNA panel, and analysis of The Cancer Genome Atlas (TCGA) hepatocellular carcinoma data set provided further evidence that miR-331 may play an important role in regulation of UGT2B15 in vivo. There was no significant correlation between miR-331 and UGT2B15 mRNA levels in the TCGA prostate adenocarcinoma cohort, which may reflect the complexity of androgen-mediated regulation in determining UGT2B15 levels in prostate cancer. Finally, we show that miR-331-5p does not regulate UGT2B17, providing the first evidence for a post-transcriptional mechanism that differentially regulates these two important androgen-metabolizing UGTs.
Collapse
Affiliation(s)
- Dhilushi D Wijayakumara
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
46
|
Ku CW, Tan ZW, Lim MK, Tam ZY, Lin CH, Ng SP, Allen JC, Lek SM, Tan TC, Tan NS. Spontaneous miscarriage in first trimester pregnancy is associated with altered urinary metabolite profile. BBA CLINICAL 2017; 8:48-55. [PMID: 28879096 PMCID: PMC5574812 DOI: 10.1016/j.bbacli.2017.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 12/30/2022]
Abstract
Threatened miscarriage is the most common gynecological emergency, occurring in about 20% of pregnant women. Approximately one in four of these patients go on to have spontaneous miscarriage and the etiology of miscarriage still remains elusive. In a bid to identify possible biomarkers and novel treatment targets, many studies have been undertaken to elucidate the pathways that lead to a miscarriage. Luteal phase deficiency has been shown to contribute to miscarriages, and the measurement of serum progesterone as a prognostic marker and the prescription of progesterone supplementation has been proposed as possible diagnostic and treatment methods. However, luteal phase deficiency only accounts for 35% of miscarriages. In order to understand the other causes of spontaneous miscarriage and possible novel urine biomarkers for miscarriage, we looked at the changes in urinary metabolites in women with threatened miscarriage. To this end, we performed a case-control study of eighty patients who presented with threatened miscarriage between 6 and 10 weeks gestation. Urine metabolomics analyses of forty patients with spontaneous miscarriages and forty patients with ongoing pregnancies at 16 weeks gestation point to an impaired placental mitochondrial β-oxidation of fatty acids as the possible cause of spontaneous miscarriage. This study also highlighted the potential of urine metabolites as a non-invasive screening tool for the risk stratification of women presenting with threatened miscarriage.
Collapse
Affiliation(s)
- Chee Wai Ku
- KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore
| | - Zhen Wei Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Mark Kit Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Zhi Yang Tam
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Chih-Hsien Lin
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Sean Pin Ng
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - John Carson Allen
- Centre for Quantitative Medicine, Duke-NUS Medical School, 20 College Road, Academia, 169856, Singapore
| | - Sze Min Lek
- KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore
| | - Thiam Chye Tan
- KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore
| | - Nguan Soon Tan
- KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, 138673, Singapore
| |
Collapse
|
47
|
Barton DL, Shuster LT, Dockter T, Atherton PJ, Thielen J, Birrell SN, Sood R, Griffin P, Terstriep SA, Mattar B, Lafky JM, Loprinzi CL. Systemic and local effects of vaginal dehydroepiandrosterone (DHEA): NCCTG N10C1 (Alliance). Support Care Cancer 2017; 26:1335-1343. [PMID: 29164377 DOI: 10.1007/s00520-017-3960-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Dehydroepiandrosterone (DHEA) is helpful for treating vaginal symptoms. This secondary analysis evaluated the impact of vaginal DHEA on hormone concentrations, bone turnover, and vaginal cytology in women with a cancer history. METHODS Postmenopausal women, diagnosed with breast or gynecologic cancer, were eligible if they reported at least moderate vaginal symptoms. Participants could be on tamoxifen or aromatase inhibitors (AIs). Women were randomized to 3.25 versus 6.5 mg/day of DHEA versus a plain moisturizer (PM) control. Sex steroid hormone levels, biomarkers of bone formation, vaginal pH, and maturation index were collected at baseline and 12 weeks. Analysis included independent t tests and Wilcoxon rank tests, comparing each DHEA arm with the control. RESULTS Three hundred forty-five women contributed evaluable blood and 46 contributed evaluable cytology and pH values. Circulating DHEA-S and testosterone levels were significantly increased in those on vaginal DHEA in a dose-dependent manner compared to PM. Estradiol was significantly increased in those on 6.5 mg/day DHEA but not in those on 3.25 mg/day DHEA (p < 0.05 and p = 0.05, respectively), and not in those on AIs. Biomarkers of bone formation were unchanged in all arms. Maturation of vaginal cells was 100% (3.25 mg/day), 86% (6.5 mg/day), and 64% (PM); pH decreased more in DHEA arms. CONCLUSION DHEA resulted in increased hormone concentrations, though still in the lowest half or quartile of the postmenopausal range, and provided more favorable effects on vaginal cytology, compared to PM. Estrogen concentrations in women on AIs were not changed. Further research on the benefit of vaginal DHEA is warranted in hormone-dependent cancers.
Collapse
Affiliation(s)
- Debra L Barton
- University of Michigan School of Nursing, 400 N. Ingalls, Room 4304, Ann Arbor, MI, 48109-5482, USA.
| | | | - Travis Dockter
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN, USA
| | - Pamela J Atherton
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN, USA
| | | | - Stephen N Birrell
- Dame Roma Mitchell Laboratories, Department of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia
| | | | - Patricia Griffin
- Southeast Clinical Oncology Research (SCOR) Consortium NCORP, Spartanburg Medical Center, Spartanburg, SC, USA
| | - Shelby A Terstriep
- Sanford NCI Community Oncology Research Program of the North Central Plains, Sanford Roger Maris Cancer Center, Fargo, ND, USA
| | - Bassam Mattar
- Wichita NCI Community Oncology Research Program, Cancer Center of Kansas, Wichita, KS, USA
| | | | | |
Collapse
|
48
|
Chanawong A, Mackenzie PI, McKinnon RA, Hu DG, Meech R. Exemestane and Its Active Metabolite 17-Hydroexemestane Induce UDP-Glucuronosyltransferase (UGT) 2B17 Expression in Breast Cancer Cells. J Pharmacol Exp Ther 2017; 361:482-491. [PMID: 28404691 DOI: 10.1124/jpet.117.240317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/06/2017] [Indexed: 11/22/2022] Open
Abstract
Exemestane (EXE) is an aromatase inhibitor indicated for endocrine therapy of breast cancer in postmenopausal women. The primary active metabolite of EXE, 17-hydroexemestane (17-HE), is inactivated via glucuronidation, mainly by UDP-glucuronosyltransferase 2B17 (UGT2B17). UGT2B17 also has a primary role in inactivation of endogenous androgens testosterone and dihydrotestosterone and may play an important role in regulation of breast and prostate tumor intracrinology. We recently reported that UGT2B17 could be induced by both estrogenic and androgenic ligands in breast cancer cells via binding of the estrogen receptor α (ERα) or the androgen receptor (AR) to a complex regulatory unit in the proximal UGT2B17 promoter. In this study we show that both EXE and 17-HE increase UGT2B17 mRNA levels in breast cancer MCF-7 and MDA-MB-453 cells, and increase glucuronidation of UGT2B17 substrates, including 17-HE and androsterone. Using antagonists of ERα and AR as well as inhibition mediated by small interfering RNA (siRNA) we demonstrate that EXE and 17-HE induce UGT2B17 expression primarily via the AR. This result is consistent with previous reports that 17-HE can act as an AR ligand. In vitro studies suggest that multiple steroid-responsive DNA elements within the proximal promoter are involved in the response to 17-HE-liganded AR. The up-regulation of UGT2B17 by EXE and 17-HE in breast cancer cells might enhance the local metabolism of 17-HE as well as that of endogenous androgens, hence impacting potentially on treatment outcomes.
Collapse
Affiliation(s)
- Apichaya Chanawong
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
49
|
Zhou X, Zheng Z, Xu C, Wang J, Min M, Zhao Y, Wang X, Gong Y, Yin J, Guo M, Guo D, Zheng J, Zhang B, Yin X. Disturbance of Mammary UDP-Glucuronosyltransferase Represses Estrogen Metabolism and Exacerbates Experimental Breast Cancer. J Pharm Sci 2017; 106:2152-2162. [PMID: 28479355 DOI: 10.1016/j.xphs.2017.04.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 02/01/2023]
Abstract
The progression of breast cancer is closely related to the levels of estrogens within the body. UDP-glucuronosyltransferase (UGT) is an important class of phase II metabolizing enzymes, playing a pivotal role in detoxifying steroid hormone. In the present study, we aim at uncovering the potential dysregulation pattern of UGT and its role in estrogen metabolism and in the pathogenesis of breast cancer. Female Sprague-Dawley rats were treated with 100 mg/kg dimethylbenz(a)anthracene (DMBA) to induce breast cancer. Our results showed that the expression and activity of UGT in mammary tissues were downregulated significantly in DMBA rats. Consistent with this, levels of estradiol, 4-hydroxylated estradiol, and 2-hydroxylated estradiol were increased in both mammary tissues and serum, supporting a notable accumulation of toxic estrogen species in the target tissue of breast cancer. In addition, we also observed the decreased cell migration, cell proliferation, and DNA damage in UGT-transfected MCF-7 cells, suggesting a protective role of UGT against estrogen-induced mammary carcinogenesis. Taken together, these results indicated that accumulation of estrogens induced by UGT deficiency is a critical factor to induce the development of breast cancer. UGT contributes to estrogen elimination, and its glucuronidation capacity influences the estrogen signaling pathway and the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Ziqiang Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Chang Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Juan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Mengjun Min
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yun Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Xi Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yinhan Gong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Jiale Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Meng Guo
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China.
| |
Collapse
|
50
|
Sikora MJ. Family Matters: Collaboration and Conflict Among the Steroid Receptors Raises a Need for Group Therapy. Endocrinology 2016; 157:4553-4560. [PMID: 27835038 PMCID: PMC5133350 DOI: 10.1210/en.2016-1778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antiestrogen therapies targeting the function of estrogen receptor (ER) have been the cornerstone of therapy for ER+ breast cancer for decades. However, as long as these therapies have been in use, it has also been evident that response to antiestrogen therapy is not based solely on ER expression but that other factors modify breast cancer antiestrogen response. Such factors may include ER's relatives in the steroid hormone receptor (HR) family, androgen receptor (AR), progesterone receptor (PR), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR). A series of recent studies has demonstrated that these HRs are not bystanders in ER signaling but rather can alter ER genomic binding and subsequent control of target gene expression. For example, PR and GR may "reprogram" ER binding to DNA toward PR/GR sites; androgen receptor may reverse ER gene regulation functions or regulate ER DNA binding. Accordingly, modulation of HR function concurrently with antiestrogen therapy can either improve antiestrogen response or mediate antiestrogen resistance. This highlights the critical need to better understand how other HRs influence ER function, in particular in the context of antiestrogen therapy. This review discusses recent insights into the mechanisms by which HRs can modify ER function and antiestrogen response, as well as pharmacological implications for antiestrogen therapies and potential combined endocrine therapies.
Collapse
Affiliation(s)
- Matthew J Sikora
- Department of Pathology, University of Colorado Denver | Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|