1
|
Li G, Che X, Wang S, Liu D, Xie D, Jiang B, Zheng Z, Zheng X, Wu G. The role of cisplatin in modulating the tumor immune microenvironment and its combination therapy strategies: a new approach to enhance anti-tumor efficacy. Ann Med 2025; 57:2447403. [PMID: 39757995 PMCID: PMC11705547 DOI: 10.1080/07853890.2024.2447403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/27/2024] [Accepted: 11/23/2024] [Indexed: 01/07/2025] Open
Abstract
Cisplatin is a platinum-based drug that is frequently used to treat multiple tumors. The anti-tumor effect of cisplatin is closely related to the tumor immune microenvironment (TIME), which includes several immune cell types, such as the tumor-associated macrophages (TAMs), cytotoxic T-lymphocytes (CTLs), dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), and natural killer (NK) cells. The interaction between these immune cells can promote tumor survival and chemoresistance, and decrease the efficacy of cisplatin monotherapy. Therefore, various combination treatment strategies have been devised to enhance patient responsiveness to cisplatin therapy. Cisplatin can augment anti-tumor immune responses in combination with immune checkpoint blockers (such as PD-1/PD-L1 or CTLA4 inhibitors), lipid metabolism disruptors (like FASN inhibitors and SCD inhibitors) and nanoparticles (NPs), resulting in better outcomes. Exploring the interaction between cisplatin and the TIME will help identify potential therapeutic targets for improving the treatment outcomes in cancer patients.
Collapse
Affiliation(s)
- Guandu Li
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shijin Wang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Deqian Xie
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bowen Jiang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zunwen Zheng
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xu Zheng
- Department of Cell Biology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
2
|
Guo R, Wang P. Tumor-derived extracellular vesicles: Hijacking T cell function through exhaustion. Pathol Res Pract 2025; 269:155948. [PMID: 40168777 DOI: 10.1016/j.prp.2025.155948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Extracellular vesicles (EVs) play a vital role in intercellular communication within the tumor microenvironment (TME). These vesicles, secreted by tumor cells, contain proteins, lipids, and nucleic acids that significantly influence immune responses, particularly impacting T-cell function. In cancer, T cell dysfunction and exhaustion-marked by reduced proliferation, diminished cytokine production, and impaired cytotoxic activity-are key barriers to effective immune responses. Tumor-derived extracellular vesicles (TEVs) contribute to this dysfunction by carrying immunosuppressive molecules, such as transforming growth factor-beta (TGF-β) and various microRNAs (miRNAs). These TEV-mediated mechanisms promote T cell exhaustion and foster a broader immunosuppressive environment, enabling tumor progression and immune evasion. Furthermore, TEVs have been implicated in resistance to cancer immunotherapies, including immune checkpoint inhibitors and T cell therapies. Understanding the molecular pathways and cargoes within TEVs that drive T cell dysfunction is crucial for developing novel therapeutic strategies aimed at reinvigorating exhausted T cells, enhancing anti-tumor immunity, and improving cancer treatment outcomes.
Collapse
Affiliation(s)
- RuiJuan Guo
- Department of Oncology, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, Shandong 264003, China
| | - Ping Wang
- Department of Oncology, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, Shandong 264003, China.
| |
Collapse
|
3
|
Wang H, Cheng L, Chen J, Chen P, Tang Z, Wang Q, Ma Y, Zhao C, Li X, Jiang T, Zhou F, Chen X, Zhou C. Efficacy of PD-1 blockade plus chemotherapy in patients with oncogenic-driven non-small-cell lung cancer. Cancer Immunol Immunother 2025; 74:89. [PMID: 39891730 PMCID: PMC11787076 DOI: 10.1007/s00262-024-03937-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/30/2024] [Indexed: 02/03/2025]
Abstract
BACKGROUND PD-1 blockade plus chemotherapy has become the first-line standard of care for patients with advanced non-small-cell lung cancer (NSCLC) without oncogenic drivers. Oncogenic-driven advanced NSCLC showed limited response to PD-1 blockade monotherapy or chemotherapy alone. Whether NSCLC patients with oncogenic drivers could benefit from PD-1 blockade plus chemotherapy remains undetermined. METHODS Three hundred twelve NSCLC patients with at least one oncogenic driver alteration received PD-1 plus chemotherapy or each monotherapy were retrospectively identified. Objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) were compared to evaluate the therapeutic outcomes differences among patients with different oncogenic drivers. RESULTS One hundred sixty-two patients received PD-1 blockade plus chemotherapy, 57 received PD-1 blockade monotherapy and 93 received chemotherapy alone were included. Oncogenic driver mutations including KRAS (31.4%), EGFR (28.8%), HER2 (14.7%), BRAF (10.6%), RET (7.4%), and other mutations (7.1%) were identified. Patients with oncogenic drivers who received PD-1 blockade plus chemotherapy had significantly better outcomes compared to those received PD-1 blockade or chemotherapy alone (ORR: 51% vs. 18% vs. 25%, P < 0.001; median PFS: 10.0 [95% CI: 8.9-12.6] vs. 3.7 [95% CI: 2.9-5.1] vs. 5.3 [95% CI: 4.5-6.2] months, P < 0.001; median OS: 26.0 [95% CI: 23.0-30.0] vs. 14.3 [95% CI: 9.6-19.8] vs. 16.1 [95% CI: 11.6-21.9] months, P < 0.001). The superior efficacy was consistently found in separate analyses for patients received first-line and second/third line treatments. Among individual gene alterations, patients with KRAS, EGFR, or BRAF mutations treated with PD-1 blockade plus chemotherapy achieved markedly improved PFS and OS than those received PD-1 blockade or chemotherapy alone. Multivariate Cox regression analysis revealed that PD-1 blockade plus chemotherapy was independently associated with better PFS and OS. CONCLUSION PD-1 blockade plus chemotherapy demonstrated superior efficacy than PD-1 blockade monotherapy or chemotherapy alone in patients with oncogenic-driven advanced NSCLC, particularly in KRAS, EGFR and BRAF subgroups. These findings suggest that PD-1 blockade plus chemotherapy may be considered as an optional treatment option for patients without available targeted therapies.
Collapse
Affiliation(s)
- Haowei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Lei Cheng
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Zhuoran Tang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Qianyi Wang
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Ying Ma
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Fei Zhou
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Xiaoxia Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China.
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China.
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
4
|
Huo Y, Wang D, Yang S, Xu Y, Qin G, Zhao C, Lei Q, Zhao Q, Liu Y, Guo K, Ouyang S, Sun T, Wang H, Fan F, Han N, Liu H, Chen H, Miao L, Liu L, Duan Y, Lv W, Liu L, Zhang Z, Cang S, Wang L, Zhang Y. Optimal timing of anti-PD-1 antibody combined with chemotherapy administration in patients with NSCLC. J Immunother Cancer 2024; 12:e009627. [PMID: 39706602 PMCID: PMC11667274 DOI: 10.1136/jitc-2024-009627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/17/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Anti-programmed cell death 1 (PD-1) antibody combined with chemotherapy simultaneously is regarded as the standard treatment for patients with advanced non-small cell lung cancer (NSCLC) by current clinical guidelines. Different immune statuses induced by chemotherapy considerably affect the synergistic effects of the chemo-anti-PD-1 combination. Therefore, it is necessary to determine the optimal timing of combination treatment administration. METHODS The dynamic immune status induced by chemotherapy was observed in paired peripheral blood samples of patients with NSCLC using flow cytometry and RNA sequencing. Ex vivo studies and metastatic lung carcinoma mouse models were used to evaluate immune activity and explore the optimal combination timing. A multicenter prospective clinical study of 170 patients with advanced NSCLC was performed to assess clinical responses, and systemic immunity was assessed using omics approaches. RESULTS PD-1 expression on CD8+ T cells was downregulated on day 1 (D1) and D2, but recovered on D3 after chemotherapy administration, which is regulated by the calcium influx-P65 signaling pathway. Programmed cell death 1 ligand 1 expression in myeloid-derived suppressor cells was markedly reduced on D3. RNA sequencing analysis showed that T-cell function began to gradually recover on D3 rather than on D1. In addition, ex vivo and in vivo studies have shown that anti-PD-1 treatment on D3 after chemotherapy may enhance the antitumor response and considerably inhibit tumor growth. Finally, in clinical practice, a 3-day-delay sequential combination enhanced the objective response rate (ORR, 68%) and disease control rate (DCR, 98%) compared with the simultaneous combination (ORR=37%; DCR=81%), and prolonged progression-free survival to a greater extent than the simultaneous combination. The new T-cell receptor clones were effectively expanded, and CD8+ T-cell activity was similarly recovered. CONCLUSIONS A 3-day-delay sequential combination might increase antitumor responses and clinical benefits compared with the simultaneous combination.
Collapse
Affiliation(s)
- Yachang Huo
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dan Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuangning Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yujie Xu
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Guohui Qin
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenhui Zhao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingyang Lei
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qitai Zhao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaqing Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kaiyuan Guo
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Songyun Ouyang
- Department of Respiratory and Critical Care Sleep Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ting Sun
- Department of Respiratory and Critical Care Sleep Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongmin Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feifei Fan
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Na Han
- Department of Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongjie Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lijun Miao
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuqing Duan
- Department of Tumor Immunotherapy, the Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, Hebei, China
| | - Wei Lv
- Department of Tumor Immunotherapy, the Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, Hebei, China
| | - Lihua Liu
- Department of Tumor Immunotherapy, the Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, Hebei, China
| | - Zhixin Zhang
- Department of Technology, Chengdu ExAb Biotechnology Ltd, Chengdu, Sichuan, China
| | - Shundong Cang
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Liping Wang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Bolek H, Yazgan SC, Yekedüz E, Ürün Y. Meta-analysis of platinum chemotherapy combinations with immunotherapy in metastatic urothelial carcinoma. Oncologist 2024; 29:999-1002. [PMID: 39340825 PMCID: PMC11546637 DOI: 10.1093/oncolo/oyae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/12/2024] [Indexed: 09/30/2024] Open
Abstract
The therapeutic landscape for metastatic urothelial carcinoma (mUC) has evolved significantly due to the development of innovative combination treatments, including enfortumab vedotin-pembrolizumab (EVP). Despite these advancements, the limited availability of EVP means that platinum-based chemotherapy regimens continue to serve as the primary treatment modality for many patients with mUC. We evaluated the effect of the type of platinum chemotherapy used in combination with immunotherapy (IO) on treatment outcomes in mUC. The meta-analysis showed that cisplatin-gemcitabine plus IO combination and carboplatin-gemcitabine plus IO combination improve progression-free survival compared to platinum-gemcitabine therapy (hazard ratio [HR] = 0.71, 95% CI: 0.62-0.82; P < .0001 and HR = 0.85, 95% CI: 0.73-0.98; P < .03, respectively). However, only the cisplatin-gemcitabine plus IO combination showed overall survival (OS) benefit (HR = 0.80, 95% CI: 0.69-0.93; P < .003). In comparison to the platinum-gemcitabine combination, neither the cisplatin-gemcitabine plus IO nor the carboplatin-gemcitabine plus IO combinations demonstrated an objective response rate (ORR) benefit. In summary, combining cisplatin-gemcitabine with immunotherapy offers significant overall survival benefits in mUC. The exact mechanisms-whether cisplatin's immunomodulatory effects or patient demographic differences-are yet to be determined, necessitating further research to understand these outcomes better.
Collapse
Affiliation(s)
- Hatice Bolek
- Department of Medical Oncology, Ankara University School of Medicine, Ankara, Türkiye
- Ankara University Cancer Research Institute, Ankara, Türkiye
| | - Satı Coskun Yazgan
- Department of Medical Oncology, Ankara University School of Medicine, Ankara, Türkiye
- Ankara University Cancer Research Institute, Ankara, Türkiye
| | - Emre Yekedüz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Yüksel Ürün
- Department of Medical Oncology, Ankara University School of Medicine, Ankara, Türkiye
- Ankara University Cancer Research Institute, Ankara, Türkiye
| |
Collapse
|
6
|
Mashhouri S, Rahmati A, Azimi A, Fava RA, Ismail IH, Walker J, Elahi S. Targeting Dectin-1 and or VISTA enhances anti-tumor immunity in melanoma but not colorectal cancer model. Cell Oncol (Dordr) 2024; 47:1735-1756. [PMID: 38668817 PMCID: PMC11467025 DOI: 10.1007/s13402-024-00950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 06/27/2024] Open
Abstract
PURPOSE Acquired resistance to immune checkpoint blockers (ICBs) is a major barrier in cancer treatment, emphasizing the need for innovative strategies. Dectin-1 (gene Clec7a) is a C-type lectin receptor best known for its ability to recognize β-glucan-rich structures in fungal cell walls. While Dectin-1 is expressed in myeloid cells and tumor cells, its significance in cancer remains the subject of controversy. METHODS Using Celc7a-/- mice and curdlan administration to stimulate Dectin-1 signaling, we explored its impact. VISTA KO mice were employed to assess VISTA's role, and bulk RNAseq analyzed curdlan effects on neutrophils. RESULTS Our findings reveal myeloid cells as primary Dectin-1 expressing cells in the tumor microenvironment (TME), displaying an activated phenotype. Strong Dectin-1 co-expression/co-localization with VISTA and PD-L1 in TME myeloid cells was observed. While Dectin-1 deletion lacked protective effects, curdlan stimulation significantly curtailed B16-F10 tumor progression. RNAseq and pathway analyses supported curdlan's role in triggering a cascade of events leading to increased production of pro-inflammatory mediators, potentially resulting in the recruitment and activation of immune cells. Moreover, we identified a heterogeneous subset of Dectin-1+ effector T cells in the TME. Similar to mice, human myeloid cells are the prominent cells expressing Dectin-1 in cancer patients. CONCLUSION Our study proposes Dectin-1 as a potential adjunctive target with ICBs, orchestrating a comprehensive engagement of innate and adaptive immune responses in melanoma. This innovative approach holds promise for overcoming acquired resistance to ICBs in cancer treatment, offering avenues for further exploration and development.
Collapse
Affiliation(s)
- Siavash Mashhouri
- Department of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Amirhossein Rahmati
- Department of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Ako Azimi
- Department of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Roy A Fava
- Department of Veterans Affairs Medical Center, Research Service, White River Junction, VT, USA
- Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Ismail Hassan Ismail
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Biophysics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - John Walker
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Shokrollah Elahi
- Department of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
7
|
Chelushkin MA, van Dorp J, van Wilpe S, Seignette IM, Mellema JJJ, Alkemade M, Gil-Jimenez A, Peters D, Brugman W, Stockem CF, Hooijberg E, Broeks A, van Rhijn BWG, Mertens LS, van der Heijden AG, Mehra N, van Montfoort ML, Wessels LFA, Vis DJ, van der Heijden MS. Platinum-Based Chemotherapy Induces Opposing Effects on Immunotherapy Response-Related Spatial and Stromal Biomarkers in the Bladder Cancer Microenvironment. Clin Cancer Res 2024; 30:4227-4239. [PMID: 39047168 DOI: 10.1158/1078-0432.ccr-24-0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE Platinum-based chemotherapy and immune checkpoint inhibitors are key components of systemic treatment for muscle-invasive and advanced urothelial cancer. The ideal integration of these two treatment modalities remains unclear as clinical trials have led to inconsistent results. Modulation of the tumor-immune microenvironment by chemotherapy is poorly characterized. We aimed to investigate this modulation, focusing on potential clinical implications for immune checkpoint inhibitor response. EXPERIMENTAL DESIGN We assessed immune cell densities, spatial relations, and tumor/stromal components from 116 patients with urothelial bladder cancer (paired data for 95 patients) before and after platinum-based chemotherapy. RESULTS Several published biomarkers for immunotherapy response changed upon chemotherapy treatment. The intratumoral CD8+ T-cell percentage increased after treatment and was associated with increased TNFα-via-NF-κB signaling. The percentage of PDL1+ immune cells was higher after chemotherapy. An increase in chemo-induced changes that potentially inhibit an antitumor immune response was also observed, including increased fibroblast-based TGFβ signaling and distances from immune cells to the nearest cancer cell. The latter two parameters correlated significantly in posttreatment samples, suggesting that TGFβ signaling in fibroblasts may play a role in spatially separating immune cells from cancer cells. We examined specific chemotherapy regimens and found that treatment with methotrexate, vinblastine, doxorubicin, and cisplatin was associated with an increase in the macrophage cell percentage. Gemcitabine-containing chemotherapy was associated with upregulation of fibroblast TGFβ signaling. CONCLUSIONS The opposing effects of platinum-based chemotherapy on the immune cell composition and stromal context of the tumor-immune microenvironment may explain the inconsistent results of clinical trials investigating chemotherapy and immune checkpoint inhibitor combinations in bladder cancer.
Collapse
Affiliation(s)
- Maksim A Chelushkin
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Jeroen van Dorp
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sandra van Wilpe
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Iris M Seignette
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jan-Jaap J Mellema
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maartje Alkemade
- Core Facility Molecular Pathology & Biobanking, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Alberto Gil-Jimenez
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Dennis Peters
- Core Facility Molecular Pathology & Biobanking, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wim Brugman
- Genomics Core Facility, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Chantal F Stockem
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Erik Hooijberg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Annegien Broeks
- Core Facility Molecular Pathology & Biobanking, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bas W G van Rhijn
- Department of Urology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Urology, Caritas St. Josef Medical Center, University of Regensburg, Regensburg, Germany
| | - Laura S Mertens
- Department of Urology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Lodewyk F A Wessels
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, the Netherlands
| | - Daniel J Vis
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Michiel S van der Heijden
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Lara-Vega I. Upgrading Melanoma Treatment: Promising Immunotherapies Combinations
in the Preclinical Mouse Model. CURRENT CANCER THERAPY REVIEWS 2024; 20:489-509. [DOI: 10.2174/0115733947263244231002042219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/27/2023] [Accepted: 08/25/2023] [Indexed: 01/03/2025]
Abstract
Background:
Melanoma, known for its high metastatic potential, does not respond well to
existing treatments in advanced stages. As a solution, immunotherapy-based treatments, including
anti-PD-1/L1 and anti-CTLA-4, have been developed and evaluated in preclinical mouse models to
overcome resistance. Although these treatments display the potential to suppress tumor growth, there
remains a crucial requirement for a thorough assessment of long-term efficacy in preventing metastasis
or recurrence and improving survival rates.
Methods:
From 2016 onwards, a thorough examination of combined immunotherapies for the treatment
of cutaneous melanoma in preclinical mouse models was conducted. The search was conducted
using MeSH Terms algorithms in PubMed®, resulting in the identification of forty-five studies that
met the rigorous inclusion criteria for screening.
Results:
The C57 mouse model bearing B16-melanoma has been widely utilized to assess the efficacy
of immunotherapies. The combination of therapies has demonstrated a synergistic impact, leading
to potent antitumor activity. One extensively studied method for establishing metastatic models involves
the intravenous administration of malignant cells, with several combined therapies under investigation.
The primary focus of evaluation has been on combined immunotherapies utilizing PD-
1/L1 and CTLA-4 blockade, although alternative immunotherapies not involving PD-1/L1 and
CTLA-4 blockade have also been identified. Additionally, the review provides detailed treatment regimens
for each combined approach.
Conclusion:
The identification of techniques for generating simulated models of metastatic melanoma
and investigating various therapeutic combinations will greatly aid in evaluating the overall systemic
efficacy of immunotherapy. This will be especially valuable for conducting short-term preclinical
experiments that have the potential for clinical studies.
Collapse
Affiliation(s)
- Israel Lara-Vega
- National School of Biological Sciences, IPN. Av. Wilfrido Massieu s/n, Professional Unit Adolfo Lopez Mateos, Mexico
City, CP 07738, Mexico
| |
Collapse
|
9
|
Wang C, Zhang M, Peng J, Zhang M, Lu C, Qi X, Luo Q, Wang Y, Li G. Combining cisplatin with Pinellia pedatisecta Schott lipid-soluble extract induces tumor immunogenic cell death in cervical cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155504. [PMID: 38452404 DOI: 10.1016/j.phymed.2024.155504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Pinellia pedatisecta Schott extract (PE) is extracted from Pinellia pedatisecta Schott (PPS), a traditional Chinese medicinal plant with the potential for direct anticancer effects or eliciting an anti-tumor response by activating the immune system. PURPOSE To explore PE's ability and mechanism to reconstruct cisplatin's immunogenicity. METHODS Cervical cancer cells were treated with cisplatin (CDDP) and/or PE. The exposure of calreticulin (CRT) on cell membrane was investigated by flow cytometry. The extracellular of ATP and HMGB1 was investigated by Western blot analysis, immunofluorescence and ELISA assay. Changes in immune profiles were using flow cytometry in vaccination and anti-tumor assays in vivo. Lastly, the mechanism of PE influenced the ROS/ERS pathway was examined by ROS assay kit, flow cytometry and Western blotting. RESULTS PE treatment induced translocation of CRT from the endoplasmic reticulum to the cell membrane of tumor cells, concomitantly triggering immunogenic cell death (ICD). In terms of mechanisms, endoplasmic reticulum (ER) stress relievers could impede the ability of PE to induce immunogenicity. This indicates that PE is activated by ER stress, leading to subsequent induction of ICD. Upon analyzing RNA-seq data, it was observed that PE primarily induces programmed cell death in tumors by impeding upstream antioxidant mechanisms. Additionally, it transforms dying tumor cells into vaccines, activating a series of immune responses. CONCLUSIONS This study observed for the first time that PE-induced CRT exposure on the membrane of cervical cancer cells compensates for the defect of nonimmunogenic cell death inducer CDDP thereby stimulating potent ICD. This ability restores the immunogenicity of CDDP through ER stress induced by the ROS signal. ROS played a role in PE's ability to induce ICD, leading to increased expression of ER stress-related proteins, including ATF3 and IRE-1α. PE exerted anti-cancer effects by increasing the ROS levels, and ROS/ERS signaling may be a potential avenue for cervical cancer treatment. Hence, the synergistic use of PE and CDDP holds potential for enhancing immunochemotherapy in cancer treatment.
Collapse
Affiliation(s)
- Congwen Wang
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Mingxing Zhang
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Jing Peng
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Meng Zhang
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Chong Lu
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Xingling Qi
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Qingyan Luo
- Department of Anaesthesiology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China
| | - Yumeng Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China; Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China.
| | - Guiling Li
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
10
|
Yang Q, Yang G, Wu Y, Zhang L, Song Z, Yang D. Bioinformatics analysis and validation of genes related to paclitaxel's anti-breast cancer effect through immunogenic cell death. Heliyon 2024; 10:e28409. [PMID: 38560098 PMCID: PMC10979210 DOI: 10.1016/j.heliyon.2024.e28409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Research indicated that Paclitaxel (PTX) can induce immunogenic cell death (ICD) through immunogenic modulation. However, the combination of PTX and ICD has not been extensively studied in breast cancer (BRCA). The TCGA-BRCA and GSE20685 datasets were enrolled in this study. Samples from the TCGA-BRCA dataset were consistently clustered based on selected immunogenic cell death-related genes (ICD-RGs). Next, candidate genes were obtained by overlapping differentially expressed genes (DEGs) between BRCA and normal groups, intersecting genes common to DEGs between cluster1 and cluster2 and hub module genes, and target genes of PTX from five databases. The univariate Cox algorithm and the least absolute shrinkage and selection operator (LASSO) were performed to obtain biomarkers and build a risk model. Following observing the immune microenvironment in differential risk subgroups, single-gene gene set enrichment analysis (GSEA) was carried out in all biomarkers. Finally, the expression of biomarkers was analyzed. Enrichment analysis showed that 626 intersecting genes were linked with inflammatory response. Further five biomarkers (CHI3L1, IL18, PAPLN, SH2D2A, and UBE2L6) were identified and a risk model was built. The model's performance was validated using GSE20685 dataset. Furthermore, the biomarkers were enriched with adaptive immune response. Lastly, the experimental results indicated that the alterations in IL18, SH2D2A, and CHI3L1 expression after treatment matched those in the public database. In this study, Five PTX-ICD-related biomarkers (CHI3L1, IL18, PAPLN, SH2D2A, and UBE2L6) were identified to aid in predicting BRCA treatment outcomes.
Collapse
Affiliation(s)
- Qianmei Yang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, PR China
- Yunnan College of Modern Biomedical Industry, Kunming, Yunnan, 650500, PR China
| | - Guimei Yang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, PR China
- Yunnan College of Modern Biomedical Industry, Kunming, Yunnan, 650500, PR China
| | - Yi Wu
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Lun Zhang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Zhuoyang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China
| | - Dan Yang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| |
Collapse
|
11
|
Rose F, Köberle B, Honnen S, Bay C, Burhenne J, Weiss J, Haefeli WE, Theile D. RNA is a pro-apoptotic target of cisplatin in cancer cell lines and C. elegans. Biomed Pharmacother 2024; 173:116450. [PMID: 38503239 DOI: 10.1016/j.biopha.2024.116450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
Cisplatin not only targets DNA but also RNA. However, it is largely unknown whether platinated RNA (Pt-RNA) causes apoptosis and thus contributes to the cytotoxic effects of cisplatin. Consequently, cellular RNA was isolated from HepG2 and LS180 cells, exposed to cisplatin, and the resulting Pt-RNA (20 ng Pt/µg RNA) was transfected into these cancer cell lines or used to treat an apoptosis reporter Caenorhabditis elegans (C. elegans) strain (MD701, expressing CED-1::GFP). Cellular and molecular effects of Pt-RNA were evaluated by luminogenic caspase 3/7 assays, PCR array analysis, and fluorescence microscopy-based quantification of apoptosis in C. elegans gonads. Assuming RNA cross-linking (pseudo double-stranded RNA), the contribution of the Toll-like receptor 3 (TLR3, a sensor of double-stranded RNA) to apoptosis induction in cancer cell lines was investigated by pharmacological TLR3 inhibition and overexpression. In contrast to controls, Pt-RNA significantly enhanced apoptosis in C. elegans (2-fold) and in the cancer cell lines (2-fold to 4-fold). TLR3 overexpression significantly enhanced the pro-apoptotic effects of Pt-RNA in HepG2 cells. TLR3 inhibition reduced the pro-apoptotic effects of Pt-RNA and cisplatin, but not of paclitaxel (off-target control). Gene expression analysis showed that Pt-RNA (but not RNA) significantly enhanced the mRNA levels of nuclear factor kappa B subunit 2 and interleukin-8 in HepG2 cells, suggesting that Pt-RNA is a damage-associated molecular pattern that additionally causes pro-inflammatory responses. Together, this data suggests that not only DNA but also cellular RNA is a functionally relevant target of cisplatin, leading to pro-apoptotic and immunogenic effects.
Collapse
Affiliation(s)
- Fabian Rose
- University of Heidelberg, Medical Faculty of Heidelberg, Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Beate Köberle
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20A, Karlsruhe 76131, Germany
| | - Sebastian Honnen
- Institute of Toxicology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Cindy Bay
- University of Heidelberg, Medical Faculty of Heidelberg, Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Jürgen Burhenne
- University of Heidelberg, Medical Faculty of Heidelberg, Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Johanna Weiss
- University of Heidelberg, Medical Faculty of Heidelberg, Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Walter E Haefeli
- University of Heidelberg, Medical Faculty of Heidelberg, Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Dirk Theile
- University of Heidelberg, Medical Faculty of Heidelberg, Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany.
| |
Collapse
|
12
|
Wright QG, Sinha D, Wells JW, Frazer IH, Gonzalez Cruz JL, Leggatt GR. Peritumoral administration of immunomodulatory antibodies as a triple combination suppresses skin tumor growth without systemic toxicity. J Immunother Cancer 2024; 12:e007960. [PMID: 38296598 PMCID: PMC10831460 DOI: 10.1136/jitc-2023-007960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Skin cancers, particularly keratinocyte cancers, are the most commonly diagnosed tumors. Although surgery is often effective in early-stage disease, skin tumors are not always easily accessible, can reoccur and have the ability to metastasize. More recently, immunotherapies, including intravenously administered checkpoint inhibitors, have been shown to control some skin cancers, but with off-target toxicities when used in combination. Our study investigated whether peritumoral administration of an antibody combination targeting PD-1, 4-1BB (CD137) and VISTA might control skin tumors and lead to circulating antitumor immunity without off-target toxicity. METHODS The efficacy of combination immunotherapy administered peritumorally or intravenously was tested using transplantable tumor models injected into mouse ears (primary tumors) or subcutaneously in flank skin (secondary tumors). Changes to the tumor microenvironment were tracked using flow cytometry while tumor-specific, CD8 T cells were identified through enzyme-linked immunospot (ELISPOT) assays. Off-target toxicity of the combination immunotherapy was assessed via serum alanine aminotransferase ELISA and histological analysis of liver sections. RESULTS The data showed that local administration of antibody therapy eliminated syngeneic murine tumors transplanted in the ear skin at a lower dose than required intravenously, and without measured hepatic toxicity. Tumor elimination was dependent on CD8 T cells and was associated with an increased percentage of CD8 T cells expressing granzyme B, KLRG1 and Eomes, and a decreased population of CD4 T cells including CD4+FoxP3+ cells in the treated tumor microenvironment. Importantly, untreated, distal tumors regressed following antibody treatment of a primary tumor, and immune memory prevented growth of subcutaneous flank tumors administered 50 days after regression of a primary tumor. CONCLUSIONS Together, these data suggest that peritumoral immunotherapy for skin tumors offers advantages over conventional intravenous delivery, allowing antibody dose sparing, improved safety and inducing long-term systemic memory. Future clinical trials of immunotherapy for primary skin cancer should focus on peritumoral delivery of combinations of immune checkpoint antibodies.
Collapse
Affiliation(s)
- Quentin G Wright
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Debottam Sinha
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - James W Wells
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Ian H Frazer
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
13
|
van der Sluis TC, van Haften FJ, van Duikeren S, Pardieck IN, de Graaf JF, Vleeshouwers W, van der Maaden K, Melief CJM, van der Burg SH, Arens R. Delayed vaccine-induced CD8 + T cell expansion by topoisomerase I inhibition mediates enhanced CD70-dependent tumor eradication. J Immunother Cancer 2023; 11:e007158. [PMID: 38030302 PMCID: PMC10689370 DOI: 10.1136/jitc-2023-007158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The survival of patients with cervical cancer who are treated with cisplatin in conjunction with the topoisomerase I inhibitor topotecan is enhanced when compared with patients treated with only one of these chemotherapeutics. Moreover, cisplatin-based and T cell-based immunotherapy have been shown to synergize, resulting in stronger antitumor responses. Here, we interrogated whether topotecan could further enhance the synergy of cisplatin with T cell-based cancer immunotherapy. METHODS Mice bearing human papilloma virus 16 (HPV16) E6/E7-expressing TC-1 tumors were vaccinated with HPV16 E7 long peptides and additionally received chemotherapy consisting of cisplatin and topotecan. We performed an in-depth study of this combinatorial chemoimmunotherapy on the effector function and expansion/contraction kinetics of vaccine-induced CD8+ T cells in the peripheral blood and tumor microenvironment (TME). In addition, we interrogated the particular role of chemotherapy-induced upregulation of costimulatory ligands by tumor-infiltrated myeloid cells on T cell proliferation and survival. RESULTS We show that E7 long peptide vaccination combined with cisplatin and topotecan, results in CD8+ T cell-dependent durable rejection of established tumors and 94% long-term survival. Although topotecan initially repressed the expansion of vaccine-induced CD8+ T cells, these cells eventually expanded vigorously, which was followed by delayed contraction. These effects associated with the induction of the proliferation marker Ki-67 and the antiapoptosis molecule Bcl-2 by intratumoral tumor-specific CD8+ T cells, which was regulated by topotecan-mediated upregulation of the costimulatory ligand CD70 on myeloid cells in the TME. CONCLUSIONS Taken together, our data show that although treatment with cisplatin, topotecan and vaccination initially delays T cell expansion, this combinatorial therapy results eventually in a more robust T cell-mediated tumor eradication due to enhancement of costimulatory molecules in the TME.
Collapse
Affiliation(s)
| | | | - Suzanne van Duikeren
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Iris N Pardieck
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ward Vleeshouwers
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Koen van der Maaden
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Yadav A, Yadav S, Alam MA. Immunotherapies landscape and associated inhibitors for the treatment of cervical cancer. Med Oncol 2023; 40:328. [PMID: 37815596 DOI: 10.1007/s12032-023-02188-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023]
Abstract
Cervical cancer ranks as the fourth most common form of cancer worldwide. There is a large number of situations that may be examined in the developing world. The risk of contracting HPV (Human Papillomavirus) due to poor sanitation and sexual activity is mostly to blame for the disease's alarming rate of expansion. Immunotherapy is widely regarded as one of the most effective medicines available. The immunotherapy used to treat cervical cancer cells relies on inhibitors that block the immune checkpoint. The poly adenosine diphosphate ribose polymer inhibited cervical cancer cells by activating both the programmed death 1 (PD-1) and programmed death ligand 1 (CTLA-1) checkpoints, a strategy that has been shown to have impressive effects. Yet, immunotherapy directed towards tumors that have already been invaded by lymphocytes leaves a positive imprint on the healing process. Immunotherapy is used in conjunction with other treatments, including chemotherapy and radiation, to provide faster and more effective outcomes. In this combination therapy, several medications such as Pembrolizumab, Durvalumab, Atezolizumab, and so on are employed in clinical trials. Recent developments and future predictions suggest that vaccinations will soon be developed with the dual goal of reducing the patient's susceptibility to illness while simultaneously strengthening their immune system. Many clinical and preclinical studies are now investigating the effectiveness of immunotherapy in slowing the progression of cervical cancer. The field of immunotherapy is expected to witness more progress toward improving outcomes. Immunotherapies landscape and associated inhibitors for the treatment of Cervical Cancer.
Collapse
Affiliation(s)
- Agrima Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Plot No. 2, Sector 17-A, Yamuna Expressway, Gautam Buddh Nagar, Greater Noida, Uttar Pradesh, 201310, India.
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
15
|
Tu J, He Y, Zhang H, Wang J, Li Z, Sun H. Anti-tumor effect of Crocus sativus petals polysaccharides by reconstructing tumor microenvironment. Int J Biol Macromol 2023; 248:125878. [PMID: 37467829 DOI: 10.1016/j.ijbiomac.2023.125878] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/01/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Two polysaccharides from Crocus sativus petals (PCSPs), PCSPA and PCSPB have been previously reported to possess the immunopotentiation activity and improve innate immunity in mice. In this study, PCSPB was evaluated for the anti-tumor activity and explored its immunological mechanisms based on tumor microenvironment (TME) using S180 sarcoma-bearing mice. Although PCSPB showed the lower toxicity to a series of tumor cells, it significantly and dose-dependently suppressed the growth of S180 sarcomas transplanted in mice. HE staining, immunohistochemical analysis, and TUNEL assay revealed that PCSPB significantly induced tumor cell necrosis, apoptosis, and vessel disruption in sarcoma tissues. Meanwhile, PCSPB markedly decreased the levels of inflammatory factors TGF-β, IFN-γ, IL-10 and TNF-α and down-regulated the mRNA expression levels of TGF-β and TNF-α in tumor tissues. Flow cytometric analysis showed that PCSPB significantly increased the proportion of CD8+ T cells and NK cells, but decreased that of regulatory T cells (Tregs), total myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs) in sarcoma tissues. Furthermore, immunofluorescence assay demonstrated that PCSPB noteworthily reprogrammed TAMs from a tumorigenic M2 towards an antitumorigenic M1 phenotype in S180 tissues. These findings demonstrated that PCSPB might exert the anti-tumor activity by reconstructing TME and could act as an anti-tumor candidate with low toxicity.
Collapse
Affiliation(s)
- Jue Tu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yanfei He
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huifang Zhang
- Medical College, Jinhua Polytechnic, Jinhua 321000, China
| | - Juanjuan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenhao Li
- Longevity Valley Pharmaceutical, Jinhua 321200, China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Yu J, Li M, Ren B, Cheng L, Wang X, Ma Z, Yong WP, Chen X, Wang L, Goh BC. Unleashing the efficacy of immune checkpoint inhibitors for advanced hepatocellular carcinoma: factors, strategies, and ongoing trials. Front Pharmacol 2023; 14:1261575. [PMID: 37719852 PMCID: PMC10501787 DOI: 10.3389/fphar.2023.1261575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer, representing approximately 85% of cases. The diagnosis is often made in the middle and late stages, necessitating systemic treatment as the primary therapeutic option. Despite sorafenib being the established standard of care for advanced HCC in the past decade, the efficacy of systemic therapy remains unsatisfactory, highlighting the need for novel treatment modalities. Recent breakthroughs in immunotherapy have shown promise in HCC treatment, particularly with immune checkpoint inhibitors (ICIs). However, the response rate to ICIs is currently limited to approximately 15%-20% of HCC patients. Recently, ICIs demonstrated greater efficacy in "hot" tumors, highlighting the urgency to devise more effective approaches to transform "cold" tumors into "hot" tumors, thereby enhancing the therapeutic potential of ICIs. This review presented an updated summary of the factors influencing the effectiveness of immunotherapy in HCC treatment, identified potential combination therapies that may improve patient response rates to ICIs, and offered an overview of ongoing clinical trials focusing on ICI-based combination therapy.
Collapse
Affiliation(s)
- Jiahui Yu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Mengnan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Boxu Ren
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Le Cheng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xiaoxiao Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Wei Peng Yong
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaoguang Chen
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Boon Cher Goh
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Jahandideh A, Yarizadeh M, Noei-Khesht Masjedi M, Fatehnejad M, Jahandideh R, Soheili R, Eslami Y, Zokaei M, Ahmadvand A, Ghalamkarpour N, Kumar Pandey R, Nabi Afjadi M, Payandeh Z. Macrophage's role in solid tumors: two edges of a sword. Cancer Cell Int 2023; 23:150. [PMID: 37525217 PMCID: PMC10391843 DOI: 10.1186/s12935-023-02999-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023] Open
Abstract
The tumor microenvironment is overwhelmingly dictated by macrophages, intimately affiliated with tumors, exercising pivotal roles in multiple processes, including angiogenesis, extracellular matrix reconfiguration, cellular proliferation, metastasis, and immunosuppression. They further exhibit resilience to chemotherapy and immunotherapy via meticulous checkpoint blockades. When appropriately stimulated, macrophages can morph into a potent bidirectional component of the immune system, engulfing malignant cells and annihilating them with cytotoxic substances, thus rendering them intriguing candidates for therapeutic targets. As myelomonocytic cells relentlessly amass within tumor tissues, macrophages rise as prime contenders for cell therapy upon the development of chimeric antigen receptor effector cells. Given the significant incidence of macrophage infiltration correlated with an unfavorable prognosis and heightened resistance to chemotherapy in solid tumors, we delve into the intricate role of macrophages in cancer propagation and their promising potential in confronting four formidable cancer variants-namely, melanoma, colon, glioma, and breast cancers.
Collapse
Affiliation(s)
- Arian Jahandideh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Usern Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahsa Yarizadeh
- Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Maryam Noei-Khesht Masjedi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Fatehnejad
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Romina Jahandideh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roben Soheili
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Yeganeh Eslami
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Zokaei
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ardavan Ahmadvand
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nogol Ghalamkarpour
- Department of Clinical Laboratory Sciences, School of Allied Medicine, Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Rajan Kumar Pandey
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
18
|
Ducoulombier A, Guigay J, Etienne-Grimaldi MC, Saada-Bouzid E. Chemotherapy postimmunotherapy for recurrent metastatic head and neck squamous cell carcinoma. Curr Opin Oncol 2023; 35:166-177. [PMID: 36966495 DOI: 10.1097/cco.0000000000000936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
PURPOSE OF REVIEW Clinical data on salvage chemotherapy used after checkpoints inhibitors in oncology are reviewed, with a special focus on recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC). RECENT FINDINGS Converging evidence is emerging about high response and/or disease control rates associated with salvage chemotherapy after immunotherapy failure in advanced solid tumours. This phenomenon is mainly reported in retrospective studies for "hot tumours" such as R/M HNSCC, melanoma, lung, urothelial or gastric cancers, but also in haematological malignancies. Some physiopathological hypotheses have been raised. SUMMARY Several independent series show increased response rates associated with postimmuno chemotherapy when compared with retrospective series in similar settings. Several mechanisms could be involved such as a "carry-over" allowed by a persistence of the checkpoint inhibitor, a modulation of tumour microenvironment components but also an intrinsic immunomodulatory effect of chemotherapy, increased by a specific immunologic state induced by the therapeutic pressure of checkpoint inhibitors. These data establish a rationale for prospectively evaluating the features of postimmunotherapy salvage chemotherapy.
Collapse
Affiliation(s)
- Agnes Ducoulombier
- Laboratoire de Recherche Translationnelle en Oncologie, Université Côte d'Azur, Centre Antoine Lacassagne
- Department of Medical Oncology, Université Côte d'Azur, Centre Antoine Lacassagne, Nice, France
| | - Joel Guigay
- Department of Medical Oncology, Université Côte d'Azur, Centre Antoine Lacassagne, Nice, France
| | | | - Esma Saada-Bouzid
- Laboratoire de Recherche Translationnelle en Oncologie, Université Côte d'Azur, Centre Antoine Lacassagne
- Department of Medical Oncology, Université Côte d'Azur, Centre Antoine Lacassagne, Nice, France
| |
Collapse
|
19
|
Melief CJM, van der Gracht E, Wiekmeijer AS. Combination immunotherapy with synthetic long peptides and chemotherapy or PD-1 blocker for cancers caused by human papilloma virus type 16. Semin Immunopathol 2023; 45:273-277. [PMID: 36780000 DOI: 10.1007/s00281-023-00986-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/14/2023]
Abstract
Therapeutic vaccination of premalignant conditions and of different stages of cancer can be accomplished with several platforms including DNA vaccines, RNA vaccines, synthetic long peptides (SLP), and recombinant viruses. We successfully used a therapeutic vaccine composed of SLP covering the complete sequence of the two oncogenic proteins E6 and E7 of human papillomavirus type 16 (HPV16) as monotherapy in patients with premalignant disease. However, combination treatment might be required in patients with (advanced) cancer because of the hostile cancer microenvironment for T cells in established HPV16+ cancer, often associated with systemic immunosuppression. In patients with late-stage recurrent or metastatic HPV16+ cancers, we have therefore combined treatment with the SLP vaccine, called ISA101b, with either standard-of-care chemotherapy or with immune checkpoint inhibition with anti-PD-1 monoclonal antibody. A strong vaccine-induced interferon gamma-producing T cell response to HPV16 E6/E7 was associated with significantly better survival. In a second phase 1/2 study, patients with recurrent or metastatic HPV16+ oropharyngeal cancer were treated with the combination of ISA101b and anti-PD-1 (nivolumab). In this trial, the clinical overall response rate (ORR) in 22 patients was 36%, twice the ORR in the nivolumab registration trial for this category of patients, and 2/22 patients had a complete clinical response that is ongoing after 4 1/2 years. Other promising strategies for late-stage cancer recipients are the infusion of expanded tumor-infiltrating lymphocytes or the infusion of T cell receptor transduced T cells, both directed against HPV16.
Collapse
|
20
|
Boilesen DR, Neckermann P, Willert T, Müller MD, Schrödel S, Pertl C, Thirion C, Asbach B, Wagner R, Holst PJ. Efficacy and Synergy with Cisplatin of an Adenovirus Vectored Therapeutic E1E2E6E7 Vaccine against HPV Genome-Positive C3 Cancers in Mice. Cancer Immunol Res 2023; 11:261-275. [PMID: 36534088 DOI: 10.1158/2326-6066.cir-22-0174] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/25/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Human papillomavirus (HPV) infections are the main cause of cervical and oropharyngeal cancers. As prophylactic vaccines have no curative effect, an efficient therapy would be highly desired. Most therapeutic vaccine candidates target only a small subset of HPV regulatory proteins, namely, E6 and E7, and are therefore restricted in the breadth of their immune response. However, research has suggested E1 and E2 as promising targets to fight HPV+ cancer. Here, we report the design of adenoviral vectors efficiently expressing HPV16 E1 and E2 in addition to transformation-deficient E6 and E7. Vaccination elicited vigorous CD4+ and CD8+ T-cell responses against all encoded HPV16 proteins in outbred mice and against E1 and E7 in C57BL/6 mice. Therapeutic vaccination of C3 tumor-bearing mice led to significantly reduced tumor growth and enhanced survival for both small and established tumors. Tumor biopsies revealed increased numbers of tumor-infiltrating CD8+ T cells in treated mice. Cisplatin enhanced the effect of therapeutic vaccination, accompanied by enhanced infiltration of dendritic cells into the tumor. CD8+ T cells were identified as effector cells in T-cell depletion assays, seemingly under regulation by FoxP3+CD4+ regulatory T cells. Finally, therapeutic vaccination with Ad-Ii-E1E2E6E7 exhibited significantly enhanced survival compared with vaccination with two peptides each harboring a known E6/E7 epitope. We hypothesize that this difference could be due to the induction of additional T-cell responses against E1. These results support the use of this novel vaccine candidate targeting an extended set of antigens (Ad-Ii-E1E2E6E7), in combination with cisplatin, as an advanced strategy to combat HPV+ cancers.
Collapse
Affiliation(s)
- Ditte Rahbæk Boilesen
- Centre for Medical Parasitology, The Panum Institute, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,InProTher ApS, Copenhagen, Denmark
| | - Patrick Neckermann
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | | | - Mikkel Dons Müller
- Centre for Medical Parasitology, The Panum Institute, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,InProTher ApS, Copenhagen, Denmark
| | | | | | | | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany.,Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Peter Johannes Holst
- Centre for Medical Parasitology, The Panum Institute, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,InProTher ApS, Copenhagen, Denmark
| |
Collapse
|
21
|
Luo R, Onyshchenko K, Wang L, Gaedicke S, Grosu AL, Firat E, Niedermann G. Necroptosis-dependent Immunogenicity of Cisplatin: Implications for Enhancing the Radiation-induced Abscopal Effect. Clin Cancer Res 2023; 29:667-683. [PMID: 36449659 DOI: 10.1158/1078-0432.ccr-22-1591] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/04/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022]
Abstract
PURPOSE Cisplatin is increasingly used in chemoimmunotherapy and may enhance the T cell-dependent radiation-induced abscopal effect, but how it promotes antitumor immunity is poorly understood. We investigated whether and why cisplatin is immunogenic, and the implications for the cisplatin-enhanced abscopal effect. EXPERIMENTAL DESIGN Cisplatin, carboplatin, and the well-known immunogenic cell death (ICD) inducer oxaliplatin were compared for their potency to enhance the abscopal effect and induce type I IFN (IFN-I) and extracellular ATP, danger signals of ICD. The hypothetical role of necroptosis and associated damage-associated molecular patterns for cisplatin-induced ICD was investigated by inhibitors and knockout cells in vitro and in two tumor models in mice. A novel necroptosis signature for tumor immune cell infiltration and therapy response was developed. RESULTS Cisplatin enhanced the abscopal effect more strongly than oxaliplatin or carboplatin. This correlated with higher induction of IFN-I and extracellular ATP by cisplatin, in a necroptosis-dependent manner. Cisplatin triggered receptor-interacting protein kinase 3 (RIPK3)-dependent tumor cell necroptosis causing cytosolic mitochondrial DNA (mtDNA) release, initiating the cyclic GMP-AMP synthase-stimulator of interferon genes pathway and IFN-I secretion promoting T-cell cross-priming by dendritic cells (DC). Accordingly, tumor cell RIPK3 or mtDNA deficiency and loss of IFN-I or ATP signaling diminished the cisplatin-enhanced abscopal effect. Cisplatin-treated tumor cells were immunogenic in vaccination experiments, depending on RIPK3 and mtDNA. In human tumor transcriptome analysis, necroptotic features correlated with abundant CD8+ T cells/DCs, sparse immunosuppressive cells, and immunotherapy response. CONCLUSIONS Cisplatin induces antitumor immunity through necroptosis-mediated ICD. Our findings may help explain the benefits of cisplatin in chemo(radio)immunotherapies and develop clinical trials to investigate whether cisplatin enhances the abscopal effect in patients.
Collapse
Affiliation(s)
- Ren Luo
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kateryna Onyshchenko
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Liqun Wang
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, P.R. China
| | - Simone Gaedicke
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elke Firat
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriele Niedermann
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
22
|
Troschke-Meurer S, Zumpe M, Meißner L, Siebert N, Grabarczyk P, Forkel H, Maletzki C, Bekeschus S, Lode HN. Chemotherapeutics Used for High-Risk Neuroblastoma Therapy Improve the Efficacy of Anti-GD2 Antibody Dinutuximab Beta in Preclinical Spheroid Models. Cancers (Basel) 2023; 15:cancers15030904. [PMID: 36765861 PMCID: PMC9913527 DOI: 10.3390/cancers15030904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Anti-disialoganglioside GD2 antibody ch14.18/CHO (dinutuximab beta, DB) improved the outcome of patients with high-risk neuroblastoma (HR-NB) in the maintenance phase. We investigated chemotherapeutic compounds used in newly diagnosed patients in combination with DB. Vincristine, etoposide, carboplatin, cisplatin, and cyclophosphamide, as well as DB, were used at concentrations achieved in pediatric clinical trials. The effects on stress ligand and checkpoint expression by neuroblastoma cells and on activation receptors of NK cells were determined by using flow cytometry. NK-cell activity was measured with a CD107a/IFN-γ assay. Long-term cytotoxicity was analyzed in three spheroid models derived from GD2-positive neuroblastoma cell lines (LAN-1, CHLA 20, and CHLA 136) expressing a fluorescent near-infrared protein. Chemotherapeutics combined with DB in the presence of immune cells improved cytotoxic efficacy up to 17-fold compared to in the controls, and the effect was GD2-specific. The activating stress and inhibitory checkpoint ligands on neuroblastoma cells were upregulated by the chemotherapeutics up to 9- and 5-fold, respectively, and activation receptors on NK cells were not affected. The CD107a/IFN-γ assay revealed no additional activation of NK cells by the chemotherapeutics. The synergistic effect of DB with chemotherapeutics seems primarily attributed to the combined toxicity of antibody-dependent cellular cytotoxicity and chemotherapy, which supports further clinical evaluation in frontline induction therapy.
Collapse
Affiliation(s)
- Sascha Troschke-Meurer
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
| | - Maxi Zumpe
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
| | - Lena Meißner
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
| | - Nikolai Siebert
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
| | - Piotr Grabarczyk
- Department of Internal Medicine, Clinic III—Hematology, Oncology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
| | - Hannes Forkel
- Department of Internal Medicine, Clinic III—Hematology, Oncology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
| | - Claudia Maletzki
- Department of Medicine, Clinic III—Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Holger N. Lode
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
- Correspondence: ; Tel.: +49-3834-86-6300; Fax: +49-3834-86-6410
| |
Collapse
|
23
|
Blomberg OS, Spagnuolo L, Garner H, Voorwerk L, Isaeva OI, van Dyk E, Bakker N, Chalabi M, Klaver C, Duijst M, Kersten K, Brüggemann M, Pastoors D, Hau CS, Vrijland K, Raeven EAM, Kaldenbach D, Kos K, Afonina IS, Kaptein P, Hoes L, Theelen WSME, Baas P, Voest EE, Beyaert R, Thommen DS, Wessels LFA, de Visser KE, Kok M. IL-5-producing CD4 + T cells and eosinophils cooperate to enhance response to immune checkpoint blockade in breast cancer. Cancer Cell 2023; 41:106-123.e10. [PMID: 36525971 DOI: 10.1016/j.ccell.2022.11.014] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/30/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Immune checkpoint blockade (ICB) has heralded a new era in cancer therapy. Research into the mechanisms underlying response to ICB has predominantly focused on T cells; however, effective immune responses require tightly regulated crosstalk between innate and adaptive immune cells. Here, we combine unbiased analysis of blood and tumors from metastatic breast cancer patients treated with ICB with mechanistic studies in mouse models of breast cancer. We observe an increase in systemic and intratumoral eosinophils in patients and mice responding to ICB treatment. Mechanistically, ICB increased IL-5 production by CD4+ T cells, stimulating elevated eosinophil production from the bone marrow, leading to systemic eosinophil expansion. Additional induction of IL-33 by ICB-cisplatin combination or recombinant IL-33 promotes intratumoral eosinophil infiltration and eosinophil-dependent CD8+ T cell activation to enhance ICB response. This work demonstrates the critical role of eosinophils in ICB response and provides proof-of-principle for eosinophil engagement to enhance ICB efficacy.
Collapse
Affiliation(s)
- Olga S Blomberg
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands; Department of Immunology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Lorenzo Spagnuolo
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Hannah Garner
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Leonie Voorwerk
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Olga I Isaeva
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ewald van Dyk
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands; Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Noor Bakker
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Myriam Chalabi
- Division of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Gastrointestinal Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Chris Klaver
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maxime Duijst
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Kelly Kersten
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marieke Brüggemann
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Dorien Pastoors
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Cheei-Sing Hau
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Kim Vrijland
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Elisabeth A M Raeven
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Daphne Kaldenbach
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Kevin Kos
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands; Department of Immunology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Inna S Afonina
- VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Paulien Kaptein
- Division of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Louisa Hoes
- Oncode Institute, Utrecht, the Netherlands; Division of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Willemijn S M E Theelen
- Department of Thoracic Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Paul Baas
- Department of Thoracic Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Emile E Voest
- Oncode Institute, Utrecht, the Netherlands; Division of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Daniela S Thommen
- Division of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lodewyk F A Wessels
- Oncode Institute, Utrecht, the Netherlands; Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Karin E de Visser
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands; Department of Immunology, Leiden University Medical Centre, Leiden, the Netherlands.
| | - Marleen Kok
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
24
|
Jia G, Zhou S, Xu T, Huang Y, Li X. Conversion therapy from unresectable stage IIIC non-small-cell lung cancer to radical surgery via anti-PD-1 immunotherapy combined with chemotherapy and anti-angiogenesis: A case report and literature review. Front Oncol 2022; 12:954685. [PMID: 36185263 PMCID: PMC9515488 DOI: 10.3389/fonc.2022.954685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
The prognosis of patients with stage IIIC non-small-cell lung cancer (NSCLC) is poor due to the loss of surgical treatment opportunities. Improving the prognosis of these patients with IIIC NSCLC urgently needs to be addressed. Here, we report a stage IIIC (T4N3M0 IIIC (AJCC 8th)) NSCLC patient treated with 2 cycles of anti-PD-1 immunotherapy combined with chemotherapy and anti-angiogenesis therapy; after two cycles of treatment, the patient achieved a partial response and obtained the opportunity for surgical treatment. After the operation, the patient achieved a pathological complete response and successfully transformed from unresectable stage IIIC lung cancer to radical surgery (ypT0N0M0). Our study is expected to provide new ideas for treating patients with unresectable stage IIIC NSCLC in the future.
Collapse
Affiliation(s)
- Guohua Jia
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuimei Zhou
- Department of Blood Transfusion, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tangpeng Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yabing Huang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangpan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Xiangpan Li,
| |
Collapse
|
25
|
Atkins MB, Abu-Sbeih H, Ascierto PA, Bishop MR, Chen DS, Dhodapkar M, Emens LA, Ernstoff MS, Ferris RL, Greten TF, Gulley JL, Herbst RS, Humphrey RW, Larkin J, Margolin KA, Mazzarella L, Ramalingam SS, Regan MM, Rini BI, Sznol M. Maximizing the value of phase III trials in immuno-oncology: A checklist from the Society for Immunotherapy of Cancer (SITC). J Immunother Cancer 2022; 10:jitc-2022-005413. [PMID: 36175037 PMCID: PMC9528604 DOI: 10.1136/jitc-2022-005413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2022] [Indexed: 11/03/2022] Open
Abstract
The broad activity of agents blocking the programmed cell death protein 1 and its ligand (the PD-(L)1 axis) revolutionized oncology, offering long-term benefit to patients and even curative responses for tumors that were once associated with dismal prognosis. However, only a minority of patients experience durable clinical benefit with immune checkpoint inhibitor monotherapy in most disease settings. Spurred by preclinical and correlative studies to understand mechanisms of non-response to the PD-(L)1 antagonists and by combination studies in animal tumor models, many drug development programs were designed to combine anti-PD-(L)1 with a variety of approved and investigational chemotherapies, tumor-targeted therapies, antiangiogenic therapies, and other immunotherapies. Several immunotherapy combinations improved survival outcomes in a variety of indications including melanoma, lung, kidney, and liver cancer, among others. This immunotherapy renaissance, however, has led to many combinations being advanced to late-stage development without definitive predictive biomarkers, limited phase I and phase II data, or clinical trial designs that are not optimized for demonstrating the unique attributes of immune-related antitumor activity-for example, landmark progression-free survival and overall survival. The decision to activate a study at an individual site is investigator-driven, and generalized frameworks to evaluate the potential for phase III trials in immuno-oncology to yield positive data, particularly to increase the number of curative responses or otherwise advance the field have thus far been lacking. To assist in evaluating the potential value to patients and the immunotherapy field of phase III trials, the Society for Immunotherapy of Cancer (SITC) has developed a checklist for investigators, described in this manuscript. Although the checklist focuses on anti-PD-(L)1-based combinations, it may be applied to any regimen in which immune modulation is an important component of the antitumor effect.
Collapse
Affiliation(s)
- Michael B Atkins
- Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| | | | - Paolo A Ascierto
- Istituto Nazionale Tumori IRCCS Fondazione "G Pascale", Napoli, Italy
| | - Michael R Bishop
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, Illinois, USA
| | - Daniel S Chen
- Engenuity Life Sciences, Burlingame, California, USA
| | - Madhav Dhodapkar
- Center for Cancer Immunology, Winship Cancer Institute at Emory University, Atlanta, Georgia, USA
| | - Leisha A Emens
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Marc S Ernstoff
- DCTD/DTP-IOB, ImmunoOncology Branch, NCI, Bethesda, Maryland, USA
| | | | - Tim F Greten
- Gastrointestinal Malignancies Section, National Cancer Institue CCR Liver Program, Bethesda, Maryland, USA
| | - James L Gulley
- Center for Immuno-Oncology, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | - Kim A Margolin
- St. John's Cancer Institute, Santa Monica, California, USA
| | - Luca Mazzarella
- Experimental Oncology, New Drug Development, European Instititue of Oncology IRCCS, Milan, Italy
| | | | - Meredith M Regan
- Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | | | - Mario Sznol
- Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
26
|
Principe DR, Kamath SD, Korc M, Munshi HG. The immune modifying effects of chemotherapy and advances in chemo-immunotherapy. Pharmacol Ther 2022; 236:108111. [PMID: 35016920 PMCID: PMC9271143 DOI: 10.1016/j.pharmthera.2022.108111] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the treatment paradigm for several malignancies. While the use of single-agent or combined ICIs has achieved acceptable disease control rates in a variety of solid tumors, such approaches have yet to show substantial therapeutic efficacy in select difficult-to-treat cancer types. Recently, select chemotherapy regimens are emerging as extensive modifiers of the tumor microenvironment, leading to the reprogramming of local immune responses. Accordingly, data is now emerging to suggest that certain anti-neoplastic agents modulate various immune cell processes, most notably the cross-presentation of tumor antigens, leukocyte trafficking, and cytokine biosynthesis. As such, the combination of ICIs and cytotoxic chemotherapy are beginning to show promise in many cancers that have long been considered poorly responsive to ICI-based immunotherapy. Here, we discuss past and present attempts to advance chemo-immunotherapy in these difficult-to-treat cancer histologies, mechanisms through which select chemotherapies modify tumor immunogenicity, as well as important considerations when designing such approaches to maximize efficacy and improve therapeutic response rates.
Collapse
Affiliation(s)
- Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, USA; Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Suneel D Kamath
- Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Murray Korc
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Hidayatullah G Munshi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
27
|
Tilsed CM, Fisher SA, Nowak AK, Lake RA, Lesterhuis WJ. Cancer chemotherapy: insights into cellular and tumor microenvironmental mechanisms of action. Front Oncol 2022; 12:960317. [PMID: 35965519 PMCID: PMC9372369 DOI: 10.3389/fonc.2022.960317] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy has historically been the mainstay of cancer treatment, but our understanding of what drives a successful therapeutic response remains limited. The diverse response of cancer patients to chemotherapy has been attributed principally to differences in the proliferation rate of the tumor cells, but there is actually very little experimental data supporting this hypothesis. Instead, other mechanisms at the cellular level and the composition of the tumor microenvironment appear to drive chemotherapy sensitivity. In particular, the immune system is a critical determinant of chemotherapy response with the depletion or knock-out of key immune cell populations or immunological mediators completely abrogating the benefits of chemotherapy in pre-clinical models. In this perspective, we review the literature regarding the known mechanisms of action of cytotoxic chemotherapy agents and the determinants of response to chemotherapy from the level of individual cells to the composition of the tumor microenvironment. We then summarize current work toward the development of dynamic biomarkers for response and propose a model for a chemotherapy sensitive tumor microenvironment.
Collapse
Affiliation(s)
- Caitlin M. Tilsed
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Scott A. Fisher
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Anna K. Nowak
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- Medical School, University of Western Australia, Crawley, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Richard A. Lake
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - W. Joost Lesterhuis
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- Telethon Kids Institute, University of Western Australia, West Perth, WA, Australia
- *Correspondence: W. Joost Lesterhuis,
| |
Collapse
|
28
|
Lee D, Huntoon K, Kang M, Lu Y, Gallup T, Jiang W, Kim BYS. Harnessing cGAS‐STING Pathway for Cancer Immunotherapy: From Bench to Clinic. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- DaeYong Lee
- Department of Neurosurgery The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Kristin Huntoon
- Department of Neurosurgery The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Minjeong Kang
- Department of radiation oncology The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Yifei Lu
- Department of Neurosurgery The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Thomas Gallup
- Department of Neurosurgery The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Wen Jiang
- Department of radiation oncology The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Betty Y S Kim
- Department of Neurosurgery The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| |
Collapse
|
29
|
Kaplon H. Translational Learnings in the Development of Chemo-Immunotherapy Combination to Bypass the Cold Tumor Microenvironment in Pancreatic Ductal Adenocarcinoma. Front Oncol 2022; 12:835502. [PMID: 35664786 PMCID: PMC9159762 DOI: 10.3389/fonc.2022.835502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal cancers, with a 5-year relative survival rate of 5%. The desmoplastic stroma found in the tumor microenvironment of PDAC is suggested to be partly responsible for the resistance to most therapeutic strategies. This review outlines the clinical results obtained with an immune checkpoint inhibitor in PDAC and discusses the rationale to use a combination of chemotherapy and immune checkpoint therapy. Moreover, essential parameters to take into account in designing an efficient combination have been highlighted.
Collapse
Affiliation(s)
- Hélène Kaplon
- Institut de Recherches Internationales Servier, Translational Medicine Department, Servier, Suresnes, France
| |
Collapse
|
30
|
Serum Proteomics in Patients with Head and Neck Cancer: Peripheral Blood Immune Response to Treatment. Int J Mol Sci 2022; 23:ijms23116304. [PMID: 35682983 PMCID: PMC9180944 DOI: 10.3390/ijms23116304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/12/2022] Open
Abstract
In this real-world study, the aims were to prospectively evaluate the expression of inflammatory proteins in serum collected from head and neck cancer patients before and after treatment, and to assess whether there were differences in expression associated with treatment modalities. The mixed study cohort consisted of 180 patients with head and neck cancer. The most common tumor sites were the oropharynx (n = 81), the oral cavity (n = 53), and the larynx (n = 22). Blood tests for proteomics analysis were carried out before treatment, 7 weeks after the start of treatment, and 3 and 12 months after the termination of treatment. Sera were analyzed for 83 proteins using an immuno-oncology biomarker panel (Olink, Uppsala, Sweden). Patients were divided into four treatment groups: surgery alone (Surg group, n = 24), radiotherapy with or without surgery (RT group, n = 94), radiotherapy with concomitant cisplatin (CRT group, n = 47), and radiotherapy with concomitant targeted therapy (RT Cetux group, n = 15). For the overall cohort, the expression levels of 15 of the 83 proteins changed significantly between the pretreatment sample and the sample taken 7 weeks after the start of treatment. At 7 weeks after the start of treatment, 13 proteins showed lower expression in the CRT group compared to the RT group. The majority of the inflammatory proteins had returned to their pretreatment levels after 12 months. It was clearly demonstrated that cisplatin-based chemoradiation has immunological effects in patients with head and neck cancer. This analysis draws attention to several inflammatory proteins that are of interest for further studies.
Collapse
|
31
|
Kimura Y, Aoki H, Soyama T, Sakuragi A, Otsuka Y, Nomoto A, Yano S, Nishie H, Kataoka H, Aoyama M. Photodynamic therapy using mannose-conjugated chlorin e6 increases cell surface calreticulin in cancer cells and promotes macrophage phagocytosis. Med Oncol 2022; 39:82. [PMID: 35478050 DOI: 10.1007/s12032-022-01674-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/03/2022] [Indexed: 10/18/2022]
Abstract
Photodynamic therapy (PDT) damages cancer cells via photosensitization using harmless laser irradiation. We synthesized a new photosensitizer, mannose-conjugated-chlorin e6 (M-chlorin e6), which targets mannose receptors that are highly expressed on M2-like tumor-associated macrophages (M2-TAMs) and cancer cells. In our previous study, we demonstrated that M-chlorin e6 PDT reduces tumor volume and decreases the proportion of M2-TAMs. Whether M-chlorin e6 PDT-treated cancer cells activate tumor immunity remains unclear, although the decrease in M2-TAMs is thought to be a direct injurious effect of M-chlorin e6 PDT. Calreticulin (CRT) is exposed at the surface of the membrane of cancer cells in response to treatment with chemotherapeutic agents such as anthracycline and oxaliplatin. Surface-exposed CRT induces phagocytosis of CRT receptor-positive cells, including macrophages, inducing anticancer immune responses. In the present study, we found that M-chlorin e6 PDT increases CRT on the surface of cancer cells, leading to macrophage phagocytosis of cancer cells. Furthermore, M-chlorin e6 PDT increases CD80+CD86+ macrophages. These results suggest that M-chlorin e6 PDT exerts anti-tumor effects by both enhancing the phagocytosis of cancer cells and strengthening the anti-tumor phenotype of macrophages.
Collapse
Affiliation(s)
- Yuka Kimura
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Tatsuki Soyama
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Akira Sakuragi
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Yuto Otsuka
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Akihiro Nomoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Shigenobu Yano
- KYOUSEI Science Center for Life and Nature, Nara Women's University, Kitauoya-Higashimachi, Nara, 630-8506, Japan
| | - Hirotada Nishie
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| |
Collapse
|
32
|
Wu L, Wang X, He X, Li Q, Hua Q, Liu R, Qiu Z. MMP9 Expression Correlates With Cisplatin Resistance in Small Cell Lung Cancer Patients. Front Pharmacol 2022; 13:868203. [PMID: 35431936 PMCID: PMC9010875 DOI: 10.3389/fphar.2022.868203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/24/2022] [Indexed: 12/05/2022] Open
Abstract
Background: Cisplatin is the basis of the primary treatment for SCLC chemotherapy. However, the limited objective response rate and definite drug resistance greatly restrict the clinical potential and therapeutic benefits of cisplatin use. Therefore, it is essential to identify biomarkers that can discern the sensitivity of SCLC patients to cisplatin treatment. Methods: We collected two SCLC cohorts treated with cisplatin that included mutation data, prognosis data and expression data. The sensitivity of cisplatin was evaluated by the pRRophetic algorithm. MCPcounter, quanTIseq, and xCell algorithms were used to evaluate immune cell score. GSEA and ssGSEA algorithms were used to calculate immune-related pathway scores. Univariate and multivariate Cox regression models were employed, and survival analysis was used to evaluate the prognostic value of the candidate genes. Results: MMP9-High is related to improved clinical prognoses of patients with SCLC (HR = 0.425, p = 0.0085; HR = 0.365, p = 0.0219). Multivariate results showed that MMP-High could be used as an independent predictor of the prognosis of SCLC after cisplatin treatment (HR = 0.216, p = 0.00153; HR = 0.352; p = 0.0199). In addition, MMP9-High displayed a significantly lower IC50 value of cisplatin and higher immunogenicity than MMP9-Low SCLC. Compared with MMP9-Low SCLC, MMP9-High included significantly increased levels of T-cells, cytoxic lymphocytes, B-cells, NK-cells, and dense cells (DCS). Similarly, the activity of cytokine binding, B-cell, NK-cell mediated immune response chemokine binding, and antigen presentation pathways in MMP9-High was significantly higher than that in MMP9-Low. Conclusion: In this study, we identified that MMP9-High could be potentially considered a novel biomarker used to ascertain the improved prognosis of SCLC patients after cisplatin treatment. Furthermore, we indicated that the tumor immune microenvironment of MMP9-High SCLC is mainly characterized by a large number of infiltrated activated immune cells as well as activated immune-related pathways.
Collapse
Affiliation(s)
- Longqiu Wu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiangcai Wang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xin He
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qiang Li
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qian Hua
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Rongrong Liu
- Department of Neurology, Ganzhou People’s Hospital, Ganzhou, China
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Rongrong Liu, ; Zhengang Qiu,
| | - Zhengang Qiu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Rongrong Liu, ; Zhengang Qiu,
| |
Collapse
|
33
|
Fucikova J, Palova-Jelinkova L, Klapp V, Holicek P, Lanickova T, Kasikova L, Drozenova J, Cibula D, Álvarez-Abril B, García-Martínez E, Spisek R, Galluzzi L. Immunological control of ovarian carcinoma by chemotherapy and targeted anticancer agents. Trends Cancer 2022; 8:426-444. [PMID: 35181272 DOI: 10.1016/j.trecan.2022.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 12/24/2022]
Abstract
At odds with other solid tumors, epithelial ovarian cancer (EOC) is poorly sensitive to immune checkpoint inhibitors (ICIs), largely reflecting active immunosuppression despite CD8+ T cell infiltration at baseline. Accumulating evidence indicates that both conventional chemotherapeutics and targeted anticancer agents commonly used in the clinical management of EOC not only mediate a cytostatic and cytotoxic activity against malignant cells, but also drive therapeutically relevant immunostimulatory or immunosuppressive effects. Here, we discuss such an immunomodulatory activity, with a specific focus on molecular and cellular pathways that can be harnessed to develop superior combinatorial regimens for clinical EOC care.
Collapse
Affiliation(s)
- Jitka Fucikova
- Sotio, Prague, Czech Republic; Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic.
| | - Lenka Palova-Jelinkova
- Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Vanessa Klapp
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Peter Holicek
- Sotio, Prague, Czech Republic; Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Tereza Lanickova
- Sotio, Prague, Czech Republic; Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | | | - Jana Drozenova
- Department of Pathology, Third Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - David Cibula
- Gynecologic Oncology Center, Department of Obstetrics and Gynecology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Beatriz Álvarez-Abril
- Department of Hematology and Oncology, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Elena García-Martínez
- Department of Hematology and Oncology, Hospital Universitario Morales Meseguer, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain; Universidad Católica San Antonio de Murcia, Guadalupe, Spain
| | - Radek Spisek
- Sotio, Prague, Czech Republic; Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Centre, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
34
|
Kong D, Li G, Yang Z, Cheng S, Zhang W, Feng L, Zhang K. Identification of an ACK1/TNK2-based prognostic signature for colon cancer to predict survival and inflammatory landscapes. BMC Cancer 2022; 22:84. [PMID: 35057760 PMCID: PMC8772074 DOI: 10.1186/s12885-021-09165-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Activated Cdc42-associated kinase 1 (ACK1), a kind of tyrosine kinase, is considered to be an oncogene in many cancers, and it is likely to become a potential target for cancer treatment. We found that the expression of the ACK1 gene in colon cancer was higher than that in normal tissues adjacent to cancer, and high expression of the ACK1 gene was associated with poor prognosis of patients. We assessed the prognosis of colon cancer based on ACK1-related genes and constructed a model that can predict the prognosis of colon cancer patients in colon cancer data from The Cancer Genome Atlas (TCGA) database. We then explored the relationship between ACK1 and the immune microenvironment of colon cancer. The overexpression of ACK1 might hinder the function of antigen-presenting cells. The colon cancer prognosis prediction model we constructed has certain significance for clinicians to judge the prognosis of patients with colon cancer. The expression of the ACK1 gene might affect the infiltration level of a variety of immune cells and immunomodulators in the immune microenvironment.
Collapse
Affiliation(s)
- Defeng Kong
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China
| | - Guoliang Li
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China
| | - Zhenrong Yang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China
| | - Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China.
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China.
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China.
| |
Collapse
|
35
|
Chen Y, Jin Y, Hu X, Chen M. Infiltrating T lymphocytes in the tumor microenvironment of small cell lung cancer: a state of knowledge review. J Cancer Res Clin Oncol 2022; 148:881-895. [PMID: 34997864 DOI: 10.1007/s00432-021-03895-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 12/19/2021] [Indexed: 10/19/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have brought new hope for the treatment of patients with small cell lung cancer (SCLC) over the past decades. However, the overall response rate is limited, and is lower than that in non-small cell lung cancer (NSCLC). This is in part because of the lack of pre-existing tumor-infiltrating T lymphocytes (TITLs), especially cytotoxic T cells (CTLs), in the SCLC tumor microenvironment (TME), resulting in insufficient anti-tumor immune response. To unleash the full potential of ICIs, the trafficking and infiltration of TITLs to the tumor is necessary and tightly regulated, the highly immunosuppressive tumor microenvironment blunts the infiltration and function of TITLs that reach the tumor in SCLC. Here, we review the characteristics of TITLs, the effects of various factors on T cell infiltration, and possible strategies to restore or promote T cell infiltration in the TME of SCLC.
Collapse
Affiliation(s)
- Yamei Chen
- Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
| | - Ying Jin
- Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China.,Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
| | - Xiao Hu
- Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China. .,Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, Zhejiang, China.
| | - Ming Chen
- Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China. .,Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
36
|
Turbeville HR, Toni TA, Allen C. Immune Landscape and Role of Immunotherapy in Treatment of HPV-Associated Head and Neck Squamous Cell Carcinoma (HNSCC). CURRENT OTORHINOLARYNGOLOGY REPORTS 2022. [DOI: 10.1007/s40136-021-00384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Porchia BFMM, Aps LRDMM, Moreno ACR, da Silva JR, Silva MDO, Sales NS, Alves RPDS, Rocha CRR, Silva MM, Rodrigues KB, Barros TB, Pagni RL, Souza PDC, Diniz MDO, Ferreira LCDS. Active immunization combined with cisplatin confers enhanced therapeutic protection and prevents relapses of HPV-induced tumors at different anatomical sites. Int J Biol Sci 2022; 18:15-29. [PMID: 34975315 PMCID: PMC8692155 DOI: 10.7150/ijbs.56644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 10/19/2021] [Indexed: 12/22/2022] Open
Abstract
The active immunotherapy concept relies on the use of vaccines that are capable of inducing antitumor immunity, reversion of the suppressive immunological environment, and long-term memory responses. Previously, antitumor vaccines based on a recombinant plasmid (pgDE7h) or a purified protein (gDE7) led to regression of early-established human papillomavirus (HPV)-associated tumors in a preclinical model. In this work, the anticancer vaccines were combined with cisplatin to treat HPV-induced tumors at advanced growth stages. The antitumor effects were evaluated in terms of tumor regression, induction of specific CD8+ T cells, and immune modulation of the tumor microenvironment. Acute toxicity induced by the treatment was measured by weight loss and histological alterations in the liver and kidneys. Our results revealed that the combination of cisplatin with either one of the tested immunotherapies (pgDE7h or gDE7) led to complete tumor regression in mice. Also, the combined treatment resulted in synergistic effects, particularly among mice immunized with gDE7, including activation of systemic and tumor-infiltrating E7-specific CD8+ T cells, tumor infiltration of macrophages and dendritic cells, and prevention of tumor relapses at different anatomical sites. Furthermore, the protocol allowed the reduction of cisplatin dosage and its intrinsic toxic effects, without reducing antitumor outcomes. These results expand our knowledge of active immunotherapy protocols and open perspectives for alternative treatments of HPV-associated tumors.
Collapse
Affiliation(s)
- Bruna Felício Milazzotto Maldonado Porchia
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, SP, Brazil.,ImunoTera Soluções Terapêuticas Ltda
| | - Luana Raposo de Melo Moraes Aps
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, SP, Brazil.,ImunoTera Soluções Terapêuticas Ltda
| | - Ana Carolina Ramos Moreno
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Jamile Ramos da Silva
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Mariângela de Oliveira Silva
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Natiely Silva Sales
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Rubens Prince Dos Santos Alves
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Clarissa Ribeiro Reily Rocha
- DNA Repair Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Matheus Molina Silva
- DNA Repair Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Karine Bitencourt Rodrigues
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Tácita Borges Barros
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Roberta Liberato Pagni
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Patrícia da Cruz Souza
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Mariana de Oliveira Diniz
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, SP, Brazil.,ImunoTera Soluções Terapêuticas Ltda
| | - Luís Carlos de Souza Ferreira
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
38
|
van Wilpe S, Gorris MAJ, van der Woude LL, Sultan S, Koornstra RHT, van der Heijden AG, Gerritsen WR, Simons M, de Vries IJM, Mehra N. Spatial and Temporal Heterogeneity of Tumor-Infiltrating Lymphocytes in Advanced Urothelial Cancer. Front Immunol 2022; 12:802877. [PMID: 35046958 PMCID: PMC8761759 DOI: 10.3389/fimmu.2021.802877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Checkpoint inhibitors targeting PD-(L)1 induce objective responses in 20% of patients with metastatic urothelial cancer (UC). CD8+ T cell infiltration has been proposed as a putative biomarker for response to checkpoint inhibitors. Nevertheless, data on spatial and temporal heterogeneity of tumor-infiltrating lymphocytes in advanced UC are lacking. The major aims of this study were to explore spatial heterogeneity for lymphocyte infiltration and to investigate how the immune landscape changes during the disease course. We performed multiplex immunohistochemistry to assess the density of intratumoral and stromal CD3+, CD8+, FoxP3+ and CD20+ immune cells in longitudinally collected samples of 49 UC patients. Within these samples, spatial heterogeneity for lymphocyte infiltration was observed. Regions the size of a 0.6 tissue microarray core (0.28 mm2) provided a representative sample in 60.6 to 71.6% of cases, depending on the cell type of interest. Regions of 3.30 mm2, the median tumor surface area in our biopsies, were representative in 58.8 to 73.8% of cases. Immune cell densities did not significantly differ between untreated primary tumors and metachronous distant metastases. Interestingly, CD3+, CD8+ and FoxP3+ T cell densities decreased during chemotherapy in two small cohorts of patients treated with neoadjuvant or palliative platinum-based chemotherapy. In conclusion, spatial heterogeneity in advanced UC challenges the use of immune cell infiltration in biopsies as biomarker for response prediction. Our data also suggests a decrease in tumor-infiltrating T cells during platinum-based chemotherapy.
Collapse
Affiliation(s)
- Sandra van Wilpe
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mark A. J. Gorris
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Oncode Institute, Nijmegen, Netherlands
| | - Lieke L. van der Woude
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Oncode Institute, Nijmegen, Netherlands
| | - Shabaz Sultan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Antoine G. van der Heijden
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Winald R. Gerritsen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Michiel Simons
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
39
|
Ghoneum A, Almousa S, Warren B, Abdulfattah AY, Shu J, Abouelfadl H, Gonzalez D, Livingston C, Said N. Exploring the clinical value of tumor microenvironment in platinum-resistant ovarian cancer. Semin Cancer Biol 2021; 77:83-98. [PMID: 33476723 PMCID: PMC8286277 DOI: 10.1016/j.semcancer.2020.12.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/20/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Platinum resistance in epithelial ovarian cancer (OvCa) is rising at an alarming rate, with recurrence of chemo-resistant high grade serous OvCa (HGSC) in roughly 75 % of all patients. Additionally, HGSC has an abysmal five-year survival rate, standing at 39 % and 17 % for FIGO stages III and IV, respectively. Herein we review the crucial cellular interactions between HGSC cells and the cellular and non-cellular components of the unique peritoneal tumor microenvironment (TME). We highlight the role of the extracellular matrix (ECM), ascitic fluid as well as the mesothelial cells, tumor associated macrophages, neutrophils, adipocytes and fibroblasts in platinum-resistance. Moreover, we underscore the importance of other immune-cell players in conferring resistance, including natural killer cells, myeloid-derived suppressive cells (MDSCs) and T-regulatory cells. We show the clinical relevance of the key platinum-resistant markers and their correlation with the major pathways perturbed in OvCa. In parallel, we discuss the effect of immunotherapies in re-sensitizing platinum-resistant patients to platinum-based drugs. Through detailed analysis of platinum-resistance in HGSC, we hope to advance the development of more effective therapy options for this aggressive disease.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Sameh Almousa
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Bailey Warren
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Ammar Yasser Abdulfattah
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Alexandria University School of Medicine, Alexandria, Egypt
| | - Junjun Shu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; The Third Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hebatullah Abouelfadl
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Department of Genetics, Animal Health Research Institute, Dokki, Egypt
| | - Daniela Gonzalez
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Christopher Livingston
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Comprehensive Cancer Center, Winston Salem, NC, 27157, USA.
| |
Collapse
|
40
|
Dual Targeting of Cancer Cells and MMPs with Self-Assembly Hybrid Nanoparticles for Combination Therapy in Combating Cancer. Pharmaceutics 2021; 13:pharmaceutics13121990. [PMID: 34959271 PMCID: PMC8707712 DOI: 10.3390/pharmaceutics13121990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 01/21/2023] Open
Abstract
The co-delivery of chemotherapeutic agents and immune modulators to their targets remains to be a great challenge for nanocarriers. Here, we developed a hybrid thermosensitive nanoparticle (TMNP) which could co-deliver paclitaxel-loaded transferrin (PTX@TF) and marimastat-loaded thermosensitive liposomes (MMST/LTSLs) for the dual targeting of cancer cells and the microenvironment. TMNPs could rapidly release the two payloads triggered by the hyperthermia treatment at the site of tumor. The released PTX@TF entered cancer cells via transferrin-receptor-mediated endocytosis and inhibited the survival of tumor cells. MMST was intelligently employed as an immunomodulator to improve immunotherapy by inhibiting matrix metalloproteinases to reduce chemokine degradation and recruit T cells. The TMNPs promoted the tumor infiltration of CD3+ T cells by 2-fold, including memory/effector CD8+ T cells (4.2-fold) and CD4+ (1.7-fold), but not regulatory T cells. Our in vivo anti-tumor experiment suggested that TMNPs possessed the highest tumor growth inhibitory rate (80.86%) compared with the control group. We demonstrated that the nanoplatform could effectively inhibit the growth of tumors and enhance T cell recruitment through the co-delivery of paclitaxel and marimastat, which could be a promising strategy for the combination of chemotherapy and immunotherapy for cancer treatment.
Collapse
|
41
|
Zhou L, Liu H, Liu K, Wei S. Gold Compounds and the Anticancer Immune Response. Front Pharmacol 2021; 12:739481. [PMID: 34588987 PMCID: PMC8473785 DOI: 10.3389/fphar.2021.739481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Gold compounds are not only well-explored for cytotoxic effects on tumors, but are also known to interact with the cancer immune system. The immune system deploys innate and adaptive mechanisms to protect against pathogens and prevent malignant transformation. The combined action of gold compounds with the activated immune system has shown promising results in cancer therapy through in vivo and in vitro experiments. Gold compounds are known to induce innate immune responses; however, these responses may contribute to adaptive immune responses. Gold compounds play the role of a major hapten that acts synergistically in innate immunity. Gold compounds support cancer cell antigenicity and promote anti-tumor immune response by inducing the release of CRT, ATP, HMGB1, HSP, and NKG2D to enhance immunogenicity. Gold compounds affect various immune cells (including suppressor regulatory T cells), inhibit myeloid derived suppressor cells, and enhance the function and number of dendritic cells. Gold nanoparticles (AuNPs) have potential for improving the effect of immunotherapy and reducing the toxicity and side effects of the treatment process. Thus, AuNPs provide an ideal opportunity for exploring the combination of anticancer gold compounds and immunotherapeutic interventions.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Kui Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Abstract
Owing to the presence of known tumor-specific viral antigens, human papillomavirus (HPV)-associated cancers are well suited for treatment with immunotherapy designed to unleash, amplify or replace the T cell arm of the adaptive immune system. Immune checkpoint blockade designed to unleash existing T cell immunity is currently Food and Drug Administration approved for certain HPV-associated cancers. More specific immunotherapies such as therapeutic vaccines and T cell receptor-engineered cellular therapy are currently in clinical development. Such therapies may offer more specific immune activation against viral tumor antigens and decrease the risk of immune-related adverse events. Current and planned clinical study of these treatments will determine their utility in the treatment of patients with newly diagnosed advanced stage or relapsed HPV-associated cancer.
Collapse
Affiliation(s)
- Maxwell Y Lee
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
| | - Clint T Allen
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
43
|
Li T, Liu T, Zhu W, Xie S, Zhao Z, Feng B, Guo H, Yang R. Targeting MDSC for Immune-Checkpoint Blockade in Cancer Immunotherapy: Current Progress and New Prospects. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2021; 15:11795549211035540. [PMID: 34408525 PMCID: PMC8365012 DOI: 10.1177/11795549211035540] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/07/2021] [Indexed: 01/06/2023]
Abstract
Immune-checkpoint blockade (ICB) demonstrated inspiring effect and great promise in anti-cancer therapy. However, many obstacles, such as drug resistance and difficulty in patient selection, limited the efficacy of ICB therapy and awaited to be overcome. By timely identification and intervention of the key immune-suppressive promotors in the tumor microenvironment (TME), we may better understand the mechanisms of cancer immune-escape and use novel strategies to enhance the therapeutic effect of ICB. Myeloid-derived suppressor cell (MDSC) is recognized as a major immune suppressor in the TME. In this review, we summarized the roles MDSC played in the cancer context, focusing on its negative biologic functions in ICB therapy, discussed the strategies targeted on MDSC to optimize the diagnosis and therapy process of ICB and improve the efficacy of ICB therapy against malignancies.
Collapse
Affiliation(s)
- Tianhang Li
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Tianyao Liu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Wenjie Zhu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Shangxun Xie
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Zihan Zhao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Baofu Feng
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| |
Collapse
|
44
|
Investigating Optimal Chemotherapy Options for Osteosarcoma Patients through a Mathematical Model. Cells 2021; 10:cells10082009. [PMID: 34440778 PMCID: PMC8394778 DOI: 10.3390/cells10082009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Osteosarcoma is a rare type of cancer with poor prognoses. However, to the best of our knowledge, there are no mathematical models that study the impact of chemotherapy treatments on the osteosarcoma microenvironment. In this study, we developed a data driven mathematical model to analyze the dynamics of the important players in three groups of osteosarcoma tumors with distinct immune patterns in the presence of the most common chemotherapy drugs. The results indicate that the treatments’ start times and optimal dosages depend on the unique growth rate of the tumor, which implies the necessity of personalized medicine. Furthermore, the developed model can be extended by others to build models that can recommend individual-specific optimal dosages. Abstract Since all tumors are unique, they may respond differently to the same treatments. Therefore, it is necessary to study their characteristics individually to find their best treatment options. We built a mathematical model for the interactions between the most common chemotherapy drugs and the osteosarcoma microenvironments of three clusters of tumors with unique immune profiles. We then investigated the effects of chemotherapy with different treatment regimens and various treatment start times on the behaviors of immune and cancer cells in each cluster. Saliently, we suggest the optimal drug dosages for the tumors in each cluster. The results show that abundances of dendritic cells and HMGB1 increase when drugs are given and decrease when drugs are absent. Populations of helper T cells, cytotoxic cells, and IFN-γ grow, and populations of cancer cells and other immune cells shrink during treatment. According to the model, the MAP regimen does a good job at killing cancer, and is more effective than doxorubicin and cisplatin combined or methotrexate alone. The results also indicate that it is important to consider the tumor’s unique growth rate when deciding the treatment details, as fast growing tumors need early treatment start times and high dosages.
Collapse
|
45
|
Wang H, Tian T, Zhang J. Tumor-Associated Macrophages (TAMs) in Colorectal Cancer (CRC): From Mechanism to Therapy and Prognosis. Int J Mol Sci 2021; 22:ijms22168470. [PMID: 34445193 PMCID: PMC8395168 DOI: 10.3390/ijms22168470] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a malignant tumor in the digestive system whose incidence and mortality is high-ranking among tumors worldwide. The initiation and progression of CRC is a complex process involving genetic alterations in cancer cells and multiple factors from the surrounding tumor cell microenvironment. As accumulating evidence has shown, tumor-associated macrophages (TAMs)—as abundant and active infiltrated inflammatory cells in the tumor microenvironment (TME)—play a crucial role in CRC. This review focuses on the different mechanisms of TAM in CRC, including switching of phenotypical subtypes; promoting tumor proliferation, invasion, and migration; facilitating angiogenesis; mediating immunosuppression; regulating metabolism; and interacting with the microbiota. Although controversy remains in clinical evidence regarding the role of TAMs in CRC, clarifying their significance in therapy and the prognosis of CRC may shed new light on the optimization of TAM-centered approaches in clinical care.
Collapse
Affiliation(s)
- Hui Wang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China;
| | - Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
- Correspondence: (T.T.); (J.Z.)
| | - Jinhua Zhang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China;
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
- Correspondence: (T.T.); (J.Z.)
| |
Collapse
|
46
|
Novel immunomodulatory properties of low dose cytarabine entrapped in a mannosylated cationic liposome. Int J Pharm 2021; 606:120849. [PMID: 34216770 DOI: 10.1016/j.ijpharm.2021.120849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/07/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022]
Abstract
Cancer treatment remains unsatisfactory with high rates of recurrence and metastasis. Immunomodulatory agents capable of promoting cellular antitumor immunity while inhibiting the local immunosuppressive tumor microenvironment could greatly improve cancer treatment. We have developed a multi-targeted mannosylated cationic liposome delivery system containing muramyl dipeptide (DS) and low doses of the chemotherapeutic agent cytarabine (Ara-C). Immunomodulation of primary immune cells and immortalized cancer cell lines by Ara-C/DS was assessed by measuring cytokine levels and surface marker expression. As a proof of concept, the generation of targeted cellular immunity was investigated in the context of responses to viral antigens. This report is the first demonstrating that Ara-C combined with DS can modulate immune responses and revert immunosuppression as evidenced by increased IFN-γ and IL-12p40 without changes in IL-10 in peripheral blood mononuclear cells, and increased CD80 and decreased CD163 on immunosuppressive macrophages. Furthermore, Ara-C/DS increased MHC class I expression on cancer cells while increasing the production of antigen-specific IFN-γ+ CD8+ T cells in viral peptide-challenged lymphocytes from both humans and vaccinated mice. Taken together, these results are the first to document immunomodulatory properties of Ara-C linked with recognition of antigens and potentially the generation of antitumor immune memory.
Collapse
|
47
|
Mu X, Wu K, Zhu Y, Zhu Y, Wang Y, Xiao L, Yao Z, Huang W, Sun F, Fan J, Zheng Z, Liu Z. Intra-arterial infusion chemotherapy utilizing cisplatin inhibits bladder cancer by decreasing the fibrocytic myeloid-derived suppressor cells in an m6A-dependent manner. Mol Immunol 2021; 137:28-40. [PMID: 34186454 DOI: 10.1016/j.molimm.2021.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/12/2021] [Accepted: 06/20/2021] [Indexed: 12/12/2022]
Abstract
Intra-arterial infusion chemotherapy (IAIC), using immunomodulatory cisplatin, is a novel treatment for bladder cancer (BC) that allows the delivery of specific drugs to the local malignant lesion. To explore the immunomodulatory effect of cisplatin during IAIC, we detected the proportion of immunosuppressed cells in BC tissue from eight BC patients, with the reduction of myeloid-derived suppressor cells (MDSCs), more specifically fibrocytic-MDSCs (f-MDSCs). Further, we demonstrated that cisplatin inhibits their proliferation and immunosuppressive activity. f-MDSCs promote tumor proliferation and metastasis in the BC immune environment. Then, we analyzed the genetic differences detected in samples before and after chemotherapy and found that granulocyte colony-stimulating factors (G-CSF) decreased after IAIC. Furthermore, G-CSF methylation decreased following treatment with cisplatin. Specifically, treatment with cisplatin decreased the methylase (METTL3) levels in BC cells, which is important for G-CSF production. Collectively, cisplatin decreased the number of f-MDSCs during IAIC, by blocking G-CSF methylation via targeting METTL3.
Collapse
Affiliation(s)
- Xingyu Mu
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Wu
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiwen Zhu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Youjia Zhu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yong Wang
- Department of Urology, Shanghai Jiangqiao Hospital, Jiading Branch, Shanghai General Hospital, Shanghai, China
| | - Liang Xiao
- Department of Nursing, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhixian Yao
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjie Huang
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Sun
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Fan
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhong Zheng
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhihong Liu
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
48
|
Melief CJM, Welters MJP, Vergote I, Kroep JR, Kenter GG, Ottevanger PB, Tjalma WAA, Denys H, van Poelgeest MIE, Nijman HW, Reyners AKL, Velu T, Goffin F, Lalisang RI, Loof NM, Boekestijn S, Krebber WJ, Hooftman L, Visscher S, Blumenstein BA, Stead RB, Gerritsen W, van der Burg SH. Strong vaccine responses during chemotherapy are associated with prolonged cancer survival. Sci Transl Med 2021; 12:12/535/eaaz8235. [PMID: 32188726 DOI: 10.1126/scitranslmed.aaz8235] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/18/2020] [Indexed: 12/23/2022]
Abstract
Therapeutic cancer vaccines have effectively induced durable regressions of premalignant oncogenic human papilloma virus type 16 (HPV16)-induced anogenital lesions. However, the treatment of HPV16-induced cancers requires appropriate countermeasures to overcome cancer-induced immune suppression. We previously showed that standard-of-care carboplatin/paclitaxel chemotherapy can reduce abnormally high numbers of immunosuppressive myeloid cells in patients, allowing the development of much stronger therapeutic HPV16 vaccine (ISA101)-induced tumor immunity. We now show the clinical effects of ISA101 vaccination during chemotherapy in 77 patients with advanced, recurrent, or metastatic cervical cancer in a dose assessment study of ISA101. Tumor regressions were observed in 43% of 72 evaluable patients. The depletion of myeloid suppressive cells by carboplatin/paclitaxel was associated with detection of low frequency of spontaneous HPV16-specific immunity in 21 of 62 tested patients. Patients mounted type 1 T cell responses to the vaccine across all doses. The group of patients with higher than median vaccine-induced immune responses lived longer, with a flat tail on the survival curve. This demonstrates that chemoimmunotherapy can be exploited to the benefit of patients with advanced cancer based on a defined mode of action.
Collapse
Affiliation(s)
- Cornelis J M Melief
- ISA Pharmaceuticals, J.H. Oortweg 19, 2333 CH Leiden, Netherlands. .,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Marij J P Welters
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, Netherlands.,Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Ignace Vergote
- Department of Gynecologic Oncology, University Hospital, Leuven Cancer Institute, UZ Herestraat 49, 3000 Leuven, Belgium
| | - Judith R Kroep
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Gemma G Kenter
- Center for Gynecologic Oncology Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands
| | - Petronella B Ottevanger
- Department of Medical Oncology, Nijmegen University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, Netherlands
| | - Wiebren A A Tjalma
- Multidisciplinary Breast Clinic-Unit Gynecological Oncology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Hannelore Denys
- Department of Medical Oncology, University Hospital, De Pintelaan 185, 9000 Gent, Belgium
| | | | - Hans W Nijman
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| | - Anna K L Reyners
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| | - Thierry Velu
- Chirec Cancer Institute, Medical Centre Edith Cavell, Rue Edith Cavell 32, 1180 Brussels, Belgium
| | - Frederic Goffin
- Chirec Cancer Institute, Medical Centre Edith Cavell, Rue Edith Cavell 32, 1180 Brussels, Belgium
| | - Roy I Lalisang
- Department of Medical Oncology, GROW School of Oncology and Developmental Biology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, Netherlands
| | - Nikki M Loof
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, Netherlands.,Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Sanne Boekestijn
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, Netherlands.,Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | | | - Leon Hooftman
- ISA Pharmaceuticals, J.H. Oortweg 19, 2333 CH Leiden, Netherlands
| | - Sonja Visscher
- ISA Pharmaceuticals, J.H. Oortweg 19, 2333 CH Leiden, Netherlands
| | | | - Richard B Stead
- BioPharma Consulting Services, 691 96th Avenue Southeast, Bellevue, WA 98004, USA
| | - Winald Gerritsen
- Department of Medical Oncology, Nijmegen University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, Netherlands
| | - Sjoerd H van der Burg
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, Netherlands. .,Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| |
Collapse
|
49
|
Grivas P, Agarwal N, Pal S, Kalebasty AR, Sridhar SS, Smith J, Devgan G, Sternberg CN, Bellmunt J. Avelumab first-line maintenance in locally advanced or metastatic urothelial carcinoma: Applying clinical trial findings to clinical practice. Cancer Treat Rev 2021; 97:102187. [PMID: 33839438 DOI: 10.1016/j.ctrv.2021.102187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022]
Abstract
Although urothelial carcinoma (UC) is considered a chemotherapy-sensitive tumor, progression-free survival and overall survival (OS) are typically short following standard first-line (1L) platinum-containing chemotherapy in patients with locally advanced or metastatic disease. Immune checkpoint inhibitors (ICIs) have antitumor activity in UC and favorable safety profiles compared with chemotherapy; however, trials of 1L ICI monotherapy or chemotherapy + ICI combinations have not yet shown improved OS vs chemotherapy alone. In addition to direct cytotoxicity, chemotherapy has potential immunogenic effects, providing a rationale for assessing ICIs as switch-maintenance therapy. In the JAVELIN Bladder 100 phase 3 trial, avelumab administered as 1L maintenance with best supportive care (BSC) significantly prolonged OS vs BSC alone in patients with locally advanced or metastatic UC that had not progressed with 1L platinum-containing chemotherapy (median OS, 21.4 vs 14.3 months; hazard ratio, 0.69 [95% CI, 0.56-0.86]; P = 0.001). Efficacy benefits were seen across various subgroups, including recipients of 1L cisplatin- or carboplatin-based chemotherapy, patients with PD-L1+ or PD-L1- tumors, and patients with diverse characteristics. Results from JAVELIN Bladder 100 led to the approval of avelumab as 1L maintenance therapy for patients with locally advanced or metastatic UC that has not progressed with platinum-containing chemotherapy. Avelumab 1L maintenance is also included as a standard of care in treatment guidelines for advanced UC with level 1 evidence. This review summarizes the data that supported these developments and discusses practical considerations for administering avelumab maintenance in clinical practice, including patient selection and treatment management.
Collapse
Affiliation(s)
- Petros Grivas
- University of Washington School of Medicine, Fred Hutchinson Cancer Research Center, Seattle Cancer Care Alliance, Seattle, WA, USA.
| | - Neeraj Agarwal
- University of Utah Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Sumanta Pal
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | | | - Jodi Smith
- EMD Serono, Inc., Rockland, MA, USA; an affiliate of Merck KGaA, Darmstadt, Germany
| | | | - Cora N Sternberg
- Englander Institute for Precision Medicine, Weill Cornell Medicine, Meyer Cancer Center, New York, New York, USA
| | - Joaquim Bellmunt
- Beth Israel Deaconess Medical Center and IMIM-PSMAR Lab, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
De Wispelaere W, Annibali D, Tuyaerts S, Lambrechts D, Amant F. Resistance to Immune Checkpoint Blockade in Uterine Leiomyosarcoma: What Can We Learn from Other Cancer Types? Cancers (Basel) 2021; 13:cancers13092040. [PMID: 33922556 PMCID: PMC8122870 DOI: 10.3390/cancers13092040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022] Open
Abstract
The onset of immune checkpoint blockade (ICB) therapy over the last decade has transformed the therapeutic landscape in oncology. ICB has shown unprecedented clinical activity and durable responses in a variety of difficult-to-treat cancers. However, despite these promising long-term responses, a majority of patients fail to respond to single-agent therapy, demonstrating primary or acquired resistance. Uterine leiomyosarcoma (uLMS) is a rare high-risk gynecological cancer with very limited treatment options. Despite research indicating a strong potential for ICB in uLMS, a clinical trial assessing the response to immunotherapy with single-agent nivolumab in advanced-stage uLMS showed no clinical benefit. Many mechanisms of resistance to ICB have been characterized in a variety of tumor types, and many more continue to be uncovered. However, the mechanisms of resistance to ICB in uLMS remain largely unexplored. By elucidating and targeting mechanisms of resistance, treatments can be tailored to improve clinical outcomes. Therefore, in this review we will explore what is known about the immunosuppressive microenvironment of uLMS, link these data to possible resistance mechanisms extrapolated from other cancer types, and discuss potential therapeutic strategies to overcome resistance.
Collapse
Affiliation(s)
- Wout De Wispelaere
- Department of Oncology, KU Leuven (University of Leuven) and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium; (W.D.W.); (D.A.); (S.T.)
| | - Daniela Annibali
- Department of Oncology, KU Leuven (University of Leuven) and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium; (W.D.W.); (D.A.); (S.T.)
- Division of Oncogenomics, Antoni Van Leeuwenhoek—Netherlands Cancer Institute (AvL-NKI), 1066 CX Amsterdam, The Netherlands
| | - Sandra Tuyaerts
- Department of Oncology, KU Leuven (University of Leuven) and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium; (W.D.W.); (D.A.); (S.T.)
- Laboratory of Medical and Molecular Oncology (LMMO), Department of Medical Oncology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven (University of Leuven), 3000 Leuven, Belgium;
- VIB Center for Cancer Biology, Flemish Institute for Biotechnology (VIB), 3000 Leuven, Belgium
| | - Frédéric Amant
- Department of Oncology, KU Leuven (University of Leuven) and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium; (W.D.W.); (D.A.); (S.T.)
- Centre for Gynecologic Oncology Amsterdam (CGOA), Antoni Van Leeuwenhoek—Netherlands Cancer Institute, University Medical Center (UMC), 1066 CX Amsterdam, The Netherlands
- Department of Obstetrics and Gynecology, University Hospitals Leuven (UZ Leuven), 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|