1
|
Ali A, Khan Z, Du H, Aldahmani S. Double weighted k nearest neighbours for binary classification of high dimensional genomic data. Sci Rep 2025; 15:12681. [PMID: 40221543 PMCID: PMC11993671 DOI: 10.1038/s41598-025-97505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
High dimensional gene expression datasets consist of a large number of genes, many of which do not play a significant role in classifying tissue samples. The high dimensional nature of this type of data, characterized by a large number of gene features substantially exceeding its sample size, makes it challenging for existing methods to work efficiently in terms of prediction accuracy and execution time. To address this issue, a new classification procedure called double weighted k nearest neighbours ([Formula: see text]) is proposed. [Formula: see text] is specifically designed for gene expression data and incorporates feature weights derived from genes' ability to express deferentially between classes. Features weights are derived in a manner that automatically increase the impact of informative features while decreasing it for features that are less/non informative. To achieve this goal, the estimated weighted distances from the observations in the k nearest neighbourhood to the test point are used in an exponential function. The outputs of the function are summed for both the classes separately and the test point is assigned the class label with the largest sum. By utilizing the proposed weighting method based on the differential capability of genes, the [Formula: see text] method aims to achieve robust and efficient classification by allowing only the most informative features/genes to contribute to the classification task. Experimental evaluations, in comparison with several methods, i.e., standard [Formula: see text], weighted k nearest neighbours classifier ([Formula: see text]), random k nearest neighbour ([Formula: see text]), extended neighbourhood rule ensemble (ExNRule), k conditional nearest neighbour ([Formula: see text]), [Formula: see text] ensemble and support vector machines (SVM), demonstrate the effectiveness of [Formula: see text] in accurately classifying gene expression datasets. Overall, [Formula: see text] presents a promising approach for gene expression data analysis through the two fold weighted distance calculation strategy using classification accuracy, Cohen's kappa, sensitivity and [Formula: see text]score as performance metrics.
Collapse
Affiliation(s)
- Amjad Ali
- Department of Statistics and Bussines Analytics, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Zardad Khan
- Department of Statistics and Bussines Analytics, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Hailiang Du
- Department of Mathematical Sciences, Durham University, Stockton Rd, Durham, UK
- School of Mathematics, East China University of Science and Technology, Shanghai, 200237, China
| | - Saeed Aldahmani
- Department of Statistics and Bussines Analytics, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
2
|
Guilberteau J, Jain P, Jolly MK, Pouchol C, Pouradier Duteil N. An integrative phenotype-structured partial differential equation model for the population dynamics of epithelial-mesenchymal transition. NPJ Syst Biol Appl 2025; 11:24. [PMID: 40050291 PMCID: PMC11885588 DOI: 10.1038/s41540-025-00502-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
Phenotypic heterogeneity along the epithelial-mesenchymal (E-M) axis contributes to cancer metastasis and drug resistance. Recent experimental efforts have collated detailed time-course data on the emergence and dynamics of E-M heterogeneity in a cell population. However, it remains unclear how different intra- and inter-cellular processes shape the dynamics of E-M heterogeneity. Here, using Cell Population Balance model, we capture the dynamics of cell density along E-M phenotypic axis resulting from interplay between-(a) intracellular regulatory interaction among biomolecules, (b) cell division and death and (c) stochastic cell-state transition. We find that while the existence of E-M heterogeneity depends on intracellular regulation, heterogeneity gets enhanced with stochastic cell-state transitions and diminished by growth rate differences. Further, resource competition among E-M cells can lead to both bi-phasic growth of the total population and/or bi-stability in the phenotypic composition. Overall, our model highlights complex interplay between cellular processes shaping dynamic patterns of E-M heterogeneity.
Collapse
Affiliation(s)
- Jules Guilberteau
- Sorbonne Université, CNRS, Université Paris Cité, Inria, Laboratoire Jacques-Louis Lions (LJLL), Paris, France
| | - Paras Jain
- Department of Bioengineering, Indian Institute of Science, Bangalore, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, India.
| | - Camille Pouchol
- Université Paris Cité, FP2M, CNRS FR 2036, MAP5 UMR 8145, Paris, France.
| | - Nastassia Pouradier Duteil
- Sorbonne Université, CNRS, Université Paris Cité, Inria, Laboratoire Jacques-Louis Lions (LJLL), Paris, France.
| |
Collapse
|
3
|
Prasad H, Bv H, Subbalakshmi AR, Mandal S, Jolly MK, Visweswariah SS. Endosomal pH is an evolutionarily conserved driver of phenotypic plasticity in colorectal cancer. NPJ Syst Biol Appl 2024; 10:149. [PMID: 39702657 DOI: 10.1038/s41540-024-00463-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/28/2024] [Indexed: 12/21/2024] Open
Abstract
Dysregulated pH is now recognised as a hallmark of cancer. Recent evidence has revealed that the endosomal pH regulator Na+/H+ exchanger NHE9 is upregulated in colorectal cancer to impose a pseudo-starvation state associated with invasion, highlighting an underexplored mechanistic link between adaptive endosomal reprogramming and malignant transformation. In this study, we use a model that quantitatively captures the dynamics of the core regulatory network governing epithelial mesenchymal plasticity. The model recapitulated NHE9-induced calcium signalling and the emergence of migratory phenotypes in colorectal cancer cells. Model predictions were compared with patient data and experimental results from RNA sequencing analysis of colorectal cancer cells with stable NHE9 expression. Mathematical analyses identified that tumours leverage elevated NHE9 levels to delay the transition of cells to a mesenchymal state and allow for metastatic progression. Ectopic expression of NHE9 is sufficient to induce loss of epithelial nature but does not fully couple with gain of mesenchymal state, resulting in a hybrid epithelial-mesenchymal population with increased aggressiveness and metastatic competence. Higher NHE9 expression is associated with cancer cell migration, and the effect appears to be independent of hypoxia status. Our data suggests that alterations in endosomal pH, an evolutionarily conserved starvation response, may be hijacked by colorectal cancer cells to drive phenotypic plasticity and invasion. We propose that cancer cells rewire their endosomal pH not only to meet the demands of rapid cell proliferation, but also to enable invasion, metastasis, and cell survival. Endosomal pH may be an attractive therapeutic target for halting tumour progression.
Collapse
Affiliation(s)
- Hari Prasad
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, 560012, India.
- Centre for Brain Research, Indian Institute of Science, Bengaluru, 560012, India.
| | - Harshavardhan Bv
- Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India
- IISc Mathematics Initiative, Indian Institute of Science, Bengaluru, 560012, India
| | | | - Susmita Mandal
- Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India
| | - Sandhya S Visweswariah
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
4
|
Kuburich NA, Kiselka JM, den Hollander P, Karam AA, Mani SA. The Cancer Chimera: Impact of Vimentin and Cytokeratin Co-Expression in Hybrid Epithelial/Mesenchymal Cancer Cells on Tumor Plasticity and Metastasis. Cancers (Basel) 2024; 16:4158. [PMID: 39766058 PMCID: PMC11674825 DOI: 10.3390/cancers16244158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The epithelial-mesenchymal transition (EMT) program is critical to metastatic cancer progression. EMT results in the expression of mesenchymal proteins and enhances migratory and invasive capabilities. In a small percentage of cells, EMT results in the expression of stemness-associated genes that provide a metastatic advantage. Although EMT had been viewed as a binary event, it has recently become clear that the program leads to a spectrum of phenotypes, including hybrid epithelial/mesenchymal (E/M) cells that have significantly greater metastatic capability than cells on the epithelial or mesenchymal ends of the spectrum. As hybrid E/M cells are rarely observed in physiological, non-diseased states in the adult human body, these cells are potential biomarkers and drug targets. Hybrid E/M cells are distinguished by the co-expression of epithelial and mesenchymal proteins, such as the intermediate filament proteins cytokeratin (CK; epithelial) and vimentin (VIM; mesenchymal). Although these intermediate filaments have been extensively used for pathological characterization and detection of aggressive carcinomas, little is known regarding the interactions between CK and VIM when co-expressed in hybrid E/M cells. This review describes the characteristics of hybrid E/M cells with a focus on the unique co-expression of VIM and CK. We will discuss the structures and functions of these two intermediate filament proteins and how they may interact when co-expressed in hybrid E/M cells. Additionally, we review what is known about cell-surface expression of these intermediate filament proteins and discuss their potential as predictive biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Nick A. Kuburich
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (N.A.K.); (J.M.K.); (P.d.H.); (A.A.K.)
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Julia M. Kiselka
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (N.A.K.); (J.M.K.); (P.d.H.); (A.A.K.)
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Petra den Hollander
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (N.A.K.); (J.M.K.); (P.d.H.); (A.A.K.)
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Andrew A. Karam
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (N.A.K.); (J.M.K.); (P.d.H.); (A.A.K.)
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Sendurai A. Mani
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (N.A.K.); (J.M.K.); (P.d.H.); (A.A.K.)
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| |
Collapse
|
5
|
Kim S, Park S, Kim YJ, Hyun J, Choi J. miRNA-199b-5p suppresses of oral squamous cell carcinoma by targeting apical-basolateral polarity via Scribble/Lgl. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102363. [PMID: 39558906 PMCID: PMC11570515 DOI: 10.1016/j.omtn.2024.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024]
Abstract
In epithelial cells, Scribble forms cell-cell junctions and contributes to cell morphology and homeostasis by regulating apical-basolateral polarity in mammals and functions as a tumor suppressor in many carcinomas. The initial diagnosis of oral squamous cell carcinoma is important, and its prognosis is poor when accompanied by metastasis. However, research on the mechanisms of oral squamous cell carcinoma metastasis is insufficient. Herein, we showed that Scribble regulates the apical-basolateral polarity of oral squamous cell carcinoma by regulating lethal giant larvae 1, Scribble module and E-cadherin, the adhesion junction. The expression of lethal giant larvae 1 and E-cadherin decreased when the expression of Scribble was knocked down and their localization was completely disrupted in both the oral squamous cell carcinoma cell line and in vivo model. In particular, the Scribble was involved in oral squamous cell carcinoma metastasis via hsa-miR-199b-5p, which is a microenvironmental factor of hypoxia. The disruption of Scribble localization under hypoxic conditions, but its localization was maintained in miR-199b-5p oral squamous cell carcinoma cell lines and in vivo. These results suggest that Scribble functions as a tumor suppressor marker mediated by miR-199b-5p in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Shihyun Kim
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| | - Suyeon Park
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| | - Yong-Jae Kim
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
| | - Jeongeun Hyun
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
- Department of Biomedical Sciences & Biosystem, College of Bio-convergence, Dankook University, Cheonan 311166, Republic of Korea
| | - Jongho Choi
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| |
Collapse
|
6
|
Liaghat M, Ferdousmakan S, Mortazavi SH, Yahyazadeh S, Irani A, Banihashemi S, Seyedi Asl FS, Akbari A, Farzam F, Aziziyan F, Bakhtiyari M, Arghavani MJ, Zalpoor H, Nabi-Afjadi M. The impact of epithelial-mesenchymal transition (EMT) induced by metabolic processes and intracellular signaling pathways on chemo-resistance, metastasis, and recurrence in solid tumors. Cell Commun Signal 2024; 22:575. [PMID: 39623377 PMCID: PMC11610171 DOI: 10.1186/s12964-024-01957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
The intricate cellular process, known as the epithelial-mesenchymal transition (EMT), significantly influences solid tumors development. Changes in cell shape, metabolism, and gene expression linked to EMT facilitate tumor cell invasion, metastasis, drug resistance, and recurrence. So, a better understanding of the intricate processes underlying EMT and its role in tumor growth may lead to the development of novel therapeutic approaches for the treatment of solid tumors. This review article focuses on the signals that promote EMT and metabolism, the intracellular signaling pathways leading to EMT, and the network of interactions between EMT and cancer cell metabolism. Furthermore, the functions of EMT in treatment resistance, recurrence, and metastasis of solid cancers are covered. Lastly, treatment approaches that focus on intracellular signaling networks and metabolic alterations brought on by EMT will be discussed.
Collapse
Affiliation(s)
- Mahsa Liaghat
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Saeid Ferdousmakan
- Department of Pharmacy Practice, Nargund College of Pharmacy, Bangalore, 560085, India
| | | | - Sheida Yahyazadeh
- Department of Immunology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asrin Irani
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Sara Banihashemi
- Department of Bioscience, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | - Abdullatif Akbari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Javad Arghavani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
7
|
Yuan J, Yang L, Zhang H, Beeraka NM, Zhang D, Wang Q, Wang M, Pr HV, Sethi G, Wang G. Decoding tumor microenvironment: EMT modulation in breast cancer metastasis and therapeutic resistance, and implications of novel immune checkpoint blockers. Biomed Pharmacother 2024; 181:117714. [PMID: 39615165 DOI: 10.1016/j.biopha.2024.117714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Tumor microenvironment (TME) and epithelial-mesenchymal transition (EMT) play crucial roles in the initiation and progression of tumors. TME is composed of various cell types, such as immune cells, fibroblasts, and endothelial cells, as well as non-cellular components like extracellular matrix (ECM) proteins and soluble factors. These elements interact with tumor cells through a complex network of signaling pathways involving cytokines, growth factors, metabolites, and non-coding RNA-carrying exosomes. Hypoxic conditions within the TME further modulate these interactions, collectively influencing tumor growth, metastatic potential, and response to therapy. EMT represents a dynamic and reversible process where epithelial cells undergo phenotypic changes to adopt mesenchymal characteristics in several cancers, including breast cancers. This transformation enhances cell motility and imparts stem cell-like properties, which are closely associated with increased metastatic capability and resistance to conventional cancer treatments. Thus, understanding the crosstalk between the TME and EMT is essential for unraveling the underlying mechanisms of breast cancer metastasis and therapeutic resistance. This review uniquely examines the intricate interplay between the tumor TME and epithelial-mesenchymal transition EMT in driving breast cancer metastasis and treatment resistance. It explores the therapeutic potential of targeting the TME-EMT axis, specifically through CD73-TGF-β dual-blockade, to improve outcomes in triple-negative breast cancer. Additionally, it underscores new strategies to enhance immune checkpoint blockade (ICB) responses by modulating EMT, thereby offering innovative insights for more effective cancer treatment.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Li Yang
- Department of Clinical Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Hua Zhang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Narasimha M Beeraka
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu, Anantapuramu, Andhra Pradesh 515721, India; Department of Studies in Molecular Biology, Faculty of Science and Technology, University of Mysore, Mysore, Karnataka, 570006, India.
| | - Danfeng Zhang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Qun Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Minghua Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Hemanth Vikram Pr
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Geng Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| |
Collapse
|
8
|
Berrino C, Omar A. Unravelling the Mysteries of the Sonic Hedgehog Pathway in Cancer Stem Cells: Activity, Crosstalk and Regulation. Curr Issues Mol Biol 2024; 46:5397-5419. [PMID: 38920995 PMCID: PMC11202538 DOI: 10.3390/cimb46060323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
The Sonic Hedgehog (Shh) signalling pathway plays a critical role in normal development and tissue homeostasis, guiding cell differentiation, proliferation, and survival. Aberrant activation of this pathway, however, has been implicated in the pathogenesis of various cancers, largely due to its role in regulating cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells with the ability to self-renew, differentiate, and initiate tumour growth, contributing significantly to tumorigenesis, recurrence, and resistance to therapy. This review focuses on the intricate activity of the Shh pathway within the context of CSCs, detailing the molecular mechanisms through which Shh signalling influences CSC properties, including self-renewal, differentiation, and survival. It further explores the regulatory crosstalk between the Shh pathway and other signalling pathways in CSCs, highlighting the complexity of this regulatory network. Here, we delve into the upstream regulators and downstream effectors that modulate Shh pathway activity in CSCs. This review aims to cast a specific focus on the role of the Shh pathway in CSCs, provide a detailed exploration of molecular mechanisms and regulatory crosstalk, and discuss current and developing inhibitors. By summarising key findings and insights gained, we wish to emphasise the importance of further elucidating the interplay between the Shh pathway and CSCs to develop more effective cancer therapies.
Collapse
|
9
|
Prasad H, Mandal S, Mathew JKK, Cherukunnath A, Duddu AS, Banerjee M, Ramani H, Bhat R, Jolly MK, Visweswariah SS. An Endosomal Acid-Regulatory Feedback System Rewires Cytosolic cAMP Metabolism and Drives Tumor Progression. Mol Cancer Res 2024; 22:465-481. [PMID: 38319300 PMCID: PMC7617132 DOI: 10.1158/1541-7786.mcr-23-0606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/02/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Although suppressed cAMP levels have been linked to cancer for nearly five decades, the molecular basis remains uncertain. Here, we identify endosomal pH as a novel regulator of cytosolic cAMP homeostasis and a promoter of transformed phenotypic traits in colorectal cancer. Combining experiments and computational analysis, we show that the Na+/H+ exchanger NHE9 contributes to proton leak and causes luminal alkalinization, which induces resting [Ca2+], and in consequence, represses cAMP levels, creating a feedback loop that echoes nutrient deprivation or hypoxia. Higher NHE9 expression in cancer epithelia is associated with a hybrid epithelial-mesenchymal (E/M) state, poor prognosis, tumor budding, and invasive growth in vitro and in vivo. These findings point to NHE9-mediated cAMP suppression as a pseudostarvation-induced invasion state and potential therapeutic vulnerability in colorectal cancer. Our observations lay the groundwork for future research into the complexities of endosome-driven metabolic reprogramming and phenotype switching and the biology of cancer progression. IMPLICATIONS Endosomal pH regulator NHE9 actively controls cytosolic Ca2+ levels to downregulate the adenylate cyclase-cAMP system, enabling colorectal cancer cells to acquire hybrid E/M characteristics and promoting metastatic progression.
Collapse
Affiliation(s)
- Hari Prasad
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Susmita Mandal
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | | | - Aparna Cherukunnath
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | | | - Mallar Banerjee
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Harini Ramani
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Ramray Bhat
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Sandhya S. Visweswariah
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
10
|
Sharma S, Rani H, Mahesh Y, Jolly MK, Dixit J, Mahadevan V. Loss of p53 epigenetically modulates epithelial to mesenchymal transition in colorectal cancer. Transl Oncol 2024; 43:101848. [PMID: 38412660 PMCID: PMC10907866 DOI: 10.1016/j.tranon.2023.101848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 02/29/2024] Open
Abstract
Epithelial to Mesenchymal transition (EMT) drives cancer metastasis and is governed by genetic and epigenetic alterations at multiple levels of regulation. It is well established that loss/mutation of p53 confers oncogenic function to cancer cells and promotes metastasis. Though transcription factors like ZEB1, SLUG, SNAIL and TWIST have been implied in EMT signalling, p53 mediated alterations in the epigenetic machinery accompanying EMT are not clearly understood. This work attempts to explore epigenetic signalling during EMT in colorectal cancer (CRC) cells with varying status of p53. Towards this, we have induced EMT using TGFβ on CRC cell lines with wild type, null and mutant p53 and have assayed epigenetic alterations after EMT induction. Transcriptomic profiling of the four CRC cell lines revealed that the loss of p53 confers more mesenchymal phenotype with EMT induction than its mutant counterparts. This was also accompanied by upregulation of epigenetic writer and eraser machinery suggesting an epigenetic signalling cascade triggered by TGFβ signalling in CRC. Significant agonist and antagonistic relationships observed between EMT factor SNAI1 and SNAI2 with epigenetic enzymes KDM6A/6B and the chromatin organiser SATB1 in p53 null CRC cells suggest a crosstalk between epigenetic and EMT factors. The observed epigenetic regulation of EMT factor SNAI1 correlates with poor clinical outcomes in 270 colorectal cancer patients taken from TCGA-COAD. This unique p53 dependent interplay between epigenetic enzymes and EMT factors in CRC cells may be exploited for development of synergistic therapies for CRC patients presenting to the clinic with loss of p53.
Collapse
Affiliation(s)
- Shreya Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, India
| | - Harsha Rani
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, India
| | | | | | | | | |
Collapse
|
11
|
Singh SP, Dosch AR, Mehra S, De Castro Silva I, Bianchi A, Garrido VT, Zhou Z, Adams A, Amirian H, Box EW, Sun X, Ban Y, Datta J, Nagathihalli NS, Merchant NB. Tumor Cell-Intrinsic p38 MAPK Signaling Promotes IL1α-Mediated Stromal Inflammation and Therapeutic Resistance in Pancreatic Cancer. Cancer Res 2024; 84:1320-1332. [PMID: 38285896 DOI: 10.1158/0008-5472.can-23-1200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/27/2023] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a KRAS-driven inflammatory program and a desmoplastic stroma, which contribute to the profoundly chemoresistant phenotype. The tumor stroma contains an abundance of cancer-associated fibroblasts (CAF), which engage in extensive paracrine cross-talk with tumor cells to perpetuate protumorigenic inflammation. IL1α, a pleiotropic, tumor cell-derived cytokine, plays a critical role in shaping the stromal landscape. To provide insights into the molecular mechanisms regulating IL1A expression in PDAC, we performed transcriptional profiling of The Cancer Genome Atlas datasets and pharmacologic screening in PDAC cells and identified p38α MAPK as a key positive regulator of IL1A expression. Both genetic and pharmacologic inhibition of p38 MAPK significantly diminished IL1α production in vitro. Chromatin- and coimmunoprecipitation analyses revealed that p38 MAPK coordinates the transcription factors Sp1 and the p65 subunit of NFκB to drive IL1A overexpression. Single-cell RNA sequencing of a highly desmoplastic murine PDAC model, Ptf1aCre/+; LSL-KrasG12D/+; Tgfbr2flox/flox (PKT), confirmed that p38 MAPK inhibition significantly decreases tumor cell-derived Il1a and attenuates the inflammatory CAF phenotype in a paracrine IL1α-dependent manner. Furthermore, p38 MAPK inhibition favorably modulated intratumoral immunosuppressive myeloid populations and augmented chemotherapeutic efficacy to substantially reduce tumor burden and improve overall survival in PKT mice. These findings illustrate a cellular mechanism of tumor cell-intrinsic p38-p65/Sp1-IL1α signaling that is responsible for sustaining stromal inflammation and CAF activation, offering an attractive therapeutic approach to enhance chemosensitivity in PDAC. SIGNIFICANCE Inhibition of p38 MAPK suppresses tumor cell-derived IL1α and attenuates the inflammatory stroma and immunosuppressive tumor microenvironment to overcome chemotherapeutic resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Samara P Singh
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Austin R Dosch
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Siddharth Mehra
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Iago De Castro Silva
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Anna Bianchi
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Vanessa T Garrido
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Zhiqun Zhou
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Andrew Adams
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Haleh Amirian
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Edmond W Box
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Xiaodian Sun
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Yuguang Ban
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Jashodeep Datta
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Nagaraj S Nagathihalli
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Nipun B Merchant
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miami, Florida
| |
Collapse
|
12
|
Hong T, Xing J. Data- and theory-driven approaches for understanding paths of epithelial-mesenchymal transition. Genesis 2024; 62:e23591. [PMID: 38553870 PMCID: PMC11017362 DOI: 10.1002/dvg.23591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/16/2024] [Accepted: 03/16/2024] [Indexed: 04/02/2024]
Abstract
Reversible transitions between epithelial and mesenchymal cell states are a crucial form of epithelial plasticity for development and disease progression. Recent experimental data and mechanistic models showed multiple intermediate epithelial-mesenchymal transition (EMT) states as well as trajectories of EMT underpinned by complex gene regulatory networks. In this review, we summarize recent progress in quantifying EMT and characterizing EMT paths with computational methods and quantitative experiments including omics-level measurements. We provide perspectives on how these studies can help relating fundamental cell biology to physiological and pathological outcomes of EMT.
Collapse
Affiliation(s)
- Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville TN, USA
| | - Jianhua Xing
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Najafi A, Jolly MK, George JT. Protocol for inferring epithelial-to-mesenchymal transition trajectories from single-cell RNA sequencing data using R. STAR Protoc 2024; 5:102819. [PMID: 38183653 PMCID: PMC10789639 DOI: 10.1016/j.xpro.2023.102819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/18/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) provides crucial insights into the metastatic process and possesses prognostic value within the cancer context. Here, we present COMET, an R package for inferring EMT trajectories and inter-state transition rates from single-cell RNA sequencing data. We describe steps for finding the optimal number of EMT genes for a specific context, estimating EMT-related trajectories, optimal fitting of continuous-time Markov chain to inferred trajectories, and estimating inter-state transition rates.
Collapse
Affiliation(s)
- Annice Najafi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Jason T George
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; Intercollegiate School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Bhuva DD, Tan CW, Liu N, Whitfield HJ, Papachristos N, Lee SC, Kharbanda M, Mohamed A, Davis MJ. vissE: a versatile tool to identify and visualise higher-order molecular phenotypes from functional enrichment analysis. BMC Bioinformatics 2024; 25:64. [PMID: 38331751 PMCID: PMC10854147 DOI: 10.1186/s12859-024-05676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Functional analysis of high throughput experiments using pathway analysis is now ubiquitous. Though powerful, these methods often produce thousands of redundant results owing to knowledgebase redundancies upstream. This scale of results hinders extensive exploration by biologists and can lead to investigator biases due to previous knowledge and expectations. To address this issue, we present vissE, a flexible network-based analysis and visualisation tool that organises information into semantic categories and provides various visualisation modules to characterise them with respect to the underlying data, thus providing a comprehensive view of the biological system. We demonstrate vissE's versatility by applying it to three different technologies: bulk, single-cell and spatial transcriptomics. Applying vissE to a factor analysis of a breast cancer spatial transcriptomic data, we identified stromal phenotypes that support tumour dissemination. Its adaptability allows vissE to enhance all existing gene-set enrichment and pathway analysis workflows, empowering biologists during molecular discovery.
Collapse
Affiliation(s)
- Dharmesh D Bhuva
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia.
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Chin Wee Tan
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- Fraser Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Ning Liu
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Holly J Whitfield
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- Wellcome Sanger Institute, Hinxton, UK
| | - Nicholas Papachristos
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Samuel C Lee
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Malvika Kharbanda
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Ahmed Mohamed
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- Colonial Foundation Healthy Ageing Centre, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
| | - Melissa J Davis
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
- Fraser Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4102, Australia
- Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
15
|
Catalanotto M, Vaz JM, Abshire C, Youngblood R, Chu M, Levine H, Jolly MK, Dragoi AM. Dual role of CASP8AP2/FLASH in regulating epithelial-to-mesenchymal transition plasticity (EMP). Transl Oncol 2024; 39:101837. [PMID: 37984255 PMCID: PMC10689956 DOI: 10.1016/j.tranon.2023.101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) is a developmental program that consists of the loss of epithelial features concomitant with the acquisition of mesenchymal features. Activation of EMT in cancer facilitates the acquisition of aggressive traits and cancer invasion. EMT plasticity (EMP), the dynamic transition between multiple hybrid states in which cancer cells display both epithelial and mesenchymal markers, confers survival advantages for cancer cells in constantly changing environments during metastasis. METHODS RNAseq analysis was performed to assess genome-wide transcriptional changes in cancer cells depleted for histone regulators FLASH, NPAT, and SLBP. Quantitative PCR and Western blot were used for the detection of mRNA and protein levels. Computational analysis was performed on distinct sets of genes to determine the epithelial and mesenchymal score in cancer cells and to correlate FLASH expression with EMT markers in the CCLE collection. RESULTS We demonstrate that loss of FLASH in cancer cells gives rise to a hybrid E/M phenotype with high epithelial scores even in the presence of TGFβ, as determined by computational methods using expression of predetermined sets of epithelial and mesenchymal genes. Multiple genes involved in cell-cell junction formation are similarly specifically upregulated in FLASH-depleted cells, suggesting that FLASH acts as a repressor of the epithelial phenotype. Further, FLASH expression in cancer lines is inversely correlated with the epithelial score. Nonetheless, subsets of mesenchymal markers were distinctly up-regulated in FLASH, NPAT, or SLBP-depleted cells. CONCLUSIONS The ZEB1low/SNAILhigh/E-cadherinhigh phenotype described in FLASH-depleted cancer cells is driving a hybrid E/M phenotype in which epithelial and mesenchymal markers coexist.
Collapse
Affiliation(s)
| | - Joel Markus Vaz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Reneau Youngblood
- Department of Molecular and Cellular Physiology, LSUHSC, Shreveport, LA, USA
| | - Min Chu
- Feist-Weiller Cancer Center, INLET Core, LSUHSC, Shreveport, LA, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA; Department of Physics, Northeastern University, Boston, MA, USA; Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Ana-Maria Dragoi
- Department of Molecular and Cellular Physiology, LSUHSC, Shreveport, LA, USA; Feist-Weiller Cancer Center, INLET Core, LSUHSC, Shreveport, LA, USA.
| |
Collapse
|
16
|
Zhong W, Wang Q, Shen X, Lv Y, Sun L, An R, Zhu H, Cai H, Chen G, Liu A, Du J. Neutrophil Extracellular Trap is Surrogate Biomarker for Prognosis and Response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer. J Inflamm Res 2023; 16:6443-6455. [PMID: 38164163 PMCID: PMC10758164 DOI: 10.2147/jir.s441981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
Purpose To demonstrate the intrinsic association of Neutrophil extracellular traps (NETs) with outcome and neoadjuvant therapy response of locally advanced rectal cancer (LARC), and the mechanisms. Patients and Methods We enrolled 240 patients with LARC who underwent surgery without neoadjuvant therapy in two independent sets (training and validation), and 153 patients who received neoadjuvant therapy with biopsy followed by surgery. Immunohistochemistry, immunofluorescence staining and bioinformatics analysis were performed in formalin-fixed paraffin-embedded sections. NETs were identified by costaining for myeloperoxidase and citrullinated histone H3. Results NETs were associated with recurrence-free survival in the surgical training and validation sets. High-NET density predicted poor postoperative survival of patients with LARC. Multivariate analysis identified NETs, TNM stage, and neutrophil-to-lymphocyte ratio as independent prognostic factors for recurrence-free survival. Low-NETs LARC demonstrated increased CD8+ T cell and lower T regulatory cell infiltration, which indicated a tumor immune microenvironment with strong antitumor capacity. High-NET density was associated with epithelial-mesenchymal transition, which is considered to contribute to tumor progression. In the neoadjuvant therapy cohort, high-NET density on biopsy was significantly associated with reduced likelihood of complete/near complete response. Conclusion NET was an independent prognostic factor in LARC that were associated with patients' survival, and NET density in pretreatment biopsies was an independent predictive biomarker of response to neoadjuvant therapy. This biomarker may be helpful in predicting survival in LARC with improved accuracy and selecting patients who will respond to neoadjuvant therapy.
Collapse
Affiliation(s)
- Wentao Zhong
- The Second School of Clinical Medicine, Southern Medical University, Guangdong, 510515, People’s Republic of China
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Qianyu Wang
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
| | - Xiaofei Shen
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Yuan Lv
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Liang Sun
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
| | - Ran An
- Department of Pathology, the 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
| | - Hongyan Zhu
- Department of Pathology, the 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
| | - Huiyun Cai
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
| | - Gang Chen
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Aijun Liu
- Department of Pathology, the 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
| | - Junfeng Du
- The Second School of Clinical Medicine, Southern Medical University, Guangdong, 510515, People’s Republic of China
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| |
Collapse
|
17
|
Singh R, Maurya N, Tripathi K, Singh UP, Agrawal V, Goel A, Singhai A, Kumar N, Garg M. Pilot study on quantifying the epithelial/mesenchymal hybrid state in the non-muscle invasive and muscle invasive bladder tumors: A promising marker of diagnosis and prognosis. ADVANCES IN CANCER BIOLOGY - METASTASIS 2023; 9:100112. [DOI: 10.1016/j.adcanc.2023.100112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
18
|
George JT. Optimal phenotypic adaptation in fluctuating environments. Biophys J 2023; 122:4414-4424. [PMID: 37876159 PMCID: PMC10698328 DOI: 10.1016/j.bpj.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/28/2023] [Accepted: 10/18/2023] [Indexed: 10/26/2023] Open
Abstract
Phenotypic adaptation is a universal feature of biological systems navigating highly variable environments. Recent empirical data support the role of memory-driven decision making in cellular systems navigating uncertain future nutrient landscapes, wherein a distinct growth phenotype emerges in fluctuating conditions. We develop a simple stochastic mathematical model to describe memory-driven cellular adaptation required for systems to optimally navigate such uncertainty. In this framework, adaptive populations traverse dynamic environments by inferring future variation from a memory of prior states, and memory capacity imposes a fundamental trade-off between the speed and accuracy of adaptation to new fluctuating environments. Our results suggest that the observed growth reductions that occur in fluctuating environments are a direct consequence of optimal decision making and result from bet hedging and occasional phenotypic-environmental mismatch. We anticipate that this modeling framework will be useful for studying the role of memory in phenotypic adaptation, including in the design of temporally varying therapies against adaptive systems.
Collapse
Affiliation(s)
- Jason T George
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas; Engineering Medicine Program, Texas A&M University, Houston, Texas; Center for Theoretical Biological Physics, Rice University, Houston, Texas.
| |
Collapse
|
19
|
Jain P, Pillai M, Duddu AS, Somarelli JA, Goyal Y, Jolly MK. Dynamical hallmarks of cancer: Phenotypic switching in melanoma and epithelial-mesenchymal plasticity. Semin Cancer Biol 2023; 96:48-63. [PMID: 37788736 DOI: 10.1016/j.semcancer.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Phenotypic plasticity was recently incorporated as a hallmark of cancer. This plasticity can manifest along many interconnected axes, such as stemness and differentiation, drug-sensitive and drug-resistant states, and between epithelial and mesenchymal cell-states. Despite growing acceptance for phenotypic plasticity as a hallmark of cancer, the dynamics of this process remains poorly understood. In particular, the knowledge necessary for a predictive understanding of how individual cancer cells and populations of cells dynamically switch their phenotypes in response to the intensity and/or duration of their current and past environmental stimuli remains far from complete. Here, we present recent investigations of phenotypic plasticity from a systems-level perspective using two exemplars: epithelial-mesenchymal plasticity in carcinomas and phenotypic switching in melanoma. We highlight how an integrated computational-experimental approach has helped unravel insights into specific dynamical hallmarks of phenotypic plasticity in different cancers to address the following questions: a) how many distinct cell-states or phenotypes exist?; b) how reversible are transitions among these cell-states, and what factors control the extent of reversibility?; and c) how might cell-cell communication be able to alter rates of cell-state switching and enable diverse patterns of phenotypic heterogeneity? Understanding these dynamic features of phenotypic plasticity may be a key component in shifting the paradigm of cancer treatment from reactionary to a more predictive, proactive approach.
Collapse
Affiliation(s)
- Paras Jain
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Maalavika Pillai
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL 60611, USA
| | | | - Jason A Somarelli
- Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
20
|
Rajarajan S, Snijesh VP, Anupama CE, Nair MG, Mavatkar AD, Naidu CM, Patil S, Nimbalkar VP, Alexander A, Pillai M, Jolly MK, Sabarinathan R, Ramesh RS, Bs S, Prabhu JS. An androgen receptor regulated gene score is associated with epithelial to mesenchymal transition features in triple negative breast cancers. Transl Oncol 2023; 37:101761. [PMID: 37603927 PMCID: PMC10465938 DOI: 10.1016/j.tranon.2023.101761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/13/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Androgen receptor (AR) is considered a marker of better prognosis in hormone receptor positive breast cancers (BC), however, its role in triple negative breast cancer (TNBC) is controversial. This may be attributed to intrinsic molecular differences or scoring methods for AR positivity. We derived AR regulated gene score and examined its utility in BC subtypes. METHODS AR regulated genes were derived by applying a bioinformatic pipeline on publicly available microarray data sets of AR+ BC cell lines and gene score was calculated as average expression of six AR regulated genes. Tumors were divided into AR high and low based on gene score and associations with clinical parameters, circulating androgens, survival and epithelial to mesenchymal transition (EMT) markers were examined, further evaluated in invitro models and public datasets. RESULTS 53% (133/249) tumors were classified as AR gene score high and were associated with significantly better clinical parameters, disease-free survival (86.13 vs 72.69 months, log rank p = 0.032) when compared to AR low tumors. 36% of TNBC (N = 66) were AR gene score high with higher expression of EMT markers (p = 0.024) and had high intratumoral levels of 5α-reductase, enzyme involved in intracrine androgen metabolism. In MDA-MB-453 treated with dihydrotestosterone, SLUG expression increased, E-cadherin decreased with increase in migration and these changes were reversed with bicalutamide. Similar results were obtained in public datasets. CONCLUSION Deciphering the role of AR in BC is difficult based on AR protein levels alone. Our results support the context dependent function of AR in driving better prognosis in ER positive tumors and EMT features in TNBC tumors.
Collapse
Affiliation(s)
- Savitha Rajarajan
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India; Centre for Doctoral Studies, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - V P Snijesh
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India; Centre for Doctoral Studies, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - C E Anupama
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - Apoorva D Mavatkar
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - Chandrakala M Naidu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - Sharada Patil
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - Vidya P Nimbalkar
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - Annie Alexander
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - Maalavika Pillai
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | | | - Rakesh S Ramesh
- Department of Surgical Oncology, St. John's Medical College, Bengaluru, India
| | - Srinath Bs
- Department of Surgery, Sri Shankara Cancer Hospital and Research Centre, Bangalore, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India.
| |
Collapse
|
21
|
Wyllie K, Panagopoulos V, Cox TR. The role of peroxidasin in solid cancer progression. Biochem Soc Trans 2023; 51:1881-1895. [PMID: 37801286 PMCID: PMC10657184 DOI: 10.1042/bst20230018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Peroxidasin is a heme-containing peroxidase enzyme that plays a vital role in the cross-linking of collagen IV molecules in basement membranes. Collagen IV cross-links are essential for providing structure and mechanical stability throughout tissue development, homeostasis, and wound healing. During cancer progression, the basement membrane is degraded, and proteins typically found in the basement membrane, including peroxidasin and collagen IV, can be found spread throughout the tumour microenvironment where they interact with cancer cells and alter cell behaviour. Whilst peroxidasin is reported to be up-regulated in a number of different cancers, the role that it plays in disease progression and metastasis has only recently begun to be studied. This review highlights the current literature exploring the known roles of peroxidasin in normal tissues and cancer progression, regulators of peroxidasin expression, and the reported relationships between peroxidasin expression and patient outcome in cancer.
Collapse
Affiliation(s)
- Kaitlin Wyllie
- Matrix & Metastasis Lab, The Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Ecosystems Program, Sydney, NSW 2010, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Vasilios Panagopoulos
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Thomas R. Cox
- Matrix & Metastasis Lab, The Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Ecosystems Program, Sydney, NSW 2010, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
22
|
Voss G, Cassidy JR, Ceder Y. Functional consequences of A-to-I editing of miR-379 in prostate cancer cells. Sci Rep 2023; 13:16602. [PMID: 37789115 PMCID: PMC10547749 DOI: 10.1038/s41598-023-43775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
Prostate cancer is the predominant cause of cancer in men, but there is still a lack of biomarkers and treatments for metastatic spread. The initial promise of microRNAs to provide avenues to solve these problems has been dampened by the realisation that microRNAs co-exist in multiple functionally distinct isoforms, for example due to A-to-I editing. We recently found that A-to-I-editing of microRNA-379 (miR-379) was associated with prostate cancer, and that only the unedited isoform was negatively correlated with aggressive disease. Here, we set out to decipher the biological effects of unedited and edited miR-379 in prostate cancer cells. After transfection of four different prostate cancer cell lines with isoform-specific miR-379 mimics, we performed assays for cell growth, colony formation, migration, cell-cell adhesion, and analysed epithelial-mesenchymal transition (EMT) and stemness markers. We found that unedited miR-379 affected cell growth, with a promoting function in androgen receptor (AR)-negative cells and an inhibiting effect in AR-positive cells. This is supported by our in silico analysis that found unedited miR-379 targets are predicted to be predominantly involved in cellular proliferation whereas the targets of edited miR-379 are not. We further found that both miR-379 isoforms could promote colony formation, migration, and cell-cell adhesion. Overall, our data suggests that editing of miR-379 attenuates the growth-suppressive function of unedited miR-379 in androgen-sensitive prostate cancer cells, thereby promoting tumor growth.
Collapse
Affiliation(s)
- Gjendine Voss
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - James R Cassidy
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Yvonne Ceder
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
23
|
Kar S, Maji N, Sen K, Roy S, Maity A, Ghosh Dastidar S, Nath S, Basu G, Basu M. Reprogramming of glucose metabolism via PFKFB4 is critical in FGF16-driven invasion of breast cancer cells. Biosci Rep 2023; 43:BSR20230677. [PMID: 37222403 PMCID: PMC10407156 DOI: 10.1042/bsr20230677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023] Open
Abstract
Fibroblast growth factors (FGFs) are expressed in both developing and adult tissues and play important roles in embryogenesis, tissue homeostasis, angiogenesis, and neoplastic transformation. Here, we report the elevated expression of FGF16 in human breast tumor and investigate its potential involvement in breast cancer progression. The onset of epithelial-mesenchymal transition (EMT), a prerequisite for cancer metastasis, was observed in human mammary epithelial cell-line MCF10A by FGF16. Further study unveiled that FGF16 alters mRNA expression of a set of extracellular matrix genes to promote cellular invasion. Cancer cells undergoing EMT often show metabolic alteration to sustain their continuous proliferation and energy-intensive migration. Similarly, FGF16 induced a significant metabolic shift toward aerobic glycolysis. At the molecular level, FGF16 enhanced GLUT3 expression to facilitate glucose transport into cells, which through aerobic glycolysis generates lactate. The bi-functional protein, 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 4 (PFKFB4) was found to be a mediator in FGF16-driven glycolysis and subsequent invasion. Furthermore, PFKFB4 was found to play a critical role in promoting lactate-induced cell invasion since silencing PFKFB4 decreased lactate level and rendered the cells less invasive. These findings support potential clinical intervention of any of the members of FGF16-GLUT3-PFKFB4 axis to control the invasion of breast cancer cells.
Collapse
Affiliation(s)
- Swarnali Kar
- Department of Biophysics, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Nilanjana Maji
- Department of Biophysics, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Kamalika Sen
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Stuti Roy
- Basic and Translational Research Division, Saroj Gupta Cancer Centre and Research Institute (SGCC & RI), Kolkata 700063, India
| | - Atanu Maity
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Shubhra Ghosh Dastidar
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Somsubhra Nath
- Basic and Translational Research Division, Saroj Gupta Cancer Centre and Research Institute (SGCC & RI), Kolkata 700063, India
| | - Gautam Basu
- Department of Biophysics, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Moitri Basu
- Department of Biophysics, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Kolkata 700054, India
| |
Collapse
|
24
|
Hapach LA, Wang W, Schwager SC, Pokhriyal D, Fabiano ED, Reinhart-King CA. Phenotypically sorted highly and weakly migratory triple negative breast cancer cells exhibit migratory and metastatic commensalism. Breast Cancer Res 2023; 25:102. [PMID: 37649089 PMCID: PMC10468890 DOI: 10.1186/s13058-023-01696-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Intratumor heterogeneity is a well-established hallmark of cancer that impedes cancer research, diagnosis, and treatment. Previously, we phenotypically sorted human breast cancer cells based on migratory potential. When injected into mice, highly migratory cells were weakly metastatic and weakly migratory cells were highly metastatic. The purpose of this study was to determine whether these weakly and highly migratory cells interact with each other in vitro or in vivo. METHODS To assess the relationship between heterogeneity in cancer cell migration and metastatic fitness, MDA-MB-231 and SUM159PT triple negative breast cancer cells were phenotypically sorted into highly migratory and weakly migratory subpopulations and assayed separately and in a 1:1 mixture in vitro and in vivo for metastatic behaviors. Unpaired, two-tailed Student's t-tests, Mann-Whitney tests, ordinary, one-way ANOVAs, and Kruskal-Wallis H tests were performed as appropriate with p < 0.05 as the cutoff for statistical significance. RESULTS When highly and weakly migratory cells are co-seeded in mixed spheroids, the weakly migratory cells migrated farther than weakly migratory only spheroids. In mixed spheroids, leader-follower behavior occurred with highly migratory cells leading the weakly migratory cells in migration strands. When cell suspensions of highly migratory, weakly migratory, or a 1:1 mixture of both subpopulations were injected orthotopically into mice, both the mixed cell suspensions and weakly migratory cells showed significant distal metastasis, but the highly migratory cells did not metastasize significantly to any location. Notably, significantly more distal metastasis was observed in mice injected with the 1:1 mixture compared to either subpopulation alone. CONCLUSIONS This study suggests that weakly migratory cells interact with highly migratory cells in a commensal fashion resulting in increased migration and metastasis. Together, these findings indicate that cancer cell subpopulation migration ability does not correlate with metastatic potential and that cooperation between highly migratory and weakly migratory subpopulations can enhance overall metastatic fitness.
Collapse
Affiliation(s)
- Lauren A Hapach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Samantha C Schwager
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Devika Pokhriyal
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Emily D Fabiano
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | | |
Collapse
|
25
|
Gallerani G, Rossi T, Ferracin M, Bonafè M. Settling the uncertainty about unconventional circulating tumor cells: Epithelial-to-mesenchymal transition, cell fusion and trogocytosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 381:99-111. [PMID: 37739485 DOI: 10.1016/bs.ircmb.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Circulating tumor cells (CTCs) were first described 150 years ago. The so-called "classical" CTC populations (EpCAM+/CK+/CD45-) have been fully characterized and proposed as the most representative CTC subset, with clinical relevance. Nonetheless, other "atypical" or "unconventional" CTCs have also been identified, and their critical role in metastasis formation was demonstrated. In this chapter we illustrate the studies that led to the discovery of unconventional CTCs, defined as CTCs that display both epithelial and mesenchymal markers, or both cancer and immune markers, also in the form of hybrid cancer-immune cells. We also present biological explanations for the origin of these unconventional CTCs: epithelial to mesenchymal transition, cell-cell fusion and trogocytosis. We believe that a deeper knowledge on the biology of CTCs is needed to fully elucidate their role in cancer progression and their use as cancer biomarkers.
Collapse
Affiliation(s)
- Giulia Gallerani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Massimiliano Bonafè
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
26
|
Lee BS, Kim Y, Park H, Im WJ, Han HY, Kim YB, Lim S, Yoo MH. Long-chain perfluoroalkyl carboxylates induce cytoskeletal abnormalities and activate epithelial-mesenchymal transition in both renal cell carcinoma 3D cultures and Caki-1 xenografted mouse model. ENVIRONMENT INTERNATIONAL 2023; 178:108093. [PMID: 37459689 DOI: 10.1016/j.envint.2023.108093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 08/19/2023]
Abstract
Exposure to perfluorooctanoate (PFOA; a type of perfluoroalkyl carboxylates [PFACs]) may be correlated with the incidence of kidney cancer in individuals exposed to high levels of PFOA. However, mechanistic studies on the influence of PFACs on renal cell carcinoma (RCC) development are lacking. We explored the effects of five types of PFACs on RCC using in vitro and in vivo models to fill this knowledge gap and provide information for environmental/usage regulations. Using 2D/3D cultures of Caki-1 cells, a human clear cell RCC line, we examined the effects of short-chain (SC) PFACs and long-chain (LC) PFACs on RCC physio/pathological markers, including the cytoskeleton, epithelial-mesenchymal transition (EMT)-related proteins, and Na+/K+-ATPase. We also administered three different PFACs orally to mice harboring Caki-1 xenografts to assess the impact of these compounds on engrafted RCC in vivo. Compared with the effects of SCPFACs, mice with Caki-1 xenografts treated with LCPFACs showed increased EMT-related protein expression and exhibited liver toxicity. Therefore, LCPFACs induced EMT, influencing cancer metastasis activity, and displayed higher toxicity in vivo compared with SCPFACs. These findings improve our understanding of the effects of PFACs on RCC development and their corresponding in vivo toxicity, which is crucial for regulating these substances to protect public health.
Collapse
Affiliation(s)
- Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea.
| | - Younhee Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea.
| | - Heejin Park
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea.
| | - Wan-Jung Im
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea.
| | - Hyoung-Yun Han
- Department of Predictive Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea.
| | - Yong-Bum Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea.
| | - SunHwa Lim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea.
| | - Min Heui Yoo
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea.
| |
Collapse
|
27
|
Najafi A, Jolly MK, George JT. Population dynamics of EMT elucidates the timing and distribution of phenotypic intra-tumoral heterogeneity. iScience 2023; 26:106964. [PMID: 37426354 PMCID: PMC10329148 DOI: 10.1016/j.isci.2023.106964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/24/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
The Epithelial-to-Mesenchymal Transition (EMT) is a hallmark of cancer metastasis and morbidity. EMT is a non-binary process, and cells can be stably arrested en route to EMT in an intermediate hybrid state associated with enhanced tumor aggressiveness and worse patient outcomes. Understanding EMT progression in detail will provide fundamental insights into the mechanisms underlying metastasis. Despite increasingly available single-cell RNA sequencing (scRNA-seq) data that enable in-depth analyses of EMT at the single-cell resolution, current inferential approaches are limited to bulk microarray data. There is thus a great need for computational frameworks to systematically infer and predict the timing and distribution of EMT-related states at single-cell resolution. Here, we develop a computational framework for reliable inference and prediction of EMT-related trajectories from scRNA-seq data. Our model can be utilized across a variety of applications to predict the timing and distribution of EMT from single-cell sequencing data.
Collapse
Affiliation(s)
- Annice Najafi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Mohit K. Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jason T. George
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Intercollegiate School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
28
|
Parthasarathi KTS, Mandal S, George JP, Gaikwad KB, Sasidharan S, Gundimeda S, Jolly MK, Pandey A, Sharma J. Aberrations in ion channels interacting with lipid metabolism and epithelial-mesenchymal transition in esophageal squamous cell carcinoma. Front Mol Biosci 2023; 10:1201459. [PMID: 37529379 PMCID: PMC10388552 DOI: 10.3389/fmolb.2023.1201459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most prevalent malignant gastrointestinal tumor. Ion channels contribute to tumor growth and progression through interactions with their neighboring molecules including lipids. The dysregulation of membrane ion channels and lipid metabolism may contribute to the epithelial-mesenchymal transition (EMT), leading to metastatic progression. Herein, transcriptome profiles of patients with ESCC were analyzed by performing differential gene expression and weighted gene co-expression network analysis to identify the altered ion channels, lipid metabolism- and EMT-related genes in ESCC. A total of 1,081 differentially expressed genes, including 113 ion channels, 487 lipid metabolism-related, and 537 EMT-related genes, were identified in patients with ESCC. Thereafter, EMT scores were correlated with altered co-expressed genes. The altered co-expressed genes indicated a correlation with EMT signatures. Interactions among 22 ion channels with 3 hub lipid metabolism- and 13 hub EMT-related proteins were determined using protein-protein interaction networks. A pathway map was generated to depict deregulated signaling pathways including insulin resistance and the estrogen receptor-Ca2+ signaling pathway in ESCC. The relationship between potential ion channels and 5-year survival rates in ESCC was determined using Kaplan-Meier plots and Cox proportional hazard regression analysis. Inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) was found to be associated with poor prognosis of patients with ESCC. Additionally, drugs interacting with potential ion channels, including GJA1 and ITPR3, were identified. Understanding alterations in ion channels with lipid metabolism and EMT in ESCC pathophysiology would most likely provide potential targets for the better treatment of patients with ESCC.
Collapse
Affiliation(s)
- K. T. Shreya Parthasarathi
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Susmita Mandal
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - John Philip George
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | | | - Sruthi Sasidharan
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Seetaramanjaneyulu Gundimeda
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Rochester, MN, United States
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Center for Individualized Medicine, Rochester, MN, United States
| | - Jyoti Sharma
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
29
|
Suzuki T, Conant A, Curow C, Alexander A, Ioffe Y, Unternaehrer JJ. Role of epithelial-mesenchymal transition factor SNAI1 and its targets in ovarian cancer aggressiveness. JOURNAL OF CANCER METASTASIS AND TREATMENT 2023; 9:25. [PMID: 38009093 PMCID: PMC10673625 DOI: 10.20517/2394-4722.2023.34] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Ovarian cancer remains the most lethal gynecologic malignancy in the USA. For over twenty years, epithelial-mesenchymal transition (EMT) has been characterized extensively in development and disease. The dysregulation of this process in cancer has been identified as a mechanism by which epithelial tumors become more aggressive, allowing them to survive and invade distant tissues. This occurs in part due to the increased expression of the EMT transcription factor, SNAI1 (Snail). In the case of epithelial ovarian cancer, Snail has been shown to contribute to cancer invasion, stemness, chemoresistance, and metabolic changes. Thus, in this review, we focus on summarizing current findings on the role of EMT (specifically, factors downstream of Snail) in determining ovarian cancer aggressiveness.
Collapse
Affiliation(s)
- Tise Suzuki
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
| | - Ashlyn Conant
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
| | - Casey Curow
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
- University of Redlands, Department of Biology, Redlands, CA 92373, USA
| | - Audrey Alexander
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
- Division of Natural and Mathematical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Yevgeniya Ioffe
- Department of Gynecology and Obstetrics, Division of Gynecologic Oncology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Juli J Unternaehrer
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Gynecology and Obstetrics, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
30
|
Fan C, González-Prieto R, Kuipers TB, Vertegaal ACO, van Veelen PA, Mei H, Ten Dijke P. The lncRNA LETS1 promotes TGF-β-induced EMT and cancer cell migration by transcriptionally activating a TβR1-stabilizing mechanism. Sci Signal 2023; 16:eadf1947. [PMID: 37339182 DOI: 10.1126/scisignal.adf1947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/25/2023] [Indexed: 06/22/2023]
Abstract
Transforming growth factor-β (TGF-β) signaling is a critical driver of epithelial-to-mesenchymal transition (EMT) and cancer progression. In SMAD-dependent TGF-β signaling, activation of the TGF-β receptor complex stimulates the phosphorylation of the intracellular receptor-associated SMADs (SMAD2 and SMAD3), which translocate to the nucleus to promote target gene expression. SMAD7 inhibits signaling through the pathway by promoting the polyubiquitination of the TGF-β type I receptor (TβRI). We identified an unannotated nuclear long noncoding RNA (lncRNA) that we designated LETS1 (lncRNA enforcing TGF-β signaling 1) that was not only increased but also perpetuated by TGF-β signaling. Loss of LETS1 attenuated TGF-β-induced EMT and migration in breast and lung cancer cells in vitro and extravasation of the cells in a zebrafish xenograft model. LETS1 potentiated TGF-β-SMAD signaling by stabilizing cell surface TβRI, thereby forming a positive feedback loop. Specifically, LETS1 inhibited TβRI polyubiquitination by binding to nuclear factor of activated T cells (NFAT5) and inducing the expression of the gene encoding the orphan nuclear receptor 4A1 (NR4A1), a component of a destruction complex for SMAD7. Overall, our findings characterize LETS1 as an EMT-promoting lncRNA that potentiates signaling through TGF-β receptor complexes.
Collapse
Affiliation(s)
- Chuannan Fan
- Department of Cell and Chemical Biology, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
- Oncode Institute, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
- Genome Proteomics Laboratory, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Seville, Américo Vespucio 24, 41092 Seville, Spain
- Department of Cell Biology, University of Seville, Américo Vespucio 24, 41092 Seville, Spain
| | - Thomas B Kuipers
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
- Oncode Institute, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
| |
Collapse
|
31
|
Ware KE, Thomas BC, Olawuni PD, Sheth MU, Hawkey N, Yeshwanth M, Miller BC, Vietor KJ, Jolly MK, Kim SY, Armstrong AJ, Somarelli JA. A synthetic lethal screen for Snail-induced enzalutamide resistance identifies JAK/STAT signaling as a therapeutic vulnerability in prostate cancer. Front Mol Biosci 2023; 10:1104505. [PMID: 37228586 PMCID: PMC10203420 DOI: 10.3389/fmolb.2023.1104505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Despite substantial improvements in the treatment landscape of prostate cancer, the evolution of hormone therapy-resistant and metastatic prostate cancer remains a major cause of cancer-related death globally. The mainstay of treatment for advanced prostate cancer is targeting of androgen receptor signaling, including androgen deprivation therapy plus second-generation androgen receptor blockade (e.g., enzalutamide, apalutamide, darolutamide), and/or androgen synthesis inhibition (abiraterone). While these agents have significantly prolonged the lives of patients with advanced prostate cancer, is nearly universal. This therapy resistance is mediated by diverse mechanisms, including both androgen receptor-dependent mechanisms, such as androgen receptor mutations, amplifications, alternative splicing, and amplification, as well as non-androgen receptor-mediated mechanisms, such as lineage plasticity toward neuroendocrine-like or epithelial-mesenchymal transition (EMT)-like lineages. Our prior work identified the EMT transcriptional regulator Snail as critical to hormonal therapy resistance and is commonly detected in human metastatic prostate cancer. In the current study, we sought to interrogate the actionable landscape of EMT-mediated hormone therapy resistant prostate cancer to identify synthetic lethality and collateral sensitivity approaches to treating this aggressive, therapy-resistant disease state. Using a combination of high-throughput drug screens and multi-parameter phenotyping by confluence imaging, ATP production, and phenotypic plasticity reporters of EMT, we identified candidate synthetic lethalities to Snail-mediated EMT in prostate cancer. These analyses identified multiple actionable targets, such as XPO1, PI3K/mTOR, aurora kinases, c-MET, polo-like kinases, and JAK/STAT as synthetic lethalities in Snail+ prostate cancer. We validated these targets in a subsequent validation screen in an LNCaP-derived model of resistance to sequential androgen deprivation and enzalutamide. This follow-up screen provided validation of inhibitors of JAK/STAT and PI3K/mTOR as therapeutic vulnerabilities for both Snail+ and enzalutamide-resistant prostate cancer.
Collapse
Affiliation(s)
- Kathryn E. Ware
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University Medical Center, Durham, NC, United States
| | - Beatrice C. Thomas
- Dr. Kiran C Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Pelumi D. Olawuni
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University Medical Center, Durham, NC, United States
| | - Maya U. Sheth
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University Medical Center, Durham, NC, United States
| | - Nathan Hawkey
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University Medical Center, Durham, NC, United States
| | - M. Yeshwanth
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Brian C. Miller
- Division of Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Katherine J. Vietor
- Division of Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - So Young Kim
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Andrew J. Armstrong
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University Medical Center, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| | - Jason A. Somarelli
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
32
|
Subhadarshini S, Markus J, Sahoo S, Jolly MK. Dynamics of Epithelial-Mesenchymal Plasticity: What Have Single-Cell Investigations Elucidated So Far? ACS OMEGA 2023; 8:11665-11673. [PMID: 37033874 PMCID: PMC10077445 DOI: 10.1021/acsomega.2c07989] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Epithelial-mesenchymal plasticity (EMP) is a key driver of cancer metastasis and therapeutic resistance, through which cancer cells can reversibly and dynamically alter their molecular and functional traits along the epithelial-mesenchymal spectrum. While cells in the epithelial phenotype are usually tightly adherent, less metastatic, and drug-sensitive, those in the hybrid epithelial/mesenchymal and/or mesenchymal state are more invasive, migratory, drug-resistant, and immune-evasive. Single-cell studies have emerged as a powerful tool in gaining new insights into the dynamics of EMP across various cancer types. Here, we review many recent studies that employ single-cell analysis techniques to better understand the dynamics of EMP in cancer both in vitro and in vivo. These single-cell studies have underlined the plurality of trajectories cells can traverse during EMP and the consequent heterogeneity of hybrid epithelial/mesenchymal phenotypes seen at both preclinical and clinical levels. They also demonstrate how diverse EMP trajectories may exhibit hysteretic behavior and how the rate of such cell-state transitions depends on the genetic/epigenetic background of recipient cells, as well as the dose and/or duration of EMP-inducing growth factors. Finally, we discuss the relationship between EMP and patient survival across many cancer types. We also present a next set of questions related to EMP that could benefit much from single-cell observations and pave the way to better tackle phenotypic switching and heterogeneity in clinic.
Collapse
Affiliation(s)
| | - Joel Markus
- Centre
for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sarthak Sahoo
- Centre
for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre
for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
33
|
Zapperi S, La Porta CAM. The Response of Triple-Negative Breast Cancer to Neoadjuvant Chemotherapy and the Epithelial–Mesenchymal Transition. Int J Mol Sci 2023; 24:ijms24076422. [PMID: 37047393 PMCID: PMC10094549 DOI: 10.3390/ijms24076422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
It would be highly desirable to find prognostic and predictive markers for triple-negative breast cancer (TNBC), a strongly heterogeneous and invasive breast cancer subtype often characterized by a high recurrence rate and a poor outcome. Here, we investigated the prognostic and predictive capabilities of ARIADNE, a recently developed transcriptomic test focusing on the epithelial–mesenchymal transition. We first compared the stratification of TNBC patients obtained by ARIADNE with that based on other common pathological indicators, such as grade, stage and nodal status, and found that ARIADNE was more effective than the other methods in dividing patients into groups with different disease-free survival statistics. Next, we considered the response to neoadjuvant chemotherapy and found that the classification provided by ARIADNE led to statistically significant differences in the rates of pathological complete response within the groups.
Collapse
|
34
|
Mathiesen A, Haynes B, Huyck R, Brown M, Dobrian A. Adipose Tissue-Derived Extracellular Vesicles Contribute to Phenotypic Plasticity of Prostate Cancer Cells. Int J Mol Sci 2023; 24:1229. [PMID: 36674745 PMCID: PMC9864182 DOI: 10.3390/ijms24021229] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Metastatic prostate cancer is one of the leading causes of male cancer deaths in the western world. Obesity significantly increases the risk of metastatic disease and is associated with a higher mortality rate. Systemic chronic inflammation can result from a variety of conditions, including obesity, where adipose tissue inflammation is a major contributor. Adipose tissue endothelial cells (EC) exposed to inflammation become dysfunctional and produce a secretome, including extracellular vesicles (EV), that can impact function of cells in distant tissues, including malignant cells. The aim of this study was to explore the potential role of EVs produced by obese adipose tissue and the ECs exposed to pro-inflammatory cytokines on prostate cancer phenotypic plasticity in vitro. We demonstrate that PC3ML metastatic prostate cancer cells exposed to EVs from adipose tissue ECs and to EVs from human adipose tissue total explants display reduced invasion and increased proliferation. The latter functional changes could be attributed to the EV miRNA cargo. We also show that the functional shift is TWIST1-dependent and is consistent with mesenchymal-to-epithelial transition, which is key to establishment of secondary tumor growth. Understanding the complex effects of EVs on prostate cancer cells of different phenotypes is key before their intended use as therapeutics.
Collapse
Affiliation(s)
- Allison Mathiesen
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Bronson Haynes
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Ryan Huyck
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Michael Brown
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Anca Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| |
Collapse
|
35
|
Minimal frustration underlies the usefulness of incomplete regulatory network models in biology. Proc Natl Acad Sci U S A 2023; 120:e2216109120. [PMID: 36580597 PMCID: PMC9910462 DOI: 10.1073/pnas.2216109120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Regulatory networks as large and complex as those implicated in cell-fate choice are expected to exhibit intricate, very high-dimensional dynamics. Cell-fate choice, however, is a macroscopically simple process. Additionally, regulatory network models are almost always incomplete and/or inexact, and do not incorporate all the regulators and interactions that may be involved in cell-fate regulation. In spite of these issues, regulatory network models have proven to be incredibly effective tools for understanding cell-fate choice across contexts and for making useful predictions. Here, we show that minimal frustration-a feature of biological networks across contexts but not of random networks-can compel simple, low-dimensional steady-state behavior even in large and complex networks. Moreover, the steady-state behavior of minimally frustrated networks can be recapitulated by simpler networks such as those lacking many of the nodes and edges and those that treat multiple regulators as one. The present study provides a theoretical explanation for the success of network models in biology and for the challenges in network inference.
Collapse
|
36
|
Yang Z, Jia Y, Wang S, Zhang Y, Fan W, Wang X, He L, Shen X, Yang X, Zhang Y, Yang H. Retinoblastoma-Binding Protein 5 Regulates H3K4 Methylation Modification to Inhibit the Proliferation of Melanoma Cells by Inactivating the Wnt/ β-Catenin and Epithelial-Mesenchymal Transition Pathways. JOURNAL OF ONCOLOGY 2023; 2023:5093941. [PMID: 36866240 PMCID: PMC9974310 DOI: 10.1155/2023/5093941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/29/2022] [Accepted: 01/20/2023] [Indexed: 02/25/2023]
Abstract
Histone 3 lysine 4 methylation (H3K4me), especially histone 3 lysine 4 trimethylation (H3K4me3), is one of the most extensively studied patterns of histone modification and plays crucial roles in many biological processes. However, as a part of H3K4 methyltransferase that participates in H3K4 methylation and transcriptional regulation, retinoblastoma-binding protein 5 (RBBP5) has not been well studied in melanoma. The present study sought to explore RBBP5-mediated H3K4 histone modification and the potential mechanisms in melanoma. RBBP5 expression in melanoma and nevi specimens was detected by immunohistochemistry. Western blotting was performed for three pairs of melanoma cancer tissues and nevi tissues. In vitro and in vivo assays were used to investigate the function of RBBP5. The molecular mechanism was determined using RT-qPCR, western blotting, ChIP assays, and Co-IP assays. Our study showed that RBBP5 was significantly downregulated in melanoma tissue and cells compared with nevi tissues and normal epithelia cells (P < 0.05). Reducing RBBP5 in human melanoma cells leads to H3K4me3 downregulation and promotes cell proliferation, migration, and invasion. On the one hand, we verified that WSB2 was an upstream gene of RBBP5-mediated H3K4 modification, which could directly bind to RBBP5 and negatively regulate its expression. On the other hand, we also confirmed that p16 (a cancer suppressor gene) was a downstream target of H3K4me3, the promoter of which can directly bind to H3K4me3. Mechanistically, our data revealed that RBBP5 inactivated the Wnt/β-catenin and epithelial-mesenchymal transition (EMT) pathways (P < 0.05), leading to melanoma suppression. Histone methylation is rising as an important factor affecting tumorigenicity and tumor progression. Our findings verified the significance of RBBP5-mediated H3K4 modification in melanoma and the potential regulatory mechanisms of melanoma proliferation and growth, suggesting that RBBP5 is a potential therapeutic target for the treatment of melanoma.
Collapse
Affiliation(s)
- Zhiqin Yang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
- 2Departments of Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Yue Jia
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Shaojia Wang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Yongjun Zhang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Wen Fan
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
- 3Departments of Reproduction, The Second Affiliated Hospital of Kunming Medical University, Kunming 650106, China
| | - Xin Wang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Liang He
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Xiaoyu Shen
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Xiangqun Yang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Yi Zhang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Hongying Yang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| |
Collapse
|
37
|
Silibinin Overcomes EMT-Driven Lung Cancer Resistance to New-Generation ALK Inhibitors. Cancers (Basel) 2022; 14:cancers14246101. [PMID: 36551587 PMCID: PMC9777025 DOI: 10.3390/cancers14246101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) may drive the escape of ALK-rearranged non-small-cell lung cancer (NSCLC) tumors from ALK-tyrosine kinase inhibitors (TKIs). We investigated whether first-generation ALK-TKI therapy-induced EMT promotes cross-resistance to new-generation ALK-TKIs and whether this could be circumvented by the flavonolignan silibinin, an EMT inhibitor. ALK-rearranged NSCLC cells acquiring a bona fide EMT phenotype upon chronic exposure to the first-generation ALK-TKI crizotinib exhibited increased resistance to second-generation brigatinib and were fully refractory to third-generation lorlatinib. Such cross-resistance to new-generation ALK-TKIs, which was partially recapitulated upon chronic TGFβ stimulation, was less pronounced in ALK-rearranged NSCLC cells solely acquiring a partial/hybrid E/M transition state. Silibinin overcame EMT-induced resistance to brigatinib and lorlatinib and restored their efficacy involving the transforming growth factor-beta (TGFβ)/SMAD signaling pathway. Silibinin deactivated TGFβ-regulated SMAD2/3 phosphorylation and suppressed the transcriptional activation of genes under the control of SMAD binding elements. Computational modeling studies and kinase binding assays predicted a targeted inhibitory binding of silibinin to the ATP-binding pocket of TGFβ type-1 receptor 1 (TGFBR1) and TGFBR2 but solely at the two-digit micromolar range. A secretome profiling confirmed the ability of silibinin to normalize the augmented release of TGFβ into the extracellular fluid of ALK-TKIs-resistant NSCLC cells and reduce constitutive and inducible SMAD2/3 phosphorylation occurring in the presence of ALK-TKIs. In summary, the ab initio plasticity along the EMT spectrum may explain the propensity of ALK-rearranged NSCLC cells to acquire resistance to new-generation ALK-TKIs, a phenomenon that could be abrogated by the silibinin-driven attenuation of the TGFβ/SMAD signaling axis in mesenchymal ALK-rearranged NSCLC cells.
Collapse
|
38
|
Galbraith M, Levine H, Onuchic JN, Jia D. Decoding the coupled decision-making of the epithelial-mesenchymal transition and metabolic reprogramming in cancer. iScience 2022; 26:105719. [PMID: 36582834 PMCID: PMC9792913 DOI: 10.1016/j.isci.2022.105719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/03/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer metastasis relies on an orchestration of traits driven by different interacting functional modules, including metabolism and epithelial-mesenchymal transition (EMT). During metastasis, cancer cells can acquire a hybrid metabolic phenotype (W/O) by increasing oxidative phosphorylation without compromising glycolysis and they can acquire a hybrid epithelial/mesenchymal (E/M) phenotype by engaging EMT. Both the W/O and E/M states are associated with high metastatic potentials, and many regulatory links coupling metabolism and EMT have been identified. Here, we investigate the coupled decision-making networks of metabolism and EMT. Their crosstalk can exhibit synergistic or antagonistic effects on the acquisition and stability of different coupled metabolism-EMT states. Strikingly, the aggressive E/M-W/O state can be enabled and stabilized by the crosstalk irrespective of these hybrid states' availability in individual metabolism or EMT modules. Our work emphasizes the mutual activation between metabolism and EMT, providing an important step toward understanding the multifaceted nature of cancer metastasis.
Collapse
Affiliation(s)
- Madeline Galbraith
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA,Department of Physics and Astronomy, Rice University, Houston, TX77005, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Department of Physics, and Department of Bioengineering, Northeastern University, Boston, MA02115, USA,Corresponding author
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA,Department of Physics and Astronomy, Rice University, Houston, TX77005, USA,Department of Chemistry, Rice University, Houston, TX77005, USA,Department of Biosciences, Rice University, Houston, TX77005, USA,Corresponding author
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA,Corresponding author
| |
Collapse
|
39
|
Network topology metrics explaining enrichment of hybrid epithelial mesenchymal phenotypes in metastasis. PLoS Comput Biol 2022; 18:e1010687. [DOI: 10.1371/journal.pcbi.1010687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/18/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Epithelial to Mesenchymal Transition (EMT) and its reverse—Mesenchymal to Epithelial Transition (MET) are hallmarks of metastasis. Cancer cells use this reversible cellular programming to switch among Epithelial (E), Mesenchymal (M), and hybrid Epithelial/Mesenchymal (hybrid E/M) state(s) and seed tumors at distant sites. Hybrid E/M cells are often more aggressive and metastatic than the “pure” E and M cells. Thus, identifying mechanisms to inhibit hybrid E/M cells can be promising in curtailing metastasis. While multiple gene regulatory networks (GRNs) based mathematical models for EMT/MET have been developed recently, identifying topological signatures enriching hybrid E/M phenotypes remains to be done. Here, we investigate the dynamics of 13 different GRNs and report an interesting association between “hybridness” and the number of negative/positive feedback loops across the networks. While networks having more negative feedback loops favor hybrid phenotype(s), networks having more positive feedback loops (PFLs) or many HiLoops–specific combinations of PFLs, support terminal (E and M) phenotypes. We also establish a connection between “hybridness” and network-frustration by showing that hybrid phenotypes likely result from non-reinforcing interactions among network nodes (genes) and therefore tend to be more frustrated (less stable). Our analysis, thus, identifies network topology-based signatures that can give rise to, as well as prevent, the emergence of hybrid E/M phenotype in GRNs underlying EMP. Our results can have implications in terms of targeting specific interactions in GRNs as a potent way to restrict switching to the hybrid E/M phenotype(s) to curtail metastasis.
Collapse
|
40
|
TIF1γ inhibits lung adenocarcinoma EMT and metastasis by interacting with the TAF15/TBP complex. Cell Rep 2022; 41:111513. [DOI: 10.1016/j.celrep.2022.111513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
|
41
|
Marles H, Biddle A. Cancer stem cell plasticity and its implications in the development of new clinical approaches for oral squamous cell carcinoma. Biochem Pharmacol 2022; 204:115212. [PMID: 35985402 DOI: 10.1016/j.bcp.2022.115212] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
Oral squamous cell carcinoma (SCC) represents a major worldwide disease burden, with high rates of recurrence and metastatic spread following existing treatment methods. Populations of treatment resistant cancer stem cells (CSCs) are well characterised in oral SCC. These populations of CSCs engage the cellular programme known as epithelial mesenchymal transition (EMT) to enhance metastatic spread and therapeutic resistance. EMT is characterised by specific morphological changes and the expression of certain cell surface markers that represent a transition from an epithelial phenotype to a mesenchymal phenotype. This process is regulated by several cellular pathways that interact both horizontally and hierarchically. The cellular changes in EMT occur along a spectrum, with sub-populations of cells displaying both epithelial and mesenchymal features. The unique features of these CSCs in terms of their EMT state, cell surface markers and metabolism may offer new druggable targets. In addition, these features could be used to identify more aggressive disease states and the opportunity to personalise therapy depending on the presence of certain CSC sub-populations.
Collapse
Affiliation(s)
- Henry Marles
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Adrian Biddle
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, UK.
| |
Collapse
|
42
|
Jiménez N, Reig Ò, Marín-Aguilera M, Aversa C, Ferrer-Mileo L, Font A, Rodriguez-Vida A, Climent MÁ, Cros S, Chirivella I, Domenech M, Figols M, González-Billalabeitia E, Jiménez Peralta D, Rodríguez-Carunchio L, García-Esteve S, Garcia de Herreros M, Ribal MJ, Prat A, Mellado B. Transcriptional Profile Associated with Clinical Outcomes in Metastatic Hormone-Sensitive Prostate Cancer Treated with Androgen Deprivation and Docetaxel. Cancers (Basel) 2022; 14:cancers14194757. [PMID: 36230681 PMCID: PMC9564355 DOI: 10.3390/cancers14194757] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 12/09/2022] Open
Abstract
(1) Background: Androgen deprivation therapy (ADT) and docetaxel (DX) combination is a standard therapy for metastatic hormone-sensitive prostate cancer (mHSPC) patients. (2) Methods: We investigate if tumor transcriptomic analysis predicts mHSPC evolution in a multicenter retrospective biomarker study. A customized panel of 184 genes was tested in mRNA from tumor samples by the nCounter platform in 125 mHSPC patients treated with ADT+DX. Gene expression was correlated with castration-resistant prostate cancer-free survival (CRPC-FS) and overall survival (OS). (3) Results: High expression of androgen receptor (AR) signature was independently associated with longer CRPC-FS (hazard ratio (HR) 0.6, 95% confidence interval (CI) 0.3–0.9; p = 0.015), high expression of estrogen receptor (ESR) signature with longer CRPC-FS (HR 0.6, 95% CI 0.4–0.9; p = 0.019) and OS (HR 0.5, 95% CI 0.2–0.9, p = 0.024), and lower expression of tumor suppressor genes (TSG) (RB1, PTEN and TP53) with shorter OS (HR 2, 95% CI 1–3.8; p = 0.044). ARV7 expression was independently associated with shorter CRPC-FS (HR 1.5, 95% CI 1.1–2.1, p = 0.008) and OS (HR 1.8, 95% CI 1.2–2.6, p = 0.004), high ESR2 was associated with longer OS (HR 0.5, 95% CI 0.2–1, p = 0.048) and low expression of RB1 was independently associated with shorter OS (HR 1.9, 95% CI 1.1–3.2, p = 0.014). (4) Conclusions: AR, ESR, and TSG expression signatures, as well as ARV7, RB1, and ESR2 expression, have a prognostic value in mHSPC patients treated with ADT+DX.
Collapse
Affiliation(s)
- Natalia Jiménez
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Fundació Clínic per a la Recerca Biomèdica, 08036 Barcelona, Spain
| | - Òscar Reig
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Fundació Clínic per a la Recerca Biomèdica, 08036 Barcelona, Spain
- Medical Oncology Department, Hospital Clínic, 08036 Barcelona, Spain
- Uro-Oncology Unit, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Mercedes Marín-Aguilera
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Fundació Clínic per a la Recerca Biomèdica, 08036 Barcelona, Spain
| | - Caterina Aversa
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Fundació Clínic per a la Recerca Biomèdica, 08036 Barcelona, Spain
- Medical Oncology Department, Hospital Clínic, 08036 Barcelona, Spain
- Uro-Oncology Unit, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| | - Laura Ferrer-Mileo
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Fundació Clínic per a la Recerca Biomèdica, 08036 Barcelona, Spain
- Medical Oncology Department, Hospital Clínic, 08036 Barcelona, Spain
- Uro-Oncology Unit, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| | - Albert Font
- Medical Oncology Department, Institut Català d’Oncologia, Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Alejo Rodriguez-Vida
- Medical Oncology Department, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Hospital del Mar, 08003 Barcelona, Spain
| | - Miguel Ángel Climent
- Medical Oncology Service, Instituto Valenciano de Oncología (IVO), 46009 Valencia, Spain
| | - Sara Cros
- Medical Oncology Department, Hospital General de Granollers, 08402 Granollers, Spain
| | - Isabel Chirivella
- Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | | | - Mariona Figols
- Medical Oncology Department, Fundació Althaia Manresa, 08243 Manresa, Spain
| | | | - Daniel Jiménez Peralta
- Urology Department, Hospital General Universitario José M. Morales Meseguer, 30008 Murcia, Spain
| | - Leonardo Rodríguez-Carunchio
- Uro-Oncology Unit, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
- Department of Pathology, Hospital Clínic, 08036 Barcelona, Spain
| | - Samuel García-Esteve
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Fundació Clínic per a la Recerca Biomèdica, 08036 Barcelona, Spain
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Marta Garcia de Herreros
- Medical Oncology Department, Hospital Clínic, 08036 Barcelona, Spain
- Uro-Oncology Unit, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| | - Maria J. Ribal
- Uro-Oncology Unit, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| | - Aleix Prat
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Fundació Clínic per a la Recerca Biomèdica, 08036 Barcelona, Spain
- Medical Oncology Department, Hospital Clínic, 08036 Barcelona, Spain
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Begoña Mellado
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Fundació Clínic per a la Recerca Biomèdica, 08036 Barcelona, Spain
- Medical Oncology Department, Hospital Clínic, 08036 Barcelona, Spain
- Uro-Oncology Unit, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Correspondence:
| |
Collapse
|
43
|
Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol 2022; 15:129. [PMID: 36076302 PMCID: PMC9461252 DOI: 10.1186/s13045-022-01347-8] [Citation(s) in RCA: 400] [Impact Index Per Article: 133.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is an essential process in normal embryonic development and tissue regeneration. However, aberrant reactivation of EMT is associated with malignant properties of tumor cells during cancer progression and metastasis, including promoted migration and invasiveness, increased tumor stemness, and enhanced resistance to chemotherapy and immunotherapy. EMT is tightly regulated by a complex network which is orchestrated with several intrinsic and extrinsic factors, including multiple transcription factors, post-translational control, epigenetic modifications, and noncoding RNA-mediated regulation. In this review, we described the molecular mechanisms, signaling pathways, and the stages of tumorigenesis involved in the EMT process and discussed the dynamic non-binary process of EMT and its role in tumor metastasis. Finally, we summarized the challenges of chemotherapy and immunotherapy in EMT and proposed strategies for tumor therapy targeting EMT.
Collapse
Affiliation(s)
- Yuhe Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
44
|
Koc EC, Koc FC, Kartal F, Tirona M, Koc H. Role of mitochondrial translation in remodeling of energy metabolism in ER/PR(+) breast cancer. Front Oncol 2022; 12:897207. [PMID: 36119536 PMCID: PMC9472243 DOI: 10.3389/fonc.2022.897207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Remodeling of mitochondrial energy metabolism is essential for the survival of tumor cells in limited nutrient availability and hypoxic conditions. Defects in oxidative phosphorylation (OXPHOS) and mitochondrial biogenesis also cause a switch in energy metabolism from oxidative to aerobic glycolysis contributing to the tumor heterogeneity in cancer. Specifically, the aberrant expressions of mitochondrial translation components such as ribosomal proteins (MRPs) and translation factors have been increasingly associated with many different cancers including breast cancer. The mitochondrial translation is responsible for the synthesis 13 of mitochondrial-encoded OXPHOS subunits of complexes. In this study, we investigated the contribution of mitochondrial translation in the remodeling of oxidative energy metabolism through altered expression of OXPHOS subunits in 26 ER/PR(+) breast tumors. We observed a significant correlation between the changes in the expression of mitochondrial translation-related proteins and OXPHOS subunits in the majority of the ER/PR(+) breast tumors and breast cancer cell lines. The reduced expression of OXPHOS and mitochondrial translation components also correlated well with the changes in epithelial-mesenchymal transition (EMT) markers, E-cadherin (CHD1), and vimentin (VIM) in the ER/PR(+) tumor biopsies. Data mining analysis of the Clinical Proteomic Tumor Analysis Consortium (CPTAC) breast cancer proteome further supported the correlation between the reduced OXPHOS subunit expression and increased EMT and metastatic marker expression in the majority of the ER/PR(+) tumors. Therefore, understanding the role of MRPs in the remodeling of energy metabolism will be essential in the characterization of heterogeneity at the molecular level and serve as diagnostic and prognostic markers in breast cancer.
Collapse
Affiliation(s)
- Emine C. Koc
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
- *Correspondence: Emine C. Koc, ; Hasan Koc,
| | - Fatih C. Koc
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Funda Kartal
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Maria Tirona
- Department of Medical Oncology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Hasan Koc
- Department of Pharmaceutical Science, School of Pharmacy, Marshall University, Huntington, WV, United States
- *Correspondence: Emine C. Koc, ; Hasan Koc,
| |
Collapse
|
45
|
Glycosphingolipids are mediators of cancer plasticity through independent signaling pathways. Cell Rep 2022; 40:111181. [PMID: 35977490 DOI: 10.1016/j.celrep.2022.111181] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/01/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
The molecular repertoire promoting cancer cell plasticity is not fully elucidated. Here, we propose that glycosphingolipids (GSLs), specifically the globo and ganglio series, correlate and promote the transition between epithelial and mesenchymal cells. The epithelial character of ovarian cancer remains stable throughout disease progression, and spatial glycosphingolipidomics reveals elevated globosides in the tumor compartment compared with the ganglioside-rich stroma. CRISPR-Cas9 knockin mediated truncation of endogenous E-cadherin induces epithelial-to-mesenchymal transition (EMT) and decreases globosides. The transcriptomics analysis identifies the ganglioside-synthesizing enzyme ST8SIA1 to be consistently elevated in mesenchymal-like samples, predicting poor outcome. Subsequent deletion of ST8SIA1 induces epithelial cell features through mTORS2448 phosphorylation, whereas loss of globosides in ΔA4GALT cells, resulting in EMT, is accompanied by increased ERKY202/T204 and AKTS124. The GSL composition dynamics corroborate cancer cell plasticity, and further evidence suggests that mesenchymal cells are maintained through ganglioside-dependent, calcium-mediated mechanisms.
Collapse
|
46
|
Brown MS, Abdollahi B, Wilkins OM, Lu H, Chakraborty P, Ognjenovic NB, Muller KE, Jolly MK, Christensen BC, Hassanpour S, Pattabiraman DR. Phenotypic heterogeneity driven by plasticity of the intermediate EMT state governs disease progression and metastasis in breast cancer. SCIENCE ADVANCES 2022; 8:eabj8002. [PMID: 35921406 PMCID: PMC9348802 DOI: 10.1126/sciadv.abj8002] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/16/2022] [Indexed: 05/04/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) is frequently co-opted by cancer cells to enhance migratory and invasive cell traits. It is a key contributor to heterogeneity, chemoresistance, and metastasis in many carcinoma types, where the intermediate EMT state plays a critical tumor-initiating role. We isolate multiple distinct single-cell clones from the SUM149PT human breast cell line spanning the EMT spectrum having diverse migratory, tumor-initiating, and metastatic qualities, including three unique intermediates. Using a multiomics approach, we identify CBFβ as a key regulator of metastatic ability in the intermediate state. To quantify epithelial-mesenchymal heterogeneity within tumors, we develop an advanced multiplexed immunostaining approach using SUM149-derived orthotopic tumors and find that the EMT state and epithelial-mesenchymal heterogeneity are predictive of overall survival in a cohort of stage III breast cancer. Our model reveals previously unidentified insights into the complex EMT spectrum and its regulatory networks, as well as the contributions of epithelial-mesenchymal plasticity (EMP) in tumor heterogeneity in breast cancer.
Collapse
Affiliation(s)
- Meredith S. Brown
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Behnaz Abdollahi
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Owen M. Wilkins
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH 03756, USA
| | - Hanxu Lu
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Nevena B. Ognjenovic
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Kristen E. Muller
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Brock C. Christensen
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH 03756, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Saeed Hassanpour
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH 03756, USA
| | - Diwakar R. Pattabiraman
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH 03756, USA
| |
Collapse
|
47
|
Classification of triple negative breast cancer by epithelial mesenchymal transition and the tumor immune microenvironment. Sci Rep 2022; 12:9651. [PMID: 35688895 PMCID: PMC9187759 DOI: 10.1038/s41598-022-13428-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for about 15–20% of all breast cancers and differs from other invasive breast cancer types because it grows and spreads rapidly, it has limited treatment options and typically worse prognosis. Since TNBC does not express estrogen or progesterone receptors and little or no human epidermal growth factor receptor (HER2) proteins are present, hormone therapy and drugs targeting HER2 are not helpful, leaving chemotherapy only as the main systemic treatment option. In this context, it would be important to find molecular signatures able to stratify patients into high and low risk groups. This would allow oncologists to suggest the best therapeutic strategy in a personalized way, avoiding unnecessary toxicity and reducing the high costs of treatment. Here we compare two independent patient stratification strategies for TNBC based on gene expression data: The first is focusing on the epithelial mesenchymal transition (EMT) and the second on the tumor immune microenvironment. Our results show that the two stratification strategies are not directly related, suggesting that the aggressiveness of the tumor can be due to a multitude of unrelated factors. In particular, the EMT stratification is able to identify a high-risk population with high immune markers that is, however, not properly classified by the tumor immune microenvironment based strategy.
Collapse
|
48
|
Tian H, Shi H, Yu J, Ge S, Ruan J. Biophysics Role and Biomimetic Culture Systems of ECM Stiffness in Cancer EMT. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100094. [PMID: 35712024 PMCID: PMC9189138 DOI: 10.1002/gch2.202100094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/14/2022] [Indexed: 06/15/2023]
Abstract
Oncological diseases have become the second leading cause of death from noncommunicable diseases worldwide and a major threat to human health. With the continuous progress in cancer research, the mechanical cues from the tumor microenvironment environment (TME) have been found to play an irreplaceable role in the progression of many cancers. As the main extracellular mechanical signal carrier, extracellular matrix (ECM) stiffness may influence cancer progression through biomechanical transduction to modify downstream gene expression, promote epithelial-mesenchymal transition (EMT), and regulate the stemness of cancer cells. EMT is an important mechanism that induces cancer cell metastasis and is closely influenced by ECM stiffness, either independently or in conjunction with other molecules. In this review, the unique role of ECM stiffness in EMT in different kinds of cancers is first summarized. By continually examining the significance of ECM stiffness in cancer progression, a biomimetic culture system based on 3D manufacturing and novel material technologies is developed to mimic ECM stiffness. The authors then look back on the novel development of the ECM stiffness biomimetic culture systems and finally provide new insights into ECM stiffness in cancer progression which can broaden the fields' horizons with a view toward developing new cancer diagnosis methods and therapies.
Collapse
Affiliation(s)
- Hao Tian
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Hanhan Shi
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Jie Yu
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Shengfang Ge
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Jing Ruan
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| |
Collapse
|
49
|
Data-driven learning how oncogenic gene expression locally alters heterocellular networks. Nat Commun 2022; 13:1986. [PMID: 35418177 PMCID: PMC9007999 DOI: 10.1038/s41467-022-29636-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/22/2022] [Indexed: 11/21/2022] Open
Abstract
Developing drugs increasingly relies on mechanistic modeling and simulation. Models that capture causal relations among genetic drivers of oncogenesis, functional plasticity, and host immunity complement wet experiments. Unfortunately, formulating such mechanistic cell-level models currently relies on hand curation, which can bias how data is interpreted or the priority of drug targets. In modeling molecular-level networks, rules and algorithms are employed to limit a priori biases in formulating mechanistic models. Here we combine digital cytometry with Bayesian network inference to generate causal models of cell-level networks linking an increase in gene expression associated with oncogenesis with alterations in stromal and immune cell subsets from bulk transcriptomic datasets. We predict how increased Cell Communication Network factor 4, a secreted matricellular protein, alters the tumor microenvironment using data from patients diagnosed with breast cancer and melanoma. Predictions are then tested using two immunocompetent mouse models for melanoma, which provide consistent experimental results. While mechanistic models play increasing roles in immuno-oncology, hand network curation is current practice. Here the authors use a Bayesian data-driven approach to infer how expression of a secreted oncogene alters the cellular landscape within the tumor.
Collapse
|
50
|
Cancer: More than a geneticist’s Pandora’s box. J Biosci 2022. [DOI: 10.1007/s12038-022-00254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|