1
|
Johnson M, Turcotte S. Loss of SETD2 in wild-type VHL clear cell renal cell carcinoma sensitizes cells to STF-62247 and leads to DNA damage, cell cycle arrest, and cell death characteristic of pyroptosis. Mol Oncol 2025; 19:1244-1264. [PMID: 39592433 PMCID: PMC11977649 DOI: 10.1002/1878-0261.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/01/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Loss of chromosome 3p and loss of heterogeneity of the von Hippel-Lindau (VHL) gene are common characteristics of clear cell renal cell carcinoma (ccRCC). Despite frequent mutations on VHL, a fraction of tumors still grows with the expression of wild-type (WT) VHL and evolve into an aggressive subtype. Additionally, mutations on chromatin-modifying genes, such as the gene coding for the histone methyltransferase SET containing domain 2 (SETD2), are essential to ccRCC evolution. We previously identified STF-62247, a small molecule first discovered as a synthetically lethal molecule for VHL-deficient cells by blocking late stages of autophagy. This study investigated how other commonly mutated genes in ccRCC could impact the response to STF-62247. We showed that SETD2 inactivation in ccRCC cells expressing WT-VHL became vulnerable to STF-62247, as indicated by decreases in cell proliferation and survival. Furthermore, activation of the DNA damage response pathway leads to the loss of M-phase inducer phosphatase 1 (CDC25A) and cell cycle arrest in S phase. Cleavage of both caspase-3 and gasdermin E suggests that STF-62247 eliminates WT-VHL ccRCC cells through pyroptosis specifically when SETD2 is inactivated.
Collapse
Affiliation(s)
- Mathieu Johnson
- Department of Chemistry and BiochemistryUniversité de MonctonCanada
- Atlantic Cancer Research InstituteMonctonCanada
| | - Sandra Turcotte
- Department of Chemistry and BiochemistryUniversité de MonctonCanada
- Atlantic Cancer Research InstituteMonctonCanada
| |
Collapse
|
2
|
Lal S, Snape TJ. Tubulin targeting agents and their implications in non-cancer disease management. Drug Discov Today 2025; 30:104338. [PMID: 40118444 DOI: 10.1016/j.drudis.2025.104338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Microtubules act as molecular 'tracks' for the intracellular transport of accessory proteins, enabling them to assemble into various larger structures, such as spindle fibres formed during the cell cycle. Microtubules provide an organisational framework for the healthy functioning of various cellular processes that work through the process of dynamic instability, driven by the hydrolysis of GTP. In this role, tubulin proteins undergo various modifications, and in doing so modulate various healthy or pathogenic physiological processes within cells. In this review, we provide a detailed update of small molecule chemical agents that interact with tubulin, along with their implications, specifically in non-cancer disease management.
Collapse
Affiliation(s)
- Samridhi Lal
- Amity Institute of Pharmacy, Amity University, Gurugram 122413 Haryana, India.
| | - Timothy J Snape
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| |
Collapse
|
3
|
Maldonado E, Rathmell WK, Shapiro GI, Takebe N, Rodon J, Mahalingam D, Trikalinos NA, Kalebasty AR, Parikh M, Boerner SA, Balido C, Krings G, Burns TF, Bergsland EK, Munster PN, Ashworth A, LoRusso P, Aggarwal RR. A Phase II Trial of the WEE1 Inhibitor Adavosertib in SETD2-Altered Advanced Solid Tumor Malignancies (NCI 10170). CANCER RESEARCH COMMUNICATIONS 2024; 4:1793-1801. [PMID: 38920407 PMCID: PMC11264598 DOI: 10.1158/2767-9764.crc-24-0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
UNLABELLED We sought to evaluate the efficacy of WEE1 inhibitor adavosertib in patients with solid tumor malignancies (cohort A) and clear cell renal cell carcinoma (ccRCC; cohort B). NCT03284385 was a parallel cohort, Simon two-stage, phase II study of adavosertib (300 mg QDAY by mouth on days 1-5 and 8-12 of each 21-day cycle) in patients with solid tumor malignancies harboring a pathogenic SETD2 mutation. The primary endpoint was the objective response rate. Correlative assays evaluated the loss of H3K36me3 by IHC, a downstream consequence of SETD2 loss, in archival tumor tissue. Eighteen patients were enrolled (9/cohort). The median age was 60 years (range 45-74). The median duration of treatment was 1.28 months (range 0-24+). No objective responses were observed in either cohort; accrual was halted following stage 1. Minor tumor regressions were observed in 4/18 (22%) evaluable patients. Stable disease (SD) was the best overall response in 10/18 (56%) patients, including three patients with SD > 4 months. One patient with ccRCC remains on treatment for >24 months. The most common adverse events of any grade were nausea (59%), anemia (41%), diarrhea (41%), and neutropenia (41%). Nine patients (50%) experienced a Grade ≥3 adverse event. Of eight evaluable archival tissue samples, six (75%) had a loss of H3K36me3 by IHC. Adavosertib failed to exhibit objective responses in SETD2-altered ccRCC and other solid tumor malignancies although prolonged SD was observed in a subset of patients. Combination approaches may yield greater depth of tumor response. SIGNIFICANCE WEE1 inhibition with adavosertib monotherapy demonstrated limited clinical activity in patients with SETD2-altered solid tumors despite compelling preclinical data indicating a synthetic lethal effect, which did not translate into robust tumor regression. Loss of the H3K36me3 trimethylation mark caused by SETD2-deficiency was confirmed in the majority of evaluable tumors. A subset of patients derived clinical benefit as manifested by minor tumor regressions and prolonged SD.
Collapse
Affiliation(s)
- Edward Maldonado
- University of California, San Francisco, San Francisco, California.
| | | | | | | | - Jordi Rodon
- Investigational Cancer Therapeutics, MD Anderson Cancer Center, Houston, Texas.
| | | | | | | | - Mamta Parikh
- University of California, Davis, Davis, California.
| | | | - Celene Balido
- University of California, San Francisco, San Francisco, California.
| | - Gregor Krings
- University of California, San Francisco, San Francisco, California.
| | - Timothy F. Burns
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| | | | | | - Alan Ashworth
- University of California, San Francisco, San Francisco, California.
| | | | | |
Collapse
|
4
|
Takeda K, Bastacky S, Dhir R, Mohebnasab M, Quiroga-Garza GM. Morphological characteristics of SETD2-mutated locally advanced clear cell renal cell carcinoma: Comparison with BAP1-mutated clear cell renal cell carcinoma. Ann Diagn Pathol 2024; 68:152223. [PMID: 37976977 DOI: 10.1016/j.anndiagpath.2023.152223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
SET-domain containing 2 (SETD2) and BRCA1-associated protein 1 (BAP1), both chromatin remodeling genes, are frequently mutated in clear cell renal cell carcinoma (ccRCC) and involved in tumor progression and metastasis. Herein, we studied clinicopathologic features of 7 cases of locally advanced ccRCC with single SETD2 mutation, and compared to 7 cases of locally advanced ccRCC with single BAP1 mutation. SETD2-mutated ccRCC showed high-grade transformation, comprising of enlarged tumor cells with voluminous clear cytoplasm, enlarged irregular nuclei with prominent nucleoli, eosinophilic cytoplasmic granules, arranged in various architectural patterns such as large nested, tubular, tubulopapillary and solid. 71 % (5 of 7 cases) of SETD2-mutated ccRCC showed a rhabdoid morphology. SETD2-mutated ccRCC have striking propensity for invasive growth; all cases have vascular invasion and perirenal (extracapsular) adipose tissue invasion. After nephrectomy, distant metastasis was found in 67 % (4 of 7 cases) of patients with SETD2-mutated ccRCC. The most common metastatic site was the lung (3 cases), followed by precaval lymph nodes (1 case). BAP1-mutated ccRCC also showed a similar high-grade morphology, with rhabdoid and/or sarcomatoid features. Their high-grade features mostly overlapped with those of SETD2-mutated ccRCC, which makes difficult to predict the presence of BAP1 or SETD2 mutation solely from morphology. These findings justify the use of molecular testing to detect these mutations, especially when we encounter high-grade ccRCC. Detecting SETD2 and BAP1 mutation in ccRCC is useful for risk stratification and proper therapeutic strategy.
Collapse
Affiliation(s)
- Kotaro Takeda
- Department of Pathology, Genitourinary Pathology Center of Excellence, University of Pittsburgh Medical Center, Pittsburgh, USA.
| | - Sheldon Bastacky
- Department of Pathology, Genitourinary Pathology Center of Excellence, University of Pittsburgh Medical Center, Pittsburgh, USA
| | - Rajiv Dhir
- Department of Pathology, Genitourinary Pathology Center of Excellence, University of Pittsburgh Medical Center, Pittsburgh, USA
| | - Maedeh Mohebnasab
- Department of Pathology, Division of Molecular Genetics Pathology, University of Pittsburgh Medical Center, Pittsburgh, USA
| | - Gabriela M Quiroga-Garza
- Department of Pathology, Genitourinary Pathology Center of Excellence, University of Pittsburgh Medical Center, Pittsburgh, USA
| |
Collapse
|
5
|
Aziz N, Hong YH, Kim HG, Kim JH, Cho JY. Tumor-suppressive functions of protein lysine methyltransferases. Exp Mol Med 2023; 55:2475-2497. [PMID: 38036730 PMCID: PMC10766653 DOI: 10.1038/s12276-023-01117-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 12/02/2023] Open
Abstract
Protein lysine methyltransferases (PKMTs) play crucial roles in histone and nonhistone modifications, and their dysregulation has been linked to the development and progression of cancer. While the majority of studies have focused on the oncogenic functions of PKMTs, extensive evidence has indicated that these enzymes also play roles in tumor suppression by regulating the stability of p53 and β-catenin, promoting α-tubulin-mediated genomic stability, and regulating the transcription of oncogenes and tumor suppressors. Despite their contradictory roles in tumorigenesis, many PKMTs have been identified as potential therapeutic targets for cancer treatment. However, PKMT inhibitors may have unintended negative effects depending on the specific cancer type and target enzyme. Therefore, this review aims to comprehensively summarize the tumor-suppressive effects of PKMTs and to provide new insights into the development of anticancer drugs targeting PKMTs.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
6
|
Liu Y, Wu G. The utilization of single-cell sequencing technology in investigating the immune microenvironment of ccRCC. Front Immunol 2023; 14:1276658. [PMID: 38090562 PMCID: PMC10715415 DOI: 10.3389/fimmu.2023.1276658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
The growth and advancement of ccRCC are strongly associated with the presence of immune infiltration and the tumor microenvironment, comprising tumor cells, immune cells, stromal cells, vascular cells, myeloid-derived cells, and extracellular matrix (ECM). Nevertheless, as a result of the diverse and constantly evolving characteristics of the tumor microenvironment, prior advanced sequencing methods have frequently disregarded specific less prevalent cellular traits at varying intervals, thereby concealing their significance. The advancement and widespread use of single-cell sequencing technology enable us to comprehend the source of individual tumor cells and the characteristics of a greater number of individual cells. This, in turn, minimizes the impact of intercellular heterogeneity and temporal heterogeneity of the same cell on experimental outcomes. This review examines the attributes of the tumor microenvironment in ccRCC and provides an overview of the progress made in single-cell sequencing technology and its particular uses in the current focus of immune infiltration in ccRCC.
Collapse
Affiliation(s)
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Mitchell B, Thor S, Piper M. Cellular and molecular functions of SETD2 in the central nervous system. J Cell Sci 2023; 136:jcs261406. [PMID: 37921122 DOI: 10.1242/jcs.261406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
The covalent modification of histones is critical for many biological functions in mammals, including gene regulation and chromatin structure. Posttranslational histone modifications are added and removed by specialised 'writer' and 'eraser' enzymes, respectively. One such writer protein implicated in a wide range of cellular processes is SET domain-containing 2 (SETD2), a histone methyltransferase that catalyses the trimethylation of lysine 36 on histone H3 (H3K36me3). Recently, SETD2 has also been found to modify proteins other than histones, including actin and tubulin. The emerging roles of SETD2 in the development and function of the mammalian central nervous system (CNS) are of particular interest as several SETD2 variants have been implicated in neurodevelopmental disorders, such as autism spectrum disorder and the overgrowth disorder Luscan-Lumish syndrome. Here, we summarise the numerous roles of SETD2 in mammalian cellular functions and development, with a focus on the CNS. We also provide an overview of the consequences of SETD2 variants in human disease and discuss future directions for understanding essential cellular functions of SETD2.
Collapse
Affiliation(s)
- Benjamin Mitchell
- The School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stefan Thor
- The School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michael Piper
- The School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
8
|
Khan A, Metts JM, Collins LC, Mills CA, Li K, Brademeyer AL, Bowman BM, Major MB, Aubé J, Herring LE, Davis IJ, Strahl BD. SETD2 maintains nuclear lamina stability to safeguard the genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.560032. [PMID: 37808753 PMCID: PMC10557632 DOI: 10.1101/2023.09.28.560032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Histone methyltransferases play essential roles in the organization and function of chromatin. They are also frequently mutated in human diseases including cancer1. One such often mutated methyltransferase, SETD2, associates co-transcriptionally with RNA polymerase II and catalyzes histone H3 lysine 36 trimethylation (H3K36me3) - a modification that contributes to gene transcription, splicing, and DNA repair2. While studies on SETD2 have largely focused on the consequences of its catalytic activity, the non-catalytic functions of SETD2 are largely unknown. Here we report a catalysis-independent function of SETD2 in maintaining nuclear lamina stability and genome integrity. We found that SETD2, via its intrinsically disordered N-terminus, associates with nuclear lamina proteins including lamin A/C, lamin B1, and emerin. Depletion of SETD2, or deletion of its N-terminus, resulted in widespread nuclear morphology abnormalities and genome stability defects that were reminiscent of a defective nuclear lamina. Mechanistically, the N-terminus of SETD2 facilitates the association of the mitotic kinase CDK1 with lamins, thereby promoting lamin phosphorylation and depolymerization required for nuclear envelope disassembly during mitosis. Taken together, our findings reveal an unanticipated link between the N-terminus of SETD2 and nuclear lamina organization that may underlie how SETD2 acts as a tumor suppressor.
Collapse
Affiliation(s)
- Abid Khan
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - James M. Metts
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Lucas C. Collins
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - C. Allie Mills
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, 27599, USA
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Amanda L. Brademeyer
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Brittany M. Bowman
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Cell Biology & Physiology, Washington University in St. Louis
| | - M. Ben Major
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Cell Biology & Physiology, Washington University in St. Louis
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Laura E. Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, 27599, USA
| | - Ian J. Davis
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina 27514
| | - Brian D. Strahl
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
9
|
Mason FM, Kounlavong ES, Tebeje AT, Dahiya R, Guess T, Khan A, Vlach L, Norris SR, Lovejoy CA, Dere R, Strahl BD, Ohi R, Ly P, Walker CL, Rathmell WK. SETD2 safeguards the genome against isochromosome formation. Proc Natl Acad Sci U S A 2023; 120:e2303752120. [PMID: 37722039 PMCID: PMC10523680 DOI: 10.1073/pnas.2303752120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023] Open
Abstract
Isochromosomes are mirror-imaged chromosomes with simultaneous duplication and deletion of genetic material which may contain two centromeres to create isodicentric chromosomes. Although isochromosomes commonly occur in cancer and developmental disorders and promote genome instability, mechanisms that prevent isochromosomes are not well understood. We show here that the tumor suppressor and methyltransferase SETD2 is essential to prevent these errors. Using cellular and cytogenetic approaches, we demonstrate that loss of SETD2 or its epigenetic mark, histone H3 lysine 36 trimethylation (H3K36me3), results in the formation of isochromosomes as well as isodicentric and acentric chromosomes. These defects arise during DNA replication and are likely due to faulty homologous recombination by RAD52. These data provide a mechanism for isochromosome generation and demonstrate that SETD2 and H3K36me3 are essential to prevent the formation of this common mutable chromatin structure known to initiate a cascade of genomic instability in cancer.
Collapse
Affiliation(s)
- Frank M. Mason
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Emily S. Kounlavong
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Anteneh T. Tebeje
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Rashmi Dahiya
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Tiffany Guess
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN37232
| | - Abid Khan
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Logan Vlach
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Stephen R. Norris
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | | | - Ruhee Dere
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX77030
| | - Brian D. Strahl
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Cheryl Lyn Walker
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX77030
| | - W. Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| |
Collapse
|
10
|
Yu M, Qian K, Wang G, Xiao Y, Zhu Y, Ju L. Histone methyltransferase SETD2: An epigenetic driver in clear cell renal cell carcinoma. Front Oncol 2023; 13:1114461. [PMID: 37025591 PMCID: PMC10070805 DOI: 10.3389/fonc.2023.1114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
SET domain-containing 2 (SETD2) is a lysine methyltransferase that catalyzes histone H3 lysine36 trimethylation (H3K36me3) and has been revealed to play important roles in the regulation of transcriptional elongation, RNA splicing, and DNA damage repair. SETD2 mutations have been documented in several cancers, including clear cell renal cell carcinoma (ccRCC). SETD2 deficiency is associated with cancer occurrence and progression by regulating autophagy flux, general metabolic activity, and replication fork speed. Therefore, SETD2 is considered a potential epigenetic therapeutic target and is the subject of ongoing research on cancer-related diagnosis and treatment. This review presents an overview of the molecular functions of SETD2 in H3K36me3 regulation and its relationship with ccRCC, providing a theoretical basis for subsequent antitumor therapy based on SETD2 or H3K36me3 targets.
Collapse
Affiliation(s)
- Mengxue Yu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| | - Yu Xiao
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yuan Zhu
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Yuan Zhu, ; Lingao Ju,
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, China
- *Correspondence: Yuan Zhu, ; Lingao Ju,
| |
Collapse
|
11
|
Hapke R, Venton L, Rose KL, Sheng Q, Reddy A, Prather R, Jones A, Rathmell WK, Haake SM. SETD2 regulates the methylation of translation elongation factor eEF1A1 in clear cell renal cell carcinoma. KIDNEY CANCER JOURNAL : OFFICIAL JOURNAL OF THE KIDNEY CANCER ASSOCIATION 2022; 6:179-193. [PMID: 36684483 PMCID: PMC9851421 DOI: 10.3233/kca-220009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND SET domain-containing protein 2 (SETD2) is commonly mutated in renal cell carcinoma. SETD2 methylates histone H3 as well as a growing list of non-histone proteins. OBJECTIVE Initially, we sought to explore SETD2-dependent changes in lysine methylation of proteins in proximal renal tubule cells. Subsequently, we focused on changes in lysine methylation of the translation elongation factor eEF1A1. METHODS To accomplish these objectives, we initially performed a systems-wide analysis of protein lysine-methylation and expression in wild type (WT) and SETD2-knock out (KO) kidney cells and later focused our studies on eEF1A1 as well as the expression of lysine methyltransferases that regulate its lysine methylation. RESULTS We observed decreased lysine methylation of the translation elongation factor eEF1A1. EEF1AKMT2 and EEF1AKMT3 are known to methylate eEF1A1, and we show here that their expression is dependent on SET-domain function of SETD2. Globally, we observe differential expression of hundreds of proteins in WT versus SETD2-KO cells, including increased expression of many involved in protein translation. Finally, we observe decreased progression free survival and loss of EEF1AKMT2 gene expression in SETD2-mutated tumors predicted to have loss of function of the SET domain. CONCLUSION Overall, these data suggest that SETD2-mutated ccRCC, via loss of enzymatic function of the SET domain, displays dysregulation of protein translation as a potentially important component of the transformed phenotype.
Collapse
Affiliation(s)
- Robert Hapke
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsay Venton
- Department of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristie Lindsay Rose
- Mass Spectrometry Research Center, Proteomics Core Laboratory, Vanderbilt University, Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Rebecca Prather
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Angela Jones
- Vanderbilt Technologies for Advanced Genomics (VANTAGE), Vanderbilt University Medical Center, Nashville, TN, USA
| | - W. Kimryn Rathmell
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Scott M. Haake
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
12
|
Sharda A, Humphrey TC. The role of histone H3K36me3 writers, readers and erasers in maintaining genome stability. DNA Repair (Amst) 2022; 119:103407. [PMID: 36155242 DOI: 10.1016/j.dnarep.2022.103407] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
Histone Post-Translational Modifications (PTMs) play fundamental roles in mediating DNA-related processes such as transcription, replication and repair. The histone mark H3K36me3 and its associated methyltransferase SETD2 (Set2 in yeast) are archetypical in this regard, performing critical roles in each of these DNA transactions. Here, we present an overview of H3K36me3 regulation and the roles of its writers, readers and erasers in maintaining genome stability through facilitating DNA double-strand break (DSB) repair, checkpoint signalling and replication stress responses. Further, we consider how loss of SETD2 and H3K36me3, frequently observed in a number of different cancer types, can be specifically targeted in the clinic through exploiting loss of particular genome stability functions.
Collapse
Affiliation(s)
- Asmita Sharda
- CRUK and MRC Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - Timothy C Humphrey
- CRUK and MRC Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
13
|
Bhattacharya S, Reddy D, Zhang N, Li H, Workman JL. Elevated levels of the methyltransferase SETD2 causes transcription and alternative splicing changes resulting in oncogenic phenotypes. Front Cell Dev Biol 2022; 10:945668. [PMID: 36035998 PMCID: PMC9399737 DOI: 10.3389/fcell.2022.945668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
The methyltransferase SETD2 regulates cryptic transcription, alternative splicing, and the DNA damage response. It is mutated in a variety of cancers and is believed to be a tumor suppressor. Counterintuitively, despite its important role, SETD2 is robustly degraded by the proteasome keeping its levels low. Here we show that SETD2 accumulation results in a non-canonical deposition of the functionally important H3K36me3 histone mark, which includes its reduced enrichment over gene bodies and exons. This perturbed epigenetic landscape is associated with widespread changes in transcription and alternative splicing. Strikingly, contrary to its role as a tumor suppressor, excessive SETD2 results in the upregulation of cell cycle-associated pathways. This is also reflected in phenotypes of increased cell proliferation and migration. Thus, the regulation of SETD2 levels through its proteolysis is important to maintain its appropriate function, which in turn regulates the fidelity of transcription and splicing-related processes.
Collapse
Affiliation(s)
| | | | | | | | - Jerry L. Workman
- Stowers Institute for Medical Research, Kansas City, MO, United States
| |
Collapse
|
14
|
Molenaar TM, van Leeuwen F. SETD2: from chromatin modifier to multipronged regulator of the genome and beyond. Cell Mol Life Sci 2022; 79:346. [PMID: 35661267 PMCID: PMC9167812 DOI: 10.1007/s00018-022-04352-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022]
Abstract
Histone modifying enzymes play critical roles in many key cellular processes and are appealing proteins for targeting by small molecules in disease. However, while the functions of histone modifying enzymes are often linked to epigenetic regulation of the genome, an emerging theme is that these enzymes often also act by non-catalytic and/or non-epigenetic mechanisms. SETD2 (Set2 in yeast) is best known for associating with the transcription machinery and methylating histone H3 on lysine 36 (H3K36) during transcription. This well-characterized molecular function of SETD2 plays a role in fine-tuning transcription, maintaining chromatin integrity, and mRNA processing. Here we give an overview of the various molecular functions and mechanisms of regulation of H3K36 methylation by Set2/SETD2. These fundamental insights are important to understand SETD2’s role in disease, most notably in cancer in which SETD2 is frequently inactivated. SETD2 also methylates non-histone substrates such as α-tubulin which may promote genome stability and contribute to the tumor-suppressor function of SETD2. Thus, to understand its role in disease, it is important to understand and dissect the multiple roles of SETD2 within the cell. In this review we discuss how histone methylation by Set2/SETD2 has led the way in connecting histone modifications in active regions of the genome to chromatin functions and how SETD2 is leading the way to showing that we also have to look beyond histones to truly understand the physiological role of an ‘epigenetic’ writer enzyme in normal cells and in disease.
Collapse
|
15
|
Shapiro DD, Virumbrales-Muñoz M, Beebe DJ, Abel EJ. Models of Renal Cell Carcinoma Used to Investigate Molecular Mechanisms and Develop New Therapeutics. Front Oncol 2022; 12:871252. [PMID: 35463327 PMCID: PMC9022005 DOI: 10.3389/fonc.2022.871252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
Modeling renal cell carcinoma is critical to investigating tumor biology and therapeutic mechanisms. Multiple systems have been developed to represent critical components of the tumor and its surrounding microenvironment. Prominent in vitro models include traditional cell cultures, 3D organoid models, and microphysiological devices. In vivo models consist of murine patient derived xenografts or genetically engineered mice. Each system has unique advantages as well as limitations and researchers must thoroughly understand each model to properly investigate research questions. This review addresses common model systems for renal cell carcinoma and critically evaluates their performance and ability to measure tumor characteristics.
Collapse
Affiliation(s)
- Daniel D Shapiro
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Division of Urology, William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
| | - Maria Virumbrales-Muñoz
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - David J Beebe
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, United States
| | - E Jason Abel
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
16
|
Molecular mechanisms in governing genomic stability and tumor suppression by the SETD2 H3K36 methyltransferase. Int J Biochem Cell Biol 2022; 144:106155. [PMID: 34990836 DOI: 10.1016/j.biocel.2021.106155] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 01/15/2023]
Abstract
Epigenetic dysregulation is an important contributor to carcinogenesis. This is not surprising, as chromatin-genomic DNA organized around structural histone scaffolding-serves as the template on which occurs essential nuclear processes, such as transcription, DNA replication and DNA repair. Histone H3 lysine 36 (H3K36) methyltransferases, such as the SET-domain 2 protein (SETD2), have emerged as critical tumor suppressors. Previous work on mammalian SETD2 and its counterpart in model organisms, Set2, has highlighted the role of this protein in governing genomic stability through transcriptional elongation and splicing, as well as in DNA damage response processes and cell cycle progression. A compendium of SETD2 mutations have been documented, garnered from sequenced cancer patient genome data, and these findings underscore the cancer-driving properties of SETD2 loss-of-function. In this review, we consolidate the molecular mechanisms regulated by SETD2/Set2 and discuss evidence of its dysregulation in tumorigenesis. Insight into the genetic interactions that exist between SETD2 and various canonical intracellular signaling pathways has not only empowered pharmacological intervention by taking advantage of synthetic lethality but underscores SETD2 as a druggable target for precision cancer therapy.
Collapse
|
17
|
Koenning M, Wang X, Karki M, Jangid RK, Kearns S, Tripathi DN, Cianfrocco M, Verhey KJ, Jung SY, Coarfa C, Ward CS, Kalish BT, Grimm SL, Rathmell WK, Mostany R, Dere R, Rasband MN, Walker CL, Park IY. Neuronal SETD2 activity links microtubule methylation to an anxiety-like phenotype in mice. Brain 2021; 144:2527-2540. [PMID: 34014281 PMCID: PMC8418347 DOI: 10.1093/brain/awab200] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/22/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023] Open
Abstract
Gene discovery efforts in autism spectrum disorder have identified heterozygous defects in chromatin remodeller genes, the 'readers, writers and erasers' of methyl marks on chromatin, as major contributors to this disease. Despite this advance, a convergent aetiology between these defects and aberrant chromatin architecture or gene expression has remained elusive. Recently, data have begun to emerge that chromatin remodellers also function directly on the cytoskeleton. Strongly associated with autism spectrum disorder, the SETD2 histone methyltransferase for example, has now been shown to directly methylate microtubules of the mitotic spindle. However, whether microtubule methylation occurs in post-mitotic cells, for example on the neuronal cytoskeleton, is not known. We found the SETD2 α-tubulin lysine 40 trimethyl mark occurs on microtubules in the brain and in primary neurons in culture, and that the SETD2 C-terminal SRI domain is required for binding and methylation of α-tubulin. A CRISPR knock-in of a pathogenic SRI domain mutation (Setd2SRI) that disables microtubule methylation revealed at least one wild-type allele was required in mice for survival, and while viable, heterozygous Setd2SRI/wtmice exhibited an anxiety-like phenotype. Finally, whereas RNA-sequencing (RNA-seq) and chromatin immunoprecipitation-sequencing (ChIP-seq) showed no concomitant changes in chromatin methylation or gene expression in Setd2SRI/wtmice, primary neurons exhibited structural deficits in axon length and dendritic arborization. These data provide the first demonstration that microtubules of neurons are methylated, and reveals a heterozygous chromatin remodeller defect that specifically disables microtubule methylation is sufficient to drive an autism-associated phenotype.
Collapse
Affiliation(s)
- Matthias Koenning
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xianlong Wang
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Menuka Karki
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rahul Kumar Jangid
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah Kearns
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Durga Nand Tripathi
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael Cianfrocco
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher Scott Ward
- Molecular Physiology and Biophysics, Mouse Metabolic and Phenotyping Core, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Sandra L Grimm
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - W Kimryn Rathmell
- Vanderbilt-Ingram Cancer Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ruhee Dere
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Cheryl Lyn Walker
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - In Young Park
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
18
|
The disordered regions of the methyltransferase SETD2 govern its function by regulating its proteolysis and phase separation. J Biol Chem 2021; 297:101075. [PMID: 34391778 PMCID: PMC8405934 DOI: 10.1016/j.jbc.2021.101075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
SETD2 is an important methyltransferase that methylates crucial substrates such as histone H3, tubulin, and STAT1 and also physically interacts with transcription and splicing regulators such as Pol II and various hnRNPs. Of note, SETD2 has a functionally uncharacterized extended N-terminal region, the removal of which leads to its stabilization. How this region regulates SETD2 half-life is unclear. Here we show that SETD2 consists of multiple long disordered regions across its length that cumulatively destabilize the protein by facilitating its proteasomal degradation. SETD2 disordered regions can reduce the half-life of the yeast homolog Set2 in mammalian cells as well as in yeast, demonstrating the importance of intrinsic structural features in regulating protein half-life. In addition to the shortened half-life, by performing fluorescence recovery after photobleaching assay we found that SETD2 forms liquid droplets in vivo, another property associated with proteins that contain disordered regions. The phase-separation behavior of SETD2 is exacerbated upon the removal of its N-terminal segment and results in activator-independent histone H3K36 methylation. Our findings reveal that disordered region-facilitated proteolysis is an important mechanism governing SETD2 function.
Collapse
|
19
|
MacTaggart B, Kashina A. Posttranslational modifications of the cytoskeleton. Cytoskeleton (Hoboken) 2021; 78:142-173. [PMID: 34152688 DOI: 10.1002/cm.21679] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
The cytoskeleton plays important roles in many essential processes at the cellular and organismal levels, including cell migration and motility, cell division, and the establishment and maintenance of cell and tissue architecture. In order to facilitate these varied functions, the main cytoskeletal components-microtubules, actin filaments, and intermediate filaments-must form highly diverse intracellular arrays in different subcellular areas and cell types. The question of how this diversity is conferred has been the focus of research for decades. One key mechanism is the addition of posttranslational modifications (PTMs) to the major cytoskeletal proteins. This posttranslational addition of various chemical groups dramatically increases the complexity of the cytoskeletal proteome and helps facilitate major global and local cytoskeletal functions. Cytoskeletal proteins undergo many PTMs, most of which are not well understood. Recent technological advances in proteomics and cell biology have allowed for the in-depth study of individual PTMs and their functions in the cytoskeleton. Here, we provide an overview of the major PTMs that occur on the main structural components of the three cytoskeletal systems-tubulin, actin, and intermediate filament proteins-and highlight the cellular function of these modifications.
Collapse
Affiliation(s)
- Brittany MacTaggart
- School of Veterinary Medicine, Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna Kashina
- School of Veterinary Medicine, Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Kearns S, Mason FM, Rathmell WK, Park IY, Walker C, Verhey KJ, Cianfrocco MA. Molecular determinants for α-tubulin methylation by SETD2. J Biol Chem 2021; 297:100898. [PMID: 34157286 PMCID: PMC8294582 DOI: 10.1016/j.jbc.2021.100898] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/28/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
Post-translational modifications to tubulin are important for many microtubule-based functions inside cells. It was recently shown that methylation of tubulin by the histone methyltransferase SETD2 occurs on mitotic spindle microtubules during cell division, with its absence resulting in mitotic defects. However, the catalytic mechanism of methyl addition to tubulin is unclear. We used a truncated version of human wild type SETD2 (tSETD2) containing the catalytic SET and C-terminal Set2-Rpb1-interacting (SRI) domains to investigate the biochemical mechanism of tubulin methylation. We found that recombinant tSETD2 had a higher activity toward tubulin dimers than polymerized microtubules. Using recombinant single-isotype tubulin, we demonstrated that methylation was restricted to lysine 40 of α-tubulin. We then introduced pathogenic mutations into tSETD2 to probe the recognition of histone and tubulin substrates. A mutation in the catalytic domain (R1625C) allowed tSETD2 to bind to tubulin but not methylate it, whereas a mutation in the SRI domain (R2510H) caused loss of both tubulin binding and methylation. Further investigation of the role of the SRI domain in substrate binding found that mutations within this region had differential effects on the ability of tSETD2 to bind to tubulin versus the binding partner RNA polymerase II for methylating histones in vivo, suggesting distinct mechanisms for tubulin and histone methylation by SETD2. Finally, we found that substrate recognition also requires the negatively charged C-terminal tail of α-tubulin. Together, this study provides a framework for understanding how SETD2 serves as a dual methyltransferase for both histone and tubulin methylation.
Collapse
Affiliation(s)
- Sarah Kearns
- Program of Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Frank M Mason
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Genetics, Vanderbilt University, Nashville, Tennessee, USA
| | - W Kimryn Rathmell
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Genetics, Vanderbilt University, Nashville, Tennessee, USA
| | - In Young Park
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Cheryl Walker
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael A Cianfrocco
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
21
|
Yang H, Xiong X, Li H. Development and Interpretation of a Genomic Instability Derived lncRNAs Based Risk Signature as a Predictor of Prognosis for Clear Cell Renal Cell Carcinoma Patients. Front Oncol 2021; 11:678253. [PMID: 34094983 PMCID: PMC8176022 DOI: 10.3389/fonc.2021.678253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a kind of frequently diagnosed cancer, leading to high death rate in patients. Genomic instability (GI) is regarded as playing indispensable roles in tumorigenesis and impacting the prognosis of patients. The aberrant regulation of long non-coding RNAs (lncRNAs) is a main cause of GI. We combined the somatic mutation profiles and expression profiles to identify GI derived lncRNAs (GID-lncRNAs) in ccRCC and developed a GID-lncRNAs based risk signature for prognosis prediction and medication guidance. METHODS We decided cases with top 25% cumulative number of somatic mutations as genomically unstable (GU) group and last 25% as genomically stable (GS) group, and identified differentially expressed lncRNAs (GID-lncRNAs) between two groups. Then we developed the risk signature with all overall survival related GID-lncRNAs with least absolute shrinkage and selection operator (LASSO) Cox regression. The functions of the GID-lncRNAs were partly interpreted by enrichment analysis. We finally validated the effectiveness of the risk signature in prognosis prediction and medication guidance. RESULTS We developed a seven-lncRNAs (LINC00460, AL139351.1, AC156455.1, AL035446.1, LINC02471, AC022509.2, and LINC01606) risk signature and divided all samples into high-risk and low-risk groups. Patients in high-risk group were in more severe clinicopathologic status (higher tumor grade, pathological stage, T stage, and more metastasis) and were deemed to have less survival time and lower survival rate. The efficacy of prognosis prediction was validated by receiver operating characteristic analysis. Enrichment analysis revealed that the lncRNAs in the risk signature mainly participate in regulation of cell cycle, DNA replication, material metabolism, and other vital biological processes in the tumorigenesis of ccRCC. Moreover, the risk signature could help assess the possibility of response to precise treatments. CONCLUSION Our study combined the somatic mutation profiles and the expression profiles of ccRCC for the first time and developed a GID-lncRNAs based risk signature for prognosis predicting and therapeutic scheme deciding. We validated the efficacy of the risk signature and partly interpreted the roles of the seven lncRNAs composing the risk signature in ccRCC. Our study provides novel insights into the roles of genomic instability derived lncRNAs in ccRCC.
Collapse
Affiliation(s)
| | | | - Hua Li
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
22
|
Karki M, Jangid RK, Anish R, Seervai RNH, Bertocchio JP, Hotta T, Msaouel P, Jung SY, Grimm SL, Coarfa C, Weissman BE, Ohi R, Verhey KJ, Hodges HC, Burggren W, Dere R, Park IY, Prasad BVV, Rathmell WK, Walker CL, Tripathi DN. A cytoskeletal function for PBRM1 reading methylated microtubules. SCIENCE ADVANCES 2021; 7:eabf2866. [PMID: 33811077 PMCID: PMC11059954 DOI: 10.1126/sciadv.abf2866] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Epigenetic effectors "read" marks "written" on chromatin to regulate function and fidelity of the genome. Here, we show that this coordinated read-write activity of the epigenetic machinery extends to the cytoskeleton, with PBRM1 in the PBAF chromatin remodeling complex reading microtubule methyl marks written by the SETD2 histone methyltransferase. PBRM1 binds SETD2 methyl marks via BAH domains, recruiting PBAF components to the mitotic spindle. This read-write activity was required for normal mitosis: Loss of SETD2 methylation or pathogenic BAH domain mutations disrupt PBRM1 microtubule binding and PBAF recruitment and cause genomic instability. These data reveal PBRM1 functions beyond chromatin remodeling with domains that allow it to integrate chromatin and cytoskeletal activity via its acetyl-binding BD and methyl-binding BAH domains, respectively. Conserved coordinated activity of the epigenetic machinery on the cytoskeleton opens a previously unknown window into how chromatin remodeler defects can drive disease via both epigenetic and cytoskeletal dysfunction.
Collapse
Affiliation(s)
- Menuka Karki
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rahul K Jangid
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ramakrishnan Anish
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Riyad N H Seervai
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jean-Philippe Bertocchio
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Genitourinary Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pavlos Msaouel
- Department of Genitourinary Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sandra L Grimm
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bernard E Weissman
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - H Courtney Hodges
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Warren Burggren
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Ruhee Dere
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - In Young Park
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - B V Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - W Kimryn Rathmell
- Vanderbilt-Ingram Cancer Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Cheryl L Walker
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Durga N Tripathi
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
23
|
Jonasch E, Walker CL, Rathmell WK. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol 2021; 17:245-261. [PMID: 33144689 PMCID: PMC8172121 DOI: 10.1038/s41581-020-00359-2] [Citation(s) in RCA: 362] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
The molecular features that define clear cell renal cell carcinoma (ccRCC) initiation and progression are being increasingly defined. The TRACERx Renal studies and others that have described the interaction between tumour genomics and remodelling of the tumour microenvironment provide important new insights into the molecular drivers underlying ccRCC ontogeny and progression. Our understanding of common genomic and chromosomal copy number abnormalities in ccRCC, including chromosome 3p loss, provides a mechanistic framework with which to organize these abnormalities into those that drive tumour initiation events, those that drive tumour progression and those that confer lethality. Truncal mutations in ccRCC, including those in VHL, SET2, PBRM1 and BAP1, may engender genomic instability and promote defects in DNA repair pathways. The molecular features that arise from these defects enable categorization of ccRCC into clinically and therapeutically relevant subtypes. Consideration of the interaction of these subtypes with the tumour microenvironment reveals that specific mutations seem to modulate immune cell populations in ccRCC tumours. These findings present opportunities for disease prevention, early detection, prognostication and treatment.
Collapse
Affiliation(s)
- Eric Jonasch
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Cheryl Lyn Walker
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
24
|
Czyzyk-Krzeska MF, Landero Figueroa JA, Gulati S, Cunningham JT, Meller J, ShamsaeI B, Vemuri B, Plas DR. Molecular and Metabolic Subtypes in Sporadic and Inherited Clear Cell Renal Cell Carcinoma. Genes (Basel) 2021; 12:genes12030388. [PMID: 33803184 PMCID: PMC7999481 DOI: 10.3390/genes12030388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 01/18/2023] Open
Abstract
The promise of personalized medicine is a therapeutic advance where tumor signatures obtained from different omics platforms, such as genomics, transcriptomics, proteomics, and metabolomics, in addition to environmental factors including metals and metalloids, are used to guide the treatments. Clear cell renal carcinoma (ccRCC), the most common type of kidney cancer, can be sporadic (frequently) or genetic (rare), both characterized by loss of the von Hippel-Lindau (VHL) gene that controls hypoxia inducible factors. Recently, several genomic subtypes were identified with different prognoses. Transcriptomics, proteomics, metabolomics and metallomic data converge on altered metabolism as the principal feature of the disease. However, in view of multiple biochemical alterations and high level of tumor heterogeneity, identification of clearly defined subtypes is necessary for further improvement of treatments. In the future, single-cell combined multi-omics approaches will be the next generation of analyses gaining deeper insights into ccRCC progression and allowing for design of specific signatures, with better prognostic/predictive clinical applications.
Collapse
Affiliation(s)
- Maria F. Czyzyk-Krzeska
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA; (J.T.C.); (B.V.); (D.R.P.)
- Department of Veterans Affairs, Cincinnati Veteran Affairs Medical Center, Cincinnati, OH 45220, USA
- Department of Pharmacology and System Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (J.A.L.F.); (J.M.)
- Correspondence:
| | - Julio A. Landero Figueroa
- Department of Pharmacology and System Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (J.A.L.F.); (J.M.)
- Agilent Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Shuchi Gulati
- Division of Hematology and Oncology, Department of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA;
| | - John T. Cunningham
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA; (J.T.C.); (B.V.); (D.R.P.)
| | - Jarek Meller
- Department of Pharmacology and System Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (J.A.L.F.); (J.M.)
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH 45267, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA;
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Behrouz ShamsaeI
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA;
| | - Bhargav Vemuri
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA; (J.T.C.); (B.V.); (D.R.P.)
| | - David R. Plas
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA; (J.T.C.); (B.V.); (D.R.P.)
| |
Collapse
|
25
|
Lin PH, Huang CY, Yu KJ, Kan HC, Liu CY, Chuang CK, Lu YC, Chang YH, Shao IH, Pang ST. Genomic characterization of clear cell renal cell carcinoma using targeted gene sequencing. Oncol Lett 2021; 21:169. [PMID: 33456545 PMCID: PMC7802514 DOI: 10.3892/ol.2021.12430] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/10/2020] [Indexed: 01/04/2023] Open
Abstract
Kidney cancer is one of the most lethal cancer types worldwide. The most common subtype of kidney cancer is clear cell renal cell carcinoma (ccRCC), and the somatic mutations of ccRCC have been identified through the development of large databases. The present study aimed to validate the status of the associated gene mutations in a Taiwanese cohort. Targeted sequencing was used to validate the mutation status of genes related to ccRCC in Taiwanese patients who had nephrectomy for kidney cancer. The top eight mutated genes in the Catalogue Of Somatic Mutations In Cancer (COSMIC) were selected. These genes were VHL, protein polybromo-1 (PBRM1), histone-lysine N-methyltransferase SETD2, BRCA1-associated protein-1 (BAP1), lysine-specific demethylase 5C (KDM5C), TP53, MTOR and PTEN. The association between the gene mutation status of VHL, PBRM1, SETD2 and BAP1 was validated with clinicopathological parameters as well as overall survival time. Tumor cells from 96 patients with ccRCC were target sequenced. The order of mutation rate of the eight aforementioned genes was similar to that reported within COSMIC. The present Taiwanese cohort exhibited lower PBRM1 and BAP1 mutation rates compared with average, with increased mutation rates for SETD2 and KDM5C. BAP1 mutation was associated with the tumor and cancerous stage. None of these four genes were positively associated with the overall survival of patients. The PBRM1 and SETD2 mutations were mutually exclusive to BAP1 mutation. Overall, the present study provided data confirming gene alteration in Taiwanese patients with ccRCC and showed some differences when compared with Western countries. Further comprehensive genomic and epigenomic studies, as well as downstream validation, are necessary to evaluate the impact of these differences.
Collapse
Affiliation(s)
- Po-Hung Lin
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C.,Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, Taipei 10022, Taiwan, R.O.C
| | - Kai-Jie Yu
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
| | - Hung-Cheng Kan
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
| | - Chung-Yi Liu
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
| | - Cheng-Keng Chuang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
| | - Yu-Chuan Lu
- Department of Urology, National Taiwan University Hospital, Taipei 10022, Taiwan, R.O.C.,Institute of Biomedical Engineering, National Taiwan University, Taipei 10022, Taiwan, R.O.C
| | - Ying-Hsu Chang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
| | - I-Hung Shao
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
| | - See-Tong Pang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
| |
Collapse
|
26
|
Zhou Y, Zheng X, Xu B, Deng H, Chen L, Jiang J. Histone methyltransferase SETD2 inhibits tumor growth via suppressing CXCL1-mediated activation of cell cycle in lung adenocarcinoma. Aging (Albany NY) 2020; 12:25189-25206. [PMID: 33223508 PMCID: PMC7803529 DOI: 10.18632/aging.104120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
The histone H3 lysine 36 methyltransferase SET-domain-containing 2 (SETD2) has been reported to be frequently mutated or deleted in many types of human cancer. However, the role of SETD2 in lung adenocarcinoma (LUAD) has not been well documented. In the present study, we found that SETD2 was significantly down-regulated both in LUAD tissues and cell lines. Functionally, the increased expression of SETD2 significantly attenuated the proliferation of cancer cells by affecting the cell cycle, whereas SETD2 deficiency dramatically improved these proliferative abilities of cancer cells. Through conjoint analysis of RNA-seq and ChIP data, we identified a functional target gene of SETD2, CXCL1, and its expression was negatively correlated with that of SETD2. Moreover, SETD2 deletion stimulated cell cycle-related proteins to promote LUAD. Further mechanistic studies demonstrated that histone H3 lysine 36 trimethylation (H3K36me3) catalyzed by SETD2 interacted with the promoter of CXCL1 to regulate its transcription and downstream signaling pathways, contributing to tumorigenesis in vitro and in vivo. Our findings suggested that SETD2 inhibited tumor growth via suppressing CXCL1-mediated activation of cell cycle, indicating that the regulation of H3K36me3 level by targeting SETD2 and/or the administration of downstream CXCL1 might represent a potential therapeutic way for new treatment in LUAD.
Collapse
Affiliation(s)
- You Zhou
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Bin Xu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Haifeng Deng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| |
Collapse
|
27
|
Seervai RNH, Grimm SL, Jangid RK, Tripathi DN, Coarfa C, Walker CL. An actin-WHAMM interaction linking SETD2 and autophagy. Biochem Biophys Res Commun 2020; 558:202-208. [PMID: 33036756 DOI: 10.1016/j.bbrc.2020.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
The process of autophagy is dysregulated in many cancers including clear cell renal cell carcinoma (ccRCC). Autophagy involves the coordination of numerous autophagy-related (ATG) genes, as well as processes involving the actin cytoskeleton. The histone methyltransferase SETD2, frequently inactivated in ccRCC, has recently been shown to also methylate cytoskeletal proteins, which in the case of actin lysine 68 trimethylation (ActK68me3) regulates actin polymerization dynamics. Here we show that cells lacking SETD2 exhibit autophagy defects, as well as decreased interaction of the actin nucleation promoting factor WHAMM with its target actin, which is required for initiation of autophagy. Interestingly, the WHAMM actin binding deficit could be rescued with pharmacologic induction of actin polymerization in SETD2-null cells using Jasplakinolide. These data indicate that the decreased interaction between WHAMM and its target actin in SETD2-null cells was secondary to altered actin dynamics rather than loss of the SETD2 ActK68me3 mark itself, and underscores the importance of the functional defect in actin polymerization in SETD2-null cells exhibiting autophagy defects.
Collapse
Affiliation(s)
- Riyad N H Seervai
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Sandra L Grimm
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rahul K Jangid
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Durga Nand Tripathi
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cheryl Lyn Walker
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
28
|
Regulation of SETD2 stability is important for the fidelity of H3K36me3 deposition. Epigenetics Chromatin 2020; 13:40. [PMID: 33023640 PMCID: PMC7542105 DOI: 10.1186/s13072-020-00362-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background The histone H3K36me3 mark regulates transcription elongation, pre-mRNA splicing, DNA methylation, and DNA damage repair. However, knowledge of the regulation of the enzyme SETD2, which deposits this functionally important mark, is very limited. Results Here, we show that the poorly characterized N-terminal region of SETD2 plays a determining role in regulating the stability of SETD2. This stretch of 1–1403 amino acids contributes to the robust degradation of SETD2 by the proteasome. Besides, the SETD2 protein is aggregate prone and forms insoluble bodies in nuclei especially upon proteasome inhibition. Removal of the N-terminal segment results in the stabilization of SETD2 and leads to a marked increase in global H3K36me3 which, uncharacteristically, happens in a Pol II-independent manner. Conclusion The functionally uncharacterized N-terminal segment of SETD2 regulates its half-life to maintain the requisite cellular amount of the protein. The absence of SETD2 proteolysis results in a Pol II-independent H3K36me3 deposition and protein aggregation.
Collapse
|
29
|
Seervai RNH, Jangid RK, Karki M, Tripathi DN, Jung SY, Kearns SE, Verhey KJ, Cianfrocco MA, Millis BA, Tyska MJ, Mason FM, Rathmell WK, Park IY, Dere R, Walker CL. The Huntingtin-interacting protein SETD2/HYPB is an actin lysine methyltransferase. SCIENCE ADVANCES 2020; 6:6/40/eabb7854. [PMID: 33008892 PMCID: PMC7852384 DOI: 10.1126/sciadv.abb7854] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/07/2020] [Indexed: 05/05/2023]
Abstract
The methyltransferase SET domain-containing 2 (SETD2) was originally identified as Huntingtin (HTT) yeast partner B. However, a SETD2 function associated with the HTT scaffolding protein has not been elucidated, and no linkage between HTT and methylation has yet been uncovered. Here, we show that SETD2 is an actin methyltransferase that trimethylates lysine-68 (ActK68me3) in cells via its interaction with HTT and the actin-binding adapter HIP1R. ActK68me3 localizes primarily to the insoluble F-actin cytoskeleton in cells and regulates actin polymerization/depolymerization dynamics. Disruption of the SETD2-HTT-HIP1R axis inhibits actin methylation, causes defects in actin polymerization, and impairs cell migration. Together, these data identify SETD2 as a previously unknown HTT effector regulating methylation and polymerization of actin filaments and provide new avenues for understanding how defects in SETD2 and HTT drive disease via aberrant cytoskeletal methylation.
Collapse
Affiliation(s)
- Riyad N H Seervai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rahul K Jangid
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Menuka Karki
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Durga Nand Tripathi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah E Kearns
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael A Cianfrocco
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Bryan A Millis
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Biophotonics Center, Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37240, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Frank M Mason
- Vanderbilt-Ingram Cancer Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - W Kimryn Rathmell
- Vanderbilt-Ingram Cancer Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - In Young Park
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Ruhee Dere
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Cheryl Lyn Walker
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
30
|
Walker C, Burggren W. Remodeling the epigenome and (epi)cytoskeleton: a new paradigm for co-regulation by methylation. ACTA ACUST UNITED AC 2020; 223:223/13/jeb220632. [PMID: 32620673 DOI: 10.1242/jeb.220632] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The epigenome determines heritable patterns of gene expression in the absence of changes in DNA sequence. The result is programming of different cellular-, tissue- and organ-specific phenotypes from a single organismic genome. Epigenetic marks that comprise the epigenome (e.g. methylation) are placed upon or removed from chromatin (histones and DNA) to direct the activity of effectors that regulate gene expression and chromatin structure. Recently, the cytoskeleton has been identified as a second target for the cell's epigenetic machinery. Several epigenetic 'readers, writers and erasers' that remodel chromatin have been discovered to also remodel the cytoskeleton, regulating structure and function of microtubules and actin filaments. This points to an emerging paradigm for dual-function remodelers with 'chromatocytoskeletal' activity that can integrate cytoplasmic and nuclear functions. For example, the SET domain-containing 2 methyltransferase (SETD2) has chromatocytoskeletal activity, methylating both histones and microtubules. The SETD2 methyl mark on chromatin is required for efficient DNA repair, and its microtubule methyl mark is required for proper chromosome segregation during mitosis. This unexpected convergence of SETD2 activity on histones and microtubules to maintain genomic stability suggests the intriguing possibility of an expanded role in the cell for chromatocytoskeletal proteins that read, write and erase methyl marks on the cytoskeleton as well as chromatin. Coordinated use of methyl marks to remodel both the epigenome and the (epi)cytoskeleton opens the possibility for integrated regulation (which we refer to as 'epiregulation') of other higher-level functions, such as muscle contraction or learning and memory, and could even have evolutionary implications.
Collapse
Affiliation(s)
- Cheryl Walker
- Center for Precision Environmental Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Warren Burggren
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| |
Collapse
|
31
|
Choueiri TK, Atkins MB, Bakouny Z, Carlo MI, Drake CG, Jonasch E, Kapur P, Lewis B, Linehan WM, Mitchell MJ, Pal SK, Pels K, Poteat S, Rathmell WK, Rini BI, Signoretti S, Tannir N, Uzzo R, Wood CG, Hammers HJ. Summary From the First Kidney Cancer Research Summit, September 12-13, 2019: A Focus on Translational Research. J Natl Cancer Inst 2020; 113:234-243. [PMID: 32359162 DOI: 10.1093/jnci/djaa064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Kidney cancer is one of the 10 most common cancers both in the United States and worldwide. Until this year, there had not previously been a conference focused on translational studies in the broad and heterogeneous group of kidney cancers. Therefore, a group of researchers, clinicians, and patient advocates dedicated to renal cell carcinoma launched the Kidney Cancer Research Summit (KCRS) to spur collaboration and further therapeutic advances in these tumors. This commentary aims to summarize the oral presentations and serve as a record for future iterations of this meeting. The KCRS sessions addressed the tumor microenvironment, novel methods of drug delivery, single cell sequencing strategies, novel immune checkpoint blockade and cellular therapies, predictive biomarkers, and rare variants of kidney cancers. In addition, the meeting included 2 sessions to promote scientific mentoring and kidney cancer research collaborations. A subsequent KCRS will be planned for the fall of 2020.
Collapse
Affiliation(s)
- Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Michael B Atkins
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC
| | - Ziad Bakouny
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Maria I Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charles G Drake
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - W Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Sumanta K Pal
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Kevin Pels
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brian I Rini
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sabina Signoretti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nizar Tannir
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Uzzo
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Christopher G Wood
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hans J Hammers
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
32
|
Modeling clear cell renal cell carcinoma and therapeutic implications. Oncogene 2020; 39:3413-3426. [PMID: 32123314 PMCID: PMC7194123 DOI: 10.1038/s41388-020-1234-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Renal cell carcinoma (RCC) comprises a diverse group of malignancies arising from the nephron. The most prevalent type, clear cell renal cell carcinoma (ccRCC), is characterized by genetic mutations in factors governing the hypoxia signaling pathway, resulting in metabolic dysregulation, heightened angiogenesis, intratumoral heterogeneity, and deleterious tumor microenvironmental (TME) crosstalk. Identification of specific genetic variances has led to therapeutic innovation and improved survival for patients with ccRCC. Current barriers to effective long-term therapeutic success highlight the need for continued drug development using improved modeling systems. ccRCC preclinical models can be grouped into three broad categories: cell line, mouse, and 3D models. Yet, the breadth of important unanswered questions in ccRCC research far exceeds the accessibility of model systems capable of carrying them out. Accordingly, we review the strengths, weaknesses, and therapeutic implications of each model system that are relied upon today.
Collapse
|
33
|
Abstract
Over the past decade, the treatment landscape for patients with metastatic renal cell carcinoma (RCC) has evolved dramatically. The therapeutic options available have expanded and now include immune-checkpoint inhibitors, novel targeted agents and combination strategies, and thus optimal patient selection and treatment sequencing are increasingly pertinent for optimizing clinical outcomes. A better understanding of the underlying biology of the tumour and its microenvironment continues to drive the inception of new diagnostic and therapeutic approaches. Furthermore, many biomarkers robustly associated with treatment and disease-specific outcomes have been identified, and their integration into clinical decision-making for patients with advanced-stage disease will soon become a reality. Herein, we review relevant aspects of the molecular biology of metastatic RCC, with an emphasis on predictive and prognostic biomarkers, and suggest tailored algorithms to individualize and guide treatment approaches for specific subgroups of patients.
Collapse
|
34
|
Zhao J, Chen HQ, Yang HF, Li Y, Chen DJ, Huang YJ, He LX, Zheng CF, Wang LQ, Wang J, Zhang N, Cao J, Liu JY, Shu WQ, Liu WB. Epigenetic silencing of ALX4 regulates microcystin-LR induced hepatocellular carcinoma through the P53 pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:317-330. [PMID: 31132711 DOI: 10.1016/j.scitotenv.2019.05.144] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Recent studies have shown that microcystin-LR (MC-LR) is one of the principal factors that cause liver cancer. Previously we have found that Aristaless-like Homeobox 4 (ALX4) was differentially expressed in MC-LR-induced malignant transformed L02 cells. However, the expression regulation, role and molecular mechanism of ALX4 during the process of liver cancer induced by MC-LR are still unclear. The expression of ALX4 was detected by quantitative reverse-transcription PCR and Western blot in MC-LR induced malignantly transformed cell and rat models. Methylation status of ALX4 promoter region was evaluated by methylation-specific PCR and bisulfite genomic sequencing. The anti-tumor effects of ALX4 on MC-LR induced liver cancer were identified in vitro and in vivo. ALX4 expression was progressively down-regulated in MC-LR-induced malignantly transformed L02 cells and the MC-LR exposed rat models. ALX4 promoter regions were highly methylated in malignantly transformed cells, while treatment with demethylation agent 5-aza-dC significantly increased ALX4 expression. Functional studies showed that overexpression of ALX4 inhibits cell proliferation, migration, invasion and metastasis in vitro and in vivo, blocks the G1/S phase and promotes the apoptosis. Conversely, knockdown of ALX4 promotes cell proliferation, migration and invasion. Mechanism study found that ALX4 exerts its antitumor function through the P53 pathway, C-MYC and MMP9. More importantly, ALX4 expression level showed a negative relation with serum MC-LR levels in patients with hepatocellular carcinoma. Our results suggested that ALX4 was inactivated by DNA methylation and played a tumor suppressor function through the P53 pathway in MC-LR induced liver cancer.
Collapse
Affiliation(s)
- Ji Zhao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, PR China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Hui-Fang Yang
- College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yan Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; The Calmette International Hospital, Kunming 650224, PR China
| | - Dong-Jiao Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yu-Jing Huang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Li-Xiong He
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Chuan-Fen Zheng
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Ling-Qiao Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Jia Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Na Zhang
- College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, PR China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Wei-Qun Shu
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.
| |
Collapse
|
35
|
Abstract
Renal cell carcinomas (RCCs) are a diverse set of malignancies that have recently been shown to harbour mutations in a number of chromatin modifier genes - including PBRM1, SETD2, BAP1, KDM5C, KDM6A, and MLL2 - through high-throughput sequencing efforts. Current research focuses on understanding the biological activities that chromatin modifiers employ to suppress tumorigenesis and on developing clinical approaches that take advantage of this knowledge. Unsurprisingly, several common themes unify the functions of these epigenetic modifiers, particularly regulation of histone post-translational modifications and nucleosome organization. Furthermore, chromatin modifiers also govern processes crucial for DNA repair and maintenance of genomic integrity as well as the regulation of splicing and other key processes. Many chromatin modifiers have additional non-canonical roles in cytoskeletal regulation, which further contribute to genomic stability, expanding the repertoire of functions that might be essential in tumorigenesis. Our understanding of how mutations in chromatin modifiers contribute to tumorigenesis in RCC is improving but remains an area of intense investigation. Importantly, elucidating the activities of chromatin modifiers offers intriguing opportunities for the development of new therapeutic interventions in RCC.
Collapse
Affiliation(s)
- Aguirre A de Cubas
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - W Kimryn Rathmell
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
36
|
Li J, Ahn JH, Wang GG. Understanding histone H3 lysine 36 methylation and its deregulation in disease. Cell Mol Life Sci 2019; 76:2899-2916. [PMID: 31147750 PMCID: PMC11105573 DOI: 10.1007/s00018-019-03144-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022]
Abstract
Methylation of histone H3 lysine 36 (H3K36) plays crucial roles in the partitioning of chromatin to distinctive domains and the regulation of a wide range of biological processes. Trimethylation of H3K36 (H3K36me3) demarcates body regions of the actively transcribed genes, providing signals for modulating transcription fidelity, mRNA splicing and DNA damage repair; and di-methylation of H3K36 (H3K36me2) spreads out within large intragenic regions, regulating distribution of histone H3 lysine 27 trimethylation (H3K27me3) and possibly DNA methylation. These H3K36 methylation-mediated events are biologically crucial and controlled by different classes of proteins responsible for either 'writing', 'reading' or 'erasing' of H3K36 methylation marks. Deregulation of H3K36 methylation and related regulatory factors leads to pathogenesis of disease such as developmental syndrome and cancer. Additionally, recurrent mutations of H3K36 and surrounding histone residues are detected in human tumors, further highlighting the importance of H3K36 in biology and medicine. This review will elaborate on current advances in understanding H3K36 methylation and related molecular players during various chromatin-templated cellular processes, their crosstalks with other chromatin factors, as well as their deregulations in the diseased contexts.
Collapse
Affiliation(s)
- Jie Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeong Hyun Ahn
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
37
|
In silico repurposing the Rac1 inhibitor NSC23766 for treating PTTG1-high expressing clear cell renal carcinoma. Pathol Res Pract 2019; 215:152373. [DOI: 10.1016/j.prp.2019.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/03/2019] [Accepted: 03/02/2019] [Indexed: 01/06/2023]
|
38
|
Kim JE. Bookmarking by histone methylation ensures chromosomal integrity during mitosis. Arch Pharm Res 2019; 42:466-480. [PMID: 31020544 DOI: 10.1007/s12272-019-01156-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/19/2019] [Indexed: 12/22/2022]
Abstract
The cell cycle is an orchestrated process that replicates DNA and transmits genetic information to daughter cells. Cell cycle progression is governed by diverse histone modifications that control gene transcription in a timely fashion. Histone modifications also regulate cell cycle progression by marking specific chromatic regions. While many reviews have covered histone phosphorylation and acetylation as regulators of the cell cycle, little attention has been paid to the roles of histone methylation in the faithful progression of mitosis. Indeed, specific histone methylations occurring before, during, or after mitosis affect kinetochore assembly and chromosome condensation and segregation. In addition to timing, histone methylations specify the chromatin regions such as chromosome arms, pericentromere, and centromere. Therefore, spatiotemporal programming of histone methylations ensures epigenetic inheritance through mitosis. This review mainly discusses histone methylations and their relevance to mitotic progression.
Collapse
Affiliation(s)
- Ja-Eun Kim
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
39
|
Guo X, Ni J, Liang Z, Xue J, Fenech MF, Wang X. The molecular origins and pathophysiological consequences of micronuclei: New insights into an age-old problem. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 779:1-35. [PMID: 31097147 DOI: 10.1016/j.mrrev.2018.11.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
Micronuclei (MN), the small nucleus-like bodies separated from the primary nucleus, can exist in cells with numerical and/or structural chromosomal aberrations in apparently normal tissues and more so in tumors in humans. While MN have been observed for over 100 years, they were merely and constantly considered as passive indicators of chromosome instability (CIN) for a long time. Relatively little is known about the molecular origins and biological consequences of MN. Rapid technological advances are helping to close these gaps. Very recent studies provide exciting evidence that MN act as key platform for chromothripsis and a trigger of innate immune response, suggesting that MN could affect cellular functions by both genetic and nongenetic means. These previously unappreciated findings have reawakened widespread interests in MN. In this review, the diverse mechanisms leading to MN generation and the complex fate profiles of MN are discussed, together with the evidence for their contribution to CIN, inflammation, senescence and cell death. Moreover, we put this knowledge together into a speculative perspective on how MN may be responsible for cancer development and how their presence may influence the choice of treatment. We suggest that the heterogeneous responses to MN may function physiological to ensure the arrestment, elimination and immune clearance of damaged cells, but pathologically, may enable the survival and oncogenic transformation of cells bearing CIN. These insights not only underscore the complexity of MN biology, but also raise a host of new questions and provide fertile ground for future research.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Juan Ni
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Ziqing Liang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Jinglun Xue
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Michael F Fenech
- University of South Australia, Adelaide, SA, 5000, Australia; Genome Health Foundation, North Brighton, SA, 5048, Australia.
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China.
| |
Collapse
|