1
|
Li C, Syed MU, Nimbalkar A, Shen Y, Vieira MD, Fraser C, Inde Z, Qin X, Ouyang J, Kreuzer J, Clark SE, Kelley G, Hensley EM, Morris R, Lazaro R, Belmonte B, Oh A, Walcott M, Nabel CS, Caenepeel S, Saiki AY, Rex K, Lipford JR, Heist RS, Lin JJ, Haas W, Sarosiek K, Hughes PE, Hata AN. LKB1 regulates JNK-dependent stress signaling and apoptotic dependency of KRAS-mutant lung cancers. Nat Commun 2025; 16:4112. [PMID: 40316540 DOI: 10.1038/s41467-025-58753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/01/2025] [Indexed: 05/04/2025] Open
Abstract
The efficacy of molecularly targeted therapies may be limited by co-occurring mutations within a tumor. Conversely, these alterations may confer collateral vulnerabilities that can be therapeutically leveraged. KRAS-mutant lung cancers are distinguished by recurrent loss of the tumor suppressor STK11/LKB1. Whether LKB1 modulates cellular responses to therapeutic stress seems unknown. Here we show that in LKB1-deficient KRAS-mutant lung cancer cells, inhibition of KRAS or its downstream effector MEK leads to hyperactivation of JNK due to loss of NUAK-mediated PP1B phosphatase activity. JNK-mediated inhibitory phosphorylation of BCL-XL rewires apoptotic dependencies, rendering LKB1-deficient cells vulnerable to MCL-1 inhibition. These results uncover an unknown role for LKB1 in regulating stress signaling and mitochondrial apoptosis independent of its tumor suppressor activity mediated by AMPK and SIK. Additionally, our study reveals a therapy-induced vulnerability in LKB1-deficient KRAS-mutant lung cancers that could be exploited as a genotype-informed strategy to improve the efficacy of KRAS-targeted therapies.
Collapse
Affiliation(s)
- Chendi Li
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Yi Shen
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | - Cameron Fraser
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zintis Inde
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xingping Qin
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jian Ouyang
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Johannes Kreuzer
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sarah E Clark
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Grace Kelley
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Emily M Hensley
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Robert Morris
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Raul Lazaro
- Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | | | - Audris Oh
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Makeba Walcott
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Christopher S Nabel
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Anne Y Saiki
- Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | - Karen Rex
- Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | | | - Rebecca S Heist
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica J Lin
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Kristopher Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Lab for Systems Pharmacology, Harvard Program in Therapeutics Science, Harvard Medical School, Boston, MA, USA
| | | | - Aaron N Hata
- Massachusetts General Hospital Cancer Center, Boston, MA, USA.
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Wang Y, Zhao S, Du S, Xia T, Song L, Xia M, Zhang B. Identification of PANoptosis associated lncRNAs associated with clinical prognosis and immune infiltration microenvironment in colon adenocarcinoma. Discov Oncol 2025; 16:83. [PMID: 39853491 PMCID: PMC11759722 DOI: 10.1007/s12672-025-01838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/20/2025] [Indexed: 01/26/2025] Open
Abstract
Early diagnosis and disease management based on risk stratification have a very positive impact on colon adenocarcinoma (COAD) prognosis. It is of positive significance to further explore risk stratification of COAD patients and identify predictive molecular biomarkers. PANoptosis is defined as a form of inflammatory cell death regulated by PANoptosome, with common features of pyroptosis, apoptosis and necroptosis. The role of PANoptosis in COAD has not been fully studied. In this study, we analyzed significant differences in the expression of PANoptosis-related gene (PRG) features in COAD. Subsequently, the PANoptosis associated lncRNAs (PALs) associated with PRGs were analyzed by LASSO algorithm and multivariate Cox analysis, and PALs related to the prognosis of COAD were selected. Based on the expression patterns of prognostic PAL features, we performed unsupervised consensus cluster analysis to categorize COAD samples into distinct PAL molecular subtypes and investigate their associated immune infiltration characteristics. We subsequently constructed PAL score model based on prognostic characteristics and verified its independent prognostic value for COAD. The nomogram diagnostic model was established to confirm the prognostic value of PAL scoring system again. Pathway enrichment analysis, somatic mutation profiling, and drug sensitivity analysis were employed to comprehensively assess the clinical value of the PAL score. Additionally, qRT-PCR was used to further validate the abnormal expression of the selected targets in COAD. Our results provide a new idea for clinical risk stratification and new evidence for the role of PANoptosis in COAD.
Collapse
Affiliation(s)
- Yangyang Wang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Shihui Zhao
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Songtao Du
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Tianyi Xia
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Liqiang Song
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Mingyu Xia
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Bomiao Zhang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
3
|
Dakkak BE, Taneera J, El-Huneidi W, Abu-Gharbieh E, Hamoudi R, Semreen MH, Soares NC, Abu-Rish EY, Alkawareek MY, Alkilany AM, Bustanji Y. Unlocking the Therapeutic Potential of BCL-2 Associated Protein Family: Exploring BCL-2 Inhibitors in Cancer Therapy. Biomol Ther (Seoul) 2024; 32:267-280. [PMID: 38589288 PMCID: PMC11063480 DOI: 10.4062/biomolther.2023.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/05/2023] [Accepted: 12/05/2023] [Indexed: 04/10/2024] Open
Abstract
Apoptosis, programmed cell death pathway, is a vital physiological mechanism that ensures cellular homeostasis and overall cellular well-being. In the context of cancer, where evasion of apoptosis is a hallmark, the overexpression of anti-apoptotic proteins like Bcl2, Bcl-xL and Mcl-1 has been documented. Consequently, these proteins have emerged as promising targets for therapeutic interventions. The BCL-2 protein family is central to apoptosis and plays a significant importance in determining cellular fate serving as a critical determinant in this biological process. This review offers a comprehensive exploration of the BCL-2 protein family, emphasizing its dual nature. Specifically, certain members of this family promote cell survival (known as anti-apoptotic proteins), while others are involved in facilitating cell death (referred to as pro-apoptotic and BH3-only proteins). The potential of directly targeting these proteins is examined, particularly due to their involvement in conferring resistance to traditional cancer therapies. The effectiveness of such targeting strategies is also discussed, considering the tumor's propensity for anti-apoptotic pathways. Furthermore, the review highlights emerging research on combination therapies, where BCL-2 inhibitors are used synergistically with other treatments to enhance therapeutic outcomes. By understanding and manipulating the BCL-2 family and its associated pathways, we open doors to innovative and more effective cancer treatments, offering hope for resistant and aggressive cases.
Collapse
Affiliation(s)
- Bisan El Dakkak
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Jalal Taneera
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Mohammad H. Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nelson C. Soares
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon 1649-016, Portugal
| | - Eman Y. Abu-Rish
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | | | | | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
4
|
Chen D, Ermine K, Wang YJ, Chen X, Lu X, Wang P, Beer-Stolz D, Yu J, Zhang L. PUMA/RIP3 Mediates Chemotherapy Response via Necroptosis and Local Immune Activation in Colorectal Cancer. Mol Cancer Ther 2024; 23:354-367. [PMID: 37992761 PMCID: PMC10932881 DOI: 10.1158/1535-7163.mct-23-0162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/02/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
Induction of programmed cell death (PCD) is a key cytotoxic effect of anticancer therapies. PCD is not confined to caspase-dependent apoptosis, but includes necroptosis, a regulated form of necrotic cell death controlled by receptor-interacting protein (RIP) kinases 1 and 3, and mixed lineage kinase domain-like (MLKL) pseudokinase. Necroptosis functions as a defense mechanism against oncogenic mutations and pathogens and can be induced by a variety of anticancer agents. However, the functional role and regulatory mechanisms of necroptosis in anticancer therapy are poorly understood. In this study, we found that RIP3-dependent but RIP1-independent necroptosis is engaged by 5-fluorouracil (5-FU) and other widely used antimetabolite drugs, and functions as a major mode of cell death in a subset of colorectal cancer cells that express RIP3. We identified a novel 5-FU-induced necroptosis pathway involving p53-mediated induction of the BH3-only Bcl-2 family protein, p53 upregulated modulator of apoptosis (PUMA), which promotes cytosolic release of mitochondrial DNA and stimulates its sensor z-DNA-binding protein 1 (ZBP1) to activate RIP3. PUMA/RIP3-dependent necroptosis mediates the in vitro and in vivo antitumor effects of 5-FU and promotes a robust antitumor immune response. Our findings provide a rationale for stimulating necroptosis to enhance tumor cell killing and antitumor immune response leading to improved colorectal cancer treatments.
Collapse
Affiliation(s)
- Dongshi Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA
| | - Kaylee Ermine
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Yi-Jun Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Xiaojun Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Xinyan Lu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA
- Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA
| | - Peng Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Donna Beer-Stolz
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jian Yu
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA
- Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA
- Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA
| |
Collapse
|
5
|
Tong J, Tan X, Hao S, Ermine K, Lu X, Liu Z, Jha A, Yu J, Zhang L. Inhibition of multiple CDKs potentiates colon cancer chemotherapy via p73-mediated DR5 induction. Oncogene 2023; 42:869-880. [PMID: 36721000 PMCID: PMC10364554 DOI: 10.1038/s41388-023-02598-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
Targeting cyclin-dependent kinases (CDKs) has recently emerged as a promising therapeutic approach against cancer. However, the anticancer mechanisms of different CDK inhibitors (CDKIs) are not well understood. Our recent study revealed that selective CDK4/6 inhibitors sensitize colorectal cancer (CRC) cells to therapy-induced apoptosis by inducing Death Receptor 5 (DR5) via the p53 family member p73. In this study, we investigated if this pathway is involved in anticancer effects of different CDKIs. We found that less-selective CDKIs, including flavopiridol, roscovitine, dinaciclib, and SNS-032, induced DR5 via p73-mediated transcriptional activation. The induction of DR5 by these CDKIs was mediated by dephosphorylation of p73 at Threonine 86 and p73 nuclear translocation. Knockdown of a common target of these CDKIs, including CDK1, 2, or 9, recapitulated p73-mediated DR5 induction. CDKIs strongly synergized with 5-fluorouracil (5-FU), the most commonly used CRC chemotherapy agent, in vitro and in vivo to promote growth suppression and apoptosis, which required DR5 and p73. Together, these findings indicate p73-mediated DR5 induction as a potential tumor suppressive mechanism and a critical target engaged by different CDKIs in potentiating therapy-induced apoptosis in CRC cells. These findings help better understand the anticancer mechanisms of CDKIs and may help facilitate their clinical development and applications in CRC.
Collapse
Affiliation(s)
- Jingshan Tong
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Xiao Tan
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Suisui Hao
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Kaylee Ermine
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Xinyan Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Zhaojin Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Anupma Jha
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Lin Zhang
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
6
|
Cheng X, Huang Z, Pan A, Long D. ORLNC1 Suppresses Cell Growth in HER2-Positive Breast Cancer via miRNA-296 Sponging. Curr Mol Med 2023; 23:289-299. [PMID: 35658886 DOI: 10.2174/1566524022666220603113550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Accumulating research has demonstrated that aberrant levels of long noncoding RNAs (LncRNAs) are related to cancer progression. The effects of ORLNC1 in HER2+ breast cancer have yet to be explored. METHODS Real-time PCR was used to examine the expression of LncRNA ORLNC1 in HER+ breast cancer. CCK-8, wound healing and cell invasion assays were used to examine the effect of LncRNA ORLNC1 on HER+ breast cancer cells. Luciferase reporter assay was utilized to determine the regulatory relationship between LncRNA ORLNC1 and miR-296. Western blotting was used to measure the expression of PTEN. Xenograft mouse model was used to examine the effect of LncRNA ORLNC1 on tumor progression in vivo. RESULTS In this study, our findings revealed downregulation of ORLNC1 in HER2+ breast cancer specimens and cell lines. Low levels of ORLNC1 were related to poor prognosis and advanced cancer stage. Using gain- and loss-of-function assays, the ability of these tumor cells to proliferate was found to be inhibited by ORLNC1 in vitro and in vivo. Further analyses revealed that miR-296/PTEN axis is directly targeted by ORLNC1. Consequently, over-expression of miR-296 efficiently abrogated the upregulation of PTEN induced by ORLNC1, suggesting that ORLNC1 positively regulates PTEN expression by competitively binding to miR-296. CONCLUSION Our results indicate that lncRNA ORLNC1 acts as a tumor suppressor by regulating the miR-296/PTEN axis in HER2+ breast cancer.
Collapse
Affiliation(s)
- Xueyuan Cheng
- Department of General Surgery, Beihai People's Hospital, Beihai, Guangxi, 536000, China
| | - Zhong Huang
- Department of General Surgery, Beihai People's Hospital, Beihai, Guangxi, 536000, China
| | - Anchao Pan
- Department of Gastrointestinal Surgery, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, 530199, China
| | - Di Long
- Department of Gastrointestinal Surgery, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, 530199, China
| |
Collapse
|
7
|
Hao S, Tong J, Jha A, Risnik D, Lizardo D, Lu X, Goel A, Opresko PL, Yu J, Zhang L. Synthetical lethality of Werner helicase and mismatch repair deficiency is mediated by p53 and PUMA in colon cancer. Proc Natl Acad Sci U S A 2022; 119:e2211775119. [PMID: 36508676 PMCID: PMC9907101 DOI: 10.1073/pnas.2211775119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/01/2022] [Indexed: 12/15/2022] Open
Abstract
Synthetic lethality is a powerful approach for targeting oncogenic drivers in cancer. Recent studies revealed that cancer cells with microsatellite instability (MSI) require Werner (WRN) helicase for survival; however, the underlying mechanism remains unclear. In this study, we found that WRN depletion strongly induced p53 and its downstream apoptotic target PUMA in MSI colorectal cancer (CRC) cells. p53 or PUMA deletion abolished apoptosis induced by WRN depletion in MSI CRC cells. Importantly, correction of MSI abrogated the activation of p53/PUMA and cell killing, while induction of MSI led to sensitivity in isogenic CRC cells. Rare p53-mutant MSI CRC cells are resistant to WRN depletion due to lack of PUMA induction, which could be restored by wildtype (WT) p53 knock in or reconstitution. WRN depletion or treatment with the RecQ helicase inhibitor ML216 suppressed in vitro and in vivo growth of MSI CRCs in a p53/PUMA-dependent manner. ML216 treatment was efficacious in MSI CRC patient-derived xenografts. Interestingly, p53 gene remains WT in the majority of MSI CRCs. These results indicate a critical role of p53/PUMA-mediated apoptosis in the vulnerability of MSI CRCs to WRN loss, and support WRN as a promising therapeutic target in p53-WT MSI CRCs.
Collapse
Affiliation(s)
- Suisui Hao
- UPMC Hillman Cancer Center, Pittsburgh, PA15213
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Jingshan Tong
- UPMC Hillman Cancer Center, Pittsburgh, PA15213
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Anupma Jha
- UPMC Hillman Cancer Center, Pittsburgh, PA15213
| | - Denise Risnik
- UPMC Hillman Cancer Center, Pittsburgh, PA15213
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Darleny Lizardo
- UPMC Hillman Cancer Center, Pittsburgh, PA15213
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Xinyan Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA15213
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA91010
| | - Patricia L. Opresko
- UPMC Hillman Cancer Center, Pittsburgh, PA15213
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA15213
| | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, PA15213
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Lin Zhang
- UPMC Hillman Cancer Center, Pittsburgh, PA15213
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| |
Collapse
|
8
|
Pan S, Zhang X, Guo Y, Li Y. DPCPX induces Bim-dependent apoptosis in nasopharyngeal carcinoma cells. Cell Biol Int 2022; 46:2050-2059. [PMID: 35989488 DOI: 10.1002/cbin.11887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 07/08/2022] [Accepted: 08/05/2022] [Indexed: 11/07/2022]
Abstract
ADORA1 promotes tumor growth and development in multiple cancers. DPCPX (a selective adenosine A1 receptor antagonist), a specific ADORA1 antagonist, has shown antitumor effects in many cancer types. Nevertheless, the function of DPCPX in nasopharyngeal carcinoma (NPC) still remains to be unraveled. In this study, we investigated the functional role of DPCPX on NPC cells. We found that DPCPX promotes NPC cells growth inhibition. DPCPX induced Bim-dependent apoptosis in NPC cells irrespective of p53 status via the FoxO3a pathway following PI3K/AKT inhibition. Furthermore, DPCPX enhanced the antitumor effect of cisplatin, 5-FU and Paclitaxel in NPC. Xenograft experiment revealed that deficiency of Bim in vivo stalls apoptosis and antitumor activity of DPCPX. In conclusion, the PI3K/AKT/FoxO3a/Bim axis plays a critical role in the anticancer effects of DPCPX in NPC.
Collapse
Affiliation(s)
- Suming Pan
- Department of Radiation Oncology, Yue Bei People's Hospital, Shaoguan, China
| | - Xiangguo Zhang
- Department of Radiation Oncology, Yue Bei People's Hospital, Shaoguan, China
| | - Yugan Guo
- Department of Radiation Oncology, Yue Bei People's Hospital, Shaoguan, China
| | - Yin Li
- Faculty of education, Shaoguan University, Shaoguan, China
| |
Collapse
|
9
|
Tong J, Tan X, Song X, Gao M, Risnik D, Hao S, Ermine K, Wang P, Li H, Huang Y, Yu J, Zhang L. CDK4/6 Inhibition Suppresses p73 Phosphorylation and Activates DR5 to Potentiate Chemotherapy and Immune Checkpoint Blockade. Cancer Res 2022; 82:1340-1352. [PMID: 35149588 PMCID: PMC8983601 DOI: 10.1158/0008-5472.can-21-3062] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/12/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022]
Abstract
Targeting cyclin-dependent kinases 4 and 6 (CDK4/6) is a successful therapeutic approach against breast and other solid tumors. Inhibition of CDK4/6 halts cell cycle progression and promotes antitumor immunity. However, the mechanisms underlying the antitumor activity of CDK4/6 inhibitors are not fully understood. We found that CDK4/6 bind and phosphorylate the p53 family member p73 at threonine 86, which sequesters p73 in the cytoplasm. Inhibition of CDK4/6 led to dephosphorylation and nuclear translocation of p73, which transcriptionally activated death receptor 5 (DR5), a cytokine receptor and key component of the extrinsic apoptotic pathway. p73-mediated induction of DR5 by CDK4/6 inhibitors promoted immunogenic cell death of cancer cells. Deletion of DR5 in cancer cells in vitro and in vivo abrogated the potentiating effects of CDK4/6 inhibitors on immune cytokine TRAIL, 5-fluorouracil chemotherapy, and anti-PD-1 immunotherapy. Together, these results reveal a previously unrecognized consequence of CDK4/6 inhibition, which may be critical for potentiating the killing and immunogenic effects on cancer cells. SIGNIFICANCE This work demonstrates how inhibition of CDK4/6 sensitizes cancer cells to chemotherapy and immune checkpoint blockade and may provide a new molecular marker for improving CDK4/6-targeted cancer therapies. See related commentary by Frank, p. 1170.
Collapse
Affiliation(s)
- Jingshan Tong
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiao Tan
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiangping Song
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Man Gao
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA
| | - Denise Risnik
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Suisui Hao
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kaylee Ermine
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Peng Wang
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Hua Li
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yi Huang
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA
| | - Lin Zhang
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
10
|
Ruan H, Leibowitz BJ, Peng Y, Shen L, Chen L, Kuang C, Schoen RE, Lu X, Zhang L, Yu J. Targeting Myc-driven stress vulnerability in mutant KRAS colorectal cancer. MOLECULAR BIOMEDICINE 2022; 3:10. [PMID: 35307764 PMCID: PMC8934835 DOI: 10.1186/s43556-022-00070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/21/2022] [Indexed: 12/16/2022] Open
Abstract
Mutant KRAS is a key driver in colorectal cancer (CRC) and promotes Myc translation and Myc-dependent stress adaptation and proliferation. Here, we report that the combination of two FDA-approved drugs Bortezomib and Everolimus (RAD001) (BR) is highly efficacious against mutant KRAS CRC cells. Mechanistically, the combination, not single agent, rapidly depletes Myc protein, not mRNA, and leads to GCN2- and p-eIF2α-dependent cell death through the activation of extrinsic and intrinsic apoptotic pathways. Cell death is selectively induced in mutant KRAS CRC cells with elevated basal Myc and p-eIF2α and is characterized by CHOP induction and transcriptional signatures in proteotoxicity, oxidative stress, metabolic inhibition, and immune activation. BR-induced p-GCN2/p-eIF2α elevation and cell death are strongly attenuated by MYC knockdown and enhanced by MYC overexpression. The BR combination is efficacious against mutant KRAS patient derived organoids (PDO) and xenografts (PDX) by inducing p-eIF2α/CHOP and cell death. Interestingly, an elevated four-gene (DDIT3, GADD45B, CRYBA4 and HSPA1L) stress signature is linked to shortened overall survival in CRC patients. These data support that Myc-dependent stress adaptation drives the progression of mutant KRAS CRC and serves as a therapeutic vulnerability, which can be targeted using dual translational inhibitors.
Collapse
Affiliation(s)
- Hang Ruan
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Brian J. Leibowitz
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Yingpeng Peng
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Lin Shen
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ,grid.452223.00000 0004 1757 7615Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 P.R. China
| | - Lujia Chen
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Medical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232 USA
| | - Charlie Kuang
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Robert E. Schoen
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Epidemiology, University of Pittsburgh School of Public Health Pittsburgh, Pittsburgh, PA 15213 USA
| | - Xinghua Lu
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Medical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232 USA
| | - Lin Zhang
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Jian Yu
- grid.412689.00000 0001 0650 7433UPMC Hillman Cancer Center Research Pavilion, Suite 2.26h, 5117 Centre Ave., Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| |
Collapse
|
11
|
Tian H, Zhao H, Qu B, Chu X, Xin X, Zhang Q, Li W, Yang S. TRIM24 promotes colorectal cancer cell progression via the Wnt/β-catenin signaling pathway activation. Am J Transl Res 2022; 14:831-848. [PMID: 35273688 PMCID: PMC8902576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/12/2021] [Indexed: 06/14/2023]
Abstract
Overexpression of TRIM24 is observed in several human cancers and is correlated with an increase in the progression and metastasis of tumors. In this study, we investigated the changes in activity and biochemical events that occur after overexpression of TRIM24 in a colorectal cancer (CRC) mouse model. We observed upregulated TRIM24 expression in CRC tissues compared to that in nonneoplastic adjacent tissues. Enhanced expression of TRIM24 was significantly associated with the status of lymph nodes and poor recurrence-free survival of patients with CRC. The role of TRIM24 in CRC tumor growth was investigated using an orthotopic model of MC38 mouse colon cancer cells overexpressing TRIM24, and CRC tumor growth was found to increase dramatically by TRIM24 overexpression. Moreover, angiogenesis was stimulated by TRIM24 overexpression via the upregulation of vascular endothelial growth factor (VEGF) expression. Overexpression of TRIM24 in MC38 cells led to an increase in the protein levels of ALDH1 and other stem cell markers. In addition, we observed that Wnt/β-catenin signaling is required for the function of TRIM24 in CRC cells. Tumor-associated macrophages (TAMs) were found to be recruited by tumor cells overexpressing TRIM24 via the increased expression of CCL2/5, CSF-1, and VEGF, further enhancing CRC tumor growth. In conclusion, overexpression of TRIM24 facilitates the growth of CRC and the remodeling of the tumor stroma via angiogenesis stimulation and TAM recruitment. The Wnt/β-catenin pathway is a possible crucial link in the TRIM24-associated progression of tumors, which may provide opportunities for pharmacological intervention.
Collapse
Affiliation(s)
- Hong Tian
- Oncology Department, The 4th People’s Hospital of ShenyangShenyang 110013, Liaoning, China
| | - Hongmei Zhao
- Department of Laboratory Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province)Shenyang 110016, Liaoning, China
| | - Bo Qu
- Department of Laboratory Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province)Shenyang 110016, Liaoning, China
| | - Xiaoli Chu
- Oncology Department, The 4th People’s Hospital of ShenyangShenyang 110013, Liaoning, China
| | - Xing Xin
- Oncology Department, The 4th People’s Hospital of ShenyangShenyang 110013, Liaoning, China
| | - Qingwei Zhang
- General Surgery Dept. VI Ward (Biliary-Pancreatic Surgery), The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province)Shenyang 110016, Liaoning, China
| | - Weizhou Li
- Department of Laboratory Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province)Shenyang 110016, Liaoning, China
| | - Shida Yang
- Department of Laboratory Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province)Shenyang 110016, Liaoning, China
| |
Collapse
|
12
|
Wang X, Wei X, Cao Y, Xing P. Mcl-1 inhibition overcomes BET inhibitor resistance induced by low FBW7 expression in breast cancer. J Cell Mol Med 2022; 26:1672-1683. [PMID: 35132755 PMCID: PMC8899162 DOI: 10.1111/jcmm.17210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 11/26/2022] Open
Abstract
While the promise of bromodomains and extraterminal (BET) protein inhibitors (BETis) is emerging in breast cancer (BC) therapy, resistance in these cells to BETis conspicuously curbs their therapeutic potential. FBW7 is an important tumour suppressor. However, the role of FBW7 in BC is not clear. In the current study, our data indicated that the low expression of FBW7 contributes to the drug resistance of BC cells upon JQ1 treatment. shRNA‐mediated FBW7 silencing in FBW7 WT BC cells suppressed JQ1‐induced apoptosis. Mechanistically, it was revealed that this diminished FBW7 level leads to Mcl‐1 stabilization, while Mcl‐1 upregulation abrogates the killing effect of JQ1. Mcl‐1 knockdown or inhibition resensitized the BC cells to JQ1‐induced apoptosis. Moreover, FBW7 knockdown in MCF7 xenografted tumours demonstrated resistance to JQ1 treatment. The combination of JQ1 with a Mcl‐1 inhibitor (S63845) resensitized the FBW7 knockdown tumours to JQ1 treatment in vivo. Our study paves the way for a novel therapeutic potential of BETis with Mcl‐1 inhibitors for BC patients with a low FBW7 expression.
Collapse
Affiliation(s)
- Xu Wang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaolin Wei
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu Cao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Peng Xing
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Tong J, Tan X, Risnik D, Gao M, Song X, Ermine K, Shen L, Wang S, Yu J, Zhang L. BET protein degradation triggers DR5-mediated immunogenic cell death to suppress colorectal cancer and potentiate immune checkpoint blockade. Oncogene 2021; 40:6566-6578. [PMID: 34615996 PMCID: PMC8642302 DOI: 10.1038/s41388-021-02041-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022]
Abstract
Bromodomain and extra-terminal domain (BET) family proteins are epigenetic readers that play a critical role in oncogenesis by controlling the expression of oncogenes such as c-Myc. Targeting BET family proteins has recently emerged as a promising anticancer strategy. However, the molecular mechanisms by which cancer cells respond to BET inhibition are not well understood. In this study, we found that inducing the degradation of BET proteins by the proteolysis targeting chimeras (PROTAC) approach potently suppressed the growth of colorectal cancer (CRC) including patient-derived tumors. Mechanistically, BET degradation transcriptionally activates Death Receptor 5 (DR5) to trigger immunogenic cell death (ICD) in CRC cells. Enhanced DR5 induction further sensitizes CRC cells with a mutation in Speckle-type POZ protein (SPOP). Furthermore, DR5 is indispensable for a striking antitumor effect of combining BET degradation and anti-PD-1 antibody, which was well tolerated in mice and almost eradicated syngeneic tumors. Our results demonstrate that BET degradation triggers DR5-mediated ICD to potently suppress CRC and potentiate immune checkpoint blockade. These results provide a rationale, mechanistic insights, and potential biomarkers for developing a precision CRC therapy by inducing BET protein degradation.
Collapse
Affiliation(s)
- Jingshan Tong
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Xiao Tan
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, P.R. China
| | - Denise Risnik
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Man Gao
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Xiangping Song
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, P.R. China
| | - Kaylee Ermine
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, P.R. China
| | - Shaomeng Wang
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Lin Zhang
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
14
|
Pan S, Liang S, Wang X. ADORA1 promotes nasopharyngeal carcinoma cell progression through regulation of PI3K/AKT/GSK-3β/β-catenin signaling. Life Sci 2021; 278:119581. [PMID: 33961854 DOI: 10.1016/j.lfs.2021.119581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/11/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022]
Abstract
AIMS For most human cancers, the expression pattern and biological function of ADORA1 (Adenosine A1 Receptor) are largely unknown. This study has been designed to explore the clinical significance and the mechanism of ADORA1 in nasopharyngeal carcinoma (NPC) cells. MATERIALS AND METHODS The level of ADORA1 in NPC and its adjacent tissues was analyzed by IHC, real-time PCR and western blotting. MTT and colony formation assays were used to determine the cell viability post ADORA1 overexpression or knockdown. Wound-healing assay and Transwell assay were used to analyze the effect of ADORA1 on migration and invasion. Moreover, the effect of ADORA1 on tumor growth was also studied in vivo by using xenograft mouse model. The regulation of ADORA1 on PI3K/AKT/GSK-3β/β-catenin pathway was determined by western blotting and TOP-Flash luciferase assay. KEY FINDINGS Primary NPC exhibits overexpression of ADORA1, which is related to the overexpression of its mRNA. Ectopic expression of ADORA1 promotes the proliferation, invasion and migration in NPC cells. The apoptosis, however, is suppressed. ADORA1 silencing was found to exert opposite effects in in vitro studies and produced a significant inhibitory effect on murine xenograft tumor growth in vivo experiments. Besides, ADORA1 also triggers the PI3K/AKT/GSK-3β/β-catenin intracellular oncogenic pathway for signal transduction. Inhibition of this pathway by PI3K inhibitor LY294002 obstructed the impact of ADORA1 on tumor development in cells with ADORA1-overexpression. SIGNIFICANCE ADORA1 has been identified as an important oncoprotein, promoting tumor cell proliferation via PI3K/AKT/GSK-3β/β-catenin signaling pathway in NPC.
Collapse
Affiliation(s)
- Suming Pan
- Department of Radiation Oncology, Yue Bei People's Hospital, Shaoguan, Guangdong, China.
| | - Sixian Liang
- Department of Radiation Oncology, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Xianyan Wang
- Department of Radiation Oncology, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| |
Collapse
|
15
|
Liu F, Kong X, Kong H. Ethylparaben induces subconjunctival fibrosis via the Wnt/β-catenin signaling pathway. Exp Ther Med 2021; 21:295. [PMID: 33717238 DOI: 10.3892/etm.2021.9726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/01/2018] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to explore the etiology of subconjunctival fibrosis (SCF) induced by ethylparaben, the most prevalent preservative in Chinese eye drops. Ethylparaben was administered to the left eyes of male Sprague-Dawley rats in the experimental group twice daily for 1 month, whereas the control group received PBS. Experimental group rats displayed a mild promotion in density of fibroblasts and a tighter deposition of collagen in the bulbar subepithelial connective tissue compared with the control group. Furthermore, the present findings revealed that extracellular matrix expression was promoted in murine bulbar conjunctival tissues in the experimental group. In primary conjunctival fibroblasts, expression of ECM triggered by ethylparaben was suppressed by XAV-939. Furthermore, stimulation of the Wnt/β-catenin axis triggered by ethylparaben was impaired by XAV-939. In conclusion, SCF triggered by ethylparaben results from extra ECM generation of conjunctival fibroblasts via the Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Fengge Liu
- Department of Ophthalmology, Zoucheng People's Hospital, Zoucheng, Shandong 273500, P.R. China
| | - Xiangfeng Kong
- Department of Ophthalmology, Zoucheng People's Hospital, Zoucheng, Shandong 273500, P.R. China
| | - Hui Kong
- Department of Ophthalmology, Zoucheng People's Hospital, Zoucheng, Shandong 273500, P.R. China
| |
Collapse
|
16
|
Li S, Guo W, Wu H. The role of post-translational modifications in the regulation of MCL1. Cell Signal 2021; 81:109933. [PMID: 33508399 DOI: 10.1016/j.cellsig.2021.109933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/25/2022]
Abstract
Apoptosis is an evolutionarily conserved form of programed cell death (PCD) that has a vital effect on early embryonic development, tissue homeostasis and clearance of damaged cells. Dysregulation of apoptosis can lead to many diseases, such as Alzheimer's disease, cancer, AIDS and heart disease. The anti-apoptotic protein MCL1, a member of the BCL2 family, plays important roles in these physiological and pathological processes. Its high expression is closely related to drug resistances in the treatment of tumor. This review summarizes the structure and function of MCL1, the types of post-translational modifications of MCL1 and their effects on the functions of MCL1, as well as the treatment strategies targeting MCL1 in cancer therapy. The research on the fine regulation of MCL1 will be favorable to the provision of a promising future for the design and screening of MCL1 inhibitors.
Collapse
Affiliation(s)
- Shujing Li
- School of Bioengineering & Province Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, China
| | - Wanping Guo
- School of Bioengineering & Province Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, China
| | - Huijian Wu
- School of Bioengineering & Province Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, China.
| |
Collapse
|
17
|
Qu H, Song X, Song Z, Jiang X, Gao X, Bai L, Wu J, Na L, Yao Z. Berberine reduces temozolomide resistance by inducing autophagy via the ERK1/2 signaling pathway in glioblastoma. Cancer Cell Int 2020; 20:592. [PMID: 33298057 PMCID: PMC7727240 DOI: 10.1186/s12935-020-01693-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The ability to treat glioblastoma (GBM) using the chemotherapeutic agent temozolomide (TMZ) has been hampered by the development of therapeutic resistance. In this study, we assessed the ability of the isoquinoline alkaloid berberine to alter GBM TMZ resistance using two different TMZ-resistant cell lines to mimic a physiologically relevant GBM experimental system. METHODS By treating these resistant cell lines with berberine followed by TMZ, we were able to assess the chemosensitivity of these cells and their parental strains, based on their performance in the MTT and colony formation assays, as well as on the degree of detectable apoptosis that was detected in the strains. Furthermore, we used Western blotting to assess autophagic responses in these cell lines, and we extended this work into a xenograft mouse model to assess the in vivo efficacy of berberine. RESULTS Through these experiments, our findings indicated that berberine enhanced autophagy and apoptosis in TMZ-resistant cells upon TMZ treatment in a manner that was linked with ERK1/2 signaling. Similarly, when used in vivo, berberine increased GBM sensitivity to TMZ through ERK1/2 signaling pathways. CONCLUSIONS These findings demonstrate that berberine is an effective method of increasing the sensitization of GBM cells to TMZ treatment in a manner that is dependent upon the ERK1/2-mediated induction of autophagy, thus making berberine a potentially viable therapeutic agent for GBM treatment.
Collapse
Affiliation(s)
- Huiling Qu
- Department of Neurology, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Xiaofu Song
- Department of Neurology, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Zhuyin Song
- Department of Neurology, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Xin Jiang
- Department of Neurology, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Xin Gao
- Department of Laboratory Medicine, The People's Hospital of Liaoning Province, Shenyang, Liaoning, China
| | - Lijuan Bai
- Department of Neurology, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Jiao Wu
- Department of Neurology, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Li Na
- Department of Neurology, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Zhicheng Yao
- Department of Neurology, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
18
|
Yan J, Yang S, Tian H, Zhang Y, Zhao H. Copanlisib promotes growth inhibition and apoptosis by modulating the AKT/FoxO3a/PUMA axis in colorectal cancer. Cell Death Dis 2020; 11:943. [PMID: 33139695 PMCID: PMC7606528 DOI: 10.1038/s41419-020-03154-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022]
Abstract
Colorectal cancer (CRC) is the type of cancer with the third highest incidence and is associated with high mortality and low 5-year survival rates. We observed that copanlisib, an inhibitor of PI3K (pan-class I phosphoinositide 3-kinase) that preferentially inhibits PI3Kδ and PI3Kα, impedes the growth of CRC cells by inducing apoptosis via PUMA. There was a marked increase in the expression of PUMA independent of p53 after treatment with copanlisib. The response of CRC cells to copanlisib could be predicted by PUMA expression. Copanlisib was found to induce PUMA expression through FoxO3a by directly binding to the PUMA promoter after inhibiting AKT signaling. PUMA deficiency mitigated the apoptosis induced by copanlisib. Caspase activation and mitochondrial dysfunction led to copanlisib resistance, as observed through a clonogenic assay, whereas enhanced expression of PUMA increased the copanlisib-induced susceptibility to apoptosis. Moreover, the antitumor effects of copanlisib were suppressed by a deficiency of PUMA in a xenograft model, and caspase activation and reduced apoptosis were also observed in vivo. Copanlisib-mediated chemosensitization seemed to involve the concurrent induction of PUMA expression via mechanisms that were both dependent and independent of p53. These observations indicate that apoptosis mediated by PUMA is crucial for the anticancer effects of copanlisib and that manipulation of PUMA may aid in enhancing anticancer activities.
Collapse
Affiliation(s)
- Ji Yan
- Department of Medicine Laboratory, The 4th People's Hospital of Shenyang, Shenyang, Liaoning, China
| | - Shida Yang
- Department of Laboratory Medicine, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), Shenyang, Liaoning, China
| | - Hong Tian
- Oncology Department, The 4th People's Hospital of Shenyang, Shenyang, Liaoning, China
| | - Yang Zhang
- Department of Pathology, The 4th People's Hospital of Shenyang, Shenyang, Liaoning, China
| | - Hongmei Zhao
- Department of Laboratory Medicine, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), Shenyang, Liaoning, China.
| |
Collapse
|
19
|
Tian T, Guo T, Zhen W, Zou J, Li F. BET degrader inhibits tumor progression and stem-like cell growth via Wnt/β-catenin signaling repression in glioma cells. Cell Death Dis 2020; 11:900. [PMID: 33093476 PMCID: PMC7582157 DOI: 10.1038/s41419-020-03117-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/23/2022]
Abstract
Based on their histological appearance, gliomas are a very common primary tumor type of the brain and are classified into grades, Grade I to Grade IV, of the World Health Organization. Treatment failure is due to the cancer stem cells (CSC) phenotype maintenance and self-renewal. BET degraders such as ZBC260 represents a novel class of BET inhibitors that act by inducing BET proteins degradation. This study explores the mode of action and effects of ZBC260 in vivo and in vitro against glioma. By inhibiting cell proliferation and inducting cell cycle arrest, the fact that glioma cell lines show sensitivity to ZBC260. Notably, ZBC260 targeted glioma without side effects in vivo. In addition, the stem cell-like properties of glioma cells were inhibited upon ZBC260 treatment. When the mechanism was examined, our findings indicated that Wnt/β-catenin pathway repression is required for ZBC260-induced stem cell-like properties and tumor growth suppression. In conclusion, the growth of tumors and stem cell-like properties were inhibited by ZBC260 via Wnt/β-catenin repression, which suggests ZBC260 as a potential therapeutic agent for glioma.
Collapse
Affiliation(s)
- Tao Tian
- Department of Oncology, Shandong Zaozhuang Municipal Hospital, Zaozhuang City, Shandong Province, China
| | - Tongqi Guo
- Department of Neurosurgery, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Wei Zhen
- Department of Neurosurgery, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Jianjun Zou
- Department of Neurosurgery, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Fuyong Li
- Department of Neurosurgery, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), Shenyang, Liaoning Province, China.
| |
Collapse
|
20
|
Li J, Zheng Y, Li X, Dong X, Chen W, Guan Z, Zhang C. UCHL3 promotes proliferation of colorectal cancer cells by regulating SOX12 via AKT/mTOR signaling pathway. Am J Transl Res 2020; 12:6445-6454. [PMID: 33194042 PMCID: PMC7653583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE The dysregulation of deubiquitinating enzymes is important in the development of many cancers, including colorectal cancer (CRC). However, the precise function and potential mode of action of the deubiquitinating enzyme UCHL3 in CRC progression are poorly elucidated. METHODS The expression levels of UCHL3 in patient samples were analyzed by western blotting, real-time PCR and immunohistochemistry and its association with overall survival was analyzed using Kaplan-Meier method. Colony formation, CCK-8 and Transwell were used to examine the effects of UCHL3 knockdown or over-expression on CRC cells growth, invasion and migration. The functional effects of UCHL3 and SOX12 on tumor growth were further examined using xenograft tumor mouse models in vivo. RESULTS Here, we found high expression of UCHL3 in CRC tissues which showed an association with the development of tumor and CRC patient survival. Studies conducted in vitro showed that UCHL3 overexpression facilitates proliferation, invasion, migration, and EMT (epithelial-mesenchymal transition) in cells of CRC, and a knockdown of UCHL3 had a reverse effect. Likewise, experiments conducted in vivo also showed enhanced tumor growth due to UCHL3 overexpression. In addition, UCHL3 was found regulates SOX12 expression in CRC cells. PI3K/AKT/mTOR pathway is required for UCHL3-mediated SOX12 expression. Mechanically, UCHL3 regulates SOX12 via AKT/mTOR signaling pathway and facilitated tumor progression. CONCLUSION UCHL3 plays an oncogenic role through the AKT/mTOR/SOX12 axis and can be considered as a potential target for therapy and CRC prognostic biomarker.
Collapse
Affiliation(s)
- Jiangning Li
- Department of Laboratory Medicine, The First People’s Hospital of ShenyangShenyang, Liaoning, P. R. China
| | - Yang Zheng
- Department of Laboratory Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyang, Liaoning, P. R. China
| | - Xiaofeng Li
- Institute of Transfusion Medicine, Liaoning Blood CenterShenyang, Liaoning, P. R. China
| | - Xue Dong
- Microbiological Laboratory Center, Shenyang Center for Disease Control and PreventionShenyang, Liaoning, P. R. China
| | - Weiyan Chen
- Department of Pathology, Affiliated Hospital of Liaoning University of Traditional Chinese MedicineShenyang, Liaoning, P. R. China
| | - Zhongying Guan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Liaoning University of Traditional Chinese MedicineShenyang, Liaoning, P. R. China
| | - Chong Zhang
- Department of Plastic Surgery, Beijing Weiyan Medical Cosmetology ClinicBeijing, P. R. China
| |
Collapse
|
21
|
Han S, Zhen W, Guo T, Zou J, Li F. SETDB1 promotes glioblastoma growth via CSF-1-dependent macrophage recruitment by activating the AKT/mTOR signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:218. [PMID: 33059737 PMCID: PMC7560339 DOI: 10.1186/s13046-020-01730-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
Background Glioblastoma is a common disease of the central nervous system (CNS), with high morbidity and mortality. In the infiltrate in the tumor microenvironment, tumor-associated macrophages (TAMs) are abundant, which are important factors in glioblastoma progression. However, the exact details of TAMs in glioblastoma progression have yet to be determined. Methods The clinical relevance of SET domain bifurcated 1 (SETDB1) was analyzed by immunohistochemistry, real-time PCR and Western blotting of glioblastoma tissues. SETDB1-induced cell proliferation, migration and invasion were investigated by CCK-8 assay, colony formation assay, wound healing and Transwell assay. The relationship between SETDB1 and colony stimulating factor 1 (CSF-1), as well as TAMs recruitment was examined by Western blotting, real-time PCR and syngeneic mouse model. Results Our findings showed that SETDB1 upregulated in glioblastoma and relative to poor progression. Gain and loss of function approaches showed the SETDB1 overexpression promotes cell proliferation, migration and invasion in glioblastoma cells. However, knockdown SETDB1 exerted opposite effects in vitro. Moreover, SETDB1 promotes AKT/mTOR-dependent CSF-1 induction and secretion, which leads to macrophage recruitment in the tumor, resulted in tumor growth. Conclusion Our research clarified that SETDB1 regulates of tumor microenvironment and hence presents a potential therapeutic target for treating glioblastoma.
Collapse
Affiliation(s)
- Shuai Han
- Department of Neurosurgery, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wei Zhen
- Department of Neurosurgery, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), No.33, Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, PR China
| | - Tongqi Guo
- Department of Neurosurgery, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), No.33, Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, PR China
| | - Jianjun Zou
- Department of Neurosurgery, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), No.33, Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, PR China
| | - Fuyong Li
- Department of Neurosurgery, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), No.33, Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, PR China.
| |
Collapse
|
22
|
Wang Z, Zhao Y, Xu H, Liang F, Zou Q, Wang C, Jiang J, Lin F. CtBP1 promotes tumour-associated macrophage infiltration and progression in non-small-cell lung cancer. J Cell Mol Med 2020; 24:11445-11456. [PMID: 32910558 PMCID: PMC7576280 DOI: 10.1111/jcmm.15751] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/17/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
The progression of lung cancer is majorly facilitated by TAMs (tumour-associated macrophages). However, how the TAMs infiltrate the NSCLC microenvironment and the associated biochemical are not fully elaborated. Research has revealed that changes in CtBP1 modulates innate immunity. Here, we investigated if CtBP1 facilitates infiltration of TAM and the subsequent progression of NSCLC. Immunohistochemical analysis was carried out in 96 NSCLC patients to estimate the clinicopathological importance of CtBP1 in the disease. CtBP1 overexpression and knockdown were carried out to assess the activity of CtBP1 in NSCLC cells. Elevated expression of CtBP1 correlated positively with TAMs infiltration into NSCLC tissues, induced EMT (epithelial-mesenchymal transition) in NSCLC cells and modulated the activated NF-κB signalling pathway leading to increase in CCL2 secretion from NSCLC cells, thus promoting TAM recruitment and polarization. TAM induction and polarization reduced significantly on exhausting p65 in NSCLC cells with CtBP1. Moreover, infiltration of TMAs was reduced remarkably on antagonist-mediated blocking of CCR2 and impeded the progression of NSCLC in a mouse model. These findings thus show a novel insight into the process of CtBP1-regulated TAM infiltration in NSCLC.
Collapse
Affiliation(s)
- Zhenxing Wang
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Yan Zhao
- Physical Examination CenterThe Second Hospital of Jilin UniversityChangchunChina
| | - Hongyan Xu
- Department of Medical OncologyThe Tumor Hospital of Jilin CityJilinChina
| | - Feihai Liang
- Department of Cardiovascular thoracic SurgeryThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Qingxu Zou
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Chen Wang
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Jingyuan Jiang
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Fengwu Lin
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
23
|
Li G, Tian Y, Zhu WG. The Roles of Histone Deacetylases and Their Inhibitors in Cancer Therapy. Front Cell Dev Biol 2020; 8:576946. [PMID: 33117804 PMCID: PMC7552186 DOI: 10.3389/fcell.2020.576946] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Genetic mutations and abnormal gene regulation are key mechanisms underlying tumorigenesis. Nucleosomes, which consist of DNA wrapped around histone cores, represent the basic units of chromatin. The fifth amino group (Nε) of histone lysine residues is a common site for post-translational modifications (PTMs), and of these, acetylation is the second most common. Histone acetylation is modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), and is involved in the regulation of gene expression. Over the past two decades, numerous studies characterizing HDACs and HDAC inhibitors (HDACi) have provided novel and exciting insights concerning their underlying biological mechanisms and potential anti-cancer treatments. In this review, we detail the diverse structures of HDACs and their underlying biological functions, including transcriptional regulation, metabolism, angiogenesis, DNA damage response, cell cycle, apoptosis, protein degradation, immunity and other several physiological processes. We also highlight potential avenues to use HDACi as novel, precision cancer treatments.
Collapse
Affiliation(s)
- Guo Li
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Yuan Tian
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
24
|
Li Y, Zhang H, Li Q, Zou P, Huang X, Wu C, Tan L. CDK12/13 inhibition induces immunogenic cell death and enhances anti-PD-1 anticancer activity in breast cancer. Cancer Lett 2020; 495:12-21. [PMID: 32941949 DOI: 10.1016/j.canlet.2020.09.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 01/12/2023]
Abstract
Immunogenic cell death (ICD) improves the T cell response against different tumors, indicating that ICD can enhance the antitumor immunity elicited by the anti-checkpoint antibody anti-programmed death 1 (anti-PD-1). In the present study, we reported a synergistic and durable immune-mediated antitumor response elicited by the combined treatment of SR-4835, a CDK12/13 specific inhibitor, with PD-1 blockade in a syngeneic mouse model. The developed combination therapy elicited antitumor activity in immunocompetent mouse tumor models. Furthermore, the SR-4835-treated tumor cells exhibited characteristics of ICD, including the release of high mobility group box 1 (HMGB1) and ATP and calreticulin (CRT) translocation. This activity led to a significant T-cell-dependent tumor suppression. The enhanced dendritic cell (DC) and infiltration of T cells activation in the tumors treated with both SR-4835 and anti-PD-1 indicate that this combination treatment promotes an improved immune response. Therefore, the results of the present study demonstrate the potential of CDK12/13 inhibition combined with checkpoint inhibition in breast cancer treatment.
Collapse
Affiliation(s)
- Yi Li
- Department of Breast Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Hui Zhang
- Department of Ultrasound, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Qin Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Pingjin Zou
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xingxiang Huang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Chihua Wu
- Department of Breast Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Li Tan
- Department of Ultrasound, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
25
|
Yang C, Shi S, Su Y, Tong JS, Li L. P2X7R promotes angiogenesis and tumour-associated macrophage recruitment by regulating the NF-κB signalling pathway in colorectal cancer cells. J Cell Mol Med 2020; 24:10830-10841. [PMID: 32735377 PMCID: PMC7521273 DOI: 10.1111/jcmm.15708] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Overexpression of P2X7R has been observed in several tumours and is related to cancer advancement and metastasis. However, the role of P2X7R in colorectal cancer (CRC) patients is not well understood. In the current study, overexpression of P2X7R and the effects at the molecular and functional levels in CRC were assessed in a mouse orthotopic model. Functional assays, such as the CCK‐8 assay, wound healing and transwell assay, were used to determine the biological role of P2X7R in CRC cells. CSC‐related genes and properties were detected via sphere formation and real‐time PCR assays. The underlying mechanisms were explored by Western blotting, real‐time PCR and Flow cytometry. In this study, we found that overexpression of P2X7R increases in the in vivo growth of tumours. P2X7R overexpression also increased CD31, VEGF and concurrent angiogenesis. P2X7R up‐regulates aldehyde dehydrogenase‐1 (ALDH1) and CSC characteristics. Transplanted tumour cells with P2X7R overexpression stimulated cytokines to recruit tumour‐associated macrophage (TAMs) to increase the growth of tumours. We also found that the NF‐κB signalling pathway is involved in P2X7R‐induced cytokine up‐regulation. P2X7R promotes NF‐κB–dependent cytokine induction, which leads to TAM recruitment to control tumour growth and advancement and remodelling of the stroma. Our findings demonstrate that P2X7R plays a key role in TAM recruitment, which may be a therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Chunhui Yang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuang Shi
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Su
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing-Shan Tong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Liangjun Li
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
26
|
Song X, Shen L, Tong J, Kuang C, Zeng S, Schoen RE, Yu J, Pei H, Zhang L. Mcl-1 inhibition overcomes intrinsic and acquired regorafenib resistance in colorectal cancer. Theranostics 2020; 10:8098-8110. [PMID: 32724460 PMCID: PMC7381732 DOI: 10.7150/thno.45363] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
Intrinsic and acquired resistance to targeted therapies is a significant clinical problem in cancer. We previously showed that resistance to regorafenib, a multi-kinase inhibitor for treating colorectal cancer (CRC) patients, can be caused by mutations in the tumor suppressor FBW7, which block degradation of the pro-survival Bcl-2 family protein Mcl-1. We tested if Mcl-1 inhibition can be used to develop a precision combination therapy for overcoming regorafenib resistance. METHODS Small-molecule Mcl-1 inhibitors were tested on CRC cells with knock-in (KI) of a non-degradable Mcl-1. Effects of Mcl-1 inhibitors on regorafenib sensitivity were determined in FBW7-mutant and -wild-type (WT) CRC cells and tumors, and in those with acquired regorafenib resistance due to enriched FBW7 mutations. Furthermore, translational potential was explored by establishing and analyzing FBW7-mutant and -WT patient-derived organoid (PDO) and xenograft (PDX) tumor models. RESULTS We found that highly potent and specific Mcl-1 inhibitors such as S63845 overcame regorafenib resistance by restoring apoptosis in multiple regorafenib-resistant CRC models. Mcl-1 inhibition re-sensitized CRC tumors with intrinsic and acquired regorafenib resistance in vitro and in vivo, including those with FBW7 mutations. Importantly, Mcl-1 inhibition also sensitized FBW7-mutant PDO and PDX models to regorafenib. In contrast, Mcl-1 inhibition had no effect in FBW7-WT CRCs. CONCLUSIONS Our results demonstrate that Mcl-1 inhibitors can overcome intrinsic and acquired regorafenib resistance in CRCs by restoring apoptotic response. FBW7 mutations might be a potential biomarker predicting for response to the regorafenib/Mcl-1 inhibitor combination.
Collapse
Affiliation(s)
- Xiangping Song
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Lin Shen
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Jingshan Tong
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Robert E. Schoen
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA
| | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA
| | - Haiping Pei
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Lin Zhang
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
27
|
Cao Y, Kong S, Xin Y, Meng Y, Shang S, Qi Y. Lestaurtinib potentiates TRAIL-induced apoptosis in glioma via CHOP-dependent DR5 induction. J Cell Mol Med 2020; 24:7829-7840. [PMID: 32441887 PMCID: PMC7348155 DOI: 10.1111/jcmm.15415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/19/2020] [Accepted: 05/03/2020] [Indexed: 12/22/2022] Open
Abstract
Lestaurtinib, also called CEP-701, is an inhibitor of tyrosine kinase, causes haematological remission in patients with AML possessing FLT3-ITD (FLT3 gene) internal tandem duplication and strongly inhibits tyrosine kinase FLT3. Treatment with lestaurtinib modulates various signalling pathways and leads to cell growth arrest and programmed cell death in several tumour types. However, the effect of lestaurtinib on glioma remains unclear. In this study, we examined lestaurtinib and TRAIL interactions in glioma cells and observed their synergistic activity on glioma cell apoptosis. While U87 and U251 cells showed resistance to TRAIL single treatment, they were sensitized to apoptosis induced by TRAIL in the presence of lestaurtinib because of increased death receptor 5 (DR5) levels through CHOP-dependent manner. We also demonstrated using a xenograft model of mouse that the tumour growth was absolutely suppressed because of the combined treatment compared to TRAIL or lestaurtinib treatment carried out singly. Our findings reveal a potential new strategy to improve antitumour activity induced by TRAIL in glioma cells using lestaurtinib through a mechanism dependent on CHOP.
Collapse
Affiliation(s)
- Yingxiao Cao
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Shiqi Kong
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Yuling Xin
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Yan Meng
- Department of Operating RoomXingtai People’s HospitalXingtaiChina
| | - Shuling Shang
- Department of Operating RoomXingtai People’s HospitalXingtaiChina
| | - Yanhui Qi
- Department of Intensive Care UnitXingtai People’s HospitalXingtaiChina
| |
Collapse
|
28
|
Chen Z, Chen G, Zhao H. FDPS promotes glioma growth and macrophage recruitment by regulating CCL20 via Wnt/β-catenin signalling pathway. J Cell Mol Med 2020; 24:9055-9066. [PMID: 32596949 PMCID: PMC7417684 DOI: 10.1111/jcmm.15542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 12/31/2022] Open
Abstract
Glioma is one of the most lethal tumours and common malignant in the central nervous system (CNS), which exhibits diffuse invasion and aggressive growth. Several studies have reported the association of FDPS to tumour development and progression. However, the role of FDPS in progression of glioma and macrophage recruitment is not well‐elucidated. In the current study, a remarkable enhancement in FDPS level was observed in glioma tissues and associated with poor prognosis, contributed to tumour growth. FDPS was correlated with macrophage infiltration in glioma and pharmacological deletion of macrophages largely abrogated the oncogenic functions of FDPS in glioma. Mechanistically, FDPS activated Wnt/β‐catenin signalling pathway and ultimately facilitates macrophage infiltration by inducing CCL20 expression. In conclusion, overexpressed FDPS exhibits an immunomodulatory role in glioma. Therefore, targeting FDPS may be an effective therapeutic strategy for glioma.
Collapse
Affiliation(s)
- Zhuo Chen
- Neurosurgery Department, The Third Hospital of Jilin University, Changchun, China
| | - Guangyong Chen
- Neurosurgery Department, The Third Hospital of Jilin University, Changchun, China
| | - Hang Zhao
- Neurosurgery Department, The Third Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Arai S, Varkaris A, Nouri M, Chen S, Xie L, Balk SP. MARCH5 mediates NOXA-dependent MCL1 degradation driven by kinase inhibitors and integrated stress response activation. eLife 2020; 9:54954. [PMID: 32484436 PMCID: PMC7297531 DOI: 10.7554/elife.54954] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
MCL1 has critical antiapoptotic functions and its levels are tightly regulated by ubiquitylation and degradation, but mechanisms that drive this degradation, particularly in solid tumors, remain to be established. We show here in prostate cancer cells that increased NOXA, mediated by kinase inhibitor activation of an integrated stress response, drives the degradation of MCL1, and identify the mitochondria-associated ubiquitin ligase MARCH5 as the primary mediator of this NOXA-dependent MCL1 degradation. Therapies that enhance MARCH5-mediated MCL1 degradation markedly enhance apoptosis in response to a BH3 mimetic agent targeting BCLXL, which may provide for a broadly effective therapy in solid tumors. Conversely, increased MCL1 in response to MARCH5 loss does not strongly sensitize to BH3 mimetic drugs targeting MCL1, but instead also sensitizes to BCLXL inhibition, revealing a codependence between MARCH5 and MCL1 that may also be exploited in tumors with MARCH5 genomic loss.
Collapse
Affiliation(s)
- Seiji Arai
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States.,Department of Urology, Gunma University Hospital, Maebashi, Japan
| | - Andreas Varkaris
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
| | - Mannan Nouri
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
| | - Sen Chen
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
| | - Lisha Xie
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
| | - Steven P Balk
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
| |
Collapse
|
30
|
A novel derivative of valepotriate inhibits the PI3K/AKT pathway and causes Noxa-dependent apoptosis in human pancreatic cancer cells. Acta Pharmacol Sin 2020; 41:835-842. [PMID: 32047260 PMCID: PMC7470838 DOI: 10.1038/s41401-019-0354-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/29/2019] [Indexed: 01/08/2023]
Abstract
Natural compound valepotriate exhibits inhibitory activity against a number of cancers, but the effect of valepotriate against pancreatic cancer is unclear, and the structure–activity relationship of valepotriate has not been characterized. In this study, we performed a structure-based similarity search and found 16 hit compounds. Among the 16 hits, (1S,6S,7R)-6-(acetyloxy)-1-[(3-methylbutanoyl)oxy]-4a,5,6,7a-tetrahydro-1H-spiro[cyclopenta[c]pyran-7,2’-oxiran]-4-ylmethyl 3-methylbutanoate (denoted as Amcp) exhibited superior anticancer activity against human pancreatic cancer BxPC-3 and SW1990 cells. The anti-proliferation activity of Amcp was validated in human pancreatic cancer BxPC-3 and SW1990 cells in vitro. Amcp more effectively induced apoptosis in BxPC-3 and SW1990 cells than gemcitabine. At a concentration of 15 μM, Amcp significantly suppressed the PI3K/AKT pathway and disrupted the mitochondrial membrane equilibrium through modulation of Noxa and Mcl-1 balance in both cell lines. Meanwhile, knockdown of Noxa substantially attenuated Amcp-induced reduction of cell viability and anti-apoptotic protein Mcl-1 level in BxPC-3 cells. In addition, Amcp showed synergistic anticancer effects when combined with gemcitabine in BxPC-3 cells. To conclude, this work not only suggests that Amcp possesses a dual-inhibitory activity towards PI3K/AKT pathway and Mcl-1, but also enlightens further development of bioactive valepotriate derivatives.
Collapse
|
31
|
Fu R, Tong JS. miR-126 reduces trastuzumab resistance by targeting PIK3R2 and regulating AKT/mTOR pathway in breast cancer cells. J Cell Mol Med 2020; 24:7600-7608. [PMID: 32410348 PMCID: PMC7339158 DOI: 10.1111/jcmm.15396] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/18/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) have been found to play a key role in drug resistance. In the current study, we aimed to explore the potential role of miR‐126 in trastuzumab resistance in breast cancer cells. We found that the trastuzumab‐resistant cell lines SKBR3/TR and BT474/TR had low expression of miR‐126 and increased ability to migrate and invade. The resistance, invasion and mobilization abilities of the cells resistant to trastuzumab were reduced by ectopic expression of miR‐126 mimics. In comparison, inhibition of miR‐126 in SKBR3 parental cells had the opposite effect of an increased resistance to trastuzumab as well as invasion and migration. It was also found that miR‐126 directly targets PIK3R2 in breast cancer cells. PIK3R2‐knockdown cells showed decreased resistance to trastuzumab, while overexpression of PIK3R2 increased trastuzumab resistance. In addition, our finding showed that overexpression of miR‐126 reduced resistance to trastuzumab in the trastuzumab‐resistant cells and that inhibition of the PIK3R2/PI3K/AKT/mTOR signalling pathway was involved in this effect. SKBR3/TR cells also showed increased sensitivity to trastuzumab mediated by miR‐126 in vivo. In conclusion, the above findings demonstrated that overexpression of miR‐126 or down‐regulation of its target gene may be a potential approach to overcome trastuzumab resistance in breast cancer cells.
Collapse
Affiliation(s)
- Rao Fu
- College of Chemical Engineering, Northeast Electric Power University, Jilin city, China
| | - Jing-Shan Tong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Cao Y, Li X, Kong S, Shang S, Qi Y. CDK4/6 inhibition suppresses tumour growth and enhances the effect of temozolomide in glioma cells. J Cell Mol Med 2020; 24:5135-5145. [PMID: 32277580 PMCID: PMC7205809 DOI: 10.1111/jcmm.15156] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/15/2020] [Accepted: 02/09/2020] [Indexed: 12/20/2022] Open
Abstract
In adults, glioma is the most commonly occurring and invasive brain tumour. For malignant gliomas, the current advanced chemotherapy includes TMZ (temozolomide). However, a sizeable number of gliomas are unyielding to TMZ, hence, giving rise to an urgent need for more efficient treatment choices. Here, we report that cyclin-dependent kinases 4 (CDK4) is expressed at significantly high levels in glioma cell lines and tissues. CDK4 overexpression enhances colony formation and proliferation of glioma cells and extends resistance to inhibition of TMZ-mediated cell proliferation and induction of apoptosis. However, CDK4 knockdown impedes colony formation and cell proliferation, and enhances sensitivity of glioma cells to TMZ. The selective inhibition of CDK4/6 impedes glioma cell proliferation and induces apoptotic induction. The selective inhibitors of CDK4/6 may enhance glioma cell sensitivity to TMZ. We further showed the possible role of RB phosphorylation mediated by CDK4 for its oncogenic function in glioma. The growth of glioma xenografts was inhibited in vivo, through combination treatment, and corresponded to enhanced p-RB levels, reduced staining of Ki-67 and enhanced activation of caspase 3. Therefore, CDK4 inhibition may be a favourable strategy for glioma treatment and overcomes TMZ resistance.
Collapse
Affiliation(s)
- Yingxiao Cao
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Xin Li
- Department of NeurosurgeryThe First People's Hospital of ShenyangShenyangChina
| | - Shiqi Kong
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Shuling Shang
- Department of Operating RoomXingtai People’s HospitalXingtaiChina
| | - Yanhui Qi
- Department of Intensive Care UnitXingtai People’s HospitalXingtaiChina
| |
Collapse
|
33
|
Chen G, Chen Z, Zhao H. MicroRNA-155-3p promotes glioma progression and temozolomide resistance by targeting Six1. J Cell Mol Med 2020; 24:5363-5374. [PMID: 32220051 PMCID: PMC7205810 DOI: 10.1111/jcmm.15192] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
The prognosis of glioma is generally poor and is the cause of primary malignancy in the brain. The role of microRNAs has been implicated in tumour inhibition or activation. In several cancers, the Six1 signalling pathway has been found to be aberrant and also relates to the formation of tumours. We analysed the database for expression profiles and clinical specimens of various grades of glioma to assess microRNA-155-3p (miR-155-3p) expression. The role of miR-155-3p in glioblastoma, cell cycle, proliferation, apoptosis and resistance to temozolomide was assessed in vitro through flow cytometry and cell proliferation assays. Bioinformatics analyses, and assays using luciferase reporter, and immunoblotting revealed that miR-155-3p targets Six1 and that the relationship between glioma and healthy brain tissues was significantly inverse. In rescue experiments, overexpressed Six1 revoked the changes in cell cycle distribution, proliferation and resistance to temozolomide estimated by apoptosis induced by overexpressed miR-155-3p. MiR-155-3p inhibition reduced glioma cell growth and proliferation in the brain of a mouse model and increased the survival of mice with gliomas. Thus, miR-155-3p modulates Six1 expression and facilitates the progression of glioblastoma and resistance to temozolomide and may act as a novel diagnostic biomarker and a target for glioma treatment.
Collapse
Affiliation(s)
- Guangyong Chen
- Neurosurgery DepartmentChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Zhuo Chen
- Neurosurgery DepartmentChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Hang Zhao
- Neurosurgery DepartmentChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
34
|
Lin L, Ding D, Xiao X, Li B, Cao P, Li S. Trametinib potentiates TRAIL-induced apoptosis via FBW7-dependent Mcl-1 degradation in colorectal cancer cells. J Cell Mol Med 2020; 24:6822-6832. [PMID: 32352219 PMCID: PMC7299726 DOI: 10.1111/jcmm.15336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/03/2020] [Accepted: 04/12/2020] [Indexed: 12/14/2022] Open
Abstract
Trametinib is a MEK1/2 inhibitor and exerts anticancer activity against a variety of cancers. However, the effect of Trametinib on colorectal cancer (CRC) is not well understood. In the current study, our results demonstrate the ability of sub-toxic doses of Trametinib to enhance TRAIL-mediated apoptosis in CRC cells. Our findings also indicate that Trametinib and TRAIL activate caspase-dependent apoptosis in CRC cells. Moreover, Mcl-1 overexpression can reduce apoptosis in CRC cells treated with Trametinib with or without TRAIL. We further demonstrate that Trametinib degrades Mcl-1 through the proteasome pathway. In addition, GSK-3β phosphorylates Mcl-1 at S159 and promotes Mcl-1 degradation. The E3 ligase FBW7, known to polyubiquitinate Mcl-1, is involved in Trametinib-induced Mcl-1 degradation. Taken together, these results provide the first evidence that Trametinib enhances TRAIL-mediated apoptosis through FBW7-dependent Mcl-1 ubiquitination and degradation.
Collapse
Affiliation(s)
- Lin Lin
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dapeng Ding
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaoguang Xiao
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Penglong Cao
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shijun Li
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
35
|
Kong S, Fang Y, Wang B, Cao Y, He R, Zhao Z. miR-152-5p suppresses glioma progression and tumorigenesis and potentiates temozolomide sensitivity by targeting FBXL7. J Cell Mol Med 2020; 24:4569-4579. [PMID: 32150671 PMCID: PMC7176889 DOI: 10.1111/jcmm.15114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
A generally used chemotherapeutic drug for glioma, a frequently diagnosed brain tumour, is temozolomide (TMZ). Our study investigated the activity of FBXL7 and miR-152-5p in glioma. Levels of microRNA-152-5p (miR-152-5p) and the transcript and protein of FBXL7 were assessed by real-time PCR and Western blotting, respectively. The migratory and invasive properties of cells were measured by Transwell migration and invasion assay and their viability were examined using CCK-8 assay. Further, the putative interaction between FBXL7 and miR-152-5p were analysed bioinformatically and by luciferase assay. The activities of FBXL7, TMZ and miR-152-5p were analysed in vivo singly or in combination, on mouse xenografts, in glioma tumorigenesis. The expression of FBXL7 in glioma tissue is significantly up-regulated, which is related to the poor prognosis and the grade of glioma. TMZ-induced cytotoxicity, proliferation, migration and invasion in glioma cells were impeded by the knock-down of FBXL7 or overexpressed miR-152-5p. Furthermore, the expression of miR-152-5p reduced remarkably in glioma cells and it exerted its activity through targeted FBXL7. Overexpression of miR-152-5p and knock-down of FBXL7 in glioma xenograft models enhanced TMZ-mediated anti-tumour effect and impeded tumour growth. Thus, the miR-152-5p suppressed the progression of glioma and associated tumorigenesis, targeted FBXL7 and increased the effect of TMZ-induced cytotoxicity in glioma cells, further enhancing our knowledge of FBXL7 activity in glioma.
Collapse
Affiliation(s)
- Shiqi Kong
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Yanwei Fang
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Bingqian Wang
- Department of NeurosurgeryXingtai People's HospitalXingtaiHebeiChina
| | - Yingxiao Cao
- Department of NeurosurgeryXingtai People's HospitalXingtaiHebeiChina
| | - Runzhi He
- Department of NeurosurgeryXingtai People's HospitalXingtaiHebeiChina
| | - Zongmao Zhao
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| |
Collapse
|
36
|
Kong S, Cao Y, Li X, Li Z, Xin Y, Meng Y. MiR-3116 sensitizes glioma cells to temozolomide by targeting FGFR1 and regulating the FGFR1/PI3K/AKT pathway. J Cell Mol Med 2020; 24:4677-4686. [PMID: 32181582 PMCID: PMC7176860 DOI: 10.1111/jcmm.15133] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/11/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is a brain tumour that is often diagnosed, and temozolomide (TMZ) is a common chemotherapeutic drug used in glioma. Yet, resistance to TMZ is a chief hurdle towards curing the malignancy. The current work explores the pathways and involvement of miR-3116 in the TMZ resistance. miR-3116 and FGFR1 mRNA were quantified by real-time PCR in malignant samples and cell lines. Appropriate assays were designed for apoptosis, viability, the ability to form colonies and reporter assays to study the effects of the miR-3116 or FGFR1. The involvement of PI3K/AKT signalling was assessed using Western blotting. Tumorigenesis was evaluated in an appropriate xenograft mouse model in vivo. This work revealed that the levels of miR-3116 dipped in samples resistant to TMZ, while increased miR-3116 caused an inhibition of the tumour features mentioned above to hence augment TMZ sensitivity. miR-3116 was found to target FGFR1. When FGFR1 was overexpressed, resistance to TMZ was augmented and reversed the sensitivity caused by miR-3116. Our findings further confirmed PI3K/AKT signalling pathway is involved in this action. In conclusion, miR-3116 sensitizes glioma cells to TMZ through FGFR1 downregulation and the PI3K/AKT pathway inactivation. Our results provide a strategy to overcome TMZ resistance in glioma treatment.
Collapse
Affiliation(s)
- Shiqi Kong
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Yingxiao Cao
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Xin Li
- Department of NeurosurgeryThe First People's Hospital of ShenyangShenyangChina
| | - Zhenzhong Li
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Yuling Xin
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Yan Meng
- Department of Operating RoomXingtai People’s HospitalXingtaiChina
| |
Collapse
|
37
|
Ruan H, Leibowitz BJ, Zhang L, Yu J. Immunogenic cell death in colon cancer prevention and therapy. Mol Carcinog 2020; 59:783-793. [PMID: 32215970 DOI: 10.1002/mc.23183] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/23/2020] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide. The colonic mucosa constitutes a critical barrier and a major site of immune regulation. The immune system plays important roles in cancer development and treatment, and immune activation caused by chronic infection or inflammation is well-known to increase cancer risk. During tumor development, neoplastic cells continuously interact with and shape the tumor microenvironment (TME), which becomes progressively immunosuppressive. The clinical success of immune checkpoint blockade therapies is limited to a small set of CRCs with high tumor mutational load and tumor-infiltrating T cells. Induction of immunogenic cell death (ICD), a type of cell death eliciting an immune response, can therefore help break the immunosuppressive TME, engage the innate components, and prime T cell-mediated adaptive immunity for long-term tumor control. In this review, we discuss the current understanding of ICD induced by antineoplastic agents, the influence of driver mutations, and recent developments to harness ICD in colon cancer. Mechanism-guided combinations of ICD-inducing agents with immunotherapy and actionable biomarkers will likely offer more tailored and durable benefits to patients with colon cancer.
Collapse
Affiliation(s)
- Hang Ruan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Brian J Leibowitz
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Lin Zhang
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Chemical Biology and Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jian Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
38
|
Li X, Kong S, Cao Y. miR-1254 inhibits progression of glioma in vivo and in vitro by targeting CSF-1. J Cell Mol Med 2020; 24:3128-3138. [PMID: 31994318 PMCID: PMC7077535 DOI: 10.1111/jcmm.14981] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/16/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
The role of miRNAs (microRNAs) has been implicated in glioma initiation and progression, although the inherent biochemical mechanisms still remain to be unravelled. This study strived to evaluate the association between CSF-1 and miR-1254 and their effect on advancement of glioma cells. The levels of miR-1254 in glioma cells and tissues were determined by real-time RT-PCR. Proliferation, apoptosis and cell cycle arrest, invasion and migration, were assessed by CCK-8 assay, colony formation assay, flow cytometry, transwell assay and wound-healing assay, respectively. The targeted relationship between miR-1254 and CSF-1 was confirmed by dual-luciferase reporter assay. The effects of CSF-1 on cellular functions were also assessed. The in vivo effect of miR-1254 on the formation of a tumour was explored by using the mouse xenograft model. We found in both glioma tissues and glioma cells, the down-regulated expressions of miR-1254 while that of CSF-1 was abnormally higher than normal level. The target relationship between CSF-1 and miR-1254 was validated by dual-luciferase reporter assay. The CSF-1 down-regulation or miR-1254 overexpression impeded the invasion, proliferation and migratory ability of U251 and U87 glioma cells, concurrently occluded the cell cycle and induced cell apoptosis. Moreover, in vivo tumour development was repressed due to miR-1254 overexpression. Thus, CSF-1 is targeted directly by miR-1254, and the miR-1254/CSF-1 axis may be a potential diagnostic target for malignant glioma.
Collapse
Affiliation(s)
- Xin Li
- Department of NeurosurgeryThe First People's Hospital of ShenyangShenyangLiaoningChina
| | - Shiqi Kong
- Department of NeurosurgeryXingtai People's HospitalXingtaiHebeiChina
| | - Yingxiao Cao
- Department of NeurosurgeryXingtai People's HospitalXingtaiHebeiChina
| |
Collapse
|
39
|
Mu J, Sun P, Ma Z, Sun P. Bromodomain and extraterminal domain inhibitor enhances the antitumor effect of imatinib in gastrointestinal stromal tumours. J Cell Mol Med 2020; 24:2519-2530. [PMID: 31957165 PMCID: PMC7028844 DOI: 10.1111/jcmm.14945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
In gastrointestinal stromal tumours (GISTs), the function of bromodomain-containing 4 (BRD4) remains underexplored. BRD4 mRNA abundance was quantified in GISTs. In the current study, we investigated the role of BRD4 in GISTs. Our results show a significant enhancement in BRD4 mRNA and a shift from very low-risk/low-risk to high-risk levels as per NCCN specifications. Overexpression of BRD4 correlated with unfavourable genotype, nongastric location, enhanced risk and decreased disease-free survival, which were predicted independently. Knockout of BRD4 in vitro suppressed KIT expression, which led to inactivation of the KIT/PI3K/AKT/mTOR pathway, impeded migration and cell growth and made the resistant GIST cells sensitive to imatinib. The expression of KIT was repressed by a BRD4 inhibitor JQ1, which also induced myristoylated-AKT-suppressible caspases 3 and 9 activities, induced LC3-II, exhibited dose-dependent therapeutic synergy with imatinib and attenuated the activation of the PI3K/AKT/mTOR pathway. In comparison with their single therapy, the combination of JQ1/imatinib more efficiently suppressed the growth of xenografts and exhibited a reduction in KIT phosphorylation, a decrease in Ki-67 and in the levels of phosphorylated PI3K/AKT/mTOR and enhanced TUNEL staining. Thus, we characterized the biological, prognostic and therapeutic implications of overexpressed BRD4 in GIST and observed that JQ1 suppresses KIT transactivation and nullifies the activation of PI3K/AKT/mTOR, providing a potential strategy for treating imatinib-resistant GIST through dual blockade of KIT and BRD4.
Collapse
Affiliation(s)
- Jianfeng Mu
- Department of Gastric and Colorectal SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Pengfei Sun
- Changchun Railway Medical Insurance Management OfficeChangchunChina
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia SurgeryThe second hospital of Jilin UniversityChangchunChina
| | - Pengda Sun
- Department of Gastrointestinal Nutrition and Hernia SurgeryThe second hospital of Jilin UniversityChangchunChina
| |
Collapse
|
40
|
Saga of Mcl-1: regulation from transcription to degradation. Cell Death Differ 2020; 27:405-419. [PMID: 31907390 DOI: 10.1038/s41418-019-0486-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 01/01/2023] Open
Abstract
The members of the Bcl-2 family are the central regulators of various cell death modalities. Some of these proteins contribute to apoptosis, while others counteract this type of programmed cell death, thus balancing cell demise and survival. A disruption of this balance leads to the development of various diseases, including cancer. Therefore, understanding the mechanisms that underlie the regulation of proteins of the Bcl-2 family is of great importance for biomedical research. Among the members of the Bcl-2 family, antiapoptotic protein Mcl-1 is characterized by a short half-life, which renders this protein highly sensitive to changes in its synthesis or degradation. Hence, the regulation of Mcl-1 is of particular scientific interest, and the study of Mcl-1 modulators could aid in the understanding of the mechanisms of disease development and the ways of their treatment. Here, we summarize the present knowledge regarding the regulation of Mcl-1, from transcription to degradation, focusing on aspects that have not yet been described in detail.
Collapse
|
41
|
Li L, Lin L, Li M, Li W. Gilteritinib induces PUMA-dependent apoptotic cell death via AKT/GSK-3β/NF-κB pathway in colorectal cancer cells. J Cell Mol Med 2019; 24:2308-2318. [PMID: 31881122 PMCID: PMC7011145 DOI: 10.1111/jcmm.14913] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/16/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
As a highly potent and highly selective oral inhibitor of FLT3/AXL, gilteritinib showed activity against FLT3D835 and FLT3‐ITD mutations in pre‐clinical testing, although its role on colorectal cancer (CRC) cells is not yet fully elucidated. We examined the activity of gilteritinib in suppressing growth of CRC and its enhancing effect on other drugs used in chemotherapy. In this study, we observed that, regardless of p53 status, treatment using gilteritinib induces PUMA in CRC cells via the NF‐κB pathway after inhibition of AKT and activation of glycogen synthase kinase 3β (GSK‐3β). PUMA was observed to be vital for apoptosis in CRC cells through treatment of gilteritinib. Moreover, enhancing induction of PUMA through different pathways could mediate chemosensitization by using gilteritinib. Furthermore, PUMA deficiency revoked the antitumour role of gilteritinib in vivo. Thus, our results indicate that PUMA mediates the antitumour activity of gilteritinib in CRC cells. These observations are critical for the therapeutic role of gilteritinib in CRC.
Collapse
Affiliation(s)
- Liangjun Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lin Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ming Li
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Weiling Li
- Biotechnology Department, College of Basic Medical Science, Dalian Medical University, Dalian, China
| |
Collapse
|
42
|
Mu J, Sun P, Ma Z, Sun P. BRD4 promotes tumor progression and NF-κB/CCL2-dependent tumor-associated macrophage recruitment in GIST. Cell Death Dis 2019; 10:935. [PMID: 31819043 PMCID: PMC6901583 DOI: 10.1038/s41419-019-2170-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022]
Abstract
The most commonly occurring sarcoma of the soft tissue is gastrointestinal stromal tumor (GIST). Treatment and prevention of the disease necessitate an understanding of the molecular mechanisms involved. However, the role of BRD4 in the progression of GIST is still unclear. While it is known there are abundant infiltrating tumor-associated macrophages (TAMs) in the tumor microenvironment, the exact role of these cells has yet to be studied. This work showed an upregulation of BRD4 in GIST that was associated with GIST prognosis. Through gain and loss of function studies, it was found that BRD4 promotes GIST growth and angiogenesis in vitro and in vivo. Mechanistically, BRD4 enhances CCL2 expression by activating the NF-κB signaling pathway. Furthermore, this CCL2 upregulation causes recruitment of macrophages into the tumor leading to tumor growth. A likely mechanism for interactions in the GIST microenvironment has been outlined by this work to show the role and potential use of BRD4 as a treatment target in GIST.
Collapse
Affiliation(s)
- Jianfeng Mu
- Department of Gastric and Colorectal Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Pengfei Sun
- Changchun Railway Medical Insurance Management Office, Changchun, Jilin Province, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Pengda Sun
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
43
|
Cheng X, Huang Z, Long D, Jin W. BET inhibitor bromosporine enhances 5-FU effect in colorectal cancer cells. Biochem Biophys Res Commun 2019; 521:840-845. [PMID: 31708100 DOI: 10.1016/j.bbrc.2019.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/02/2019] [Indexed: 12/17/2022]
Abstract
Treatment of colorectal cancer (CRC) remains a challenge because of the lack of effective early treatment strategies and high incidence of relapse. 5-Fluorouracil (5-FU) is a typical CRC treatment. Bromosporine is an innovative bromodomain and extraterminal domain (BET) inhibitor. We investigated if CRC could be targeted by the combination of 5-FU and bromosporine in a synergistic manner in vivo and in vitro. Our findings shown that the combination treatment inhibits cell viability, formation of colonies, increased apoptosis and cell cycle arrest at G0-G1. In addition, the expression level of BRD4 was high in HCT116 cells exposed to 5-FU that showed lower apoptosis against the parental cells. Moreover, the 5-FU-resistance was reversed significantly by BRD4 knockdown or inhibition. The drug combination showed increased activity against tumor than individual drug exposure in the xenograft model. In conclusion, this work serves as a basic clinical evaluation of 5-FU and bromosporine as an effective therapeutic approach for CRC.
Collapse
Affiliation(s)
- Xueyuan Cheng
- Department of General Surgery, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai People's Hospital, Beihai, 536000, Guangxi Zhuang, China
| | - Zhong Huang
- Department of General Surgery, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai People's Hospital, Beihai, 536000, Guangxi Zhuang, China
| | - Di Long
- Department of General Surgery, Wuming Hospital of Guangxi Medical University, Nanning, 530199, Guangxi Zhuang, China.
| | - Wei Jin
- Department of General Surgery, Wuming Hospital of Guangxi Medical University, Nanning, 530199, Guangxi Zhuang, China
| |
Collapse
|
44
|
Liu L, Shi X, Zhao H, Yang M, Wang C, Liao M, Zhao J. Nicotine induces cell survival and chemoresistance by stimulating Mcl-1 phosphorylation and its interaction with Bak in lung cancer. J Cell Physiol 2019; 234:15934-15940. [PMID: 30741422 DOI: 10.1002/jcp.28251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
Nicotine is a major carcinogen in cigarettes, which can enhance cell proliferation and metastasis and increase the chemoresistance of cancer cells. Our previous data found that nicotine promotes cell survival in lung cancer by affecting the expression of antiapoptotic protein Mcl-1, suggesting that the Mcl-1 may be a therapeutic target for patients with lung cancer. In this study, we found that the effects of drug resistance on nicotine-induced lung cancer cell lines were shown to influence the phosphorylation of Mcl-1. Moreover, nicotine induces Mcl-1 phosphorylation exclusively at the T163 site, which results in enhancement of the antiapoptotic activity of Mcl-1 and increased cell survival. Meanwhile, nicotine can reduce the sensitivity of H1299 cells to CDDP via enhancement of the binding of Mcl-1 to Bak, which inhibits the proapoptotic effect of Bak and ultimately leads to increased survival and drug resistance of lung cancer cells. Thus, nicotine-induced cell survival and chemoresistance may occur in a mechanism by stimulating Mcl-1 phosphorylation and its interaction with Bak, which may contribute to improving the efficacy of chemotherapy in the treatment of human lung cancer.
Collapse
Affiliation(s)
- Ling Liu
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaqing Shi
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huandong Zhao
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manyi Yang
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chengzhi Wang
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Nephrology Blood Purification Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingmei Liao
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinfeng Zhao
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
45
|
Zhao H, Gong N. miR-20a regulates inflammatory in osteoarthritis by targeting the IκBβ and regulates NK-κB signaling pathway activation. Biochem Biophys Res Commun 2019; 518:632-637. [PMID: 31451219 DOI: 10.1016/j.bbrc.2019.08.109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/20/2019] [Indexed: 02/08/2023]
Abstract
In the cartilage and synovial microenvironment of osteoarthritis (OA) patients, utmost changes are commonly brought upon by the inflammatory cytokines, leading to cellular dysfunction, particularly in chondrocytes. The regulation of chondrogenesis, a key part is played the microRNAs. Thus, the current study aimed to assess the function of miR-20a in osteoarthritis. The miR-20a expression was observed to increase in the tissues of OA cartilage, when compared with tissues of normal cartilage, and enhanced proliferation of chondrocyte was observed in the presence of miR-20a. Moreover, on treating the chondrocytes with LPS (lipopolysaccharide), an increase in miR-20a level was observed. On transfecting with miR-20a inhibitor, inhibition in production of LPS-induced pro-inflammatory cytokines as well as cell apoptosis were seen. The assay for luciferase activity showed that the expression of IκBβ was impeded on being targeted at its 3'-UTR by miR-20a. The transfection of IκBβ and inhibitor of miR-20a repressed the NF-κB pathway activation and chondrocyte cellular apoptosis. An OA model was established for in vivo studies on rats by ACLT (anterior cruciate ligament transection). In conclusion, the results demonstrate an increase in articular cavity inflammation in rats with OA in the presence of miR-20a by targeting on IκBβ and activating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Orthopedics, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, People's Republic of China
| | - Ningji Gong
- Department of Emergency, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, People's Republic of China.
| |
Collapse
|
46
|
Yang S, Zhang X, Qu H, Qu B, Yin X, Zhao H. Cabozantinib induces PUMA-dependent apoptosis in colon cancer cells via AKT/GSK-3β/NF-κB signaling pathway. Cancer Gene Ther 2019; 27:368-377. [PMID: 31182761 DOI: 10.1038/s41417-019-0098-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/02/2019] [Accepted: 04/13/2019] [Indexed: 12/29/2022]
Abstract
Cabozantinib is a multi-kinase inhibitor targeting MET, AXL, and VEGFR2, and has been approved for use in multiple malignancies. The means by which Cabozantinib acts to target colorectal cancer (CRC) cells remains poorly understood, and we sought to investigate how this drug disrupts cell growth in CRC cells and how it interacts to enhance the efficacy of other chemotherapeutic agents. In this study, we found that Cabozantinib activated a p65-dependent signaling pathway in response to both inhibition of AKT and activation of glycogen synthase kinase 3β (GSK3β), leading to upregulation of PUMA in CRC cells regardless of p53 activity. PUMA upregulation facilitates CRC apoptosis in response to Cabozantinib, which also acts synergistically with the chemotherapeutic agents Cetuximab and 5-FU to induce robust apoptosis in a PUMA-dependent manner. Eliminating PUMA expression ablated this apoptosis induced by Cabozantinib in xenograft mouse model. Our findings revealed that Cabozantinib acts to drive CRC cells apoptosis via a PUMA-dependent mechanism, thus identifying PUMA expression as a potential predictor of Cabozantinib efficacy and a potential novel therapeutic target.
Collapse
Affiliation(s)
- Shida Yang
- Department of Laboratory Medicine, The people's Hospital of Liaoning Province, Shenyang, China
| | - Xiaobing Zhang
- Department of Laboratory Medicine, The people's Hospital of Liaoning Province, Shenyang, China
| | - Huiling Qu
- Department of Neurology, The people's Hospital of Liaoning Province, Shenyang, China
| | - Bo Qu
- Department of Laboratory Medicine, The people's Hospital of Liaoning Province, Shenyang, China
| | - Xiaoxue Yin
- Department of Laboratory Medicine, The people's Hospital of Liaoning Province, Shenyang, China
| | - Hongmei Zhao
- Department of Laboratory Medicine, The people's Hospital of Liaoning Province, Shenyang, China.
| |
Collapse
|
47
|
Li J, Li X. Encorafenib inhibits migration, induces cell cycle arrest and apoptosis in colorectal cancer cells. Mol Cell Biochem 2019; 459:113-120. [PMID: 31114933 DOI: 10.1007/s11010-019-03554-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Abstract
Encorafenib, a new-generation BRAF inhibitor, has been approved by FDA for the treatment of melanoma in combination with binimetinib. However, the mechanism of the drug works in colorectal cancer (CRC) is still unclear. In this study, the suppression of growth of CRC cells by encorafenib was investigated. The effects of treatment of encorafenib on pathways linked to cancer were studied, and the effective inhibition of cell proliferation was documented. Our findings showed that cell migration was inhibited by encorafenib through a likely involvement of MPP and TIMP modulation. Furthermore, encorafenib treatment also induced cell cycle arrest. In addition, induction of apoptosis in CRC cells by elevating levels of PUMA. These observations indicate the potential therapeutic efficacy of encorafenib on CRC.
Collapse
Affiliation(s)
- Jiangning Li
- Department of Laboratory Medicine, The First People's Hospital of Shenyang, 67 Qingquan Road, Dadong District, Shenyang, 110041, Liaoning, People's Republic of China.
| | - Xiaofeng Li
- Institute of Transfusion Medicine, Liaoning Blood Center, Shenyang, Liaoning, People's Republic of China
- Liaoning Provincial Key Laboratory for Blood Safety Research, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
48
|
Liu Y, Huang Y, Ding J, Liu N, Peng S, Wang J, Wang F, Zhang Y. Targeting Akt by SC66 triggers GSK-3β mediated apoptosis in colon cancer therapy. Cancer Cell Int 2019; 19:124. [PMID: 31168297 PMCID: PMC6509835 DOI: 10.1186/s12935-019-0837-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/25/2019] [Indexed: 12/13/2022] Open
Abstract
Background Colon cancer is one of the three common malignant tumors, with lower 5 years survival rate. Akt is an important therapeutic target, while SC66 is a novel allosteric AKT inhibitor, which enhances the therapeutic effect in several types of cancer. However, the molecular mechanisms of targeting AKT by SC66 during colon cancer therapy are not well understood. Methods The biological role of GSK-3β in colon cancer growth suppression induced by SC66 was detected in vitro and in vivo. Hoechst 33342 and crystal violet staining were used to determine whether targeting AKT affected apoptosis and cell proliferation. The CCK8 assay was utilized to analyze cell viability. The expression levels of Akt, GSK-3β, Bax, Bcl-xL, p53 and PUMA were measured by immune blotting. Xenograft mouse model was established to study the antitumor effect of SC66 in vivo. Results Our results show that SC66 induced significantly colon cancer cell apoptosis, accompanied with Akt inactivation. After AKT inhibition, activated GSK-3β interacted with Bax directly, leading to Bax oligomerization and activation. Knocking down GSK-3β abrogated SC66-triggered Bax activation and apoptosis, which was enhanced by over-expressed GSK-3β. In addition, the expression level of Bcl-xL was down-regulated while p53 had no function during SC66-induced apoptosis. Furthermore, colon cancer growth was suppressed by SC66 therapy in vivo. Conclusion Taken together, these data indicated that the novel small molecule AKT inhibitor SC66 shows visible antitumor effects via the AKT/GSK-3β/Bax axis in vitro and in vivo. Our results provide a rational basis for the development of targeting-GSK-3β, which may serve as a potential biomarker and yield meaningful benefits for colon cancer patients in the future.
Collapse
Affiliation(s)
- Yeying Liu
- Department of Health Management, The Third Xiangya Hospital, Central South University, College of Biology, Hunan University, No. 1, Denggao Road, Changsha, China
| | - Yuan Huang
- Department of Health Management, The Third Xiangya Hospital, Central South University, College of Biology, Hunan University, No. 1, Denggao Road, Changsha, China
| | - Jie Ding
- 3Department of Emergency Surgery, The Second Military Medical University, Shanghai, China
| | - Nannan Liu
- Department of Health Management, The Third Xiangya Hospital, Central South University, College of Biology, Hunan University, No. 1, Denggao Road, Changsha, China
| | - Shuang Peng
- Department of Health Management, The Third Xiangya Hospital, Central South University, College of Biology, Hunan University, No. 1, Denggao Road, Changsha, China
| | - Jiangang Wang
- Department of Health Management, The Third Xiangya Hospital, Central South University, College of Biology, Hunan University, No. 1, Denggao Road, Changsha, China
| | - Feng Wang
- 2Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, China
| | - Yingjie Zhang
- Department of Health Management, The Third Xiangya Hospital, Central South University, College of Biology, Hunan University, No. 1, Denggao Road, Changsha, China.,4Shenzhen Institute, Hunan University, Shenzhen, China
| |
Collapse
|
49
|
BET inhibitor I-BET151 sensitizes GBM cells to temozolomide via PUMA induction. Cancer Gene Ther 2019; 27:226-234. [PMID: 30518782 DOI: 10.1038/s41417-018-0068-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/05/2018] [Accepted: 11/10/2018] [Indexed: 12/19/2022]
Abstract
A significant roadblock in treatment of GBM multiforme (GBM) is resistance to temozolomide (TMZ). In this study, we investigated whether I-BET151, a specific BET inhibitor, could sensitize GBM cells to TMZ. Our findings showed that the action of I-BET151 could augment the effect of TMZ on cancer cells U251 and U87 cells. In U251 cells, administration of I-BET151 increased the TMZ-induced apoptosis GBM cells. I-BET151 remarkably enhanced the activities of caspase-3. In addition, I-BET151 promoted TMZ-induced migration and invasion in GBM cells. Moreover, I-BET151 increased the amount of reactive oxygen species as well as superoxide anions with a decrease of activity of SOD and the anti-oxidative properties of GBM cells. I-BET151 also induced increased PUMA expression, which is required for the functions of I-BET151 and regulates the synergistic cytotoxic effects of i-BET151 and TMZ in GBM cells. I-BET151 with TMZ also showed synergistic cytotoxic effects in vivo. These point out to an approach to tackle GBM using TMZ along with BET inhibitors.
Collapse
|