1
|
Zhang J, Wang X, Guo L, Xiao S, Meng D, Shang M, Sun X, Shi D, Zhao Y, Liu R, Huang S, Zeng X, Li J. Dual-responsive nanoscale ultrasound contrast agent as an oxidative stress amplifier for enhanced DNA damage in BRCA-proficient ovarian cancer. Mater Today Bio 2025; 32:101761. [PMID: 40270892 PMCID: PMC12017913 DOI: 10.1016/j.mtbio.2025.101761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
PARP inhibitor (PARPi)-based synthetic lethal therapies have displayed limited benefits in BRCA-proficient ovarian cancer. To potentiate the application of PARPi, an ultrasound contrast agent OLA-NDs for delivery of the PARPi olaparib (OLA) was established for enhancing DNA damage by blocking DNA repair. OLA-NDs were endowed with endogenous pH- and exogenous ultrasound (US)-responsiveness to target tumors, as well as contrast-enhanced US imaging for diagnostic and therapeutic integration. OLA-NDs could upregulate NOX4 to induce oxidative stress and sensitize BRCA wild-type A2780 cells to DNA oxidative damage through the utilization of ultrasound-targeted microbubble destruction (UTMD). In addition, the strategy further increased ROS production by interfering with mitochondrial function, thereby exacerbating DNA double-strand breaks (DSBs) and inducing mitochondria-mediated apoptosis. As a consequence, the combined application of UTMD and OLA-NDs demonstrated significant antitumor effects in vitro and in vivo. This combined strategy of amplifying oxidative damage improved lethality by promoting DNA DSBs and apoptosis with reduced adverse side effects, which would provide new insight for the clinical application of PARPi in BRCA-proficient ovarian cancer.
Collapse
Affiliation(s)
- Jialu Zhang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoxuan Wang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Lu Guo
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Shan Xiao
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Dong Meng
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Mengmeng Shang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiao Sun
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Dandan Shi
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yading Zhao
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Rui Liu
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Shuting Huang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xinyu Zeng
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Department of Ultrasound, Qilu Hospital (Qingdao) of Shandong University, Qingdao, Shandong, 266035, China
| |
Collapse
|
2
|
Chandramoorthy HC, Saleh RO, Altalbawy FMA, Mohammed JS, Ganesan S, Kundlas M, Premkumar J, Ray S, Mustafa YF, Abbas JK. Deciphering cGAS-STING signaling: implications for tumor immunity and hepatocellular carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04240-6. [PMID: 40332552 DOI: 10.1007/s00210-025-04240-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer and poses a significant global health challenge due to its rising incidence and associated mortality. Recent advancements in understanding the cytosolic DNA sensing, the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway have illuminated its critical role in the immune response to HCC. This narrative review deciphers the multifaceted involvement of cGAS-STING in HCC, mainly its function in detecting cytosolic DNA and initiating type I interferon (IFN-I) responses, which are pivotal for antitumor immunity. This immune response is crucial for combating pathogens and can play a role in tumor surveillance. In the context of HCC, the tumor microenvironment (TME) can exhibit immune resistance, which complicates the effectiveness of therapies like immune checkpoint blockade. However, activation of the cGAS-STING pathway has been shown to stimulate antitumor immune responses, enhancing the activity of dendritic cells and cytotoxic T lymphocytes. There is ongoing research into STING agonists as a treatment strategy for HCC, with some studies indicating promising results in prolonging survival and enhancing the immune response against tumors. By summarizing current knowledge and identifying research gaps, this review aims to provide a comprehensive overview of cGAS-STING signaling in HCC and its future directions, emphasizing its potential as a therapeutic target in the fight against HCC. Understanding these mechanisms could pave the way for innovative immunotherapeutic approaches that enhance the efficacy of existing treatments and improve patient prognosis.
Collapse
Affiliation(s)
- Harish C Chandramoorthy
- Department of Microbiology & Clinical Parasitology, College of Medicine & Central Research Laboratories, King Khalid University, Abha, Saudi Arabia
| | - Raed Obaid Saleh
- Department of Medical Laboratories Techniques, College of Health and Medical Techniques, University of Al Maarif, Al Anbar, 31001, Iraq.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Jaafaru Sani Mohammed
- Medical Analysis Department, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - J Premkumar
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Jamal K Abbas
- Department of Pharmaceutical, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|
3
|
Liu J, Jiao X, Mu W, Li H, Xia Y, Wu Y, Zhu L, Zhong Q, Pan W, Liu X, Xiang M, Cheng J, Lin H, Zhao X, Ding Z, Hu G, Mills GB, Ma D, Gao Q, Fang Y. Mitigating T cell DNA damage during PARP inhibitor treatment enhances antitumor efficacy. Sci Transl Med 2025; 17:eadr5861. [PMID: 40333991 DOI: 10.1126/scitranslmed.adr5861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/12/2025] [Indexed: 05/09/2025]
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPis) are a class of agents targeting DNA damage repair that have become standard therapy for epithelial ovarian cancer (EOC) and multiple other solid tumors. In addition to targeting DNA damage repair, PARPis actively modulate antitumor immune responses, with efficacy being partially dependent on T cell activity. Here, we found that patient T cells sustain DNA damage during PARPi treatment, which reduces treatment efficacy. Leveraging paired pre- and posttreatment tumor samples from a clinical trial of patients with EOC treated with neoadjuvant niraparib as monotherapy, we showed that the PARPi caused DNA damage, slowed proliferation, and increased apoptosis in T cells, which we validated both in vitro and in mouse models. A genome-wide CRISPR (clustered regularly interspaced short palindromic repeats) knockout screen in primary human T cells identified PARP1 as the principal mediator of PARPi-induced T cell death. T cell-specific deletion of PARP1 or mutating Parp1 at its binding sites in transgenic mice led to reduced T cell DNA damage during PARPi treatment, resulting in improved efficacy of PARPis, alone or in combination with immune checkpoint inhibition. We then engineered PARPi-tolerant CAR T cells using cytosine base editing, which decreased PARPi-induced PARP1 trapping and led to reduced PARPi-induced DNA damage, resulting in superior antitumor efficacy in xenograft models compared with parental CAR T cells. This study highlights the relevance of PARPi-induced DNA damage to T cells and suggests opportunities to improve the efficacy of PARPis as monotherapy or in combination with immunotherapy.
Collapse
Affiliation(s)
- Jiahao Liu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaofei Jiao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huayi Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Xia
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yijie Wu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qing Zhong
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen Pan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xingzhe Liu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minghua Xiang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiali Cheng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haolong Lin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuejiao Zhao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Division of Oncological Sciences, Oregon Heath and Sciences University, Portland, OR 97201, USA
- Knight Cancer Institute, Portland, OR 97201, USA
| | - Zhiyong Ding
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Jinan, 250101, China
| | - Guang Hu
- Nanjing IASO Biotherapeutics Ltd., Nanjing, 210043, China
| | - Gordon B Mills
- Division of Oncological Sciences, Oregon Heath and Sciences University, Portland, OR 97201, USA
- Knight Cancer Institute, Portland, OR 97201, USA
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qinglei Gao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yong Fang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
4
|
Aquino A, Franzese O. Reciprocal Modulation of Tumour and Immune Cell Motility: Uncovering Dynamic Interplays and Therapeutic Approaches. Cancers (Basel) 2025; 17:1547. [PMID: 40361472 DOI: 10.3390/cancers17091547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Dysregulated cell movement is a hallmark of cancer progression and metastasis, the leading cause of cancer-related mortality. The metastatic cascade involves tumour cell migration, invasion, intravasation, dissemination, and colonisation of distant organs. These processes are influenced by reciprocal interactions between cancer cells and the tumour microenvironment (TME), including immune cells, stromal components, and extracellular matrix proteins. The epithelial-mesenchymal transition (EMT) plays a crucial role in providing cancer cells with invasive and stem-like properties, promoting dissemination and resistance to apoptosis. Conversely, the mesenchymal-epithelial transition (MET) facilitates metastatic colonisation and tumour re-initiation. Immune cells within the TME contribute to either anti-tumour response or immune evasion. These cells secrete cytokines, chemokines, and growth factors that shape the immune landscape and influence responses to immunotherapy. Notably, immune checkpoint blockade (ICB) has transformed cancer treatment, yet its efficacy is often dictated by the immune composition of the tumour site. Elucidating the molecular cross-talk between immune and cancer cells, identifying predictive biomarkers for ICB response, and developing strategies to convert cold tumours into immune-active environments is critical to overcoming resistance to immunotherapy and improving patient survival.
Collapse
Affiliation(s)
- Angelo Aquino
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
5
|
Nihira NT, Kudo R, Ohta T. Inflammation and tumor immune escape in response to DNA damage. Semin Cancer Biol 2025; 110:36-45. [PMID: 39938581 DOI: 10.1016/j.semcancer.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/08/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
Senescent and cancer cells share common inflammatory characteristics, including factors of the senescence-associated secretory phenotype (SASP) and the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. Inflammation in the tumor microenvironment not only provides an opportunity for immune cells to attack cancer cells, but also promotes cancer invasion and metastasis. Immune checkpoint molecule PD-L1 is transcriptionally induced by inflammation, and the immunological state of PD-L1-positive tumors influences the efficacy of Immune checkpoint inhibitors (ICIs). ICIs are effective against the PD-L1-positive "hot" tumors; however, the non-immunoactive "cold" tumors that express PD-L1 rarely respond to ICIs, suggesting that converting PD-L1-positive "cold" tumors into "hot" tumors would improve the efficacy of ICIs. To eliminate cancer via the innate immune system, a therapeutic strategy for manipulating inflammatory responses must be established. To date, the molecular mechanisms of inflammation-induced tumorigenesis are not yet fully understood. However, it is becoming clear that the regulatory mechanisms of inflammation in cancer via the cGAS-STING pathway play an important role in both cancer and sensescent cells. In this review, we focus on inflammation and immune escape triggered by DNA damage in cancer and senescent cells.
Collapse
Affiliation(s)
- Naoe Taira Nihira
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Rei Kudo
- Division of Cancer RNA Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan.
| |
Collapse
|
6
|
Zhang W, Pan X, Wang L, Li W, Dai X, Zheng M, Guo H, Chen X, Xu Y, Wu H, He Q, Yang B, Ding L. Selective BCL-2 inhibitor triggers STING-dependent antitumor immunity via inducing mtDNA release. J Immunother Cancer 2025; 13:e010889. [PMID: 40300857 PMCID: PMC12056644 DOI: 10.1136/jitc-2024-010889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/10/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND The stimulator of interferon genes (STING) signaling pathway has been demonstrated to propagate the cancer-immunity cycle and remodel the tumor microenvironment and has emerged as an appealing target for cancer immunotherapy. Interest in STING agonist development has increased, and the candidates hold significant promise; however, most are still in the early stages of human clinical trials. We found that ABT-199 activated the STING pathway to enhance the immunotherapeutic effect, and provided a ready-to-use small molecule drug for STING signaling activation. METHODS Phosphorylation of STING, TBK1, and IRF3, as well as activation of the interferon-I (IFN-I) signaling pathway, were detected following ABT-199 treatment in various colorectal cancer cells. C57BL/6J and BALB/c mice with subcutaneous tumors were employed to evaluate the in vivo therapeutic effects of the ABT-199 and anti-PD-L1 combination. Flow cytometry and ELISA were employed to analyze the level and activity of tumor-infiltrating T lymphocytes. Immunofluorescence and quantitative real-time PCR were conducted to assess the source and accumulation of double stranded DNA (dsDNA) in the cytoplasm. Chemical cross-linking assay, co-immunoprecipitation, and CRISPR/Cas9-mediated knockout were performed to investigate the molecular mechanism underlying ABT-199-induced voltage-dependent anion channel protein 1 (VDAC1) oligomerization and mitochondrial DNA (mtDNA) release. RESULTS ABT-199 significantly activated the STING signaling pathway in various colorectal cancer cells, which was evidenced by increased phosphorylation of TBK1 and IRF3, and upregulation of C-C motif chemokine ligand 5 (CCL5), C-X-C motif chemokine ligand 10 (CXCL10), and interferon beta transcription. By promoting chemokine expression and cytotoxic T-cell infiltration, ABT-199 promoted antitumor immunity and synergized with anti-PD-L1 therapy to improve antitumor efficacy. ABT-199 induced mtDNA accumulation in the cytoplasm and triggered STING signaling via the canonical pathway. cGAS or STING-KO models significantly abolished both STING signaling activation and the antitumor efficacy of ABT-199. Mechanically, ABT-199 promoted VDAC1 oligomerization by disturbing the binding between BCL-2 and VDAC1, thereby facilitating mtDNA release into the cytoplasm. ABT-199-triggered STING signaling was attenuated when VADC1 was knocked out. Consistently, the antitumor effect of ABT-199 in vivo was abolished in the absence of VDAC1. CONCLUSIONS Our results identify a ready-to-use small molecule compound for STING activation, reveal the underlying molecular mechanism through which ABT-199 activates the STING signaling pathway, and provide a theoretical basis for the use of ABT-199 in cancer immunotherapy.
Collapse
Affiliation(s)
- Wenxin Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaohui Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Longsheng Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wen Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoyang Dai
- Center of Drug Safety Evaluation and Research, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingming Zheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongjie Guo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xi Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanjun Xu
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Honghai Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiaojun He
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ling Ding
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Wang S, Xia Y, Qian Y, Pan W, Huang P, Jin N, Li X, Xu C, Liu D, Zhao G, Fang Y, Nicot C, Gao Q. PARP inhibition elicits NK cell-associated immune evasion via potentiating HLA-G expression in tumor. Drug Resist Updat 2025; 81:101247. [PMID: 40328191 DOI: 10.1016/j.drup.2025.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025]
Abstract
Resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) poses a significant challenge to enhancing the efficacy of cancer treatments. Beyond the cellular mechanisms intrinsic to tumor cells, the modulation of the tumor immune microenvironment is crucial in dictating the responsiveness to pharmacological interventions. Thus, there is a pressing need to elucidate the intricate interplay between PARPi and antitumor immune responses and to develop an optimized combinatorial therapeutic approach. In this study, using matched tumor samples before and after neoadjuvant monotherapy with the PARPi niraparib in a prospective clinical trial (NCT04507841), we observed a significant increase in natural killer (NK) cell infiltration post-treatment. However, this was not accompanied by the expected enhancement in their cytotoxic functions. This observation underscores the necessity to optimize the antitumor potential of NK cells by enhancing their cytotoxic capabilities. Upon exposure to niraparib, tumor cells, particularly those with wild-type EGFR, exhibited a pronounced upregulation of human leukocyte antigen G (HLA-G), an immune checkpoint impeding NK cell functions. Niraparib promotes EGFR internalization, which in turn diminishes AKT/mTOR signaling, leading to the increased transcriptional activity of the transcription factor EB (TFEB) and subsequent enhancement of HLA-G expression. The combination of niraparib with HLA-G blockade not only augmented NK cell-mediated tumor lysis in vitro but also synergistically inhibited tumor growth in humanized patient-derived xenograft models. Collectively, our results shed light on a previously unrecognized immune evasion mechanism and offer a compelling argument for the integration of HLA-G blockade with PARPi in cancer therapy.
Collapse
Affiliation(s)
- Siyuan Wang
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yu Xia
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yiyu Qian
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen Pan
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pu Huang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ning Jin
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Li
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cheng Xu
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan Liu
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangnian Zhao
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong Fang
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Christophe Nicot
- University of Kansas Medical Center, Department of Pathology and Laboratory Medicine, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
8
|
Wang S, Huang J, Zeng T, Chen Y, Xu Y, Zhang B. Parps in immune response: Potential targets for cancer immunotherapy. Biochem Pharmacol 2025; 234:116803. [PMID: 39965743 DOI: 10.1016/j.bcp.2025.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/24/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025]
Abstract
Immunotherapy in clinical application faces numerous challenges pertaining to both effectiveness and safety. Poly(ADP-ribose) polymerases (PARPs) exhibit multifunctional characteristics by transferring ADP-ribose units to target proteins or nucleic acids. In recent years, more and more attention has been paid to the biological function of PARPs in immune response. This article reviews the relationship between PARP family members and immune response. PARP1 and PARP2 inhibit anti-tumor immune activity by regulating immune checkpoint expression and the cGAS/STING signaling pathway. PARP7 and PARP11 play an important role in promoting immunosuppressive tumor microenvironment. PARP9 promotes the production of Type I interferon and the infiltration of macrophages. PARP13 is a key tumor suppressor that promotes anti-tumor immune response. PARP14 plays a crucial role in promoting the differentiation of macrophages towards the M2 pro-tumor phenotype. Summarizing the molecular mechanisms of PARP7, PARP9, PARP11, PARP13 and PARP14 in regulating immune response is helpful to deepen our comprehension of the role of PARPs in immune function regulation. This provides a reference and basis for targeted PARP-based cancer treatment strategies and drug development. PARP1, PARP7 inhibitors or other PARP inhibitors in combination with immune checkpoint inhibitors or other immunotherapy strategies may be a more effective cancer therapy.
Collapse
Affiliation(s)
- Shuping Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Jingling Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tingyu Zeng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yali Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yungen Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of New Drug Design and Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
9
|
Wang C, Han X, Kong S, Zhang S, Ning H, Wu F. Deciphering the mechanisms of PARP inhibitor resistance in prostate cancer: Implications for precision medicine. Biomed Pharmacother 2025; 185:117955. [PMID: 40086424 DOI: 10.1016/j.biopha.2025.117955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
Prostate cancer is a leading malignancy among men. While early-stage prostate cancer can be effectively managed, metastatic prostate cancer remains incurable, with a median survival of 3-5 years. The primary treatment for advanced prostate cancer is androgen deprivation therapy (ADT), but resistance to ADT often leads to castrationresistant prostate cancer (CRPC), presenting a significant therapeutic challenge. The advent of precision medicine has introduced promising new treatments, including PARP inhibitors (PARPi), which target defects in DNA repair mechanisms in cancer cells. PARPi have shown efficacy in treating advanced prostate cancer, especially in patients with metastatic CRPC (mCRPC) harboring homologous recombination (HR)-associated gene mutations. Despite these advancements, resistance to PARPi remains a critical issue. Here, we explored the primary mechanisms of PARPi resistance in prostate cancer. Key resistance mechanisms include homologous recombination recovery through reverse mutations in BRCA genes, BRCA promoter demethylation, and non-degradation of mutated BRCA proteins. The tumor microenvironment and overactivation of the base excision repair pathway also play significant roles in bypassing PARPi-induced synthetic lethality. In addition, we explored the clinical implications and therapeutic strategies to overcome resistance,emphasizing the need for precision medicine approaches. Our findings highlight the need for comprehensive strategies to improve PARPi sensitivity and effectiveness,ultimately aiming to extend patient survival and improve the quality of life for those with advanced prostate cancer. As our understanding of PARPi resistance evolves, more diverse and effective individualized treatment regimens will emerge.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, PR China
| | - Xiaoran Han
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China
| | - Shaoqiu Kong
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China
| | - Shanhua Zhang
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China
| | - Hao Ning
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, PR China; Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China.
| | - Fei Wu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, PR China; Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China.
| |
Collapse
|
10
|
Lin YT, Meng R, Zhang SM, Zhou H, Chen H, Liang JL, Yao WQ, Chen WH, Zhang XZ. Acid-Responsive Biocompatible Hydrogel Modulating Tumor DNA Self-Repair Collaborated with Chemotherapy for Boosting STING Pathway-Associated Immunotherapy. NANO LETTERS 2025; 25:3670-3680. [PMID: 39989444 DOI: 10.1021/acs.nanolett.5c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
In this study, an acid-responsive hydrogel (ODCM@AZD) encapsulating doxorubicin (DOX), Mn2+, and AZD2281 is rationally engineered for synergistic chemo-immunotherapy. Notably, ODCM@AZD can be specifically degraded within the tumor microenvironment to release the loaded therapeutic agents. Specifically, the released DOX kills tumor cells to produce abundant cytoplasmic DNA, while the freed AZD2281 inhibits the DNA repair pathway of tumor cells to enhance the chemotherapeutic effect and promote the accumulation of damaged DNA, which is further aggravated by reactive oxygen species (ROS) generated from the Mn2+-mediated Fenton-like reaction. Not only that, Mn2+ simultaneously increases the sensitivity of cGAS to cytoplasmic DNA to stimulate the cGAS-STING pathway and synergizes with DOX-mediated immunogenic cell death (ICD) to initiate powerful antitumor immune responses. More importantly, the combination of ODCM@AZD with immune checkpoint blockade (ICB) significantly improves systemic tumoricidal immunity and potentiates therapeutic effects on distant and recurrent tumor models, providing a new idea for antitumor chemo-immunotherapy.
Collapse
Affiliation(s)
- Yan-Tong Lin
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan 430072, P. R. China
| | - Ran Meng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan 430072, P. R. China
| | - Shi-Man Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan 430072, P. R. China
| | - Hao Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan 430072, P. R. China
| | - Hong Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan 430072, P. R. China
| | - Jun-Long Liang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan 430072, P. R. China
| | - Wei-Qin Yao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan 430072, P. R. China
| | - Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
11
|
Ran X, Wu BX, Vidhyasagar V, Song L, Zhang X, Ladak RJ, Teng M, Ba-Alawi W, Philip V, He HH, Sonenberg N, Lok BH. PARP inhibitor radiosensitization enhances anti-PD-L1 immunotherapy through stabilizing chemokine mRNA in small cell lung cancer. Nat Commun 2025; 16:2166. [PMID: 40038278 PMCID: PMC11880360 DOI: 10.1038/s41467-025-57257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/17/2025] [Indexed: 03/06/2025] Open
Abstract
Immunotherapy (IO) is an effective treatment for various cancers; however, the benefits are modest for small cell lung cancer (SCLC). The poor response of SCLC to anti-PD-1/PD-L1 IO is due in part to the lack of cytotoxic T cells because of limited chemokine expression from SCLC tumors. Immunogenic radiosensitizers that enhance chemokine expression may be a promising strategy forward. Here, we show that the PARP inhibitors (PARPi), including olaparib, talazoparib and veliparib, in combination with radiotherapy (RT) enhance the immune activation and anti-tumor efficacy in SCLC cell lines, patient-derived xenograft (PDX) and syngeneic mouse models. The effect is further enhanced by continued delivery of adjuvant PARPi. The combination treatment (PARPi with RT) activates the cGAS-STING pathway and increases the mRNA levels of the T cell chemo-attractants CCL5 and CXCL10. In addition to upregulation of transcription, the combination treatment increases chemokine CXCL10 protein levels via stabilization of CXCL10 mRNA in an EIF4E2-dependent manner. The incorporation of anti-PD-L1 IO into the PARPi with RT combination therapy further improves the anti-tumor efficacy by increasing T cell infiltration and function. This study thus provides a proof of principle for the combination of PARP inhibitors, RT and anti-PD-L1 IO as a treatment strategy for SCLC.
Collapse
Affiliation(s)
- Xiaozhuo Ran
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Bell Xi Wu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Lifang Song
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Xu Zhang
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Reese Jalal Ladak
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Mona Teng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Wail Ba-Alawi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Vivek Philip
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Housheng H He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nahum Sonenberg
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Benjamin H Lok
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Moser SC, Jonkers J. Thirty Years of BRCA1: Mechanistic Insights and Their Impact on Mutation Carriers. Cancer Discov 2025; 15:461-480. [PMID: 40025950 PMCID: PMC11893084 DOI: 10.1158/2159-8290.cd-24-1326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/04/2024] [Accepted: 12/06/2024] [Indexed: 03/04/2025]
Abstract
SIGNIFICANCE Here, we explore the impact of three decades of BRCA1 research on the lives of mutation carriers and propose strategies to improve the prevention and treatment of BRCA1-associated cancer.
Collapse
Affiliation(s)
- Sarah C. Moser
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Ji S, Chen X, Yu Y, Jia Q, Zhang X, Gao Z. Efficacy comparison of PD-1/PD-L1 inhibitor monotherapy and combination with PARPis or antiangiogenic agents in advanced or recurrent endometrial cancer: a systematic review and network meta-analysis. BMC Womens Health 2025; 25:93. [PMID: 40022109 PMCID: PMC11869547 DOI: 10.1186/s12905-025-03612-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/17/2025] [Indexed: 03/03/2025] Open
Abstract
PURPOSE The network meta-analysis (NMA) was aimed to compare and assess the effectiveness of programmed cell death 1 (PD-1)/ programmed cell death ligand 1 (PD-L1) inhibitor monotherapy or combination therapy with other agents for individuals with advanced or recurrent endometrial cancer (EC). METHODS The NMA was registered on the PROSPERO website (ID: CRD42024545968) and multiple databases were queried to retrieve the articles. It assessed the progression-free survival (PFS) and overall survival (OS) of persons with advanced or recurrent EC, as well as those with deficient mismatch repair (dMMR) and proficient mismatch repair (pMMR) in terms of PFS. RESULTS The NMA included 12 studies involving a total of 4,515 patients. Compared to chemotherapy, the PD-1/PD-L1 inhibitor monotherapy (hazard ratio [HR], 0.59; 95% confidence interval [CI]: 0.44-0.78) in PFS, combination therapy with poly (ADP-ribose) polymerase inhibitors (PARPis) (HR, 0.53; 95% CI: 0.32-0.89) or with antiangiogenic agents (HR, 0.48; 95% CI: 0.25-0.83) all showed significant improvements in PFS. PD-1/PD-L1 inhibitor monotherapy resulted in a significantly higher OS (HR, 0.61; 95% CI: 0.37-0.97) compared to chemotherapy. Combination therapy with antiangiogenic agents demonstrated the highest efficacy in extending PFS, while the combination with PARPis had the best performance in extending OS. Patients with dMMR and pMMR subtypes derive greater benefits from PD-1/ PD-L1 inhibitor monotherapy and PD-1/PD-L1 inhibitors combined with PARPis respectively. CONCLUSION Monotherapy with PD-1/PD-L1 inhibitors and combination therapies with PARPis or antiangiogenic agents demonstrate significant potential for individuals with advanced or recurrent EC.
Collapse
Affiliation(s)
- Shiya Ji
- Department of Health Education, Nanjing Municipal Center for Disease Control and Prevention, No.16 Kunlun Road, Nanjing, 210003, Jiangsu Province, China.
| | - Xupeng Chen
- Department of Health Education, Nanjing Municipal Center for Disease Control and Prevention, No.16 Kunlun Road, Nanjing, 210003, Jiangsu Province, China
| | - Yebo Yu
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing, China
| | - Qiuping Jia
- Department of Health Education, Jiangning District Center for Disease Control and Prevention, Nanjing, China
| | - Xingxing Zhang
- Department of Health Education, Jiangning District Center for Disease Control and Prevention, Nanjing, China
| | - Zixin Gao
- High School Affiliated to Nanjing Normal University, Nanjing, China
| |
Collapse
|
14
|
Lu Y, Huang Y, Zhu C, Li Z, Zhang B, Sheng H, Li H, Liu X, Xu Z, Wen Y, Zhang J, Zhang L. Cancer brain metastasis: molecular mechanisms and therapeutic strategies. MOLECULAR BIOMEDICINE 2025; 6:12. [PMID: 39998776 PMCID: PMC11861501 DOI: 10.1186/s43556-025-00251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/06/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Brain metastases (BMs) are the most common intracranial tumors in adults and the major cause of cancer-related morbidity and mortality. The occurrence of BMs varies according to the type of primary tumors with most frequence in lung cancer, melanoma and breast cancer. Among of them, lung cancer has been reported to have a higher risk of BMs than other types of cancers with 40 ~ 50% of such patients will develop BMs during the course of disease. BMs lead to many neurological complications and result in a poor quality of life and short life span. Although the treatment strategies were improved for brain tumors in the past decades, the prognosis of BMs patients is grim. Poorly understanding of the molecular and cellular characteristics of BMs and the complicated interaction with brain microenvironment are the major reasons for the dismal prognosis of BM patients. Recent studies have enhanced understanding of the mechanisms of BMs. The newly identified potential therapeutic targets and the advanced therapeutic strategies have brought light for a better cure of BMs. In this review, we summarized the mechanisms of BMs during the metastatic course, the molecular and cellular landscapes of BMs, and the advances of novel drug delivery systems for overcoming the obstruction of blood-brain barrier (BBB). We further discussed the challenges of the emerging therapeutic strategies, such as synergistic approach of combining targeted therapy with immunotherapy, which will provide vital clues for realizing the precise and personalized medicine for BM patients in the future.
Collapse
Affiliation(s)
- Yu Lu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunhang Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chenyan Zhu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhidan Li
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui Sheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haotai Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xixi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwen Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Wen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liguo Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Pasaol JC, Śmieszek A, Pawlak A. Exploring the Therapeutic Potential of BRCA1 and BRCA2 as Targets in Canine Oncology: A Comprehensive Review of Their Role in Cancer Development and Treatment. Int J Mol Sci 2025; 26:1768. [PMID: 40004231 PMCID: PMC11855874 DOI: 10.3390/ijms26041768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Tumor diseases represent a significant global health challenge, impacting both humans and companion animals, notably dogs. The parallels observed in the pathophysiology of cancer between humans and dogs underscore the importance of advancing comparative oncology and translational research methodologies. Furthermore, dogs serve as valuable models for human cancer research due to shared environments, genetics, and treatment responses. In particular, breast cancer gene 1 (BRCA1) and breast cancer gene 2 (BRCA2), which are critical in human cancer, also influence the development and progression of canine tumors. The role of BRCA1 and BRCA2 in canine cancers remains underexplored, but its potential significance as therapeutic targets is strongly considered. This systematic review aims to broaden the discussion of BRCA1 and BRCA2 beyond mammary tumors, exploring their implications in various canine cancers. By emphasizing the shared genetic underpinnings between species and advocating for a comparative approach, the review indicates the potential of BRCA genes as targets for innovative cancer therapies in dogs, contributing to advances in human and veterinary oncology.
Collapse
Affiliation(s)
| | | | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland; (J.C.P.); (A.Ś.)
| |
Collapse
|
16
|
Yuan M, Shi L, Liu Y, Xiang K, Zhang Y, Zhou Y, Wang J, Ji M, Hou P. Disulfiram/copper triggers cGAS-STING innate immunity pathway via ROS-induced DNA damage that potentiates antitumor response to PD-1 checkpoint blockade. Int J Biol Sci 2025; 21:1730-1748. [PMID: 39990655 PMCID: PMC11844283 DOI: 10.7150/ijbs.105575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Immune checkpoint blockades (ICBs) have emerged as the leading strategy for treating advanced malignancies; however, their clinical efficacy is frequently constrained by primary or acquired resistance. Harnessing innate immune signaling to increase lymphocyte infiltration into tumors has been recognized a promising approach to augment the anti-cancer immune response to ICBs. Disulfiram (DSF), an FDA-approved drug for chronic alcoholism, has shown potent anti-tumor effect, particularly when used in combination with copper (Cu). Here, we demonstrated a combination treatment of DSF and Cu (DSF/Cu) robustly activated cancer cell-intrinsic cGAS-STING-dependent innate immune signaling pathway. Further studies revealed that DSF/Cu caused mitochondrial and nuclear DNA damage and the release of cytosolic dsDNA by inducing excessive reactive oxygen species (ROS) generation, thereby triggering innate immunity and enhancing anti-tumor effects. Moreover, DSF/Cu significantly increased the intratumoral infiltration of CD8+ cytotoxic lymphocytes and natural killer (NK) cells, and potentiated the therapeutic efficacy of PD-1 checkpoint blockade in murine tumor models. Overall, our findings provide a rationale underlying the anti-cancer and immunomodulatory function of DSF/Cu and highlight the potential of repurposing DSF to improve responses to ICBs in cancer patients.
Collapse
Affiliation(s)
- Mengmeng Yuan
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Liang Shi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Yan Liu
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ke Xiang
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yan Zhang
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ye Zhou
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jianling Wang
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Peng Hou
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
17
|
Xia J, Shen Y, Jiang Q, Li X, Yan Y, Xu Z, Zhou L. Poly (ADP-Ribose) Polymerase 1 Induces Cyclic GMP-AMP Synthase-stimulator of Interferon Genes Pathway Dysregulation to Promote Immune Escape of Colorectal Cancer Cells. J Immunother 2025; 48:35-45. [PMID: 39787528 DOI: 10.1097/cji.0000000000000543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/10/2024] [Indexed: 01/12/2025]
Abstract
Colorectal cancer (CRC) ranks third globally in cancer incidence and mortality, posing a significant human concern. Recent advancements in immunotherapy are noteworthy. This study explores immune modulation for CRC treatment. Initially targeting poly (ADP-ribose) polymerase 1 (PARP-1), a gene overexpressed in CRC tissues per The Cancer Genome Atlas, we examined its correlation with immune cell infiltration using the Tumor Immune Estimation Resource tool. Quantitative reverse transcription polymerase chain reaction assessed PARP-1 mRNA and inflammation-related gene expression in tumor tissues and cells. Assessing CD8 + T-cell proliferation and cytotoxicity towards HCT116 cells involved carboxyfluorescein diacetate succinimidyl ester and lactate dehydrogenase kits. Chemotaxis was gauged using a Transwell system in a CD8 + T-cell coculture setup, with immunofluorescence revealing cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) levels in HCT116 cells. Enzyme-linked immunosorbent assay kits measured CD8 + T-cell cytokine secretion. The findings suggested that PARP-1 was overexpressed in CRC tissues and cells and this overexpression was positively correlated with Treg cell infiltration. Overexpression of PARP-1 could significantly reduce the proportion of cGAS and STING-positive cells in HCT116 cells, dampen the proliferation, tumor-killing capacity, and chemotaxis of CD8 + T cells, and inhibit the secretion of related cytokines. The introduction of STING agonists could reverse the effects caused by overexpressed PARP-1. In vivo experiments affirmed the independent anti-tumor effects of PARP-1 inhibitors and STING agonists, synergistically inhibiting tumor growth. Silencing PARP-1 in HCT116 cells potentially boosts CD8 + T-cell activity against these cells through the cGAS-STING pathway.
Collapse
Affiliation(s)
- Jianhong Xia
- Department of Radiation Oncology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, China
| | - Yue Shen
- Department of Radiation Oncology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, China
| | - Qian Jiang
- Department of Radiation Oncology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, China
| | - Xin Li
- Department of Radiation Oncology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, China
| | - Yan Yan
- Department of Radiation Oncology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, China
| | - Zhi Xu
- Medical Affairs, ICON Public Limited Company (ICON Plc), Beijing, China
| | - Liqing Zhou
- Department of Radiation Oncology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, China
| |
Collapse
|
18
|
Doro Pereira L, Wielgos-Bonvallet M, Misirlioglu S, Khodadai-Jamayran A, Jelinic P, Levine DA. PARP Inhibitors Differentially Regulate Immune Responses in Distinct Genetic Backgrounds of High-Grade Serous Tubo-Ovarian Carcinoma. CANCER RESEARCH COMMUNICATIONS 2025; 5:339-348. [PMID: 39851178 PMCID: PMC11836641 DOI: 10.1158/2767-9764.crc-24-0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/02/2024] [Accepted: 01/21/2025] [Indexed: 01/26/2025]
Abstract
SIGNIFICANCE This work highlights how different PARPis, especially talazoparib, modulate immune-related gene expression in ovarian cancer cells, independent of the cGAS-STING pathway. These findings may improve our understanding of how different PARPis affect the immune system in various genetic backgrounds.
Collapse
Affiliation(s)
- Luiza Doro Pereira
- Division of Gynecologic Oncology, Department of OB/GYN, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Monica Wielgos-Bonvallet
- Division of Gynecologic Oncology, Department of OB/GYN, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Selim Misirlioglu
- Division of Gynecologic Oncology, Department of OB/GYN, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Alireza Khodadai-Jamayran
- Department of Pathology, Applied Bioinformatics Laboratories, NYU School of Medicine, New York, New York
| | - Petar Jelinic
- Division of Gynecologic Oncology, Department of OB/GYN, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Douglas A. Levine
- Division of Gynecologic Oncology, Department of OB/GYN, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| |
Collapse
|
19
|
Gray JE, Schenker M, Şendur MAN, Leonova V, Kowalski D, Kato T, Orlova R, Yang JCH, Langleben A, Pilz A, Ungureanu A, Mak MP, De Angelis F, Aggarwal H, Zimmer Z, Zhao B, Shamoun M, Kim TM. The Phase 3 KEYLYNK-006 Study of Pembrolizumab Plus Olaparib Versus Pembrolizumab Plus Pemetrexed as Maintenance Therapy for Metastatic Nonsquamous NSCLC. J Thorac Oncol 2025; 20:219-232. [PMID: 39521434 DOI: 10.1016/j.jtho.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/11/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Poly (adenosine diphosphate-ribose) inhibitors, including olaparib, upregulate programmed cell death ligand 1, which may increase the efficacy of anti-programmed cell death protein 1 and anti-programmed cell death ligand 1 therapies. METHODS In the phase 3 KEYLYNK-006 trial (NCT03976323), eligible adults with previously untreated metastatic nonsquamous NSCLC without targetable genetic alterations who had complete response, partial response, or stable disease after induction therapy with four cycles of pembrolizumab 200 mg every three weeks, pemetrexed 500 mg/m2, and carboplatin area under the concentration-time curve 5 mg/mL/min or cisplatin 75 mg/m2 were randomized in a one-to-one ratio to olaparib 300 mg orally twice daily or pemetrexed every three weeks, both given with up to 31 cycles of pembrolizumab every three weeks. Dual primary endpoints were progression-free survival (PFS) and overall survival (OS). Progression-free survival was tested at interim analysis 2 (i.e., final PFS analysis) and OS at final analysis (FA). RESULTS Of 1003 patients who received induction therapy, 672 (67.0%) were randomized to pembrolizumab plus olaparib (n = 337) or pembrolizumab plus pemetrexed (n = 335) in the intention-to-treat population. Median follow-up at FA was 39.9 (range: 28.1-51.5) months. At interim analysis 2, the median (95% confidence interval [CI]) PFS was 7.1 (5.6-8.7) months versus 8.3 (6.9-11.5) months in the olaparib versus pemetrexed groups (hazard ratio = 1.12, 95% CI: 0.92-1.36, p = 0.87). At FA, the median (95% CI) OS was 20.7 (18.0-24.8) months versus 23.0 (19.0-26.4) months (hazard ratio = 1.04, 95% CI: 0.87-1.25, p = 0.6649). Grade 3 to 5 maintenance treatment-related adverse events occurred in 26.1% versus 30.1% of patients, respectively. CONCLUSION Pembrolizumab plus maintenance olaparib did not improve PFS or OS versus pembrolizumab plus pemetrexed in previously untreated metastatic nonsquamous NSCLC without targetable genetic alterations.
Collapse
Affiliation(s)
| | - Michael Schenker
- Sf Nectarie Oncology Center Craiova and the University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Mehmet Ali Nahit Şendur
- Ankara Yıldırım Beyazıt University and Department of Oncology, Ankara Bilkent City Hospital, Ankara, Türkiye
| | | | - Dariusz Kowalski
- The Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Rashida Orlova
- St. Petersburg State University, St. Petersburg State Budgetary Healthcare Institution City Clinical Oncological Dispensary, Saint-Petersburg, Russia
| | - James Chih-Hsin Yang
- National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan
| | - Adrian Langleben
- Department of Oncology, St. Mary's Hospital, McGill University, Montreal, Quebec, Canada
| | - Arnold Pilz
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
| | | | | | - Flavia De Angelis
- Integrated Health and Social Services Centres, Montérégie Centre, Greenfield Park, Quebec, Canada
| | | | | | - Bin Zhao
- Merck & Co., Inc., Rahway, New Jersey
| | | | - Tae Min Kim
- Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
20
|
Liang B, Khan M, Storts H, Zhang EH, Zheng X, Xing X, Claybon H, Wilson J, Li C, Jin N, Fishel R, Miles WO, Wang JJ. Riluzole Enhancing Anti-PD-1 Efficacy by Activating cGAS/STING Signaling in Colorectal Cancer. Mol Cancer Ther 2025; 24:131-140. [PMID: 39382075 PMCID: PMC11695182 DOI: 10.1158/1535-7163.mct-24-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/09/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Colorectal cancer is the second leading cause of cancer mortality in the United States. Although immune checkpoint blockade therapies including anti-PD-1/PD-L1 have been successful in treating a subset of patients with colorectal cancer, the response rates remain low. We have found that riluzole, a well-tolerated FDA-approved oral medicine for treating amyotrophic lateral sclerosis, increased intratumoral CD8+ T cells and suppressed tumor growth of colon cancer cells in syngeneic immune-competent mice. Riluzole-mediated tumor suppression was dependent on the presence of CD8+ T cells. Riluzole activates the cytosolic DNA sensing cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway in colon cancer cells, resulting in increased expression of IFNβ and IFNβ-regulated genes including CXCL10. Inhibition of ataxia telangiectasia mutated (ATM), but not ATM-related, resulted in a synergistic increase in IFNβ expression, suggesting that riluzole induces ATM-mediated damage response that contributes to cGAS/STING activation. Depletion of cGAS or STING significantly attenuated riluzole-induced expression of IFNβ and CXCL10 as well as increase of intratumoral CD8+ T cells and suppression of tumor growth. These results indicate that riluzole-mediated tumor infiltration of CD8+ T cells and attenuation of tumor growth is dependent on tumor cell-intrinsic STING activation. To determine whether riluzole treatment primes the tumor microenvironment for immune checkpoint modulation, riluzole was combined with anti-PD-1 treatment. This combination showed greater efficacy than either single agent and strongly suppressed tumor growth in vivo. Taken together, our studies indicate that riluzole activates cGAS/STING-mediated innate immune responses, which might be exploited to sensitize colorectal tumors to anti-PD-1/PD-L1 therapies.
Collapse
Affiliation(s)
- Beiyuan Liang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Misbah Khan
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Hayden Storts
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Evan H. Zhang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Xinru Zheng
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Xuanxuan Xing
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Hazel Claybon
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jenna Wilson
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Chunjie Li
- Division of Medical Oncology, Department of Internal Medicine, James Comprehensive Cancer Center, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ning Jin
- Division of Medical Oncology, Department of Internal Medicine, James Comprehensive Cancer Center, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Wayne O. Miles
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jing J. Wang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
21
|
Villagomez FR, Lang J, Nunez-Avellaneda D, Behbakht K, Dimmick HL, Webb PG, Nephew KP, Neville M, Woodruff ER, Bitler BG. Claudin-4 Stabilizes the Genome via Nuclear and Cell-Cycle Remodeling to Support Ovarian Cancer Cell Survival. CANCER RESEARCH COMMUNICATIONS 2025; 5:39-53. [PMID: 39625235 PMCID: PMC11705808 DOI: 10.1158/2767-9764.crc-24-0558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
SIGNIFICANCE High-grade serous ovarian carcinoma is marked by chromosomal instability, which can serve to promote disease progression and allow cancer to evade therapeutic insults. The report highlights the role of claudin-4 in regulating genomic instability and proposes a novel therapeutic approach to exploit claudin-4-mediated regulation.
Collapse
Affiliation(s)
- Fabian R. Villagomez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Julie Lang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Daniel Nunez-Avellaneda
- Deputy Directorate of Technological Development, Linkage, and Innovation, National Council of Humanities, Sciences, and Technologies, Mexico City, Mexico
| | - Kian Behbakht
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hannah L. Dimmick
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Patricia G. Webb
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kenneth P. Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Anatomy, Cell Biology and Physiology, Indiana University, Indianapolis, Indiana
| | - Margaret Neville
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Elizabeth R. Woodruff
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
22
|
van Creij NCH, Klinglmair G, Gruber L, Partl A, Zeimet AG, Santer FR, Schnaiter S, Mayr R, Lackner F, Culig Z, Seeber A, Pichler R. Pembrolizumab and olaparib in a cisplatin-refractory testicular cancer patient with a high TMB: first case report. Ther Adv Urol 2025; 17:17562872251322648. [PMID: 40093715 PMCID: PMC11907546 DOI: 10.1177/17562872251322648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/31/2025] [Indexed: 03/19/2025] Open
Abstract
Germ cell tumors (GCTs) represent about 5% of urological cancers affecting mostly younger males with increasing incidence in the last decades. GCTs are very sensitive to cisplatin-based therapy and are highly curable regardless of metastatic stage, likely based on having inherited unique mechanisms of sensitivity to DNA damage and other stressors to prevent germline mutations. Here, we present the first case of a 60-year Caucasian male with a heavily pretreated, cisplatin-refractory extragonadal non-seminomatous GCT (choriocarcinoma) treated with pembrolizumab and olaparib based on high programmed death-ligand 1 expression (tumor proportion score 50% and a combined positive score 55%) high tumor mutational burden, borderline genomic loss of heterozygosity, and a heterozygous variant of uncertain significance in the DNA repair gene ATM, as confirmed by next-generation sequencing (NGS) analysis. Despite a notable decrease in b-hCG within 4 weeks after starting pembrolizumab and olaparib, b-hCG increased steadily again afterward. In addition, the patient developed an immune-related pneumonitis with a fatal outcome 3 months later. NGS with subsequent targeted treatment possibilities might present a helpful step toward precision medicine in GCT patients who have exhausted all other conventional treatment options, and genetic testing should therefore be offered to patients prior to progression.
Collapse
Affiliation(s)
- Nils C H van Creij
- Department of Urology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerald Klinglmair
- Department of Urology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Leonhard Gruber
- Department for Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Antonia Partl
- Department of Urology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Alain G Zeimet
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Frédéric R Santer
- Department of Urology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Simon Schnaiter
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Roman Mayr
- Department of Urology, St. Josef Medical Center, University of Regensburg, Regensburg, Germany
| | - Felizian Lackner
- Department of Urology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoran Culig
- Department of Urology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Renate Pichler
- Department of Urology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstreet 35, Innsbruck 6020, Austria
| |
Collapse
|
23
|
Murakami K, Takamura S, Kakimi K, Matsumura N. Tumor immunology and immunotherapy for endometrial cancer. Expert Opin Investig Drugs 2025; 34:37-48. [PMID: 39912523 DOI: 10.1080/13543784.2025.2463091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/10/2024] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
INTRODUCTION Recent clinical trials show the efficacy of immune checkpoint inhibitors (ICIs) or a combination of ICI and poly (ADP-ribose) polymerase (PARP) inhibitors for advanced or recurrent endometrial cancer. However, the basis for such treatment effects remains unclear, hindering the advancement of personalized therapy. AREAS COVERED This review includes a detailed interpretation of subgroup analysis data from phase III clinical trials for endometrial cancer evaluating the efficacy of chemotherapy plus ICIs (NRG-GY018, RUBY, AtTEnd, KEYNOTE-B21) or chemotherapy plus ICI with/without olaparib (DUO-E). We focused on the relationship between obesity, the effect of PARP inhibitors, and tumor immunity in endometrial cancer, searched for relevant literature published from 2000 to 2024 in PubMed, and conducted a narrative review. EXPERT OPINION Chemotherapy plus ICI is appropriate for dMMR. Chemotherapy plus ICI and PARP inhibitor may be appropriate for TP53abn type or serous carcinoma because PARP inhibitor enhances the efficacy of ICI by activating the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway. Obese patients may benefit more from ICIs, and this appears to cause the variation in efficacy between regions/countries. Administration for measurable disease appears important to increase the effect of ICIs. Diet and exercise may also be important factors.
Collapse
Affiliation(s)
- Kosuke Murakami
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Shiki Takamura
- Laboratory for Immunological Memory, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, Japan
| | - Kazuhiro Kakimi
- Department of Immunology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| |
Collapse
|
24
|
Zacchi F, Abida W, Antonarakis ES, Bryce AH, Castro E, Cheng HH, Shandhu S, Mateo J. Recent and Future Developments in the Use of Poly (ADP-ribose) Polymerase Inhibitors for Prostate Cancer. Eur Urol Oncol 2024:S2588-9311(24)00273-6. [PMID: 39638687 DOI: 10.1016/j.euo.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/30/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND AND OBJECTIVE Advanced prostate cancer (PCa) is enriched for alterations in DNA damage repair genes; poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) are a class of drugs that have demonstrated effectiveness in PCa, particularly in tumors with alterations in BRCA1/2 and other homologous recombination repair (HRR) genes, acting through a synthetic lethal mechanism. To prevent or delay drug resistance, and to expand the patient population that can benefit from this class of drug, combination treatment strategies have been developed in preclinical and clinical studies. METHODS This review examines the latest developments in clinical trials testing PARPi for advanced PCa and their emerging role in earlier disease settings. Furthermore, it discusses the critical role of careful patient selection and identification of additional biomarkers to enhance treatment efficacy. KEY FINDINGS AND LIMITATIONS Two PARPi (olaparib and rucaparib) have been approved as monotherapy in metastatic castration-resistant PCa, thereby establishing the first biomarker-guided drug indications in PCa. Several combinations of PARPi with androgen receptor pathway inhibitors have now also been approved. Anemia and fatigue are the main adverse events associated with this drug class in clinical trials; gastrointestinal toxicities are common but usually manageble. CONCLUSIONS AND CLINICAL IMPLICATIONS PARPi are active against PCa with HRR mutations, especially in those with germline or somatic BRCA1/2 mutations. There is still a need to further optimize patient stratification strategies, particularly for combination approaches. Future research should focus on refining predictive biomarkers, improving treatment delivery strategies, and exploring the potential benefits of PARPi in earlier stages of the disease. PATIENT SUMMARY Here, we summarize the results from clinical trials testing different poly (ADP-ribose) polymerase inhibitors (PARPi), a novel targeted drug class, in prostate cancer. Overall, the data from these trials confirm the efficacy of this drug class in those metastatic prostate cancers that show specific gene alterations, such as mutations in the BRCA1/2 genes. Several studies combining PARPi with other standard drugs for prostate cancer suggest that there may be efficacy in larger patient populations, but some of these data still need validation in longer follow-up analyses.
Collapse
Affiliation(s)
- Francesca Zacchi
- Section of Innovation Biomedicine-Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, Verona, Italy
| | - Wassim Abida
- Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota, Masonic Cancer Center, Minneapolis, MN, USA
| | - Alan H Bryce
- Department of Medical Oncology and Developmental Therapeutics, City of Hope, Goodyear, AZ, USA
| | - Elena Castro
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Heather H Cheng
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, USA; Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Shahneen Shandhu
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Joaquin Mateo
- Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
| |
Collapse
|
25
|
Liu S, Deng P, Yu Z, Hong JH, Gao J, Huang Y, Xiao R, Yin J, Zeng X, Sun Y, Wang P, Geng R, Chan JY, Guan P, Yu Q, Teh B, Jiang Q, Xia X, Xiong Y, Chen J, Huo Y, Tan J. CDC7 Inhibition Potentiates Antitumor Efficacy of PARP Inhibitor in Advanced Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403782. [PMID: 39412086 PMCID: PMC11615783 DOI: 10.1002/advs.202403782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/01/2024] [Indexed: 12/06/2024]
Abstract
Poly (ADP-ribose) Polymerase inhibitors (PARPi) have demonstrated remarkable clinical efficacy in treating ovarian cancer (OV) with BRCA1/2 mutations. However, drug resistance inevitably limits their clinical applications and there is an urgent need for improved therapeutic strategies to enhance the clinical utility of PARPi, such as Olaparib. Here, compelling evidence indicates that sensitivity of PARPi is associated with cell cycle dysfunction. Through high-throughput drug screening with a cell cycle kinase inhibitor library, XL413, a potent cell division cycle 7 (CDC7) inhibitor, is identified which can synergistically enhance the anti-tumor efficacy of Olaparib. Mechanistically, the combined administration of XL413 and Olaparib demonstrates considerable DNA damage and DNA replication stress, leading to increased sensitivity to Olaparib. Additionally, a robust type-I interferon response is triggered through the induction of the cGAS/STING signaling pathway. Using murine syngeneic tumor models, the combination treatment further demonstrates enhanced antitumor immunity, resulting in tumor regression. Collectively, this study presents an effective treatment strategy for patients with advanced OV by combining CDC7 inhibitors (CDC7i) and PARPi, offering a promising therapeutic approach for patients with limited response to PARPi.
Collapse
Affiliation(s)
- Shini Liu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesSchool of MedicineSouthern Medical UniversityGuangzhouGuangdong510080P. R. China
| | - Peng Deng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
- Biotherapy CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
| | - Zhaoliang Yu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Jing Han Hong
- Cancer and Stem Cell Biology ProgramDuke‐NUS Medical SchoolSingapore169857Singapore
| | - Jiuping Gao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Yulin Huang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Rong Xiao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Jiaxin Yin
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Xian Zeng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Yichen Sun
- Department of Laboratory MedicineGuangzhou First People's HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180P. R. China
| | - Peili Wang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Ruizi Geng
- Experimental Animal CenterGuangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Jason Yongsheng Chan
- Division of Medical SciencesLaboratory of Cancer EpigenomeNational Cancer Centre SingaporeSingapore169610Singapore
| | - Peiyong Guan
- Genome Institute of SingaporeA*STARSingapore138672Singapore
| | - Qiang Yu
- Cancer and Stem Cell Biology ProgramDuke‐NUS Medical SchoolSingapore169857Singapore
- Genome Institute of SingaporeA*STARSingapore138672Singapore
| | - Bin‐Tean Teh
- Cancer and Stem Cell Biology ProgramDuke‐NUS Medical SchoolSingapore169857Singapore
- Division of Medical SciencesLaboratory of Cancer EpigenomeNational Cancer Centre SingaporeSingapore169610Singapore
- Genome Institute of SingaporeA*STARSingapore138672Singapore
| | - Qingping Jiang
- Department of PatholgyGuangdong Provincial Key Laboratory of Major Obstetric DiseaseThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510150China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Ying Xiong
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Jianfeng Chen
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Yongliang Huo
- Experimental Animal CenterGuangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Jing Tan
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
- Division of Medical SciencesLaboratory of Cancer EpigenomeNational Cancer Centre SingaporeSingapore169610Singapore
- Hainan Academy of Medical ScienceHainan Medical UniversityHaikou571199P. R. China
| |
Collapse
|
26
|
Guanizo AC, Luong Q, Jayasekara WSN, de Geus ED, Inampudi C, Xue VS, Chen J, de Weerd NA, Matthews AY, Gantier MP, Balic JJ, Arulananda S, Garama DJ, Hertzog PJ, Ganju V, Watkins DN, Cain JE, Gough DJ. A STAT3-STING-IFN axis controls the metastatic spread of small cell lung cancer. Nat Immunol 2024; 25:2259-2269. [PMID: 39572642 DOI: 10.1038/s41590-024-02014-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/10/2024] [Indexed: 11/27/2024]
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine tumor characterized by a high metastatic potential with an overall survival rate of ~5%. The transcription factor signal transducer and activator of transcription 3 (STAT3) is overexpressed by >50% of tumors, including SCLC, but its role in SCLC development and metastasis is unclear. Here, we show that, while STAT3 deletion restricts primary tumor growth, it paradoxically enhances metastatic spread by promoting immune evasion. This occurs because STAT3 is crucial for maintaining the immune sensor stimulator of interferon (IFN) genes (STING). Without STAT3, the cyclic adenosine monophosphate-guanosine monophosphate synthase-STING pathway is inactive, resulting in decreased type I IFN secretion and an IFN gene signature. Importantly, restoration of IFN signaling through re-expression of endogenous STING, enforced expression of IFN response factor 7 or administration of recombinant type I IFN re-established antitumor immunity, inhibiting metastatic SCLC in vivo. These data show the potential of augmenting the innate immune response to block metastatic SCLC.
Collapse
Affiliation(s)
- Aleks C Guanizo
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Quinton Luong
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - W Samantha N Jayasekara
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Eveline D de Geus
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Chaitanya Inampudi
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Vincent Senyang Xue
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Jasmine Chen
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Nicole A de Weerd
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Antony Y Matthews
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Michael P Gantier
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Jesse J Balic
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Surein Arulananda
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Medical Oncology, Monash Health, Clayton, Victoria, Australia
- School of Clinical Sciences, Faculty of Medicine, Monash University, Clayton, Victoria, Australia
| | - Daniel J Garama
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Paul J Hertzog
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Vinod Ganju
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - D Neil Watkins
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, Manitoba, Canada
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jason E Cain
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Daniel J Gough
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
27
|
Cao J, Su B, Zhang C, Peng R, Tu D, Deng Q, Jiang G, Jin S, Wang Q, Bai DS. Degradation of PARP1 by MARCHF3 in tumor cells triggers cCAS-STING activation in dendritic cells to regulate antitumor immunity in hepatocellular carcinoma. J Immunother Cancer 2024; 12:e010157. [PMID: 39608977 PMCID: PMC11605840 DOI: 10.1136/jitc-2024-010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/26/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Resistance to immune checkpoint inhibitors (ICIs) significantly limits the efficacy of immunotherapy in patients with hepatocellular carcinoma (HCC). However, the mechanisms underlying immunotherapy resistance remain poorly understood. Our aim was to clarify the role of membrane-associated ring-CH-type finger 3 (MARCHF3) in HCC within the framework of anti-programmed cell death protein-1 (PD-1) therapy. METHODS MARCHF3 was identified in the transcriptomic profiles of HCC tumors exhibiting different responses to ICIs. In humans, the correlation between MARCHF3 expression and the tumor microenvironment (TME) was assessed via multiplex immunohistochemistry. In addition, MARCHF3 expression in tumor cells and immune cell infiltration were assessed by flow cytometry. RESULTS MARCHF3 was significantly upregulated in tumors from patients who responded to ICIs. Increased MARCHF3 expression in HCC cells promoted dendritic cell (DC) maturation and stimulated CD8+ T-cell activation, thereby augmenting tumor control. Mechanistically, we identified MARCHF3 as a pivotal regulator of the DNA damage response. It directly interacted with Poly(ADP-Ribose) Polymerase 1 (PARP1) via K48-linked ubiquitination, leading to PARP1 degradation. This process promoted the release of double-strand DNA and activated cCAS-STING in DCs, thereby initiating DC-mediated antigen cross-presentation and CD8+ T-cell activation. Additionally, ATF4 transcriptionally regulated MARCHF3 expression. Notably, the PARP1 inhibitor olaparib augmented the efficacy of anti-PD-1 immunotherapy in both subcutaneous and orthotopic HCC mouse models. CONCLUSIONS MARCHF3 has emerged as a pivotal regulator of the immune landscape in the HCC TME and is a potent predictive biomarker for HCC. Combining interventions targeting the DNA damage response with ICIs is a promising treatment strategy for HCC.
Collapse
Affiliation(s)
- Jun Cao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
- General Surgery Institute, Northern Jiangsu People's Hospital, Yangzhou City, Jiangsu Province, China
| | - Bingbing Su
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
- General Surgery Institute, Northern Jiangsu People's Hospital, Yangzhou City, Jiangsu Province, China
| | - Rui Peng
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Daoyuan Tu
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Qiangwei Deng
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Guoqing Jiang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Shengjie Jin
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Qian Wang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Dou-Sheng Bai
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
- General Surgery Institute, Northern Jiangsu People's Hospital, Yangzhou City, Jiangsu Province, China
| |
Collapse
|
28
|
Piemonte KM, Ingles NN, Weber-Bonk KL, Valentine MJ, Majmudar PR, Singh S, Keri RA. Targeting YES1 Disrupts Mitotic Fidelity and Potentiates the Response to Taxanes in Triple-Negative Breast Cancer. Cancer Res 2024; 84:3556-3573. [PMID: 39037997 PMCID: PMC11534525 DOI: 10.1158/0008-5472.can-23-2558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/23/2023] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Clinical trials examining broad-spectrum Src family kinase (SFK) inhibitors revealed significant dose-limiting toxicities, preventing advancement for solid tumors. SFKs are functionally heterogeneous, thus targeting individual members is a potential strategy to elicit antitumor efficacy while avoiding toxicity. Here, we identified that YES1 is the most highly overexpressed SFK in triple-negative breast cancer (TNBC) and is associated with poor patient outcomes. Disrupting YES1, genetically or pharmacologically, induced aberrant mitosis, centrosome amplification, multipolar spindles, and chromosomal instability. Mechanistically, YES1 sustained FOXM1 protein levels and elevated expression of FOXM1 target genes that control centrosome function and are essential for effective and accurate mitotic progression. In both in vitro and in vivo TNBC models, YES1 suppression potentiated the efficacy of taxanes, cornerstone drugs for TNBC that require elevated chromosomal instability for efficacy. Clinically, elevated expression of YES1 was associated with worse overall survival of patients with TNBC treated with taxane and anthracycline combination regimens. Together, this study demonstrates that YES1 is an essential regulator of genome stability in TNBC that can be leveraged to improve taxane efficacy. Significance: YES1 is a sentinel regulator of genomic maintenance that controls centrosome homeostasis and chromosome stability through FOXM1, revealing this pathway as a therapeutic vulnerability for enhancing taxane efficacy in triple-negative breast cancer.
Collapse
Affiliation(s)
- Katrina M. Piemonte
- Department of Pharmacology, Case Western Reserve University School of Medicine, 2109 Adelbert Road, Cleveland OH 44106, United States
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Natasha N. Ingles
- Department of Pathology, Case Western Reserve University School of Medicine, 2109 Adelbert Road, Cleveland OH 44106, United States
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Kristen L. Weber-Bonk
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Mitchell J. Valentine
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Parth R. Majmudar
- Department of Pharmacology, Case Western Reserve University School of Medicine, 2109 Adelbert Road, Cleveland OH 44106, United States
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Salendra Singh
- Center for Immunotherapy and Precision Immuno-oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Ruth A. Keri
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, 2109 Adelbert Road, Cleveland OH 44106, United States
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 2109 Adelbert Road, Cleveland OH 44106, United States
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
- Center for Immunotherapy and Precision Immuno-oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| |
Collapse
|
29
|
Ghisoni E, Morotti M, Sarivalasis A, Grimm AJ, Kandalaft L, Laniti DD, Coukos G. Immunotherapy for ovarian cancer: towards a tailored immunophenotype-based approach. Nat Rev Clin Oncol 2024; 21:801-817. [PMID: 39232212 DOI: 10.1038/s41571-024-00937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Despite documented evidence that ovarian cancer cells express immune-checkpoint molecules, such as PD-1 and PD-L1, and of a positive correlation between the presence of tumour-infiltrating lymphocytes and favourable overall survival outcomes in patients with this tumour type, the results of trials testing immune-checkpoint inhibitors (ICIs) in these patients thus far have been disappointing. The lack of response to ICIs can be attributed to tumour heterogeneity as well as inherent or acquired resistance associated with the tumour microenvironment (TME). Understanding tumour immunobiology, discovering biomarkers for patient selection and establishing optimal treatment combinations remains the hope but also a key challenge for the future application of immunotherapy in ovarian cancer. In this Review, we summarize results from trials testing ICIs in patients with ovarian cancer. We propose the implementation of a systematic CD8+ T cell-based immunophenotypic classification of this malignancy, followed by discussions of the preclinical data providing the basis to treat such immunophenotypes with combination immunotherapies. We posit that the integration of an accurate TME immunophenotype characterization with genetic data can enable the design of tailored therapeutic approaches and improve patient recruitment in clinical trials. Lastly, we propose a roadmap incorporating tissue-based profiling to guide future trials testing adoptive cell therapy approaches and assess novel immunotherapy combinations while promoting collaborative research.
Collapse
Affiliation(s)
- Eleonora Ghisoni
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Matteo Morotti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Apostolos Sarivalasis
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alizée J Grimm
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Lana Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
30
|
Amodio V, Vitiello PP, Bardelli A, Germano G. DNA repair-dependent immunogenic liabilities in colorectal cancer: opportunities from errors. Br J Cancer 2024; 131:1576-1590. [PMID: 39271762 PMCID: PMC11554791 DOI: 10.1038/s41416-024-02848-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the major causes of cancer death worldwide. Chemotherapy continues to serve as the primary treatment modality, while immunotherapy is largely ineffective for the majority of CRC patients. Seminal discoveries have emphasized that modifying DNA damage response (DDR) mechanisms confers both cell-autonomous and immune-related vulnerabilities across various cancers. In CRC, approximately 15% of tumours exhibit alterations in the mismatch repair (MMR) machinery, resulting in a high number of neoantigens and the activation of the type I interferon response. These factors, in conjunction with immune checkpoint blockades, collectively stimulate anticancer immunity. Furthermore, although less frequently, somatic alterations in the homologous recombination (HR) pathway are observed in CRC; these defects lead to genome instability and telomere alterations, supporting the use of poly (ADP-ribose) polymerase (PARP) inhibitors in HR-deficient CRC patients. Additionally, other DDR inhibitors, such as Ataxia Telangiectasia and Rad3-related protein (ATR) inhibitors, have shown some efficacy both in preclinical models and in the clinical setting, irrespective of MMR proficiency. The aim of this review is to elucidate how preexisting or induced vulnerabilities in DNA repair pathways represent an opportunity to increase tumour sensitivity to immune-based therapies in CRC.
Collapse
Affiliation(s)
- V Amodio
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy
| | - P P Vitiello
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy
| | - A Bardelli
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy.
| | - G Germano
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milano, 20133, Milan, Italy.
| |
Collapse
|
31
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
32
|
Kefas J, Flynn M. Unlocking the potential of immunotherapy in platinum-resistant ovarian cancer: rationale, challenges, and novel strategies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:39. [PMID: 39534871 PMCID: PMC11555186 DOI: 10.20517/cdr.2024.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Ovarian cancer is a significant global health challenge, with cytoreductive surgery and platinum-based chemotherapy serving as established primary treatments. Unfortunately, most patients relapse and ultimately become platinum-resistant, at which point there are limited effective treatment options. Given the success of immunotherapy in inducing durable treatment responses in several other cancers, its potential in platinum-resistant ovarian cancer (PROC) is currently being investigated. However, in unselected advanced ovarian cancer populations, researchers have reported low response rates to immune checkpoint inhibition, and thus far, no validated biomarkers are predictive of response. Understanding the intricate interplay between platinum resistance, immune recognition, and the tumour microenvironment (TME) is crucial. In this review, we examine the research challenges encountered thus far, the biological rationale for immunotherapy, the underlying mechanisms of immune resistance, and new strategies to overcome resistance.
Collapse
Affiliation(s)
| | - Michael Flynn
- Medical Oncology, University College London Hospitals NHS Foundation Trust, London NW1 2PG, UK
| |
Collapse
|
33
|
Wang J, Yang J, Narang A, He J, Wolfgang C, Li K, Zheng L. Consensus, debate, and prospective on pancreatic cancer treatments. J Hematol Oncol 2024; 17:92. [PMID: 39390609 PMCID: PMC11468220 DOI: 10.1186/s13045-024-01613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Pancreatic cancer remains one of the most aggressive solid tumors. As a systemic disease, despite the improvement of multi-modality treatment strategies, the prognosis of pancreatic cancer was not improved dramatically. For resectable or borderline resectable patients, the surgical strategy centered on improving R0 resection rate is consensus; however, the role of neoadjuvant therapy in resectable patients and the optimal neoadjuvant therapy of chemotherapy with or without radiotherapy in borderline resectable patients were debated. Postoperative adjuvant chemotherapy of gemcitabine/capecitabine or mFOLFIRINOX is recommended regardless of the margin status. Chemotherapy as the first-line treatment strategy for advanced or metastatic patients included FOLFIRINOX, gemcitabine/nab-paclitaxel, or NALIRIFOX regimens whereas 5-FU plus liposomal irinotecan was the only standard of care second-line therapy. Immunotherapy is an innovative therapy although anti-PD-1 antibody is currently the only agent approved by for MSI-H, dMMR, or TMB-high solid tumors, which represent a very small subset of pancreatic cancers. Combination strategies to increase the immunogenicity and to overcome the immunosuppressive tumor microenvironment may sensitize pancreatic cancer to immunotherapy. Targeted therapies represented by PARP and KRAS inhibitors are also under investigation, showing benefits in improving progression-free survival and objective response rate. This review discusses the current treatment modalities and highlights innovative therapies for pancreatic cancer.
Collapse
Affiliation(s)
- Junke Wang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jie Yang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Amol Narang
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jin He
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Christopher Wolfgang
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York, NY, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Lei Zheng
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
34
|
Lu D, Li W, Tan J, Li Y, Mao W, Zheng Y, Yang M, Wang J, Wang W, Wang S, Gao J, Liu Y. STING Agonist Delivered by Neutrophil Membrane-Coated Gold Nanoparticles Exerts Synergistic Tumor Inhibition with Radiotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53474-53488. [PMID: 39316508 DOI: 10.1021/acsami.4c09825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Radiotherapy (RT) is one of the major treatments for cancers and a promising initiator of immune response. Gold nanoparticles are a promising radiosensitizer. In this study, we sought to optimize the drug delivery efficiency of gold nanoparticles and explore their function in delivering stimulator of interferon genes (STING) agonists with or without RT. Gold nanoparticles covalent to MSA-2 (MSA-Au) were mixed with cRGD-modified neutrophil membranes to obtain M-Au@RGD-NM. We explored the treatment efficiency of M-Au@RGD-NM combined with RT. Immune cell regulation and STING pathway activation were detected. We successfully prepared M-Au@RGD-NM with significant tumor suppression by induction of ROS and the resulting DNA damage. In vivo dynamic imaging showed that M-Au@RGD-NM was mainly targeted to radiated tumors. Tumor-bearing mice showed significant tumor inhibition following a combination therapy. M-Au@RGD-NM significantly activated the STING pathway and regulated the whole-body immune response. Locally radiated tumors showed dendritic cells mature, CD8+ T cells upregulation, and M1 polarization, with systematic immune response demonstrated by CD8+ T cell infiltration in abscopal tumors. In this study, we synthesized M-Au@RGD-NM loading MSA-2. Following characterization, we found that RT-based M-Au@RGD-NM treatment achieved good antitumor effects, tumor RT enhancement, and induction of an immune response via STING activation.
Collapse
Affiliation(s)
- Dehua Lu
- Department of Radiation Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China
| | - Wenhua Li
- Department of Radiation Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China
| | - Jingyun Tan
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China
| | - Ying Li
- Department of Radiation Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China
| | - Wei Mao
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China
| | - Yuanyuan Zheng
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China
| | - Muwen Yang
- Department of Radiation Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China
| | - Jin Wang
- Department of Radiation Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China
- School of medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weihu Wang
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Shubin Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China
| | - Jing Gao
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China
| | - Yajie Liu
- Department of Radiation Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China
| |
Collapse
|
35
|
Xia Y, Huang P, Qian YY, Wang Z, Jin N, Li X, Pan W, Wang SY, Jin P, Drokow EK, Li X, Zhang Q, Zhang Z, Li P, Fang Y, Yang XP, Han Z, Gao QL. PARP inhibitors enhance antitumor immune responses by triggering pyroptosis via TNF-caspase 8-GSDMD/E axis in ovarian cancer. J Immunother Cancer 2024; 12:e009032. [PMID: 39366751 PMCID: PMC11459312 DOI: 10.1136/jitc-2024-009032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND In addition to their established action of synthetic lethality in tumor cells, poly(ADP-ribose) polymerase inhibitors (PARPis) also orchestrate tumor immune microenvironment (TIME) that contributes to suppressing tumor growth. However, it remains not fully understood whether and how PARPis trigger tumor-targeting immune responses. METHODS To decode the immune responses reshaped by PARPis, we conducted T-cell receptor (TCR) sequencing and immunohistochemical (IHC) analyses of paired clinical specimens before and after niraparib monotherapy obtained from a prospective study, as well as ID8 mouse ovarian tumors. To validate the induction of immunogenic cell death (ICD) by PARPis, we performed immunofluorescence/IHC staining with homologous recombination deficiency tumor cells and patient-derived xenograft tumor tissues, respectively. To substantiate that PARPis elicited tumor cell pyroptosis, we undertook comprehensive assessments of the cellular morphological features, cleavage of gasdermin (GSDM) proteins, and activation of TNF-caspase signaling pathways through genetic downregulation/depletion and selective inhibition. We also evaluated the critical role of pyroptosis in tumor suppression and immune activation following niraparib treatment using a syngeneic mouse model with implanting CRISPR/Cas9 edited Gsdme-/ - ID8 tumor cells into C57BL/6 mice. RESULTS Our findings revealed that PARPis augmented the proportion of neoantigen-recognized TCR clones and TCR clonal expansion, and induced an inflamed TIME characterized by increased infiltration of both innate and adaptive immune cells. This PARPis-strengthened immune response was associated with the induction of ICD, specifically identified as pyroptosis, which possessed distinctive morphological features and GSDMD/E cleavage. It was validated that the cleavage of GSDMD/E was due to elevated caspase 8 activity downstream of the TNFR1, rather than FAS and TRAIL-R. On PARP inhibition, the NF-κB signaling pathway was activated, leading to increased secretion of TNF-α and subsequent initiation of the TNFR1-caspase 8 cascade. Impeding pyroptosis through the depletion of Gsdme significantly compromised the tumor-suppressing effects of PARP inhibition and undermined the anti-immune response in the syngeneic ID8 mouse model. CONCLUSIONS PARPis induce a specific type of ICD called pyroptosis via TNF-caspase 8-GSDMD/E axis, resulting in an inflamed TIME and augmentation of tumor-targeting immune responses. These findings deepen our understanding of PARPis activities and point toward a promising avenue for synergizing PARPis with immunotherapeutic interventions. TRIAL REGISTRATION NUMBER NCT04507841.
Collapse
Affiliation(s)
- Yu Xia
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pu Huang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yi-yu Qian
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zanhong Wang
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
| | - Ning Jin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Pan
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Si-Yuan Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Jin
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Emmanuel Kwateng Drokow
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, Hunan, China
| | - Xiong Li
- Department of Gynecology & Obstetrics, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Zhang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Zhengmao Zhang
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pingfei Li
- Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yong Fang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang-Ping Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiqiang Han
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
| | - Qing-lei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
36
|
Jiang J, Han D, Wang J, Wen W, Zhang R, Qin W. Neuroendocrine transdifferentiation in human cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e761. [PMID: 39372390 PMCID: PMC11450264 DOI: 10.1002/mco2.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024] Open
Abstract
Neuroendocrine transdifferentiation (NEtD), also commonly referred to as lineage plasticity, emerges as an acquired resistance mechanism to molecular targeted therapies in multiple cancer types, predominately occurs in metastatic epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer treated with EGFR tyrosine kinase inhibitors and metastatic castration-resistant prostate cancer treated with androgen receptor targeting therapies. NEtD tumors are the lethal cancer histologic subtype with unfavorable prognosis and limited treatment. A comprehensive understanding of molecular mechanism underlying targeted-induced plasticity could greatly facilitate the development of novel therapies. In the past few years, increasingly elegant studies indicated that NEtD tumors share key the convergent genomic and phenotypic characteristics irrespective of their site of origin, but also embrace distinct change and function of molecular mechanisms. In this review, we provide a comprehensive overview of the current understanding of molecular mechanism in regulating the NEtD, including genetic alterations, DNA methylation, histone modifications, dysregulated noncoding RNA, lineage-specific transcription factors regulation, and other proteomic alterations. We also provide the current management of targeted therapies in clinical and preclinical practice.
Collapse
Affiliation(s)
- Jun Jiang
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
- Department of Health Service, Base of Health ServiceAir Force Medical UniversityXi'anChina
| | - Donghui Han
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| | - Jiawei Wang
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, and National Translational Science Center for Molecular MedicineAir Force Medical UniversityXi'anChina
| | - Weihong Wen
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Rui Zhang
- State Key Laboratory of Cancer BiologyDepartment of ImmunologyAir Force Medical UniversityXi'anChina
| | - Weijun Qin
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
37
|
Mitri Z, Goodyear SM, Mills G. Strategies for the prevention or reversal of PARP inhibitor resistance. Expert Rev Anticancer Ther 2024; 24:959-975. [PMID: 39145413 DOI: 10.1080/14737140.2024.2393251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
INTRODUCTION Advances in our understanding of tumor biology shed light on hallmarks of cancer development and progression that include dysregulated DNA damage repair (DDR) machinery. Leveraging the underlying tumor genomic instability and tumor-specific defects in DDR, Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induced DNA damage emerges as a novel non-chemotherapy therapeutic opportunity. PARPis are currently approved in multiple tumor types, with the largest benefit seen in tumors with homologous recombination repair (HRR) deficiency, including germline and somatic mutations in BRCA1/2 genes (BRCA) and other pathway members such as PALB2 and Rad51c. AREAS COVERED This review article summarizes the current approval landscape and known and proposed mechanisms of resistance to PARPi. Further, therapeutic strategies to overcome PARPi resistance are discussed, including ongoing clinical trials. EXPERT OPINION PARPi have proven to be a safe and effective therapy and represents a cornerstone treatment across multiple solid tumor types. Elucidating innate and acquired mechanisms of resistance, coupled with the emergence of novel therapeutic options to capitalize on the activity of PARPi and prevent or reverse the acquisition of resistance, provides an opportunity to further expand the role of PARPi in cancer therapy.
Collapse
Affiliation(s)
- Zahi Mitri
- Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Shaun M Goodyear
- Developmental and Cancer Biology, Knight Cancer Institute, Portland, OR, USA
| | - Gordon Mills
- Developmental and Cancer Biology, Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
38
|
Villagomez FR, Lang J, Nunez-Avellaneda D, Behbakht K, Dimmick HL, Webb P, Nephew KP, Neville M, Woodruff ER, Bitler BG. Claudin-4 remodeling of nucleus-cell cycle crosstalk maintains ovarian tumor genome stability and drives resistance to genomic instability-inducing agents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611120. [PMID: 39282307 PMCID: PMC11398366 DOI: 10.1101/2024.09.04.611120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
During cancer development, the interplay between the nucleus and the cell cycle leads to a state of genomic instability, often accompanied by observable morphological aberrations. These aberrations can be controlled by tumor cells to evade cell death, either by preventing or eliminating genomic instability. In epithelial ovarian cancer (EOC), overexpression of the multifunctional protein claudin-4 is a key contributor to therapy resistance through mechanisms associated with genomic instability. However, the molecular mechanisms underlying claudin-4 overexpression in EOC remain poorly understood. Here, we altered claudin-4 expression and employed a unique claudin-4 targeting peptide (CMP) to manipulate the function of claudin-4. We found that claudin-4 facilitates genome maintenance by linking the nuclear envelope and cytoskeleton dynamics with cell cycle progression. Claudin-4 caused nuclei constriction by excluding lamin B1 and promoting perinuclear F-actin accumulation, associated with remodeling nuclear architecture, thus altering nuclear envelope dynamics. Consequently, cell cycle modifications due to claudin-4 overexpression resulted in fewer cells entering the S-phase and reduced genomic instability. Importantly, disrupting biological interactions of claudin-4 using CMP and forskolin altered oxidative stress cellular response and increased the efficacy of PARP inhibitor treatment. Our data indicate that claudin-4 protects tumor genome integrity by remodeling the crosstalk between the nuclei and the cell cycle, leading to resistance to genomic instability formation and the effects of genomic instability-inducing agents.
Collapse
Affiliation(s)
- Fabian R. Villagomez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Julie Lang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Daniel Nunez-Avellaneda
- Deputy Directorate of Technological Development, Linkage, and Innovation, National Council of Humanities, Sciences, and Technologies, Mexico City, Mexico
| | - Kian Behbakht
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hannah L. Dimmick
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Patricia Webb
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kenneth P. Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Anatomy, Cell Biology & Physiology, Indiana University, Indianapolis, Indiana
| | - Margaret Neville
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Elizabeth R. Woodruff
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
39
|
Li X, Li Z, Ma H, Li X, Zhai H, Li X, Cheng X, Zhao X, Zhao Z, Hao Z. Ovarian cancer: Diagnosis and treatment strategies (Review). Oncol Lett 2024; 28:441. [PMID: 39099583 PMCID: PMC11294909 DOI: 10.3892/ol.2024.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024] Open
Abstract
Ovarian cancer is a malignant tumor that seriously endangers health. Early ovarian cancer symptoms are frequently challenging to detect, resulting in a large proportion of patients reaching an advanced stage when diagnosed. Conventional diagnosis relies heavily on serum biomarkers and pathological examination, but their sensitivity and specificity require improvement. Targeted therapy inhibits tumor growth by targeting certain characteristics of tumor cells, such as signaling pathways and gene mutations. However, the effectiveness of targeted therapy varies among individuals due to differences in their unique biological characteristics and requires individualized strategies. Immunotherapy is a promising treatment for ovarian cancer due to its long-lasting antitumor effect. Nevertheless, issues such as variable efficacy, immune-associated adverse effects and drug resistance remain to be resolved. The present review discusses the diagnostic strategies, rationale, treatment strategies and prospects of targeted therapy and immunotherapy for ovarian cancer.
Collapse
Affiliation(s)
- Xuejiao Li
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhuocheng Li
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Huiling Ma
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xinwei Li
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Hongxiao Zhai
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xixi Li
- Department of Ultrasound, Zhengzhou First People's Hospital, Zhengzhou, Henan 450004, P.R. China
| | - Xiaofei Cheng
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiaohui Zhao
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhilong Zhao
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhenhua Hao
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
40
|
Kristeleit R, Leary A, Oaknin A, Redondo A, George A, Chui S, Seiller A, Liste-Hermoso M, Willis J, Shemesh CS, Xiao J, Lin KK, Molinero L, Guan Y, Ray-Coquard I, Mileshkin L. PARP inhibition with rucaparib alone followed by combination with atezolizumab: Phase Ib COUPLET clinical study in advanced gynaecological and triple-negative breast cancers. Br J Cancer 2024; 131:820-831. [PMID: 38971950 PMCID: PMC11369183 DOI: 10.1038/s41416-024-02776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Combining PARP inhibitors (PARPis) with immune checkpoint inhibitors may improve clinical outcomes in selected cancers. We evaluated rucaparib and atezolizumab in advanced gynaecological or triple-negative breast cancer (TNBC). METHODS After identifying the recommended dose, patients with PARPi-naive BRCA-mutated or homologous recombination-deficient/loss-of-heterozygosity-high platinum-sensitive ovarian cancer or TNBC received rucaparib plus atezolizumab. Tumour biopsies were collected pre-treatment, during single-agent rucaparib run-in, and after starting combination therapy. RESULTS The most common adverse events with rucaparib 600 mg twice daily and atezolizumab 1200 mg on Day 1 every 3 weeks were gastrointestinal effects, fatigue, liver enzyme elevations, and anaemia. Responding patients typically had BRCA-mutated tumours and higher pre-treatment tumour levels of PD-L1 and CD8 + T cells. Markers of DNA damage repair decreased during rucaparib run-in and combination treatment in responders, but typically increased in non-responders. Apoptosis signature expression showed the reverse. CD8 + T-cell activity and STING pathway activation increased during rucaparib run-in, increasing further with atezolizumab. CONCLUSIONS In this small study, rucaparib plus atezolizumab demonstrated acceptable safety and activity in BRCA-mutated tumours. Increasing anti-tumour immunity and inflammation might be a key mechanism of action for clinical benefit from the combination, potentially guiding more targeted development of such regimens. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov (NCT03101280).
Collapse
Affiliation(s)
- Rebecca Kristeleit
- University College London Cancer Institute, London, UK.
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK.
- Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK.
| | | | - Ana Oaknin
- Gynaecologic Cancer Programme, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitario Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Andres Redondo
- Medical Oncology Department, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Angela George
- The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Stephen Chui
- Product Development Oncology, Genentech Inc., South San Francisco, CA, USA
| | | | | | - Jenna Willis
- Product Development Safety, Roche Products Ltd, Welwyn Garden City, UK
| | - Colby S Shemesh
- Clinical Pharmacology Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Jim Xiao
- Clovis Oncology, San Francisco, CA, USA
| | | | - Luciana Molinero
- Translational Medicine, Genentech Inc., South San Francisco, CA, USA
| | - Yinghui Guan
- Translational Medicine, Genentech Inc., South San Francisco, CA, USA
| | - Isabelle Ray-Coquard
- Centre Leon Bérard, HESPER laboratory EA 7425, Université Claude Bernard Lyon Est, Lyon, France
| | - Linda Mileshkin
- Department of Medical Oncology, Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
41
|
Bzura A, Spicer JB, Dulloo S, Yap TA, Fennell DA. Targeting DNA Damage Response Deficiency in Thoracic Cancers. Drugs 2024; 84:1025-1033. [PMID: 39001941 DOI: 10.1007/s40265-024-02066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/15/2024]
Abstract
Thoracic cancers comprise non-small cell lung cancers (NSCLCs), small cell lung cancers (SCLCs) and malignant pleural mesotheliomas (MPM). Collectively, they account for the highest rate of death from malignancy worldwide. Genomic instability is a universal feature of cancer, which fuels mutations and tumour evolution. Deficiencies in DNA damage response (DDR) genes amplify genomic instability. Homologous recombination deficiency (HRD), resulting from BRCA1/BRCA2 inactivation, is exploited for therapeutic synthetic lethality with poly-ADP ribose polymerase (PARP) inhibitors in breast and ovarian cancers, as well as in prostate and pancreatic cancers. However, DDR deficiency and its therapeutic implications are less well established in thoracic cancers. Emerging evidence suggests that a subset of thoracic cancers may harbour DDR deficiency and may, thus, be effectively targeted with DDR agents. Here, we review the current evidence surrounding DDR in thoracic cancers and discuss the challenges and promise for achieving clinical benefit with such therapeutics.
Collapse
Affiliation(s)
- Aleksandra Bzura
- University of Leicester, NIHR Biomedical Research Centre and Robert Kilpatrick Clinical Sciences Building, Leicester, UK
| | - Jake B Spicer
- University of Leicester, NIHR Biomedical Research Centre and Robert Kilpatrick Clinical Sciences Building, Leicester, UK
| | - Sean Dulloo
- University of Leicester, NIHR Biomedical Research Centre and Robert Kilpatrick Clinical Sciences Building, Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Timothy A Yap
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dean A Fennell
- University of Leicester, NIHR Biomedical Research Centre and Robert Kilpatrick Clinical Sciences Building, Leicester, UK.
- University Hospitals of Leicester NHS Trust, Leicester, UK.
| |
Collapse
|
42
|
Xiao F, Wang Z, Qiao L, Zhang X, Wu N, Wang J, Yu X. Application of PARP inhibitors combined with immune checkpoint inhibitors in ovarian cancer. J Transl Med 2024; 22:778. [PMID: 39169400 PMCID: PMC11337781 DOI: 10.1186/s12967-024-05583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024] Open
Abstract
The advent of polyadenosine diphosphate ribose polymerase inhibitors (PARPi) has brought about significant changes in the field of ovarian cancer treatment. However, in 2022, Rucaparib, Olaparib, and Niraparib, had their marketing approval revoked for third-line and subsequent therapies due to an increased potential for adverse events. Consequently, the exploration of new treatment modalities remains imperative. Recently, the integration of PARPi with immune checkpoint inhibitors (ICIs) has emerged as a potential remedy option within the context of ovarian cancer. This article offers a comprehensive examination of the mechanisms and applications of PARPi and ICIs in the treatment of ovarian cancer. It synthesizes the existing evidence supporting their combined use and discusses key considerations that merit attention in ongoing development efforts.
Collapse
Affiliation(s)
- Fen Xiao
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - ZhiBin Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Liu Qiao
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiu Zhang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - NaYiYuan Wu
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| | - Jing Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| | - Xing Yu
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China.
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.
- Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China.
| |
Collapse
|
43
|
Rahman R, Shi DD, Reitman ZJ, Hamerlik P, de Groot JF, Haas-Kogan DA, D’Andrea AD, Sulman EP, Tanner K, Agar NYR, Sarkaria JN, Tinkle CL, Bindra RS, Mehta MP, Wen PY. DNA damage response in brain tumors: A Society for Neuro-Oncology consensus review on mechanisms and translational efforts in neuro-oncology. Neuro Oncol 2024; 26:1367-1387. [PMID: 38770568 PMCID: PMC11300028 DOI: 10.1093/neuonc/noae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
DNA damage response (DDR) mechanisms are critical to maintenance of overall genomic stability, and their dysfunction can contribute to oncogenesis. Significant advances in our understanding of DDR pathways have raised the possibility of developing therapies that exploit these processes. In this expert-driven consensus review, we examine mechanisms of response to DNA damage, progress in development of DDR inhibitors in IDH-wild-type glioblastoma and IDH-mutant gliomas, and other important considerations such as biomarker development, preclinical models, combination therapies, mechanisms of resistance and clinical trial design considerations.
Collapse
Affiliation(s)
- Rifaquat Rahman
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diana D Shi
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Petra Hamerlik
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - John F de Groot
- Division of Neuro-Oncology, University of California San Francisco, San Francisco, California, USA
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan D D’Andrea
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Erik P Sulman
- Department of Radiation Oncology, New York University, New York, New York, USA
| | - Kirk Tanner
- National Brain Tumor Society, Newton, Massachusetts, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Christopher L Tinkle
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut, USA
| | - Minesh P Mehta
- Miami Cancer Institute, Baptist Hospital, Miami, Florida, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Xie Y, Xiao D, Li D, Peng M, Peng W, Duan H, Yang X. Combined strategies with PARP inhibitors for the treatment of BRCA wide type cancer. Front Oncol 2024; 14:1441222. [PMID: 39156700 PMCID: PMC11327142 DOI: 10.3389/fonc.2024.1441222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
Genomic instability stands out as a pivotal hallmark of cancer, and PARP inhibitors (PARPi) emerging as a groundbreaking class of targeted therapy drugs meticulously crafted to inhibit the repair of DNA single-strand breaks(SSB) in tumor cells. Currently, PARPi have been approved for the treatment of ovarian cancer, pancreatic cancer, breast cancer, and prostate cancer characterized by homologous recombination(HR) repair deficiencies due to mutations in BRCA1/2 or other DNA repair associated genes and acquiring the designation of breakthrough therapy. Nonetheless, PARPi exhibit limited efficacy in the majority of HR-proficient BRCA1/2 wild-type cancers. At present, the synergistic approach of combining PARPi with agents that induce HR defects, or with chemotherapy and radiotherapy to induce substantial DNA damage, significantly enhances the efficacy of PARPi in BRCA wild-type or HR-proficient patients, supporting extension the use of PARPi in HR proficient patients. Therefore, we have summarized the effects and mechanisms of the combined use of drugs with PARPi, including the combination of PARPi with HR defect-inducing drugs such as ATRi, CHKi, HR indirectly inducing drugs like VEGFRi, CDKi, immune checkpoint inhibitors and drugs instigating DNA damage such as chemotherapy or radiotherapy. In addition, this review discusses several ongoing clinical trials aimed at analyzing the clinical application potential of these combined treatment strategies.
Collapse
Affiliation(s)
- Yijun Xie
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Di Xiao
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Duo Li
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Mei Peng
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Wei Peng
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Huaxin Duan
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoping Yang
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
45
|
Spada S, Ganguly A. Role of interferon dependent and independent signaling pathways: Implications in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:153-162. [PMID: 39396846 DOI: 10.1016/bs.ircmb.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Interferons (IFNs) are a class of cytokines with potent antiviral and immunomodulatory properties that regulate the immune system through multiple signaling pathways. In cancer, IFNs are vital to both tumor-intrinsic and extrinsic mechanisms that affect the quality of antitumor immunity as well as response to cancer treatments, including immunotherapy. However, there is a need for a deeper and better understanding of the mechanisms by which IFNs elicit immune signalling in cancerous cells. In this review, we focus on the IFN- dependent and independent axes in cancer as targetable hubs for new immunotherapeutic approaches to boost the treatment efficacy and to circumvent cancer resistance leading to improved clinical outcomes.
Collapse
Affiliation(s)
- Sheila Spada
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar, Jharkhand, India.
| |
Collapse
|
46
|
Tai Y, Chow A, Han S, Coker C, Ma W, Gu Y, Estrada Navarro V, Kandpal M, Hibshoosh H, Kalinsky K, Manova-Todorova K, Safonov A, Walsh EM, Robson M, Norton L, Baer R, Merghoub T, Biswas AK, Acharyya S. FLT1 activation in cancer cells promotes PARP-inhibitor resistance in breast cancer. EMBO Mol Med 2024; 16:1957-1980. [PMID: 38956205 PMCID: PMC11319505 DOI: 10.1038/s44321-024-00094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Acquired resistance to PARP inhibitors (PARPi) remains a treatment challenge for BRCA1/2-mutant breast cancer that drastically shortens patient survival. Although several resistance mechanisms have been identified, none have been successfully targeted in the clinic. Using new PARPi-resistance models of Brca1- and Bard1-mutant breast cancer generated in-vivo, we identified FLT1 (VEGFR1) as a driver of resistance. Unlike the known role of VEGF signaling in angiogenesis, we demonstrate a novel, non-canonical role for FLT1 signaling that protects cancer cells from PARPi in-vivo through a combination of cell-intrinsic and cell-extrinsic pathways. We demonstrate that FLT1 blockade suppresses AKT activation, increases tumor infiltration of CD8+ T cells, and causes dramatic regression of PARPi-resistant breast tumors in a T-cell-dependent manner. Moreover, PARPi-resistant tumor cells can be readily re-sensitized to PARPi by targeting Flt1 either genetically (Flt1-suppression) or pharmacologically (axitinib). Importantly, a retrospective series of breast cancer patients treated with PARPi demonstrated shorter progression-free survival in cases with FLT1 activation at pre-treatment. Our study therefore identifies FLT1 as a potential therapeutic target in PARPi-resistant, BRCA1/2-mutant breast cancer.
Collapse
Affiliation(s)
- Yifan Tai
- Institute for Cancer Genetics, 1130 St Nicholas Avenue, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Biology, McGill University, Montreal, Quebec, QC, H3G0B1, Canada
| | - Angela Chow
- Institute for Cancer Genetics, 1130 St Nicholas Avenue, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Seoyoung Han
- Institute for Cancer Genetics, 1130 St Nicholas Avenue, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Jacobs School of Medicine, University of Buffalo, New York, NY, USA
| | - Courtney Coker
- Institute for Cancer Genetics, 1130 St Nicholas Avenue, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Wanchao Ma
- Institute for Cancer Genetics, 1130 St Nicholas Avenue, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Yifan Gu
- Institute for Cancer Genetics, 1130 St Nicholas Avenue, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Valeria Estrada Navarro
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Manoj Kandpal
- Centre for Clinical and Translational Science, Rockefeller University Hospital, 1230 York Ave, New York, NY, 10065, USA
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, 630 W 168th St, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Kevin Kalinsky
- Winship Cancer Institute of Emory University, Emory University School of Medicine, 1365 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Katia Manova-Todorova
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Anton Safonov
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Elaine M Walsh
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Department of Medicine, Georgetown Lombardi Comprehensive Cancer Center, 3800 Reservoir Rd, NW, Washington DC, 20007, USA
| | - Mark Robson
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Larry Norton
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Richard Baer
- Institute for Cancer Genetics, 1130 St Nicholas Avenue, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, 630 W 168th St, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Taha Merghoub
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Anup K Biswas
- Institute for Cancer Genetics, 1130 St Nicholas Avenue, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Pathology and Cell Biology, 630 W 168th St, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Swarnali Acharyya
- Institute for Cancer Genetics, 1130 St Nicholas Avenue, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Pathology and Cell Biology, 630 W 168th St, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, 1130 St. Nicholas Ave, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
47
|
Liang S, Xiao L, Chen T, Roa P, Cocco E, Peng Z, Yu L, Wu M, Liu J, Zhao X, Deng W, Wang X, Zhao C, Deng Y, Mai Y. Injectable Nanocomposite Hydrogels Improve Intraperitoneal Co-delivery of Chemotherapeutics and Immune Checkpoint Inhibitors for Enhanced Peritoneal Metastasis Therapy. ACS NANO 2024; 18:18963-18979. [PMID: 39004822 DOI: 10.1021/acsnano.4c02312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Intraperitoneal co-delivery of chemotherapeutic drugs (CDs) and immune checkpoint inhibitors (ICIs) brings hope to improve treatment outcomes in patients with peritoneal metastasis from ovarian cancer (OC). However, current intraperitoneal drug delivery systems face issues such as rapid drug clearance from lymphatic drainage, heterogeneous drug distribution, and uncontrolled release of therapeutic agents into the peritoneal cavity. Herein, we developed an injectable nanohydrogel by combining carboxymethyl chitosan (CMCS) with bioadhesive nanoparticles (BNPs) based on polylactic acid-hyperbranched polyglycerol. This system enables the codelivery of CD and ICI into the intraperitoneal space to extend drug retention. The nanohydrogel is formed by cross-linking of aldehyde groups on BNPs with amine groups on CMCS via reversible Schiff base bonds, with CD and ICI loaded separately into BNPs and CMCS network. BNP/CMCS nanohydrogel maintained the activity of the biomolecules and released drugs in a sustained manner over a 7 day period. The adhesive property, through the formation of Schiff bases with peritoneal tissues, confers BNPs with an extended residence time in the peritoneal cavity after being released from the nanohydrogel. In a mouse model, BNP/CMCS nanohydrogel loaded with paclitaxel (PTX) and anti-PD-1 antibodies (αPD-1) significantly suppressed peritoneal metastasis of OC compared to all other tested groups. In addition, no systemic toxicity of nanohydrogel-loaded PTX and αPD-1 was observed during the treatment, which supports potential translational applications of this delivery system.
Collapse
Affiliation(s)
- Shu Liang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Lingyun Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Southern University of Science and Technology), Shenzhen 518020, China
| | - Tian Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Paola Roa
- Department of Biochemistry and Molecular Biology/Sylvester Comprehensive Cancer Center, University of Miami/Miller School of Medicine, Miami, Florida 33136, United States
| | - Emiliano Cocco
- Department of Biochemistry and Molecular Biology/Sylvester Comprehensive Cancer Center, University of Miami/Miller School of Medicine, Miami, Florida 33136, United States
| | - Zhangwen Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Liu Yu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Jie Liu
- ISCTE Business School, BRU-IUL, University Institute of Lisbon, Avenida das Armadas, Lisbon 1649-026, Portugal
| | - Xizhe Zhao
- Department of Chemistry, College of Staten Island, City University of New York, New York, New York 10314, United States
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Xiongjun Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Chao Zhao
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Yang Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| |
Collapse
|
48
|
Gao Y, Duan JL, Wang CC, Yuan Y, Zhang P, Wang ZH, Sun B, Zhou J, Du X, Dang X, Bai RT, Zhang H, Xie T, Ye XY. Novel Bifunctional Conjugates Targeting PD-L1/PARP7 as Dual Immunotherapy for Potential Cancer Treatment. J Med Chem 2024; 67:10848-10874. [PMID: 38912753 DOI: 10.1021/acs.jmedchem.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Bifunctional conjugates targeting PD-L1/PARP7 were designed, synthesized, and evaluated for the first time. Compounds B3 and C6 showed potent activity against PD-1/PD-L1 interaction (IC50 = 0.426 and 0.342 μM, respectively) and PARP7 (IC50 = 2.50 and 7.05 nM, respectively). They also displayed excellent binding affinity with hPD-L1, approximately 100-200-fold better than that of hPD-1. Both compounds restored T-cell function, leading to the increase of IFN-γ secretion. In the coculture assay, B3 and C6 enhanced the killing activity of MDA-MB-231 cells by Jurkat T cells in a concentration-dependent manner. Furthermore, B3 and C6 displayed significant in vivo antitumor efficacy in a melanoma B16-F10 tumor mouse model, more than 5.3-fold better than BMS-1 (a PD-L1 inhibitor) and RBN-2397 (a PARP7i clinical candidate) at the dose of 25 mg/kg, without observable side effects. These results provide valuable insight and understanding for developing bifunctional conjugates for potential anticancer therapy.
Collapse
Affiliation(s)
- Yuan Gao
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| | - Ji-Long Duan
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
| | - Chen-Chen Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
| | - Yinghui Yuan
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
| | - Pengpeng Zhang
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
| | - Zong-Hao Wang
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
| | - Bowen Sun
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
| | - Jiawei Zhou
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
| | - Xiaoli Du
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
| | - Xiawen Dang
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
| | - Rui-Ting Bai
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
| | - Hang Zhang
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Zhejiang, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Zhejiang Hangzhou 311121, China
| |
Collapse
|
49
|
Garofoli M, Maiorano BA, Bruno G, Giordano G, Di Tullio P, Maselli FM, Landriscina M, Conteduca V. Androgen receptor, PARP signaling, and tumor microenvironment: the 'perfect triad' in prostate cancer? Ther Adv Med Oncol 2024; 16:17588359241258443. [PMID: 38887656 PMCID: PMC11181896 DOI: 10.1177/17588359241258443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Aberrations in the homologous recombination repair (HRR) pathway in prostate cancer (PCa) provide a unique opportunity to develop therapeutic strategies that take advantage of the reduced tumor ability to repair DNA damage. Poly-ADP-ribose polymerase (PARP) inhibitors (PARPi) have been shown to prolong the survival of PCa patients with HRR defects, particularly in those with Breast Cancer type 1 susceptibility protein/Breast Cancer type 2 susceptibility protein alterations. To expand the benefit of PARPi to patients without detectable HRR alterations, multiple preclinical and clinical studies are addressing potential synergies between PARPi and androgen receptor signaling inhibitors, and these strategies are also being evaluated in combination with other drugs such as immune checkpoint inhibitors. However, the effectiveness of these combining therapies could be hindered by multiple mechanisms of resistance, including also the role played by the immunosuppressive tumor microenvironment. In this review, we summarize the use of PARPi in PCa and the potential synergies with different molecular pathways. However, numerous unanswered questions remain, including the identification of the patient population that could benefit most from PARPi, determining whether to use PARPi as monotherapy or in combination, and finding the optimal timing of PARPi, expanding the use of genomic tests, and optimizing combination therapies.
Collapse
Affiliation(s)
- Marianna Garofoli
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | | | - Giuseppina Bruno
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Piergiorgio Di Tullio
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Felicia Maria Maselli
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Matteo Landriscina
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Viale Pinto, 1, Foggia 71122, Italy
| | - Vincenza Conteduca
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Viale Pinto, 1, Foggia 71122, Italy
| |
Collapse
|
50
|
Chang J, Quan S, Tian S, Wang S, Li S, Guo Y, Yang T, Yang X. Niraparib enhances antitumor immunity and contributes to the efficacy of PD-L1 blockade in cervical cancer. J Cancer Res Clin Oncol 2024; 150:304. [PMID: 38869633 PMCID: PMC11176249 DOI: 10.1007/s00432-024-05819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE With the development of immunotherapy research, the role of immune checkpoint blockade (ICB) in the treatment of cervical cancer has been emphasized, but many patients still can't receive long-term benefits from ICB. Poly ADP ribose polymerase inhibitor (PARPi) has been proved to exert significant antitumor effects in multiple solid tumors. Whether cervical cancer patients obtain better benefits from the treatment regimen of PARPi combined with ICB remains unclear. METHODS The alteration of PD-L1 expression induced by niraparib in cervical cancer cells and its underlying mechanism were assessed by western blot and immunofluorescence and quantitative real-time polymerase chain reaction (qRT-PCR).The regulation of PTEN by KDM5A was confirmed using Chromatin immunoprecipitation (ChIP) assay and RNA interference. Analyzing the relationship between PD-L1 and immune effector molecules through searching online databases. Therapeutic efficacy of niraparib, PD-L1 blockade or combination was assessed in syngeneic tumor model. The changes of immune cells and cytokines in vivo was detected by immunohistochemistry (IHC) and qRT-PCR. RESULTS We found that niraparib upregulated PD-L1 expression and potentiated the antitumor effects of PD-L1 blockade in a murine cervical cancer model. Niraparib inhibited the Pten expression by increasing the abundance of KDM5A, which expanded PD-L1 abundance through activating the PI3K-AKT-S6K1 pathway. PD-L1 was positively correlated with immune effector molecules including TNF-α, IFN-γ, granzyme A and granzyme B based on biological information analysis. Niraparib increased the infiltration of CD8+ T cells and the level of IFN-γ, granzyme B in vivo. CONCLUSION Our findings demonstrates the regulation of niraparib on local immune microenvironment of cervical cancer, and provides theoretical basis for supporting the combination of PARPi and PD-L1 blockade as a potential treatment for cervical cancer.
Collapse
Affiliation(s)
- Jie Chang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shimin Quan
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sijuan Tian
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shirui Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Simin Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yanping Guo
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ting Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaofeng Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|