1
|
Fan JJ, Erickson AW, Carrillo-Garcia J, Wang X, Skowron P, Wang X, Chen X, Shan G, Dou W, Bahrampour S, Xiong Y, Dong W, Abeysundara N, Francisco MA, Pusong RJ, Wang W, Li M, Ying E, Suárez RA, Farooq H, Holgado BL, Wu X, Daniels C, Dupuy AJ, Cadiñanos J, Bradley A, Bagchi A, Moriarity BS, Largaespada DA, Morrissy AS, Ramaswamy V, Mack SC, Garzia L, Dirks PB, Li X, Wanggou S, Egan S, Sun Y, Taylor MD, Huang X. A forward genetic screen identifies potassium channel essentiality in SHH medulloblastoma maintenance. Dev Cell 2025:S1534-5807(25)00001-2. [PMID: 39862856 DOI: 10.1016/j.devcel.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/28/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
Distinguishing tumor maintenance genes from initiation, progression, and passenger genes is critical for developing effective therapies. We employed a functional genomic approach using the Lazy Piggy transposon to identify tumor maintenance genes in vivo and applied this to sonic hedgehog (SHH) medulloblastoma (MB). Combining Lazy Piggy screening in mice and transcriptomic profiling of human MB, we identified the voltage-gated potassium channel KCNB2 as a candidate maintenance driver. KCNB2 governs cell volume of MB-propagating cells (MPCs), with KCNB2 depletion causing osmotic swelling, decreased plasma membrane tension, and elevated endocytic internalization of epidermal growth factor receptor (EGFR), thereby mitigating proliferation of MPCs to ultimately impair MB growth. KCNB2 is largely dispensable for mouse development and KCNB2 knockout synergizes with anti-SHH therapy in treating MB. These results demonstrate the utility of the Lazy Piggy functional genomic approach in identifying cancer maintenance drivers and elucidate a mechanism by which potassium homeostasis integrates biomechanical and biochemical signaling to promote MB aggression.
Collapse
Affiliation(s)
- Jerry J Fan
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anders W Erickson
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Julia Carrillo-Garcia
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xin Wang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Patryk Skowron
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xian Wang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Xin Chen
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Guanqiao Shan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Shahrzad Bahrampour
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Yi Xiong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Weifan Dong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Namal Abeysundara
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Michelle A Francisco
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ronwell J Pusong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Wei Wang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Miranda Li
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Elliot Ying
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Raúl A Suárez
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hamza Farooq
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Borja L Holgado
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiaochong Wu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Texas Children's Cancer and Hematology Center, Houston, TX 77030, USA; Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Craig Daniels
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Texas Children's Cancer and Hematology Center, Houston, TX 77030, USA; Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adam J Dupuy
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246, USA
| | - Juan Cadiñanos
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), Oviedo 33193, Spain
| | - Allan Bradley
- T-Therapeutics Ltd. One Riverside, Granta Park, Cambridge CB21 6AD, UK
| | - Anindya Bagchi
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Branden S Moriarity
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - David A Largaespada
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - A Sorana Morrissy
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T8, Canada
| | - Vijay Ramaswamy
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Paediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Stephen C Mack
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, Center of Excellence in Neuro-Oncology Sciences, St Jude Children's Hospital, Memphis, TN 38105, USA
| | - Livia Garzia
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal, QC H4A 3J1, Canada; Cancer Research Program, RI-MUHC, Montreal, QC H4A 3J1, Canada
| | - Peter B Dirks
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Siyi Wanggou
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Sean Egan
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada; Texas Children's Cancer and Hematology Center, Houston, TX 77030, USA; Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Texas Children's Hospital, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Xi Huang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
2
|
YANG PIAO, SHEYKHHASAN MOHSEN, HEIDARI REZA, CHAMANARA MOHSEN, DAMA PAOLA, AHMADIEH-YAZDI AMIRHOSSEIN, MANOOCHEHRI HAMED, TANZADEHPANAH HAMID, MAHAKI HANIE, KALHOR NASER, DIRBAZIYAN ASHKAN, AL-MUSAWI SHARAFALDIN. FOXR2 in cancer development: emerging player and therapeutic opportunities. Oncol Res 2025; 33:283-300. [PMID: 39866234 PMCID: PMC11753994 DOI: 10.32604/or.2024.052939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/26/2024] [Indexed: 01/28/2025] Open
Abstract
Cancer, a leading cause of global mortality, remains a significant challenge to increasing life expectancy worldwide. Forkhead Box R2 (FOXR2), identified as an oncogene within the FOX gene family, plays a crucial role in developing various endoderm-derived organs. Recent studies have elucidated FOXR2-related pathways and their involvement in both tumor and non-tumor diseases. Dysregulation of FOXR2 has been linked to numerous malignant tumors, spanning the brain, nervous system, thyroid, osteosarcoma, Hodgkin lymphoma, colorectal, liver, pancreatic, lung, breast, ovarian, prostate, female genital tract, endometrial, and uterine cancers. Despite extensive research on FOXR2 dysregulation, its practical applications remain underexplored. This review delves into the mechanisms underlying FOXR2 dysregulation during oncogenesis and its implications for cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- PIAO YANG
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
| | - MOHSEN SHEYKHHASAN
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - REZA HEIDARI
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - MOHSEN CHAMANARA
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Student Research Committee, AJA University of Medical Sciences, Tehran, Iran
| | - PAOLA DAMA
- Research Fellow School of Life Sciences, University of Sussex, Brighton, UK
| | - AMIRHOSSEIN AHMADIEH-YAZDI
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - HAMED MANOOCHEHRI
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - HAMID TANZADEHPANAH
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - HANIE MAHAKI
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - NASER KALHOR
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom, Iran
| | - ASHKAN DIRBAZIYAN
- Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
3
|
Jessa S, De Cola A, Chandarana B, McNicholas M, Hébert S, Ptack A, Faury D, Tsai JW, Korshunov A, Phoenix TN, Ellezam B, Jones DT, Taylor MD, Bandopadhayay P, Pathania M, Jabado N, Kleinman CL. FOXR2 Targets LHX6+/DLX+ Neural Lineages to Drive Central Nervous System Neuroblastoma. Cancer Res 2025; 85:231-250. [PMID: 39495206 PMCID: PMC11733536 DOI: 10.1158/0008-5472.can-24-2248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Central nervous system neuroblastoma with forkhead box R2 (FOXR2) activation (NB-FOXR2) is a high-grade tumor of the brain hemispheres and a newly identified molecular entity. Tumors express dual neuronal and glial markers, leading to frequent misdiagnoses, and limited information exists on the role of FOXR2 in their genesis. To identify their cellular origins, we profiled the transcriptomes of NB-FOXR2 tumors at the bulk and single-cell levels and integrated these profiles with large single-cell references of the normal brain. NB-FOXR2 tumors mapped to LHX6+/DLX+ lineages derived from the medial ganglionic eminence, a progenitor domain in the ventral telencephalon. In vivo prenatal Foxr2 targeting to the ganglionic eminences in mice induced postnatal cortical tumors recapitulating human NB-FOXR2-specific molecular signatures. Profiling of FOXR2 binding on chromatin in murine models revealed an association with ETS transcriptional networks, as well as direct binding of FOXR2 at key transcription factors that coordinate initiation of gliogenesis. These data indicate that NB-FOXR2 tumors originate from LHX6+/DLX+ interneuron lineages, a lineage of origin distinct from that of other FOXR2-driven brain tumors, highlight the susceptibility of ventral telencephalon-derived interneurons to FOXR2-driven oncogenesis, and suggest that FOXR2-induced activation of glial programs may explain the mixed neuronal and oligodendroglial features in these tumors. More broadly, this work underscores systematic profiling of brain development as an efficient approach to orient oncogenic targeting for in vivo modeling, critical for the study of rare tumors and development of therapeutics. Significance: Profiling the developing brain enabled rationally guided modeling of FOXR2-activated CNS neuroblastoma, providing a strategy to overcome the heterogeneous origins of pediatric brain tumors that hamper tumor modeling and therapy development. See related commentary by Orr, p. 195.
Collapse
Affiliation(s)
- Selin Jessa
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Canada
- Quantitative Life Sciences, McGill University, Montreal, Canada
| | - Antonella De Cola
- Department of Oncology, Early Cancer Institute, Adrian Way, University of Cambridge, Cambridge, United Kingdom
- CRUK Children’s Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Bhavyaa Chandarana
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Michael McNicholas
- Department of Oncology, Early Cancer Institute, Adrian Way, University of Cambridge, Cambridge, United Kingdom
- CRUK Children’s Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Steven Hébert
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Canada
| | - Adam Ptack
- Department of Experimental Medicine, McGill University, Montreal, Canada
- Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Damien Faury
- Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Jessica W. Tsai
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, California
- Department of Pediatrics, Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, California
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Timothy N. Phoenix
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Benjamin Ellezam
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Canada
| | - David T.W. Jones
- Division of Pediatric Glioma Research, Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael D. Taylor
- Pediatric Neuro-Oncology Research Program, Texas Children’s Hospital, Houston, Texas
- Department of Pediatrics, Hematology/Oncology, Hematology/Oncology Section, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Pratiti Bandopadhayay
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Boston Children’s Cancer and Blood Disorder Center, Boston, Massachusetts
| | - Manav Pathania
- Department of Oncology, Early Cancer Institute, Adrian Way, University of Cambridge, Cambridge, United Kingdom
- CRUK Children’s Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, Canada
- Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Pediatrics, McGill University, Montreal, Canada
| | - Claudia L. Kleinman
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| |
Collapse
|
4
|
Kaelin CB, McGowan KA, Trotman JC, Koroma DC, David VA, Menotti-Raymond M, Graff EC, Schmidt-Küntzel A, Oancea E, Barsh GS. Molecular and genetic characterization of sex-linked orange coat color in the domestic cat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624608. [PMID: 39605675 PMCID: PMC11601623 DOI: 10.1101/2024.11.21.624608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The Sex-linked orange mutation in domestic cats causes variegated patches of reddish/yellow hair and is a defining signature of random X-inactivation in female tortoiseshell and calico cats. Unlike the situation for most coat color genes, there is no apparent homolog for Sex-linked orange in other mammals. We show that the Sex-linked orange is caused by a 5 kb deletion that leads to ectopic and melanocyte-specific expression of the Rho GTPase Activating Protein 36 ( Arhgap36 ) gene. Single cell RNA-seq studies from fetal cat skin reveal that red/yellow hair color is caused by reduced expression of melanogenic genes that are normally activated by the Melanocortin 1 receptor (Mc1r)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway, but the Mc1r gene and its ability to stimulate cAMP accumulation is intact. Instead, we show that increased expression of Arhgap36 in melanocytes leads to reduced levels of the PKA catalytic subunit (PKA C ); thus, Sex-linked orange is genetically and biochemically downstream of Mc1r . Our findings solve a comparative genomic conundrum, provide in vivo evidence for the ability of Arhgap36 to inhibit PKA, and reveal a molecular explanation for a charismatic color pattern with a rich genetic history.
Collapse
|
5
|
Syrnioti A, Chatzopoulos K, DiNapoli S, Sukhadia P, Linos K. Aggressive Malignant Ossifying Fibromyxoid Tumor With a Rare PHF1::FOXR2 Fusion: A Case Report and Literature Review. Int J Surg Pathol 2024:10668969241295349. [PMID: 39552609 DOI: 10.1177/10668969241295349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Ossifying fibromyxoid tumor (OFMT) is a rare soft tissue neoplasm of uncertain origin, exhibiting a wide clinical and morphological spectrum. It ranges from benign forms, which typically behave indolently, to malignant lesions with significant recurrence and metastatic potential. The majority of OFMTs harbor PHF1 gene rearrangements, with EP400 being the most common fusion partner. Herein, we present a patient with malignant metastatic OFMT, with the very rare PHF1::FOXR2 fusion, and discuss the potential clinical implications of this genetic alteration.
Collapse
Affiliation(s)
- Antonia Syrnioti
- Department of Pathology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Sara DiNapoli
- Department of Pathology & Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Purvil Sukhadia
- Department of Pathology & Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Konstantinos Linos
- Department of Pathology & Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
6
|
Garcia-Moure M, Laspidea V, Gupta S, Gillard AG, Khatua S, Parthasarathy A, He J, Lang FF, Fueyo J, Alonso MM, Gomez-Manzano C. The emerging field of viroimmunotherapy for pediatric brain tumors. Neuro Oncol 2024; 26:1981-1993. [PMID: 39148489 PMCID: PMC11534321 DOI: 10.1093/neuonc/noae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Indexed: 08/17/2024] Open
Abstract
Pediatric brain tumors are the most common solid tumors in children. Even to date, with the advances in multimodality therapeutic management, survival outcomes remain dismal in some types of tumors, such as pediatric-type diffuse high-grade gliomas or central nervous system embryonal tumors. Failure to understand the complex molecular heterogeneity and the elusive tumor and microenvironment interplay continues to undermine therapeutic efficacy. Developing a strategy that would improve survival for these fatal tumors remains unmet in pediatric neuro-oncology. Oncolytic viruses (OVs) are emerging as a feasible, safe, and promising therapy for brain tumors. The new paradigm in virotherapy implies that the direct cytopathic effect is followed, under certain circumstances, by an antitumor immune response responsible for the partial or complete debulking of the tumor mass. OVs alone or combined with other therapeutic modalities have been primarily used in adult neuro-oncology. A surge in encouraging preclinical studies in pediatric brain tumor models recently led to the clinical translation of OVs with encouraging results in these tumors. In this review, we summarize the different virotherapy tested in preclinical and clinical studies in pediatric brain tumors, and we discuss the limitations and future avenues necessary to improve the response of these tumors to this type of therapy.
Collapse
Affiliation(s)
- Marc Garcia-Moure
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Virginia Laspidea
- Department of Pediatrics, Clinica Universidad de Navarra, Pamplona, Spain
| | - Sumit Gupta
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andrew G Gillard
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Soumen Khatua
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Akhila Parthasarathy
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiasen He
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marta M Alonso
- Department of Pediatrics, Clinica Universidad de Navarra, Pamplona, Spain
- Program of Solid Tumors, Center for the Applied Medical Research, Pamplona, Spain
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
7
|
de Almeida FN, Vasciaveo A, Antao AM, Zou M, Di Bernardo M, de Brot S, Rodriguez-Calero A, Chui A, Wang ALE, Floc'h N, Kim JY, Afari SN, Mukhammadov T, Arriaga JM, Lu J, Shen MM, Rubin MA, Califano A, Abate-Shen C. A forward genetic screen identifies Sirtuin1 as a driver of neuroendocrine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.609538. [PMID: 39253480 PMCID: PMC11383054 DOI: 10.1101/2024.08.24.609538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Although localized prostate cancer is relatively indolent, advanced prostate cancer manifests with aggressive and often lethal variants, including neuroendocrine prostate cancer (NEPC). To identify drivers of aggressive prostate cancer, we leveraged Sleeping Beauty (SB) transposon mutagenesis in a mouse model based on prostate-specific loss-of-function of Pten and Tp53 . Compared with control mice, SB mice developed more aggressive prostate tumors, with increased incidence of metastasis. Notably, a significant percentage of the SB prostate tumors display NEPC phenotypes, and the transcriptomic features of these SB mouse tumors recapitulated those of human NEPC. We identified common SB transposon insertion sites (CIS) and prioritized associated CIS-genes differentially expressed in NEPC versus non-NEPC SB tumors. Integrated analysis of CIS-genes encoding for proteins representing upstream, post-translational modulators of master regulators controlling the transcriptional state of SB -mouse and human NEPC tumors identified sirtuin 1 ( Sirt1 ) as a candidate mechanistic determinant of NEPC. Gain-of-function studies in human prostate cancer cell lines confirmed that SIRT1 promotes NEPC, while its loss-of-function or pharmacological inhibition abrogates NEPC. This integrative analysis is generalizable and can be used to identify novel cancer drivers for other malignancies. Summary Using an unbiased forward mutagenesis screen in an autochthonous mouse model, we have investigated mechanistic determinants of aggressive prostate cancer. SIRT1 emerged as a key regulator of neuroendocrine prostate cancer differentiation and a potential target for therapeutic intervention.
Collapse
|
8
|
Ampudia-Mesias E, Cameron CS, Yoo E, Kelly M, Anderson SM, Manning R, Abrahante Lloréns JE, Moertel CL, Yim H, Odde DJ, Saydam N, Saydam O. The OTX2 Gene Induces Tumor Growth and Triggers Leptomeningeal Metastasis by Regulating the mTORC2 Signaling Pathway in Group 3 Medulloblastomas. Int J Mol Sci 2024; 25:4416. [PMID: 38674001 PMCID: PMC11050316 DOI: 10.3390/ijms25084416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Medulloblastoma (MB) encompasses diverse subgroups, and leptomeningeal disease/metastasis (LMD) plays a substantial role in associated fatalities. Despite extensive exploration of canonical genes in MB, the molecular mechanisms underlying LMD and the involvement of the orthodenticle homeobox 2 (OTX2) gene, a key driver in aggressive MB Group 3, remain insufficiently understood. Recognizing OTX2's pivotal role, we investigated its potential as a catalyst for aggressive cellular behaviors, including migration, invasion, and metastasis. OTX2 overexpression heightened cell growth, motility, and polarization in Group 3 MB cells. Orthotopic implantation of OTX2-overexpressing cells in mice led to reduced median survival, accompanied by the development of spinal cord and brain metastases. Mechanistically, OTX2 acted as a transcriptional activator of the Mechanistic Target of Rapamycin (mTOR) gene's promoter and the mTORC2 signaling pathway, correlating with upregulated downstream genes that orchestrate cell motility and migration. Knockdown of mTOR mRNA mitigated OTX2-mediated enhancements in cell motility and polarization. Analysis of human MB tumor samples (N = 952) revealed a positive correlation between OTX2 and mTOR mRNA expression, emphasizing the clinical significance of OTX2's role in the mTORC2 pathway. Our results reveal that OTX2 governs the mTORC2 signaling pathway, instigating LMD in Group 3 MBs and offering insights into potential therapeutic avenues through mTORC2 inhibition.
Collapse
Affiliation(s)
- Elisabet Ampudia-Mesias
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| | - Charles S. Cameron
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| | - Eunjae Yoo
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea;
| | - Marcus Kelly
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | - Sarah M. Anderson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | - Riley Manning
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | | | - Christopher L. Moertel
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| | - Hyungshin Yim
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea;
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | | | - Okay Saydam
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| |
Collapse
|
9
|
Gharbaran R. Insights into the molecular roles of FOXR2 in the pathology of primary pediatric brain tumors. Crit Rev Oncol Hematol 2023; 192:104188. [PMID: 37879492 DOI: 10.1016/j.critrevonc.2023.104188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Forkhead box gene R2 (FOXR2) belongs to the family of FOX genes which codes for highly conserved transcription factors (TFs) with critical roles in biological processes ranging from development to organogenesis to metabolic and immune regulation to cellular homeostasis. A number of FOX genes are associated with cancer development and progression and poor prognosis. A growing body of evidence suggests that FOXR2 is an oncogene. Studies suggested important roles for FOXR2 in cancer cell growth, metastasis, and drug resistance. Recent studies showed that FOXR2 is overexpressed by a subset of newly identified entities of embryonal tumors. This review discusses the role(s) FOXR2 plays in the pathology of pediatric brain cancers and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rajendra Gharbaran
- Biological Sciences Department, Bronx Community College/City University of New York, 2155 University Avenue, Bronx, NY 10453, USA.
| |
Collapse
|
10
|
Song J, Li L, Fang Y, Lin Y, Wu L, Wan W, Wei G, Hua F, Ying J. FOXN Transcription Factors: Regulation and Significant Role in Cancer. Mol Cancer Ther 2023; 22:1028-1039. [PMID: 37566097 DOI: 10.1158/1535-7163.mct-23-0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023]
Abstract
A growing number of studies have demonstrated that cancer development is closely linked to abnormal gene expression, including alterations in the transcriptional activity of transcription factors. The Forkhead box class N (FOXN) proteins FOXN1-6 form a highly conserved class of transcription factors, which have been shown in recent years to be involved in the regulation of malignant progression in a variety of cancers. FOXNs mediate cell proliferation, cell-cycle progression, cell differentiation, metabolic homeostasis, embryonic development, DNA damage repair, tumor angiogenesis, and other critical biological processes. Therefore, transcriptional dysregulation of FOXNs can directly affect cellular physiology and promote cancer development. Numerous studies have demonstrated that the transcriptional activity of FOXNs is regulated by protein-protein interactions, microRNAs (miRNA), and posttranslational modifications (PTM). However, the mechanisms underlying the molecular regulation of FOXNs in cancer development are unclear. Here, we reviewed the molecular regulatory mechanisms of FOXNs expression and activity, their role in the malignant progression of tumors, and their value for clinical applications in cancer therapy. This review may help design experimental studies involving FOXN transcription factors, and enhance their therapeutic potential as antitumor targets.
Collapse
Affiliation(s)
- Jiali Song
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Longshan Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Yang Fang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Luojia Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Wei Wan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Gen Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| |
Collapse
|
11
|
Sarver AL, Mills LJ, Makielski KM, Temiz NA, Wang J, Spector LG, Subramanian S, Modiano JF. Distinct mechanisms of PTEN inactivation in dogs and humans highlight convergent molecular events that drive cell division in the pathogenesis of osteosarcoma. Cancer Genet 2023; 276-277:1-11. [PMID: 37267683 PMCID: PMC11694714 DOI: 10.1016/j.cancergen.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/02/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023]
Abstract
A hallmark of osteosarcoma in both human and canine tumors is somatic fragmentation and rearrangement of chromosome structure which leads to recurrent increases and decreases in DNA copy number. The PTEN gene has been implicated as an important tumor suppressor in osteosarcoma via forward genetic screens. Here, we analyzed copy number changes, promoter methylation and transcriptomes to better understand the role of PTEN in canine and human osteosarcoma. Reduction in PTEN copy number was observed in 23 of 95 (25%) of the canine tumors examined leading to corresponding decreases in PTEN transcript levels from RNA-Seq samples. Unexpectedly, canine tumors with an intact PTEN locus had higher levels of PTEN transcripts than human tumors. This variation in transcript abundance was used to evaluate the role of PTEN in osteosarcoma biology. Decreased PTEN copy number and transcript level was observed in - and likely an important driver of - increases in cell cycle transcripts in four independent canine transcriptional datasets. In human osteosarcoma, homozygous copy number loss was not observed, instead increased methylation of the PTEN promoter was associated with increased cell cycle transcripts. Somatic modification of PTEN, either by homozygous deletion in dogs or by promoter methylation in humans, is clinically relevant to osteosarcoma, because the cell cycle related transcripts are associated with patient outcomes. The PTEN gene is part of a syntenic rearrangement unique to the canine genome, making it susceptible to somatic loss of both copies of distal chromosome 26 which also includes the FAS death receptor. SIGNIFICANCE STATEMENT: PTEN function is abrogated by different mechanisms in canine and human osteosarcoma tumors leading to uncontrolled cell cycling. Somatic loss of this canine specific syntenic region may help explain why the canine genome appears to be uniquely susceptible to osteosarcoma. Syntenic arrangement, in the context of copy number change, may lead to synergistic interactions that in turn modify species specific cancer risk. Comparative models of tumorigenesis may utilize different driver mechanisms.
Collapse
Affiliation(s)
- Aaron L Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA.
| | - Lauren J Mills
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kelly M Makielski
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA; Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA
| | - Nuri A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jinhua Wang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Logan G Spector
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA
| | - Subbaya Subramanian
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA; Department of Surgery, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - Jaime F Modiano
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA; Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA; Center for Engineering and Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Grigore FN, Yang SJ, Chen CC, Koga T. Pioneering models of pediatric brain tumors. Neoplasia 2023; 36:100859. [PMID: 36599191 PMCID: PMC9823239 DOI: 10.1016/j.neo.2022.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 01/04/2023]
Abstract
Among children and adolescents in the United States (0 to 19 years old), brain and other central nervous system tumors are the second most common types of cancers, surpassed in incidence only by leukemias. Despite significant progress in the diagnosis and treatment modalities, brain cancer remains the leading cause of death in the pediatric population. There is an obvious unfulfilled need to streamline the therapeutic strategies and improve survival for these patients. For that purpose, preclinical models play a pivotal role. Numerous models are currently used in pediatric brain tumor research, including genetically engineered mouse models, patient-derived xenografts and cell lines, and newer models that utilize novel technologies such as genome engineering and organoids. Furthermore, extensive studies by the Children's Brain Tumor Network (CBTN) researchers and others have revealed multiomic landscapes of variable pediatric brain tumors. Combined with such integrative data, these novel technologies have enabled numerous applicable models. Genome engineering, including CRISPR/Cas9, expanded the flexibility of modeling. Models generated through genome engineering enabled studying particular genetic alterations in clean isogenic backgrounds, facilitating the dissection of functional mechanisms of those mutations in tumor biology. Organoids have been applied to study tumor-to-tumor-microenvironment interactions and to address developmental aspects of tumorigenesis, which is essential in some pediatric brain tumors. Other modalities, such as humanized mouse models, could potentially be applied to pediatric brain tumors. In addition to current valuable models, such novel models are anticipated to expedite functional tumor biology study and establish effective therapeutics for pediatric brain tumors.
Collapse
Affiliation(s)
- Florina-Nicoleta Grigore
- Department of Neurosurgery, University of Minnesota, MMC96, Room D-429, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Serena Johanna Yang
- Department of Neurosurgery, University of Minnesota, MMC96, Room D-429, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, MMC96, Room D-429, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Tomoyuki Koga
- Department of Neurosurgery, University of Minnesota, MMC96, Room D-429, 420 Delaware St SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
13
|
Liu Y, Banka S, Huang Y, Hardman-Smart J, Pye D, Torrelo A, Beaman GM, Kazanietz MG, Baker MJ, Ferrazzano C, Shi C, Orozco G, Eyre S, van Geel M, Bygum A, Fischer J, Miedzybrodzka Z, Abuzahra F, Rübben A, Cuvertino S, Ellingford JM, Smith MJ, Evans DG, Weppner-Parren LJMT, van Steensel MAM, Chaudhary IH, Mangham DC, Lear JT, Paus R, Frank J, Newman WG, Zhang X. Germline intergenic duplications at Xq26.1 underlie Bazex-Dupré-Christol basal cell carcinoma susceptibility syndrome. Br J Dermatol 2022; 187:948-961. [PMID: 35986704 DOI: 10.1111/bjd.21842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Bazex-Dupré-Christol syndrome (BDCS; MIM301845) is a rare X-linked dominant genodermatosis characterized by follicular atrophoderma, congenital hypotrichosis and multiple basal cell carcinomas (BCCs). Previous studies have linked BDCS to an 11·4-Mb interval on chromosome Xq25-q27.1. However, the genetic mechanism of BDCS remains an open question. OBJECTIVES To investigate the genetic aetiology and molecular mechanisms underlying BDCS. METHODS We ascertained multiple individuals from eight unrelated families affected with BDCS (F1-F8). Whole-exome (F1 and F2) and genome sequencing (F3) were performed to identify putative disease-causing variants within the linkage region. Array comparative genomic hybridization and quantitative polymerase chain reaction (PCR) were used to explore copy number variations, followed by long-range gap PCR and Sanger sequencing to amplify the duplication junctions and to define the head-tail junctions. Hi-C was performed on dermal fibroblasts from two affected individuals with BDCS and one control. Public datasets and tools were used to identify regulatory elements and transcription factor binding sites within the minimal duplicated region. Immunofluorescence was performed in hair follicles, BCCs and trichoepitheliomas from patients with BDCS and sporadic BCCs. The ACTRT1 variant c.547dup (p.Met183Asnfs*17), previously proposed to cause BDCS, was evaluated with t allele frequency calculator. RESULTS In eight families with BDCS, we identified overlapping 18-135-kb duplications (six inherited and two de novo) at Xq26.1, flanked by ARHGAP36 and IGSF1. Hi-C showed that the duplications did not affect the topologically associated domain, but may alter the interactions between flanking genes and putative enhancers located in the minimal duplicated region. We detected ARHGAP36 expression near the control hair follicular stem cell compartment, and found increased ARHGAP36 levels in hair follicles in telogen, in BCCs and in trichoepitheliomas from patients with BDCS. ARHGAP36 was also detected in sporadic BCCs from individuals without BDCS. Our modelling showed the predicted maximum tolerated minor allele frequency of ACTRT1 variants in control populations to be orders of magnitude higher than expected for a high-penetrant ultra-rare disorder, suggesting loss of function of ACTRT1 variants to be an unlikely cause for BDCS. CONCLUSIONS Noncoding Xq26.1 duplications cause BDCS. The BDCS duplications most likely lead to dysregulation of ARHGAP36. ARHGAP36 is a potential therapeutic target for both inherited and sporadic BCCs. What is already known about this topic? Bazex-Dupré-Christol syndrome (BDCS) is a rare X-linked basal cell carcinoma susceptibility syndrome linked to an 11·4-Mb interval on chromosome Xq25-q27.1. Loss-of-function variants in ACTRT1 and its regulatory elements were suggested to cause BDCS. What does this study add? BDCS is caused by small tandem noncoding intergenic duplications at chromosome Xq26.1. The Xq26.1 BDCS duplications likely dysregulate ARHGAP36, the flanking centromeric gene. ACTRT1 loss-of-function variants are unlikely to cause BDCS. What is the translational message? This study provides the basis for accurate genetic testing for BDCS, which will aid precise diagnosis and appropriate surveillance and clinical management. ARHGAP36 may be a novel therapeutic target for all forms of sporadic basal cell carcinomas.
Collapse
Affiliation(s)
- Yanshan Liu
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Yingzhi Huang
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Jonathan Hardman-Smart
- The Centre for Dermatology Research, University of Manchester, MAHSC, and National Institutes of Health Biomedical Research Center, Manchester, M13 9PL, UK
- St John's Institute of Dermatology, Kings College London, London, WC2R 2LS, UK
| | - Derek Pye
- The Centre for Dermatology Research, University of Manchester, MAHSC, and National Institutes of Health Biomedical Research Center, Manchester, M13 9PL, UK
| | - Antonio Torrelo
- Department of Dermatology, Hospital Infantil Universitario Niño Jesús, 28009, Madrid, Spain
| | - Glenda M Beaman
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Martin J Baker
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Carlo Ferrazzano
- Centre for Genetics and Genomics Versus Arthritis Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Chenfu Shi
- Centre for Genetics and Genomics Versus Arthritis Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Gisela Orozco
- Centre for Genetics and Genomics Versus Arthritis Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Stephen Eyre
- Centre for Genetics and Genomics Versus Arthritis Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Michel van Geel
- Department of Dermatology, University Hospital Maastricht, 6229, Maastricht, the Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, 6229, Maastricht, the Netherlands
| | - Anette Bygum
- Department of Clinical Genetics, Odense University Hospital, 5230, Odense, Denmark
- Hospital Clinical Institute, University of Southern Denmark, 5230, Odense, Denmark
| | - Judith Fischer
- Institute of Human Genetics, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Zosia Miedzybrodzka
- School of Medicine, Medical Sciences, Nutrition and Dentistry, University of Aberdeen, Aberdeen, AB25 2ZD, UK
- Medical Genetics Department, NHS Grampian, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Faris Abuzahra
- Department of Dermatology, Zaandam Medical Center, 1502, Zaandam, the Netherlands
| | - Albert Rübben
- Department of Dermatology and Allergology, University Hospital of RWTH Aachen, 52062, Aachen, Germany
| | - Sara Cuvertino
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Jamie M Ellingford
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Miriam J Smith
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - D Gareth Evans
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | | | - Maurice A M van Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138543, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore, 636921, Singapore
| | - Iskander H Chaudhary
- Department of Pathology, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
| | - D Chas Mangham
- Adult Histopathology, Laboratory Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, M13 9WL, UK
| | - John T Lear
- The Centre for Dermatology Research, University of Manchester, MAHSC, and National Institutes of Health Biomedical Research Center, Manchester, M13 9PL, UK
- Department of Dermatology, Salford Royal NHS Foundation Trust, Manchester, M6 8AD, UK
| | - Ralf Paus
- The Centre for Dermatology Research, University of Manchester, MAHSC, and National Institutes of Health Biomedical Research Center, Manchester, M13 9PL, UK
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33125, USA
- Monasterium Laboratory, Nano-Bioanalytik Zentrum, D-48149, Münster, Germany
| | - Jorge Frank
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - William G Newman
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
14
|
Vaishnavi A, Juan J, Jacob M, Stehn C, Gardner EE, Scherzer MT, Schuman S, Van Veen JE, Murphy B, Hackett CS, Dupuy AJ, Chmura SA, van der Weyden L, Newberg JY, Liu A, Mann K, Rust AG, Weiss WA, Kinsey CG, Adams DJ, Grossmann A, Mann MB, McMahon M. Transposon Mutagenesis Reveals RBMS3 Silencing as a Promoter of Malignant Progression of BRAFV600E-Driven Lung Tumorigenesis. Cancer Res 2022; 82:4261-4273. [PMID: 36112789 PMCID: PMC9664136 DOI: 10.1158/0008-5472.can-21-3214] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 06/29/2022] [Accepted: 09/13/2022] [Indexed: 01/09/2023]
Abstract
Mutationally activated BRAF is detected in approximately 7% of human lung adenocarcinomas, with BRAFT1799A serving as a predictive biomarker for treatment of patients with FDA-approved inhibitors of BRAFV600E oncoprotein signaling. In genetically engineered mouse (GEM) models, expression of BRAFV600E in the lung epithelium initiates growth of benign lung tumors that, without additional genetic alterations, rarely progress to malignant lung adenocarcinoma. To identify genes that cooperate with BRAFV600E for malignant progression, we used Sleeping Beauty-mediated transposon mutagenesis, which dramatically accelerated the emergence of lethal lung cancers. Among the genes identified was Rbms3, which encodes an RNA-binding protein previously implicated as a putative tumor suppressor. Silencing of RBMS3 via CRISPR/Cas9 gene editing promoted growth of BRAFV600E lung organoids and promoted development of malignant lung cancers with a distinct micropapillary architecture in BRAFV600E and EGFRL858R GEM models. BRAFV600E/RBMS3Null lung tumors displayed elevated expression of Ctnnb1, Ccnd1, Axin2, Lgr5, and c-Myc mRNAs, suggesting that RBMS3 silencing elevates signaling through the WNT/β-catenin signaling axis. Although RBMS3 silencing rendered BRAFV600E-driven lung tumors resistant to the effects of dabrafenib plus trametinib, the tumors were sensitive to inhibition of porcupine, an acyltransferase of WNT ligands necessary for their secretion. Analysis of The Cancer Genome Atlas patient samples revealed that chromosome 3p24, which encompasses RBMS3, is frequently lost in non-small cell lung cancer and correlates with poor prognosis. Collectively, these data reveal the role of RBMS3 as a lung cancer suppressor and suggest that RBMS3 silencing may contribute to malignant NSCLC progression. SIGNIFICANCE Loss of RBMS3 cooperates with BRAFV600E to induce lung tumorigenesis, providing a deeper understanding of the molecular mechanisms underlying mutant BRAF-driven lung cancer and potential strategies to more effectively target this disease.
Collapse
Affiliation(s)
- Aria Vaishnavi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Joseph Juan
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Maebh Jacob
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | | | - Eric E. Gardner
- Meyer Cancer Center, Weill Cornell Medicine, New York City, New York
- Palo Alto Wellness, Menlo Park, California
| | - Michael T. Scherzer
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
| | - Sophia Schuman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - J. Edward Van Veen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Brandon Murphy
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Christopher S. Hackett
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Adam J. Dupuy
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Steven A. Chmura
- Meyer Cancer Center, Weill Cornell Medicine, New York City, New York
- Palo Alto Wellness, Menlo Park, California
| | - Louise van der Weyden
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Justin Y. Newberg
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Annie Liu
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Karen Mann
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Alistair G. Rust
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - William A. Weiss
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
- Department of Dermatology, University of Utah, Salt Lake City, Utah
- Department of Pediatrics, University of California, San Francisco, California
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Conan G. Kinsey
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - David J. Adams
- Department of Dermatology, University of Utah, Salt Lake City, Utah
- Department of Pediatrics, University of California, San Francisco, California
| | - Allie Grossmann
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Michael B. Mann
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Martin McMahon
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
- Department of Dermatology, University of Utah, Salt Lake City, Utah
- Department of Pediatrics, University of California, San Francisco, California
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California
| |
Collapse
|
15
|
Tsai JW, Cejas P, Wang DK, Patel S, Wu DW, Arounleut P, Wei X, Zhou N, Syamala S, Dubois FP, Crane A, Pelton K, Vogelzang J, Sousa C, Baguette A, Chen X, Condurat AL, Dixon-Clarke SE, Zhou KN, Lu SD, Gonzalez EM, Chacon MS, Digiacomo JJ, Kumbhani R, Novikov D, Hunter J, Tsoli M, Ziegler DS, Dirksen U, Jager N, Balasubramanian GP, Kramm CM, Nathrath M, Bielack S, Baker SJ, Zhang J, McFarland JM, Getz G, Aguet F, Jabado N, Witt O, Pfister SM, Ligon KL, Hovestadt V, Kleinman CL, Long H, Jones DT, Bandopadhayay P, Phoenix TN. FOXR2 Is an Epigenetically Regulated Pan-Cancer Oncogene That Activates ETS Transcriptional Circuits. Cancer Res 2022; 82:2980-3001. [PMID: 35802025 PMCID: PMC9437574 DOI: 10.1158/0008-5472.can-22-0671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/11/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022]
Abstract
Forkhead box R2 (FOXR2) is a forkhead transcription factor located on the X chromosome whose expression is normally restricted to the testis. In this study, we performed a pan-cancer analysis of FOXR2 activation across more than 10,000 adult and pediatric cancer samples and found FOXR2 to be aberrantly upregulated in 70% of all cancer types and 8% of all individual tumors. The majority of tumors (78%) aberrantly expressed FOXR2 through a previously undescribed epigenetic mechanism that involves hypomethylation of a novel promoter, which was functionally validated as necessary for FOXR2 expression and proliferation in FOXR2-expressing cancer cells. FOXR2 promoted tumor growth across multiple cancer lineages and co-opted ETS family transcription circuits across cancers. Taken together, this study identifies FOXR2 as a potent and ubiquitous oncogene that is epigenetically activated across the majority of human cancers. The identification of hijacking of ETS transcription circuits by FOXR2 extends the mechanisms known to active ETS transcription factors and highlights how transcription factor families cooperate to enhance tumorigenesis. SIGNIFICANCE This work identifies a novel promoter that drives aberrant FOXR2 expression and delineates FOXR2 as a pan-cancer oncogene that specifically activates ETS transcriptional circuits across human cancers. See related commentary by Liu and Northcott, p. 2977.
Collapse
Affiliation(s)
- Jessica W. Tsai
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, Cancer Program, Broad Institute, Cambridge, Massachusetts
| | - Dayle K. Wang
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Smruti Patel
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David W. Wu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Phonepasong Arounleut
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Xin Wei
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Ningxuan Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, Cancer Program, Broad Institute, Cambridge, Massachusetts
| | - Sudeepa Syamala
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, Cancer Program, Broad Institute, Cambridge, Massachusetts
| | - Frank P.B. Dubois
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alexander Crane
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kristine Pelton
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jayne Vogelzang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Cecilia Sousa
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Audrey Baguette
- Quantitative Life Sciences, McGill University, Montreal, Quebec H3A 2A7, Canada
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alexandra L. Condurat
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Sarah E. Dixon-Clarke
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Boston, Massachusetts
| | - Kevin N. Zhou
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Sophie D. Lu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Elizabeth M. Gonzalez
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Madison S. Chacon
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Jeromy J. Digiacomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Rushil Kumbhani
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Dana Novikov
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - J'Ya Hunter
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Maria Tsoli
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - David S. Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Uta Dirksen
- West German Cancer Center, Pediatrics III, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Essen/Düsseldorf, Germany
| | - Natalie Jager
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Research Center (DKFZ) Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Gnana Prakash Balasubramanian
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Research Center (DKFZ) Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christof M. Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Michaela Nathrath
- Department of Pediatric Hematology and Oncology, Klinikum Kassel, Kassel, Germany
- Children's Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Suzanne J. Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
- Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
| | - François Aguet
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, H3A 0C7, Canada
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, H4A 3J1, Canada
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Research Center (DKFZ) Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology, and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Disease (NCT) Network, Germany
| | - Stefan M. Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Research Center (DKFZ) Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology, and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Disease (NCT) Network, Germany
| | - Keith L. Ligon
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Volker Hovestadt
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Claudia L. Kleinman
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montreal, H3A 0C7, Canada
| | - Henry Long
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, Cancer Program, Broad Institute, Cambridge, Massachusetts
| | - David T.W. Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Research Center (DKFZ) Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pratiti Bandopadhayay
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Timothy N. Phoenix
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
16
|
Qin YQ, Liu SY, Lv ML, Sun WL. Ambra1 in cancer: implications for clinical oncology. Apoptosis 2022; 27:720-729. [PMID: 35994214 DOI: 10.1007/s10495-022-01762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 11/28/2022]
Abstract
Activating molecule in Beclin-1-regulated autophagy protein 1 (Ambra1) is well known to mediate the autophagy process and promote the formation of autophagosomes. In addition, Ambra1 is involved in the execution of apoptosis. A growing number of studies have revealed that this protein modifies the sensitivity of cancer cells to anticancer drugs by controlling the balance between autophagy and apoptosis. In addition, Ambra1 is a key factor in regulating the cell cycle, proliferation, invasion and migration. Therefore, it plays a key role in tumorigenesis and progression. Moreover, Ambra1 is highly expressed in a variety of cancers and is closely related to the prognosis of patients. Thus, it appears that Ambra1 has multiple roles in tumorigenesis and progression, which may have implications for clinical oncology. The present review focuses on recent advances in the study of Ambra1, especially the role of the protein in tumorigenesis, progression and effects on anticancer drug sensitivity.
Collapse
Affiliation(s)
- Yan-Qiu Qin
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxuedong Road, Nanning, 530007, Guangxi, People's Republic of China
| | - Si-Yu Liu
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxuedong Road, Nanning, 530007, Guangxi, People's Republic of China
| | - Mei-Ling Lv
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxuedong Road, Nanning, 530007, Guangxi, People's Republic of China
| | - Wei-Liang Sun
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxuedong Road, Nanning, 530007, Guangxi, People's Republic of China.
| |
Collapse
|
17
|
Bartl J, Zanini M, Bernardi F, Forget A, Blümel L, Talbot J, Picard D, Qin N, Cancila G, Gao Q, Nath S, Koumba IM, Wolter M, Kuonen F, Langini M, Beez T, Munoz C, Pauck D, Marquardt V, Yu H, Souphron J, Korsch M, Mölders C, Berger D, Göbbels S, Meyer FD, Scheffler B, Rotblat B, Diederichs S, Ramaswamy V, Suzuki H, Oro A, Stühler K, Stefanski A, Fischer U, Leprivier G, Willbold D, Steger G, Buell A, Kool M, Lichter P, Pfister SM, Northcott PA, Taylor MD, Borkhardt A, Reifenberger G, Ayrault O, Remke M. The HHIP-AS1 lncRNA promotes tumorigenicity through stabilization of dynein complex 1 in human SHH-driven tumors. Nat Commun 2022; 13:4061. [PMID: 35831316 PMCID: PMC9279496 DOI: 10.1038/s41467-022-31574-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Most lncRNAs display species-specific expression patterns suggesting that animal models of cancer may only incompletely recapitulate the regulatory crosstalk between lncRNAs and oncogenic pathways in humans. Among these pathways, Sonic Hedgehog (SHH) signaling is aberrantly activated in several human cancer entities. We unravel that aberrant expression of the primate-specific lncRNA HedgeHog Interacting Protein-AntiSense 1 (HHIP-AS1) is a hallmark of SHH-driven tumors including medulloblastoma and atypical teratoid/rhabdoid tumors. HHIP-AS1 is actively transcribed from a bidirectional promoter shared with SHH regulator HHIP. Knockdown of HHIP-AS1 induces mitotic spindle deregulation impairing tumorigenicity in vitro and in vivo. Mechanistically, HHIP-AS1 binds directly to the mRNA of cytoplasmic dynein 1 intermediate chain 2 (DYNC1I2) and attenuates its degradation by hsa-miR-425-5p. We uncover that neither HHIP-AS1 nor the corresponding regulatory element in DYNC1I2 are evolutionary conserved in mice. Taken together, we discover an lncRNA-mediated mechanism that enables the pro-mitotic effects of SHH pathway activation in human tumors. Long non-coding RNAs (lncRNAs) can contribute to cancers that are driven by Sonic hedgehog (SHH) signaling. Here the authors report that lncRNA HHIP-AS1 stabilises the mRNA of dynein complex 1, thereby, promoting the pro-mitotic effects of SHH-driven tumors.
Collapse
Affiliation(s)
- Jasmin Bartl
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany. .,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany. .,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany. .,Group for Interdisciplinary Neurobiology and Immunology-INI-research, Institute of Zoology University of Hamburg, Hamburg, Germany.
| | - Marco Zanini
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Flavia Bernardi
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Antoine Forget
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Lena Blümel
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Julie Talbot
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Daniel Picard
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Nan Qin
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Gabriele Cancila
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Qingsong Gao
- St Jude Children's Research Hospital, Memphis, TN, USA
| | - Soumav Nath
- Institut für Physikalische Biologie and Biological-Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf, Germany.,IBI- (Strukturbiochemie) and JuStruct, Forschungszentrum Jülich, Jülich, Germany
| | - Idriss Mahoungou Koumba
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Marietta Wolter
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - François Kuonen
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, CH- Lausanne, Lausanne, Switzerland
| | - Maike Langini
- Institute for Molecular Medicine, Proteome Research, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Thomas Beez
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christopher Munoz
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - David Pauck
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Viktoria Marquardt
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Hua Yu
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Judith Souphron
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Mascha Korsch
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Christina Mölders
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Daniel Berger
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Sarah Göbbels
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Frauke-Dorothee Meyer
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Björn Scheffler
- DKFZ Division of Translational Neurooncology at the West German Cancer Center (WTZ), DKTK, partner site University Hospital Essen, Düsseldorf, Germany
| | - Barak Rotblat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The National Institute for Biotechnology in the Negev, Beer Sheva, Israel
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, DKTK, partner site Freiburg, Freiburg i.Br, Germany.,Division of RNA Biology & Cancer, DKFZ, Heidelberg, Germany
| | - Vijay Ramaswamy
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hiromishi Suzuki
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anthony Oro
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Dermatology, Stanford University, Stanford, CA, USA
| | - Kai Stühler
- Molecular Proteomics Laboratory (MPL), BMFZ, Heinrich Heine University, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory (MPL), BMFZ, Heinrich Heine University, Düsseldorf, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Gabriel Leprivier
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Dieter Willbold
- Institut für Physikalische Biologie and Biological-Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf, Germany.,IBI- (Strukturbiochemie) and JuStruct, Forschungszentrum Jülich, Jülich, Germany
| | - Gerhard Steger
- Institut für Physikalische Biologie and Biological-Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marcel Kool
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France. .,Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France.
| | - Marc Remke
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany. .,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany. .,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
18
|
Fixing the GAP: the role of RhoGAPs in cancer. Eur J Cell Biol 2022; 101:151209. [DOI: 10.1016/j.ejcb.2022.151209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
|
19
|
Identification of mutations that cooperate with defects in B cell transcription factors to initiate leukemia. Oncogene 2021; 40:6166-6179. [PMID: 34535769 PMCID: PMC8556320 DOI: 10.1038/s41388-021-02012-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 08/25/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022]
Abstract
The transcription factors PAX5, IKZF1, and EBF1 are frequently mutated in B cell acute lymphoblastic leukemia (B-ALL). We demonstrate that compound heterozygous loss of multiple genes critical for B and T cell development drives transformation, including Pax5+/-xEbf1+/-, Pax5+/-xIkzf1+/-, and Ebf1+/-xIkzf1+/- mice for B-ALL, or Tcf7+/-xIkzf1+/- mice for T-ALL. To identify genetic defects that cooperate with Pax5 and Ebf1 compound heterozygosity to initiate leukemia, we performed a Sleeping Beauty (SB) transposon screen that identified cooperating partners including gain-of-function mutations in Stat5b (~65%) and Jak1 (~68%), or loss-of-function mutations in Cblb (61%) and Myb (32%). These findings underscore the role of JAK/STAT5B signaling in B cell transformation and demonstrate roles for loss-of-function mutations in Cblb and Myb in transformation. RNA-Seq studies demonstrated upregulation of a PDK1>SGK3>MYC pathway; treatment of Pax5+/-xEbf1+/- leukemia cells with PDK1 inhibitors blocked proliferation in vitro. In addition, we identified a conserved transcriptional gene signature between human and murine leukemias characterized by upregulation of myeloid genes, most notably involving the GM-CSF pathway, that resemble a B cell/myeloid mixed-lineage leukemia. Thus, our findings identify multiple mechanisms that cooperate with defects in B cell transcription factors to generate either progenitor B cell or mixed B/myeloid-like leukemias.
Collapse
|
20
|
Li Q, Qiu Y, Jin T, Liu M, Hou Y. [MiR- 4719 inhibits migration and invasion of human breast cancer cells via targeting ARHGAP36]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:854-861. [PMID: 34238737 DOI: 10.12122/j.issn.1673-4254.2021.06.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To detect the expression of miR-4719 in breast cancer tissues and cells and explore its role in regulating invasion and migration of breast cancer cells. OBJECTIVE qRT-PCR was used to detect the expression of miR-4719 and ARHGAP36 in 30 pairs of human breast cancer tissues and adjacent tissues, two breast cancer cell lines (BT549 and MDA-MB- 231) and normal breast cells (MCF-10A). Bioinformatic methods were utilized to analyze the relationship between miR-4719 expression and overall survival of breast cancer patients and predict the potential target gene miR- 4719. miR-4719 mimics, ARHGAP36 shRNA and ARHGAP36 plasmids were transfected into breast cancer cells to test the effects of miR-4719 overexpression, ARHGAP36 knockdown and ARHGAP36 overexpression on cell migration and invasion using wound healing assay and Transwell assay. A dual-luciferase reporter assay was used to verify the direct binding between miR-4719 and 3'-UTR of ARHGAP36. OBJECTIVE Compared with those in adjacent tissues or normal breast cells, the expressions of miR-4719 were significantly decreased and the expression of ARHGAP36 was increased in breast cancer tissues (P < 0.001) and breast cancer cell lines (P < 0.01). A low expression of miR-4719 was correlated with a poorer overall survival of breast cancer patients (P < 0.05). Overexpression of miR-4719 and ARHGAP36 knockdown both significantly attenuated the invasion and migration abilities of breast cancer cells (P < 0.05). The expression of miR-4719 was inversely correlated to that of ARHGAP36 in breast cancer tissues (P < 0.01). Dual-luciferase reporter assay confirmed that ARHGAP36 was the target gene of miR-4719 (P < 0.01), and exogenous miR-4719 could significantly lower the expression of ARHGAP36 (P < 0.05). ARHGAP36 overexpression significantly reversed the inhibitory effects of miR-4719 mimics on migration and invasion of breast cancer cells (P < 0.05). OBJECTIVE The expression of miR-4719 is aberrantly decreased in breast cancer tissues to promote migration and invasion of breast cancer cells by up-regulating ARHGAP36 expression.
Collapse
Affiliation(s)
- Q Li
- Key Laboratory of Laboratory Medical Diagnostics of Ministry of Education Chongqing Medical University, Chongqing 400016, China
| | - Y Qiu
- Key Laboratory of Laboratory Medical Diagnostics of Ministry of Education Chongqing Medical University, Chongqing 400016, China
| | - T Jin
- Key Laboratory of Laboratory Medical Diagnostics of Ministry of Education Chongqing Medical University, Chongqing 400016, China
| | - M Liu
- Key Laboratory of Laboratory Medical Diagnostics of Ministry of Education Chongqing Medical University, Chongqing 400016, China
| | - Y Hou
- Experimental Teaching Center of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
21
|
Schmitt-Hoffner F, van Rijn S, Toprak UH, Mauermann M, Rosemann F, Heit-Mondrzyk A, Hübner JM, Camgöz A, Hartlieb S, Pfister SM, Henrich KO, Westermann F, Kool M. FOXR2 Stabilizes MYCN Protein and Identifies Non- MYCN-Amplified Neuroblastoma Patients With Unfavorable Outcome. J Clin Oncol 2021; 39:3217-3228. [PMID: 34110923 PMCID: PMC8500564 DOI: 10.1200/jco.20.02540] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clinical outcomes of patients with neuroblastoma range from spontaneous tumor regression to fatality. Hence, understanding the mechanisms that cause tumor progression is crucial for the treatment of patients. In this study, we show that FOXR2 activation identifies a subset of neuroblastoma tumors with unfavorable outcome and we investigate the mechanism how FOXR2 relates to poor outcome in patients.
Collapse
Affiliation(s)
- Felix Schmitt-Hoffner
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sjoerd van Rijn
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Umut H Toprak
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Monika Mauermann
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Felix Rosemann
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Anke Heit-Mondrzyk
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Jens-Martin Hübner
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Aylin Camgöz
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Sabine Hartlieb
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kai-Oliver Henrich
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Westermann
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcel Kool
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
22
|
Sarver AL, Xie C, Riddle MJ, Forster CL, Wang X, Lu H, Wagner W, Tolar J, Hallstrom TC. Retinoblastoma tumor cell proliferation is negatively associated with an immune gene expression signature and increased immune cells. J Transl Med 2021; 101:701-718. [PMID: 33658609 DOI: 10.1038/s41374-021-00573-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
This study focuses on gene expression differences between early retinal states that ultimately lead to normal development, late onset retinoblastoma, or rapid bilateral retinoblastoma tumors. The late-onset and early-onset retinoblastoma tumor cells are remarkably similar to normally proliferating retinal progenitor cells, but they fail to properly express differentiation markers associated with normal development. Further, early-onset retinoblastoma tumor cells express a robust immune gene expression signature followed by accumulation of dendritic, monocyte, macrophage, and T-lymphocyte cells in the retinoblastoma tumors. This characteristic was not shared by either normal retinae or late-onset retinoblastomas. Comparison of our data with other human and mouse retinoblastoma tumor gene expression significantly confirmed, that the immune signature is present in tumors from each species. Strikingly, we observed that the immune signature in both mouse and human tumors was most highly evident in those with the lowest proliferative capacity. We directly assessed this relationship in human retinoblastoma tumors by co-analyzing proliferation and immune cell recruitment by immunohistochemistry, uncovering a significant inverse relationship between increased immune-cell infiltration in tumors and reduced tumor cell proliferation. Directly inhibiting proliferation with a PI3K/mTOR inhibitor significantly increased the number of CD45+ immune cells in the retina. This work establishes an in vivo model for the rapid recruitment of immune cells to tumorigenic neural tissue.
Collapse
Affiliation(s)
- Aaron L Sarver
- Institute for Health Informatics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Chencheng Xie
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Megan J Riddle
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Colleen L Forster
- BioNet, Academic Health Center, University of Minnesota, Minneapolis, MN, USA
| | - Xiaohong Wang
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Huarui Lu
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Wyatt Wagner
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Jakub Tolar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Timothy C Hallstrom
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
23
|
Nano PR, Johnson TK, Kudo T, Mooney NA, Ni J, Demeter J, Jackson PK, Chen JK. Structure-activity mapping of ARHGAP36 reveals regulatory roles for its GAP homology and C-terminal domains. PLoS One 2021; 16:e0251684. [PMID: 33999959 PMCID: PMC8128262 DOI: 10.1371/journal.pone.0251684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/01/2021] [Indexed: 11/24/2022] Open
Abstract
ARHGAP36 is an atypical Rho GTPase-activating protein (GAP) family member that drives both spinal cord development and tumorigenesis, acting in part through an N-terminal motif that suppresses protein kinase A and activates Gli transcription factors. ARHGAP36 also contains isoform-specific N-terminal sequences, a central GAP-like module, and a unique C-terminal domain, and the functions of these regions remain unknown. Here we have mapped the ARHGAP36 structure-activity landscape using a deep sequencing-based mutagenesis screen and truncation mutant analyses. Using this approach, we have discovered several residues in the GAP homology domain that are essential for Gli activation and a role for the C-terminal domain in counteracting an N-terminal autoinhibitory motif that is present in certain ARHGAP36 isoforms. In addition, each of these sites modulates ARHGAP36 recruitment to the plasma membrane or primary cilium. Through comparative proteomics, we also have identified proteins that preferentially interact with active ARHGAP36, and we demonstrate that one binding partner, prolyl oligopeptidase-like protein, is a novel ARHGAP36 antagonist. Our work reveals multiple modes of ARHGAP36 regulation and establishes an experimental framework that can be applied towards other signaling proteins.
Collapse
Affiliation(s)
- Patricia R. Nano
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Taylor K. Johnson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Takamasa Kudo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nancie A. Mooney
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jun Ni
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Janos Demeter
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Peter K. Jackson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - James K. Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Chemistry, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
E3 ubiquitin ligase PJA1 regulates lung adenocarcinoma apoptosis and invasion through promoting FOXR2 degradation. Biochem Biophys Res Commun 2021; 556:106-113. [PMID: 33839405 DOI: 10.1016/j.bbrc.2021.03.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/18/2023]
Abstract
Among all lung cancer cases, lung adenocarcinoma (LAC) represents nearly 40% and remains the leading cause of cancer deaths worldwide. Although the combination therapy of surgical treatment with radiotherapy, chemotherapy, and immunotherapy, has been used to treat LAC, unfortunately, high recurrence rates and poor survival remain. Therefore, novel prognostic markers and new targets for molecular targeted therapy in LAC is urgently needed. Fork-head box R2 (FOXR2) plays a key role in a wide range of cellular processes, including cellular proliferation, invasion, differentiation, and apoptosis, and it has been reported to be implicated in progression of LAC, thus inhibition of FOXR2 may be a novel targeting therapy for lung cancer. This current study found that E3 ligase PJA1 regulates ubiquitin-mediated degradation of FOXR2 and predicts good outcome of patients with LAC. In addition, it was showed force expression of PJA1 significantly inhibited LAC cells invasion and induced apoptosis in vitro through inactivating Wnt/β-catenin signaling pathway. In short, our findings reveal that PJA1 could be a potential diagnostic and prognostic biomarkers and the PJA1- FOXR2 axis could be served as a promising target for LAC therapy.
Collapse
|
25
|
Garcia-Moure M, Gonzalez-Huarriz M, Labiano S, Guruceaga E, Bandres E, Zalacain M, Marrodan L, de Andrea C, Villalba M, Martinez-Velez N, Laspidea V, Puigdelloses M, Gallego Perez-Larraya J, Iñigo-Marco I, Stripecke R, Chan JA, Raabe EH, Kool M, Gomez-Manzano C, Fueyo J, Patiño-García A, Alonso MM. Delta-24-RGD, an Oncolytic Adenovirus, Increases Survival and Promotes Proinflammatory Immune Landscape Remodeling in Models of AT/RT and CNS-PNET. Clin Cancer Res 2021; 27:1807-1820. [PMID: 33376098 PMCID: PMC7617079 DOI: 10.1158/1078-0432.ccr-20-3313] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/14/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Atypical teratoid/rhabdoid tumors (AT/RT) and central nervous system primitive neuroectodermal tumors (CNS-PNET) are pediatric brain tumors with poor survival and life-long negative side effects. Here, the aim was to characterize the efficacy and safety of the oncolytic adenovirus, Delta-24-RGD, which selectively replicates in and kills tumor cells. EXPERIMENTAL DESIGN Delta-24-RGD determinants for infection and replication were evaluated in patient expression datasets. Viral replication and cytotoxicity were assessed in vitro in a battery of CNS-PNET and AT/RT cell lines. In vivo, efficacy was determined in different orthotopic mouse models, including early and established tumor models, a disseminated AT/RT lesion model, and immunocompetent humanized mouse models (hCD34+-NSG-SGM3). RESULTS Delta-24-RGD infected and replicated efficiently in all the cell lines tested. In addition, the virus induced dose-dependent cytotoxicity [IC50 value below 1 plaque-forming unit (PFU)/cell] and the release of immunogenic markers. In vivo, a single intratumoral Delta-24-RGD injection (107 or 108 PFU) significantly increased survival and led to long-term survival in AT/RT and PNET models. Delta-24-RGD hindered the dissemination of AT/RTs and increased survival, leading to 70% of long-term survivors. Of relevance, viral administration to established tumor masses (30 days after engraftment) showed therapeutic benefit. In humanized immunocompetent models, Delta-24-RGD significantly extended the survival of mice bearing AT/RTs or PNETs (ranging from 11 to 27 days) and did not display any toxicity associated with inflammation. Immunophenotyping of Delta-24-RGD-treated tumors revealed increased CD8+ T-cell infiltration. CONCLUSIONS Delta-24-RGD is a feasible therapeutic option for AT/RTs and CNS-PNETs. This work constitutes the basis for potential translation to the clinical setting.
Collapse
Affiliation(s)
- Marc Garcia-Moure
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain.
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Marisol Gonzalez-Huarriz
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Sara Labiano
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Elizabeth Guruceaga
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Bioinformatics Platform, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Navarra, Spain
| | - Eva Bandres
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Immunology Unit, Department of Hematology, Complejo Hospitalario de Navarra, Pamplona, Navarra, Spain
| | - Marta Zalacain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Lucia Marrodan
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Carlos de Andrea
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Maria Villalba
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Naiara Martinez-Velez
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Virginia Laspidea
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Montse Puigdelloses
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Jaime Gallego Perez-Larraya
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Ignacio Iñigo-Marco
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Renata Stripecke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Laboratory of Regenerative Immune Therapies Applied of the Research Network REBIRTH, German Centre for Infection Research (DZIF), partner site Hannover, Hannover, Germany
| | - Jennifer A Chan
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eric H Raabe
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Division of Pediatric Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KITZ), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Candelaria Gomez-Manzano
- Department of NeuroOncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Juan Fueyo
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ana Patiño-García
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Marta M Alonso
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain.
- Program in Solid Tumors, Foundation for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| |
Collapse
|
26
|
Weber J, Braun CJ, Saur D, Rad R. In vivo functional screening for systems-level integrative cancer genomics. Nat Rev Cancer 2020; 20:573-593. [PMID: 32636489 DOI: 10.1038/s41568-020-0275-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
With the genetic portraits of all major human malignancies now available, we next face the challenge of characterizing the function of mutated genes, their downstream targets, interactions and molecular networks. Moreover, poorly understood at the functional level are also non-mutated but dysregulated genomes, epigenomes or transcriptomes. Breakthroughs in manipulative mouse genetics offer new opportunities to probe the interplay of molecules, cells and systemic signals underlying disease pathogenesis in higher organisms. Herein, we review functional screening strategies in mice using genetic perturbation and chemical mutagenesis. We outline the spectrum of genetic tools that exist, such as transposons, CRISPR and RNAi and describe discoveries emerging from their use. Genome-wide or targeted screens are being used to uncover genomic and regulatory landscapes in oncogenesis, metastasis or drug resistance. Versatile screening systems support experimentation in diverse genetic and spatio-temporal settings to integrate molecular, cellular or environmental context-dependencies. We also review the combination of in vivo screening and barcoding strategies to study genetic interactions and quantitative cancer dynamics during tumour evolution. These scalable functional genomics approaches are transforming our ability to interrogate complex biological systems.
Collapse
Affiliation(s)
- Julia Weber
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany
| | - Christian J Braun
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany
- Institute of Translational Cancer Research and Experimental Cancer Therapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany.
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
27
|
Amberger M, Ivics Z. Latest Advances for the Sleeping Beauty Transposon System: 23 Years of Insomnia but Prettier than Ever: Refinement and Recent Innovations of the Sleeping Beauty Transposon System Enabling Novel, Nonviral Genetic Engineering Applications. Bioessays 2020; 42:e2000136. [PMID: 32939778 DOI: 10.1002/bies.202000136] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/29/2020] [Indexed: 12/13/2022]
Abstract
The Sleeping Beauty transposon system is a nonviral DNA transfer tool capable of efficiently mediating transposition-based, stable integration of DNA sequences of choice into eukaryotic genomes. Continuous refinements of the system, including the emergence of hyperactive transposase mutants and novel approaches in vectorology, greatly improve upon transposition efficiency rivaling viral-vector-based methods for stable gene insertion. Current developments, such as reversible transgenesis and proof-of-concept RNA-guided transposition, further expand on possible applications in the future. In addition, innate advantages such as lack of preferential integration into genes reduce insertional mutagenesis-related safety concerns while comparably low manufacturing costs enable widespread implementation. Accordingly, the system is recognized as a powerful and versatile tool for genetic engineering and is playing a central role in an ever-expanding number of gene and cell therapy clinical trials with the potential to become a key technology to meet the growing demand for advanced therapy medicinal products.
Collapse
Affiliation(s)
- Maximilian Amberger
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, D-63225, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, D-63225, Germany
| |
Collapse
|
28
|
Transposon Insertion Mutagenesis in Mice for Modeling Human Cancers: Critical Insights Gained and New Opportunities. Int J Mol Sci 2020; 21:ijms21031172. [PMID: 32050713 PMCID: PMC7036786 DOI: 10.3390/ijms21031172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
Transposon mutagenesis has been used to model many types of human cancer in mice, leading to the discovery of novel cancer genes and insights into the mechanism of tumorigenesis. For this review, we identified over twenty types of human cancer that have been modeled in the mouse using Sleeping Beauty and piggyBac transposon insertion mutagenesis. We examine several specific biological insights that have been gained and describe opportunities for continued research. Specifically, we review studies with a focus on understanding metastasis, therapy resistance, and tumor cell of origin. Additionally, we propose further uses of transposon-based models to identify rarely mutated driver genes across many cancers, understand additional mechanisms of drug resistance and metastasis, and define personalized therapies for cancer patients with obesity as a comorbidity.
Collapse
|
29
|
Tseng SH, Park ST, Lam B, Tsai YC, Cheng MA, Farmer E, Xing D, Hung CF. Novel, genetically induced mouse model that recapitulates the histological morphology and immunosuppressive tumor microenvironment of metastatic peritoneal carcinomatosis. J Immunother Cancer 2020; 8:e000480. [PMID: 32111730 PMCID: PMC7057437 DOI: 10.1136/jitc-2019-000480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Peritoneal carcinomatosis is a hallmark of advanced peritoneal tumor progression, particularly for tubal/ovarian high-grade serous carcinomas (HGSCs). Patients with peritoneal carcinomatosis have poor survival rates and are difficult to treat clinically due to widespread tumor dissemination in the peritoneal cavity. METHODS We developed a clinically relevant, genetically induced, peritoneal carcinomatosis model that recapitulates the histological morphology and immunosuppressive state of the tumor microenvironment of metastatic peritoneal HGSCs by intraperitoneally injecting shp53, AKT, c-Myc, luciferase and sleeping beauty transposase, followed by electroporation (EP) in the peritoneal cavity of immunocompetent mice (intraperitoneal (IP)/EP mice). RESULTS Similar to the spread of human ovarian cancers, IP/EP mice displayed multiple tumor nodules attached to the surface of the abdomen. Histopathological analysis indicated that these tumors were epithelial in origin. These IP/EP mice also displayed a loss of CD3+ T cell infiltration in tumors, highly expressed inhibitory checkpoint molecules in tumor-infiltrating and global CD4+ and CD8+ T cells, and increased levels of transforming growth factor-β in the ascites, all of which contribute to the promotion of tumor growth. CONCLUSIONS Overall, our tumor model recapitulates clinical peritoneal HGSC metastasis, which makes it ideal for preclinical drug screening, testing of immunotherapy-based therapeutics and studying of the tumor biology of peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Ssu-Hsueh Tseng
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sung-Taek Park
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Brandon Lam
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ya-Chea Tsai
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Max A Cheng
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Emily Farmer
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Deyin Xing
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chien-Fu Hung
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Roussel MF, Stripay JL. Modeling pediatric medulloblastoma. Brain Pathol 2019; 30:703-712. [PMID: 31788908 PMCID: PMC7317774 DOI: 10.1111/bpa.12803] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/17/2019] [Indexed: 12/15/2022] Open
Abstract
Mouse models of medulloblastoma have proven to be instrumental in understanding disease mechanisms, particularly the role of epigenetic and molecular drivers, and establishing appropriate preclinical pipelines. To date, our research community has developed murine models for all four groups of medulloblastoma, each of which will be critical for the identification and development of new therapeutic approaches. Approaches to modeling medulloblastoma range from genetic engineering with CRISPR/Cas9 or in utero electroporation, to orthotopic and patient‐derived orthotopic xenograft systems. Each approach or model presents unique advantages that have ultimately contributed to an appreciation of medulloblastoma heterogeneity and the clinical obstacles that exist for this patient population.
Collapse
Affiliation(s)
- Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Jennifer L Stripay
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| |
Collapse
|
31
|
Eberhart CG. A fox with many faces: FOXR2 and embryonal brain tumors. Neuro Oncol 2019; 21:963-964. [PMID: 31149715 DOI: 10.1093/neuonc/noz102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Charles G Eberhart
- Departments of Pathology and Oncology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
32
|
Guimaraes-Young A, Feddersen CR, Dupuy AJ. Sleeping Beauty Mouse Models of Cancer: Microenvironmental Influences on Cancer Genetics. Front Oncol 2019; 9:611. [PMID: 31338332 PMCID: PMC6629774 DOI: 10.3389/fonc.2019.00611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
The Sleeping Beauty (SB) transposon insertional mutagenesis system offers a streamlined approach to identify genetic drivers of cancer. With a relatively random insertion profile, SB is uniquely positioned for conducting unbiased forward genetic screens. Indeed, SB mouse models of cancer have revealed insights into the genetics of tumorigenesis. In this review, we highlight experiments that have exploited the SB system to interrogate the genetics of cancer in distinct biological contexts. We also propose experimental designs that could further our understanding of the relationship between tumor microenvironment and tumor progression.
Collapse
Affiliation(s)
- Amy Guimaraes-Young
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Charlotte R Feddersen
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|