1
|
Li S, Ye T, Hou Z, Wang Y, Hao Z, Chen J. FOXO6: A unique transcription factor in disease regulation and therapeutic potential. Pharmacol Res 2025; 214:107691. [PMID: 40058512 DOI: 10.1016/j.phrs.2025.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/21/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
FOXO6, a unique member of the Forkhead box O (FOXO) transcription factor family, has emerged as a pivotal regulator in various physiological and pathological processes, including apoptosis, oxidative stress, autophagy, cell cycle control, and inflammation. Unlike other FOXO proteins, FOXO6 exhibits distinct regulatory mechanisms, particularly its inability to undergo classical nucleocytoplasmic shuttling. These unique properties suggest that FOXO6 may function through alternative pathways, positioning it as a novel research target. This review provides the first comprehensive review of FOXO6's biological functions and its roles in the progression of multiple diseases, such as cancer, metabolic disorders, neurodegenerative conditions, and cardiovascular dysfunction. We highlight FOXO6's interaction with critical signaling pathways, including PI3K/Akt, PPARγ, and TXNIP, and discuss its contributions to tumor progression, glucose and lipid metabolism, oxidative stress, and neuronal degeneration. Moreover, FOXO6's potential as a therapeutic target is explored, with particular emphasis on its ability to modulate drug resistance and its implications for disease treatment. Despite its promising therapeutic potential, the development of FOXO6-targeted therapies remains challenging due to overlapping functions within the FOXO family and the context-dependent nature of FOXO6's regulatory roles. This review underscores the need for further experimental and clinical studies to elucidate the molecular mechanisms underlying FOXO6's functions and to validate its application in disease prevention and treatment. By systematically analyzing current research, this review aims to provide a foundational reference for future studies on FOXO6, paving the way for novel therapeutic strategies targeting this unique transcription factor.
Collapse
Affiliation(s)
- Songzhe Li
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ting Ye
- The Second Hospital Affiliated Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Zhitao Hou
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuqing Wang
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhihua Hao
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Chen
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
2
|
Semerci Sevimli T, Ghorbani A, Gakhiyeva F, Ebrahimi A, Ghorbanpoor H, Altuğ B, Ergen FB, Ahmadova Z, Soykan MN, Tufekcioglu E. Evaluation of Boric Acid Treatment on microRNA-127-5p and Metastasis Genes Orchestration of Breast Cancer Stem Cells. Biol Trace Elem Res 2025; 203:1465-1474. [PMID: 38963646 PMCID: PMC11872770 DOI: 10.1007/s12011-024-04274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Coregulation of microRNAs (miRNAs) and cancer stem cells (CSCs) is very important in carcinogenesis. miR-127-5p is known to be downregulated in breast cancer. In this study, we aimed to investigate how boric acid (BA), known for its previously unstudied anti-cancer properties, would affect the expression of miR127-5p and genes responsible for breast cancer stem cells (BC-SCs) metastasis. BC-SCs were isolated from human breast cancer cells (MCF-7) by immunomagnetic cell separation and characterized with flow cytometry and sphere formation. The viability of BC-SCs and the determination of its IC50 value in response to boric acid (BA) were assessed via the MTT assay. Boric acid exhibited dose- and time-dependent inhibition of cell viability in cells. The IC50 doses of boric acid in MCF-7 cells and BC-SCs were 45.69 mM and 41.27 mM, respectively. The impact of BA on the expression of metastatic genes and miR127-5p was elucidated through RT-qPCR analysis. While the expression of the COL1A1 (p < 0.05) and VIM (p < 0.01) was downregulated, the expression of the miR-127-5p, ZEB1 (p < 0.01), CDH1 (p < 0.05), ITGB1 (p < 0.05), ITGA5 (p < 0.05), LAMA5 (p < 0.01), and SNAIL (p < 0.05), was up-regulated in dose-treated BC-SCs (p < 0.001) to the RT-qPCR results. Our findings suggest that boric acid could induce miR-127-5p expression. However, it cannot be said that it improves the metastasis properties of breast cancer stem cells.
Collapse
Affiliation(s)
- Tuğba Semerci Sevimli
- Cellular Therapy and Stem Cell Production, Application, and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Turkey.
| | - Aynaz Ghorbani
- Cellular Therapy and Stem Cell Production, Application, and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
| | - Fidan Gakhiyeva
- Cellular Therapy and Stem Cell Production, Application, and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
| | - Aliakbar Ebrahimi
- Cellular Therapy and Stem Cell Production, Application, and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
| | - Hamed Ghorbanpoor
- Cellular Therapy and Stem Cell Production, Application, and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
| | - Burcugül Altuğ
- Cellular Therapy and Stem Cell Production, Application, and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
| | - Fulya Buge Ergen
- Cellular Therapy and Stem Cell Production, Application, and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
| | - Zarifa Ahmadova
- Department of Surgery, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Merve Nur Soykan
- Cellular Therapy and Stem Cell Production, Application, and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
| | - Emre Tufekcioglu
- Department of Industrial Design, Faculty of Architecture and Design, Eskisehir Technical University, Eskisehir, 26555, Turkey
| |
Collapse
|
3
|
Saadh MJ, Bishoyi AK, Ballal S, Singh A, Kareem RA, Devi A, Sharma GC, Naidu KS, Sead FF. MicroRNAs as behind-the-scenes molecules in breast cancer metastasis and their therapeutic role through novel microRNA-based delivery strategies. Gene 2025; 944:149272. [PMID: 39894085 DOI: 10.1016/j.gene.2025.149272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Breast cancer is the primary cause of cancer-related death and the most frequent malignancy among women in Western countries. Although there have been advancements in combination treatments and targeted therapies for the metastatic diseases management, metastatic breast cancer is still the second most common cause of cancer-related deaths among U.S. women. The routes of metastasis encompass invasion, intravasation, circulation, extravasation, infiltration into a remote location to establish a metastatic niche, and the formation of micro-metastases in a new environment. Each of these processes is regulated by changes in gene expression. MicroRNAs (miRNAs) are widely expressed by a variety of organisms and have a key role in cell activities including suppressing or promoting cancer through regulating various pathways. Target gene expression is post-transcriptionally regulated by miRNAs, which contribute to the development, spread, and metastasis of breast cancer. In this study, we comprehensively discussed the role of miRNAs as predictors of breast cancer metastasis, their correlation with the spread of the disease to certain organs, and their potential application as targets for breast cancer treatment. We also provided molecular mechanisms of miRNAs in the progression of breast cancer, as well as current challenges in miRNA-based therapeutic approaches. Furthermore, as one of the primary issues with the treatment of solid malignancies is the efficient delivery of miRNAs, we examined a number of cutting-edge carriers for miRNA-based therapies and CRISPR/Cas9 as a targeted therapy for breast cancer.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | | | - Anita Devi
- Department of Chemistry Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Fadhil Faez Sead
- Department of Dentistry, College of Dentistry, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
4
|
Zhang X, Cheng T, Cho E, Lu W, Denoyer D, McMillan P, Shobhana K, Varshney S, Williamson NA, Stewart A. Nutritionally physiological cell culture medium and 3D culture influence breast tumour proteomics and anti-cancer drug effectiveness. Pharmacol Res 2024; 210:107519. [PMID: 39603575 DOI: 10.1016/j.phrs.2024.107519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Many drugs have been discontinued during phase II/III breast cancer clinical trials due to lack of clinical efficacy, indicating shortcomings in predictive value of preclinical data. Nutrient availability in the tumour cell microenvironment and the dimensionality of in vitro tumour cells likely impact on drug responsiveness. Global proteomics experiments were conducted to assess the impact of nutrient availability and dimensionality of culture. Protein set enrichment analyses identified "pathways in cancer", "focal adhesion" and "ECM receptor in interaction" related to cell culture dimensionality in MDA-MB-231 cells. In MCF-7 cells, 4 pathways were influenced by medium composition, and 2 pathways were influenced by cell culture dimensionality (2D vs. 3D). These pathways were also identified using KEGG analyses. Eight drugs were selected for investigation according to the differential expression of their putative or known target proteins. The influence of medium composition on drug effectiveness was explored using the "Melbourne Medium" (MM), developed to have nutritionally physiological levels of metabolites as compared with conventional (hyper-nutritional) cell culture medium (CM). The influence of dimensionality on drug effectiveness was also explored, using an innovative 3D viability assessment combining automated confocal microscopy and image analysis. Dimensionality of culture appeared to have a greater influence on the proteome and drug effects than variation in nutrient levels. The number of differentially expressed proteins in the different media was greater in 2D than 3D. We conclude that the risk of qualifying inactive compounds in preclinical assessment may be mitigated using additional models incorporating physiological media and 3-dimensionality.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Biochemistry and Pharmacology, The University of Melbourne, VIC, Australia; ARC Centre for Personalised Therapeutics Technologies, Melbourne, VIC, Australia
| | - Tianhong Cheng
- Department of Biochemistry and Pharmacology, The University of Melbourne, VIC, Australia; ARC Centre for Personalised Therapeutics Technologies, Melbourne, VIC, Australia
| | - Ellie Cho
- Department of Biochemistry and Pharmacology, The University of Melbourne, VIC, Australia; The Biological Optical Microscopy Platform (BOMP), The University of Melbourne, VIC, Australia
| | - Wenjia Lu
- Department of Biochemistry and Pharmacology, The University of Melbourne, VIC, Australia; ARC Centre for Personalised Therapeutics Technologies, Melbourne, VIC, Australia
| | - Delphine Denoyer
- Department of Biochemistry and Pharmacology, The University of Melbourne, VIC, Australia; ARC Centre for Personalised Therapeutics Technologies, Melbourne, VIC, Australia
| | - Paul McMillan
- Department of Biochemistry and Pharmacology, The University of Melbourne, VIC, Australia; The Biological Optical Microscopy Platform (BOMP), The University of Melbourne, VIC, Australia
| | - Kalyan Shobhana
- Department of Biochemistry and Pharmacology, The University of Melbourne, VIC, Australia; The Biological Optical Microscopy Platform (BOMP), The University of Melbourne, VIC, Australia
| | - Swati Varshney
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, VIC, Australia
| | - Nicholas A Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, VIC, Australia
| | - Alastair Stewart
- Department of Biochemistry and Pharmacology, The University of Melbourne, VIC, Australia; ARC Centre for Personalised Therapeutics Technologies, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Lipscomb J, Gray K, Melton T, Nelson P, Rye A, Pruett CL, Reyna NS. miR-127/3p Inhibits Cell Migration in Lung Adenocarcinoma Under Hypoxic and Normal Oxygen Conditions. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001355. [PMID: 39483961 PMCID: PMC11525482 DOI: 10.17912/micropub.biology.001355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024]
Abstract
MicroRNAs are small noncoding nucleotides that serve as intracellular and extracellular signaling molecules. A previous collaboration found miR-127/3p circulation in the blood of breast cancer patients correlated with improved patient recovery and prognosis. While this study exclusively focused on breast cancer patients, data mining of the TCGA databases indicated that miR-127/3p may be positively associated with outcomes in other cancer types. In our study, A549 lung adenocarcinoma cells were transfected with miR-127/3p using Cell Block protocols produced by the Cell Biology Education Consortium (CBEC). After transfection, cell migration (scratch/wound healing) assays were used to determine the role miR-127/3p plays in the tumor microenvironment. To mimic and test this environment, transfected cells were incubated in normal oxygen (normoxic) and low oxygen (hypoxic) environments. We found that miR-127/3p inhibited cell migration in both normal oxygen and hypoxic environments. These results help elucidate the role miR-127/3p plays in the prevention of metastasis and further highlight its potential as a positive biomarker.
Collapse
Affiliation(s)
- Jackson Lipscomb
- Biology, Ouachita Baptist University, Arkadelphia, Arkansas, United States
| | - Kassidy Gray
- Biology, Ouachita Baptist University, Arkadelphia, Arkansas, United States
| | - Tuesday Melton
- Biology, Ouachita Baptist University, Arkadelphia, Arkansas, United States
| | - Parker Nelson
- Biology, Ouachita Baptist University, Arkadelphia, Arkansas, United States
| | - Alyssa Rye
- Biology, Ouachita Baptist University, Arkadelphia, Arkansas, United States
| | - Christin L. Pruett
- Biology, Ouachita Baptist University, Arkadelphia, Arkansas, United States
| | - Nathan S. Reyna
- Biology, Ouachita Baptist University, Arkadelphia, Arkansas, United States
| |
Collapse
|
6
|
Bai H, Xian N, Zhao F, Zhou Y, Qin S. The dual role of SUSD2 in cancer development. Eur J Pharmacol 2024; 977:176754. [PMID: 38897441 DOI: 10.1016/j.ejphar.2024.176754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/04/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Sushi domain-containing protein 2 (SUSD2, also known as the complement control protein domain) is a representative and vital protein in the SUSD protein family involved in many physiological and pathological processes beyond complement regulation. Cancer is one of the leading causes of death worldwide. The complex role of SUSD2 in tumorigenesis and cancer progression has raised increasing concerns. Studies suggest that SUSD2 has different regulatory tendencies among different tumors and exerts its biological effects in a cancer type-specific manner; for instance, it has oncogenic effects on breast cancer, gastric cancer, and glioma and has tumor-suppression effects on lung cancer, bladder cancer, and colon cancer. Moreover, SUSD2 can be regulated by noncoding RNAs, its promoter methylation and other molecules, such as Galectin-1 (Gal-1), tropomyosin alpha-4 chain (TPM4), and p63. The therapeutic implications of targeting SUSD2 have already been preliminarily revealed in some malignancies, including melanoma, colon cancer, and breast cancer. This article reviews the role and regulatory mechanisms of SUSD2 in cancer development, as well as its structure and distribution. We hope that this review will advance the understanding of SUSD2 as a diagnostic and/or prognostic biomarker and provide new avenues for the development of novel cancer therapies.
Collapse
Affiliation(s)
- Han Bai
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an, 710000, China
| | - Ningyi Xian
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fengyu Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yikun Zhou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Sida Qin
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
7
|
Kuo WT, Lee YC, Yang YF, Cheng CF, Tseng CJ, Tsai KW. Sushi Domain Containing 2 Dysfunction Contributes to Cancer Progression in Patients with Bladder Cancer. J Cancer 2024; 15:5318-5328. [PMID: 39247587 PMCID: PMC11375537 DOI: 10.7150/jca.97537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/13/2024] [Indexed: 09/10/2024] Open
Abstract
Bladder cancer is the most prevalent type of cancer in Taiwan, and therefore, enhancing the diagnostic sensitivity of biomarkers for early-stage tumors and identifying therapeutic targets to improve patient survival rates are essential. Although Sushi Domain Containing 2 (SUSD2) dysfunction has been identified in several types of human cancer, its biological role in bladder cancer remains unclear. Analysis of The Cancer Genome Atlas revealed significantly higher expression of SUSD2 mRNA in bladder cancer tissues than in adjacent normal tissues. This elevated expression of SUSD2 significantly correlated with pathological stage (p = 0.029), pN stage (p < 0.001), and pM stage (p = 0.047). Univariate analysis revealed that high SUSD2 expression was associated with decreased overall survival (crude hazard ratio = 1.70, 95% confidence interval = 1.13-2.56, p = 0.01). Multivariate analysis revealed a significant correlation between high SUSD2 expression and poor survival outcomes (adjusted hazard ratio = 1.53, 95% confidence interval = 1.01-2.31, p = 0.043). IHC analysis revealed a significant correlation between elevated SUSD2 protein levels and unfavorable pathological stages (p < 0.001). SUSD2 suppression significantly reduced the proliferation, colony formation, and invasion of bladder cancer cells. In addition, cell cycle analysis revealed that SUSD2 knockdown induced G2/M phase arrestin bladder cancer cells. Tumor Immune Estimation Resource analysis indicated that expression of SUSD2 was significantly associated with macrophage infiltration and M2 macrophage polarization in bladder cancer. In addition, miR-383-5p directly targeted the 3'UTR of SUSD2, with its ectopic expression inhibiting the growth and motility of bladder cancer cells. Our study revealed that miR-383-5p/SUSD2 axis dysfunction may contribute to a poor prognosis for bladder cancer by affecting cell growth, metastasis, and the tumor microenvironment.
Collapse
Affiliation(s)
- Wei-Ting Kuo
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taiwan
| | - Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ching-Feng Cheng
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Ching-Jiunn Tseng
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taiwan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, Taiwan
| |
Collapse
|
8
|
Yang G, Li M, Yang Q, Zhai X, Halima J, Hu Q, Lei C, Dang R. Bta-miR-127 inhibits secretion, proliferation and promotes apoptosis by targeting ITGA6 in bovine Sertoli cell. Int J Biol Macromol 2023; 253:126838. [PMID: 37714242 DOI: 10.1016/j.ijbiomac.2023.126838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Sertoli cell (SC) play a critical role in the spermatogenesis process involved in male fecundity and reproductive potential. SC development is regulated by microRNAs (miRNAs). However, the effect and molecular mechanism of miRNAs and target genes on bovine immature SC remains poorly understood. In this study, bta-miR-127 overexpression in SC inhibited cell secretion, proliferation, cell viability, and S-phase cells number. However, inhibition of bta-miR-127 had the opposite effect. An over-expression of bta-miR-127 significantly promotes SC apoptosis, and bta-miR-127 inhibition can significantly inhibit this process. These results reveal that bta-miR-127 is an inhibitor of SC proliferation and secretion. A combination of transcriptome sequencing, bioinformatics analysis, and dual-luciferase reporter assay showed that ITGA6 was targeted by bta-miR-127. The small interfering RNA of ITGA6 (si-ITGA6) inhibits SC proliferation and secretion, as well as promotes apoptosis. The SC proliferation and secretion marker genes, cell viability, and S phase cell number in co-transfected si-ITGA6 + miR-127 inhibitor was significantly lower than those of the bta-miR-127 inhibitor group. These results further confirmed that bta-miR-127 targeting ITGA6 inhibits the SC proliferation and secretion, and promotes SC apoptosis. These findings proposed a novel miRNA (bta-miR-127) that impeded bovine SC proliferation and promoted SC apoptosis through downregulation of ITGA6.
Collapse
Affiliation(s)
- Ge Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Mei Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qiwen Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiangqin Zhai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jafari Halima
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qiaoyan Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
9
|
Anilkumar KV, Rema LP, John MC, Vanesa John T, George A. miRNAs in the prognosis of triple-negative breast cancer: A review. Life Sci 2023; 333:122183. [PMID: 37858714 DOI: 10.1016/j.lfs.2023.122183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Triple-Negative Breast Cancer (TNBC) is a highly aggressive and invasive type of breast cancer (BC) with high mortality rate wherein effective target medicaments are lacking. It is a very heterogeneous group with several subtypes that account for 10-20% of cancer among women globally, being negative for three most important receptors (estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2)), with an early and high recurrence resulting in poor survival rate. Therefore, a more thorough knowledge on carcinogenesis of TNBC is required for the development of personalized treatment options. miRNAs can either promote or suppress tumorigenesis and have been linked to a number of features of cancer progression, including proliferation, metastasis, apoptosis, and epithelial-mesenchymal transition (EMT). Recent miRNA research shows that there is great potential for the development of novel biomarkers as they have emerged as drivers of tumorigenesis and provide opportunities to target various components involved in TNBC, thus helping to solve this difficult-to-treat disease. In this review, we summarize the most relevant miRNAs that play an essential role in TNBC biology. Their role with regard to molecular mechanisms underlying TNBC progression has been discussed, and their potential use as therapeutic or prognostic markers to unravel the intricacy of TNBC based on the pieces of evidence obtained from various works of literature has been briefly addressed.
Collapse
Affiliation(s)
- Kavya V Anilkumar
- PG and Research Department of Zoology, Maharaja's College, Ernakulam, 682011, India; Cell and Molecular Biology Facility, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - L P Rema
- PG and Research Department of Zoology, Maharaja's College, Ernakulam, 682011, India
| | - Mithun Chacko John
- Department of Medical Oncology, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - T Vanesa John
- Department of Pathology, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Alex George
- Cell and Molecular Biology Facility, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India.
| |
Collapse
|
10
|
Rafieenia F, Ebrahimi SO, Emadi ES, Taheri F, Reiisi S. Bioengineered chimeric tRNA/pre-miRNAs as prodrugs in cancer therapy. Biotechnol Prog 2023; 39:e3387. [PMID: 37608520 DOI: 10.1002/btpr.3387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Today, biologic prodrugs have led to targeting specific tumor markers and have increased specificity and selectivity in cancer therapy. Various studies have shown the role of ncRNAs in cancer pathology and tumorigenesis and have suggested that ncRNAs, especially miRNAs, are valuable molecules in understanding cancer biology and therapeutic processes. Most miRNAs-based research and treatment are limited to chemically synthesized miRNAs. Synthetic alterations in these miRNA mimics may affect their folding, safety profile, and even biological activity. However, despite synthetic miRNA mimics produced by automated systems, various carriers could be used to achieve efficient production of bioengineered miRNAs through economical microbial fermentation. These bioengineered miRNAs as biological prodrugs could provide a new approach for safe therapeutic methods and drug production. In this regard, bioengineered chimeric miRNAs could be selectively processed to mature miRNAs in different types of cancer cells by targeting the desired gene and regulating cancer progression. In this article, we aim to review bioengineered miRNAs and their use in cancer therapy, as well as offering advances in this area, including the use of chimeric tRNA/pre-miRNAs.
Collapse
Affiliation(s)
- Fatemeh Rafieenia
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Ensieh Sadat Emadi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Forough Taheri
- Department of Genetics, Sharekord Branch, Islamic Azad University, Sharekord
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
11
|
Chen Y, Tu MJ, Han F, Liu Z, Batra N, Lara PN, Chen HW, Bi H, Yu AM. Use of recombinant microRNAs as antimetabolites to inhibit human non-small cell lung cancer. Acta Pharm Sin B 2023; 13:4273-4290. [PMID: 37799388 PMCID: PMC10547963 DOI: 10.1016/j.apsb.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/13/2023] [Accepted: 05/18/2023] [Indexed: 10/07/2023] Open
Abstract
During the development of therapeutic microRNAs (miRNAs or miRs), it is essential to define their pharmacological actions. Rather, miRNA research and therapy mainly use miRNA mimics synthesized in vitro. After experimental screening of unique recombinant miRNAs produced in vivo, three lead antiproliferative miRNAs against human NSCLC cells, miR-22-3p, miR-9-5p, and miR-218-5p, were revealed to target folate metabolism by bioinformatic analyses. Recombinant miR-22-3p, miR-9-5p, and miR-218-5p were shown to regulate key folate metabolic enzymes to inhibit folate metabolism and subsequently alter amino acid metabolome in NSCLC A549 and H1975 cells. Isotope tracing studies further confirmed the disruption of one-carbon transfer from serine to folate metabolites by all three miRNAs, inhibition of glucose uptake by miR-22-3p, and reduction of serine biosynthesis from glucose by miR-9-5p and -218-5p in NSCLC cells. With greater activities to interrupt NSCLC cell respiration, glycolysis, and colony formation than miR-9-5p and -218-5p, recombinant miR-22-3p was effective to reduce tumor growth in two NSCLC patient-derived xenograft mouse models without causing any toxicity. These results establish a common antifolate mechanism and differential actions on glucose uptake and metabolism for three lead anticancer miRNAs as well as antitumor efficacy for miR-22-3p nanomedicine, which shall provide insight into developing antimetabolite RNA therapies.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Fangwei Han
- School of Public Health, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Zhenzhen Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Neelu Batra
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Primo N. Lara
- Department of Internal Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| |
Collapse
|
12
|
Kuthethur R, Jerome MS, Subbannayya Y, Chakrabarty S. An integrated analysis of microRNAs regulating DNA damage response in triple-negative breast cancer. Breast Cancer 2023; 30:832-844. [PMID: 37344703 PMCID: PMC10404216 DOI: 10.1007/s12282-023-01477-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) remains a clinical challenge due to its aggressive phenotype and limited treatment options for the patients. Many TNBC patients show an inherent defect in the DNA repair capacity primarily by acquiring germline mutations in BRCA1 and BRCA2 genes leading to Homologous Recombination Deficiency (HRD). Epigenetic modifications such as BRCA1 promoter methylation and miRNA expression targeting DNA repair pathway genes have contributed to the HRD phenotype in TNBC. Hence, we aimed to identify microRNAs that are associated with HRD status in the TCGA-BRCA project. MATERIALS AND METHODS We implemented a miRNA prediction strategy for identifying miRNAs targeting HR pathway genes using an in silico predicted and experimentally validated list from published literature for their association with genomic instability and factors affecting HRD. In silico analysis was performed to study miRNA expression patterns regulated by DNA methylation and TMB status in the TNBC patients from TCGA-BRCA project. Finally, we analysed selected miRNA expression with immune cell infiltration pattern in the TNBC patient cohort. RESULTS Our study identified miRNAs associated with HRD, tumour mutation burden (TMB), and immune cell infiltration. Identified miRNA signatures were associated with the miR-17 ~ 92 cluster, miR-106b ~ 25 cluster, and miR-200b ~ 429 cluster. Pathway analysis of selected miRNAs suggested their association with altered immune cell infiltration in TNBC. CONCLUSION Our study identified 6 'HRD associated miRNAs' such as miR-106b, miR-93, miR-17, miR-20a, miR-200b, and miR-429 as novel miRNA-based signatures associated with HR deficiency in TNBC.
Collapse
Affiliation(s)
- Raviprasad Kuthethur
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Maria Sona Jerome
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491, Trondheim, Norway
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
13
|
Chamandi G, El-Hajjar L, El Kurdi A, Le Bras M, Nasr R, Lehmann-Che J. ER Negative Breast Cancer and miRNA: There Is More to Decipher Than What the Pathologist Can See! Biomedicines 2023; 11:2300. [PMID: 37626796 PMCID: PMC10452617 DOI: 10.3390/biomedicines11082300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer (BC), the most prevalent cancer in women, is a heterogenous disease. Despite advancements in BC diagnosis, prognosis, and therapeutics, survival rates have drastically decreased in the metastatic setting. Therefore, BC still remains a medical challenge. The evolution of high-throughput technology has highlighted gaps in the classification system of BCs. Of particular interest is the notorious triple negative BC, which was recounted as being heterogenous itself and it overlaps with distinct subtypes, namely molecular apocrine (MA) and luminal androgen (LAR) BCs. These subtypes are, even today, still misdiagnosed and poorly treated. As such, researchers and clinicians have been looking for ways through which to refine BC classification in order to properly understand the initiation, development, progression, and the responses to the treatment of BCs. One tool is biomarkers and, specifically, microRNA (miRNA), which are highly reported as associated with BC carcinogenesis. In this review, the diverse roles of miRNA in estrogen receptor negative (ER-) and androgen receptor positive (AR+) BC are depicted. While highlighting their oncogenic and tumor suppressor functions in tumor progression, we will discuss their diagnostic, prognostic, and predictive biomarker potentials, as well as their drug sensitivity/resistance activity. The association of several miRNAs in the KEGG-reported pathways that are related to ER-BC carcinogenesis is presented. The identification and verification of accurate miRNA panels is a cornerstone for tackling BC classification setbacks, as is also the deciphering of the carcinogenesis regulators of ER - AR + BC.
Collapse
Affiliation(s)
- Ghada Chamandi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| | - Layal El-Hajjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
- Office of Basic/Translational Research and Graduate Studies, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon
| | - Abdallah El Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon;
| | - Morgane Le Bras
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
| | - Jacqueline Lehmann-Che
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| |
Collapse
|
14
|
Chakkaravarthi K, Ramesh R, Palaniyandi T, Baskar G, Viswanathan S, Wahab MRA, Surendran H, Ravi M, Sivaji A. Prospectives of mirna gene signaling pathway in triple-negative breast cancer. Pathol Res Pract 2023; 248:154658. [PMID: 37421840 DOI: 10.1016/j.prp.2023.154658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Triple-negative breast cancer (TNBC) is one of the destructive breast cancer subtypes which cannot be treated by current therapies, which is characterized by the lack of estrogen (ER), Progesterone (PR), and Human epidermal receptor (HER2). The treatment for this chemotherapy or radiotherapy and surgery are such treatments and also novel biomarkers or treatment targets can quickly require to improve the outcome of the disease. MicroRNAs are the most popular and offer prospects for TNBC diagnosis and therapy. Some of the miRNAs implicated in THBCs are miR-17-5p, miR-221-3p, miR-26a, miR-136-5p, miR-1296, miR-145, miR-4306, miR-508-5p, miR-448, miR-539, miR-211-5p and miR-218. Potential MiRNAs and their signaling pathways that can be utilized for the diagnosis of TNBC are miR-155, miR-182-5p, miR-9-1-5p, miR-200b, miR-200a, miR-429, miR-195, miR-145-5p, miR-506, and miR-22-3p. miRNAs with known functions as tumor suppressors include miR-1-3p, miR-133a-3p, miR-655, miR-206, miR-136, miR-770, miR-148a, miR-197-3p, miR-137, and miR-127-3p. Analysis of genetic biomarkers, such as miRNAs in TNBC, upholds the pertinence in the diagnosis of the disease. The aim of the review was to clarify the different types of miRNAs characters in TNBC. Recent reports suggest an important role of miRNAs in tumor metastasis. We review here the important miRNAs and their signaling pathways implicated in the oncogenesis, progression, and metastasis of TNBCs.
Collapse
Affiliation(s)
- Kamali Chakkaravarthi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India
| | - Rajashree Ramesh
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India.
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India
| | - Mugip Rahaman Abdul Wahab
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India
| | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra University, Chennai, India
| | - Asha Sivaji
- Department of Biochemistry, DKM college for women, Vellore, India
| |
Collapse
|
15
|
Chen X, Li Z, Liang M, Zhang Z, Zhu D, Lin B, Zhou R, Lu Y. Identification of DDIT4 as a potential prognostic marker associated with chemotherapeutic and immunotherapeutic response in triple-negative breast cancer. World J Surg Oncol 2023; 21:194. [PMID: 37391802 DOI: 10.1186/s12957-023-03078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most heterogenous and aggressive subtype of breast cancer. Chemotherapy remains the standard treatment option for patients with TNBC owing to the unavailability of acceptable targets and biomarkers in clinical practice. Novel biomarkers and targets for patient stratification and treatment of TNBC are urgently needed. It has been reported that the overexpression of DNA damage-inducible transcript 4 gene (DDIT4) is associated with resistance to neoadjuvant chemotherapy and poor prognosis in patients with TNBC. In this study, we aimed to identify novel biomarkers and therapeutic targets using RNA sequencing (RNA-seq) and data mining using data from public databases. METHODS RNA sequencing (RNA-Seq) was performed to detect the different gene expression patterns in the human TNBC cell line HS578T treated with docetaxel or doxorubicin. Sequencing data were further analyzed by the R package "edgeR" and "clusterProfiler" to identify the profile of differentially expressed genes (DEGs) and annotate gene functions. The prognostic and predictive value of DDIT4 expression in patients with TNBC was further validated by published online data resources, including TIMER, UALCAN, Kaplan-Meier plotter, and LinkedOmics, and GeneMANIA and GSCALite were used to investigate the functional networks and hub genes related to DDIT4, respectively. RESULTS Through the integrative analyses of RNA-Seq data and public datasets, we observed the overexpression of DDIT4 in TNBC tissues and found that patients with DDIT4 overexpression showed poor survival outcomes. Notably, immune infiltration analysis showed that the levels of DDIT4 expression correlated negatively with the abundance of tumor-infiltrating immune cells and immune biomarker expression, but correlated positively with immune checkpoint molecules. Furthermore, DDIT4 and its hub genes (ADM, ENO1, PLOD1, and CEBPB) involved in the activation of apoptosis, cell cycle, and EMT pathways. Eventually, we found ADM, ENO1, PLOD1, and CEBPB showed poor overall survival in BC patients. CONCLUSION In this study, we found that DDIT4 expression is associated with the progression, therapeutic efficacy, and immune microenvironment of patients with TNBC, and DDIT4 would be as a potential prognostic biomarker and therapeutic target. These findings will help to identify potential molecular targets and improve therapeutic strategies against TNBC.
Collapse
Affiliation(s)
- Xuanzhao Chen
- The Center of Pathological Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zeyan Li
- Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Meihua Liang
- The Center of Pathological Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ziyang Zhang
- Guangzhou Huayin Medical Laboratory Center, Ltd., Guangzhou, China
| | - Di Zhu
- Department of Clinical Pathology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Biyun Lin
- The Center of Pathological Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Renyu Zhou
- School of Medicine, Jinan University, Guangzhou, China
| | - Yuanzhi Lu
- The Center of Pathological Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Department of Clinical Pathology, First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
16
|
Ruiz-Manriquez LM, Villarreal-Garza C, Benavides-Aguilar JA, Torres-Copado A, Isidoro-Sánchez J, Estrada-Meza C, Arvizu-Espinosa MG, Paul S, Cuevas-Diaz Duran R. Exploring the Potential Role of Circulating microRNAs as Biomarkers for Predicting Clinical Response to Neoadjuvant Therapy in Breast Cancer. Int J Mol Sci 2023; 24:9984. [PMID: 37373139 PMCID: PMC10297903 DOI: 10.3390/ijms24129984] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer (BC) is a leading cause of cancer-related deaths among women worldwide. Neoadjuvant therapy (NAT) is increasingly being used to reduce tumor burden prior to surgical resection. However, current techniques for assessing tumor response have significant limitations. Additionally, drug resistance is commonly observed, raising a need to identify biomarkers that can predict treatment sensitivity and survival outcomes. Circulating microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and have been shown to play a significant role in cancer progression as tumor inducers or suppressors. The expression of circulating miRNAs has been found to be significantly altered in breast cancer patients. Moreover, recent studies have suggested that circulating miRNAs can serve as non-invasive biomarkers for predicting response to NAT. Therefore, this review provides a brief overview of recent studies that have demonstrated the potential of circulating miRNAs as biomarkers for predicting the clinical response to NAT in BC patients. The findings of this review will strengthen future research on developing miRNA-based biomarkers and their translation into medical practice, which could significantly improve the clinical management of BC patients undergoing NAT.
Collapse
Affiliation(s)
- Luis M. Ruiz-Manriquez
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey 64700, Mexico;
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Cynthia Villarreal-Garza
- Breast Cancer Center, Hospital Zambrano Hellion TecSalud, Tecnologico de Monterrey, Monterrey 64700, Mexico;
| | | | - Andrea Torres-Copado
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - José Isidoro-Sánchez
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Carolina Estrada-Meza
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | | | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | | |
Collapse
|
17
|
Fu Y, Yang Q, Yang H, Zhang X. New progress in the role of microRNAs in the diagnosis and prognosis of triple negative breast cancer. Front Mol Biosci 2023; 10:1162463. [PMID: 37122564 PMCID: PMC10134903 DOI: 10.3389/fmolb.2023.1162463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Triple negative breast cancer is distinguished by its high malignancy, aggressive invasion, rapid progression, easy recurrence, and distant metastases. Additionally, it has a poor prognosis, a high mortality, and is unresponsive to conventional endocrine and targeted therapy, making it a challenging problem for breast cancer treatment and a hotspot for scientific research. Recent research has revealed that certain miRNA can directly or indirectly affect the occurrence, progress and recurrence of TNBC. Their expression levels have a significant impact on TNBC diagnosis, treatment and prognosis. Some miRNAs can serve as biomarkers for TNBC diagnosis and prognosis. This article summarizes the progress of miRNA research in TNBC, discusses their roles in the occurrence, invasion, metastasis, prognosis, and chemotherapy of TNBC, and proposes a treatment strategy for TNBC by interfering with miRNA expression levels.
Collapse
Affiliation(s)
- Yeqin Fu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiuhui Yang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongjian Yang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Hongjian Yang, ; Xiping Zhang,
| | - Xiping Zhang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Hongjian Yang, ; Xiping Zhang,
| |
Collapse
|
18
|
Traber GM, Yu AM. RNAi-Based Therapeutics and Novel RNA Bioengineering Technologies. J Pharmacol Exp Ther 2023; 384:133-154. [PMID: 35680378 PMCID: PMC9827509 DOI: 10.1124/jpet.122.001234] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 01/26/2023] Open
Abstract
RNA interference (RNAi) provides researchers with a versatile means to modulate target gene expression. The major forms of RNAi molecules, genome-derived microRNAs (miRNAs) and exogenous small interfering RNAs (siRNAs), converge into RNA-induced silencing complexes to achieve posttranscriptional gene regulation. RNAi has proven to be an adaptable and powerful therapeutic strategy where advancements in chemistry and pharmaceutics continue to bring RNAi-based drugs into the clinic. With four siRNA medications already approved by the US Food and Drug Administration (FDA), several RNAi-based therapeutics continue to advance to clinical trials with functions that closely resemble their endogenous counterparts. Although intended to enhance stability and improve efficacy, chemical modifications may increase risk of off-target effects by altering RNA structure, folding, and biologic activity away from their natural equivalents. Novel technologies in development today seek to use intact cells to yield true biologic RNAi agents that better represent the structures, stabilities, activities, and safety profiles of natural RNA molecules. In this review, we provide an examination of the mechanisms of action of endogenous miRNAs and exogenous siRNAs, the physiologic and pharmacokinetic barriers to therapeutic RNA delivery, and a summary of the chemical modifications and delivery platforms in use. We overview the pharmacology of the four FDA-approved siRNA medications (patisiran, givosiran, lumasiran, and inclisiran) as well as five siRNAs and several miRNA-based therapeutics currently in clinical trials. Furthermore, we discuss the direct expression and stable carrier-based, in vivo production of novel biologic RNAi agents for research and development. SIGNIFICANCE STATEMENT: In our review, we summarize the major concepts of RNA interference (RNAi), molecular mechanisms, and current state and challenges of RNAi drug development. We focus our discussion on the pharmacology of US Food and Drug Administration-approved RNAi medications and those siRNAs and miRNA-based therapeutics that entered the clinical investigations. Novel approaches to producing new true biological RNAi molecules for research and development are highlighted.
Collapse
Affiliation(s)
- Gavin M Traber
- Department of Biochemistry and Molecular Medicine, University of California (UC) Davis School of Medicine, Sacramento, California
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, University of California (UC) Davis School of Medicine, Sacramento, California
| |
Collapse
|
19
|
Balkrishna A, Mittal R, Arya V. Unveiling Role of MicroRNAs in Metastasizing Triple Negative Breast Cancer: From Therapeutics to Delivery. Curr Drug Targets 2023; 24:509-520. [PMID: 36892021 DOI: 10.2174/1389450124666230308154551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/04/2022] [Accepted: 01/11/2023] [Indexed: 03/10/2023]
Abstract
Triple negative breast cancers are malignant, heterogeneous tumors with high histological grades, increased reoccurrence, and cancer-related death rates. TNBC metastasis to the brain, lungs, liver, and lymph nodes is a complex process regulated by epithelial to mesenchymal transition, intravasation, extravasation, stem cell niche, and migration. Aberrant expression of miRNAs, also known as a transcriptional regulators of genes, may function as oncogenes or tumor suppressors. In this review, we systematically elucidated the biogenesis and tumor suppressor role of miRNA in targeting distant metastasis of TNBC cells and the above-mentioned underlying mechanisms involved in complicating the disease. Apart from their therapeutic implications, the emerging roles of miRNAs as prognostic markers have also been discussed. To overcome delivery bottlenecks, RNA nanoparticles, nano-diamonds, exosomes, and mesoporous silica nanoparticle-mediated delivery of miRNAs have been contemplated. Altogether, the present review article uncovers the potential role of miRNA in antagonizing distant metastasis of TNBC cells, and highlights their clinical significance as prognostic markers and possible drug delivery strategies to enhance the likely outcome of miRNA-based therapy against the disease.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Rashmi Mittal
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| |
Collapse
|
20
|
Gao C, Chen H. Correlation of serum miR-127 level with severity and prognosis of sepsis. Am J Transl Res 2022; 14:7994-8001. [PMID: 36505313 PMCID: PMC9730080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/05/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate the relationship of serum miR-127 level with the severity of sepsis patients and its predictive efficacy for prognosis. METHODS A total of 205 healthy individuals who underwent physical examination in Jingzhou Hospital Affiliated to Yangtze University and 205 patients with sepsis who were hospitalized in ICU from January 2021 to March 2022 were recruited in this study, and their serum miR-127 level were measured. The patients were divided into a high-miR-127 group (110 cases) and a low-miR-127 group (95 cases) based on the optimal cut-off value of miR-127 to assess the prognosis. The clinical data and 28-day survival of the two groups were analyzed. The patients were further divided into a death group (57 cases) and a survival group (148 cases) based on their 28-day survival. Factors associated with poor prognosis of sepsis were analyzed by Cox regression. RESULTS There were statistically significant differences in heart rate, body temperature, white blood cells (WBC), hemoglobin (Hb), procalcitonin (PCT), C-reactive protein (CRP), alanine aminotransferase (ALT), total bilirubin (TBIL), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), cardiac troponin I (cTnI), blood urea nitrogen (BUN), Prothrombin time (PT), serum creatinine (Scr), fibrinogen (FIB) and miR-127 between sepsis patients and healthy controls (P < 0.05). Compared to those in the low-miR-127 group, PCT, BUN, and SOFA scores in the high-miR-127 group were significantly higher (P < 0.05). The 28-day cumulative survival was lower in the high-miR-127 group (58.20%) than that in the low-miR-127 group (88.40%) (Log Rank χ2 =25.598, P < 0.05). Those with high miR-127 still had a higher risk of poor prognosis compared to those with low miR-127 after correcting for SOFA score, APACHE II score and PCT (HR=3.292, 95% CI: 1.663-6.517, P < 0.05). The areas under the ROC curve (AUC) of serum miR-127, SOFA score, and APACHE II score for predicting prognosis of sepsis patients were 0.748 (0.674-0.823), 0.810 (0.742-0.878) and 0.864 (0.811-0.916), respectively. CONCLUSION Serum miR-127 is highly expressed in sepsis and related to the severity of sepsis. Those with high miR-127 level have a higher risk of poor prognosis.
Collapse
Affiliation(s)
- Cheng Gao
- Department of Critical Care, Jingzhou Hospital Affiliated to Yangtze UniversityJingzhou 434020, Hubei, China
| | - Huan Chen
- Department of Obstetrics and Gynecology, Jingzhou Hospital Affiliated to Yangtze UniversityJingzhou 434020, Hubei, China
| |
Collapse
|
21
|
Shang C, Chen Q, Zu F, Ren W. Integrated analysis identified prognostic microRNAs in breast cancer. BMC Cancer 2022; 22:1170. [DOI: 10.1186/s12885-022-10242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
MicroRNAs (miRNAs) play pivotal roles in the development and progression of breast cancer (BC). In this study, we attempted to identify miRNAs associated with BC prognosis and progression via integrated analysis.
Methods
We first screened 83 differentially expressed miRNAs (DEMs) in 1249 BC samples and 151 normal samples. We then validated their roles in expression and prognosis of BC, identified two survival-related DEMs, and established a risk model. The prediction efficiency was assessed in both the training and validation groups. Tissue and cell experiments were conducted to verify the regulatory effects of miR-127 in BC.
Results
The ROC curve indicated good prediction ability with 1-, 3-, and 5-year survival rates of 0.73, 0.72, and 0.72, respectively. Moreover, hsa-miR-127 was found to be an independent prognostic factor of BC. Functional analyses revealed that it is involved in various cancer pathways such as the PI3K-Akt and p53 pathways. miR-127 expression was down-regulated in both BC tissues and cell lines. The knockdown of miR-127 substantially increased, whereas overexpression decreased BC cell proliferation, invasion, and migration. This effect of miR-127 was consistent with its tumorigenic ability and tumor volume in nude mice.
Conclusions
These findings indicate that low expression of miR-127 contributes to BC migration, invasion, and tumorigenesis and that it can be a therapeutic target and prognostic biomarker for BC.
Collapse
|
22
|
Ilaslan E, Sajek MP, Jaruzelska J, Kusz-Zamelczyk K. Emerging Roles of NANOS RNA-Binding Proteins in Cancer. Int J Mol Sci 2022; 23:ijms23169408. [PMID: 36012673 PMCID: PMC9409212 DOI: 10.3390/ijms23169408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, growing evidence demonstrates that mammalian Nanos RNA-binding proteins (Nanos1, Nanos2, and Nanos3), known for their indispensable roles in germline development, are overexpressed in a variety of cancers. This overexpression contributes to various oncogenic properties including cancer growth, invasiveness, and metastasis. Here, we highlight recent findings regarding the role of mammalian Nanos RNA-binding proteins and the mechanisms of their overexpression in cancer. In addition, we present expression profiles of human NANOS genes and their oncogenic transcriptional regulators obtained from publicly available cancer and normal tissue RNA-Seq datasets. Altogether, we emphasize the functional significance of NANOS proteins across human cancers as well as highlight the missing links to understanding the full scope of their role in carcinogenesis.
Collapse
Affiliation(s)
- Erkut Ilaslan
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
- Correspondence: (E.I.); (K.K.-Z.)
| | - Marcin Piotr Sajek
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jadwiga Jaruzelska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Kamila Kusz-Zamelczyk
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
- Correspondence: (E.I.); (K.K.-Z.)
| |
Collapse
|
23
|
Yi WR, Tu MJ, Yu AX, Lin J, Yu AM. Bioengineered miR-34a modulates mitochondrial inner membrane protein 17 like 2 (MPV17L2) expression toward the control of cancer cell mitochondrial functions. Bioengineered 2022; 13:12489-12503. [PMID: 35579419 PMCID: PMC9276019 DOI: 10.1080/21655979.2022.2076399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genome-derived microRNAs (miRNAs or miRs) control post-transcriptional gene expression critical for various cellular processes. Recently, we have invented a novel platform technology to achieve high-yield production of fully humanized, bioengineered miRNA agents (hBERAs) for research and development. This study is aimed to produce and utilize a new biologic miR-34a-5p (or miR-34a) molecule, namely, hBERA/miR-34a, to delineate the role of miR-34a-5p in the regulation of mitochondrial functions in human carcinoma cells. Bioengineered hBERA/miR-34a was produced through in vivo fermentation production and purified by anion exchange fast protein liquid chromatography. hEBRA/miR-34a was processed to target miR-34a-5p in human osteosarcoma and lung cancer cells, as determined by selective stem-loop reverse transcription quantitative polymerase chain reaction analysis. The mitochondrial inner membrane protein MPV17 like 2 (MPV17L2) was validated as a direct target for miR-34a-5p by dual luciferase reporter assay. Western blot analysis revealed that bioengineered miR-34a-5p effectively reduced MPV17L2 protein outcomes, leading to much lower levels of respiratory chain Complex I activities and intracellular ATP that were determined with specific assay kits. Moreover, Seahorse Mito Stress Test assay was conducted, and the results showed that biologic miR-34a-5p sharply reduced cancer cell mitochondrial respiration capacity, accompanied by a remarkable increase of oxidative stress and elevated apoptotic cell death, which are manifested by greater levels of reactive oxygen species and selective apoptosis biomarkers, respectively. These results demonstrate the presence and involvement of the miR-34a-5p-MPV17L2 pathway in the control of mitochondrial functions in human carcinoma cells and support the utility of novel bioengineered miRNA molecules for functional studies.
Collapse
Affiliation(s)
- Wan-Rong Yi
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Ai-Xi Yu
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jun Lin
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
24
|
Chen Q, Yang Z, Ding H, Li H, Wang W, Pan Z. CircWHSC1 Promotes Breast Cancer Progression by Regulating the FASN/AMPK/mTOR Axis Through Sponging miR-195-5p. Front Oncol 2022; 11:649242. [PMID: 35070947 PMCID: PMC8766753 DOI: 10.3389/fonc.2021.649242] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 11/26/2021] [Indexed: 12/27/2022] Open
Abstract
Numerous studies reveal that circular RNAs (circRNAs) affect cancer progression. CircWHSC1 is a novel circRNA that accelerates ovarian cancer progression. Nevertheless, the function of circWHSC1 in regulating breast cancer (BC) is elusive. Here, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was carried out to detect the profiles of circWHSC1 and miR-195-5p in BC tissues and corresponding non-tumor tissues. Gain- and loss-of-function assays were implemented both in vivo and ex vivo to verify the significance of circWHSC1 in BC development. BC cell proliferation was estimated by the cell counting kit-8 (CCK-8) and BrdU assays. Transwell assay was implemented to test BC cell migration and invasion. The protein levels of FASN, AMPK and mTOR were determined by Western blot. Moreover, immunohistochemistry was performed to examine Ki67 and FASN expression. As shown by the result, circWHSC1 was up-regulated in BC tissues versus adjacent non-tumor tissues. circWHSC1 overexpression was correlated with higher tumor stages, lymphatic metastasis and worse survival of BC patients. Functionally, overexpressing circWHSC1 amplified proliferation, migration and invasion of BC cell lines and boosted xenograft tumor growth in nude mice. Bioinformatics uncovered that circWHSC1 functioned as a competitive endogenous RNA by sponging miR-195-5p, which was further corroborated by the dual-luciferase reporter assay and RNA immunoprecipitation. miR-195-5p delayed BC progression, which was dampened by circWHSC1 up-regulation. Fatty acid synthase (FASN) was affirmed as a direct target of miR-195-5p. miR-195-5p overexpression curbed FASN expression and activated its downstream AMPK pathway. Inhibition of FASN or activation of the AMPK pathway reversed circWHSC1-mediated oncogenic effects. Collectively, CircWHSC1 acted as an oncogene to expedite BC evolvement by modulating the miR-195-5p/FASN/AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Qian Chen
- Department of General Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhen Yang
- Department of General Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Hongjian Ding
- Department of General Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Huaqing Li
- Department of General Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Weiyu Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Zhiyu Pan
- Department of General Surgery, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Xia M, Zu X, Chen Z, Wen G, Zhong J. Noncoding RNAs in triple negative breast cancer: Mechanisms for chemoresistance. Cancer Lett 2021; 523:100-110. [PMID: 34601022 DOI: 10.1016/j.canlet.2021.09.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype among breast cancers with high recurrence and this condition is partly due to chemoresistance. Therefore, fully understanding the mechanism of TNBC-resistance is the key to overcoming chemoresistance, which will be an effective strategy for TNBC therapy. Various potential mechanisms involved in the chemoresistance of TNBC have been investigated and indicated that noncoding RNAs (ncRNAs) especially microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) take part in most TNBC resistance. The ncRNA-induced chemoresistance process is involved in the alteration of many activities. here, we mainly summarize the mechanisms of ncRNAs in the chemoresistance of TNBC and discuss the potential clinical application of ncRNAs in the treatment of TNBC, indicating that targeting ncRNAs might be a promising strategy for resensitization to chemotherapies.
Collapse
Affiliation(s)
- Min Xia
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Xuyu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Zuyao Chen
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Gebo Wen
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| | - Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
26
|
Chen B, Wang M, Huang R, Liao K, Wang T, Yang R, Zhang W, Shi Z, Ren L, Lv Q, Ma C, Lin Y, Qiu Y. Circular RNA circLGMN facilitates glioblastoma progression by targeting miR-127-3p/LGMN axis. Cancer Lett 2021; 522:225-237. [PMID: 34582975 DOI: 10.1016/j.canlet.2021.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022]
Abstract
Glioblastoma (GBM) is one of the most devastating cancers and is characterized by rapid cell proliferation and aggressive invasiveness. Legumain (LGMN), a substrate-specific protease, is associated with poor progression of GBM. Circular RNAs (circRNAs) are aberrantly expressed in various cancers and play crucial roles in tumor progression; however, the functional roles of circRNAs originating from LGMN remain largely unknown in GBM. Herein, we found that hsa_circ_0033009 (circLGMN) was the most abundantly expressed circRNA derived from LGMN. CircLGMN was upregulated in high-grade glioma (HGG), and high expression of circLGMN was associated with poor prognosis in patients with glioma. CircLGMN overexpression promoted GBM cell proliferation and enhanced cell invasion. Mechanistically, circLGMN acts as a sponge for miR-127-3p, and prevents miR-127-3p-mediated degradation of LGMN mRNA, ultimately leading to increased LGMN protein expression. Treatment with miR-127-3p mimic suppressed proliferation and reduced invasion of GBM cells overexpressing circLGMN. Moreover, circLGMN overexpression promoted GBM malignancy in vivo, while miR-127-3p overexpression alleviated this effect. Taken together, circLGMN is a novel tumor-promoting circRNA that acts by sponging miR-127-3p, which ultimately leads to LGMN upregulation. Thus, targeting the circLGMN/miR-127-3p/LGMN axis might be a promising strategy for GBM treatment. More importantly, the discovery of the self-regulatory mechanism of LGMN expression by circLGMN, will facilitate further research on LGMN.
Collapse
Affiliation(s)
- Binghong Chen
- Department of Neurosurgery, Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Mengying Wang
- Department of Neurosurgery, Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China; Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Renhua Huang
- Department of Radiation Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Keman Liao
- Department of Neurosurgery, Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Tianwei Wang
- Department of Neurosurgery, Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Renhao Yang
- Department of Neurosurgery, Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Wenrui Zhang
- Department of Neurosurgery, Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China; Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Zhonggang Shi
- Department of Neurosurgery, Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China; Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Li Ren
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, PR China
| | - Qi Lv
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Chunhui Ma
- Department of Orthopedics, Shanghai General Hospital of Shanghai Jiao Tong University, Shanghai, 200080, PR China
| | - Yingying Lin
- Department of Neurosurgery, Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China; Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China.
| | - Yongming Qiu
- Department of Neurosurgery, Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China.
| |
Collapse
|
27
|
Deng L, Petrek H, Tu MJ, Batra N, Yu AX, Yu AM. Bioengineered miR-124-3p prodrug selectively alters the proteome of human carcinoma cells to control multiple cellular components and lung metastasis in vivo. Acta Pharm Sin B 2021; 11:3950-3965. [PMID: 35024318 PMCID: PMC8727917 DOI: 10.1016/j.apsb.2021.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
With the understanding of microRNA (miRNA or miR) functions in tumor initiation, progression, and metastasis, efforts are underway to develop new miRNA-based therapies. Very recently, we demonstrated effectiveness of a novel humanized bioengineered miR-124-3p prodrug in controlling spontaneous lung metastasis in mouse models. This study was to investigate the molecular and cellular mechanisms by which miR-124-3p controls tumor metastasis. Proteomics study identified a set of proteins selectively and significantly downregulated by bioengineered miR-124-3p in A549 cells, which were assembled into multiple cellular components critical for metastatic potential. Among them, plectin (PLEC) was verified as a new direct target for miR-124-3p that links cytoskeleton components and junctions. In miR-124-3p-treated lung cancer and osteosarcoma cells, protein levels of vimentin, talin 1 (TLN1), integrin beta-1 (ITGB1), IQ motif containing GTPase activating protein 1 (IQGAP1), cadherin 2 or N-cadherin (CDH2), and junctional adhesion molecule A (F11R or JAMA or JAM1) decreased, causing remodeling of cytoskeletons and disruption of cell-cell junctions. Furthermore, miR-124-3p sharply suppressed the formation of focal adhesion plaques, leading to reduced cell adhesion capacity. Additionally, efficacy and safety of biologic miR-124-3p therapy was established in an aggressive experimental metastasis mouse model in vivo. These results connect miR-124-3p-PLEC signaling to other elements in the control of cytoskeleton, cell junctions, and adhesion essential for cancer cell invasion and extravasation towards metastasis, and support the promise of miR-124 therapy.
Collapse
Affiliation(s)
- Linglong Deng
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Hannah Petrek
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Neelu Batra
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Ai-Xi Yu
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
28
|
Zhang W, Yu F, Weng J, Zheng Y, Lin J, Qi T, Wei Y, Wang D, Zeng H. SOX12 Promotes Stem Cell-Like Phenotypes and Osteosarcoma Tumor Growth by Upregulating JAGGED1. Stem Cells Int 2021; 2021:9941733. [PMID: 34725550 PMCID: PMC8557074 DOI: 10.1155/2021/9941733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 09/02/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
SOX12 plays a role in promoting the growth of some tumors; however, its role in osteosarcoma remains unclear. From gene expression omnibus (GEO) and tumor alterations relevant for genomics-driven therapy (TARGET) databases, Kaplan-Meier analyses were conducted to establish relationships between SOX12 expression and osteosarcoma survival and recurrence in osteosarcoma patients. We also performed in vitro and in vivo assays to determine SOX12 function in osteosarcoma etiology. SOX12 expression was increased in osteosarcoma; high SOX12 expression levels were related to a poor prognosis and a high disease recurrence in patients. Moreover, SOX12 expression in osteosarcoma cell lines was increased, similar to osteosarcoma cancer stem cells. We also observed that SOX12 knockdown inhibited the spheroidization and expression of stemness markers in osteosarcoma cells and tumor formation in nude mice. In addition, SOX12 knockdown inhibited JAGGED1 and HES1 expression. Similarly, JAGGED1 knockdown also inhibited the formation of osteosarcoma cancer stem cells into pellets and reduced the expression of stemness markers and tumor formation capabilities in nude mice. Finally, during SOX12 knockdown, JAGGED1 overexpression rescued osteosarcoma cells from spheroidizing. SOX12 promotes stem cell-like phenotypes and osteosarcoma tumor growth by upregulating JAGGED1.
Collapse
Affiliation(s)
- Weifei Zhang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Fei Yu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jian Weng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yien Zheng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jianjing Lin
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Tiantian Qi
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yihao Wei
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Deli Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Zeng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
29
|
Haque S, Cook K, Sahay G, Sun C. RNA-Based Therapeutics: Current Developments in Targeted Molecular Therapy of Triple-Negative Breast Cancer. Pharmaceutics 2021; 13:pharmaceutics13101694. [PMID: 34683988 PMCID: PMC8537780 DOI: 10.3390/pharmaceutics13101694] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous and aggressive cancer that has the highest mortality rate out of all breast cancer subtypes. Conventional clinical treatments targeting ER, PR, and HER2 receptors have been unsuccessful in the treatment of TNBC, which has led to various research efforts in developing new strategies to treat TNBC. Targeted molecular therapy of TNBC utilizes knowledge of key molecular signatures of TNBC that can be effectively modulated to produce a positive therapeutic response. Correspondingly, RNA-based therapeutics represent a novel tool in oncology with their ability to alter intrinsic cancer pathways that contribute to poor patient prognosis. Current RNA-based therapeutics exist as two major areas of investigation-RNA interference (RNAi) and RNA nanotherapy, where RNAi utilizes principles of gene silencing, and RNA nanotherapy utilizes RNA-derived nanoparticles to deliver chemotherapeutics to target cells. RNAi can be further classified as therapeutics utilizing either small interfering RNA (siRNA) or microRNA (miRNA). As the broader field of gene therapy has advanced significantly in recent years, so too have efforts in the development of effective RNA-based therapeutic strategies for treating aggressive cancers, including TNBC. This review will summarize key advances in targeted molecular therapy of TNBC, describing current trends in treatment using RNAi, combination therapies, and recent efforts in RNA immunotherapy, utilizing messenger RNA (mRNA) in the development of cancer vaccines.
Collapse
Affiliation(s)
- Sakib Haque
- College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; (S.H.); (G.S.)
| | - Kiri Cook
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Gaurav Sahay
- College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; (S.H.); (G.S.)
| | - Conroy Sun
- College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; (S.H.); (G.S.)
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA;
- Correspondence: ; Tel.: +1-503-346-4699
| |
Collapse
|
30
|
Hu J, Zhang L, Chen W, Shen L, Jiang J, Sun S, Chen Z. Role of Intra- and Extracellular Lipid Signals in Cancer Stemness and Potential Therapeutic Strategy. Front Pharmacol 2021; 12:730751. [PMID: 34603046 PMCID: PMC8479196 DOI: 10.3389/fphar.2021.730751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence showed that cancer stem cells (CSCs) play significant roles in cancer initiation, resistance to therapy, recurrence and metastasis. Cancer stem cells possess the ability of self-renewal and can initiate tumor growth and avoid lethal factors through flexible metabolic reprogramming. Abnormal lipid metabolism has been reported to be involved in the cancer stemness and promote the development of cancer. Lipid metabolism includes lipid uptake, lipolysis, fatty acid oxidation, de novo lipogenesis, and lipid desaturation. Abnormal lipid metabolism leads to ferroptosis of CSCs. In this review, we comprehensively summarized the role of intra- and extracellular lipid signals in cancer stemness, and explored the feasibility of using lipid metabolism-related treatment strategies for future cancer.
Collapse
Affiliation(s)
- Jianming Hu
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Leyi Zhang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Wuzhen Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Lesang Shen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jingxin Jiang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Shanshan Sun
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Zhigang Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
31
|
Yu L, Xie X, Cao X, Chen J, Chen G, Chen Y, Li G, Qin J, Peng F, Peng C. The Anticancer Potential of Maslinic Acid and Its Derivatives: A Review. Drug Des Devel Ther 2021; 15:3863-3879. [PMID: 34526766 PMCID: PMC8437384 DOI: 10.2147/dddt.s326328] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/14/2021] [Indexed: 12/25/2022] Open
Abstract
Cancer is still an insurmountable problem for humans and critically attacking human health. In recent years, natural products have gained increasing attention in the field of anti-tumor due to their extensive sources and minimal side effects. Maslinic acid (MA), a pentacyclic triterpene acid mainly derived from the olive tree (Olea europaea L.) has been confirmed to possess great anti-cancer effects. This paper reviewed the inhibitory effect of MA and its derivatives on lung cancer, colon cancer, ovarian cancer, gastric cancer, lymphatic, leukemia, breast cancer, pancreatic cancer, melanoma, prostate cancer, renal cell carcinoma, gallbladder cancer, and bladder cancer, among others. MA inhibited the proliferation of various tumor cells and showed lower IC50 values in melanoma 518A2 cells and gastric cancer MKN28 cells compared with other cell lines. A series of semi-synthetic derivatives obtained by modifying MA chemical structure have been shown to have high cytotoxicity to human tumor cell lines, but low cytotoxicity to non-malignant cells, which is conducive to developing its potential as a chemotherapeutic agent. These studies suggest that MA derivatives have broad prospects in the development of antitumor therapeutics in the future and warrant further study.
Collapse
Affiliation(s)
- Lei Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaoyu Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Guanru Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Gangmin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Junyuan Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
32
|
Xia L, Zhu G, Huang H, He Y, Liu X. LncRNA small nucleolar RNA host gene 16 (SNHG16) silencing protects lipopolysaccharide (LPS)-induced cell injury in human lung fibroblasts WI-38 through acting as miR-141-3p sponge. Biosci Biotechnol Biochem 2021; 85:1077-1087. [PMID: 33836533 DOI: 10.1093/bbb/zbab016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
Long noncoding RNA (LncRNA) small nucleolar RNA host gene 16 (SNHG16) is correlated with cell injuries, including pneumonia. However, its role and mechanism remain vague in pneumonia. The interplay among genes was confirmed by dual-luciferase reporter assay, RNA immunoprecipitation, and RNA pull-down assay. SNHG16 and sushi domain containing 2 (SUSD2) were upregulated, and miRNA (miR)-141-3p was downregulated in the serum of acute pneumonia patients and lipopolysaccharide (LPS)-challenged human lung fibroblasts WI-38. LPS induced apoptosis, autophagy, and inflammatory response in WI-38 cells, which was significantly attenuated by SNHG16 knockdown and/or miR-141-3p overexpression. Notably, both SNHG16 and SUSD2 were identified as target genes of miR-141-3p. Besides, the suppressive role of SNHG16 knockdown in LPS-induced in WI-38 cells was partially abolished by miR-141-3p silencing, and the similar inhibition of miR-141-3p overexpression was further blocked by SUSD2 restoration. In conclusion, knockdown of SNHG16 could alleviate LPS-induced apoptosis, autophagy, and inflammation in WI-38 cells partially though the SNHG16/miR-141-3p/SUSD2 pathway.
Collapse
Affiliation(s)
- Lei Xia
- Department of Pediatrics, Binzhou People's Hospital, Binzhou, Shandong, China
| | - Guoqing Zhu
- Department of Pediatrics, Binzhou People's Hospital, Binzhou, Shandong, China
| | - Haiyun Huang
- Department of oral and maxillofacial surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Yishui He
- Department of Stomatology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Xingguang Liu
- Department of oral and maxillofacial surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| |
Collapse
|
33
|
Drug Resistance in Metastatic Breast Cancer: Tumor Targeted Nanomedicine to the Rescue. Int J Mol Sci 2021; 22:ijms22094673. [PMID: 33925129 PMCID: PMC8125767 DOI: 10.3390/ijms22094673] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer, specifically metastatic breast, is a leading cause of morbidity and mortality in women. This is mainly due to relapse and reoccurrence of tumor. The primary reason for cancer relapse is the development of multidrug resistance (MDR) hampering the treatment and prognosis. MDR can occur due to a multitude of molecular events, including increased expression of efflux transporters such as P-gp, BCRP, or MRP1; epithelial to mesenchymal transition; and resistance development in breast cancer stem cells. Excessive dose dumping in chemotherapy can cause intrinsic anti-cancer MDR to appear prior to chemotherapy and after the treatment. Hence, novel targeted nanomedicines encapsulating chemotherapeutics and gene therapy products may assist to overcome cancer drug resistance. Targeted nanomedicines offer innovative strategies to overcome the limitations of conventional chemotherapy while permitting enhanced selectivity to cancer cells. Targeted nanotheranostics permit targeted drug release, precise breast cancer diagnosis, and importantly, the ability to overcome MDR. The article discusses various nanomedicines designed to selectively target breast cancer, triple negative breast cancer, and breast cancer stem cells. In addition, the review discusses recent approaches, including combination nanoparticles (NPs), theranostic NPs, and stimuli sensitive or “smart” NPs. Recent innovations in microRNA NPs and personalized medicine NPs are also discussed. Future perspective research for complex targeted and multi-stage responsive nanomedicines for metastatic breast cancer is discussed.
Collapse
|
34
|
Raue R, Frank AC, Syed SN, Brüne B. Therapeutic Targeting of MicroRNAs in the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22042210. [PMID: 33672261 PMCID: PMC7926641 DOI: 10.3390/ijms22042210] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor-microenvironment (TME) is an amalgamation of various factors derived from malignant cells and infiltrating host cells, including cells of the immune system. One of the important factors of the TME is microRNAs (miRs) that regulate target gene expression at a post transcriptional level. MiRs have been found to be dysregulated in tumor as well as in stromal cells and they emerged as important regulators of tumorigenesis. In fact, miRs regulate almost all hallmarks of cancer, thus making them attractive tools and targets for novel anti-tumoral treatment strategies. Tumor to stroma cell cross-propagation of miRs to regulate protumoral functions has been a salient feature of the TME. MiRs can either act as tumor suppressors or oncogenes (oncomiRs) and both miR mimics as well as miR inhibitors (antimiRs) have been used in preclinical trials to alter cancer and stromal cell phenotypes. Owing to their cascading ability to regulate upstream target genes and their chemical nature, which allows specific pharmacological targeting, miRs are attractive targets for anti-tumor therapy. In this review, we cover a recent update on our understanding of dysregulated miRs in the TME and provide an overview of how these miRs are involved in current cancer-therapeutic approaches from bench to bedside.
Collapse
Affiliation(s)
- Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Ann-Christin Frank
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| |
Collapse
|
35
|
Tiny miRNAs Play a Big Role in the Treatment of Breast Cancer Metastasis. Cancers (Basel) 2021; 13:cancers13020337. [PMID: 33477629 PMCID: PMC7831489 DOI: 10.3390/cancers13020337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary MicroRNAs (miRNAs) have emerged as important regulators of tumour progression and metastasis in breast cancer. Through a review of multiple studies, this paper has identified the key regulatory roles of oncogenic miRNAs in breast cancer metastasis including the potentiation of angiogenesis, epithelial-mesenchymal transition, the Warburg effect, and the tumour microenvironment. Several approaches have been studied for selective targeting of breast tumours by miRNAs, ranging from delivery systems such as extracellular vesicles and liposomes to the use of prodrugs and functionally modified vehicle-free miRNAs. While promising, these miRNA-based therapies face challenges including toxicity and immunogenicity, and greater research on their safety profiles must be performed before progressing to clinical trials. Abstract Distant organ metastases accounts for the majority of breast cancer deaths. Given the prevalence of breast cancer in women, it is imperative to understand the underlying mechanisms of its metastatic progression and identify potential targets for therapy. Since their discovery in 1993, microRNAs (miRNAs) have emerged as important regulators of tumour progression and metastasis in various cancers, playing either oncogenic or tumour suppressor roles. In the following review, we discuss the roles of miRNAs that potentiate four key areas of breast cancer metastasis—angiogenesis, epithelial-mesenchymal transition, the Warburg effect and the tumour microenvironment. We then evaluate the recent developments in miRNA-based therapies in breast cancer, which have shown substantial promise in controlling tumour progression and metastasis. Yet, certain challenges must be overcome before these strategies can be implemented in clinical trials.
Collapse
|
36
|
Identification of MicroRNAs as Diagnostic Biomarkers for Breast Cancer Based on the Cancer Genome Atlas. Diagnostics (Basel) 2021; 11:diagnostics11010107. [PMID: 33440868 PMCID: PMC7827427 DOI: 10.3390/diagnostics11010107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common cancer among women worldwide. MicroRNAs (miRNAs or miRs) play an important role in tumorigenesis, and thus, they have been identified as potential targets for translational research with diagnostic, prognostic, and therapeutic markers. This study aimed to identify differentially expressed (DE) miRNAs in breast cancer using the Cancer Genome Atlas. The miRNA profiles of 755 breast cancer tissues and 86 adjacent non-cancerous breast tissues were analyzed using Multi Experiment Viewer; miRNA–mRNA network analyses and constructed KEGG pathways with the predicted target genes were performed. The clinical relevance of miRNAs was investigated using area under the receiver operating characteristic curve (AUC) analysis, sensitivity, and specificity. The analysis identified 28 DE miRNAs in breast cancer tissues, including nine upregulated and 19 downregulated miRNAs, compared to non-cancerous breast tissues (p < 0.001). The AUC for each DE miRNA, miR-10b, miR-21, miR-96, miR-99a, miR-100, miR-125b-1, miR-125b-2, miR-139, miR-141, miR-145, miR-182, miR-183, miR-195, miR-200a, miR-337, miR-429, and let-7c, exceeded 0.9, indicating excellent diagnostic performance in breast cancer. Moreover, 1381 potential target genes were predicted using the prediction database tool, miRNet. These genes are related to PD-L1 expression and PD-1 checkpoint in cancer, MAPK signaling, apoptosis, and TNF pathways; hence, they regulate the development, progression, and immune escape of cancer. Thus, these 28 miRNAs can serve as prospective biomarkers for the diagnosis of breast cancer. Taken together, these results provide insight into the pathogenic mechanisms and potential therapies for breast cancer.
Collapse
|
37
|
Petrek H, Yan Ho P, Batra N, Tu MJ, Zhang Q, Qiu JX, Yu AM. Single bioengineered ncRNA molecule for dual-targeting toward the control of non-small cell lung cancer patient-derived xenograft tumor growth. Biochem Pharmacol 2021; 189:114392. [PMID: 33359565 DOI: 10.1016/j.bcp.2020.114392] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Lung cancer remains the leading cause of cancer deaths worldwide and accounts for more than 22% of all cancer-related deaths in the US. Developing new therapies is essential to combat against deadly lung cancer, especially the most common type, non-small cell lung cancer (NSCLC). With the discovery of genome-derived functional small noncoding RNA (ncRNA), namely microRNAs (miRNA or miR), restoration of oncolytic miRNAs lost or downregulated in NSCLC cells represents a new therapeutic strategy. Very recently, we have developed a novel technology that achieves in vivo fermentation production of bioengineered miRNA agents (BERA) for research and development. In this study, we aimed at simultaneously introducing two miRNAs into NSCLC cells by using single recombinant "combinatorial BERA" (CO-BERA) molecule. Our studies show that single CO-BERA molecule (e.g., let-7c/miR-124) was successfully processed to two miRNAs (e.g., let-7c-5p and miR-124-3p) to combinatorially regulate the expression of multiple targets (e.g., RAS, VAMP3 and CDK6) in human NSCLC cells, exhibiting greater efficacy than respective BERA miRNAs in the inhibition of cell viability and colony formation. Furthermore, we demonstrate that CO-BERA let-7c/miR-124-loaded lipopolyplex nanomedicine was the most effective among tested RNAs in the control of tumor growth in NSCLC patient-derived xenograft mouse models. The anti-tumor activity of CO-BERA let-7c/miR-124 was associated with the suppression of RAS and CDK6 expression, and enhancement of apoptosis. These results support the concept to use single ncRNA agent for dual-targeting and offer insight into developing new RNA therapeutics for the treatment of lethal NSCLC.
Collapse
Affiliation(s)
- Hannah Petrek
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Pui Yan Ho
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Neelu Batra
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Qianyu Zhang
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Jing-Xin Qiu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
38
|
Xu J, Zhang J, Li L, Mao J, You T, Li Y. SOX12 expression is associated with progression and poor prognosis in human breast cancer. Am J Transl Res 2020; 12:8162-8174. [PMID: 33437389 PMCID: PMC7791485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/19/2020] [Indexed: 06/12/2023]
Abstract
The sex-determining region Y-box 12 (SOX12) is implicated in several oncogenic signaling pathways of multiple types of cancer; however, the biological effects of SOX12 on breast cancer has yet to be elucidated. Here, we assessed SOX12 expression using real-time quantitative PCR in 142 pairs of breast cancer and adjacent normal tissues (ANTs) and immunohistochemistry in 524 breast cancer and 147 ANTs. The effects of SOX12 on breast cancer progression, clinicopathological variables, and prognostic value were then investigated. SOX12 expression was markedly elevated in breast cancer tissues relative to that in ANTs at both mRNA and protein levels. Positive SOX12 expression was correlated to tumor size (P = 0.005), estrogen receptor (ER) (P = 0.018) and human epidermal growth factor receptor (HER2) (P = 0.004) status, lymph node metastasis (P < 0.001), and the tumor-node-metastasis (TNM) stage (P < 0.001). Notably, the positive rate of SOX12 expression gradually increased with breast cancer progression. Multivariate analysis indicated that SOX12 was an independent prognostic factor for overall survival (OS, P = 0.023) and distant metastasis-free survival (DMFS, P = 0.012). Subgroup analysis revealed that luminal and HER2 patients with positive SOX12 expression had a shorter OS period than those with negative SOX12 expression. Moreover, SOX12 expression was associated with a high risk of distant metastasis in invasive carcinoma with the lymph node metastasis subgroup. In summary, SOX12 correlates with progression and poor prognosis in human breast cancer, suggesting that SOX12 is a potential target for breast cancer treatment and warrants further functional research.
Collapse
Affiliation(s)
- Junming Xu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Jinyan Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Lei Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Jieqi Mao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Tiangeng You
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical UniversityShanghai, China
| | - Yang Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| |
Collapse
|
39
|
Wang Y, Tao B, Li J, Mao X, He W, Chen Q. Melatonin Inhibits the Progression of Oral Squamous Cell Carcinoma via Inducing miR-25-5p Expression by Directly Targeting NEDD9. Front Oncol 2020; 10:543591. [PMID: 33344223 PMCID: PMC7738623 DOI: 10.3389/fonc.2020.543591] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Melatonin exerts anti-cancer roles in various types of cancers. However, to the best of our knowledge, its role in oral squamous cell carcinoma (OSCC) is unknown. The present study aimed to investigate the role of melatonin and its underlying mechanism in OSCC. MTT, colony formation, wound healing, and transwell invasion assays proved that melatonin played anti-tumor effects in OSCC cells by inhibiting cell viability, proliferation, migration, and invasion in a concentration-dependent manner. The RT-qPCR analysis showed that miR-25-5p was significantly upregulated after melatonin treatment. Further, miR-25-5p might be involved in melatonin-induced inhibitory effects on the biological behavior of OSCC. The expression of miR-25-5p was decreased in tumor tissues and OSCC cells detected by RT-qPCR. MTT assay, colony formation assay, and TUNEL staining indicated miR-25-5p overexpression inhibited OSCC cell viability, proliferation, and induced OSCC cell apoptosis. Furthermore, wound healing, transwell invasion assay, and animal experiments suggested that miR-25-5p might exert suppressive effects on the migration, invasion, and tumor formation of OSCC cells, while miR-25-5p knockdown exhibited the opposite effects in OSCC cells. Bioinformatics analysis, western blot analysis, and luciferase reporter assay suggested that neural precursor cell expressed developmentally downregulated protein 9 (NEDD9) was proved to be a putative target for miR-25-5p. The role of NEDD9 in inhibiting OSCC cell proliferation, invasion, and migration was verified with NEDD9 siRNA transfection. Thus, melatonin exerted anti-proliferative, anti-invasive, and anti-migrative effects on OSCC via miR-25-5p/NEDD9 pathway. Melatonin could be applied as a potential novel drug on treating OSCC.
Collapse
Affiliation(s)
- Yanling Wang
- Department of Stomatology, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Bo Tao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiaying Li
- Huiqiao Medical Center, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Xiaoqun Mao
- Nursing Department, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei He
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qinbiao Chen
- Neurosurgery Department, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
40
|
Cai X, Xiao W, Shen J, Lian H, Lu Y, Liu X, Gu J. Thiostrepton and miR-216b synergistically promote osteosarcoma cell cytotoxicity and apoptosis by targeting FoxM1. Oncol Lett 2020; 20:391. [PMID: 33193851 PMCID: PMC7656114 DOI: 10.3892/ol.2020.12254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023] Open
Abstract
Osteosarcoma is a common primary bone cancer that there are currently no effective treatment strategies for. Forkhead box M1 (FoxM1) is key in the development of osteosarcoma, and microRNA (miR)-216b serves an antitumor role by targeting FoxM1. Moreover, thiostrepton (TST), a natural thiazole antibiotic, induces antitumor effects and specifically targets FoxM1. Therefore, the present study investigated whether thiostrepton and miR-216b synergistically inhibited osteosarcoma cells by targeting FoxM1. The MTT assay, reverse transcription-quantitative PCR, a dual-luciferase reporter assay and flow cytometry were performed. Compared with the human osteoblast cell line hFOB1.19, miR-216b expression was significantly downregulated in the osteosarcoma cell lines U2OS, MG63 and Saos-2. By contrast, FoxM1 expression was significantly upregulated in osteosarcoma cell lines compared with the hFOB1.19 cell line. The results indicated that miR-216b targeted the 3′-untranslated region of FoxM1. Moreover, the results suggested that miR-216b cooperated with TST to decrease cell cytotoxicity and increase cell apoptosis. In addition, miR-216b cooperated with TST to increase Bax expression and decrease Bcl-2 expression. In conclusion, the combination of TST and miR-216b synergistically promoted osteosarcoma cell cytotoxicity and apoptosis by targeting FoxM1. Therefore, the present study suggested that the combination of TST and miR-216b may serve as a promising therapeutic strategy for osteosarcoma.
Collapse
Affiliation(s)
- Xiaobing Cai
- Department of Orthopedics, Chongming Branch of Tongji Univercity Affiliated the Tenth People's Hospital, Shanghai 202157, P.R. China
| | - Wenyu Xiao
- Department of Orthopedics, Jiangwan Hospital, Shanghai 200434, P.R. China
| | - Juexin Shen
- Department of Orthopedics, Jiangwan Hospital, Shanghai 200434, P.R. China
| | - Hui Lian
- Department of Orthopedics, Jiangwan Hospital, Shanghai 200434, P.R. China
| | - Yi Lu
- Department of Orthopedics, Jiangwan Hospital, Shanghai 200434, P.R. China
| | - Xianmiao Liu
- Department of Orthopedics, Jiangwan Hospital, Shanghai 200434, P.R. China
| | - Jisheng Gu
- Department of Orthopedics, Jiangwan Hospital, Shanghai 200434, P.R. China
| |
Collapse
|
41
|
Fu R, Yang P, Amin S, Li Z. A novel miR-206/hnRNPA1/PKM2 axis reshapes the Warburg effect to suppress colon cancer growth. Biochem Biophys Res Commun 2020; 531:465-471. [PMID: 32800545 DOI: 10.1016/j.bbrc.2020.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Alternative splicing of pyruvate kinase gene (PKM) results in a higher PKM2/PKM1 ratio that contributes to the Warburg effect and reversing the Warburg effect has opened novel avenues for cancer treatment. miR-206 functions as a tumor suppressor in several types of cancer. However, the effect and underlying mechanisms of miR-206 on the Warburg effect are not yet elucidated. Here, we showed that miR-206 expression was obviously decreased in CRC tissues based on LinkedOmics. A significant decrease in miR-206 expression was negatively correlated with advanced tumor stage, while inversely correlated with overall survival in CRC patients. Ectopic overexpression of miR-206 has dramatically restricted the cell proliferation, glucose consumption and lactate production in CRC cells, whereas transfection of miR-206 inhibitor exhibited the opposite results. Furthermore, miR-206 overexpression induced switching from PKM2 to PKM1 via modulating alternative splicing of PKM gene. The alternative splicing factor hnRNPA1 is identified as the direct functional target of miR-206. Mechanistically, miR-206 overexpression directly targeted hnRNPA1 to suppress PKM2 expression to attenuate Warburg effect and cell proliferation of CRC. Importantly, the restoration of hnRNPA1 expression mostly abrogated the miR-206-meditated Warburg effect. Collectively, these results revealed that the novel miR-206/hnRNPA1/PKM2 axis plays a pivotal role in the Warburg effect to modulate CRC progression.
Collapse
Affiliation(s)
- Rong Fu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, 030006, China; Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Peng Yang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, 030006, China; Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Sajid Amin
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, 030006, China; School of Life Sciences, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
42
|
Chen FY, Zhou ZY, Zhang KJ, Pang J, Wang SM. Long non-coding RNA MIR100HG promotes the migration, invasion and proliferation of triple-negative breast cancer cells by targeting the miR-5590-3p/OTX1 axis. Cancer Cell Int 2020; 20:508. [PMID: 33088216 PMCID: PMC7568413 DOI: 10.1186/s12935-020-01580-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background As an aggressive subtype of breast cancer with a high risk of recurrence, triple-negative breast cancer (TNBC) lacks available treatment targets. LncRNA MIR100HG promotes cell proliferation in TNBC. However, few studies have investigated the molecular mechanism of MIR100HG in TNBC. Thus, additional in-depth investigations are needed to unravel its associated regulatory mechanism. Methods MIR100HG and miR-5590-3p expression in TNBC tissue samples and cell lines was detected by RT-qPCR. Flow cytometry, transwell, wound-healing, CCK8 and colony formation assays were performed to analyse cell apoptosis, cell cycle, invasion, migration and proliferation. The protein expression of orthodenticle homeobox 1 (OTX1) and proteins in the ERK/MAPK signalling pathway were assessed by western blot analysis. Bioinformatics and luciferase assay were performed to predict and validate the interaction between MIR100HG and miR-5590-3p as well as OTX1 and miR-5590-3p. RNA immunoprecipitation (RIP) was used to detect the interaction between MIR100HG and miR-5590-3p. Subcutaneous tumour growth was observed in nude mice. Immunohistochemistry (IHC) analysis was used to assess OTX1 expression in tumour tissues. Results MIR100HG expression was upregulated, whereas that of miR-5590-3p was downregulated in TNBC. MIR100HG was shown to directly interact with miR-5590-3p. Furthermore, MIR100HG knockdown could promote TNBC cell apoptosis and cell cycle arrest in G0/G1 phase while inhibiting migration, invasion and proliferation. Furthermore, miR-5590-3p inhibition showed the opposite results and could reverse the effect of MIR100HG knockdown in TNBC cells. MiR-5590-3p downregulated the ERK/MAPK signalling pathway, suppressed the migration, invasion and proliferation of TNBC cells and promoted their apoptosis and cell cycle arrest in G0/G1 phase by targeting OTX1. In addition, MIR100HG knockdown inhibited OTX1 expression by upregulating miR-5590-3p in vivo, thereby inhibiting tumour growth. Conclusions MIR100HG promotes the progression of TNBC by sponging miR-5590-3p, thereby upregulating OTX1, suggesting a new potential treatment target for TNBC.
Collapse
Affiliation(s)
- Fei-Yu Chen
- Department of Breast Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Clinical Research Center For Breast Cancer In Hunan Province, Changsha, 410008 Hunan People's Republic of China
| | - Zhi-Yang Zhou
- Department of Breast Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Clinical Research Center For Breast Cancer In Hunan Province, Changsha, 410008 Hunan People's Republic of China
| | - Ke-Jing Zhang
- Department of Breast Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Clinical Research Center For Breast Cancer In Hunan Province, Changsha, 410008 Hunan People's Republic of China
| | - Jian Pang
- Department of Breast Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Clinical Research Center For Breast Cancer In Hunan Province, Changsha, 410008 Hunan People's Republic of China
| | - Shou-Man Wang
- Department of Breast Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Clinical Research Center For Breast Cancer In Hunan Province, Changsha, 410008 Hunan People's Republic of China
| |
Collapse
|
43
|
Yang P, Li J, Peng C, Tan Y, Chen R, Peng W, Gu Q, Zhou J, Wang L, Tang J, Feng Y, Sun Y. TCONS_00012883 promotes proliferation and metastasis via DDX3/YY1/MMP1/PI3K-AKT axis in colorectal cancer. Clin Transl Med 2020; 10:e211. [PMID: 33135346 PMCID: PMC7568852 DOI: 10.1002/ctm2.211] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 01/07/2023] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have emerged as key regulators in multiple cancers, including colorectal cancer (CRC). However, the biological functions and molecular mechanisms underlying most lncRNAs in CRC remain largely unknown. Methods A novel lncRNA (TCONS_00012883) was identified using RNA sequencing. The level of TCONS_00012883 expression in CRC was analyzed by qRT‐PCR. The biological functions of TCONS_00012883 in CRC were investigated by a series of in vitro and in vivo experiments: CCK8, colony formation, EdU, flow cytometric assays, transwell assays, and mouse xenograft. The molecular mechanisms of TCONS_00012883 were demonstrated by RNA pulldown, mass spectrometry analysis, RIP, coimmunoprecipitation, RNA sequencing, chromatin immunoprecipitation, and rescue experiments. Results Elevated expression of TCONS_00012883 was confirmed in CRC and positively associated with a poor prognosis. Functionally, gain‐ and loss‐of‐function assays indicated that TCONS_00012883 promoted proliferation and metastasis of CRC cell lines in vitro and in vivo. Mechanistically, RNA pulldown and mass spectrometry analysis showed that DEAD‐box helicase 3 (DDX3) was the protein partner of TCONS_00012883. Furthermore, RNA sequencing assay revealed that matrix metallopeptidase 1 (MMP1) was the downstream of TCONS_00012883. Intriguingly, we found that transcription factor (YY1) could serve as a bridge between TCONS_00012883, DDX3, and MMP1. Conclusions TCONS_00012883 significantly promoted CRC progression via the DDX3/YY1/MMP1 axis, and thus, may act as a major role in diagnosis and therapy of CRC.
Collapse
Affiliation(s)
- Peng Yang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Li
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chaofan Peng
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuqian Tan
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ranran Chen
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Peng
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiou Gu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiahui Zhou
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Wang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junwei Tang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yifei Feng
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yueming Sun
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
44
|
Idrissou M, Sanchez A, Penault-Llorca F, Bignon YJ, Bernard-Gallon D. Epi-drugs as triple-negative breast cancer treatment. Epigenomics 2020; 12:725-742. [PMID: 32396394 DOI: 10.2217/epi-2019-0312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Triple-negative breast cancer (TNBC) types with poor prognosis are due to the absence of estrogen receptors, progesterone receptors and HEGFR-2. The lack of suitable therapy for TNBC has led the research community to turn toward epigenetic regulation and its protagonists that can modulate certain oncogenes and tumor suppressors. This has opened an important new field of therapy using epi-drugs, in preclinical and clinical trials. The epi-drugs are natural or synthetic molecules capable of inhibiting or modulating the activity of epigenetic proteins such as DNA methyltransferases, modulating the expression of interferon microRNAs, as well as histone methyltransferases, demethylases, acetyltransferases and deacetylases. This review investigated the epi-drugs used in the treatment of TNBC.
Collapse
Affiliation(s)
- Mouhamed Idrissou
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| | - Anna Sanchez
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| | - Frédérique Penault-Llorca
- INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France.,Department of Biopathology, Centre Jean Perrin, 58 Rue Montalembert, Clermont-Ferrand 63011, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| |
Collapse
|
45
|
Yu AM, Batra N, Tu MJ, Sweeney C. Novel approaches for efficient in vivo fermentation production of noncoding RNAs. Appl Microbiol Biotechnol 2020; 104:1927-1937. [PMID: 31953559 PMCID: PMC7385725 DOI: 10.1007/s00253-020-10350-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 01/07/2023]
Abstract
Genome-derived noncoding RNAs (ncRNAs), including microRNAs (miRNAs), small interfering RNAs (siRNAs), and long noncoding RNAs (lncRNAs), play an essential role in the control of target gene expression underlying various cellular processes, and dysregulation of ncRNAs is involved in the pathogenesis and progression of various diseases in virtually all species including humans. Understanding ncRNA biology has opened new avenues to develop novel RNA-based therapeutics. Presently, ncRNA research and drug development is dominated by the use of ncRNA mimics that are synthesized chemically in vitro and supplemented with extensive and various types of artificial modifications and thus may not necessarily recapitulate the properties of natural RNAs generated and folded in living cells in vivo. Therefore, there are growing interests in developing novel technologies for in vivo production of RNA molecules. The two most recent major breakthroughs in achieving an efficient, large-scale, and cost-effective fermentation production of recombinant or bioengineered RNAs (e.g., tens of milligrams from 1 L of bacterial culture) are (1) using stable RNA carriers and (2) direct overexpression in RNase III-deficient bacteria, while other approaches offer a low yield (e.g., nano- to microgram scales per liter). In this article, we highlight these novel microbial fermentation-based technologies that have shifted the paradigm to the production of true biological ncRNA molecules for research and development.
Collapse
Affiliation(s)
- Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, 95817, USA.
| | - Neelu Batra
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, 95817, USA
| |
Collapse
|