1
|
Ruiz-Torres DA, Bryan ME, Hirayama S, Merkin RD, Luciani E, Roberts TJ, Patel M, Park JC, Wirth LJ, Sadow PM, Sade-Feldman M, Stott SL, Faden DL. Spatial characterization of tertiary lymphoid structures as predictive biomarkers for immune checkpoint blockade in head and neck squamous cell carcinoma. Oncoimmunology 2025; 14:2466308. [PMID: 39963988 PMCID: PMC11845054 DOI: 10.1080/2162402x.2025.2466308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/27/2025] [Accepted: 02/08/2025] [Indexed: 02/23/2025] Open
Abstract
Immune checkpoint blockade (ICB) is the standard of care for recurrent/metastatic head and neck squamous cell carcinoma (HNSCC), yet efficacy remains low. The combined positive score (CPS) for PD-L1 is the only biomarker approved to predict response to ICB and has limited performance. Tertiary Lymphoid Structures (TLS) have shown promising potential for predicting response to ICB. However, their exact composition, size, and spatial biology in HNSCC remain understudied. To elucidate the impact of TLS spatial biology in response to ICB, we utilized pre-ICB tumor tissue sections from 9 responders (complete response, partial response, or stable disease) and 11 non-responders (progressive disease) classified via RECISTv1.1. A custom multi-immunofluorescence (mIF) staining assay was applied to characterize tumor cells (pan-cytokeratin), T cells (CD4, CD8), B cells (CD19, CD20), myeloid cells (CD16, CD56, CD163), dendritic cells (LAMP3), fibroblasts (α Smooth Muscle Actin), proliferative status (Ki67) and immunoregulatory molecules (PD1). A machine learning model was employed to measure the effect of spatial metrics on achieving a response to ICB. A higher density of B cells (CD20+) was found in responders compared to non-responders to ICB (p = 0.022). The presence of TLS within 100 µm of the tumor was associated with improved overall (p = 0.04) and progression-free survival (p = 0.03). A multivariate machine learning model identified TLS density as a leading predictor of response to ICB with 80% accuracy. Immune cell densities and TLS spatial location play a critical role in the response to ICB in HNSCC and may potentially outperform CPS as a predictor of response.
Collapse
Affiliation(s)
- Daniel A. Ruiz-Torres
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael E. Bryan
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shun Hirayama
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA
| | - Ross D. Merkin
- Department of Medicine, Harvard Medical School, Boston MA, USA
- Department of Medicine, Center for Head and Neck Cancers, Massachusetts General Hospital, Boston MA, USA
| | - Evelyn Luciani
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Thomas J. Roberts
- Department of Medicine, Harvard Medical School, Boston MA, USA
- Department of Medicine, Center for Head and Neck Cancers, Massachusetts General Hospital, Boston MA, USA
| | - Manisha Patel
- Department of Medicine, Harvard Medical School, Boston MA, USA
- Department of Medicine, Center for Head and Neck Cancers, Massachusetts General Hospital, Boston MA, USA
| | - Jong C. Park
- Department of Medicine, Harvard Medical School, Boston MA, USA
- Department of Medicine, Center for Head and Neck Cancers, Massachusetts General Hospital, Boston MA, USA
| | - Lori J. Wirth
- Department of Medicine, Harvard Medical School, Boston MA, USA
- Department of Medicine, Center for Head and Neck Cancers, Massachusetts General Hospital, Boston MA, USA
| | - Peter M. Sadow
- Department of Medicine, Harvard Medical School, Boston MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Moshe Sade-Feldman
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shannon L. Stott
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Engineering in Medicine and BioMEMS Resource Center, Surgical Services, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Daniel L. Faden
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Center for Head and Neck Cancers, Massachusetts General Hospital, Boston MA, USA
| |
Collapse
|
2
|
Cao L, Dai H, Wei S, Ba Y, Chen F, Chen Y, Yu C, Zhang S, Chen E, Zhang H. Endoplasmic reticulum stress-related prognosis signature characterizes the immune landscape and predicts the prognosis of colon adenocarcinoma. Front Genet 2025; 16:1516232. [PMID: 40236629 PMCID: PMC11996786 DOI: 10.3389/fgene.2025.1516232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
Background Colon adenocarcinoma (COAD) is characterized by high mortality and poor prognosis. Endoplasmic reticulum stress-related gene (ERSG) plays an indispensable role in the progression and immunotherapy of COAD. In this study, we evaluated the prognostic value of ERSGs in COAD. Methods We constructed and validated the ERSG-related prognostic signature based on public databases using univariate Cox analysis, Kaplan-Meier survival analysis, the LASSO method, and multivariate Cox analysis. In addition, TCGA-COAD, the Human Protein Atlas, and quantitative real-time PCR (q-PCR) were used to detect the mRNA and protein expressions of ERSGs in normal and cancer tissues/cells. The immunotherapeutic cohort was used to evaluate the predictive value of the ERSG signature for immunotherapeutic sensitivity. Results The ERSG signature, consisted of HSPA1A, SERPINA1, and DAPK1, could predict the prognosis of patients with COAD. Clinicopathologic characteristics were significantly correlated with risk scores. There were significant differences in the proportion of tumor-infiltrating immune cells, the TP53 mutation rate, the expression of immune checkpoint-related genes, and IC50 of the chemotherapeutic drugs between the low- and high-risk groups. Compared with normal tissues, the mRNA and protein expressions of three ERSGs were decreased in cancer tissues. Compared with NCM460, the mRNA levels of HSPA1A and DAPK1 were decreased in the majority of COAD cell lines, whereas the mRNA level of SERPINA1 was increased in HCT116 and SW480, and reduced in SW620. The ERSG signature could be used as a predictor of immunotherapeutic outcomes. Conclusion The ERSG signature has a predictive value in the prognosis and immunotherapeutic sensitivity in COAD, helping guide the personalized treatment.
Collapse
Affiliation(s)
- Lichao Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
- Department of Research and Development, Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, China
| | - Haoyang Dai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- School of Medicine, Northwest University, Xi’an, China
| | - Shangqing Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- School of Medicine, Northwest University, Xi’an, China
| | - Ying Ba
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
- Department of Research and Development, Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, China
| | - Fang Chen
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
- Department of Research and Development, Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, China
| | - Yingying Chen
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
- Department of Research and Development, Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, China
| | - Chendi Yu
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
- Department of Research and Development, Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, China
| | - Shenrui Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
- Department of Research and Development, Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, China
| | - Erfei Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- School of Medicine, Northwest University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Hezi Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
- Department of Research and Development, Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, China
| |
Collapse
|
3
|
Li C, Ke F, Mao S, Montemayor Z, Traore MDM, Balsa AD, Djibo M, Karekar N, Hu H, Wen H, Gao W, Sun D. SARS-CoV-2 B Epitope-Guided Neoantigen NanoVaccines Enhance Tumor-Specific CD4/CD8 T Cell Immunity through B Cell Antigen Presentation. ACS NANO 2025; 19:7038-7054. [PMID: 39943808 DOI: 10.1021/acsnano.4c15113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Current neoantigen cancer vaccines activate T cell immunity through dendritic cell/macrophage-mediated antigen presentation. It is unclear whether incorporating B cell-mediated antigen presentation into current neoantigen vaccines could enhance CD4/CD8 T cell immunity to improve their anticancer efficacy. We developed SARS-CoV-2 B cell epitope-guided neoantigen peptide/mRNA cancer nanovaccines (BSARSTNeoAgVax) to improve anticancer efficacy by enhancing tumor-specific CD4/CD8 T cell antitumor immunity through B cell-mediated antigen presentation. BSARSTNeoAgVax cross-linked with B cell receptor, promoted SARS-CoV-2 B cell-mediated antigen presentation to tumor-specific CD4 T cells, increased tumor-specific follicular/nonfollicular CD4 T cells, and enhanced B cell-dependent tumor-specific CD8 T cell immunity. BSARSTNeoAgVax achieved superior efficacy in melanoma, pancreatic, and breast cancer models compared with the current neoantigen vaccines. Our study provides a universal platform, SARS-CoV-2 B epitope-guided neoantigen nanovaccines, to improve anticancer efficacy against various cancer types by enhancing CD4/CD8 T cell antitumor immunity through viral-specific B cell-mediated antigen presentation.
Collapse
Affiliation(s)
- Chengyi Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fang Ke
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shuai Mao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zera Montemayor
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mohamed Dit Mady Traore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alejandra Duran Balsa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mahamadou Djibo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Neha Karekar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hanning Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wei Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology and Pharmaceutical Science, College of Pharmacy, The University of Houston, Houston, Texas 77204, United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Tamuli B, Biswas S. A Comprehensive Methodology for Immortalizing Tumor-Infiltrating B Lymphocytes from Epithelial Cancers. Methods Mol Biol 2025; 2909:245-256. [PMID: 40029526 DOI: 10.1007/978-1-0716-4442-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Epithelial cancers are often infiltrated with prognostically relevant lymphocytes, including T and B lymphocytes. Isolation, expansion, and immortalization of lymphocytes from epithelial tumors are immensely important in basic tumor immunology research and clinical translation. Here, we outline in detail the process of separating viable B lymphocytes from surgically removed epithelial tumors and their immortalization and cryopreservation methods. Overall, this state-of-the-art procedure aids in bulk and specific antigen-reactive antibody production from tumor-infiltrating B cells. Also, sequence information can be deduced by cutting-edge sequencing methods from these immortalized pools of B lymphocytes.
Collapse
Affiliation(s)
- Baishali Tamuli
- Cancer Immune Environment and Therapeutics Lab, Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Subir Biswas
- Cancer Immune Environment and Therapeutics Lab, Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.
- Homi Bhabha National Institute, Mumbai, Maharashtra, India.
| |
Collapse
|
5
|
Tamuli B, Ghagare R, Mandal G. Design, Production, and Optimization of Antigen-Specific Recombinant Antitumor Dimeric IgA Antibody. Methods Mol Biol 2025; 2909:119-129. [PMID: 40029519 DOI: 10.1007/978-1-0716-4442-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Available cancer immunotherapies are currently restricted to extracellular targets, while chemotherapy is the only option for intracellular targets, such as mutant KRAS. Antibodies are serum immunoglobulins, each having high binding specificity against particular antigens. Patients produce antibody responses against abnormally expressed self-proteins and neoantigens presented by the cancer cells. However, despite their infiltration into the tumor beds, many times the magnitude of the antitumor antibodies produced by spontaneously infiltrated B lymphocytes remains insufficient to control tumor growth. Recent work has established that dimeric IgA antibodies can target intracellular targets inside cancer cells expressing the polymeric immunoglobulin receptor (pIgR). Here, we thoroughly discuss the entire process of recombinant production of intracellular antigen-specific dimeric IgA antibodies that could be utilized for targeting oncodrivers inside tumor cells.
Collapse
Affiliation(s)
- Baishali Tamuli
- Cancer Immune Environment and Therapeutics Lab, Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Rutik Ghagare
- Division of Cancer Biology, BRIC-Institute of Life Sciences, Bhubaneswar, India
| | - Gunjan Mandal
- Division of Cancer Biology, BRIC-Institute of Life Sciences, Bhubaneswar, India.
| |
Collapse
|
6
|
Conejo-Garcia JR, Lopez-Bailon LU, Anadon CM. Unraveling spontaneous humoral immune responses against human cancer: a road to novel immunotherapies. J Leukoc Biol 2024; 116:919-926. [PMID: 39190797 DOI: 10.1093/jleuko/qiae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/01/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024] Open
Abstract
In immuno-oncology, the focus has traditionally been on αβ T cells, and immune checkpoint inhibitors that primarily target PD-1 or CTLA4 in these lymphocytes have revolutionized the management of multiple human malignancies. However, recent research highlights the crucial role of B cells and the antibodies they produce in antagonizing malignant progression, offering new avenues for immunotherapy. Our group has demonstrated that dimeric Immunoglobulin A can penetrate tumor cells, neutralize oncogenic drivers in endosomes, and expel them from the cytosol. This mechanistic insight suggests that engineered antibodies targeting this pathway may effectively reach previously inaccessible targets. Investigating antibody production within intratumoral germinal centers and understanding the impact of different immunoglobulins on malignant progression could furnish new tools for the therapeutic arsenal, including the development of tumor-penetrating antibodies. This review aims to elucidate the nature of humoral adaptive immune responses in human cancer and explore how they could herald a new era of immunotherapeutic modalities. By expanding the scope of antitumor immunotherapies, these approaches have the potential to benefit a broader range of cancer patients, particularly through the utilization of tumor cell-penetrating antibodies.
Collapse
Affiliation(s)
- Jose R Conejo-Garcia
- Department of Integrative Immunobiology, Duke School of Medicine, Durham, NC 27710, United States
- Duke Cancer Institute, Duke School of Medicine, Durham, NC 27710, United States
| | - Luis U Lopez-Bailon
- Department of Integrative Immunobiology, Duke School of Medicine, Durham, NC 27710, United States
- Duke Cancer Institute, Duke School of Medicine, Durham, NC 27710, United States
| | - Carmen M Anadon
- Department of Integrative Immunobiology, Duke School of Medicine, Durham, NC 27710, United States
- Duke Cancer Institute, Duke School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
7
|
Yang H, Zhang Z, Li J, Wang K, Zhu W, Zeng Y. The Dual Role of B Cells in the Tumor Microenvironment: Implications for Cancer Immunology and Therapy. Int J Mol Sci 2024; 25:11825. [PMID: 39519376 PMCID: PMC11546796 DOI: 10.3390/ijms252111825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The tumor microenvironment (TME) is a complex and heterogeneous tissue composed of various cell types, including tumor cells, stromal cells, and immune cells, as well as non-cellular elements. Given their pivotal role in humoral immunity, B cells have emerged as promising targets for anti-tumor therapies. The dual nature of B cells, exhibiting both tumor-suppressive and tumor-promoting functions, has garnered significant attention. Understanding the distinct effects of various B cell subsets on different tumors could pave the way for novel targeted tumor therapies. This review provides a comprehensive overview of the heterogeneous B cell subsets and their multifaceted roles in tumorigenesis, as well as the therapeutic potential of targeting B cells in cancer treatment. To develop more effective cancer immunotherapies, it is essential to decipher the heterogeneity of B cells and their roles in shaping the TME.
Collapse
Affiliation(s)
| | | | | | | | | | - Yingyue Zeng
- School of Life Science, Liaoning University, Shenyang 110036, China; (H.Y.); (Z.Z.); (J.L.); (K.W.); (W.Z.)
| |
Collapse
|
8
|
Schiffmann S, Henke M, Brünner S, Bennett A, Yagubi Y, Magari F, Parnham MJ, Grünweller A. Immune Modulatory Profile of the Pateamines PatA and Des-Methyl Des-Amino PatA. Int J Mol Sci 2024; 25:11430. [PMID: 39518983 PMCID: PMC11546719 DOI: 10.3390/ijms252111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Pateamines act as inhibitors of the RNA helicase eIF4A and exhibit antiviral and anticancer properties. Recently, we observed that inhibition of eIF4A by rocaglates affects the immune response. To investigate whether the observed immunomodulatory effects are specific to rocaglates or the inhibition of eIF4A, a comprehensive study was conducted on the influence of pateamines that exhibit the same inhibitory mode of action as rocaglates on various immune cells. The effects of pateamine A (PatA) and des-methyl des-amino pateamine A (DMDA) on the expression of surface markers, release of cytokines, cell proliferation, inflammatory mediators and metabolic activity in primary human monocyte-derived macrophages (MdM), T cells and B cells were assessed. Additionally, safety and bioavailability profiles were determined. DMDA revealed almost no immunomodulatory effects within the tested concentration range of 0.5-5 nM. PatA reduced B cell activation, as shown by reduced immune globulin release and decreased chemokine release from macrophages, while T cell function remained unaffected. Both DMDA and PatA showed low permeability in Caco-2 and Calu-3 cell barrier assays and no mutagenic potential. However, 10 nM PatA exhibited genotoxic potential, as shown by the micronucleus assay. In conclusion, DMDA had a good safety profile but exhibited low permeability, whereas PatA had a poor safety profile and also low permeability. The observed immunomodulatory effects of elF4A inhibitors on B cells appear to be target-specific.
Collapse
Affiliation(s)
- Susanne Schiffmann
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany (M.J.P.)
- Faculty of Medicine, Institute of Clinical Pharmacology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Marina Henke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany (M.J.P.)
| | - Sophie Brünner
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany (M.J.P.)
| | - Alexandre Bennett
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany (M.J.P.)
- Faculty of Medicine, Institute of Clinical Pharmacology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Yassin Yagubi
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany (M.J.P.)
- Faculty of Medicine, Institute of Clinical Pharmacology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Francesca Magari
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35032 Marburg, Germany; (F.M.)
| | - Michael J. Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany (M.J.P.)
- EpiEndo Pharmaceuticals ehf, Bjargargata 1, 102 Reykjavik, Iceland
| | - Arnold Grünweller
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35032 Marburg, Germany; (F.M.)
| |
Collapse
|
9
|
Cui S, Yang Y, Lou S, Huang R, Wang J, Chen Z, Xie J. Establish a novel immune-related gene prognostic risk index (IRGPRI) associated with CD8+ cytotoxic T lymphocytes in non-small-cell lung cancer (NSCLC). Heliyon 2024; 10:e38324. [PMID: 39397989 PMCID: PMC11466668 DOI: 10.1016/j.heliyon.2024.e38324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/22/2024] [Accepted: 09/22/2024] [Indexed: 10/15/2024] Open
Abstract
Background The aim of this study is to create an index called IRGPRI (immune-related gene prognostic risk index) that can be utilized for predicting the prognosis and assessing the efficacy of immune checkpoint inhibitors (ICIs) therapy in patients with non-small-cell lung cancer (NSCLC). Methods Distinguishing gene expression patterns (DEGs) were detected in CD8+ cytotoxic T lymphocytes (CTLs) compared to other cellular types such as CD4 T cells, B cells, plasma cells, and CD8 Tex using the advanced technology of Single-cell RNA Sequencing (scRNA-seq). The construction of IRGPRI was accomplished by employing LASSO Cox regression analysis. We conducted a comparative analysis on clinical characteristics and molecular features, such as pathway enrichment and gene mutation, among the distinct subgroups of IRGPRI. Furthermore, we explored the correlation between immunological characteristics and IRGPRI subgroups to comprehensively assess the effectiveness of ICIs in NSCLC patients. Results A total of 109 genes were identified by intersecting immune-related genes with DEGs obtained from single-cell RNA sequencing data (GSE131907), specifically comparing CTLs to other cell types. From these, we selected 7 prognosis-related genes, namely TRBC1, HLA-DMA, CTSH, RAC1, CTSL, ANXA2, and CEBPB. These genes were used to construct the IRGPRI. The prognosis of patients diagnosed with NSCLC was found to be significantly better in the low-risk group compared to the high-risk group, as demonstrated by Kaplan-Meier (K-M) survival analysis. This observation was further confirmed through the utilization of data from the GEO cohort. The low-risk group demonstrated an increase in pathways linked with immune response, whereas the high-risk group exhibited a higher prevalence of pathways related to cancer. Furthermore, it was noted in the TCGA cohort that there existed a significant rise in the mutation frequency of every gene within the high-risk group as opposed to the low-risk group. Missense variation emerged as the most prevalent form of mutation. According to the analysis of immune cell infiltration and function, the comprehensive findings suggest that the group with a low risk is characterized by an increased presence of plasma cells, CTLs, T cells follicular helper, Tregs, and Dendritic cell resting. Additionally, they exhibit a higher score in terms of immune function for B cells, CD8+ T cells, checkpoint activity, T cell inhibition and stimulation. Moreover, this low-risk group demonstrates greater efficacy when treated with ICIs therapy compared to the high-risk group. Conclusions Our research effectively developed and verified a unique IRGPRI, showcasing its association with immune-related characteristics. As a result, the potential of IRGPRI as a valuable biomarker for predicting prognosis and evaluating the effectiveness of ICIs treatment in cancer is evident.
Collapse
Affiliation(s)
- Shenjing Cui
- Department of Clinical Laboratory, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yikun Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Shuang Lou
- Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Rong Huang
- Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jing Wang
- Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhongbiao Chen
- Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jingjing Xie
- Department of Medical Administration, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
10
|
Requesens M, Foijer F, Nijman HW, de Bruyn M. Genomic instability as a driver and suppressor of anti-tumor immunity. Front Immunol 2024; 15:1462496. [PMID: 39544936 PMCID: PMC11562473 DOI: 10.3389/fimmu.2024.1462496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024] Open
Abstract
Genomic instability is a driver and accelerator of tumorigenesis and influences disease outcomes across cancer types. Although genomic instability has been associated with immune evasion and worsened disease prognosis, emerging evidence shows that genomic instability instigates pro-inflammatory signaling and enhances the immunogenicity of tumor cells, making them more susceptible to immune recognition. While this paradoxical role of genomic instability in cancer is complex and likely context-dependent, understanding it is essential for improving the success rates of cancer immunotherapy. In this review, we provide an overview of the underlying mechanisms that link genomic instability to pro-inflammatory signaling and increased immune surveillance in the context of cancer, as well as discuss how genomically unstable tumors evade the immune system. A better understanding of the molecular crosstalk between genomic instability, inflammatory signaling, and immune surveillance could guide the exploitation of immunotherapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Marta Requesens
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hans W. Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
Ruiz-Torres DA, Bryan ME, Hirayama S, Merkin RD, Luciani E, Roberts T, Patel M, Park JC, Wirth LJ, Sadow PM, Sade-Feldman M, Stott SL, Faden DL. Immune Cell Densities Predict Response to Immune Checkpoint-Blockade in Head and Neck Cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.10.24313432. [PMID: 39314968 PMCID: PMC11419212 DOI: 10.1101/2024.09.10.24313432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Immune checkpoint blockade (ICB) is the standard of care for recurrent/metastatic head and neck squamous cell carcinoma (HNSCC), yet efficacy remains low. The current approach for predicting the likelihood of response to ICB is a single proportional biomarker (PD-L1) expressed in immune and tumor cells (Combined Positive Score, CPS) without differentiation by cell type, potentially explaining its limited predictive value. Tertiary Lymphoid Structures (TLS) have shown a stronger association with ICB response than PD-L1. However, their exact composition, size, and spatial biology in HNSCC remain understudied. A detailed understanding of TLS is required for future use as a clinically applicable predictive biomarker. Methods Pre-ICB tumor tissue sections were obtained from 9 responders (complete response, partial response, or stable disease) and 11 non-responders (progressive disease) classified via RECISTv1.1. A custom multi-immunofluorescence (mIF) staining assay was designed, optimized, and applied to characterize tumor cells (pan-cytokeratin), T cells (CD4, CD8), B cells (CD19, CD20), myeloid cells (CD16, CD56, CD163), dendritic cells (LAMP3), fibroblasts (α Smooth Muscle Actin), proliferative status (Ki67) and immunoregulatory molecules (PD1). Spatial metrics were compared among groups. Serial tissue sections were scored for TLS in both H&E and mIF slides. A machine learning model was employed to measure the effect of these metrics on achieving a response to ICB (SD, PR, or CR). Results A higher density of B lymphocytes (CD20+) was found in responders compared to non-responders to ICB (p=0.022). A positive correlation was observed between mIF and pathologist identification of TLS (R 2 = 0.66, p-value= <0.0001). TLS trended toward being more prevalent in responders to ICB (p=0.0906). The presence of TLS within 100 μm of the tumor was associated with improved overall (p=0.04) and progression-free survival (p=0.03). A multivariate machine learning model identified TLS density as a leading predictor of response to ICB with 80% accuracy. Conclusion Immune cell densities and TLS spatial location within the tumor microenvironment play a critical role in the immune response to HNSCC and may potentially outperform CPS as a predictor of ICB response.
Collapse
Affiliation(s)
- Daniel A. Ruiz-Torres
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts Eye and Ear, Boston, MA 02118, USA
- Massachusetts General Hospital Cancer Center, Boston, MA 02118, USA
| | - Michael E. Bryan
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts Eye and Ear, Boston, MA 02118, USA
| | - Shun Hirayama
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts Eye and Ear, Boston, MA 02118, USA
| | - Ross D. Merkin
- Massachusetts Eye and Ear, Boston, MA 02118, USA
- Massachusetts General Hospital Cancer Center, Boston, MA 02118, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115
| | - Evelyn Luciani
- Massachusetts General Hospital Cancer Center, Boston, MA 02118, USA
| | - Thomas Roberts
- Massachusetts General Hospital Cancer Center, Boston, MA 02118, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115
| | - Manisha Patel
- Massachusetts General Hospital Cancer Center, Boston, MA 02118, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115
| | - Jong C. Park
- Massachusetts General Hospital Cancer Center, Boston, MA 02118, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115
| | - Lori J. Wirth
- Massachusetts General Hospital Cancer Center, Boston, MA 02118, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115
| | - Peter M. Sadow
- Massachusetts Eye and Ear, Boston, MA 02118, USA
- Massachusetts General Hospital Cancer Center, Boston, MA 02118, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Moshe Sade-Feldman
- Massachusetts General Hospital Cancer Center, Boston, MA 02118, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shannon L. Stott
- Massachusetts General Hospital Cancer Center, Boston, MA 02118, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115
- Center for Engineering in Medicine and BioMEMS Resource Center, Surgical Services, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel L. Faden
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts Eye and Ear, Boston, MA 02118, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
12
|
Wen W, Yuan L, Zhao X, Jia Y, Chen L, Jiang H, Wang W, Zhang C, Yao S. Differentially expressed circular RNA profiles and comprehensive analysis of circRNA-miRNA-mRNA regulatory network in microsatellite instability-high endometrial cancer. Genomics 2024; 116:110931. [PMID: 39209049 DOI: 10.1016/j.ygeno.2024.110931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/10/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The clinical benefit of anti-programmed cell death protein 1 (PD-1)-based immunotherapy among patients with microsatellite instable (MSI) endometrial cancer (EC) precedes that of microsatellite stable (MSS) EC, the mechanisms of which have not been fully understood. Circular RNAs (circRNAs) were reported to modulate immune evasion in several types of malignancies, while their roles in the immune regulation in EC remain largely unknown. Here, we conducted circRNA array analysis and mRNA-Sequencing of 10 MSI EC samples and 10 MSS EC samples and identified 1083 differentially expressed circRNAs (DE-circRNAs) and 864 differentially expressed mRNAs, based on which we constructed a circRNA-miRNA-mRNA comprehensive network consisting of 35 DE-circRNAs, 56 predicted miRNAs and 24 differentially expressed mRNAs. Finally, we confirmed hsa_circ_0058230 being positively correlated with CD8+ T cells infiltration, suggesting that it might take a part in anti-tumor immunity in EC.
Collapse
Affiliation(s)
- Weijia Wen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, PR China
| | - Li Yuan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, PR China
| | - Xueyuan Zhao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, PR China
| | - Yan Jia
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, PR China
| | - Linna Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, PR China
| | - Hongye Jiang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, PR China
| | - Wei Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, PR China.
| | - Chunyu Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, PR China.
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, PR China.
| |
Collapse
|
13
|
Xi Y, Liu R, Zhang X, Guo Q, Zhang X, Yang Z, Zheng H, Song Q, Hua B. A Bibliometric Analysis of Metabolic Reprogramming in the Tumor Microenvironment From 2003 to 2022. Cancer Rep (Hoboken) 2024; 7:e2146. [PMID: 39158178 PMCID: PMC11331499 DOI: 10.1002/cnr2.2146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/23/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Despite considerable progress in cancer immunotherapy, it is not available for many patients. Resistance to immune checkpoint blockers arises from the intricate interactions between cancer and its microenvironment. Metabolic reprogramming in tumor and immune cells in the tumor microenvironment (TME) influences anti-tumor immune responses by remodeling the immune microenvironment. Metabolic reprogramming has emerged as an important hallmark of tumorigenesis. However, few studies have focused on the TME and metabolic reprogramming. Therefore, we aimed to explore the current research status and popular topics in TME-related metabolic reprogramming over a 20 years using a bibliometric approach. METHODS Studies focusing on metabolic reprogramming and TME were searched using the Web of Science Core Collection database. Bibliometric and visual analyses of the articles and reviews were performed using Bibliometrix, VOSviewer, and CiteSpace. RESULTS In total, 4726 articles published between 2003 and 2022 were selected. The number of publications and citations has increased annually. Cooperation network analysis indicated that the United States holds the foremost position in metabolic reprogramming and TME research with the highest volume of publications and citations, thus exerting the greatest influence. Among these institutions, Fudan University displayed the highest level of productivity. Frontiers in Immunology showed the highest degree of productivity in this field. Ho Ping-Chih made the most article contributions, and Pearce Edward J. was the most co-cited author. Four clusters were obtained after a cluster analysis of the authors' keywords: TME, metabolic reprogramming, immunometabolism, and immunity. Immunometabolism, glycolysis, immune cells, and tumor-associated macrophages are relatively recent keywords that have attracted increasing attention. CONCLUSIONS A comprehensive landscape of advancements in metabolic reprogramming and the TME was evaluated, which provided crucial information for scholars to further advance this promising field. Further research should explore new topics related to immunometabolism in the TME using a transdisciplinary approach.
Collapse
Affiliation(s)
- Yupeng Xi
- Department of General Internal Medicine, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Rui Liu
- Department of Oncology, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Xing Zhang
- Department of Oncology, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Qiujun Guo
- Department of Oncology, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Xiwen Zhang
- Department of Oncology, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Zizhen Yang
- Department of General Internal MedicineXi'an Fifth HospitalXi'anShanxiChina
| | - Honggang Zheng
- Department of Oncology, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Qingqiao Song
- Department of General Internal Medicine, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Baojin Hua
- Department of Oncology, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
14
|
Chai D, Wang J, Fan C, Lim JM, Wang X, Neeli P, Yu X, Young KH, Li Y. Remodeling of anti-tumor immunity with antibodies targeting a p53 mutant. J Hematol Oncol 2024; 17:45. [PMID: 38886748 PMCID: PMC11184848 DOI: 10.1186/s13045-024-01566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND p53, the most frequently mutated gene in cancer, lacks effective targeted drugs. METHODS We developed monoclonal antibodies (mAbs) that target a p53 hotspot mutation E285K without cross-reactivity with wild-type p53. They were delivered using lipid nanoparticles (LNPs) that encapsulate DNA plasmids. Western blot, BLI, flow cytometry, single-cell sequencing (scRNA-seq), and other methods were employed to assess the function of mAbs in vitro and in vivo. RESULTS These LNP-pE285K-mAbs in the IgG1 format exhibited a robust anti-tumor effect, facilitating the infiltration of immune cells, including CD8+ T, B, and NK cells. scRNA-seq revealed that IgG1 reduces immune inhibitory signaling, increases MHC signaling from B cells to CD8+ T cells, and enriches anti-tumor T cell and B cell receptor profiles. The E285K-mAbs were also produced in the dimeric IgA (dIgA) format, whose anti-tumor activity depended on the polymeric immunoglobulin receptor (PIGR), a membrane Ig receptor, whereas that of IgG1 relied on TRIM21, an intracellular IgG receptor. CONCLUSIONS Targeting specific mutant epitopes using DNA-encoded and LNP-delivered mAbs represents a potential precision medicine strategy against p53 mutants in TRIM21- or PIGR-positive cancers.
Collapse
Affiliation(s)
- Dafei Chai
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
| | - Junhao Wang
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Chunmei Fan
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Jing-Ming Lim
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Xu Wang
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Praveen Neeli
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Xinfang Yu
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Ken H Young
- Department of Pathology, Division of Hematopathology, Duke University Medical Center, Durham, NC, USA
| | - Yong Li
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
| |
Collapse
|
15
|
Hathaway CA, Townsend MK, Wang T, Vinci C, Jake-Schoffman DE, Hecht JL, Saeed-Vafa D, Segura CM, Nguyen JV, Conejo-Garcia JR, Fridley BL, Tworoger SS. Lifetime Exposure to Cigarette Smoke, B-Cell Tumor Immune Infiltration, and Immunoglobulin Abundance in Ovarian Tumors. Cancer Epidemiol Biomarkers Prev 2024; 33:796-803. [PMID: 38517322 PMCID: PMC11147730 DOI: 10.1158/1055-9965.epi-23-1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/08/2024] [Accepted: 03/20/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Cigarette smoke exposure has been linked to systemic immune dysfunction, including for B-cell and immunoglobulin (Ig) production, and poor outcomes in patients with ovarian cancer. No study has evaluated the impact of smoke exposure across the life-course on B-cell infiltration and Ig abundance in ovarian tumors. METHODS We measured markers of B and plasma cells and Ig isotypes using multiplex immunofluorescence on 395 ovarian cancer tumors in the Nurses' Health Study (NHS)/NHSII. We conducted beta-binomial analyses evaluating odds ratios (OR) and 95% confidence intervals (CI) for positivity of immune markers by cigarette exposure among cases and Cox proportional hazards models to evaluate hazard ratios (HR) and 95% CI for developing tumors with low ( RESULTS There were no associations between smoke exposure and B-cell or IgM infiltration in ovarian tumors. Among cases, we observed higher odds of IgA+ among ever smokers (OR, 1.54; 95% CI, 1.14-2.07) and ever smokers with no parental smoke exposure (OR, 2.03; 95% CI, 1.18-3.49) versus never smokers. Women with parental cigarette smoke exposure versus not had higher risk of developing ovarian cancer with low IgG+ (HR, 1.51; 95% CI, 1.10-2.09), whereas ever versus never smokers had a lower risk (HR, 0.74; 95% CI, 0.56-0.99). CONCLUSIONS Ever smoking was associated with increased odds of IgA in ovarian tumors. IMPACT IgA has been associated with improved ovarian cancer outcomes, suggesting that although smoking is associated with poor outcomes in patients with ovarian cancer, it may lead to improved tumor immunogenicity.
Collapse
Affiliation(s)
| | - Mary K. Townsend
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Tianyi Wang
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Christine Vinci
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, Florida, USA
| | | | - Jonathan L. Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Daryoush Saeed-Vafa
- Department of Anatomic Pathology, Moffitt Cancer Center, Tampa, Florida, USA
- Advanced Analytical and Digital Laboratory, Moffitt Cancer Center, Tampa, Florida, USA
| | - Carlos Moran Segura
- Advanced Analytical and Digital Laboratory, Moffitt Cancer Center, Tampa, Florida, USA
| | - Jonathan V. Nguyen
- Advanced Analytical and Digital Laboratory, Moffitt Cancer Center, Tampa, Florida, USA
| | - Jose R. Conejo-Garcia
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Brooke L. Fridley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, USA
| | - Shelley S. Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
- Knight Cancer Institute and Division of Oncological Sciences, Oregon Health & Science University, Portland, OR
| |
Collapse
|
16
|
Peng L, Gao Y, Cao Z, Pang Y. Identification of a disulfidptosis-related prognostic signature for prediction of the effect of treatment in patients with endometrial carcinoma. CANCER INNOVATION 2024; 3:e120. [PMID: 38947753 PMCID: PMC11212335 DOI: 10.1002/cai2.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 07/02/2024]
Abstract
Background Disulfide, an essential compounds family, has diverse biological activity and can affect the dynamic balance between physiological and pathological states. A recently published study found that aberrant accumulation of disulfide had a lethal effect on cells. This mechanism of cell death, named disulfidptosis, differs from other known cell death mechanisms, including cuproptosis, apoptosis, necroptosis, and pyroptosis. The relationship between disulfidptosis and development of cancer, in particular endometrial carcinoma, remains unclear. Methods To address this knowledge gap, we performed a preliminary analysis of samples from The Cancer Genome Atlas database. The samples were divided equally into a training group and a test group. A total of 2308 differentially expressed genes were extracted, and 11 were used to construct a prognostic model. Results Based on the risk score calculated using the prognostic model, the samples were divided into a high-risk group and a low-risk group. Survival time, tumor mutation burden, and microsatellite instability scores differed significantly between the two groups. Furthermore, a between-group difference in treatment effect was predicted. Comparison with other models in the literature indicated that this prognostic model had better predictive anility. Conclusion The results of this study provide a general framework for understanding the relationship between disulfidptosis and endometrial cancer that could be used for clinical evaluation and selection of appropriate personalized treatment strategies.
Collapse
Affiliation(s)
- Lu Peng
- Department of Obstetrics and GynecologyQilu Hospital of Shandong UniversityJinanChina
- Department of Clinical MedicineMedical School of Shandong UniversityJinanChina
| | - Yuan Gao
- Department of Clinical MedicineMedical School of Shandong UniversityJinanChina
| | - Zifeng Cao
- Medical Integration and Practice CenterMedical School of Shandong UniversityJinanChina
| | - Yingxin Pang
- Department of Obstetrics and GynecologyQilu Hospital of Shandong UniversityJinanChina
| |
Collapse
|
17
|
Zou X, Shen J, Zhang H, Kong F, Jin X, Zhang L. Association between immune cells and endometrial cancer: A bidirectional Mendelian randomization study. Medicine (Baltimore) 2024; 103:e38129. [PMID: 38728458 PMCID: PMC11081576 DOI: 10.1097/md.0000000000038129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The prognostic significance of tumor-infiltrating immune cells in endometrial cancer is a subject of ongoing debate. Recent evidence increasingly suggests that these immune cells and cytokines, abundant in endometrial cancer tissues, play a pivotal role in stimulating the body inherent anti-tumor immune responses. METHODS Leveraging publicly accessible genetic data, we conducted an exhaustive 2-sample Mendelian randomization (MR) study. This study aimed to explore the causal links between 731 immunophenotypes and the risk of endometrial cancer. We thoroughly assessed the robustness, heterogeneity, and potential horizontal pleiotropy of our findings through extensive sensitivity analyses. RESULTS Our study identified 36 immunophenotypes associated with endometrial cancer risk. Specific immunophenotypes, such as the percentage of Naive-mature B-cells in lymphocytes (OR = 0.917, 95% CI = 0.863-0.974, P = .005), and HLA DR expression on CD14-CD16 + monocytes (OR = 0.952, 95% CI = 0.911-0.996, P = .032), exhibited a negative correlation with endometrial cancer. Conversely, CD127 expression on CD45RA + CD4 + in Treg cells (OR = 1.042, 95% CI = 1.000-1.085, P = .049), and CM CD4+%T in T cell maturation stages (OR = 1.074, 95% CI = 1.012-1.140, P = .018) showed a positive correlation. Reverse MR analysis linked endometrial cancer to 4 immunophenotypes, including a positive correlation with CD127-CD8br %T cell of Treg (OR = 1.172, 95% CI = 1.080-1.270, P = .0001), and negative correlations with 3 others, including CM CD4+%T cell (OR = 0.905, 95% CI = 0.832-0.984, P = .019). CONCLUSION SUBSECTIONS Our findings underscore a significant causal relationship between immunophenotypes and endometrial cancer in bidirectional MR analyses. Notably, the CM CD4+%T immunophenotype emerged as potentially crucial in endometrial cancer development.
Collapse
Affiliation(s)
- Xinyun Zou
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- Department of Oncology, People’s Liberation Army the General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Jinlan Shen
- Department of Medical Laboratory, People’s Liberation Army the General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Hengdi Zhang
- Department of Ophthalmology, People’s Liberation Army the General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Fangyuan Kong
- Department of Oncology, People’s Liberation Army the General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xuemei Jin
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Ling Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- Department of Oncology, People’s Liberation Army the General Hospital of Western Theater Command, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Dasgupta S, Gayen S, Chakraborty T, Afrose N, Pal R, Mahata S, Nasare V, Roy S. Potential role of immune cell therapy in gynecological cancer and future promises: a comprehensive review. Med Oncol 2024; 41:98. [PMID: 38536512 DOI: 10.1007/s12032-024-02337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/20/2024] [Indexed: 05/31/2024]
Abstract
Gynecological malignancies are most leading causes of death among women worldwide. The high prevalence of gynecologic malignancies remains significant, necessitating to turn the novel treatment approach like immunotherapy, wherein cancer cells are killed by the invasion of immune system. In recent year, immunotherapy has mostly an advanced treatment approach to repressing the tumor cells survival, proliferation, and invasion via the activation of immune systems. Moreover, various types of immune cells including T-cells, B-cells, and dendritic cells are associated with the immunotherapeutic strategy in cancer treatment. Although the significant role of T-cells against cancer is well established, while B-cells and dendritic cells also play an important role against different gynecological cancer by regulating the immune system. This review focuses on that arena and highlight the role of immune cells in the treatment of gynaecological cancer. Various immune cell-based anticancer therapies such as T-cell therapies, Adoptive Cellular transfer, B-cell therapies as well as approaches to Dendritic Cell therapies have been discussed in detail. Furthermore, the clinical settings and future avenues regarding immunotherapy on gynecological cancer have also been reviewed and illuminated in the recent study.
Collapse
Affiliation(s)
- Sandipan Dasgupta
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, India
| | - Sakuntala Gayen
- NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Tania Chakraborty
- NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Naureen Afrose
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Ranita Pal
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Sutapa Mahata
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Vilas Nasare
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Souvik Roy
- NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
19
|
Revel M, Rezola Artero M, Hamidi H, Grunenwald A, Blasco L, Vano YA, Marie Oudard S, Sanchez-Salas R, Macek P, Rodriguez Sanchez L, Cathelineau X, Vedié B, Sautes-Fridman C, Herman Fridman W, Roumenina LT, Dragon-Durey MA. Humoral complementomics - exploration of noninvasive complement biomarkers as predictors of renal cancer progression. Oncoimmunology 2024; 13:2328433. [PMID: 38487624 PMCID: PMC10939156 DOI: 10.1080/2162402x.2024.2328433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
Despite the progress of anti-cancer treatment, the prognosis of many patients with solid tumors is still dismal. Reliable noninvasive biomarkers are needed to predict patient survival and therapy response. Here, we propose a Humoral Complementomics approach: a work-up of assays to comprehensively evaluate complement proteins, activation fragments, and autoantibodies targeting complement proteins in plasma, which we correlated with the intratumoral complement activation, and/or local production, focusing on localized and metastatic clear cell renal cell carcinoma (ccRCC). In two prospective ccRCC cohorts, plasma C2, C5, Factor D and properdin were elevated compared to healthy controls, reflecting an inflammatory phenotype that correlated with plasma calprotectin levels but did not associate with CRP or with patient prognosis. Conversely, autoantibodies against the complement C3 and the reduced form of FH (a tumor neo-epitope reported in lung cancer) correlated with a favorable outcome. Our findings pointed to a specific group of patients with elevated plasma C4d and C1s-C1INH complexes, indicating the initiation of the classical pathway, along with elevated Ba and Bb, indicating alternative pathway activation. Boostrapped Lasso regularized Cox regression revealed that the most predictive complement biomarkers were elevated plasma C4d and Bb levels at the time of surgery, which correlated with poor prognosis. In conclusion, we propose Humoral Complementomics as an unbiased approach to study the global state of the complement system in any pathological plasma sample and disease context. Its implementation for ccRCC revealed that elevated C4d and Bb in plasma are promising prognostic biomarkers, correlating with shorter progression-free survival.
Collapse
Affiliation(s)
- Margot Revel
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
| | - Mikel Rezola Artero
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
- Department of Bacteriology and Immunology, Haartman Institute, and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Houcine Hamidi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
- Laboratoire d’Immunologie, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Anne Grunenwald
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
- Department of Nephrology and Hemodialysis, Service de néphrologie - hémodialyse, Poissy, France
| | - Loris Blasco
- Laboratoire d’Immunologie, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Yann A. Vano
- Hôpital Européen Georges-Pompidou, Oncology Department, Assistance Publique Hopitaux de Paris, Université Paris Cité, Paris, France
| | - Stephane Marie Oudard
- Hôpital Européen Georges-Pompidou, Oncology Department, Assistance Publique Hopitaux de Paris, Université Paris Cité, Paris, France
| | | | - Petr Macek
- Department of Urology Institut Mutualiste Montsouris, Paris, France
| | | | | | - Benoit Vedié
- Hôpital Européen Georges-Pompidou, Department of Biochemistry, Assistance Publique Hopitaux de Paris, Paris, France
| | - Catherine Sautes-Fridman
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
- Equipe labellisée Ligue contre le Cancer, Paris
| | - Wolf Herman Fridman
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
- Equipe labellisée Ligue contre le Cancer, Paris
| | - Lubka T. Roumenina
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
| | - Marie-Agnes Dragon-Durey
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
- Laboratoire d’Immunologie, Hôpital Européen Georges Pompidou, APHP, Paris, France
| |
Collapse
|
20
|
Biswas S, Anadon CM, Conejo-Garcia JR. Antibodies target intracellular oncodrivers through PIGR-mediated transcytosis. Genes Immun 2024; 25:85-86. [PMID: 38092884 PMCID: PMC11638713 DOI: 10.1038/s41435-023-00239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 02/18/2024]
Affiliation(s)
- Subir Biswas
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, Maharashtra, India
| | - Carmen M Anadon
- Department of Integrative Immunobiology, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke School of Medicine, Durham, NC, 27710, USA
| | - Jose R Conejo-Garcia
- Department of Integrative Immunobiology, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
21
|
Song DH, Yang J, Kim CH, Kim MH, Jo JY, Baek JC. FcRn Expression in Endometrial Cancer and Its Association with Clinicopathologic Features. Diagnostics (Basel) 2023; 13:3660. [PMID: 38132243 PMCID: PMC10742809 DOI: 10.3390/diagnostics13243660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Endometrial cancer (EC) has robust molecular diagnostic evidence that correlates well with prognosis. In various types of cancers, FcRn has been identified as an early marker for prognosis. This study aims to assess FcRn expression and its association with clinicopathological features in endometrial cancer. MATERIALS AND METHODS We employed a tissue microarray (TMA) from a retrospective cohort of 41 patients diagnosed with endometrioid endometrial cancer post hysterectomy between January 2002 and December 2009 at Gyeongsang National University Hospital. Relevant clinical data collection for the cohort involved reviewing patients' electronic medical charts. FcRn expression in microarrays of patient EC tissue was examined in conjunction with clinicopathologic data. Experiments, including siRNA knock-down, PCR mRNA semiquantification, Western blot, and confluence change tests, were conducted on the Ishikawa cell line. RESULTS The overall FcRn expression rate in EC patients was 41.8%. FIGO stage showed a statistically significant relationship with FcRn expression, while age, lymphovascular invasion, myometrial invasion, and tumor size had no effect. In endometrioid cancer cells of FIGO stage IA, FcRn was less frequently expressed than in other high-staged EC patients (p = 0.021). In experiments on the Ishikawa cell line, the siRNA knock-down group exhibited quantitatively lower FCGRT mRNA expression and lower FcRn protein signal compared to the scrambled RNA control group. The change in confluence over time measured at three hotspots did not show a significant difference between groups. CONCLUSIONS To the best of our knowledge, this study represents the initial assessment of FcRn expression in endometrioid EC samples. FcRn expression was significantly associated with the FIGO stage. Ishikawa cell line proliferation did not significantly change in response to decreased FcRn expression. Further studies are needed to elucidate FcRn expression in EC as a potential molecular parameter.
Collapse
Affiliation(s)
- Dae Hyun Song
- Department of Pathology, Gyeongsang National University School of Medicine, Gyeongsang National University Changwon Hospital, 11, Samjeongja-ro, Seongsan-gu, Changwon-si 51472, Republic of Korea; (D.H.S.); (M.H.K.)
- Department of Pathology, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
- Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.Y.); (C.H.K.); (J.Y.J.)
| | - Juseok Yang
- Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.Y.); (C.H.K.); (J.Y.J.)
- Department of Obstetrics and Gynecology, Gyeongsang National University Changwon Hospital, 11, Samjeongja-ro, Seongsan-gu, Changwon-si 51472, Republic of Korea
- Department of Obstetrics and Gynecology, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
| | - Cho Hee Kim
- Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.Y.); (C.H.K.); (J.Y.J.)
| | - Min Hye Kim
- Department of Pathology, Gyeongsang National University School of Medicine, Gyeongsang National University Changwon Hospital, 11, Samjeongja-ro, Seongsan-gu, Changwon-si 51472, Republic of Korea; (D.H.S.); (M.H.K.)
- Department of Pathology, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
- Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.Y.); (C.H.K.); (J.Y.J.)
| | - Jae Yoon Jo
- Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.Y.); (C.H.K.); (J.Y.J.)
- Department of Obstetrics and Gynecology, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
- Department of Obstetrics and Gynecology, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Jong Chul Baek
- Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.Y.); (C.H.K.); (J.Y.J.)
- Department of Obstetrics and Gynecology, Gyeongsang National University Changwon Hospital, 11, Samjeongja-ro, Seongsan-gu, Changwon-si 51472, Republic of Korea
- Department of Obstetrics and Gynecology, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
| |
Collapse
|
22
|
Ossendorp F, Ho NI, Van Montfoort N. How B cells drive T-cell responses: A key role for cross-presentation of antibody-targeted antigens. Adv Immunol 2023; 160:37-57. [PMID: 38042585 DOI: 10.1016/bs.ai.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
In this review we discuss an underexposed mechanism in the adaptive immune system where B cell and T cell immunity collaborate. The main function of B cell immunity is the generation of antibodies which are well known for their high affinity and antigen-specificity. Antibodies can bind antigens in soluble form making so-called immune complexes (ICs) or can opsonize antigen-exposing cells or particles for degradation. This leads to well-known effector mechanisms complement activation, antibody-dependent cytotoxicity and phagocytosis. What is less realized is that antibodies can play an important role in the targeting of antigen to dendritic cells (DCs) and thereby can drive T cell immunity. Here we summarize the studies that described this highly efficient process of antibody-mediated antigen uptake in DCs in vitro and in vivo. Only very low doses of antigen can be captured by circulating antibodies and subsequently trapped by DCs in vivo. We studied the handling of these ICs by DCs in subcellular detail. Upon immune complex engulfment DCs can sustain MHC class I and II antigen presentation for many days. Cell biological analysis showed that this function is causally related to intracellular antigen-storage compartments which are functional endolysosomal organelles present in DCs. We speculate that this function is immunologically very important as DCs require time to migrate from the site of infection to the draining lymph nodes to activate T cells. The implications of these findings and the consequences for the immune system, immunotherapy with tumor-specific antibodies and novel vaccination strategies are discussed.
Collapse
Affiliation(s)
- Ferry Ossendorp
- Leiden University Medical Center, department of Immunology, Leiden, The Netherlands.
| | - Nataschja I Ho
- Leiden University Medical Center, department of Immunology, Leiden, The Netherlands
| | - Nadine Van Montfoort
- Leiden University Medical Center, department of Gastroenterology and Hepatology, Leiden, The Netherlands.
| |
Collapse
|
23
|
Biswas S, Mandal G, Anadon CM, Chaurio RA, Lopez-Bailon LU, Nagy MZ, Mine JA, Hänggi K, Sprenger KB, Innamarato P, Harro CM, Powers JJ, Johnson J, Fang B, Eysha M, Nan X, Li R, Perez BA, Curiel TJ, Yu X, Rodriguez PC, Conejo-Garcia JR. Targeting intracellular oncoproteins with dimeric IgA promotes expulsion from the cytoplasm and immune-mediated control of epithelial cancers. Immunity 2023; 56:2570-2583.e6. [PMID: 37909039 PMCID: PMC10703011 DOI: 10.1016/j.immuni.2023.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/05/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023]
Abstract
Dimeric IgA (dIgA) can move through cells via the IgA/IgM polymeric immunoglobulin receptor (PIGR), which is expressed mainly on mucosal epithelia. Here, we studied the ability of dIgA to target commonly mutated cytoplasmic oncodrivers. Mutation-specific dIgA, but not IgG, neutralized KRASG12D within ovarian carcinoma cells and expelled this oncodriver from tumor cells. dIgA binding changed endosomal trafficking of KRASG12D from accumulation in recycling endosomes to aggregation in the early/late endosomes through which dIgA transcytoses. dIgA targeting of KRASG12D abrogated tumor cell proliferation in cell culture assays. In vivo, KRASG12D-specific dIgA1 limited the growth of KRASG12D-mutated ovarian and lung carcinomas in a manner dependent on CD8+ T cells. dIgA specific for IDH1R132H reduced colon cancer growth, demonstrating effective targeting of a cytoplasmic oncodriver not associated with surface receptors. dIgA targeting of KRASG12D restricted tumor growth more effectively than small-molecule KRASG12D inhibitors, supporting the potential of this approach for the treatment of human cancers.
Collapse
Affiliation(s)
- Subir Biswas
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Gunjan Mandal
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Division of Cancer Biology, DBT-Institute of Life Sciences, Bhubaneswar 751023, India
| | - Carmen M Anadon
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Integrated Immunobiology, Duke School of Medicine, Durham, NC 27710, USA; Duke Cancer Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Ricardo A Chaurio
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Integrated Immunobiology, Duke School of Medicine, Durham, NC 27710, USA; Duke Cancer Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Luis U Lopez-Bailon
- Department of Integrated Immunobiology, Duke School of Medicine, Durham, NC 27710, USA; Duke Cancer Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Mate Z Nagy
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jessica A Mine
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Integrated Immunobiology, Duke School of Medicine, Durham, NC 27710, USA; Duke Cancer Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Kay Hänggi
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kimberly B Sprenger
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Patrick Innamarato
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Carly M Harro
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John J Powers
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Joseph Johnson
- Analytic Microscopy Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Bin Fang
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Mostafa Eysha
- Department of Medicine, Duke School of Medicine, Durham, NC 27710, USA
| | - Xiaolin Nan
- Department of Biomedical Engineering, Knight Cancer Institute, and OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, OR 97239, USA
| | - Roger Li
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Bradford A Perez
- Department of Radiation Therapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Tyler J Curiel
- Departments of Medicine and Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH 03755, USA
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jose R Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Integrated Immunobiology, Duke School of Medicine, Durham, NC 27710, USA; Duke Cancer Institute, Duke School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
24
|
Chen S, Luo X, Yang B, Zhuang J, Guo J, Zhu Y, Mo J. The combined signatures of G protein-coupled receptor family and immune landscape provide a prognostic and therapeutic biomarker in endometrial carcinoma. J Cancer Res Clin Oncol 2023; 149:14701-14719. [PMID: 37584707 PMCID: PMC10602984 DOI: 10.1007/s00432-023-05270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
G protein-coupled receptors (GPRs) are one of the largest surface receptor superfamilies, and many of them play essential roles in biological processes, including immune responses. In this study, we aim to construct a GPR- and tumor immune environment (TME-i)-associated risk signature to predict the prognosis of patients with endometrial carcinoma (EC). The GPR score was generated by applying univariate Cox regression and the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression in succession. This involved identifying the differentially expressed genes (DEGs) in the Cancer Genome Atlas-Uterine Corpus Endometrioid Carcinoma (TCGA-UCEC) cohort. Simultaneously, the CIBERSORT algorithm was applied to identify the protective immune cells for TME score construction. Subsequently, we combined the GPR and TME scores to establish a GPR-TME classifier for conducting clinical prognosis assessments. Various functional annotation algorithms were used to conduct biological process analysis distinguished by GPR-TME subgroups. Furthermore, weighted correlation network analysis (WGCNA) was applied to depict the tumor somatic mutations landscapes. Finally, we compared the immune-related molecules between GPR-TME subgroups and resorted to the Tumor Immune Dysfunction and Exclusion (TIDE) for immunotherapy response prediction. The mRNA and protein expression of GPR-related gene P2RY14 were, respectively, validated by RT-PCR in clinical samples and HPA database. To conclude, our GPR-TME classifier may aid in predicting the EC patients' prognosis and immunotherapy responses.
Collapse
Affiliation(s)
- Shengyue Chen
- Dalian Medical University, Dalian, Liaoning, China
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xukai Luo
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Baicai Yang
- Jiaxing University Affiliated Women and Children Hospital, Jiaxing, China
| | - Jingming Zhuang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinshuai Guo
- Dalian Medical University, Dalian, Liaoning, China
| | - Yingjie Zhu
- Jiaxing University Affiliated Women and Children Hospital, Jiaxing, China
| | - Jiahang Mo
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Zhang TA, Zhang Q, Zhang J, Zhao R, Shi R, Wei S, Liu S, Zhang Q, Wang H. Identification of the role of endoplasmic reticulum stress genes in endometrial cancer and their association with tumor immunity. BMC Med Genomics 2023; 16:261. [PMID: 37880674 PMCID: PMC10599039 DOI: 10.1186/s12920-023-01679-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Endometrial cancer (EC) is one of the worldwide gynecological malignancies. Endoplasmic reticulum (ER) stress is the cellular homeostasis disturbance that participates in cancer progression. However, the mechanisms of ER Stress on EC have not been fully elucidated. METHOD The ER Stress-related genes were obtained from Gene Set Enrichment Analysis (GSEA) and GeneCards, and the RNA-seq and clinical data were downloaded from The Cancer Genome Atlas (TCGA). The risk signature was constructed by the Cox regression and the least absolute shrinkage and selection operator (LASSO) analysis. The significance of the risk signature and clinical factors were tested by time-dependent receiver operating characteristic (ROC) curves, and the selected were to build a nomogram. The immunity correlation was particularly analyzed, including the related immune cells, pathways, and immune checkpoints. Functional enrichment, potential chemotherapies, and in vitro validation were also conducted. RESULT An ER Stress-based risk signature, consisting of TRIB3, CREB3L3, XBP1, and PPP1R15A was established. Patients were randomly divided into training and testing groups with 1:1 ratio for subsequent calculation and validation. Based on risk scores, high- and low-risk subgroups were classified, and low-risk subgroup demonstrated better prognosis. The Area Under Curve (AUC) demonstrated a reliable predictive capability of the risk signature. The majority of significantly different immune cells and pathways were enriched more in low-risk subgroup. Similarly, several typical immune checkpoints, expressed higher in low-risk subgroup. Patients of the two subgroups responded differently to chemotherapies. CONCLUSION We established an ER Stress-based risk signature that could effectively predict EC patients' prognosis and their immune correlation.
Collapse
Affiliation(s)
- Tang Ansu Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Rong Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Rui Shi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Sitian Wei
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Shuangge Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Clinical Research Center of Cancer Immunotherapy, Wuhan, 430022, Hubei, China.
| |
Collapse
|
26
|
Wang Y, Wang B, Ma X. A novel predictive model based on inflammatory response-related genes for predicting endometrial cancer prognosis and its experimental validation. Aging (Albany NY) 2023; 15:204767. [PMID: 37276865 DOI: 10.18632/aging.204767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Inflammatory response is an important feature of most tumors. Local inflammation promotes tumor cell immune evasion and chemotherapeutic drug resistance. We aimed to build a prognostic model for endometrial cancer patients based on inflammatory response-related genes (IRGs). RNA sequencing and clinical data for uterine corpus endometrial cancer were obtained from TCGA datasets. LASSO-penalized Cox regression was used to obtain the risk formula of the model: the score = esum(corresponding coefficient × each gene's expression). The "ESTIMATE" and "pRRophetic" packages in R were used to evaluate the tumor microenvironment and the sensitivity of patients to chemotherapy drugs. Data sets from IMvigor210 were used to evaluate the efficacy of immunotherapy in cancer patients. For experimental verification, 37 endometrial cancer and 43 normal endometrial tissues samples were collected. The mRNA expression of the IRGs was measured using qRT-PCR. The effects of IRGs on the malignant biological behaviors of endometrial cancer were detected using CCK-8, colony formation, Transwell invasion, and apoptosis assays. We developed a novel prognostic signature comprising 13 IRGs, which is an independent prognostic marker for endometrial cancer. A nomogram was developed to predict patient survival accurately. Three key IRGs (LAMP3, MEP1A, and ROS1) were identified in this model. Furthermore, we verified the expression of the three key IRGs using qRT-PCR. Functional experiments also confirmed the influence of the three key IRGs on the malignant biological behavior of endometrial cancer. Thus, a characteristic model constructed using IRGs can predict the survival, chemotherapeutic drug sensitivity, and immunotherapy response in patients with endometrial cancer.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Tiexi, Shenyang 110000, Liaoning, People’s Republic of China
| | - Bo Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Tiexi, Shenyang 110000, Liaoning, People’s Republic of China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Tiexi, Shenyang 110000, Liaoning, People’s Republic of China
| |
Collapse
|
27
|
Laumont CM, Nelson BH. B cells in the tumor microenvironment: Multi-faceted organizers, regulators, and effectors of anti-tumor immunity. Cancer Cell 2023; 41:466-489. [PMID: 36917951 DOI: 10.1016/j.ccell.2023.02.017] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 03/14/2023]
Abstract
Our understanding of tumor-infiltrating lymphocytes (TILs) is rapidly expanding beyond T cell-centric perspectives to include B cells and plasma cells, collectively referred to as TIL-Bs. In many cancers, TIL-Bs carry strong prognostic significance and are emerging as key predictors of response to immune checkpoint inhibitors. TIL-Bs can perform multiple functions, including antigen presentation and antibody production, which allow them to focus immune responses on cognate antigen to support both T cell responses and innate mechanisms involving complement, macrophages, and natural killer cells. In the stroma of the most immunologically "hot" tumors, TIL-Bs are prominent components of tertiary lymphoid structures, which resemble lymph nodes structurally and functionally. Additionally, TIL-Bs participate in a variety of other lympho-myeloid aggregates and engage in dynamic interactions with the tumor stroma. Here, we summarize our current understanding of TIL-Bs in human cancer, highlighting the compelling therapeutic opportunities offered by their unique tumor recognition and effector mechanisms.
Collapse
Affiliation(s)
- Céline M Laumont
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 3E6, Canada.
| |
Collapse
|
28
|
A Hypoxia Molecular Signature-Based Prognostic Model for Endometrial Cancer Patients. Int J Mol Sci 2023; 24:ijms24021675. [PMID: 36675190 PMCID: PMC9866886 DOI: 10.3390/ijms24021675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Endometrial cancer has the highest incidence of uterine corpus cancer, the sixth most typical cancer in women until 2020. High recurrence rate and frequent adverse events were reported in either standard chemotherapy or combined therapy. Hence, developing precise diagnostic and prognostic approaches for endometrial cancer was on demand. Four hypoxia-related genes were screened for the EC prognostic model by the univariate, LASSO, and multivariate Cox regression analysis from the TCGA dataset. QT-PCR and functional annotation analysis were performed. Associations between predicted risk and immunotherapy and chemotherapy responses were investigated by evaluating expressions of immune checkpoint inhibitors, infiltrated immune cells, m6a regulators, and drug sensitivity. The ROC curve and calibration plot indicated a fair predictability of our prognostic nomogram model. NR3C1 amplification, along with IL-6 and SRPX suppressions, were detected in tumor. High stromal score and enriched infiltrated aDCs and B cells in the high-risk group supported the hypothesis of immune-deserted tumor. Hypoxia-related molecular subtypes of EC were then identified via the gene signature. Cluster 2 patients showed a significant sensitivity to Vinblastine. In summary, our hypoxia signature model accurately predicted the survival outcome of EC patients and assessed translational and transcriptional dysregulations to explore targets for precise medical treatment.
Collapse
|
29
|
Abstract
Immuno-oncology has traditionally focused on the cellular arm of the adaptive immune response, while attributing tumor-promoting activity to humoral responses in tumor-bearing hosts. This view stems from mouse models that do not necessarily recapitulate the antibody response process consistently observed in most human cancers. In recent years, the field has reconsidered the coordinated action of T and B cell responses in the context of anti-tumor immunity, as in any other immune response. Thus, recent studies in human cancer identify B cell responses with better outcome, typically in association with superior T cell responses. An area of particular interest is tertiary lymphoid structures, where germinal centers produce isotype switched antibodies and B cells and T lymphocytes interact with other immune cell types. The presence of these lymphoid structures is associated with better immunotherapeutic responses and remain poorly understood. Here, we discuss recent discoveries on how coordination between humoral and cellular responses is required for effective immune pressure against malignant progression, providing a perspective on the role of tertiary lymphoid structures and interventions to elicit their formation in unresectable tumors.
Collapse
Affiliation(s)
- Jose R Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | - Subir Biswas
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Ricardo Chaurio
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
30
|
Liu H, Li Z, Han X, Li Z, Zhao Y, Liu F, Zhu Z, Lv Y, Liu Z, Zhang N. The prognostic impact of tumor-infiltrating B lymphocytes in patients with solid malignancies: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2023; 181:103893. [PMID: 36481308 DOI: 10.1016/j.critrevonc.2022.103893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
This study reviewed the prognostic effect of tumor-infiltrating B lymphocytes (TIBLs) on solid malignancies, to determine the potential role of TIBLs in predicting cancer patient's prognosis and their response to immunotherapy. A total of 45 original papers involving 11,099 individual patients were included in this meta-analysis covering 7 kinds of cancer. The pooled results suggested that high levels of TIBLs were correlated with favorable OS in lung, esophageal, gastric, colorectal, liver, and breast cancer; improved RFS in lung cancer; and improved DFS in gastrointestinal neoplasms. Additionally, TIBLs were significantly correlated with negative lymphatic invasion in gastric cancer, small tumor size in hepatocellular carcinoma, and negative distant metastasis in colorectal cancer. Additionally, TIBLs were reported as a discriminative feature of patients treated with immunotherapy with improved survival. We concluded that TIBLs play a favorable prognostic role among the common solid malignancie, providing theoretical evidence for further prognosis prediction for solid tumors.
Collapse
Affiliation(s)
- Hao Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhuoqun Li
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xuan Han
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhujun Li
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yan Zhao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Fenghua Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ziyu Zhu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yi Lv
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhijun Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Nana Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
31
|
Fridman WH, Sibéril S, Pupier G, Soussan S, Sautès-Fridman C. Activation of B cells in Tertiary Lymphoid Structures in cancer: Anti-tumor or anti-self? Semin Immunol 2023; 65:101703. [PMID: 36481358 DOI: 10.1016/j.smim.2022.101703] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Whereas T cells in the tumor microenvironment have been the main focus as cancer controlling cells and targets of immunotherapies, B cells have recently gained strong attention. Being associated to Tertiary Lymphoid Structures (TLS) located at the vicinity of tumor nests, the fate of B cell depends on TLS maturity. In immature TLS they may evolve as regulatory B cells producing immunosuppressive cytokines and promote tumor growth. In mature TLS with a germinal center, B cells are selected, amplified, undergo affinity maturation and isotypic switching, resulting in plasma cell generation and production of anti-tumor antibodies. In that case, they are associated with longer patient's survival and therapeutic response to immunotherapy. Identification of tumor specific, or tumor overexpressed, antigens recognized by "in situ" produced antibodies and their discrimination from self-antigens induced by ICI treatments is a major challenge to develop novel antibody-based immunotherapies.
Collapse
Affiliation(s)
- Wolf H Fridman
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France.
| | - Sophie Sibéril
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, F-75006 Paris, France
| | - Guilhem Pupier
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Sarah Soussan
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, F-75006 Paris, France
| | - Catherine Sautès-Fridman
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France
| |
Collapse
|
32
|
Heterogeneity and Functions of Tumor-Infiltrating Antibody Secreting Cells: Lessons from Breast, Ovarian, and Other Solid Cancers. Cancers (Basel) 2022; 14:cancers14194800. [PMID: 36230721 PMCID: PMC9563085 DOI: 10.3390/cancers14194800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary B cells are gaining increasing recognition as important contributors to the tumor microenvironment, influencing, positively or negatively, tumor growth, patient survival, and response to therapies. Antibody secreting cells (ASCs) constitute a variable fraction of tumor-infiltrating B cells in most solid tumors, and they produce tumor-specific antibodies that can drive distinct immune responses depending on their isotypes and specificities. In this review, we discuss the current knowledge of the heterogeneity of ASCs infiltrating solid tumors and how both their canonical and noncanonical functions shape antitumor immunity, with a special emphasis on breast and ovarian cancers. Abstract Neglected for a long time in cancer, B cells and ASCs have recently emerged as critical actors in the tumor microenvironment, with important roles in shaping the antitumor immune response. ASCs indeed exert a major influence on tumor growth, patient survival, and response to therapies. The mechanisms underlying their pro- vs. anti-tumor roles are beginning to be elucidated, revealing the contributions of their secreted antibodies as well as of their emerging noncanonical functions. Here, concentrating mostly on ovarian and breast cancers, we summarize the current knowledge on the heterogeneity of tumor-infiltrating ASCs, we discuss their possible local or systemic origin in relation to their immunoglobulin repertoire, and we review the different mechanisms by which antibody (Ab) subclasses and isoforms differentially impact tumor cells and anti-tumor immunity. We also discuss the emerging roles of cytokines and other immune modulators produced by ASCs in cancer. Finally, we propose strategies to manipulate the tumor ASC compartment to improve cancer therapies.
Collapse
|
33
|
van der Woude H, Hally KE, Currie MJ, Gasser O, Henry CE. Importance of the endometrial immune environment in endometrial cancer and associated therapies. Front Oncol 2022; 12:975201. [PMID: 36072799 PMCID: PMC9441707 DOI: 10.3389/fonc.2022.975201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Endometrial cancer is rising in prevalence. The standard treatment modality of hysterectomy is becoming increasingly inadequate due primarily to the direct link between endometrial cancer and high BMI which increases surgical risks. This is an immunogenic cancer, with unique molecular subtypes associated with differential immune infiltration. Despite the immunogenicity of endometrial cancer, there is limited pre-clinical and clinical evidence of the function of immune cells in both the normal and cancerous endometrium. Immune checkpoint inhibitors for endometrial cancer are the most well studied type of immune therapy but these are not currently used as standard-of-care and importantly, they represent only one method of immune manipulation. There is limited evidence regarding the use of other immunotherapies as surgical adjuvants or alternatives. Levonorgestrel-loaded intra-uterine systems can also be effective for early-stage disease, but with varying success. There is currently no known reason as to what predisposes some patients to respond while others do not. As hormones can directly influence immune cell function, it is worth investigating the immune compartment in this context. This review assesses the immunological components of the endometrium and describes how the immune microenvironment changes with hormones, obesity, and in progression to malignancy. It also describes the importance of investigating novel pathways for immunotherapy.
Collapse
Affiliation(s)
- Hannah van der Woude
- Department of Obstetrics, Gynaecology and Women’s Health, University of Otago, Wellington, New Zealand
| | | | - Margaret Jane Currie
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Claire Elizabeth Henry
- Department of Obstetrics, Gynaecology and Women’s Health, University of Otago, Wellington, New Zealand
- *Correspondence: Claire Elizabeth Henry,
| |
Collapse
|
34
|
Crosstalk of Redox-Related Subtypes, Establishment of a Prognostic Model and Immune Responses in Endometrial Carcinoma. Cancers (Basel) 2022; 14:cancers14143383. [PMID: 35884444 PMCID: PMC9319597 DOI: 10.3390/cancers14143383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary In order to explore the role of redox as a prognostic indicator in endometrial carcinoma (EC), we detected the expression patterns of 55 redox-related genes (RRGs) in EC cohorts from public databases. Performing consensus cluster algorithm, we determined four molecular subclusters based on RRGs which had significant differences in overall survival (OS) and immune activities of EC patients. Furthermore, we developed a prognostic risk model on the basis of the redox-related subtype by stepwise Cox regression analyses. All EC patients were divided into high-risk and low-risk groups according to the median value of risk score. Our proposed model could accurately assess the clinical outcome and had favorable independent ability in EC cases. Moreover, our signature can serve as a predictor for immune status and chemotherapy sensitivity. Abstract Redox plays a central part in the pathogeneses and development of tumors. We comprehensively determined the expression patterns of redox-related genes (RRGs) in endometrial carcinoma (EC) cohorts from public databases and identified four different RRG-related clusters. The prognosis and the characteristics of TME cell infiltration of RRGcluster C patients were worse than those of other RRG clusters. When it comes to the gene cluster, there were great differences in clinicopathology traits and immunocyte infiltration. The RRG score was calculated by Cox analyses, and an RRG-based signature was developed. The risk score performed well in the EC cohort. Samples were separated into two risk subgroups with the standard of the value of the median risk score. Low-risk patients had a better prognosis and higher immunogenicity. In addition, RRG score was closely associated with immunophenoscore, microsatellite instability, tumor mutation burden, tumor stem cell index, copy number variation and chemotherapy sensitivity. The nomogram accurately predicted the prognosis of patients, and our model showed better performance than other published models. In conclusion, we built a prognostic model of RRGs which can help to evaluate clinical outcomes and guide more effective treatment.
Collapse
|
35
|
Lue JK, Downs-Canner S, Chaudhuri J. The role of B cells in the development, progression, and treatment of lymphomas and solid tumors. Adv Immunol 2022; 154:71-117. [PMID: 36038195 DOI: 10.1016/bs.ai.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
B cells are integral components of the mammalian immune response as they have the ability to generate antibodies against an almost infinite array of antigens. Over the past several decades, significant scientific progress has been made in understanding that this enormous B cell diversity contributes to pathogen clearance. However, our understanding of the humoral response to solid tumors and to tumor-specific antigens is unclear. In this review, we first discuss how B cells interact with other cells in the tumor microenvironment and influence the development and progression of various solid tumors. The ability of B lymphocytes to generate antibodies against a diverse repertoire of antigens and subsequently tailor the humoral immune response to specific pathogens relies on their ability to undergo genomic alterations during their development and differentiation. We will discuss key transforming events that lead to the development of B cell lymphomas. Overall, this review provides a foundation for innovative therapeutic interventions for both lymphoma and solid tumor malignancies.
Collapse
Affiliation(s)
- Jennifer K Lue
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - Stephanie Downs-Canner
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|