1
|
Halim CE, Deng S, Crasta KC, Yap CT. Interplay Between the Cytoskeleton and DNA Damage Response in Cancer Progression. Cancers (Basel) 2025; 17:1378. [PMID: 40282554 PMCID: PMC12025774 DOI: 10.3390/cancers17081378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
DNA damage has emerged as a critical factor in fuelling the development and progression of cancer. DNA damage response (DDR) pathways lie at the crux of cell fate decisions following DNA damage induction, which can either trigger the repair of detrimental DNA lesions to protect cancer cells or induce the cell death machinery to eliminate damaged cells. Cytoskeletal dynamics have a critical role to play and influence the proper function of DDR pathways. Microfilaments, intermediate filaments, microtubules, and their associated proteins are well involved in the DDR. For instance, they are not only implicated in the recruitment of specific DDR molecules to the sites of DNA damage but also in the regulation of the mobility of the damaged DNA to repair sites in the periphery of the nucleus. The exquisite roles that these cytoskeletal proteins play in different DDR pathways, such as non-homologous end joining (NHEJ), homologous recombination (HR), base excision repair (BER), and nucleotide excision repair (NER), in cancer cells are extensively discussed in this review. Many cancer treatments are reliant upon inducing DNA damage in cancer cells to eliminate them; thus, it is important to shed light on factors that could affect their efficacy. Although the cytoskeleton is intricately involved in the DDR process, this has often been overlooked in cancer research and has not been exploited in developing DDR-targeting cancer therapy. Understanding the interplay between the cytoskeleton and the DDR in cancer will then provide insights into improving the development of cancer therapies that can leverage the synergistic action of DDR inhibitors and cytoskeleton-targeting agents.
Collapse
Affiliation(s)
- Clarissa Esmeralda Halim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (C.E.H.); (S.D.); (K.C.C.)
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (C.E.H.); (S.D.); (K.C.C.)
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Karen Carmelina Crasta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (C.E.H.); (S.D.); (K.C.C.)
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Celestial T. Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (C.E.H.); (S.D.); (K.C.C.)
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| |
Collapse
|
2
|
Mateescu LA, Savu AP, Mutu CC, Vaida CD, Șerban ED, Bucur Ș, Poenaru E, Nicolescu AC, Constantin MM. The Intersection of Psoriasis and Neoplasia: Risk Factors, Therapeutic Approaches, and Management Strategies. Cancers (Basel) 2024; 16:4224. [PMID: 39766123 PMCID: PMC11674284 DOI: 10.3390/cancers16244224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The association between psoriasis and increased cancer risk is gaining recognition as studies reveal shared inflammatory and immune pathways. This review examines the relationship between psoriasis and neoplasia, focusing on cancer risk factors in psoriasis patients, the biological pathways underlying this connection, and the impact of various psoriasis treatments on cancer development. Psoriasis patients have a heightened incidence of certain cancers, such as lymphomas, skin cancers, and urological malignancies, potentially linked to immune dysregulation and chronic inflammation. Immunomodulatory treatments for psoriasis, including conventional systemic therapies and biologics, present varied cancer risks, with others, such as phototherapy, associated with an elevated risk of skin cancers. For oncologic patients with psoriasis, management necessitates a tailored approach, balancing effective psoriasis control with minimizing cancer progression risks. The emergence of IL-17 inhibitors, IL-23 inhibitors, and small-molecule therapies offers promising therapeutic alternatives with favorable safety profiles for these patients. This review underscores the need for interdisciplinary collaboration to optimize care for patients managing both psoriasis and malignancy.
Collapse
Affiliation(s)
- Larisa-Alexandra Mateescu
- 2nd Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania; (C.-C.M.); (C.-D.V.); (E.-D.Ș.); (Ș.B.); (M.-M.C.)
| | - Alexandra-Petruța Savu
- 2nd Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania; (C.-C.M.); (C.-D.V.); (E.-D.Ș.); (Ș.B.); (M.-M.C.)
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.P.); (A.-C.N.)
| | - Costina-Cristiana Mutu
- 2nd Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania; (C.-C.M.); (C.-D.V.); (E.-D.Ș.); (Ș.B.); (M.-M.C.)
| | - Cezara-Diana Vaida
- 2nd Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania; (C.-C.M.); (C.-D.V.); (E.-D.Ș.); (Ș.B.); (M.-M.C.)
| | - Elena-Daniela Șerban
- 2nd Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania; (C.-C.M.); (C.-D.V.); (E.-D.Ș.); (Ș.B.); (M.-M.C.)
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.P.); (A.-C.N.)
| | - Ștefana Bucur
- 2nd Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania; (C.-C.M.); (C.-D.V.); (E.-D.Ș.); (Ș.B.); (M.-M.C.)
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.P.); (A.-C.N.)
| | - Elena Poenaru
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.P.); (A.-C.N.)
| | - Alin-Codruț Nicolescu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.P.); (A.-C.N.)
- EgoClinic, District 1, 010235 Bucharest, Romania
| | - Maria-Magdalena Constantin
- 2nd Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania; (C.-C.M.); (C.-D.V.); (E.-D.Ș.); (Ș.B.); (M.-M.C.)
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.P.); (A.-C.N.)
| |
Collapse
|
3
|
Patel HV, Shah FD. Mapping the intricacies of GLI1 in hedgehog signaling: A combined bioinformatics and clinical analysis in Head & Neck cancer in Western India. Curr Probl Cancer 2024; 53:101146. [PMID: 39265246 DOI: 10.1016/j.currproblcancer.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Activation of various cancer stem cell pathways are thought to be responsible for treatment failure and loco-regional recurrence in Head and Neck cancer. Hedgehog signaling, a major cancer stem signaling pathway plays a major role in relapse of disease. GLI1, a transcription activator, plays an important role in canonical/non-canonical activation of Hedgehog signaling. METHODS Data for H&N cancer patients were collected from The Cancer Genome Atlas- H&N Cancer (TCGA-HNSC). GLI1 co-expressed genes in TCGA-HNSC were then identified using cBioPortal and subjected to KEGG pathway analysis by DAVID tool. Network Analyzer and GeneMania plugins from CytoScape were used to identify hub genes and predict a probable pathway from the identified hub genes respectively. To confirm the hypothesis, real-time gene expression was carried out in 75 patients of head and neck cancer. RESULTS Significantly higher GLI1 expression was observed in tumor tissues of H&N cancer and it also showed worst overall survival. Using cBioPortal tool, 2345 genes were identified that were significantly co-expressed with GLI1. From which, 15 hub genes were identified through the Network Analyzer plugin in CytoScape. A probable pathway prediction based on hub genes showed the interconnected molecular mechanism and its role in non-canonical activation of Hedgehog pathway by altering the GLI1 activity. The expressions of SHH, GLI1 and AKT1 were significant with each other and were found to be significantly associated with Age, Lymph-Node status and Keratin. CONCLUSION The study emphasizes the critical role of the Hh pathway's activation modes in H&N cancer, particularly highlighting the non-canonical activation through GLI1 and AKT1. The identification of SHH, GLI1 and AKT1 as potential diagnostic biomarkers and their association with clinic-pathological parameters underscores their relevance in prognostication and treatment planning. Hh pathway activation through GLI1 and its cross-talk with various pathways opens up the possibility of newer treatment strategies and developing a panel of therapeutic targets in H&N cancer patients.
Collapse
Affiliation(s)
- Hitarth V Patel
- Junior Research Fellow, Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Franky D Shah
- Junior Research Fellow, Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India.
| |
Collapse
|
4
|
Oppel F, Gendreizig S, Martinez-Ruiz L, Florido J, López-Rodríguez A, Pabla H, Loganathan L, Hose L, Kühnel P, Schmidt P, Schürmann M, Neumann JM, Viyof Ful F, Scholtz LU, Ligum D, Brasch F, Niehaus K, Escames G, Busche T, Kalinowski J, Goon P, Sudhoff H. Mucosa-like differentiation of head and neck cancer cells is inducible and drives the epigenetic loss of cell malignancy. Cell Death Dis 2024; 15:724. [PMID: 39358322 PMCID: PMC11446932 DOI: 10.1038/s41419-024-07065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly malignant disease with high death rates that have remained substantially unaltered for decades. Therefore, new treatment approaches are urgently needed. Human papillomavirus-negative tumors harbor areas of terminally differentiated tissue that are characterized by cornification. Dissecting this intrinsic ability of HNSCC cells to irreversibly differentiate into non-malignant cells may have tumor-targeting potential. We modeled the cornification of HNSCC cells in a primary spheroid model and analyzed the mechanisms underlying differentiation by ATAC-seq and RNA-seq. Results were verified by immunofluorescence using human HNSCC tissue of distinct anatomical locations. HNSCC cell differentiation was accompanied by cell adhesion, proliferation stop, diminished tumor-initiating potential in immunodeficient mice, and activation of a wound-healing-associated signaling program. Small promoter accessibility increased despite overall chromatin closure. Differentiating cells upregulated KRT17 and cornification markers. Although KRT17 represents a basal stem cell marker in normal mucosa, we confirm KRT17 to represent an early differentiation marker in HNSCC tissue. Cornification was frequently found surrounding necrotic areas in human tumors, indicating an involvement of pro-inflammatory stimuli. Indeed, inflammatory mediators activated the differentiation program in primary HNSCC cells. In HNSCC tissue, distinct cell differentiation states were found to create a common tissue architecture in normal mucosa and HNSCCs. Our data demonstrate a loss of cell malignancy upon faithful HNSCC cell differentiation, indicating that targeted differentiation approaches may be therapeutically valuable. Moreover, we describe KRT17 to be a candidate biomarker for HNSCC cell differentiation and early tumor detection.
Collapse
Affiliation(s)
- Felix Oppel
- Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Bielefeld, Germany.
| | - Sarah Gendreizig
- Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Laura Martinez-Ruiz
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain
| | - Javier Florido
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain
| | - Alba López-Rodríguez
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain
| | - Harkiren Pabla
- Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Lakshna Loganathan
- Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Leonie Hose
- Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Philipp Kühnel
- Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Pascal Schmidt
- Center for Biotechnology (CeBiTec), University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Matthias Schürmann
- Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Judith Martha Neumann
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Flavian Viyof Ful
- Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Lars Uwe Scholtz
- Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Dina Ligum
- Department of Pathology, Klinikum Bielefeld, Bielefeld, Germany
| | - Frank Brasch
- Department of Pathology, Klinikum Bielefeld, Bielefeld, Germany
| | - Karsten Niehaus
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Germaine Escames
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Peter Goon
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Holger Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
5
|
Delgado-Coka LA, Roa-Peña L, Babu S, Horowitz M, Petricoin EF, Matrisian LM, Blais EM, Marchenko N, Allard FD, Akalin A, Jiang W, Larson BK, Hendifar AE, Picozzi VJ, Choi M, Shroyer KR, Escobar-Hoyos LF. Keratin 17 is a prognostic and predictive biomarker in pancreatic ductal adenocarcinoma. Am J Clin Pathol 2024; 162:314-326. [PMID: 38642081 PMCID: PMC11369068 DOI: 10.1093/ajcp/aqae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/05/2024] [Indexed: 04/22/2024] Open
Abstract
OBJECTIVES To determine the role of keratin 17 (K17) as a predictive biomarker for response to chemotherapy by defining thresholds of K17 expression based on immunohistochemical tests that could be used to optimize therapeutic intervention for patients with pancreatic ductal adenocarcinoma (PDAC). METHODS We profiled K17 expression, a hallmark of the basal molecular subtype of PDAC, by immunohistochemistry in 2 cohorts of formalin-fixed, paraffin-embedded PDACs (n = 305). We determined a K17 threshold of expression to optimize prognostic stratification according to the lowest Akaike information criterion and explored the potential relationship between K17 and chemoresistance by multivariate predictive analyses. RESULTS Patients with advanced-stage, low K17 PDACs treated using 5-fluorouracil (5-FU)-based chemotherapeutic regimens had 3-fold longer survival than corresponding cases treated with gemcitabine-based chemotherapy. By contrast, PDACs with high K17 did not respond to either regimen. The predictive value of K17 was independent of tumor mutation status and other clinicopathologic variables. CONCLUSIONS The detection of K17 in 10% or greater of PDAC cells identified patients with shortest survival. Among patients with low K17 PDACs, 5-FU-based treatment was more likely than gemcitabine-based therapies to extend survival.
Collapse
Affiliation(s)
- Lyanne A Delgado-Coka
- Departments of Pathology
- Departments of Preventative Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
| | - Lucia Roa-Peña
- Departments of Pathology
- Department of Pathology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA, US
- Perthera, McLean, VA, US
| | - Lynn M Matrisian
- Scientific and Medical Affairs, Pancreatic Cancer Action Network, Manhattan Beach, CA, US
| | | | | | - Felicia D Allard
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, US
| | - Ali Akalin
- Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, MA, US
| | - Wei Jiang
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center Thomas Jefferson University Hospital, Philadelphia, PA, US
| | - Brent K Larson
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, US
| | - Andrew E Hendifar
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, US
| | | | | | | | - Luisa F Escobar-Hoyos
- Departments of Pathology
- Departments of Therapeutic Radiology
- Departments of Molecular Biophysics and Biochemistry
- Department of Medicine, Division of Oncology, Yale University, New Haven, CT, US
| |
Collapse
|
6
|
Romashin DD, Tolstova TV, Varshaver AM, Kozhin PM, Rusanov AL, Luzgina NG. Keratins 6, 16, and 17 in Health and Disease: A Summary of Recent Findings. Curr Issues Mol Biol 2024; 46:8627-8641. [PMID: 39194725 DOI: 10.3390/cimb46080508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Keratins 6, 16, and 17 occupy unique positions within the keratin family. These proteins are not commonly found in the healthy, intact epidermis, but their expression increases in response to damage, inflammation, and hereditary skin conditions, as well as cancerous cell transformations and tumor growth. As a result, there is an active investigation into the potential use of these proteins as biomarkers for different pathologies. Recent studies have revealed the role of these keratins in regulating keratinocyte migration, proliferation, and growth, and more recently, their nuclear functions, including their role in maintaining nuclear structure and responding to DNA damage, have also been identified. This review aims to summarize the latest research on keratins 6, 16, and 17, their regulation in the epidermis, and their potential use as biomarkers in various skin conditions.
Collapse
Affiliation(s)
| | | | | | - Peter M Kozhin
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | | | | |
Collapse
|
7
|
Xu Y, Cohen E, Johnson CN, Parent CA, Coulombe PA. Repeated stress to the skin amplifies neutrophil infiltration in a keratin 17- and PKCα-dependent manner. PLoS Biol 2024; 22:e3002779. [PMID: 39159283 PMCID: PMC11361748 DOI: 10.1371/journal.pbio.3002779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/29/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
Neutrophils are the first immune cells to reach inflamed sites and contribute to the pathogenesis of chronic inflammatory skin diseases. Yet, little is known about the pattern of neutrophil infiltration in inflamed skin in vivo and the mechanisms mediating their recruitment. Here, we provide insight into the dynamics of neutrophil infiltration in skin in response to acute or repeated inflammatory stress, highlighting a novel keratinocyte- and keratin 17 (K17)-dependent mechanism that regulates neutrophil recruitment to inflamed skin. We used the phorbol ester TPA and UVB, alone or in combination, to induce sterile inflammation in mouse skin. A single TPA treatment results in a neutrophil influx in the dermis that peaks at 12 h and resolves within 24 h. A subsequent TPA treatment or a UVB challenge, when applied 24 h but not 48 h later, accelerates, amplifies, and prolongs neutrophil infiltration. This transient amplification response (TAR) is mediated by local signals in inflamed skin, can be recapitulated in ex vivo culture, and involves the K17-dependent sustainment of protein kinase Cα (PKCα) activity and release of chemoattractants by stressed keratinocytes. K17 binds RACK1, a scaffold protein essential for PKCα activity. The N-terminal head domain of K17 is crucial for its association with RACK1 and regulation of PKCα activity. Analysis of RNAseq data reveals a signature consistent with TAR and PKCα activation in inflammatory skin diseases. These findings uncover a novel, keratin-dependent mechanism that amplifies neutrophil recruitment in skin under stress, with direct implications for inflammatory skin disorders.
Collapse
Affiliation(s)
- Yang Xu
- Graduate Program in Pharmacology and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Erez Cohen
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Craig N. Johnson
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Carole A. Parent
- Graduate Program in Pharmacology and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Life Science Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Pierre A. Coulombe
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
8
|
Murthy O G, Lau J, Balasubramaniam R, Frydrych AM, Kujan O. Unraveling the Keratin Expression in Oral Leukoplakia: A Scoping Review. Int J Mol Sci 2024; 25:5597. [PMID: 38891785 PMCID: PMC11172080 DOI: 10.3390/ijms25115597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Intermediate filaments are one of three polymeric structures that form the cytoskeleton of epithelial cells. In the epithelium, these filaments are made up of a variety of keratin proteins. Intermediate filaments complete a wide range of functions in keratinocytes, including maintaining cell structure, cell growth, cell proliferation, cell migration, and more. Given that these functions are intimately associated with the carcinogenic process, and that hyperkeratinization is a quintessential feature of oral leukoplakias, the utility of keratins in oral leukoplakia is yet to be fully explored. This scoping review aims to outline the current knowledge founded on original studies on human tissues regarding the expression and utility of keratins as diagnostic, prognostic, and predictive biomarkers in oral leukoplakias. After using a search strategy developed for several scientific databases, namely, PubMed, Scopus, Web of Science, and OVID, 42 papers met the inclusion and exclusion criteria. One more article was added when it was identified through manually searching the list of references. The included papers were published between 1989 and 2024. Keratins 1-20 were investigated in the 43 included studies, and their expression was assessed in oral leukoplakia and dysplasia cases. Only five studies investigated the prognostic role of keratins in relation to malignant transformation. No studies evaluated keratins as a diagnostic adjunct or predictive tool. Evidence supports the idea that dysplasia disrupts the terminal differentiation pathway of primary keratins. Gain of keratin 17 expression and loss of keratin 13 were significantly observed in differentiated epithelial dysplasia. Also, the keratin 19 extension into suprabasal cells has been associated with the evolving features of dysplasia. The loss of keratin1/keratin 10 has been significantly associated with high-grade dysplasia. The prognostic value of cytokeratins has shown conflicting results, and further studies are required to ascertain their role in predicting the malignant transformation of oral leukoplakia.
Collapse
Affiliation(s)
| | | | | | | | - Omar Kujan
- UWA Dental School, The University of Western Australia, Nedlands, WA 6009, Australia; (G.M.O.); (J.L.); (R.B.); (A.M.F.)
| |
Collapse
|
9
|
Delgado-Coka L, Horowitz M, Torrente-Goncalves M, Roa-Peña L, Leiton CV, Hasan M, Babu S, Fassler D, Oentoro J, Bai JDK, Petricoin EF, Matrisian LM, Blais EM, Marchenko N, Allard FD, Jiang W, Larson B, Hendifar A, Chen C, Abousamra S, Samaras D, Kurc T, Saltz J, Escobar-Hoyos LF, Shroyer KR. Keratin 17 modulates the immune topography of pancreatic cancer. J Transl Med 2024; 22:443. [PMID: 38730319 PMCID: PMC11087249 DOI: 10.1186/s12967-024-05252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The immune microenvironment impacts tumor growth, invasion, metastasis, and patient survival and may provide opportunities for therapeutic intervention in pancreatic ductal adenocarcinoma (PDAC). Although never studied as a potential modulator of the immune response in most cancers, Keratin 17 (K17), a biomarker of the most aggressive (basal) molecular subtype of PDAC, is intimately involved in the histogenesis of the immune response in psoriasis, basal cell carcinoma, and cervical squamous cell carcinoma. Thus, we hypothesized that K17 expression could also impact the immune cell response in PDAC, and that uncovering this relationship could provide insight to guide the development of immunotherapeutic opportunities to extend patient survival. METHODS Multiplex immunohistochemistry (mIHC) and automated image analysis based on novel computational imaging technology were used to decipher the abundance and spatial distribution of T cells, macrophages, and tumor cells, relative to K17 expression in 235 PDACs. RESULTS K17 expression had profound effects on the exclusion of intratumoral CD8+ T cells and was also associated with decreased numbers of peritumoral CD8+ T cells, CD16+ macrophages, and CD163+ macrophages (p < 0.0001). The differences in the intratumor and peritumoral CD8+ T cell abundance were not impacted by neoadjuvant therapy, tumor stage, grade, lymph node status, histologic subtype, nor KRAS, p53, SMAD4, or CDKN2A mutations. CONCLUSIONS Thus, K17 expression correlates with major differences in the immune microenvironment that are independent of any tested clinicopathologic or tumor intrinsic variables, suggesting that targeting K17-mediated immune effects on the immune system could restore the innate immunologic response to PDAC and might provide novel opportunities to restore immunotherapeutic approaches for this most deadly form of cancer.
Collapse
Affiliation(s)
- Lyanne Delgado-Coka
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
- Program of Public Health and Department of Preventative Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Michael Horowitz
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Mariana Torrente-Goncalves
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Lucia Roa-Peña
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
- Department of Pathology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Cindy V Leiton
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Mahmudul Hasan
- Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
| | - Sruthi Babu
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Danielle Fassler
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Jaymie Oentoro
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Ji-Dong K Bai
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA, USA
- Perthera, McLean, VA, USA
| | - Lynn M Matrisian
- Scientific and Medical Affairs, Pancreatic Cancer Action Network, Manhattan Beach, CA, USA
| | | | - Natalia Marchenko
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Felicia D Allard
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Wei Jiang
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Brent Larson
- Departments of Pathology and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrew Hendifar
- Departments of Pathology and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chao Chen
- Department of Biomedical Informatics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Shahira Abousamra
- Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
| | - Dimitris Samaras
- Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
| | - Tahsin Kurc
- Department of Biomedical Informatics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Joel Saltz
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA.
- Department of Biomedical Informatics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Luisa F Escobar-Hoyos
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA.
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
- Division of Oncology, Department of Medicine, Yale University, New Haven, CT, USA.
| | - Kenneth R Shroyer
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA.
| |
Collapse
|
10
|
Delgado-Coka LA, Horowitz M, Torrente-Goncalves M, Roa-Peña L, Leiton CV, Hasan M, Babu S, Fassler D, Oentoro J, Karen Bai JD, Petricoin EF, Matrisian LM, Blais EM, Marchenko N, Allard FD, Jiang W, Larson B, Hendifar A, Chen C, Abousamra S, Samaras D, Kurc T, Saltz J, Escobar-Hoyos LF, Shroyer K. Keratin 17 modulates the immune topography of pancreatic cancer. RESEARCH SQUARE 2024:rs.3.rs-3886691. [PMID: 38464123 PMCID: PMC10925455 DOI: 10.21203/rs.3.rs-3886691/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background The immune microenvironment impacts tumor growth, invasion, metastasis, and patient survival and may provide opportunities for therapeutic intervention in pancreatic ductal adenocarcinoma (PDAC). Although never studied as a potential modulator of the immune response in most cancers, Keratin 17 (K17), a biomarker of the most aggressive (basal) molecular subtype of PDAC, is intimately involved in the histogenesis of the immune response in psoriasis, basal cell carcinoma, and cervical squamous cell carcinoma. Thus, we hypothesized that K17 expression could also impact the immune cell response in PDAC, and that uncovering this relationship could provide insight to guide the development of immunotherapeutic opportunities to extend patient survival. Methods Multiplex immunohistochemistry (mIHC) and automated image analysis based on novel computational imaging technology were used to decipher the abundance and spatial distribution of T cells, macrophages, and tumor cells, relative to K17 expression in 235 PDACs. Results K17 expression had profound effects on the exclusion of intratumoral CD8 + T cells and was also associated with decreased numbers of peritumoral CD8 + T cells, CD16 + macrophages, and CD163 + macrophages (p < 0.0001). The differences in the intratumor and peritumoral CD8 + T cell abundance were not impacted by neoadjuvant therapy, tumor stage, grade, lymph node status, histologic subtype, nor KRAS, p53, SMAD4, or CDKN2A mutations. Conclusions Thus, K17 expression correlates with major differences in the immune microenvironment that are independent of any tested clinicopathologic or tumor intrinsic variables, suggesting that targeting K17-mediated immune effects on the immune system could restore the innate immunologic response to PDAC and might provide novel opportunities to restore immunotherapeutic approaches for this most deadly form of cancer.
Collapse
|
11
|
Cohen E, Johnson CN, Wasikowski R, Billi AC, Tsoi LC, Kahlenberg JM, Gudjonsson JE, Coulombe PA. Significance of stress keratin expression in normal and diseased epithelia. iScience 2024; 27:108805. [PMID: 38299111 PMCID: PMC10828818 DOI: 10.1016/j.isci.2024.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
A group of keratin intermediate filament genes, the type II KRT6A-C and type I KRT16 and KRT17, are deemed stress responsive as they are induced in keratinocytes of surface epithelia in response to environmental stressors, in skin disorders (e.g., psoriasis) and in carcinomas. Monitoring stress keratins is widely used to identify keratinocytes in an activated state. Here, we analyze single-cell transcriptomic data from healthy and diseased human skin to explore the properties of stress keratins. Relative to keratins occurring in healthy skin, stress-induced keratins are expressed at lower levels and show lesser type I-type II pairwise regulation. Stress keratins do not "replace" the keratins expressed during normal differentiation nor reflect cellular proliferation. Instead, stress keratins are consistently co-regulated with genes with roles in differentiation, inflammation, and/or activation of innate immunity at the single-cell level. These findings provide a roadmap toward explaining the broad diversity and contextual regulation of keratins.
Collapse
Affiliation(s)
- Erez Cohen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Craig N. Johnson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rachael Wasikowski
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Allison C. Billi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - J. Michelle Kahlenberg
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Johann E. Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pierre A. Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Schroeder BA, Mandelson MT, Picozzi VJ. Alternating Gemcitabine/Nab-Paclitaxel (GA) and 5-FU/Leucovorin/Irinotecan (FOLFIRI) as First-Line Treatment for De Novo Metastatic Pancreatic Cancer (MPC): Safety and Effect. Cancers (Basel) 2023; 15:5588. [PMID: 38067292 PMCID: PMC10705182 DOI: 10.3390/cancers15235588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/01/2023] [Accepted: 11/23/2023] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Both gemcitabine- and 5-fluorouracil (5-FU)-based chemotherapy regimens have demonstrated efficacy in metastatic pancreatic cancer (MPC). Alternating these regimens may reduce toxicity, slow resistant cancer biology emergence, and provide a platform for the addition of other therapeutic agents. Alternating gemcitabine/nab-paclitaxel (GA) and 5-FU/leucovorin/irinotecan (FOLFIRI) in MPC has previously been reported at our own institution and elsewhere. An extension of our institutional observations is reported here. METHODS Patient eligibility required the following: biopsy-proven de novo MPC, no prior evidence of disease on CT, ECOG performance status (PS) ≤ 2, and bi-dimensionally measurable disease. Treatment (Tx) entailed gemcitabine 1000 mg/m2 and nab-paclitaxel 125 mg/m2 1, (8), 15 alternating every 8 weeks (2 cycles) with FOLFIRI using standard dosing. Patients were radiographically re-staged every 8 weeks. Tx spanned up to 12 cycles. Tx thereafter was decided following patient/physician discussion. RESULTS Median overall survival (mOS) was 13.2 months (95% CI 10.9-16.5 months). Median progression-free survival (mPFS) was 8.5 months (95% CI, 7.1-9.9). The 6-, 12-, 18-, and 24-month OS rates were 88%, 54%, 36%, and 20%, respectively. The disease control rate at 16 weeks was 83% (37% PR, 46% SD). Hematologic toxicity grade ≥ 3 included 9.3% anemia, 10.2% neutropenia, and 4.6% thrombocytopenia. Neutrophil growth factors were not used in this cohort. Non-hematologic toxicities grade ≥ 3 included neuropathy 0.9%, nausea/vomiting 0.9%, and diarrhea 0.9%. No patients experienced mucositis on this regimen. CONCLUSIONS Alternating GA/FOLFIRI in MPC has a favorable toxicity profile in comparison to current standard regimens. Median OS was at least competitive with standard regimens, and longer-term (18 and 24 months) OS seemed particularly encouraging. Treatment for ≥48 weeks and ECOG PS of zero at the time of treatment initiation were prognostically significant. Further investigation using this regimen including randomized comparisons, the incorporation of molecular data, and use of additional agents is merited.
Collapse
Affiliation(s)
- Brett A. Schroeder
- Virginia Mason Medical Center, Seattle, WA 98101, USA; (M.T.M.); (V.J.P.)
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margaret T. Mandelson
- Virginia Mason Medical Center, Seattle, WA 98101, USA; (M.T.M.); (V.J.P.)
- Benaroya Research Institute, Seattle, WA 98101, USA
| | - Vincent J. Picozzi
- Virginia Mason Medical Center, Seattle, WA 98101, USA; (M.T.M.); (V.J.P.)
| |
Collapse
|
13
|
Lozar T, Wang W, Gavrielatou N, Christensen L, Lambert PF, Harari PM, Rimm DL, Burtness B, Grasic Kuhar C, Carchman EH. Emerging Prognostic and Predictive Significance of Stress Keratin 17 in HPV-Associated and Non HPV-Associated Human Cancers: A Scoping Review. Viruses 2023; 15:2320. [PMID: 38140561 PMCID: PMC10748233 DOI: 10.3390/v15122320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
A growing body of literature suggests that the expression of cytokeratin 17 (K17) correlates with inferior clinical outcomes across various cancer types. In this scoping review, we aimed to review and map the available clinical evidence of the prognostic and predictive value of K17 in human cancers. PubMed, Web of Science, Embase (via Scopus), Cochrane Central Register of Controlled Trials, and Google Scholar were searched for studies of K17 expression in human cancers. Eligible studies were peer-reviewed, published in English, presented original data, and directly evaluated the association between K17 and clinical outcomes in human cancers. Of the 1705 studies identified in our search, 58 studies met criteria for inclusion. Studies assessed the prognostic significance (n = 54), predictive significance (n = 2), or both the prognostic and predictive significance (n = 2). Altogether, 11 studies (19.0%) investigated the clinical relevance of K17 in cancers with a known etiologic association to HPV; of those, 8 (13.8%) were focused on head and neck squamous cell carcinoma (HNSCC), and 3 (5.1%) were focused on cervical squamous cell carcinoma (SCC). To date, HNSCC, as well as triple-negative breast cancer (TNBC) and pancreatic cancer, were the most frequently studied cancer types. K17 had prognostic significance in 16/17 investigated cancer types and 43/56 studies. Our analysis suggests that K17 is a negative prognostic factor in the majority of studied cancer types, including HPV-associated types such as HNSCC and cervical cancer (13/17), and a positive prognostic factor in 2/17 studied cancer types (urothelial carcinoma of the upper urinary tract and breast cancer). In three out of four predictive studies, K17 was a negative predictive factor for chemotherapy and immune checkpoint blockade therapy response.
Collapse
Affiliation(s)
- Taja Lozar
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (T.L.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Wei Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (T.L.)
| | - Niki Gavrielatou
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Leslie Christensen
- Ebling Library, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (T.L.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
| | - Paul M. Harari
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - David L. Rimm
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Barbara Burtness
- Department of Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Cvetka Grasic Kuhar
- University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Evie H. Carchman
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| |
Collapse
|
14
|
Xu Y, Cohen E, Johnson CN, Parent CA, Coulombe PA. Keratin 17- and PKCα-dependent transient amplification of neutrophil influx after repeated stress to the skin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561954. [PMID: 37873256 PMCID: PMC10592713 DOI: 10.1101/2023.10.11.561954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Neutrophils contribute to the pathogenesis of chronic inflammatory skin diseases. Little is known about the source and identity of the signals mediating their recruitment in inflamed skin. We used the phorbol ester TPA and UVB, alone or in combination, to induce sterile inflammation in mouse skin and assess whether keratinocyte-derived signals impact neutrophil recruitment. A single TPA treatment results in a neutrophil influx in the dermis that peaks at 12h and resolves within 24h. A second TPA treatment or a UVB challenge, when applied at 24h but not 48h later, accelerates, amplifies, and prolongs neutrophil infiltration. This transient amplification response (TAR) is mediated by local signals in inflamed skin, can be recapitulated in ex vivo culture, and involves the K17-dependent sustainment of protein kinase Cα (PKCα) activity and release of neutrophil chemoattractants by stressed keratinocytes. We show that K17 binds RACK1, a scaffold essential for PKCα activity. Finally, analyses of RNAseq data reveal the presence of a transcriptomic signature consistent with TAR and PKCα activation in chronic inflammatory skin diseases. These findings uncover a novel, transient, and keratin-dependent mechanism that amplifies neutrophil recruitment to the skin under stress, with direct implications for inflammatory skin disorders.
Collapse
|
15
|
Lozar T, Laklouk I, Golfinos AE, Gavrielatou N, Xu J, Flynn C, Keske A, Yu M, Bruce JY, Wang W, Grasic Kuhar C, Bailey HH, Harari PM, Dinh HQ, Rimm DL, Hu R, Lambert PF, Fitzpatrick MB. Stress Keratin 17 Is a Predictive Biomarker Inversely Associated with Response to Immune Check-Point Blockade in Head and Neck Squamous Cell Carcinomas and Beyond. Cancers (Basel) 2023; 15:4905. [PMID: 37835599 PMCID: PMC10571921 DOI: 10.3390/cancers15194905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Low response rates in immune check-point blockade (ICB)-treated head and neck squamous cell carcinoma (HNSCC) drive a critical need for robust, clinically validated predictive biomarkers. Our group previously showed that stress keratin 17 (CK17) suppresses macrophage-mediated CXCL9/CXCL10 chemokine signaling involved in attracting activated CD8+ T cells into tumors, correlating with decreased response rate to pembrolizumab-based therapy in a pilot cohort of ICB-treated HNSCC (n = 26). Here, we performed an expanded analysis of the predictive value of CK17 in ICB-treated HNSCC according to the REMARK criteria and investigated the gene expression profiles associated with high CK17 expression. Pretreatment samples from pembrolizumab-treated HNSCC patients were stained via immunohistochemistry using a CK17 monoclonal antibody (n = 48) and subjected to spatial transcriptomic profiling (n = 8). Our findings were validated in an independent retrospective cohort (n = 22). CK17 RNA expression in pembrolizumab-treated patients with various cancer types was investigated for predictive significance. Of the 48 patients (60% male, median age of 61.5 years), 21 (44%) were CK17 high, and 27 (56%) were CK17 low. A total of 17 patients (35%, 77% CK17 low) had disease control, while 31 patients (65%, 45% CK17 low) had progressive disease. High CK17 expression was associated with a lack of disease control (p = 0.037), shorter time to treatment failure (p = 0.025), and progression-free survival (PFS, p = 0.004), but not overall survival (OS, p = 0.06). A high CK17 expression was associated with lack of disease control in an independent validation cohort (p = 0.011). PD-L1 expression did not correlate with CK17 expression or clinical outcome. CK17 RNA expression was predictive of PFS and OS in 552 pembrolizumab-treated cancer patients. Our findings indicate that high CK17 expression may predict resistance to ICB in HNSCC patients and beyond.
Collapse
Affiliation(s)
- Taja Lozar
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 6459 Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, Madison, 53705 WI, USA
- University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Israa Laklouk
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, MC 8550, 600 Highland Ave, Madison, WI 53792, USA
| | - Athena E Golfinos
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 6459 Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, WI 53705, USA
| | - Niki Gavrielatou
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Jin Xu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, MC 8550, 600 Highland Ave, Madison, WI 53792, USA
| | - Christopher Flynn
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, MC 8550, 600 Highland Ave, Madison, WI 53792, USA
| | - Aysenur Keske
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, MC 8550, 600 Highland Ave, Madison, WI 53792, USA
| | - Menggang Yu
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Justine Y Bruce
- University of Wisconsin Carbone Cancer Center, Madison, 53705 WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Wei Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 6459 Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, WI 53705, USA
| | - Cvetka Grasic Kuhar
- University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Howard H Bailey
- University of Wisconsin Carbone Cancer Center, Madison, 53705 WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul M Harari
- University of Wisconsin Carbone Cancer Center, Madison, 53705 WI, USA
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Huy Q Dinh
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 6459 Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, WI 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - David L Rimm
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, MC 8550, 600 Highland Ave, Madison, WI 53792, USA
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 6459 Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, Madison, 53705 WI, USA
| | - Megan B Fitzpatrick
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, MC 8550, 600 Highland Ave, Madison, WI 53792, USA
| |
Collapse
|
16
|
Wu X, Ma Y, Wang L, Qin X. A Route for Investigating Psoriasis: From the Perspective of the Pathological Mechanisms and Therapeutic Strategies of Cancer. Int J Mol Sci 2023; 24:14390. [PMID: 37762693 PMCID: PMC10532365 DOI: 10.3390/ijms241814390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Psoriasis is an incurable skin disease that develops in about two-thirds of patients before the age of 40 and requires lifelong treatment; its pathological mechanisms have not been fully elucidated. The core pathological process of psoriasis is epidermal thickening caused by the excessive proliferation of epidermal keratinocytes, which is similar to the key feature of cancer; the malignant proliferation of cancer cells causes tumor enlargement, suggesting that there is a certain degree of commonality between psoriasis and cancer. This article reviews the pathological mechanisms that are common to psoriasis and cancer, including the interaction between cell proliferation and an abnormal immune microenvironment, metabolic reprogramming, and epigenetic reprogramming. In addition, there are common therapeutic agents and drug targets between psoriasis and cancer. Thus, psoriasis and cancer share a common pathological mechanisms-drug targets-therapeutic agents framework. On this basis, it is proposed that investigating psoriasis from a cancer perspective is beneficial to enriching the research strategies related to psoriasis.
Collapse
Affiliation(s)
- Xingkang Wu
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China; (Y.M.); (L.W.)
| | | | | | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China; (Y.M.); (L.W.)
| |
Collapse
|
17
|
Cui Y, Lee P, Reardon JJ, Wang A, Lynch S, Otero JJ, Sizemore G, Winter JO. Evaluating glioblastoma tumour sphere growth and migration in interaction with astrocytes using 3D collagen-hyaluronic acid hydrogels. J Mater Chem B 2023; 11:5442-5459. [PMID: 37159233 PMCID: PMC10330682 DOI: 10.1039/d3tb00066d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Glioblastoma (GB) is an astrocytic brain tumour with a low survival rate, partly because of its highly invasive nature. The GB tumour microenvironment (TME) includes its extracellular matrix (ECM), a variety of brain cell types, unique anatomical structures, and local mechanical cues. As such, researchers have attempted to create biomaterials and culture models that mimic features of TME complexity. Hydrogel materials have been particularly popular because they enable 3D cell culture and mimic TME mechanical properites and chemical composition. Here, we used a 3D collagen I-hyaluronic acid hydrogel material to explore interactions between GB cells and astrocytes, the normal cell type from which GB likely derives. We demonstrate three different spheroid culture configurations, including GB multi-spheres (i.e., GB and astrocyte cells in spheroid co-culture), GB-only mono-spheres cultured with astrocyte-conditioned media, and GB-only mono-spheres cultured with dispersed live or fixed astrocytes. Using U87 and LN229 GB cell lines and primary human astrocytes, we investigated material and experiment variability. We then used time-lapse fluorescence microscopy to measure invasive potential by characterizing the sphere size, migration capacity, and weight-averaged migration distance in these hydrogels. Finally, we developed methods to extract RNA for gene expression analysis from cells cultured in hydrogels. U87 and LN229 cells displayed different migration behaviors. U87 migration occurred primarily as single cells and was reduced with higher numbers of astrocytes in both multi-sphere and mono-sphere plus dispersed astrocyte cultures. In contrast, LN229 migration exhibited features of collective migration and was increased in monosphere plus dispersed astrocyte cultures. Gene expression studies indicated that the most differentially expressed genes in these co-cultures were CA9, HLA-DQA1, TMPRSS2, FPR1, OAS2, and KLRD1. Most differentially expressed genes were related to immune response, inflammation, and cytokine signalling, with greater influence on U87 than LN229. These data show that 3D in vitro hydrogel co-culture models can be used to reveal cell line specific differences in migration and to study differential GB-astrocyte crosstalk.
Collapse
Affiliation(s)
- Yixiao Cui
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
| | - Paul Lee
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Jesse J Reardon
- Ohio State University Comprehensive Cancer Center - James, The Ohio State University, Columbus, OH, USA
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA
| | - Anna Wang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
| | - Skylar Lynch
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
| | - Jose J Otero
- Ohio State University Comprehensive Cancer Center - James, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Gina Sizemore
- Ohio State University Comprehensive Cancer Center - James, The Ohio State University, Columbus, OH, USA
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA
| | - Jessica O Winter
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
- Ohio State University Comprehensive Cancer Center - James, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
18
|
Prazanowska KH, Lim SB. An integrated single-cell transcriptomic dataset for non-small cell lung cancer. Sci Data 2023; 10:167. [PMID: 36973297 PMCID: PMC10042991 DOI: 10.1038/s41597-023-02074-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
As single-cell RNA sequencing (scRNA-seq) has emerged as a great tool for studying cellular heterogeneity within the past decade, the number of available scRNA-seq datasets also rapidly increased. However, reuse of such data is often problematic due to a small cohort size, limited cell types, and insufficient information on cell type classification. Here, we present a large integrated scRNA-seq dataset containing 224,611 cells from human primary non-small cell lung cancer (NSCLC) tumors. Using publicly available resources, we pre-processed and integrated seven independent scRNA-seq datasets using an anchor-based approach, with five datasets utilized as reference and the remaining two, as validation. We created two levels of annotation based on cell type-specific markers conserved across the datasets. To demonstrate usability of the integrated dataset, we created annotation predictions for the two validation datasets using our integrated reference. Additionally, we conducted a trajectory analysis on subsets of T cells and lung cancer cells. This integrated data may serve as a resource for studying NSCLC transcriptome at the single cell level.
Collapse
Affiliation(s)
- Karolina Hanna Prazanowska
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
| | - Su Bin Lim
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea.
| |
Collapse
|
19
|
A Kaleidoscope of Keratin Gene Expression and the Mosaic of Its Regulatory Mechanisms. Int J Mol Sci 2023; 24:ijms24065603. [PMID: 36982676 PMCID: PMC10052683 DOI: 10.3390/ijms24065603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Keratins are a family of intermediate filament-forming proteins highly specific to epithelial cells. A combination of expressed keratin genes is a defining property of the epithelium belonging to a certain type, organ/tissue, cell differentiation potential, and at normal or pathological conditions. In a variety of processes such as differentiation and maturation, as well as during acute or chronic injury and malignant transformation, keratin expression undergoes switching: an initial keratin profile changes accordingly to changed cell functions and location within a tissue as well as other parameters of cellular phenotype and physiology. Tight control of keratin expression implies the presence of complex regulatory landscapes within the keratin gene loci. Here, we highlight patterns of keratin expression in different biological conditions and summarize disparate data on mechanisms controlling keratin expression at the level of genomic regulatory elements, transcription factors (TFs), and chromatin spatial structure.
Collapse
|
20
|
Takan I, Karakülah G, Louka A, Pavlopoulou A. "In the light of evolution:" keratins as exceptional tumor biomarkers. PeerJ 2023; 11:e15099. [PMID: 36949761 PMCID: PMC10026720 DOI: 10.7717/peerj.15099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Keratins (KRTs) are the intermediate filament-forming proteins of epithelial cells, classified, according to their physicochemical properties, into "soft" and "hard" keratins. They have a key role in several aspects of cancer pathophysiology, including cancer cell invasion and metastasis, and several members of the KRT family serve as diagnostic or prognostic markers. The human genome contains both, functional KRT genes and non-functional KRT pseudogenes, arranged in two uninterrupted clusters on chromosomes 12 and 17. This characteristic renders KRTs ideal for evolutionary studies. Herein, comprehensive phylogenetic analyses of KRT homologous proteins in the genomes of major taxonomic divisions were performed, so as to fill a gap in knowledge regarding the functional implications of keratins in cancer biology among tumor-bearing species. The differential expression profiles of KRTs in diverse types of cancers were investigated by analyzing high-throughput data, as well. Several KRT genes, including the phylogenetically conserved ones, were found to be deregulated across several cancer types and to participate in a common protein-protein interaction network. This indicates that, at least in cancer-bearing species, these genes might have been under similar evolutionary pressure, perhaps to support the same important function(s). In addition, semantic relations between KRTs and cancer were detected through extensive text mining. Therefore, by applying an integrative in silico pipeline, the evolutionary history of KRTs was reconstructed in the context of cancer, and the potential of using non-mammalian species as model organisms in functional studies on human cancer-associated KRT genes was uncovered.
Collapse
Affiliation(s)
- Işıl Takan
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Aikaterini Louka
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
21
|
Blagosklonny MV. Hallmarks of cancer and hallmarks of aging. Aging (Albany NY) 2022; 14:4176-4187. [PMID: 35533376 PMCID: PMC9134968 DOI: 10.18632/aging.204082] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022]
Abstract
A thought-provoking article by Gems and de Magalhães suggests that canonic hallmarks of aging are superficial imitations of hallmarks of cancer. I took their work a step further and proposed hallmarks of aging based on a hierarchical principle and the hyperfunction theory. To do this, I first reexamine the hallmarks of cancer proposed by Hanahan and Weinberg in 2000. Although six hallmarks of cancer are genuine, they are not hierarchically arranged, i.e., molecular, intra-cellular, cellular, tissue, organismal and extra-organismal. (For example, invasion and angiogenesis are manifestations of molecular alterations on the tissue level; metastasis on the organismal level, whereas cell immortality is observed outside the host). The same hierarchical approach is applicable to aging. Unlike cancer, however, aging is not a molecular disease. The lowest level of its origin is normal intracellular signaling pathways such as mTOR that drive developmental growth and, later in life, become hyperfunctional, causing age-related diseases, whose sum is aging. The key hallmark of organismal aging, from worms to humans, are age-related diseases. In addition, hallmarks of aging can be arranged as a timeline, wherein initial hyperfunction is followed by dysfunction, organ damage and functional decline.
Collapse
|