1
|
Castaneda M, den Hollander P, Werden S, Ramirez-Peña E, Vasaikar SV, Kuburich NA, Gould C, Soundararajan R, Mani SA. β-Catenin Drives the FOXC2-Mediated Epithelial-Mesenchymal Transition and Acquisition of Stem Cell Properties. Cancers (Basel) 2025; 17:1114. [PMID: 40227590 PMCID: PMC11987759 DOI: 10.3390/cancers17071114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Aggressive forms of breast cancer, such as triple-negative breast cancer (TNBC), are associated with an increase in cancer cells that exhibit stem cell properties. The activation of the epithelial-mesenchymal transition (EMT) program, mediated by the transcription factor FOXC2, generates these stem-like cells. FOXC2 is linked to poor prognoses across various cancer types and is notably upregulated in TNBC, where it establishes and sustains these stem-like cells within the tumor population. Methods: Here, we decode the pathways regulating FOXC2 activation using EMT-enriched cell line models. Stemness was assessed using mammosphere assays and mesenchymal markers by western blot. Expression correlations with clinical data was examined using the EMTome. Results: We demonstrate that β-catenin serves as a critical mediator of mesenchymal and stemness characteristics through FOXC2 upregulation. By disrupting β-catenin, we find that FOXC2 expression, mesenchymal properties, and stemness are reduced; however, the introduction of exogenous FOXC2 expression in β-catenin deficient cells is enough to restore the mesenchymal and stemness phenotype. These findings support the idea that FOXC2 acts as the downstream regulator of β-catenin and influences both mesenchymal and stemness properties. Moreover, there is a positive correlation between the expression of β-catenin and FOXC2 in various cancer subtypes observed in clinical patient samples. Conclusions: Our study clarifies the role of the β-catenin/FOXC2 signaling axis in maintaining stemness properties, suggesting potential targets for TNBC and other cancers driven by EMT-related mesenchymal and stemness characteristics.
Collapse
Affiliation(s)
- Maria Castaneda
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Research Center, Houston, TX 77030, USA; (M.C.); (R.S.)
| | - Petra den Hollander
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (P.d.H.); (N.A.K.); (C.G.)
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Steve Werden
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Research Center, Houston, TX 77030, USA; (M.C.); (R.S.)
| | - Esmeralda Ramirez-Peña
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Research Center, Houston, TX 77030, USA; (M.C.); (R.S.)
| | - Suhas V. Vasaikar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Research Center, Houston, TX 77030, USA; (M.C.); (R.S.)
| | - Nick A. Kuburich
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (P.d.H.); (N.A.K.); (C.G.)
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Claire Gould
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (P.d.H.); (N.A.K.); (C.G.)
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Research Center, Houston, TX 77030, USA; (M.C.); (R.S.)
| | - Sendurai A. Mani
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (P.d.H.); (N.A.K.); (C.G.)
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| |
Collapse
|
2
|
Wang L, He H, Zhai R, Gao R, Su M, Duan R, Tu Z, Huang R. Investigation of the mechanism by which FOXJ2 inhibits proliferation, metastasis and cell cycle progression of ovarian cancer cells through the PI3K/AKT signaling pathway. Eur J Med Res 2025; 30:152. [PMID: 40038842 DOI: 10.1186/s40001-025-02270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/01/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND As one member of the Forkhead Box transcription factor, Forkhead Box J2 (FOXJ2) is involved in diverse cancers. At present, the specific role and mechanism of FOXJ2 in ovarian cancer (OC) have not been fully addressed, which allows us to fill the blank. MATERIALS AND METHODS Accordingly, the expression of FOXJ2 in OC cells and ovarian epithelial cells was quantified via real-time qPCR. Following the transfection, cell counting kit-8, Transwell, wound healing and flow cytometry assays were performed to measure the proliferation, metastasis, apoptosis and cell cycle of OC cells A2780 and HEY. Further, real-time qPCR and Western blotting were both employed for the quantification assays on the expression levels of FOXJ2 as well as phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) (in both unphosphorylated and phosphorylated forms). RESULTS Based on the results, FOXJ2 were highly-expressed in OC cells (P < 0.05). Silencing of FOXJ2 resulted in attenuated OC cell proliferation, reduced numbers of migrating and invading OC cells, decreased apoptotic capacity, and cell cycle arrest in G1/S phase (P < 0.05). In addition, the knockdown of FOXJ2 caused the downward trend on the phosphorylation level of both PI3K and AKT in OC cells (P < 0.05). CONCLUSION The silencing of FOXJ2 could repress the growth and metastasis potentials and cause the cell cycle G1/S arrest of OC cells in vitro, which was possibly achieved via targeting the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Liyuan Wang
- Reproductive Center, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Han He
- Department of Urology and Reproductive Oncology, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Ruifang Zhai
- Gynecology Department, The First Hospital of Shanxi Medical University, Taiyuan, 03001, China
| | - Ruifan Gao
- Reproductive Center, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Min Su
- Reproductive Center, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Ruiyun Duan
- Reproductive Center, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Zengrong Tu
- Reproductive Center, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Rong Huang
- Department of Urology and Reproductive Oncology, The First People's Hospital of Foshan, Foshan, 528000, China.
| |
Collapse
|
3
|
Murphy A, Shyanti RK, Mishra M. Targeting obesity, metabolic syndrome, and prostate cancer: GLP-1 agonists as emerging therapeutic agents. Discov Oncol 2025; 16:258. [PMID: 40024963 PMCID: PMC11872791 DOI: 10.1007/s12672-025-01878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/03/2025] [Indexed: 03/04/2025] Open
Abstract
Prostate cancer (PCa) is known as the second most common cancer and has one of the highest incidences among male cancers in the United States. In addition, obesity and metabolic syndrome are a rising and continuous issue in the United States, with 41.9% of individuals as obese. The importance of highlighting these figures is the possibility of PCa having a progressive relationship with obesity and metabolic syndromes. The drugs developed for treating obesity and diabetes pose an exciting possibility of therapeutic application for cancer in efforts to relieve the population's rising numbers. Although this connection has not been established in detail, there are some PCa key biomarkers, and their interactions with metabolic products found in obese, diabetic, and PCa patients can provide good starting points for further investigation. One of the significant links between PCa, obesity, and metabolic disease may be due to insulin metabolism. A downstream target identified that could be the link between PCa, metabolic syndromes, and obesity is the forkhead box C2 (FOXC2). FOXC2 has been known to inhibit some insulin-resistant genes and cause the proliferation of PCa. The relationships of FOXC2, insulin resistance, and GLP-1 receptor agonists as potential therapeutic applications have not been thoroughly explored. This review covers a broad relationship of PCa, obesity, metabolic syndromes, possible drugs, and therapeutic targets.
Collapse
Affiliation(s)
- Azura Murphy
- Cancer Research Center, Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA
| | - Ritis Kumar Shyanti
- Cancer Research Center, Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA
| | - Manoj Mishra
- Cancer Research Center, Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA.
| |
Collapse
|
4
|
Wang Z, Jin Y, He D, Zhu Y, Xiao M, Liu X, Cheng Y, Cao K. Targeting ALG3/FOXD1/BNIP3 Axis Prevents Mitophagy and Gemcitabine Resistance of Nasopharyngeal Carcinoma. Int J Biol Sci 2025; 21:1894-1913. [PMID: 40083705 PMCID: PMC11900802 DOI: 10.7150/ijbs.101585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/31/2025] [Indexed: 03/16/2025] Open
Abstract
Understanding the specific role and underlying mechanisms of mitophagy may provide therapeutic benefit to patients with nasopharyngeal carcinoma (NPC). Forkhead box D1 (FOXD1), is overexpressed in NPC. However, its roles in NPC progression and therapy resistance remain largely unknown. NPC tissues displayed increased FOXD1 expression compared to paired non-tumor tissues, which correlated with worse overall survival (OS). Upregulation of FOXD1 promoted NPC cell proliferation, colony formation, migration, invasion, and impaired sensitivity to GEM by enhancing mitophagy levels. Mechanistically, FOXD1 promoted mitophagy in NPC cells by transcriptionally initiating BNIP3 expression. This enhanced mitophagy, in turn, promoted proliferation, invasion, and migration and reduced NPC cell sensitivity to gemcitabine (GEM). Most interestingly, Asn176 N-glycosylation of the FOXD1 protein increased its stability and nuclear localization, thereby transcriptionally activating BNIP3 expression to promote mitophagy of NPC cells. ALG3 directly interacted with FOXD1 and induced this N-glycosylation. Targeting the ALG3/FOXD1/BNIP3 axis offers a promising therapeutic strategy to inhibit the progression of NPC, which highlighting the potential of therapeutics targeting ALG3 and FOXD1 for regulating mitophagy and overcoming GEM resistance.
Collapse
Affiliation(s)
- Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yi Jin
- Department of Radiation Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Dong He
- Central South University, Changsha, 410013, China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Mengqing Xiao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Xiaoming Liu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yaxin Cheng
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| |
Collapse
|
5
|
Seymour L, Nuru N, Johnson KR, Gutierrez JMV, Njoku VT, Darie CC, Neagu AN. Roles of Post-Translational Modifications of Transcription Factors Involved in Breast Cancer Hypoxia. Molecules 2025; 30:645. [PMID: 39942749 PMCID: PMC11820228 DOI: 10.3390/molecules30030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
BC is the most commonly diagnosed cancer and the second leading cause of cancer death among women worldwide. Cellular stress is a condition that leads to disrupted homeostasis by extrinsic and intrinsic factors. Among other stressors, hypoxia is a driving force for breast cancer (BC) progression and a general hallmark of solid tumors. Thus, intratumoral hypoxia is an important determinant of invasion, metastasis, treatment failure, prognosis, and patient mortality. Acquisition of the epithelial-mesenchymal transition (EMT) phenotype is also a consequence of tumor hypoxia. The cellular response to hypoxia is mainly regulated by the hypoxia signaling pathway, governed by hypoxia-inducible factors (HIFs), mainly HIF1α. HIFs are a family of transcription factors (TFs), which induce the expression of target genes involved in cell survival and proliferation, metabolic reprogramming, angiogenesis, resisting apoptosis, invasion, and metastasis. HIF1α cooperates with a large number of other TFs. In this review, we focused on the crosstalk and cooperation between HIF1α and other TFs involved in the cellular response to hypoxia in BC. We identified a cluster of TFs, proposed as the HIF1α-TF interactome, that orchestrates the transcription of target genes involved in hypoxia, due to their post-translational modifications (PTMs), including phosphorylation/dephosphorylation, ubiquitination/deubiquitination, SUMOylation, hydroxylation, acetylation, S-nitrosylation, and palmitoylation. PTMs of these HIF1α-related TFs drive their stability and activity, degradation and turnover, and the bidirectional translocation between the cytoplasm or plasma membrane and nucleus of BC cells, as well as the transcription/activation of proteins encoded by oncogenes or inactivation of tumor suppressor target genes. Consequently, PTMs of TFs in the HIF1α interactome are crucial regulatory mechanisms that drive the cellular response to oxygen deprivation in BC cells.
Collapse
Affiliation(s)
- Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Niyogushima Nuru
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Kaya R. Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Jennifer Michel Villalpando Gutierrez
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Victor Tochukwu Njoku
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| |
Collapse
|
6
|
Kuang Y, Yu Y, Wang C, Li H, Zhou Y, Pan L, Zhang Y, Cheng X, Jiang Z, Hu X. FOXS1, frequently inactivated by promoter methylation, inhibited colorectal cancer cell growth by promoting TGFBI degradation through autophagy-lysosome pathway. J Adv Res 2025:S2090-1232(25)00056-6. [PMID: 39864590 DOI: 10.1016/j.jare.2025.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/24/2024] [Accepted: 01/24/2025] [Indexed: 01/28/2025] Open
Abstract
INTRODUCTION Tumor suppressor gene (TSG) inactivation by epigenetic modifications contributes to the carcinogenesis and progression of colorectal cancer (CRC). Expression profiling and CpG methylomics revealed that a forkhead-box transcriptional factor, FOXS1, is downregulated and methylated in CRC. OBJECTIVES To assess the biological functions and underlying mechanisms of FOXS1 in colorectal cancer. METHODS Public databases, semi-quantitative RT-PCR, immunohistochemistry, MSP, and BGS were used to analyze FOXS1 expression and promoter methylation in CRC. Stable FOXS1-overexpressing or knockdown cell lines were established. Cell growth, colony formation, flow cytometry, GFP-LC3 puncta detection, Ad-mCherry-GFP-LC3B, qPCR, in vivo subcutaneous tumor model, RNA-seq, western blotting, immunofluorescence, Co-IP assays, and protein stability analysis were performed to investigate the underlying molecular mechanisms of FOXS1. RESULTS In CRC, FOXS1 was frequently downregulated due to promoter CpG methylation, acting as an independent prognostic marker. Moreover, FOXS1 exerts inhibitory effects on the growth of CRC cells in vitro and in vivo, while concurrently promoting CRC cell autophagy. Intriguingly, we found that FOXS1 interacted with transforming growth factor beta induced (TGFBI) and FOXS1 promoted TGFBI degradation through the autophagy-lysosome pathway rather than the ubiquitin-proteasome system. FOXS1 was also found to facilitate the interaction between TGFBI and lysosomal associated membrane protein 2A (LAMP2A), leading to the translocation of TGFBI into lysosomes for degradation. Additionally, FOXS1 regulates AKT phosphorylation and FOXO3a nuclear translocation, promoting the transcription of autophagy-related genes downstream of FOXO3a. Restoration of TGFBI expression reversed the suppressive effect exerted by FOXS1 on the growth of colorectal cancer cells. CONCLUSION FOXS1 functions as a tumor suppressor that is methylated in CRC and promotes the lysosomal degradation of TGFBI, regulates cell growth and promotes autophagy in CRC through the TGFBI/AKT/FOXO3a signaling pathway. These findings indicate that FOXS1 exhibits potential as a promising biomarker and therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Yeye Kuang
- Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China
| | - Yijian Yu
- Department of Pathology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000 Zhejiang, China
| | - Chan Wang
- Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China
| | - Hui Li
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China
| | - Yiru Zhou
- Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China
| | - Lijuan Pan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121 Zhejiang, China
| | - Yi Zhang
- Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China
| | - Xiaoqing Cheng
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China
| | - Zhinong Jiang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China
| | - Xiaotong Hu
- Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China; Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China.
| |
Collapse
|
7
|
Wei Z, Iyer MR, Zhao B, Deng J, Mitchell CS. Artificial Intelligence-Assisted Comparative Analysis of the Overlapping Molecular Pathophysiology of Alzheimer's Disease, Amyotrophic Lateral Sclerosis, and Frontotemporal Dementia. Int J Mol Sci 2024; 25:13450. [PMID: 39769215 PMCID: PMC11678588 DOI: 10.3390/ijms252413450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
The overlapping molecular pathophysiology of Alzheimer's Disease (AD), Amyotrophic Lateral Sclerosis (ALS), and Frontotemporal Dementia (FTD) was analyzed using relationships from a knowledge graph of 33+ million biomedical journal articles. The unsupervised learning rank aggregation algorithm from SemNet 2.0 compared the most important amino acid, peptide, and protein (AAPP) nodes connected to AD, ALS, or FTD. FTD shared 99.9% of its nodes with ALS and AD; AD shared 64.2% of its nodes with FTD and ALS; and ALS shared 68.3% of its nodes with AD and FTD. The results were validated and mapped to functional biological processes using supervised human supervision and an external large language model. The overall percentages of mapped intersecting biological processes were as follows: inflammation and immune response, 19%; synapse and neurotransmission, 19%; cell cycle, 15%; protein aggregation, 12%; membrane regulation, 11%; stress response and regulation, 9%; and gene regulation, 4%. Once normalized for node count, biological mappings for cell cycle regulation and stress response were more prominent in the intersection of AD and FTD. Protein aggregation, gene regulation, and energetics were more prominent in the intersection of ALS and FTD. Synapse and neurotransmission, membrane regulation, and inflammation and immune response were greater at the intersection of AD and ALS. Given the extensive molecular pathophysiology overlap, small differences in regulation, genetic, or environmental factors likely shape the underlying expressed disease phenotype. The results help prioritize testable hypotheses for future clinical or experimental research.
Collapse
Affiliation(s)
- Zihan Wei
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Meghna R. Iyer
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Benjamin Zhao
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jennifer Deng
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cassie S. Mitchell
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Machine Learning at Georgia Tech, Atlanta, GA 30332, USA
| |
Collapse
|
8
|
Wang H, Tang S, Wu Q, He Y, Zhu W, Xie X, Qin Z, Wang X, Zhou S, Yao S, Xu X, Guo C, Tong X, Han S, Chou YH, Wang Y, Wong KK, Yang CG, Chen L, Hu L, Ji H. Integrative study of lung cancer adeno-to-squamous transition in EGFR TKI resistance identifies RAPGEF3 as a therapeutic target. Natl Sci Rev 2024; 11:nwae392. [PMID: 39687207 PMCID: PMC11647589 DOI: 10.1093/nsr/nwae392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 12/18/2024] Open
Abstract
Although adeno-to-squamous transition (AST) has been observed in association with resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) in clinic, its causality, molecular mechanism and overcoming strategies remain largely unclear. We here demonstrate that squamous transition occurs concomitantly with TKI resistance in PC9-derived xenograft tumors. Perturbation of squamous transition via DNp63 overexpression or knockdown leads to significant changes in TKI responses, indicative of a direct causal link between squamous transition and TKI resistance. Integrative RNA-seq, ATAC-seq analyses and functional studies reveal that FOXA1 plays an important role in maintaining adenomatous lineage and contributes to TKI sensitivity. FOXM1 overexpression together with FOXA1 knockout fully recapitulates squamous transition and TKI resistance in both PC9 xenografts and patient-derived xenograft (PDX) models. Importantly, pharmacological inhibition of RAPGEF3 combined with EGFR TKI efficiently overcomes TKI resistance, especially in RAPGEF3high PDXs. Our findings provide novel mechanistic insights into squamous transition and therapeutic strategy to overcome EGFR TKI resistance in lung cancer.
Collapse
Affiliation(s)
- Hua Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Tang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qibiao Wu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200092, China
| | - Weikang Zhu
- Center for Excellence in Mathematical Sciences, National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Management, Decision and Information System, Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinyun Xie
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhen Qin
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xue Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shiyu Zhou
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shun Yao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoling Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Chenchen Guo
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyuan Tong
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuo Han
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yueh-Hung Chou
- Department of Anatomical Pathology, Far Eastern Memorial Hospital, New Taipei City, Taiwan, China
| | - Yong Wang
- Center for Excellence in Mathematical Sciences, National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Management, Decision and Information System, Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, NY 10016, USA
| | - Cai-Guang Yang
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Luonan Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Liang Hu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongbin Ji
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
9
|
Lee S, Lee DY, So I, Chun JN, Jeon JH. Chromatin accessibility is associated with therapeutic response in prostate cancer. Oncol Lett 2024; 28:605. [PMID: 39483964 PMCID: PMC11525612 DOI: 10.3892/ol.2024.14738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/12/2024] [Indexed: 11/03/2024] Open
Abstract
Treatment of advanced prostate cancer is challenging due to a lack of effective therapies. Therefore, it is important to understand the molecular mechanisms underlying therapeutic resistance in prostate cancer and to identify promising drug targets offering significant clinical advantages. Given the pivotal role of dysregulated transcriptional programs in the therapeutic response, it is essential to prioritize translational efforts targeting cancer-associated transcription factors (TFs). The present study investigated whether chromatin accessibility was associated with therapeutic resistance in prostate cancer using Assay for Transposase-Accessible Chromatin with sequencing (ATAC-seq) data. The bioinformatics analysis identified differences in chromatin accessibility between the drug response (Remission) and drug resistance (Disease) groups. Additionally, a significant association was observed between chromatin accessibility, transcriptional output and TF activity. Among TFs, forkhead box protein M1 (FOXM1) was identified as a TF with high activity and expression in the Disease group. Notably, the results of the computational analysis were validated by FOXM1 knockdown experiments, which resulted in suppressed cell proliferation and enhanced therapeutic sensitivity in prostate cancer cells. The present findings demonstrated that chromatin accessibility and TF activity may be associated with therapeutic resistance in prostate cancer. Additionally, these results provide the basis for future investigations aimed at understanding the molecular mechanisms of drug resistance and developing novel therapeutic approaches for prostate cancer.
Collapse
Affiliation(s)
- Sanghoon Lee
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Da Young Lee
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Insuk So
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Jung Nyeo Chun
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
10
|
Khan MI, Bertram H, Schmitt AO, Ramzan F, Gültas M. Computational Identification of Milk Trait Regulation Through Transcription Factor Cooperation in Murciano-Granadina Goats. BIOLOGY 2024; 13:929. [PMID: 39596884 PMCID: PMC11591944 DOI: 10.3390/biology13110929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
The Murciano-Granadina goat (MUG) is a renowned dairy breed, known for its adaptability and resilience, as well as for its exceptional milk traits characterized by high protein and fat content, along with low somatic cell counts. These traits are governed by complex biological processes, crucial in shaping phenotypic diversity. Thus, it is imperative to explore the factors regulating milk production and lactation for this breed. In this study, we investigated the genetic architecture of seven milk traits in MUGs, employing a two-step computational analysis to examine genotype-phenotype associations. Initially, a random forest algorithm identified the relative importance of each single-nucleotide polymorphism (SNP) in determining the traits of interest. The second step applied an information theory-based approach to exploring the complex genetic architecture of quantitative milk traits, focusing on epistatic interactions that may have been overlooked in the first step. These approaches allowed us to identify an almost distinct set of candidate genes for each trait. In contrast, by analyzing the promoter regions of these genes, we revealed common regulatory networks among the milk traits under study. These findings are crucial for understanding the molecular mechanisms underlying gene regulation, and they highlight the pivotal role of transcription factors (TFs) and their preferential interactions in the development of these traits. Notably, TFs such as DBP, HAND1E47, HOXA4, PPARA, and THAP1 were consistently identified for all traits, highlighting their important roles in immunity within the mammary gland and milk production during lactation.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany;
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany;
- Department of Livestock Production and Management, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Hendrik Bertram
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany;
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany;
| | - Armin Otto Schmitt
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany;
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| | - Faisal Ramzan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Mehmet Gültas
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany;
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| |
Collapse
|
11
|
Palmer M, Leo A, Atyeo N, Tomacari C, Nguyen X, Papp B. Conserved linear motif within the immediate early protein ORF45 promotes its engagement with KSHV lytic cycle-promoting forkhead transcription factors, FOXK1 and FOXK2. J Virol 2024; 98:e0088624. [PMID: 39287387 PMCID: PMC11494905 DOI: 10.1128/jvi.00886-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that can cause several cancers, such as Kaposi sarcoma and primary effusion lymphoma (PEL). We and others have recently demonstrated that Forkhead box (FOX) transcription factors can be dysregulated by KSHV, and they can affect KSHV infection. Herein, we focus on dissecting the role of two FOXK subfamily members, FOXK1 and FOXK2, in the KSHV life cycle. FOXK proteins are key host regulators of cellular functions, yet their role in KSHV infection remains unknown. Here, we demonstrated that both FOXK proteins are essential for efficient KSHV lytic reactivation in PEL cells. FOXK1 and FOXK2 are unique as they are the only FOX proteins that contain a Forkhead-associated (FHA) domain. The FHA domain is a specialized protein binding domain that recognizes a short linear serine/threonine-rich (S/T) motif. Through an unbiased motif survey, we found that KSHV viral protein ORF45 and its gammaherpesvirus homologs contain a putative FHA-binding motif. ORF45 is an immediate early tegument protein, vital for lytic reactivation and virus production. We demonstrated that ORF45 uses its novel conserved motif to interact with the FHA domain containing FOXK factors in the nucleus of infected cells. A single-point mutation of the conserved threonine residue in the motif within ORF45 abolished the ORF45-FOXK1/2 interaction. Our data indicates that FOXK proteins interact with ORF45 homologs encoded by murine gammaherpesvirus 68 (MHV68) and Rhesus macaque rhadinovirus (RRV), and that the FHA domains of FOXK proteins are sufficient for their interactions, highlighting a conserved mechanism.IMPORTANCEThe dysregulation of Forkhead transcription factors contributes to many different human diseases, including cancers, but their impact on herpesvirus lifecycle and pathogenesis is less understood. Our study uncovers a critical pro-lytic function of the FOXK subfamily and its requirement for KSHV lytic reactivation in PEL. We found that FOXK proteins bind to a key immediate early KSHV protein ORF45 using its novel short linear S/T motif. Notably, even though ORF45 homologs in gammaherpesviruses are highly diverse, we identified a similar S/T short linear motif in ORF45 homologs and also showed an evolutionary conserved interaction between FOXK proteins and ORF45 homologs of MHV68 and RRV. Our study provides a basis for future studies in animal models to evaluate the role of FOXK proteins and the impact of their interactions with ORF45 in gammaherpesvirus infection and pathogenesis. Targeting these interactions could allow a novel way to limit gammaherpesvirus infections.
Collapse
Affiliation(s)
- Marley Palmer
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Alessandro Leo
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Natalie Atyeo
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Christiana Tomacari
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Xuan Nguyen
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Bernadett Papp
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
- Health Cancer Center, University of Florida, Gainesville, Florida, USA
- Informatics Institute, University of Florida, Gainesville, Florida, USA
- Center for Orphaned Autoimmune Disorders, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
12
|
Zhang Y, Wang M, Tang L, Yang W, Zhang J. FoxO1 silencing in Atp7b -/- neural stem cells attenuates high copper-induced apoptosis via regulation of autophagy. J Neurochem 2024; 168:2762-2774. [PMID: 38837406 DOI: 10.1111/jnc.16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
Wilson disease (WD) is a severely autosomal genetic disorder triggered by dysregulated copper metabolism. Autophagy and apoptosis share common modulators that process cellular death. Emerging evidences suggest that Forkhead Box O1 over-expression (FoxO1-OE) aggravates abnormal autophagy and apoptosis to induce neuronal injury. However, the underlying mechanisms remain undetermined. Herein, the aim of this study was to investigate how regulating FoxO1 affects cellular autophagy and apoptosis to attenuate neuronal injury in a well-established WD cell model, the high concentration copper sulfate (CuSO4, HC)-triggered Atp7b-/- (Knockout, KO) neural stem cell (NSC) lines. The FoxO1-OE plasmid, or siRNA-FoxO1 (siFoxO1) plasmid, or empty vector plasmid was stably transfected with recombinant lentiviral vectors into HC-induced Atp7b-/- NSCs. Toxic effects of excess deposited copper on wild-type (WT), Atp7b-/- WD mouse hippocampal NSCs were tested by Cell Counting Kit-8 (CCK-8). Subsequently, the FoxO1 expression was evaluated by immunofluorescence (IF) assay, western blot (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Meanwhile, the cell autophagy and apoptosis were evaluated by flow cytometry (FC), TUNEL staining, 2,7-dichlorofluorescein diacetate (DCFH-DA), JC-1, WB, and qRT-PCR. The current study demonstrated a strong rise in FoxO1 levels in HC-treated Atp7b-/- NSCs, accompanied with dysregulated autophagy and hyperactive apoptosis. Also, it was observed that cell viability was significantly decreased with the over-expressed FoxO1 in HC-treated Atp7b-/- WD model. As intended, silencing FoxO1 effectively inhibited abnormal autophagy in HC-treated Atp7b-/- NSCs, as depicted by a decline in LC3II/I, Beclin-1, ATG3, ATG7, ATG13, and ATG16, whereas simultaneously increasing P62. In addition, silencing FoxO1 suppressed apoptosis via diminishing oxidative stress (OS), and mitochondrial dysfunction in HC-induced Atp7b-/- NSCs. Collectively, these results clearly demonstrate the silencing FoxO1 has the neuroprotective role of suppressing aberrant cellular autophagy and apoptosis, which efficiently attenuates neuronal injury in WD.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Department of Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Meixia Wang
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Lulu Tang
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Wenming Yang
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Zhang
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
13
|
Zheng C, Allen KO, Liu T, Solodin NM, Meyer MB, Salem K, Tsourkas PK, McIlwain SJ, Vera JM, Cromwell ER, Ozers MS, Fowler AM, Alarid ET. Elevated GRHL2 Imparts Plasticity in ER-Positive Breast Cancer Cells. Cancers (Basel) 2024; 16:2906. [PMID: 39199676 PMCID: PMC11353109 DOI: 10.3390/cancers16162906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Estrogen receptor (ER)-positive breast cancer is characterized by late recurrences following initial treatment. The epithelial cell fate transcription factor Grainyhead-like protein 2 (GRHL2) is overexpressed in ER-positive breast cancers and is linked to poorer prognosis as compared to ER-negative breast cancers. To understand how GRHL2 contributes to progression, GRHL2 was overexpressed in ER-positive cells. We demonstrated that elevated GRHL2 imparts plasticity with stem cell- and dormancy-associated traits. RNA sequencing and immunocytochemistry revealed that high GRHL2 not only strengthens the epithelial identity but supports a hybrid epithelial to mesenchymal transition (EMT). Proliferation and tumor studies exhibited a decrease in growth and an upregulation of dormancy markers, such as NR2F1 and CDKN1B. Mammosphere assays and flow cytometry revealed enrichment of stem cell markers CD44 and ALDH1, and increased self-renewal capacity. Cistrome analyses revealed a change in transcription factor motifs near GRHL2 sites from developmental factors to those associated with disease progression. Together, these data support the idea that the plasticity and properties induced by elevated GRHL2 may provide a selective advantage to explain the association between GRHL2 and breast cancer progression.
Collapse
Affiliation(s)
- Christy Zheng
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kaelyn O. Allen
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tianrui Liu
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Natalia M. Solodin
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mark B. Meyer
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kelley Salem
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Phillipos K. Tsourkas
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sean J. McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jessica M. Vera
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Erika R. Cromwell
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Mary Szatkowski Ozers
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Proteovista LLC, Madison, WI 53719, USA
| | - Amy M. Fowler
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
- Department of Medical Physics, University of Wisconsin-Madison, WI 53705, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elaine T. Alarid
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
14
|
Wang L, Peng X, Ma C, Hu L, Li M, Wang Y. Research progress of epithelial-mesenchymal transformation-related transcription factors in peritoneal metastases. J Cancer 2024; 15:5367-5375. [PMID: 39247601 PMCID: PMC11375557 DOI: 10.7150/jca.98409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
Metastasis is the leading cause of mortality in patients with malignant tumors, particularly characterized by peritoneal metastases originating from gastric, ovarian, and colorectal cancers. Regarded as the terminal phase of tumor progression, peritoneal metastasis presents limited therapeutic avenues and is associated with a dismal prognosis for patients. The epithelial-mesenchymal transition (EMT) is a crucial phenomenon in which epithelial cells undergo significant changes in both morphology and functionality, transitioning to a mesenchymal-like phenotype. This transition plays a pivotal role in facilitating tumor metastasis, with transcription factors being key mediators of EMT's effects. Consequently, we provide a retrospective summary of the efforts to identify specific targets among EMT-related transcription factors, aimed at modulating the onset and progression of peritoneal metastatic cancer. This summary offers vital theoretical underpinnings for developing treatment strategies against peritoneal metastasis.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Xiaobei Peng
- Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Chang Ma
- Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Min Li
- Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yuhong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| |
Collapse
|
15
|
Reddy TP, Barrios R, Bernicker E, Qian W, Chang J, Safdar Z. Use of combined chemotherapy and immunotherapy improves pulmonary arterial hypertension. Pulm Circ 2024; 14:e12426. [PMID: 39224834 PMCID: PMC11366960 DOI: 10.1002/pul2.12426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/10/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Treatment modalities for pulmonary arterial hypertension (PAH) improve quality of life and walk distance. However, none of these therapies alter the structural/functional pulmonary vascular integrity that results in vascular remodeling. PAH smooth muscle cells share biological characteristics with cancer cells, which may be potential therapeutic targets for PAH. We present a case of a patient with connective tissue disease (CTD)-associated PAH treated on triple therapy who developed metastatic lung adenocarcinoma. While on PAH triple-therapy, she received a combination of carboplatin, pemetrexed, and pembrolizumab. She eventually had a complete pathologic response, no evidence of cancer recurrence, and significant improvement of PAH/overall clinical status. After discontinuation of neoplastic therapy, her clinical status worsened, she eventually passed away, and lung biopsy findings revealed evidence of severe pulmonary smooth muscle cell hypertrophy and pulmonary veno-occlusive disease. This report suggests that combined chemotherapy and immunotherapy may influence the efficacy of PAH therapies and improve clinical status.
Collapse
Affiliation(s)
- Tejaswini P. Reddy
- Texas A&M University School of MedicineBryanTexasUSA
- Houston Methodist Research InstituteHoustonTexasUSA
| | - Roberto Barrios
- Department of Pathology and Genomic MedicineHouston Methodist HospitalHoustonTexasUSA
| | | | - Wei Qian
- Houston Methodist Research InstituteHoustonTexasUSA
| | - Jenny Chang
- Houston Methodist Research InstituteHoustonTexasUSA
- Houston Methodist Neal Cancer CenterHoustonTexasUSA
| | - Zeenat Safdar
- Houston Methodist Research InstituteHoustonTexasUSA
- Pulmonary Hypertension Center at Houston Methodist Lung CenterHouston Methodist Hospital, Weill Cornell College of MedicineHoustonTexasUSA
| |
Collapse
|
16
|
Zhao Z, Cai Z, Zhang S, Yin X, Jiang T, Shen C, Yin Y, Sun H, Chen Z, Han J, Zhang B. Activation of the FOXM1/ASF1B/PRDX3 axis confers hyperproliferative and antioxidative stress reactivity to gastric cancer. Cancer Lett 2024; 589:216796. [PMID: 38537775 DOI: 10.1016/j.canlet.2024.216796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/02/2024] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Nucleosome assembly during DNA replication is dependent on histone chaperones. Recent studies suggest that dysregulated histone chaperones contribute to cancer progression, including gastric cancer (GC). Further studies are required to explore the prognostic and therapeutic implications of histone chaperones and their mechanisms of action in GC progression. Here we identified histone chaperone ASF1B as a potential biomarker for GC proliferation and prognosis. ASF1B was significantly upregulated in GC, which was associated with poor prognosis. In vitro and in vivo experiments demonstrated that the inhibition of ASF1B suppressed the malignant characteristics of GC, while overexpression of ASF1B had the opposite effect. Mechanistically, transcription factor FOXM1 directly bound to the ASF1B-promoter region, thereby regulating its transcription. Treatment with thiostrepton, a FOXM1 inhibitor, not only suppressed ASF1B expression, but also inhibited GC progression. Furthermore, ASF1B regulated the mitochondrial protein peroxiredoxin 3 (PRDX3) transcription in a FOXM1-dependent manner. The crucial role of ASF1B-regulated PRDX3 in GC cell proliferation and oxidative stress balance was also elucidated. In summary, our study suggests that the FOXM1-ASF1B-PRDX3 axis is a potential therapeutic target for treating GC.
Collapse
Affiliation(s)
- Zhou Zhao
- Gastric Cancer Center, Department of General Surgery, Research Laboratory of Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, China; Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Zhaolun Cai
- Gastric Cancer Center, Department of General Surgery, Research Laboratory of Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, China
| | - Su Zhang
- State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaonan Yin
- Gastric Cancer Center, Department of General Surgery, Research Laboratory of Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, China
| | - Tianxiang Jiang
- Gastric Cancer Center, Department of General Surgery, Research Laboratory of Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, China
| | - Chaoyong Shen
- Gastric Cancer Center, Department of General Surgery, Research Laboratory of Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Yin
- Gastric Cancer Center, Department of General Surgery, Research Laboratory of Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Sun
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Zhixin Chen
- Gastric Cancer Center, Department of General Surgery, Research Laboratory of Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Bo Zhang
- Gastric Cancer Center, Department of General Surgery, Research Laboratory of Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
de Almeida TG, Ricci AR, Dos Anjos LG, Soares Junior JM, Maciel GAR, Baracat EC, Carvalho KC. FOXO3a deregulation in uterine smooth muscle tumors. Clinics (Sao Paulo) 2024; 79:100350. [PMID: 38636197 PMCID: PMC11031728 DOI: 10.1016/j.clinsp.2024.100350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/20/2024] [Accepted: 03/12/2024] [Indexed: 04/20/2024] Open
Abstract
OBJECTIVE The present study aimed to investigate FOXO3a deregulation in Uterine Smooth Muscle Tumors (USMT) and its potential association with cancer development and prognosis. METHODS The authors analyzed gene and protein expression profiles of FOXO3a in 56 uterine Leiomyosarcomas (LMS), 119 leiomyomas (comprising conventional and unusual leiomyomas), and 20 Myometrium (MM) samples. The authors used techniques such as Immunohistochemistry (IHC), FISH/CISH, and qRT-PCR for the present analyses. Additionally, the authors conducted an in-silico analysis to understand the interaction network involving FOXO3a and its correlated genes. RESULTS This investigation revealed distinct expression patterns of the FOXO3a gene and protein, including both normal and phosphorylated forms. Expression levels were notably elevated in LMS, and Unusual Leiomyomas (ULM) compared to conventional Leiomyomas (LM) and Myometrium (MM) samples. This upregulation was significantly associated with metastasis and Overall Survival (OS) in LMS patients. Intriguingly, FOXO3a deregulation did not seem to be influenced by EGF/HER-2 signaling, as there were minimal levels of EGF and VEGF expression detected, and HER-2 and EGFR were negative in the analyzed samples. In the examination of miRNAs, the authors observed upregulation of miR-96-5p and miR-155-5p, which are known negative regulators of FOXO3a, in LMS samples. Conversely, the tumor suppressor miR-let7c-5p was downregulated. CONCLUSIONS In summary, the outcomes of the present study suggest that the imbalance in FOXO3a within Uterine Smooth Muscle Tumors might arise from both protein phosphorylation and miRNA activity. FOXO3a could emerge as a promising therapeutic target for individuals with Unusual Leiomyomas and Leiomyosarcomas (ULM and LMS), offering novel directions for treatment strategies.
Collapse
Affiliation(s)
- Thais Gomes de Almeida
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil; Instituto Brasileiro de Controle do Cancer, Mooca, São Paulo, SP, Brazil; Departamento de Ginecologia Oncológica, Hospital Santa Marcelina, São Paulo, SP, Brazil
| | - Anamaria Ritti Ricci
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Laura Gonzalez Dos Anjos
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Jose Maria Soares Junior
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Gustavo Arantes Rosa Maciel
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Edmund Chada Baracat
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Katia Candido Carvalho
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil.
| |
Collapse
|
18
|
Yuen JG, Hwang GR, Fesler A, Intriago E, Pal A, Ojha A, Ju J. Development of gemcitabine-modified miRNA mimics as cancer therapeutics for pancreatic ductal adenocarcinoma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200769. [PMID: 38596306 PMCID: PMC10869788 DOI: 10.1016/j.omton.2024.200769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/23/2023] [Accepted: 01/19/2024] [Indexed: 04/11/2024]
Abstract
Despite the recent advancement in diagnosis and therapy, pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is still the most lethal cancer with a low five-year survival rate. There is an urgent need to develop new therapies to address this issue. In this study, we developed a treatment strategy by modifying tumor suppressor miRNAs, miR-15a and miR-194, with the chemotherapeutic gemcitabine (Gem) to create Gem-modified mimics, Gem-miR-15a and Gem-miR-194, respectively. In a panel of PDAC cell lines, we found that Gem-miR-15a and Gem-miR-194 induce cell-cycle arrest and apoptosis, and these mimics are potent inhibitors with IC50 values up to several hundred fold less than their native counterparts or Gem alone. Furthermore, we found that Gem-miR-15a and Gem-miR-194 retained miRNA function by downregulating the expression of several key targets including WEE1, CHK1, BMI1, and YAP1 for Gem-miR-15a, and FOXA1 for Gem-miR-194. We also found that our Gem-modified miRNA mimics exhibit an enhanced efficacy compared to Gem in patient-derived PDAC organoids. Furthermore, we observed that Gem-miR-15a significantly inhibits PDAC tumor growth in vivo without observing any noticeable signs of toxicity. Overall, our results demonstrate the therapeutic potential of Gem-modified miRNAs as a treatment strategy for PDAC.
Collapse
Affiliation(s)
- John G. Yuen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Medical Scientist Training Program, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ga-Ram Hwang
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Erick Intriago
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Amartya Pal
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Anushka Ojha
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- The Northport Veteran’s Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
19
|
Xie H, Zhang C. Potential of the nanoplatform and PROTAC interface to achieve targeted protein degradation through the Ubiquitin-Proteasome system. Eur J Med Chem 2024; 267:116168. [PMID: 38310686 DOI: 10.1016/j.ejmech.2024.116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 02/06/2024]
Abstract
In eukaryotic cells, the ubiquitin-proteasome system (UPS) plays a crucial role in selectively breaking down specific proteins. The ability of the UPS to target proteins effectively and expedite their removal has significantly contributed to the evolution of UPS-based targeted protein degradation (TPD) strategies. In particular, proteolysis targeting chimeras (PROTACs) are an immensely promising tool due to their high efficiency, extensive target range, and negligible drug resistance. This breakthrough has overcome the limitations posed by traditionally "non-druggable" proteins. However, their high molecular weight and constrained solubility impede the delivery of PROTACs. Fortunately, the field of nanomedicine has experienced significant growth, enabling the delivery of PROTACs through nanoscale drug-delivery systems, which effectively improves the stability, solubility, drug distribution, tissue-specific accumulation, and stimulus-responsive release of PROTACs. This article reviews the mechanism of action attributed to PROTACs and their potential implications for clinical applications. Moreover, we present strategies involving nanoplatforms for the effective delivery of PROTACs and evaluate recent advances in targeting nanoplatforms to the UPS. Ultimately, an assessment is conducted to determine the feasibility of utilizing PROTACs and nanoplatforms for UPS-based TPD. The primary aim of this review is to provide innovative, reliable solutions to overcome the current challenges obstructing the effective use of PROTACs in the management of cancer, neurodegenerative diseases, and metabolic syndrome. Therefore, this is a promising technology for improving the treatment status of major diseases.
Collapse
Affiliation(s)
- Hanshu Xie
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Chao Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
20
|
Yang Y, Li W, Yang H, Zhang Y, Zhang S, Xu F, Hao Y, Cao W, Du G, Wang J. Research progress on the regulatory mechanisms of FOXC1 expression in cancers and its role in drug resistance. Gene 2024; 897:148079. [PMID: 38101711 DOI: 10.1016/j.gene.2023.148079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
The Forkhead box C1 (FOXC1) transcription factor is an important member of the FOX family. After initially being identified in triple-negative breast cancer (TNBC) with significant oncogenic function, FOXC1 was subsequently demonstrated to be involved in the development of more than 16 types of cancers. In recent years, increasing studies have focused on the deregulatory mechanisms of FOXC1 expression and revealed that FOXC1 expression was regulated at multiple levels including transcriptional regulation, post-transcription regulation and post-translational modification. Moreover, dysregulation of FOXC1 is also implicated in drug resistance in various types of cancer, especially in breast cancer, which further emphasizes the translational and clinical significance of FOXC1 as a therapeutic target in cancer treatment. This review summarizes recent findings on mechanisms of FOXC1 dysregulation in cancers and its role in chemoresistance, which will help to better understand the oncogenic role of FOXC1, overcome FOXC1-mediated drug resistance and develop targeted therapy for FOXC1 in cancers.
Collapse
Affiliation(s)
- Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Fang Xu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yue Hao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wanxin Cao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
21
|
Napoli M, Deshpande AA, Chakravarti D, Rajapakshe K, Gunaratne PH, Coarfa C, Flores ER. Genome-wide p63-Target Gene Analyses Reveal TAp63/NRF2-Dependent Oxidative Stress Responses. CANCER RESEARCH COMMUNICATIONS 2024; 4:264-278. [PMID: 38165157 PMCID: PMC10832605 DOI: 10.1158/2767-9764.crc-23-0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/14/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The p53 family member TP63 encodes two sets of N-terminal isoforms, TAp63 and ΔNp63 isoforms. They each regulate diverse biological functions in epidermal morphogenesis and in cancer. In the skin, where their activities have been extensively characterized, TAp63 prevents premature aging by regulating the quiescence and genomic stability of stem cells required for wound healing and hair regeneration, while ΔNp63 controls maintenance and terminal differentiation of epidermal basal cells. This functional diversity is surprising given that these isoforms share a high degree of similarity, including an identical sequence for a DNA-binding domain. To understand the mechanisms of the transcriptional programs regulated by each p63 isoform and leading to diverse biological functions, we performed genome-wide analyses using p63 isoform-specific chromatin immunoprecipitation, RNA sequencing, and metabolomics of TAp63-/- and ΔNp63-/- mouse epidermal cells. Our data indicate that TAp63 and ΔNp63 physically and functionally interact with distinct transcription factors for the downstream regulation of their target genes, thus ultimately leading to the regulation of unique transcriptional programs and biological processes. Our findings unveil novel transcriptomes regulated by the p63 isoforms to control diverse biological functions, including the cooperation between TAp63 and NRF2 in the modulation of metabolic pathways and response to oxidative stress providing a mechanistic explanation for the TAp63 knock out phenotypes. SIGNIFICANCE The p63 isoforms, TAp63 and ΔNp63, control epithelial morphogenesis and tumorigenesis through the interaction with distinct transcription factors and the subsequent regulation of unique transcriptional programs.
Collapse
Affiliation(s)
- Marco Napoli
- Department of Molecular Oncology, Division of Basic Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Avani A. Deshpande
- Department of Molecular Oncology, Division of Basic Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Kimal Rajapakshe
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | | | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Elsa R. Flores
- Department of Molecular Oncology, Division of Basic Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
22
|
Chen YC, Chen JH, Tsai CF, Wu CT, Chang PC, Yeh WL. Inhibition of tumor migration and invasion by fenofibrate via suppressing epithelial-mesenchymal transition in breast cancers. Toxicol Appl Pharmacol 2024; 483:116818. [PMID: 38215994 DOI: 10.1016/j.taap.2024.116818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/16/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
The recurrence and metastasis in breast cancer within 3 years after the chemotherapies or surgery leads to poor prognosis with approximately 1-year overall survival. Large-scale scanning research studies have shown that taking lipid-lowering drugs may assist to reduce the risk of death from many cancers, since cholesterol in lipid rafts are essential for maintain integral membrane structure and functional signaling regulation. In this study, we examined five lipid-lowering drugs: swertiamarin, gemfibrozil, clofibrate, bezafibrate, and fenofibrate in triple-negative breast cancer, which is the most migration-prone subtype. Using human and murine triple-negative breast cancer cell lines (Hs 578 t and 4 T1), we found that fenofibrate displays the highest potential in inhibiting the colony formation, wound healing, and transwell migration. We further discovered that fenofibrate reduces the activity of pro-metastatic enzymes, matrix metalloproteinases (MMP)-9 and MMP-2. In addition, epithelial markers including E-cadherin and Zonula occludens-1 are increased, whereas mesenchymal markers including Snail, Twist and α-smooth muscle actin are attenuated. Furthermore, we found that fenofibrate downregulates ubiquitin-dependent GDF-15 degradation, which leads to enhanced GDF-15 expression that inhibits cell migration. Besides, nuclear translocation of FOXO1 is also upregulated by fenofibrate, which may responsible for GDF-15 expression. In summary, fenofibrate with anti-cancer ability hinders TNBC from migration and invasion, and may be beneficial to repurposing use of fenofibrate.
Collapse
Affiliation(s)
- Yen-Chang Chen
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung 404333, Taiwan
| | - Jia-Hong Chen
- Department of General Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 88, Sec. 1, Fengxing Road, Taichung 427213, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, No.500 Lioufeng Road, Taichung 413305, Taiwan
| | - Chen-Teng Wu
- Department of Surgery, China Medical University Hospital, No. 2, Yude Road, Taichung 404332, Taiwan
| | - Pei-Chun Chang
- Department of Bioinformatics and Medical Engineering, Asia University, No.500 Lioufeng Road, Taichung 413305, Taiwan
| | - Wei-Lan Yeh
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung 404333, Taiwan; Department of Biochemistry, School of Medicine, China Medical University, No.91 Hsueh-Shih Road, Taichung 404333, Taiwan.
| |
Collapse
|
23
|
Lee DY, Chun JN, So I, Jeon JH. Oncogenic role of FOXM1 in human prostate cancer (Review). Oncol Rep 2024; 51:15. [PMID: 38038123 PMCID: PMC10739992 DOI: 10.3892/or.2023.8674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Prostate cancer is the leading cause of cancer‑related mortality among men worldwide. In particular, castration‑resistant prostate cancer presents a formidable clinical challenge and emphasizes the need to develop novel therapeutic strategies. Forkhead box M1 (FOXM1) is a multifaceted transcription factor that is implicated in the acquisition of the multiple cancer hallmark capabilities in prostate cancer cells, including sustaining proliferative signaling, resisting cell death and the activation of invasion and metastasis. Elevated FOXM1 expression is frequently observed in prostate cancer, and in particular, FOXM1 overexpression is closely associated with poor clinical outcomes in patients with prostate cancer. In the present review, recent advances in the understanding of the oncogenic role of deregulated FOXM1 expression in prostate cancer were highlighted. In addition, the molecular mechanisms by which FOXM1 regulates prostate cancer development and progression were described, thereby providing knowledge and a conceptual framework for FOXM1. The present review also provided valuable insight into the inherent challenges associated with translating biomedical knowledge into effective therapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jung Nyeo Chun
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Insuk So
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
24
|
Hasan A, Khan NA, Uddin S, Khan AQ, Steinhoff M. Deregulated transcription factors in the emerging cancer hallmarks. Semin Cancer Biol 2024; 98:31-50. [PMID: 38123029 DOI: 10.1016/j.semcancer.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/25/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Cancer progression is a multifaceted process that entails several stages and demands the persistent expression or activation of transcription factors (TFs) to facilitate growth and survival. TFs are a cluster of proteins with DNA-binding domains that attach to promoter or enhancer DNA strands to start the transcription of genes by collaborating with RNA polymerase and other supporting proteins. They are generally acknowledged as the major regulatory molecules that coordinate biological homeostasis and the appropriate functioning of cellular components, subsequently contributing to human physiology. TFs proteins are crucial for controlling transcription during the embryonic stage and development, and the stability of different cell types depends on how they function in different cell types. The development and progression of cancer cells and tumors might be triggered by any anomaly in transcription factor function. It has long been acknowledged that cancer development is accompanied by the dysregulated activity of TF alterations which might result in faulty gene expression. Recent studies have suggested that dysregulated transcription factors play a major role in developing various human malignancies by altering and rewiring metabolic processes, modifying the immune response, and triggering oncogenic signaling cascades. This review emphasizes the interplay between TFs involved in metabolic and epigenetic reprogramming, evading immune attacks, cellular senescence, and the maintenance of cancer stemness in cancerous cells. The insights presented herein will facilitate the development of innovative therapeutic modalities to tackle the dysregulated transcription factors underlying cancer.
Collapse
Affiliation(s)
- Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Lucknow 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow 226026, India
| | - Naushad Ahmad Khan
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Biosciences, Integral University, Lucknow 226026, India; Animal Research Center, Qatar University, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Animal Research Center, Qatar University, Doha, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
25
|
Ebrahimnezhad M, Natami M, Bakhtiari GH, Tabnak P, Ebrahimnezhad N, Yousefi B, Majidinia M. FOXO1, a tiny protein with intricate interactions: Promising therapeutic candidate in lung cancer. Biomed Pharmacother 2023; 169:115900. [PMID: 37981461 DOI: 10.1016/j.biopha.2023.115900] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
Nowadays, lung cancer is the most common cause of cancer-related deaths in both men and women globally. Despite the development of extremely efficient targeted agents, lung cancer progression and drug resistance remain serious clinical issues. Increasing knowledge of the molecular mechanisms underlying progression and drug resistance will enable the development of novel therapeutic methods. It has been revealed that transcription factors (TF) dysregulation, which results in considerable expression modifications of genes, is a generally prevalent phenomenon regarding human malignancies. The forkhead box O1 (FOXO1), a member of the forkhead transcription factor family with crucial roles in cell fate decisions, is suggested to play a pivotal role as a tumor suppressor in a variety of malignancies, especially in lung cancer. FOXO1 is involved in diverse cellular processes and also has clinical significance consisting of cell cycle arrest, apoptosis, DNA repair, oxidative stress, cancer prevention, treatment, and chemo/radioresistance. Based on the critical role of FOXO1, this transcription factor appears to be an appropriate target for future drug discovery in lung cancers. This review focused on the signaling pathways, and molecular mechanisms involved in FOXO1 regulation in lung cancer. We also discuss pharmacological compounds that are currently being administered for lung cancer treatment by affecting FOXO1 and also point out the essential role of FOXO1 in drug resistance. Future preclinical research should assess combination drug strategies to stimulate FOXO1 and its upstream regulators as potential strategies to treat resistant or advanced lung cancers.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Natami
- Department of Urology,Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Peyman Tabnak
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Ebrahimnezhad
- Department of Microbiology, Faculty of Basic Science, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
26
|
Xu L, Ma X, Zhang X, Zhang C, Zhang Y, Gong S, Wu N, Zhang P, Feng X, Guo J, Zhao M, Ren Z, Zhang P. hsa_circ_0007919 induces LIG1 transcription by binding to FOXA1/TET1 to enhance the DNA damage response and promote gemcitabine resistance in pancreatic ductal adenocarcinoma. Mol Cancer 2023; 22:195. [PMID: 38044421 PMCID: PMC10694898 DOI: 10.1186/s12943-023-01887-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/24/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play important roles in the occurrence and development of cancer and chemoresistance. DNA damage repair contributes to the proliferation of cancer cells and resistance to chemotherapy-induced apoptosis. However, the role of circRNAs in the regulation of DNA damage repair needs clarification. METHODS RNA sequencing analysis was applied to identify the differentially expressed circRNAs. qRT-PCR was conducted to confirm the expression of hsa_circ_0007919, and CCK-8, FCM, single-cell gel electrophoresis and IF assays were used to analyze the proliferation, apoptosis and gemcitabine (GEM) resistance of pancreatic ductal adenocarcinoma (PDAC) cells. Xenograft model and IHC experiments were conducted to confirm the effects of hsa_circ_0007919 on tumor growth and DNA damage in vivo. RNA sequencing and GSEA were applied to confirm the downstream genes and pathways of hsa_circ_0007919. FISH and nuclear-cytoplasmic RNA fractionation experiments were conducted to identify the cellular localization of hsa_circ_0007919. ChIRP, RIP, Co-IP, ChIP, MS-PCR and luciferase reporter assays were conducted to confirm the interaction among hsa_circ_0007919, FOXA1, TET1 and the LIG1 promoter. RESULTS We identified a highly expressed circRNA, hsa_circ_0007919, in GEM-resistant PDAC tissues and cells. High expression of hsa_circ_0007919 correlates with poor overall survival (OS) and disease-free survival (DFS) of PDAC patients. Hsa_circ_0007919 inhibits the DNA damage, accumulation of DNA breaks and apoptosis induced by GEM in a LIG1-dependent manner to maintain cell survival. Mechanistically, hsa_circ_0007919 recruits FOXA1 and TET1 to decrease the methylation of the LIG1 promoter and increase its transcription, further promoting base excision repair, mismatch repair and nucleotide excision repair. At last, we found that GEM enhanced the binding of QKI to the introns of hsa_circ_0007919 pre-mRNA and the splicing and circularization of this pre-mRNA to generate hsa_circ_0007919. CONCLUSIONS Hsa_circ_0007919 promotes GEM resistance by enhancing DNA damage repair in a LIG1-dependent manner to maintain cell survival. Targeting hsa_circ_0007919 and DNA damage repair pathways could be a therapeutic strategy for PDAC.
Collapse
Affiliation(s)
- Lei Xu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, China
| | - Xiao Ma
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- Department of General Surgery, Xuzhou First People's Hospital, Xuzhou, China
| | - Xiuzhong Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chong Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yi Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shuai Gong
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Nai Wu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Peng Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- Department of General Surgery, Shangqiu Municipal Hospital, Shangqiu, China
| | - Xinyu Feng
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Jiaxuan Guo
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Mengmeng Zhao
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Zeqiang Ren
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Pengbo Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
27
|
Wang M, Huang W. FOXS1 promotes prostate cancer progression through the Hedgehog/Gli1 pathway. Biochem Pharmacol 2023; 218:115893. [PMID: 37890593 DOI: 10.1016/j.bcp.2023.115893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Prostate cancer (PCa) remains the most common malignant tumor in men, and the clinical treatment still faces many challenges. Several molecular biomarkers of PCa progression have been reported, however, whether FOXS1 can serve as a new biomarker in PCa remains unknown. METHODS FOXS1 and Gli1 expression was assessed by RT-qPCR and western blot. The binding and regulation roles between FOXS1 and Gli1 were confirmed by Co-IP and ubiquitination assays. Cell viability, proliferation, apoptosis, migration, invasion and EMT progress were assessed through CCK-8, colony formation, flow cytometry, wound-healing, transwell and western blot assays, respectively. In vivo nude mice tumorigenesis model was also conducted to verify PCa growth. RESULTS FOXS1 was upregulated in the PCa TCGA dataset and cells. High FOXS1 level was correlated with PCa patients' worse tumor stage and shorter survival. FOXS1 knockdown inhibited PCa cell proliferation, invasion, migration, EMT and tumor growth while increased cell apoptosis. Furthermore, FOXS1 knockdown decreased the inactivation of Hedgehog (Hh) pathway. FOXS1 bind to Gli1 and decreased the ubiquitination of Gli1, which resulted in the upregulation of Gli1. Besides, both Gil1 overexpression and Hh signal activation reversed the suppression function of FOXS1 silencing on PCa growth and metastasis. CONCLUSION FOXS1 bind and stabilized Gli1 by blocking Gli1 ubiquitination, thereby activating Hh signaling to promote PCa cell growth and metastasis.
Collapse
Affiliation(s)
- Minyu Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Wanying Huang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| |
Collapse
|
28
|
Cheng L, Yan H, Liu Y, Guan G, Cheng P. Dissecting multifunctional roles of forkhead box transcription factor D1 in cancers. Biochim Biophys Acta Rev Cancer 2023; 1878:188986. [PMID: 37716516 DOI: 10.1016/j.bbcan.2023.188986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
As a member of the forkhead box (FOX) family of transcription factors (TF), FOXD1 has recently been implicated as a crucial regulator in a variety of human cancers. Accumulating evidence has established dysregulated and aberrant FOXD1 signaling as a prominent feature in cancer development and progression. However, there is a lack of systematic review on this topic. Here, we summarized the present understanding of FOXD1 functions in cancer biology and reviewed the downstream targets and upstream regulatory mechanisms of FOXD1 as well as the related signaling pathways within the context of current reports. We highlighted the functional features of FOXD1 in cancers to identify the future research consideration of this multifunctional transcription factor and potential therapeutic strategies targeting its oncogenic activity.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Haixu Yan
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Gefei Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
29
|
Hu X, Zhou S, Li H, Wu Z, Wang Y, Meng L, Chen Z, Wei Z, Pang Q, Xu A. FOXA1/MND1/TKT axis regulates gastric cancer progression and oxaliplatin sensitivity via PI3K/AKT signaling pathway. Cancer Cell Int 2023; 23:234. [PMID: 37817120 PMCID: PMC10566187 DOI: 10.1186/s12935-023-03077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Drug resistance is a main factor affecting the chemotherapy efficacy of gastric cancer (GC), in which meiosis plays an important role. Therefore, it is urgent to explore the effect of meiosis related genes on chemotherapy resistance. METHODS The expression of meiotic nuclear divisions 1 (MND1) in GC was detected by using TCGA and clinical specimens. In vitro and in vivo assays were used to investigate the effects of MND1. The molecular mechanism was determined using luciferase reporter assay, CO-IP and mass spectrometry (MS). RESULTS Through bioinformatics, we found that MND1 was highly expressed in platinum-resistant samples. In vitro experiments showed that interference of MND1 significantly inhibited the progression of GC and increased the sensitivity to oxaliplatin. MND1 was significantly higher in 159 GC tissues in comparison with the matched adjacent normal tissues. In addition, overexpression of MND1 was associated with worse survival, advanced TNM stage, and lower pathological grade in patients with GC. Further investigation revealed that forkhead box protein A1 (FOXA1) directly binds to the promoter of MND1 to inhibit its transcription. CO-IP and MS assays showed that MND1 was coexpressed with transketolase (TKT). In addition,TKT activated the PI3K/AKT signaling axis and enhanced the glucose uptake and lactate production in GC cells. CONCLUSIONS Our results confirm that FOXA1 inhibits the expression of MND1, which can directly bind to TKT to promote GC progression and reduce oxaliplatin sensitivity through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xiaosi Hu
- Department of General Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, People's Republic of China
| | - Shuai Zhou
- Department of General Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, People's Republic of China
| | - Haohao Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230001, Anhui, People's Republic of China
- Department of General Surgery of Anhui Public Health Clinical Center, Hefei, 230001, Anhui, People's Republic of China
| | - Zehui Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230001, Anhui, People's Republic of China
| | - Ye Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230001, Anhui, People's Republic of China
| | - Lei Meng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230001, Anhui, People's Republic of China
| | - Zhangming Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230001, Anhui, People's Republic of China
| | - Zhijian Wei
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230001, Anhui, People's Republic of China
| | - Qing Pang
- Department of General Surgery, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, People's Republic of China.
| | - Aman Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230001, Anhui, People's Republic of China.
| |
Collapse
|
30
|
Voigt E, Quelle DE. FOXM1, MEK, and CDK4/6: New Targets for Malignant Peripheral Nerve Sheath Tumor Therapy. Int J Mol Sci 2023; 24:13596. [PMID: 37686402 PMCID: PMC10487994 DOI: 10.3390/ijms241713596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are deadly sarcomas, which desperately need effective therapies. Half of all MPNSTs arise in patients with neurofibromatosis type I (NF1), a common inherited disease. NF1 patients can develop benign lesions called plexiform neurofibromas (PNFs), often in adolescence, and over time, some PNFs, but not all, will transform into MPNSTs. A deeper understanding of the molecular and genetic alterations driving PNF-MPNST transformation will guide development of more targeted and effective treatments for these patients. This review focuses on an oncogenic transcription factor, FOXM1, which is a powerful oncogene in other cancers but little studied in MPNSTs. Elevated expression of FOXM1 was seen in patient MPNSTs and correlated with poor survival, but otherwise, its role in the disease is unknown. We discuss what is known about FOXM1 in MPNSTs relative to other cancers and how FOXM1 may be regulated by and/or regulate the most commonly altered players in MPNSTs, particularly in the MEK and CDK4/6 kinase pathways. We conclude by considering FOXM1, MEK, and CDK4/6 as new, clinically relevant targets for MPNST therapy.
Collapse
Affiliation(s)
- Ellen Voigt
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA;
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Dawn E. Quelle
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA;
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
31
|
Wang Q, Shi W, Lin S, Wang H. FOXO1 regulates osteogenic differentiation of periodontal ligament stem cells through the METTL3 signaling pathway. J Orthop Surg Res 2023; 18:637. [PMID: 37644500 PMCID: PMC10463830 DOI: 10.1186/s13018-023-04120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Periodontitis is a chronic inflammation that occurs in periodontal tissue and has a high incidence rate. Periodontal ligament stem cells (PDLSCs) are ideal candidates for periodontal tissue and bone regeneration in patients with periodontitis. The purpose of this work was to analyze the molecular mechanisms that affect the osteogenic differentiation of PDLSCs. METHODS In this work, qRT‒PCR was used to detect the mRNA expression level of FOXO1 in clinical tissues and PDLSCs. Alkaline phosphatase (ALP) staining and Alizarin red S (ARS) staining were used to detect the degree of osteogenic differentiation of PDLSCs. qRT‒PCR and western blotting were used to measure the levels of the early osteogenic markers COL1A1 and RUNX2. The JASPAR online database was used to predict FOXO1-regulated genes. RESULTS FOXO1 was generally expressed at low levels in clinical samples from patients with periodontitis. We provided evidence that overexpression of FOXO1 promoted osteogenic differentiation in PDLSCs. In addition, both in vitro and rescue experiments showed that FOXO1 regulated METTL3. FOXO1 affected osteogenic differentiation mainly by regulating METTL3 modification of the PI3K/AKT pathway. CONCLUSIONS FOXO1 activated the PI3K/AKT signaling pathway by transcriptionally activating METTL3. This effect promoted the osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
- Qi Wang
- Foshan Dengte Dental Clinic, Fenjiang Middle Road, Chancheng District, Foshan, 528000, China.
| | - Wei Shi
- MeiQi Dental Clinic, Wuhan Mengya Dentistry, Wuhan, 430000, China
| | - Shaozhan Lin
- Foshan Dengte Dental Clinic, Fenjiang Middle Road, Chancheng District, Foshan, 528000, China
| | - Hanxue Wang
- Foshan Dengte Dental Clinic, Fenjiang Middle Road, Chancheng District, Foshan, 528000, China
| |
Collapse
|
32
|
Yuen JG, Hwang GR, Fesler A, Intriago E, Pal A, Ojha A, Ju J. Development of Gemcitabine-Modified miRNA Mimics as Cancer Therapeutics for Pancreatic Ductal Adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553255. [PMID: 37645827 PMCID: PMC10462072 DOI: 10.1101/2023.08.14.553255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Pancreatic cancer, including its most common subtype, pancreatic adenocarcinoma (PDAC), has the lowest five-year survival rate among patients with pancreatic cancer in the United States. Despite advancements in anticancer treatment, the overall median survival for patients with PDAC has not dramatically improved. Therefore, there is an urgent need to develop new strategies of treatment to address this issue. Non-coding RNAs, including microRNAs (miRNAs), have been found to have major roles in carcinogenesis and the subsequent treatment of various cancer types like PDAC. In this study, we developed a treatment strategy by modifying tumor suppressor miRNAs, hsa-miRNA-15a (miR-15a) and hsa-miRNA-194-1 (miR-194), with the nucleoside analog chemotherapeutic gemcitabine (Gem) to create Gem-modified mimics of miR-15a (Gem-miR-15a) and miR-194 (Gem-miR-194). In a panel of PDAC cell lines, we found that Gem-miR-15a and Gem-miR-194 induce cell cycle arrest and apoptosis, and these mimics are potent inhibitors with IC 50 values up to several hundred fold less than their native counterparts or Gem alone. Furthermore, we found that Gem-miR-15a and Gem-miR-194 retained miRNA function by downregulating the expression of several key targets including WEE1, CHK1, BMI1, and YAP1 for Gem-miR-15a, and FOXA1 for Gem-miR-194. We also found that our Gem-modified miRNA mimics exhibit an enhanced efficacy compared to Gem alone in patient-derived PDAC organoids. Furthermore, we observed that Gem-miR-15a significantly inhibits PDAC tumor growth in vivo without observing any noticeable signs of toxicity. Overall, our results demonstrate the therapeutic potential of Gem-modified miRNAs as a treatment strategy for PDAC. One Sentence Summary Yuen and Hwang et. al. have developed a potent therapeutic strategy for patients with pancreatic cancer by modifying microRNAs with gemcitabine.
Collapse
|
33
|
Bi X, Zheng D, Cai J, Xu D, Chen L, Xu Z, Cao M, Li P, Shen Y, Wang H, Zheng W, Wu D, Zheng S, Li K. Pan-cancer analyses reveal multi-omic signatures and clinical implementations of the forkhead-box gene family. Cancer Med 2023; 12:17428-17444. [PMID: 37401400 PMCID: PMC10501247 DOI: 10.1002/cam4.6312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/05/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Forkhead box (FOX) proteins belong to one of the largest transcription factor families and play crucial roles in the initiation and progression of cancer. Prior research has linked several FOX genes, such as FOXA1 and FOXM1, to the crucial process of carcinogenesis. However, the overall picture of FOX gene family across human cancers is far from clear. METHODS To investigate the broad molecular signatures of the FOX gene family, we conducted study on multi-omics data (including genomics, epigenomics and transcriptomics) from over 11,000 patients with 33 different types of human cancers. RESULTS Pan-cancer analysis reveals that FOX gene mutations were found in 17.4% of tumor patients with a substantial cancer type-dependent pattern. Additionally, high expression heterogeneity of FOX genes across cancer types was discovered, which can be partially attributed to the genomic or epigenomic alteration. Co-expression network analysis reveals that FOX genes may exert functions by regulating the expression of both their own and target genes. For a clinical standpoint, we provided 103 FOX gene-drug target-drug predictions and found FOX gene expression have potential survival predictive value. All of the results have been included in the FOX2Cancer database, which is freely accessible at http://hainmu-biobigdata.com/FOX2Cancer. CONCLUSION Our findings may provide a better understanding of roles FOX genes played in the development of tumors, and help to offer new avenues for uncovering tumorigenesis and unprecedented therapeutic targets.
Collapse
Affiliation(s)
- Xiaoman Bi
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Dehua Zheng
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Jiale Cai
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Dahua Xu
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Liyang Chen
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Zhizhou Xu
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Meng Cao
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Peihu Li
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Yutong Shen
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Hong Wang
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Wuping Zheng
- Department of Breast Thoracic TumorThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Deng Wu
- School of Life Sciences, Faculty of ScienceThe Chinese University of Hong KongHong KongChina
| | - Shaojiang Zheng
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical CenterHainan Medical UniversityHaikouChina
| | - Kongning Li
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| |
Collapse
|
34
|
Nevola R, Tortorella G, Rosato V, Rinaldi L, Imbriani S, Perillo P, Mastrocinque D, La Montagna M, Russo A, Di Lorenzo G, Alfano M, Rocco M, Ricozzi C, Gjeloshi K, Sasso FC, Marfella R, Marrone A, Kondili LA, Esposito N, Claar E, Cozzolino D. Gender Differences in the Pathogenesis and Risk Factors of Hepatocellular Carcinoma. BIOLOGY 2023; 12:984. [PMID: 37508414 PMCID: PMC10376683 DOI: 10.3390/biology12070984] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Several chronic liver diseases are characterized by a clear gender disparity. Among them, hepatocellular carcinoma (HCC) shows significantly higher incidence rates in men than in women. The different epidemiological distribution of risk factors for liver disease and HCC only partially accounts for these gender differences. In fact, the liver is an organ with recognized sexual dysmorphism and is extremely sensitive to the action of androgens and estrogens. Sex hormones act by modulating the risk of developing HCC and influencing its aggressiveness, response to treatments, and prognosis. Furthermore, androgens and estrogens are able to modulate the action of other factors and cofactors of liver damage (e.g., chronic HBV infection, obesity), significantly influencing their carcinogenic power. The purpose of this review is to examine the factors related to the different gender distribution in the incidence of HCC as well as the pathophysiological mechanisms involved, with particular reference to the central role played by sex hormones.
Collapse
Affiliation(s)
- Riccardo Nevola
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (P.P.); (D.M.); (N.E.); (E.C.)
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Valerio Rosato
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (P.P.); (D.M.); (N.E.); (E.C.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Pasquale Perillo
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (P.P.); (D.M.); (N.E.); (E.C.)
| | - Davide Mastrocinque
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (P.P.); (D.M.); (N.E.); (E.C.)
| | - Marco La Montagna
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Antonio Russo
- Department of Mental Health and Public Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Giovanni Di Lorenzo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Carmen Ricozzi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Klodian Gjeloshi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | | | - Nicolino Esposito
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (P.P.); (D.M.); (N.E.); (E.C.)
| | - Ernesto Claar
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (P.P.); (D.M.); (N.E.); (E.C.)
| | - Domenico Cozzolino
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| |
Collapse
|
35
|
Kumegawa K, Yang L, Miyata K, Maruyama R. FOXD1 is associated with poor outcome and maintains tumor-promoting enhancer-gene programs in basal-like breast cancer. Front Oncol 2023; 13:1156111. [PMID: 37234983 PMCID: PMC10206236 DOI: 10.3389/fonc.2023.1156111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Breast cancer biology varies markedly among patients. Basal-like breast cancer is one of the most challenging subtypes to treat because it lacks effective therapeutic targets. Despite numerous studies on potential targetable molecules in this subtype, few targets have shown promise. However, the present study revealed that FOXD1, a transcription factor that functions in both normal development and malignancy, is associated with poor prognosis in basal-like breast cancer. We analyzed publicly available RNA sequencing data and conducted FOXD1-knockdown experiments, finding that FOXD1 maintains gene expression programs that contribute to tumor progression. We first conducted survival analysis of patients grouped via a Gaussian mixture model based on gene expression in basal-like tumors, finding that FOXD1 is a prognostic factor specific to this subtype. Then, our RNA sequencing and chromatin immunoprecipitation sequencing experiments using the basal-like breast cancer cell lines BT549 and Hs578T with FOXD1 knockdown revealed that FOXD1 regulates enhancer-gene programs related to tumor progression. These findings suggest that FOXD1 plays an important role in basal-like breast cancer progression and may represent a promising therapeutic target.
Collapse
Affiliation(s)
- Kohei Kumegawa
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Liying Yang
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kenichi Miyata
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Reo Maruyama
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
36
|
Tabassum S, Basu M, Ghosh MK. The DEAD-box RNA helicase DDX5 (p68) and β-catenin: The crucial regulators of FOXM1 gene expression in arbitrating colorectal cancer. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - GENE REGULATORY MECHANISMS 2023; 1866:194933. [PMID: 36997114 DOI: 10.1016/j.bbagrm.2023.194933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
Forkhead box M1 (FOXM1), a vital member of the Forkhead box family of transcription factors, helps in mediating oncogenesis. However, limited knowledge exists regarding the mechanistic insights into the FOXM1 gene regulation. DDX5 (p68), an archetypal member of the DEAD-box family of RNA helicases, shows multifaceted action in cancer progression by arbitrating RNA metabolism and transcriptionally coactivating transcription factors. Here, we report a novel mechanism of alliance between DDX5 (p68) and the Wnt/β-catenin pathway in regulating FOXM1 gene expression and driving colon carcinogenesis. Initial bioinformatic analyses highlighted elevated expression levels of FOXM1 and DDX5 (p68) in colorectal cancer datasets. Immunohistochemical assays confirmed that FOXM1 showed a positive correlation with DDX5 (p68) and β-catenin in both normal and colon carcinoma patient samples. Overexpression of DDX5 (p68) and β-catenin increased the protein and mRNA expression profiles of FOXM1, and the converse correlation occurred during downregulation. Mechanistically, overexpression and knockdown of DDX5 (p68) and β-catenin elevated and diminished FOXM1 promoter activity respectively. Additionally, Chromatin immunoprecipitation assay demonstrated the occupancy of DDX5 (p68) and β-catenin at the TCF4/LEF binding element (TBE) sites on the FOXM1 promoter. Thiostrepton delineated the effect of FOXM1 inhibition on cell proliferation and migration. Colony formation assay, migration assay, and cell cycle data reveal the importance of the DDX5 (p68)/β-catenin/FOXM1 axis in oncogenesis. Collectively, our study mechanistically highlights the regulation of FOXM1 gene expression by DDX5 (p68) and β-catenin in colorectal cancer.
Collapse
|
37
|
Takeshita H, Yoshida R, Inoue J, Ishikawa K, Shinohara K, Hirayama M, Oyama T, Kubo R, Yamana K, Nagao Y, Gohara S, Sakata J, Nakashima H, Matsuoka Y, Nakamoto M, Hirayama M, Kawahara K, Takahashi N, Hirosue A, Kuwahara Y, Fukumoto M, Toya R, Murakami R, Nakayama H. FOXM1-Mediated Regulation of Reactive Oxygen Species and Radioresistance in Oral Squamous Cell Carcinoma Cells. J Transl Med 2023; 103:100060. [PMID: 36801643 DOI: 10.1016/j.labinv.2022.100060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Radioresistance is a major obstacle to the successful treatment of oral squamous cell carcinoma (OSCC). To help overcome this issue, we have developed clinically relevant radioresistant (CRR) cell lines generated by irradiating parental cells over time, which are useful for OSCC research. In the present study, we conducted gene expression analysis using CRR cells and their parental lines to investigate the regulation of radioresistance in OSCC cells. Based on gene expression changes over time in CRR cells and parental lines subjected to irradiation, forkhead box M1 (FOXM1) was selected for further analysis in terms of its expression in OSCC cell lines, including CRR cell lines and clinical specimens. We suppressed or upregulated the expression of FOXM1 in OSCC cell lines, including CRR cell lines, and examined radiosensitivity, DNA damage, and cell viability under various conditions. The molecular network regulating radiotolerance was also investigated, especially the redox pathway, and the radiosensitizing effect of FOXM1 inhibitors was examined as a potential therapeutic application. We found that FOXM1 was not expressed in normal human keratinocytes but was expressed in several OSCC cell lines. The expression of FOXM1 was upregulated in CRR cells compared with that detected in the parental cell lines. In a xenograft model and clinical specimens, FOXM1 expression was upregulated in cells that survived irradiation. FOXM1-specific small interfering RNA (siRNA) treatment increased radiosensitivity, whereas FOXM1 overexpression decreased radiosensitivity, and DNA damage was altered significantly under both conditions, as well as the levels of redox-related molecules and reactive oxygen species production. Treatment with the FOXM1 inhibitor thiostrepton had a radiosensitizing effect and overcame radiotolerance in CRR cells. According to these results, the FOXM1-mediated regulation of reactive oxygen species could be a novel therapeutic target for the treatment of radioresistant OSCC; thus, treatment strategies targeting this axis might overcome radioresistance in this disease.
Collapse
Affiliation(s)
- Hisashi Takeshita
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Junki Inoue
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kohei Ishikawa
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Department of Dentistry, Self-Defense Forces Kumamoto Hospital, Kumamoto, Japan
| | - Kosuke Shinohara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mayumi Hirayama
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toru Oyama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryuta Kubo
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Keisuke Yamana
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuka Nagao
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shunsuke Gohara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Junki Sakata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hikaru Nakashima
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Masafumi Nakamoto
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masatoshi Hirayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenta Kawahara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Nozomu Takahashi
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiyuki Hirosue
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshikazu Kuwahara
- Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Manabu Fukumoto
- Pathology Informatics Team, RIKEN Center for Advanced Intelligence Project, Chuo-ku, Tokyo, Japan
| | - Ryo Toya
- Department of Radiation Oncology, Kumamoto University Hospital, Kumamoto, Japan
| | - Ryuji Murakami
- Department of Medical Radiation Sciences, Faculty of Life Sciences, Kumamoto, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
38
|
Zhang J, Wang Y, Yuan B, Qin H, Wang Y, Yu H, Teng X, Yang Y, Zou J, Zhang M, Huang W, Wang Y. Identifying key transcription factors and immune infiltration in non-small-cell lung cancer using weighted correlation network and Cox regression analyses. Front Oncol 2023; 13:1112020. [PMID: 37197420 PMCID: PMC10183566 DOI: 10.3389/fonc.2023.1112020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/12/2023] [Indexed: 05/19/2023] Open
Abstract
Introduction Lung cancer is one of the most common cancers and a significant cause of cancer-related deaths. Non-small cell lung cancer (NSCLC) accounts for about 85% of all lung cancer cases. Therefore, it is crucial to identify effective diagnostic and therapeutic methods. In addition, transcription factors are essential for eukaryotic cells to regulate their gene expression, and aberrant expression transcription factors are an important step in the process of oncogenesis in NSCLC. Methods Differentially expressed transcription factors between NSCLC and normal tissues by analyzing mRNA profiling from The Cancer Genome Atlas (TCGA) database program were identified. Weighted correlation network analysis (WGCNA) and line plot of least absolute shrinkage and selection operator (LASSO) were performed to find prognosis-related transcription factors. The cellular functions of transcription factors were performed by 5-ethynyl-2'-deoxyuridine (EdU) assay, wound healing assay, cell invasion assay in lung cancer cells. Results We identified 725 differentially expressed transcription factors between NSCLC and normal tissues. Three highly related modules for survival were discovered, and transcription factors highly associated with survival were obtained by using WGCNA. Then line plot of LASSO was applied to screen transcription factors related to prognosis and build a prognostic model. Consequently, SETDB2, SNAI3, SCML4, and ZNF540 were identified as prognosis-related transcription factors and validated in multiple databases. The low expression of these hub genes in NSCLC was associated with poor prognosis. The deletions of both SETDB2 and SNAI3 were found to promote proliferation, invasion, and stemness in lung cancer cells. Furthermore, there were significant differences in the proportions of 22 immune cells between the high- and low-score groups. Discussion Therefore, our study identified the transcription factors involved in regulating NSCLC, and we constructed a panel for the prediction of prognosis and immune infiltration to inform the clinical application of transcription factor analysis in the prevention and treatment of NSCLC.
Collapse
Affiliation(s)
- Jingyao Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinuo Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baowen Yuan
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Qin
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Wang
- Department of Ultrasound, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hefen Yu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xu Teng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yunkai Yang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Zou
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Wei Huang, ; Yan Wang,
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Wei Huang, ; Yan Wang,
| |
Collapse
|
39
|
Lengyel E, Li Y, Weigert M, Zhu L, Eckart H, Javellana M, Ackroyd S, Xiao J, Olalekan S, Glass D, Iyer S, Krishnan R, Bilecz AJ, Lastra R, Chen M, Basu A. A molecular atlas of the human postmenopausal fallopian tube and ovary from single-cell RNA and ATAC sequencing. Cell Rep 2022; 41:111838. [PMID: 36543131 PMCID: PMC11295111 DOI: 10.1016/j.celrep.2022.111838] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/26/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
As part of the Human Cell Atlas Initiative, our goal is to generate single-cell transcriptomics (single-cell RNA sequencing [scRNA-seq], 86,708 cells) and regulatory (single-cell assay on transposase accessible chromatin sequencing [scATAC-seq], 59,830 cells) profiles of the normal postmenopausal ovary and fallopian tube (FT). The FT contains 11 major cell types, and the ovary contains 6. The dominating cell type in the FT and ovary is the stromal cell, which expresses aging-associated genes. FT epithelial cells express multiple ovarian cancer risk-associated genes (CCDC170, RND3, TACC2, STK33, and ADGB) and show active communication between fimbrial epithelial cells and ovarian stromal cells. Integrated single-cell transcriptomics and chromatin accessibility data show that the regulatory landscape of the fimbriae is different from other anatomic regions. Cell types with similar gene expression in the FT display transcriptional profiles. These findings allow us to disentangle the cellular makeup of the postmenopausal FT and ovary, advancing our knowledge of gynecologic diseases in menopause.
Collapse
Affiliation(s)
- Ernst Lengyel
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA.
| | - Yan Li
- Center for Research Informatics, The University of Chicago, Chicago, IL 60637, USA
| | - Melanie Weigert
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| | - Lisha Zhu
- Center for Research Informatics, The University of Chicago, Chicago, IL 60637, USA
| | - Heather Eckart
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Melissa Javellana
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah Ackroyd
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| | - Jason Xiao
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| | - Susan Olalekan
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Dianne Glass
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| | - Shilpa Iyer
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| | - Rahul Krishnan
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| | - Agnes Julia Bilecz
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Ricardo Lastra
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Mengjie Chen
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| | - Anindita Basu
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
40
|
FOXA1 in Breast Cancer: A Luminal Marker with Promising Prognostic and Predictive Impact. Cancers (Basel) 2022; 14:cancers14194699. [PMID: 36230619 PMCID: PMC9564251 DOI: 10.3390/cancers14194699] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
The present review focuses on the function of the forkhead protein FOXA1 in breast cancer (BC) in relation to steroid hormone receptors. We explored the currently available analytic approaches for FOXA1 assessment both at gene and protein levels, comparing the differences between the available techniques used for its diagnostic assessment. In addition, we elaborated on data regarding the prognostic and predictive role of this marker in BC based on several studies that evaluated its expression in relation to the outcome and/or response to therapy. FOXA1, similar to the androgen receptor (AR), may have a dual role in BC according to hormonal status. In luminal cancers, its expression contributes to a better prognosis, while in triple-negative breast cancers (TNBC), it implies an adverse outcome. Consequently, we observed that FOXA1-positive expression in a neoadjuvant setting may predict a lack of response in luminal BC as opposed to TNBC, in which FOXA1 allegedly increases its chemosensitivity. In conclusion, considering its accessible and convenient identification by immunohistochemistry, its important impact on prognosis, and its suitability to identify patients with different responses to chemotherapy, we propose that FOXA1 could be tested in routine diagnostics as an additional prognostic and predictive marker in BC.
Collapse
|
41
|
Ghosh S, Singh R, Vanwinkle ZM, Guo H, Vemula PK, Goel A, Haribabu B, Jala VR. Microbial metabolite restricts 5-fluorouracil-resistant colonic tumor progression by sensitizing drug transporters via regulation of FOXO3-FOXM1 axis. Theranostics 2022; 12:5574-5595. [PMID: 35910798 PMCID: PMC9330515 DOI: 10.7150/thno.70754] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
The survival rate of colorectal cancer patients is adversely affected by the selection of tumors resistant to conventional anti-cancer drugs such as 5-fluorouracil (5FU). Although there is mounting evidence that commensal gut microbiota is essential for effective colon cancer treatment, the detailed molecular mechanisms and the role of gut microbial metabolites remain elusive. The goal of this study is to decipher the impact and mechanisms of gut microbial metabolite, urolithin A (UroA) and its structural analogue, UAS03 on reversal of 5FU-resistant (5FUR) colon cancers. Methods: We have utilized the SW480 and HCT-116 parental (5FU-sensitive) and 5FUR colon cancer cells to examine the chemosensitization effects of UroA or UAS03 by using both in vitro and in vivo models. The effects of mono (UroA/UAS03/5FU) and combinatorial therapy (UroA/UAS03 + 5FU) on cell proliferation, apoptosis, cell migration and invasion, regulation of epithelial mesenchymal transition (EMT) mediators, expression and activities of drug transporters, and their regulatory transcription factors were examined using molecular, cellular, immunological and flowcytometric methods. Further, the anti-tumor effects of mono/combination therapy (UroA or UAS03 or 5FU or UroA/UAS03 + 5FU) were examined using pre-clinical models of 5FUR-tumor xenografts in NRGS mice and azoxymethane (AOM)-dextran sodium sulfate (DSS)-induced colon tumors. Results: Our data showed that UroA or UAS03 in combination with 5FU significantly inhibited cell viability, proliferation, invasiveness as well as induced apoptosis of the 5FUR colon cancer cells compared to mono treatments. Mechanistically, UroA or UAS03 chemosensitized the 5FUR cancer cells by downregulating the expression and activities of drug transporters (MDR1, BCRP, MRP2 and MRP7) leading to a decrease in the efflux of 5FU. Further, our data suggested the UroA or UAS03 chemosensitized 5FUR cancer cells to 5FU treatment through regulating FOXO3-FOXM1 axis. Oral treatment with UroA or UAS03 in combination with low dose i.p. 5FU significantly reduced the growth of 5FUR-tumor xenografts in NRGS mice. Further, combination therapy significantly abrogated colonic tumors in AOM-DSS-induced colon tumors in mice. Conclusions: In summary, gut microbial metabolite UroA and its structural analogue UAS03 chemosensitized the 5FUR colon cancers for effective 5FU chemotherapy. This study provided the novel characteristics of gut microbial metabolites to have significant translational implications in drug-resistant cancer therapeutics.
Collapse
Affiliation(s)
- Sweta Ghosh
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Rajbir Singh
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Zachary Matthew Vanwinkle
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Haixun Guo
- Department of Radiology, Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| | - Praveen Kumar Vemula
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), GKVK campus, Bangalore, Karnataka 560065, India
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Venkatakrishna Rao Jala
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| |
Collapse
|
42
|
Xu X, Xie L, Meng L, Geng S, Liu J, Cao X, Dong Z, Xing Z. Genetic features of TP53 mutation and its downstream FOXA1 in prostate cancer. Biosci Trends 2022; 16:221-229. [PMID: 35768267 DOI: 10.5582/bst.2022.01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiaofei Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Limei Xie
- Department of Public Health, The Second Hospital of Shandong University, Ji'nan, Shandong, China
| | - Liwei Meng
- Department of Urology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Shangzhen Geng
- Department of Urology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Jin Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Xiangting Cao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Zhaogang Dong
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Zhaoquan Xing
- Department of Urology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| |
Collapse
|