1
|
Cruz-Lebrón A, Faiez TS, Hess MM, Sfanos KS. Diet and the microbiome as mediators of prostate cancer risk, progression, and therapy response. Urol Oncol 2025; 43:209-220. [PMID: 39757039 DOI: 10.1016/j.urolonc.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 01/07/2025]
Abstract
Complex relationships between the human microbiome and cancer are increasingly recognized for cancer sites that harbor commensal microbial communities such as the gut, genitourinary tract, and skin. For organ sites that likely do not contain commensal microbiota, there is still a substantial capacity for the human-associated microbiota to influence disease etiology across the cancer spectrum. We propose such a relationship for prostate cancer, the most commonly diagnosed cancer in males in the United States. This review explores the current evidence for a role for the urinary and gut microbiota in prostate cancer risk, via both direct interactions (prostate infections) and long-distance interactions such as via the metabolism of procarcinogenic or anticarcinogenic dietary metabolites. We further explore a newly recognized role of the gut microbiota in mediating cancer treatment response or resistance either via production of androgens and/or procarcinogenic metabolites or via direct metabolism of anticancer drugs that are used to treat advanced disease. Overall, we present the current state of knowledge relating to how the human microbiome mediates prostate cancer risk, progression, and therapy response, as well as suggest future research directions for the field.
Collapse
Affiliation(s)
- Angélica Cruz-Lebrón
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Megan M Hess
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
2
|
Guo J, Koopmeiners JS, Walmsley SJ, Villalta PW, Yao L, Murugan P, Tejpaul R, Weight CJ, Turesky RJ. The Cooked Meat Carcinogen 2-Amino-1-methyl-6-phenylimidazo[4,5- b]pyridine Hair Dosimeter, DNA Adductomics Discovery, and Associations with Prostate Cancer Pathology Biomarkers. Chem Res Toxicol 2022; 35:703-730. [PMID: 35446561 PMCID: PMC9148444 DOI: 10.1021/acs.chemrestox.2c00012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Well-done cooked red meat consumption is linked to aggressive prostate cancer (PC) risk. Identifying mutation-inducing DNA adducts in the prostate genome can advance our understanding of chemicals in meat that may contribute to PC. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a heterocyclic aromatic amine (HAA) formed in cooked meat, is a potential human prostate carcinogen. PhIP was measured in the hair of PC patients undergoing prostatectomy, bladder cancer patients under treatment for cystoprostatectomy, and patients treated for benign prostatic hyperplasia (BPH). PhIP hair levels were above the quantification limit in 123 of 205 subjects. When dichotomizing prostate pathology biomarkers, the geometric mean PhIP hair levels were higher in patients with intermediate and elevated-risk prostate-specific antigen values than lower-risk values <4 ng/mL (p = 0.03). PhIP hair levels were also higher in patients with intermediate and high-risk Gleason scores ≥7 compared to lower-risk Gleason score 6 and BPH patients (p = 0.02). PC patients undergoing prostatectomy had higher PhIP hair levels than cystoprostatectomy or BPH patients (p = 0.02). PhIP-DNA adducts were detected in 9.4% of the patients assayed; however, DNA adducts of other carcinogenic HAAs, and benzo[a]pyrene formed in cooked meat, were not detected. Prostate specimens were also screened for 10 oxidative stress-associated lipid peroxidation (LPO) DNA adducts. Acrolein 1,N2-propano-2'-deoxyguanosine adducts were detected in 54.5% of the patients; other LPO adducts were infrequently detected. Acrolein adducts were not associated with prostate pathology biomarkers, although DNA adductomic profiles differed between PC patients with low and high-grade Gleason scores. Many DNA adducts are of unknown origin; however, dG adducts of formaldehyde and a series of purported 4-hydroxy-2-alkenals were detected at higher abundance in a subset of patients with elevated Gleason scores. The PhIP hair biomarker and DNA adductomics data support the paradigm of well-done cooked meat and oxidative stress in aggressive PC risk.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christopher J Weight
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | | |
Collapse
|
3
|
Bellamri M, Walmsley SJ, Turesky RJ. Metabolism and biomarkers of heterocyclic aromatic amines in humans. Genes Environ 2021; 43:29. [PMID: 34271992 PMCID: PMC8284014 DOI: 10.1186/s41021-021-00200-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/27/2021] [Indexed: 12/15/2022] Open
Abstract
Heterocyclic aromatic amines (HAAs) form during the high-temperature cooking of meats, poultry, and fish. Some HAAs also arise during the combustion of tobacco. HAAs are multisite carcinogens in rodents, inducing cancer of the liver, gastrointestinal tract, pancreas, mammary, and prostate glands. HAAs undergo metabolic activation by N-hydroxylation of the exocyclic amine groups to produce the proposed reactive intermediate, the heteroaryl nitrenium ion, which is the critical metabolite implicated in DNA damage and genotoxicity. Humans efficiently convert HAAs to these reactive intermediates, resulting in HAA protein and DNA adduct formation. Some epidemiologic studies have reported an association between frequent consumption of well-done cooked meats and elevated cancer risk of the colorectum, pancreas, and prostate. However, other studies have reported no associations between cooked meat and these cancer sites. A significant limitation in epidemiology studies assessing the role of HAAs and cooked meat in cancer risk is their reliance on food frequency questionnaires (FFQ) to gauge HAA exposure. FFQs are problematic because of limitations in self-reported dietary history accuracy, and estimating HAA intake formed in cooked meats at the parts-per-billion level is challenging. There is a critical need to establish long-lived biomarkers of HAAs for implementation in molecular epidemiology studies designed to assess the role of HAAs in health risk. This review article highlights the mechanisms of HAA formation, mutagenesis and carcinogenesis, the metabolism of several prominent HAAs, and the impact of critical xenobiotic-metabolizing enzymes on biological effects. The analytical approaches that have successfully biomonitored HAAs and their biomarkers for molecular epidemiology studies are presented.
Collapse
Affiliation(s)
- Medjda Bellamri
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, MN, 55455, USA.,Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Scott J Walmsley
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, MN, 55455, USA.,Institute of Health Informatics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, MN, 55455, USA. .,Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Pelland-St-Pierre L, Sernoskie SC, Verner MA, Ho V. Genotoxic effect of meat consumption: A mini review. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 863-864:503311. [PMID: 33678247 DOI: 10.1016/j.mrgentox.2021.503311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/25/2022]
Abstract
In 2015, the International Agency for Research on Cancer classified the consumption of processed meat as carcinogenic to humans (Group 1) and red meat as probably carcinogenic to humans (Group 2A) based on sufficient data from animal models and epidemiological studies. However, research characterising the mechanisms underlying this carcinogenic process in humans are limited, particularly with respect to measures of direct DNA damage. The current review sought to evaluate and summarize the recent literature, published since 2000, regarding the associations of meat consumption and three biomarkers of genotoxicity in humans: DNA strand breaks (measured using the comet assay), DNA adducts, and micronucleus formation. After screening 230 potential articles, 35 were included, and then were classified as experimental or observational in design, the latter of which were further categorized according to their dietary assessment approach. Among the 30 observational studies, 4 of which used two different assays, 3 of 5 comet assay studies, 13 of 20 DNA adduct studies, and 7 of 9 micronucleus studies reported a positive association between meat consumption and DNA damage. Among the 5 experimental studies, 1 of 1 using the comet assay, 3 of 3 measuring DNA adducts and 0 of 1 measuring micronuclei reported significant positive associations with meat consumption. Nevertheless, common limitations among the selected publications included small sample size, and poor methodological reporting of both exposure and outcome measures. Moreover, the vast majority of studies only measured DNA damage in one biological sample using a single assay and we cannot exclude the possibility of publication bias. Ultimately, our review of the literature, published since 2000, revealed a preponderance of studies that support mechanisms of genotoxicity in playing an important role in the meat-cancer association.
Collapse
Affiliation(s)
- Laura Pelland-St-Pierre
- Department of Social and Preventive Medicine, École de Santé Publique de l'Université de Montréal (ESPUM), Université de Montréal, Montréal, Québec, Canada; Health Innovation and Evaluation Hub, Université de Montréal Hospital Research Centre (CRCHUM), Montréal, Québec, Canada
| | - Samantha Christine Sernoskie
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Marc-André Verner
- Centre de recherche en santé publique (CReSP), Université de Montréal, Montréal, Québec, Canada; Department of Occupational and Environmental Health, École de Santé Publique de l'Université de Montréal (ESPUM), Université de Montréal, Montréal, Québec, Canada
| | - Vikki Ho
- Department of Social and Preventive Medicine, École de Santé Publique de l'Université de Montréal (ESPUM), Université de Montréal, Montréal, Québec, Canada; Health Innovation and Evaluation Hub, Université de Montréal Hospital Research Centre (CRCHUM), Montréal, Québec, Canada.
| |
Collapse
|
5
|
Yang H, Ji Z, Wang R, Fan D, Zhao Y, Wang M. Inhibitory effect of selected hydrocolloids on 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) formation in chemical models and beef patties. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123486. [PMID: 32707466 DOI: 10.1016/j.jhazmat.2020.123486] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/27/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a mutagen and a rodent carcinogen mainly formed in thermally processed muscle foods. Hydrocolloids are widely used as thickeners, gelling agents and stabilizers to improve food quality in the food industry. In this study, the inhibitory effects of eight hydrocolloids on the formation of PhIP were investigated in both chemical models and beef patties. 1% (w/w) of carboxymethylcellulose V, κ-carrageenan, alginic acid, and pectin significantly reduced PhIP formation by 53 %, 54 %, 48 %, and 47 %, respectively in chemical models. In fried beef patties, κ-carrageenan appeared to be most capable of inhibiting PhIP formation among the eight tested hydrocolloids. 1% (w/w) of κ-carrageenan caused a decreased formation of PhIP by 90 %. 1% (w/w) of κ-carrageenan also significantly reduced the formation of other heterocyclic aromatic amines including MeIQx and 4,8-DiMeIQx by 64 % and 48 %, respectively in fried beef patties. Further mechanism study showed that κ-carrageenan addition decreased the PhIP precursor creatinine residue and reduced the content of Maillard reaction intermediates including phenylacetaldehyde and aldol condensation product in the chemical model. κ-Carrageenan may inhibit PhIP formation via trapping both creatinine and phenylacetaldehyde. The structures of adducts formed between κ-carrageenan and creatinine and κ-carrageenan and phenylacetaldehyde merits further study.
Collapse
Affiliation(s)
- Hongmei Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China
| | - Zhiwei Ji
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China
| | - Ru Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China
| | - Daming Fan
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China.
| | - Mingfu Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China; School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
6
|
Wang Q, Cheng W, Zhang Y, Kang Q, Gowd V, Ren Y, Chen F, Cheng KW. A novel potent inhibitor of 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) formation from Chinese chive: Identification, inhibitory effect and action mechanism. Food Chem 2020; 345:128753. [PMID: 33302112 DOI: 10.1016/j.foodchem.2020.128753] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Differential solvent extraction and phytochemical profiling of Chinse chive were employed to identify its principal PhIP-formation inhibitory constituents. Six compounds (mangiferin, isorhamnetin, luteolin, rosmarinic acid, 6-methylcoumarin, and cyanidin-3-glucoside) were further analyzed in a PhIP-producing chemical model to identify the dominant inhibitor. Its inhibitory mechanism was investigated by assessing the contribution of antioxidation and scavenging of key PhIP precursor/intermediate. No significant correlation was observed between PhIP inhibition rates and antioxidant activities. Further evaluation of the novel potent inhibitor mangiferin revealed a highly significant correlation between its dose-dependent inhibition of PhIP formation and phenylacetaldehyde scavenging. Finally, the proposed mechanism was corroborated through organic synthesis and structural elucidation of the mangiferin-phenylacetaldehyde adduct. This study has identified a potent novel inhibitor of the most abundant HA in heat-processed food and characterized its action mechanism. These findings may provide insight for future studies on mitigation of dietary exposure to toxic Maillard products by polyphenolic phytochemicals.
Collapse
Affiliation(s)
- Qi Wang
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Weiwei Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yifeng Zhang
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Qingzheng Kang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Vemana Gowd
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yuanyuan Ren
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
7
|
Nor Hasyimah AK, Jinap S, Sanny M, Ainaatul AI, Sukor R, Jambari NN, Nordin N, Jahurul MHA. Effects of Honey-Spices Marination on Polycyclic Aromatic Hydrocarbons and Heterocyclic Amines Formation in Gas-Grilled Beef Satay. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1802302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- A. K. Nor Hasyimah
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - S. Jinap
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - M. Sanny
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - A. I. Ainaatul
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - R. Sukor
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - N. N. Jambari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - N. Nordin
- Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - M. H. A. Jahurul
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
8
|
Gillette MA, Satpathy S, Cao S, Dhanasekaran SM, Vasaikar SV, Krug K, Petralia F, Li Y, Liang WW, Reva B, Krek A, Ji J, Song X, Liu W, Hong R, Yao L, Blumenberg L, Savage SR, Wendl MC, Wen B, Li K, Tang LC, MacMullan MA, Avanessian SC, Kane MH, Newton CJ, Cornwell M, Kothadia RB, Ma W, Yoo S, Mannan R, Vats P, Kumar-Sinha C, Kawaler EA, Omelchenko T, Colaprico A, Geffen Y, Maruvka YE, da Veiga Leprevost F, Wiznerowicz M, Gümüş ZH, Veluswamy RR, Hostetter G, Heiman DI, Wyczalkowski MA, Hiltke T, Mesri M, Kinsinger CR, Boja ES, Omenn GS, Chinnaiyan AM, Rodriguez H, Li QK, Jewell SD, Thiagarajan M, Getz G, Zhang B, Fenyö D, Ruggles KV, Cieslik MP, Robles AI, Clauser KR, Govindan R, Wang P, Nesvizhskii AI, Ding L, Mani DR, Carr SA. Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma. Cell 2020; 182:200-225.e35. [PMID: 32649874 PMCID: PMC7373300 DOI: 10.1016/j.cell.2020.06.013] [Citation(s) in RCA: 475] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/06/2020] [Accepted: 06/03/2020] [Indexed: 12/24/2022]
Abstract
To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.
Collapse
Affiliation(s)
- Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, 02115, USA.
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| | - Song Cao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | - Suhas V Vasaikar
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yize Li
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Wen-Wei Liang
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiayi Ji
- Department of Population Health Science and Policy; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xiaoyu Song
- Department of Population Health Science and Policy; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wenke Liu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Runyu Hong
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Lijun Yao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Lili Blumenberg
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael C Wendl
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lauren C Tang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Melanie A MacMullan
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shayan C Avanessian
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - M Harry Kane
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | | | - MacIntosh Cornwell
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ramani B Kothadia
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rahul Mannan
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pankaj Vats
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Emily A Kawaler
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tatiana Omelchenko
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Antonio Colaprico
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Yosef E Maruvka
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | | | - Maciej Wiznerowicz
- Poznan University of Medical Sciences, Poznań, 61-701, Poland; International Institute for Molecular Oncology, Poznań, 60-203, Poland
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rajwanth R Veluswamy
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - David I Heiman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Matthew A Wyczalkowski
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Qing Kay Li
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, 21224, USA
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly V Ruggles
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marcin P Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Ramaswamy Govindan
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
9
|
Yun BH, Guo J, Bellamri M, Turesky RJ. DNA adducts: Formation, biological effects, and new biospecimens for mass spectrometric measurements in humans. MASS SPECTROMETRY REVIEWS 2020; 39:55-82. [PMID: 29889312 PMCID: PMC6289887 DOI: 10.1002/mas.21570] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/25/2018] [Indexed: 05/18/2023]
Abstract
Hazardous chemicals in the environment and diet or their electrophilic metabolites can form adducts with genomic DNA, which can lead to mutations and the initiation of cancer. In addition, reactive intermediates can be generated in the body through oxidative stress and damage the genome. The identification and measurement of DNA adducts are required for understanding exposure and the causal role of a genotoxic chemical in cancer risk. Over the past three decades, 32 P-postlabeling, immunoassays, gas chromatography/mass spectrometry, and liquid chromatography/mass spectrometry (LC/MS) methods have been established to assess exposures to chemicals through measurements of DNA adducts. It is now possible to measure some DNA adducts in human biopsy samples, by LC/MS, with as little as several milligrams of tissue. In this review article, we highlight the formation and biological effects of DNA adducts, and highlight our advances in human biomonitoring by mass spectrometric analysis of formalin-fixed paraffin-embedded tissues, untapped biospecimens for carcinogen DNA adduct biomarker research.
Collapse
Affiliation(s)
- Byeong Hwa Yun
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Jingshu Guo
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Medjda Bellamri
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Robert J. Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| |
Collapse
|
10
|
Kiriya C, Yeewa R, Khanaree C, Chewonarin T. Purple rice extract inhibits testosterone-induced rat prostatic hyperplasia and growth of human prostate cancer cell line by reduction of androgen receptor activation. J Food Biochem 2019; 43:e12987. [PMID: 31489669 DOI: 10.1111/jfbc.12987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/25/2019] [Accepted: 07/05/2019] [Indexed: 02/04/2023]
Abstract
The preventive effects of purple rice crude ethanolic extract (PRE) were firstly investigated on testosterone-induced benign prostatic hyperplasia (BPH) in castrated rats. As compared to vehicle-treated rats, lower prostate weights were found in the BPH rats that received PRE 1 g/kg bw. In addition, the PRE treatment down-regulated the androgen receptor (AR) expression in the dorsolateral prostate of those rats. In human prostate cancer cell line, LNCaP, PRE could reduce the cell growth, down-regulate the expression of AR and suppress prostate-specific antigen (PSA) secretion. Moreover, PRE also inhibited an activity of 5α-reductase from rat liver microsomes and the mutagenicity of Salmonella Typhimurium induced by standard mutagen. These results demonstrate that PRE altered testosterone-induced BPH in rats and retarded prostate cancer cell growth by modulating AR expression. It is therefore recommended that further investigation is undertaken into the chemopreventive potential of PRE in androgen-AR mediated diseases. PRACTICAL APPLICATIONS: This study revealed the mechanisms of purple rice extract on testosterone-induced rat benign prostatic hyperplasia. Such information, purple rice components show promise as an effective chemopreventive agent for prostatic hyperplasia prevention by alternating the influence of testosterone through its receptor. Thus, purple rice might be developed as food supplement for reduction of prostatic hyperplasia or cancer in elder men.
Collapse
Affiliation(s)
- Chanarat Kiriya
- Faculty of Medicine, Department of Biochemistry, Chiang Mai University, Chiangmai, Thailand.,Faculty of Medicine, Research Administration Section, Chiang Mai University, Chiangmai, Thailand
| | - Ranchana Yeewa
- Faculty of Medicine, Department of Biochemistry, Chiang Mai University, Chiangmai, Thailand
| | - Chakkrit Khanaree
- Faculty of Medicine, Department of Biochemistry, Chiang Mai University, Chiangmai, Thailand.,The School of Traditional and Alternative Medicine, Chiangrai Rajabhat University, Chiangmai, Thailand
| | - Teera Chewonarin
- Faculty of Medicine, Department of Biochemistry, Chiang Mai University, Chiangmai, Thailand
| |
Collapse
|
11
|
Bellamri M, Turesky RJ. Dietary Carcinogens and DNA Adducts in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:29-55. [PMID: 31900903 DOI: 10.1007/978-3-030-32656-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PC) is the most commonly diagnosed non-cutaneous cancer and the second leading cause of cancer-related to death in men. The major risk factors for PC are age, family history, and African American ethnicity. Epidemiological studies have reported large geographical variations in PC incidence and mortality, and thus lifestyle and dietary factors influence PC risk. High fat diet, dairy products, alcohol and red meats, are considered as risk factors for PC. This book chapter provides a comprehensive, literature-based review on dietary factors and their molecular mechanisms of prostate carcinogenesis. A large portion of our knowledge is based on epidemiological studies where dietary factors such as cancer promoting agents, including high-fat, dairy products, alcohol, and cancer-initiating genotoxicants formed in cooked meats have been evaluated for PC risk. However, the precise mechanisms in the etiology of PC development remain uncertain. Additional animal and human cell-based studies are required to further our understandings of risk factors involved in PC etiology. Specific biomarkers of chemical exposures and DNA damage in the prostate can provide evidence of cancer-causing agents in the prostate. Collectively, these studies can improve public health research, nutritional education and chemoprevention strategies.
Collapse
Affiliation(s)
- Medjda Bellamri
- Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Robert J Turesky
- Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, Minneapolis, MN, USA. .,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
12
|
Neslund-Dudas CM, McBride RB, Kandegedara A, Rybicki BA, Kryvenko ON, Chitale D, Gupta N, Williamson SR, Rogers CG, Cordon-Cardo C, Rundle AG, Levin AM, Dou QP, Mitra B. Association between cadmium and androgen receptor protein expression differs in prostate tumors of African American and European American men. J Trace Elem Med Biol 2018; 48:233-238. [PMID: 29773186 PMCID: PMC5985809 DOI: 10.1016/j.jtemb.2018.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 11/19/2022]
Abstract
Cadmium is a known carcinogen that has been implicated in prostate cancer, but how it affects prostate carcinogenesis in humans remains unclear. Evidence from basic science suggests that cadmium can bind to the androgen receptor causing endocrine disruption. The androgen receptor is required for normal prostate development and is the key driver of prostate cancer progression. In this study, we examined the association between cadmium content and androgen receptor protein expression in prostate cancer tissue of African American (N = 22) and European American (N = 30) men. Although neither overall tumor cadmium content (log transformed) nor androgen receptor protein expression level differed by race, we observed a race-cadmium interaction with regard to androgen receptor expression (P = 0.003) even after accounting for age at prostatectomy, smoking history, and Gleason score. African American men had a significant positive correlation between tumor tissue cadmium content and androgen receptor expression (Pearson correlation = 0.52, P = 0.013), while European Americans showed a non-significant negative correlation between the two (Pearson correlation = -0.19, P = 0.31). These results were unchanged after further accounting for tissue zinc content or dietary zinc or selenium intake. African American cases with high-cadmium content (>median) in tumor tissue had more than double the androgen receptor expression (0.021 vs. 0.008, P = 0.014) of African American men with low-cadmium level. No difference in androgen receptor expression was observed in European Americans by cadmium level (high 0.015 vs. low 0.011, P = 0.30). Larger studies are needed to confirm these results and if upheld, determine the biologic mechanism by which cadmium increases androgen receptor protein expression in a race-dependent manner. Our results suggest that cadmium may play a role in race disparities observed in prostate cancer.
Collapse
Affiliation(s)
- Christine M Neslund-Dudas
- Department of Public Health Sciences, Henry Ford Health System, One Ford Place, Suite 5C, Detroit, MI 48202, United States; Henry Ford Cancer Institute, Henry Ford Health System, One Ford Place, Suite 5C, Detroit, MI 48202, United States.
| | - Russell B McBride
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1428 Madison Avenue, 15th Floor, New York, NY 10029, United States
| | - Ashoka Kandegedara
- Department of Biochemistry & Molecular Biology, Wayne State University School of Medicine, 540 E. Canfield Avenue, Detroit, MI 48201, United States
| | - Benjamin A Rybicki
- Department of Public Health Sciences, Henry Ford Health System, One Ford Place, Suite 5C, Detroit, MI 48202, United States; Henry Ford Cancer Institute, Henry Ford Health System, One Ford Place, Suite 5C, Detroit, MI 48202, United States
| | - Oleksandr N Kryvenko
- Departments of Pathology and Laboratory Medicine, Department of Urology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1400 NW 12th Avenue, East Bldg, 4th Floor, Miami, FL 33136, United States
| | - Dhananjay Chitale
- Henry Ford Cancer Institute, Henry Ford Health System, One Ford Place, Suite 5C, Detroit, MI 48202, United States; Department of Pathology, Henry Ford Health System, 2799 West Grand Blvd., Detroit, MI, 48202, United States
| | - Nilesh Gupta
- Henry Ford Cancer Institute, Henry Ford Health System, One Ford Place, Suite 5C, Detroit, MI 48202, United States; Department of Pathology, Henry Ford Health System, 2799 West Grand Blvd., Detroit, MI, 48202, United States
| | - Sean R Williamson
- Henry Ford Cancer Institute, Henry Ford Health System, One Ford Place, Suite 5C, Detroit, MI 48202, United States; Department of Pathology, Henry Ford Health System, 2799 West Grand Blvd., Detroit, MI, 48202, United States
| | - Craig G Rogers
- Henry Ford Cancer Institute, Henry Ford Health System, One Ford Place, Suite 5C, Detroit, MI 48202, United States; Department of Urology, Henry Ford Health System, 2799 West Grand Blvd., Detroit, MI, 48202, United States
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1428 Madison Avenue, 15th Floor, New York, NY 10029, United States
| | - Andrew G Rundle
- Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY, 10032, United States
| | - Albert M Levin
- Department of Public Health Sciences, Henry Ford Health System, One Ford Place, Suite 5C, Detroit, MI 48202, United States; Henry Ford Cancer Institute, Henry Ford Health System, One Ford Place, Suite 5C, Detroit, MI 48202, United States
| | - Q Ping Dou
- Departments of Oncology, Pharmacology and Pathology, and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, United States
| | - Bharati Mitra
- Department of Biochemistry & Molecular Biology, Wayne State University School of Medicine, 540 E. Canfield Avenue, Detroit, MI 48201, United States
| |
Collapse
|
13
|
Yun BH, Guo J, Turesky RJ. Formalin-Fixed Paraffin-Embedded Tissues-An Untapped Biospecimen for Biomonitoring DNA Adducts by Mass Spectrometry. TOXICS 2018; 6:E30. [PMID: 29865161 PMCID: PMC6027047 DOI: 10.3390/toxics6020030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 01/03/2023]
Abstract
The measurement of DNA adducts provides important information about human exposure to genotoxic chemicals and can be employed to elucidate mechanisms of DNA damage and repair. DNA adducts can serve as biomarkers for interspecies comparisons of the biologically effective dose of procarcinogens and permit extrapolation of genotoxicity data from animal studies for human risk assessment. One major challenge in DNA adduct biomarker research is the paucity of fresh frozen biopsy samples available for study. However, archived formalin-fixed paraffin-embedded (FFPE) tissues with clinical diagnosis of disease are often available. We have established robust methods to recover DNA free of crosslinks from FFPE tissues under mild conditions which permit quantitative measurements of DNA adducts by liquid chromatography-mass spectrometry. The technology is versatile and can be employed to screen for DNA adducts formed with a wide range of environmental and dietary carcinogens, some of which were retrieved from section-cuts of FFPE blocks stored at ambient temperature for up to nine years. The ability to retrospectively analyze FFPE tissues for DNA adducts for which there is clinical diagnosis of disease opens a previously untapped source of biospecimens for molecular epidemiology studies that seek to assess the causal role of environmental chemicals in cancer etiology.
Collapse
Affiliation(s)
- Byeong Hwa Yun
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA.
| | - Jingshu Guo
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA.
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
14
|
Ahmad Kamal NH, Selamat J, Sanny M. Simultaneous formation of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic amines (HCAs) in gas-grilled beef satay at different temperatures. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:848-869. [DOI: 10.1080/19440049.2018.1425553] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nor Hasyimah Ahmad Kamal
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Jinap Selamat
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang, Malaysia
| | - Maimunah Sanny
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
15
|
Sardana RK, Chhikara N, Tanwar B, Panghal A. Dietary impact on esophageal cancer in humans: a review. Food Funct 2018; 9:1967-1977. [DOI: 10.1039/c7fo01908d] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Foods and the risk of esophageal cancer.
Collapse
Affiliation(s)
- Rachna Khosla Sardana
- Department of Food Technology and Nutrition
- Lovely Professional University
- Jalandhar- 144411
- India
| | - Navnidhi Chhikara
- Department of Food Technology and Nutrition
- Lovely Professional University
- Jalandhar- 144411
- India
| | - Beenu Tanwar
- Mansinhbhai Institute of Dairy and Food Technology
- Mehsana-384002
- India
| | - Anil Panghal
- Department of Food Technology and Nutrition
- Lovely Professional University
- Jalandhar- 144411
- India
| |
Collapse
|
16
|
Koda M, Iwasaki M, Yamano Y, Lu X, Katoh T. Association between NAT2, CYP1A1, and CYP1A2 genotypes, heterocyclic aromatic amines, and prostate cancer risk: a case control study in Japan. Environ Health Prev Med 2017; 22:72. [PMID: 29165164 PMCID: PMC5664586 DOI: 10.1186/s12199-017-0681-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/17/2017] [Indexed: 02/06/2023] Open
Abstract
Background Heterocyclic aromatic amines (HAAs) may confer prostate cancer risk; however, the evidence is inconclusive and the activity of HAA-metabolizing enzymes is modulated by gene variants. The purpose of our study was to determine whether there was evidence of an association between HAA intake, polymorphisms in NAT2, CYP1A1, and CYP1A2 and prostate cancer risk in Japanese men. Methods Secondary data analysis of an observational case control study was performed. Among 750 patients with prostate cancer and 870 healthy controls, 351 cases and 351 age-matched controls were enrolled for analysis. HAA intake was estimated using a food frequency questionnaire and genotypes were scored by TaqMan real-time PCR assay. Logistic regression analysis was conducted according to affected/control status. Results We found that high HAA intake was significantly associated with an increased risk of prostate cancer (odds ratio (OR), 1.90; 95% confidence interval (95% CI), 1.40–2.59). The increased risk of prostate cancer was observed among individuals with the NAT2 slow acetylator phenotype (OR, 1.65; 95% CI, 1.04–2.61), CYP1A1 GA + GG genotype (OR, 1.27; 95% CI, 1.02–1.59), and CYP1A2 CA + AA genotype (OR, 1.43; 95% CI, 1.03–2.00). In addition, CYP1A1 GA + GG genotypes were associated with increased cancer risk in low (OR, 2.05; 95% CI, 1.19–3.63), moderate (OR, 1.72; 95% CI, 1.07–2.76), and high (OR, 2.86; 95% CI, 1.83–4.47) HAA intake groups. Conclusions Our results suggest that high HAA intake is a risk factor of prostate cancer, and genotypes related to HAA metabolic enzymes can modulate the degree of the risk.
Collapse
Affiliation(s)
- Masahide Koda
- Department of Public Health, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjou, Chuo-ku, Kumamoto, 860-8556, Japan.
| | - Motoki Iwasaki
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Yuko Yamano
- Department of Hygiene and Preventive Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Xi Lu
- Department of Public Health, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjou, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takahiko Katoh
- Department of Public Health, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjou, Chuo-ku, Kumamoto, 860-8556, Japan
| |
Collapse
|
17
|
Xiao S, Guo J, Yun BH, Villalta PW, Krishna S, Tejpaul R, Murugan P, Weight CJ, Turesky RJ. Biomonitoring DNA Adducts of Cooked Meat Carcinogens in Human Prostate by Nano Liquid Chromatography-High Resolution Tandem Mass Spectrometry: Identification of 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine DNA Adduct. Anal Chem 2016; 88:12508-12515. [PMID: 28139123 PMCID: PMC5545982 DOI: 10.1021/acs.analchem.6b04157] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epidemiologic studies have reported an association between frequent consumption of well-done cooked meats and prostate cancer risk. However, unambiguous physiochemical markers of DNA damage from carcinogens derived from cooked meats, such as DNA adducts, have not been identified in human samples to support this paradigm. We have developed a highly sensitive nano-LC-Orbitrap MS n method to measure DNA adducts of several carcinogens originating from well-done cooked meats, tobacco smoke, and environmental pollution, including 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-9H-pyrido[2,3-b]indole (AαC), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), benzo[a]pyrene (B[a]P), and 4-aminobiphenyl (4-ABP). The limit of quantification (LOQ) of the major deoxyguanosine (dG) adducts of these carcinogens ranged between 1.3 and 2.2 adducts per 10 9 nucleotides per 2.5 μg of DNA assayed. The DNA adduct of PhIP, N-(deoxyguanosin-8-yl)-PhIP (dG-C8-PhIP) was identified in 11 out of 35 patients, at levels ranging from 2 to 120 adducts per 10 9 nucleotides. The dG-C8 adducts of AαC and MeIQx, and the B[a]P adduct, 10-(deoxyguanosin-N 2 -yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene (dG-N 2 -B[a]PDE) were not detected in any specimen, whereas N-(deoxyguanosin-8-yl)-4-ABP (dG-C8-4-ABP) was identified in one subject (30 adducts per 10 9 nucleotides). PhIP-DNA adducts also were recovered quantitatively from formalin fixed paraffin embedded (FFPE) tissues, signifying FFPE tissues can serve as biospecimens for carcinogen DNA adduct biomarker research. Our biomarker data provide support to the epidemiological observations implicating PhIP, one of the most mass-abundant heterocyclic aromatic amines formed in well-done cooked meats, as a DNA-damaging agent that may contribute to the etiology of prostate cancer.
Collapse
Affiliation(s)
- Shun Xiao
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Jingshu Guo
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Byeong Hwa Yun
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Suprita Krishna
- Department of Urology, University of Minnesota, 420 Delaware Street SE, Minneapolis, Minnesota 55455, United States
| | - Resha Tejpaul
- Department of Urology, University of Minnesota, 420 Delaware Street SE, Minneapolis, Minnesota 55455, United States
| | - Paari Murugan
- Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware Street SE, Minneapolis, Minnesota 55455, United States
| | - Christopher J. Weight
- Department of Urology, University of Minnesota, 420 Delaware Street SE, Minneapolis, Minnesota 55455, United States
| | - Robert J. Turesky
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Fahrer J, Kaina B. Impact of DNA repair on the dose-response of colorectal cancer formation induced by dietary carcinogens. Food Chem Toxicol 2016; 106:583-594. [PMID: 27693244 DOI: 10.1016/j.fct.2016.09.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/10/2016] [Accepted: 09/27/2016] [Indexed: 12/30/2022]
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers, which is causally linked to dietary habits, notably the intake of processed and red meat. Processed and red meat contain dietary carcinogens, including heterocyclic aromatic amines (HCAs) and N-nitroso compounds (NOC). NOC are agents that induce various N-methylated DNA adducts and O6-methylguanine (O6-MeG), which are removed by base excision repair (BER) and O6-methylguanine-DNA methyltransferase (MGMT), respectively. HCAs such as the highly mutagenic 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) cause bulky DNA adducts, which are removed from DNA by nucleotide excision repair (NER). Both O6-MeG and HCA-induced DNA adducts are linked to the occurrence of KRAS and APC mutations in colorectal tumors of rodents and humans, thereby driving CRC initiation and progression. In this review, we focus on DNA repair pathways removing DNA lesions induced by NOC and HCA and assess their role in protecting against mutagenicity and carcinogenicity in the large intestine. We further discuss the impact of DNA repair on the dose-response relationship in colorectal carcinogenesis in view of recent studies, demonstrating the existence of 'no effect' point of departures (PoDs), i.e. thresholds for genotoxicity and carcinogenicity. The available data support the threshold concept for NOC with DNA repair being causally involved.
Collapse
Affiliation(s)
- Jörg Fahrer
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany.
| | - Bernd Kaina
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany.
| |
Collapse
|
19
|
Wilson KM, Mucci LA, Drake BF, Preston MA, Stampfer MJ, Giovannucci E, Kibel AS. Meat, Fish, Poultry, and Egg Intake at Diagnosis and Risk of Prostate Cancer Progression. Cancer Prev Res (Phila) 2016; 9:933-941. [DOI: 10.1158/1940-6207.capr-16-0070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/12/2016] [Accepted: 09/12/2016] [Indexed: 11/16/2022]
|
20
|
Sridhar R, Bond V, Dunmore-Griffith J, Cousins VM, Zhang R, Millis RM. Relationship Between Aerobic Fitness, the Serum IGF-1 Profiles of Healthy Young Adult African American Males, and Growth of Prostate Cancer Cells. Am J Mens Health 2016; 11:92-98. [PMID: 25990510 DOI: 10.1177/1557988315587740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The growth of prostate tumors is mediated by the bioavailability of androgens and insulin-like growth factors. This study tested the hypothesis that healthy young adult African American men exhibiting low aerobic capacity (fitness) have serum insulin-like growth Factor-1 (IGF-1) and testosterone levels that promote growth of prostate cancer cells. A cross-sectional data research design was used to study groups of 18- to 26-year-old healthy men exhibiting low and moderate aerobic fitness, based on their peak oxygen consumption (VO2peak). The individual serum levels of IGF-1, IGF-1 binding protein-3 (IGFBP-3), and testosterone were measured. In vitro growth of androgen-dependent LNCaP prostate tumor cells was measured after incubation in culture medium fortified with each subject's serum. Aerobic capacity was significantly greater in the moderate-fitness group than in the low-fitness group without an intergroup difference in body mass index. The serum IGF-1 concentration was significantly higher in the low-fitness group in the absence of an intergroup difference in serum testosterone. The serum IGFBP-3 concentration was significantly lower in the low-fitness group. Prostate tumor cell growth was significantly greater in the cultures incubated in media containing the sera of the low-fitness group than in the sera of the moderate-fitness group. These findings suggest that moderate aerobic fitness in young adults may decrease the circulating levels of free IGF-1 and lower the potential to support growth of prostate cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Richard M Millis
- 2 The American University of Antigua College of Medicine, St. John's, Antigua & Barbuda
| |
Collapse
|
21
|
Packer JR, Maitland NJ. The molecular and cellular origin of human prostate cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1238-60. [DOI: 10.1016/j.bbamcr.2016.02.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 01/01/2023]
|
22
|
A phenylacetaldehyde–flavonoid adduct, 8-C-(E-phenylethenyl)-norartocarpetin, exhibits intrinsic apoptosis and MAPK pathways-related anticancer potential on HepG2, SMMC-7721 and QGY-7703. Food Chem 2016; 197 Pt B:1085-92. [DOI: 10.1016/j.foodchem.2015.11.104] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/05/2015] [Accepted: 11/19/2015] [Indexed: 12/28/2022]
|
23
|
Jain A, Samykutty A, Jackson C, Browning D, Bollag WB, Thangaraju M, Takahashi S, Singh SR. Curcumin inhibits PhIP induced cytotoxicity in breast epithelial cells through multiple molecular targets. Cancer Lett 2015; 365:122-31. [PMID: 26004342 DOI: 10.1016/j.canlet.2015.05.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 12/21/2022]
Abstract
Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), found in cooked meat, is a known food carcinogen that causes several types of cancer, including breast cancer, as PhIP metabolites produce DNA adduct and DNA strand breaks. Curcumin, obtained from the rhizome of Curcuma longa, has potent anticancer activity. To date, no study has examined the interaction of PhIP with curcumin in breast epithelial cells. The present study demonstrates the mechanisms by which curcumin inhibits PhIP-induced cytotoxicity in normal breast epithelial cells (MCF-10A). Curcumin significantly inhibited PhIP-induced DNA adduct formation and DNA double stand breaks with a concomitant decrease in reactive oxygen species (ROS) production. The expression of Nrf2, FOXO targets; DNA repair genes BRCA-1, H2AFX and PARP-1; and tumor suppressor P16 was studied to evaluate the influence on these core signaling pathways. PhIP induced the expression of various antioxidant and DNA repair genes. However, co-treatment with curcumin inhibited this expression. PhIP suppressed the expression of the tumor suppressor P16 gene, whereas curcumin co-treatment increased its expression. Caspase-3 and -9 were slightly suppressed by curcumin with a consequent inhibition of cell death. These results suggest that curcumin appears to be an effective anti-PhIP food additive likely acting through multiple molecular targets.
Collapse
Affiliation(s)
- Ashok Jain
- Department of Natural Sciences, Albany State University, Albany, Georgia 31705, USA.
| | - Abhilash Samykutty
- Department of Natural Sciences, Albany State University, Albany, Georgia 31705, USA
| | - Carissa Jackson
- Department of Natural Sciences, Albany State University, Albany, Georgia 31705, USA
| | - Darren Browning
- Cancer Center, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Wendy B Bollag
- Department of Physiology, Georgia Regents University, Augusta, Georgia 30912, USA; Charlie Norwood VA Medical Center, Augusta, Georgia 30904, USA
| | | | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Shree Ram Singh
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA.
| |
Collapse
|
24
|
Agalliu I, Adebiyi AO, Lounsbury DW, Popoola O, Jinadu K, Amodu O, Paul S, Adedimeji A, Asuzu C, Asuzu M, Ogunbiyi OJ, Rohan T, Shittu OB. The feasibility of epidemiological research on prostate cancer in African men in Ibadan, Nigeria. BMC Public Health 2015; 15:425. [PMID: 25927535 PMCID: PMC4419477 DOI: 10.1186/s12889-015-1754-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 04/17/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Men of African descent have the highest incidence and mortality rates of prostate cancer (PrCa) worldwide. Notably, PrCa is increasing in Africa with Nigerian men being mostly affected. Thus, it is important to understand risk factors for PrCa in Nigeria and build capacity for cancer research. The goals of this study were to determine the feasibility of conducting an epidemiological study of PrCa and to obtain preliminary data on risk factors for PrCa in Nigeria. METHODS A case-control study (50 cases/50 controls) was conducted at the University College Hospital (UCH) in Ibadan, Nigeria, between October 2011 and December 2012. Men aged 40 to 80 years were approached for the study and asked to provide informed consent and complete the research protocol. Logistic regression models were used to examine associations between demographic, social and lifestyle characteristics and risk of PrCa. RESULTS The participation rate among cases and controls was 98% and 93%, respectively. All participants completed a questionnaire and 99% (50 cases/49 controls) provided blood samples. Cases had a median serum diagnostic PSA of 73 ng/ml, and 38% had a Gleason score 8-10 tumor. Family history of PrCa was associated with a 4.9-fold increased risk of PrCa (95% CI 1.0 - 24.8). There were statistically significant inverse associations between PrCa and height, weight and waist circumference, but there was no association with body mass index (kg/m(2)). There were no associations between other socio-demographic and lifestyle characteristics and PrCa risk. CONCLUSION This feasibility study demonstrated the ability to ascertain and recruit participants at UCH and collect epidemiological, clinical and biospecimen data. Our results highlighted the advanced clinical characteristics of PrCa in Nigerian men, and that family history of PrCa and some anthropometric factors were associated with PrCa risk in this population. However, larger studies are needed to better understand the epidemiological risk factors of PrCa in Nigeria.
Collapse
Affiliation(s)
- Ilir Agalliu
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer Building, Room 1315-B, Bronx, NY, 10461, USA.
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Akin O Adebiyi
- Department of Community Medicine, Clinical Epidemiology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - David W Lounsbury
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer Building, Room 1315-B, Bronx, NY, 10461, USA.
| | - Oluwafemi Popoola
- Department of Community Medicine, Clinical Epidemiology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Kola Jinadu
- Department of Community Medicine, Clinical Epidemiology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Olukemi Amodu
- Institute of Child Health, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Suvam Paul
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer Building, Room 1315-B, Bronx, NY, 10461, USA.
| | - Adebola Adedimeji
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer Building, Room 1315-B, Bronx, NY, 10461, USA.
| | - Chioma Asuzu
- Department of Radiotherapy, Psycho-Oncology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Michael Asuzu
- Department of Community Medicine, Clinical Epidemiology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Olufemi J Ogunbiyi
- Department of Pathology, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Thomas Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer Building, Room 1315-B, Bronx, NY, 10461, USA.
| | - Olayiwola B Shittu
- Department of Surgery, Urology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
25
|
Yang B, Chen WH, Wen XF, Liu H, Liu F. Role of DNA repair-related gene polymorphisms in susceptibility to risk of prostate cancer. Asian Pac J Cancer Prev 2015; 14:5839-42. [PMID: 24289586 DOI: 10.7314/apjcp.2013.14.10.5839] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AIM We assessed the association between genetic variants of XPG, XPA, XPD, CSB, XPC and CCNH in the nucleotide excision repair (NER) pathway and risk of prostate cancer. METHODS We genotyped the XPG, XPA, XPD, CSB, XPC and CCNH polymorphisms by a 384-well plate format on the MassARRAY® platform. Multivariate logistical regression analysis was used to assess the associations between the six gene polymorphisms and risk of prostate cancer. RESULTS Individuals carrying the XPG rs229614 TT (OR=2.01, 95%CI=1.35-3.27) genotype and T allele (OR=1.73, 95%CI=1.37-2.57) were moderately significantly associated with a higher risk of prostate cancer. Subjects with XPD rs13181 G allele had a marginally increased risk of prostate cancer, with adjusted OR(95%CI) of 1.53 (1.04-2.37). Moreover, individuals carrying with CSB rs2228526 GG genotype (OR=2.05, 95% CI=1.23-3.52) and G allele (OR=1.56, 95%CI=1.17-2.05) were associated with a higher increased risk of prostate cancer. The combination genotype of XPG rs2296147 T and CSB rs2228526 G allele had accumulative effect on the risk of this cancer, with an OR (95% CI) of 2.23(1.37-3.59). CONCLUSIONS Our study indicates that XPG rs2296147 and CSB rs2228526 polymorphisms are significantly associated with increased risk of prostate cancer, and that combination of XPG rs2296147 T allele and CSB rs2228526 G allele is strongly associated with an increased risk.
Collapse
Affiliation(s)
- Bo Yang
- Department of Urology Surgery, Shanghai Pudong New Area Zhoupu Hospital, Shanghai, China E-mail :
| | | | | | | | | |
Collapse
|
26
|
Dennis C, Karim F, Smith JS. Evaluation of Maillard Reaction Variables and Their Effect on Heterocyclic Amine Formation in Chemical Model Systems. J Food Sci 2015; 80:T472-8. [DOI: 10.1111/1750-3841.12737] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 11/07/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Cara Dennis
- Dept. of Animal Sciences and Industry, Food Science Inst; 208 Call Hall, Kansas State Univ; Manhattan KS 66506 U.S.A
| | - Faris Karim
- Dept. of Animal Sciences and Industry, Food Science Inst; 208 Call Hall, Kansas State Univ; Manhattan KS 66506 U.S.A
| | - J. Scott Smith
- Dept. of Animal Sciences and Industry, Food Science Inst; 208 Call Hall, Kansas State Univ; Manhattan KS 66506 U.S.A
| |
Collapse
|
27
|
Patel SAA, Gooderham NJ. Interleukin-6 promotes dietary carcinogen-induced DNA damage in colorectal cancer cells. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00068h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pro-inflammatory cytokine interleukin-6 promotes dietary carcinogen-mediated DNA damage in 2D and 3D cultured cells by inducingCYP1B1expression through miR27b downregulation.
Collapse
|
28
|
Blanke KL, Sacco JC, Millikan RC, Olshan AF, Luo J, Trepanier LA. Polymorphisms in the carcinogen detoxification genes CYB5A and CYB5R3 and breast cancer risk in African American women. Cancer Causes Control 2014; 25:1513-21. [PMID: 25225034 PMCID: PMC4216608 DOI: 10.1007/s10552-014-0454-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 07/31/2014] [Indexed: 11/29/2022]
Abstract
PURPOSE Cytochrome b 5 (encoded by CYB5A) and NADH cytochrome b 5 reductase (encoded by CYB5R3) detoxify aromatic and heterocyclic amine mammary carcinogens found in cigarette smoke. We hypothesized that CYB5A and CYB5R3 polymorphisms would be associated with breast cancer risk in women. METHODS We characterized the prevalence of 18 CYB5A and CYB5R3 variants in genomic DNA from African American (AfrAm) and Caucasian (Cauc) women from the Carolina Breast Cancer Study population (1,946 cases and 1,747 controls) and determined their associations with breast cancer risk, with effect modification by smoking. RESULTS A CYB5R3 variant, I1M+6T (rs8190370), was significantly more common in breast cancer cases (MAF 0.0238) compared with controls (0.0169, p = 0.039); this was attributable to a higher MAF in AfrAm cases (0.0611) compared with AfrAm controls (0.0441, p = 0.046; adjusted OR 1.41, CI 0.98-2.04; p = 0.062). When smoking was considered, I1M+6T was more strongly associated with breast cancer risk in AfrAm smokers (adjusted OR 2.10, 1.08-4.07; p = 0.028) compared with never smokers (OR = 1.21; 0.77-1.88; p for interaction = 0.176). I1M+6T and three additional CYB5R3 variants, -251T, I8-1676C, and *392C, as well as two CYB5A variants, 13G and I2-992T, were significantly more common in AfrAms compared with Caucs. CONCLUSIONS CYB5R3 I1M+6C>T should be considered in future molecular epidemiologic studies of breast cancer risk in AfrAms. Further, variants in CYB5A and CYB5R3 should be considered in the evaluation of other tumors in AfrAms that are associated with aromatic and heterocyclic amine exposures, to include prostate, bladder, and colon cancers.
Collapse
Affiliation(s)
- Kristina L. Blanke
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI
| | - James C. Sacco
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI
| | - Robert C. Millikan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Andrew F. Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Jingchun Luo
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Lauren A. Trepanier
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
29
|
Wang H, Zhou H, Liu A, Guo X, Yang CS. Genetic analysis of colon tumors induced by a dietary carcinogen PhIP in CYP1A humanized mice: Identification of mutation of β-catenin/Ctnnb1 as the driver gene for the carcinogenesis. Mol Carcinog 2014; 54:1264-74. [PMID: 25131582 DOI: 10.1002/mc.22199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/23/2014] [Accepted: 06/06/2014] [Indexed: 01/08/2023]
Abstract
Replacing mouse Cyp1a with human CYP1A enables the humanized CYP1A mice to mimic human metabolism of the dietary carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), by N(2) -hydroxylation to a proximate carcinogen. Our previous study demonstrated that PhIP, combined with the dextrin sulfate sodium (DSS)-induced colitis, induces colon carcinogenesis in hCYP1A mice. Here, we employed whole exome sequencing and found multiple gene mutations in PhIP/DSS-induced colon tumors. Mutations in the exon 3 of Ctnnb1/β-catenin, however, were the predominant events. We further sequenced the key fragments of Apc, Ctnnb1, and Kras, because mutations of these genes in the humans are commonly found as the drivers of colorectal cancer. Mutations on either codon 32 or 34 in the exon 3 of Ctnnb1 were found in 39 out of 42 tumors, but no mutation was found in either Apc or Kras. The sequence context of codons 32 and 34 suggests that PhIP targets +3G in a TGGA motif of Ctnnb1. Since mutations that activate Wnt signal is a major driving force for human colorectal cancers, we conclude that the mutated β-catenin is the driver in PhIP/DSS-induced colon carcinogenesis. This result suggests that the colon tumors in hCYP1A mice mimic human colorectal carcinogenesis not only in the dietary etiology involving PhIP, but also in the aberrant activation of the Wnt signaling pathway as the driving force.
Collapse
Affiliation(s)
- Hong Wang
- Susan L. Cullman Laboratory for Cancer Research, Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Hong Zhou
- Department of Mathematics, University of Saint Joseph, West Hartford, Connecticut
| | - Anna Liu
- Susan L. Cullman Laboratory for Cancer Research, Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Xiangyi Guo
- Susan L. Cullman Laboratory for Cancer Research, Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Chung S Yang
- Susan L. Cullman Laboratory for Cancer Research, Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
30
|
Neslund-Dudas C, Levin AM, Beebe-Dimmer JL, Bock CH, Nock NL, Rundle A, Jankowski M, Krajenta R, Dou QP, Mitra B, Tang D, Rebbeck TR, Rybicki BA. Gene-environment interactions between JAZF1 and occupational and household lead exposure in prostate cancer among African American men. Cancer Causes Control 2014; 25:869-79. [PMID: 24801046 PMCID: PMC4267567 DOI: 10.1007/s10552-014-0387-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 04/16/2014] [Indexed: 02/05/2023]
Abstract
PURPOSE A single nucleotide polymorphism, rs10486567, in JAZF1 has consistently been associated with increased risk of prostate cancer. The physical interaction of zinc finger proteins, such as JAZF1, with heavy metals may play a role in carcinogenesis. This study assessed potential gene-environment statistical interactions (G×E) between rs10486567 and heavy metals in prostate cancer. METHODS In a case-only study of 228 African American prostate cancer cases, G×E between rs10486567 and sources of cadmium and lead (Pb) were assessed. Unconditional logistic regression was used to estimate interaction odds ratios (IORs), and generalized estimating equations were used for models containing nested data. Case-control validation of IORs was performed, using 82 controls frequency matched to cases on age-race. RESULTS Among cases, a potential G×E interaction was observed between rs10486567 CC genotype and living in a Census tract with a high proportion of housing built before 1950, a proxy for household Pb exposure, when compared to CT or TT carriers (OR 1.81; 95% CI 1.04-3.16; p = 0.036). A stronger G×E interaction was observed when both housing and occupational Pb exposure were taken into account (OR 2.62; 95% CI 1.03-6.68; p = 0.04). Case-control stratified analyses showed the odds of being a CC carrier were higher in cases compared to controls among men living in areas with older housing (OR 2.03; CI 0.99-4.19; p = 0.05) or having high occupational Pb exposure (OR 2.50; CI 1.01-6.18; p = 0.05). CONCLUSIONS In African American men, the association between JAZF1 rs10486567 and prostate cancer may be modified by exposure to heavy metals such as Pb.
Collapse
|
31
|
Kato I, Startup J, Ram JL. Fecal Biomarkers for Research on Dietary and Lifestyle Risk Factors in Colorectal Cancer Etiology. CURRENT COLORECTAL CANCER REPORTS 2013. [DOI: 10.1007/s11888-013-0195-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Tang D, Kryvenko ON, Wang Y, Trudeau S, Rundle A, Takahashi S, Shirai T, Rybicki BA. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-DNA adducts in benign prostate and subsequent risk for prostate cancer. Int J Cancer 2013; 133:961-71. [PMID: 23400709 DOI: 10.1002/ijc.28092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 01/16/2013] [Indexed: 01/18/2023]
Abstract
Despite convincing evidence that 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)--a heterocyclic amine generated by cooking meats at high temperatures--is carcinogenic in animal models, it remains unclear whether PhIP exposure leads to increased cancer risk in humans. PhIP-DNA adduct levels were measured in specimens from 534 prostate cancer case-control pairs nested within a historical cohort of men with histopathologically benign prostate specimens. We estimated the overall and race-stratified risk of subsequent prostate cancer associated with higher adduct levels. PhIP-DNA adduct levels in benign prostate were significantly higher in Whites than African Americans (0.274 optical density units (OD) ±0.059 vs. 0.256 OD ±0.054; p<0.0001). Prostate cancer risk for men in the highest quartile of PhIP-DNA adduct levels was modestly increased [odds ratio (OR) = 1.25; 95% confidence interval (CI) = 0.76-2.07]. In subset analyses, the highest risk estimates were observed in White patients diagnosed more than 4 years after cohort entry (OR = 2.74; 95% CI = 1.01-7.42) or under age 65 (OR = 2.80; 95% CI = 0.87-8.97). In Whites, cancer risk associated with high-grade prostatic intraepithelial neoplasia combined with elevated PhIP-DNA adduct levels (OR = 3.89; 95% CI = 1.56-9.73) was greater than risk associated with either factor alone. Overall, elevated levels of PhIP-DNA adducts do not significantly increase prostate cancer risk. However, our data show that White men have higher PhIP-DNA adduct levels in benign prostate tissue than African American men, and suggest that in certain subgroups of White men high PhIP-DNA adduct levels may predispose to an increased risk for prostate cancer.
Collapse
Affiliation(s)
- Deliang Tang
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Li R, Tian J, Li W, Xie J. Effects of 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine (PhIP) on histopathology, oxidative stress, and expression of c-fos, c-jun and p16 in rat stomachs. Food Chem Toxicol 2013; 55:182-91. [PMID: 23313794 DOI: 10.1016/j.fct.2012.12.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 12/05/2012] [Accepted: 12/31/2012] [Indexed: 01/30/2023]
Abstract
2-Amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine (PhIP) is one of the most abundant heterocyclic amines (HCAs) generated from overcooking meat at high temperatures. To understand the possible mechanism of PhIP-associated stomach cancer, the effects of PhIP on morphology, oxidative stress, gene expression of c-fos, c-jun and p16 in rat stomachs were investigated. The results showed that (1) 15mg/kg body weight PhIP induced obvious histopathological changes in gastric mucosa; (2) PhIP (10 and/or 15mg/kg) significantly decreased superoxide dismutase (SOD) and glutathioneperoxidase (GPx) activities, while increased catalase (CAT) activity compared with the control. With the elevated doses of PhIP, malondialdehyde (MDA) contents, protein carbonyl (PCO) contents and DNA-protein crosslinks (DPC) coefficients were significantly raised in a dose-dependent manner; (3) PhIP at the doses of 10mg/kg and/or 15mg/kg significantly inhibited p16 mRNA and protein expression, whereas enhanced c-fos and c-jun expression relative to control. The data indicated that PhIP could cause stomach injury, oxidative stress in rat stomachs as well as the activation of c-fos and c-jun and inactivation of p16, which may play a role in the pathogenesis of PhIP-associated stomach cancer.
Collapse
Affiliation(s)
- Ruijin Li
- Research Center of Environmental Science and Engineering, Institute of Environmental Medicine and Toxicology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi Province, PR China.
| | | | | | | |
Collapse
|
34
|
Poirier MC. Chemical-induced DNA damage and human cancer risk. DISCOVERY MEDICINE 2012; 14:283-288. [PMID: 23114584 PMCID: PMC7493822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
For more than 200 years human cancer induction has been known to be associated with a large variety of chemical exposures. Most exposures to chemical carcinogens occur as a result of occupation, pollution in the ambient environment, lifestyle choices, or pharmaceutical use. Scientific investigations have revealed that the majority of cancer causing chemicals, or chemical carcinogens, act through "genotoxic" or DNA damaging mechanisms, which involve covalent binding of the chemical to DNA (DNA adduct formation). Cancer-inducing exposures are typically frequent and/or chronic over years, and the accumulation of DNA damage or DNA adduct formation is considered to be a necessary requirement for tumor induction. Studies in animal models have indicated that the ability to reduce DNA damage will also result in reduction of tumor risk, leading to the hypothesis that individuals having the highest levels of DNA adducts may have an increased cancer risk, compared to individuals with the lowest levels of DNA adducts. Here we have reviewed twelve investigations showing 2- to 9-fold increased Relative Risks (RR) or Odds Ratios (OR) for cancer in (the 25% of) individuals having the highest DNA adduct levels, compared to (the 25% of) matched individuals with the lowest DNA adducts. These studies also provided preliminary evidence that multiple types of DNA adducts combined, or DNA adducts combined with other risk factors (such as infection or inflammation), may be associated with more than 10-fold higher cancer risks (RR = 34-60), compared to those found with a single carcinogen. Taken together the data suggest that a reduction in human DNA adduct level is likely to produce a reduction in human cancer risk.
Collapse
Affiliation(s)
- Miriam C Poirier
- Carcinogen-DNA Interactions Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
35
|
Li G, Wang H, Liu AB, Cheung C, Reuhl KR, Bosland MC, Yang CS. Dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine-induced prostate carcinogenesis in CYP1A-humanized mice. Cancer Prev Res (Phila) 2012; 5:963-72. [PMID: 22581815 DOI: 10.1158/1940-6207.capr-12-0023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To develop a relevant mouse model for prostate cancer prevention research, we administered a dietary carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), to CYP1A-humanized mice. In comparison with mouse Cyp1a2, human CYP1A2 preferentially activates PhIP to a proximate carcinogen. Following a single oral dose of PhIP (200 mg/kg body weight), we observed inflammation, atrophy of acini, low-grade prostatic intraepithelial neoplasia (PIN; after 20 weeks), and high-grade PIN (HgPIN; after 30 to 50 weeks) in dorsolateral, ventral, and coagulating anterior prostate glands of these mice. These lesions were androgen receptor positive and featured the loss of expression of the basal cell marker p63 and the tumor suppressor PTEN. Similar to human prostate carcinogenesis, glutathione S-transferase P1 (GSTP1) expression was lost or partially lost in HgPIN. E-Cadherin expression was also lost in HgPIN. The expression of DNA methyltransferase 1 was elevated, possibly to enhance promoter hypermethylation for the silencing of GSTP1 and E-cadherin. Prostate carcinogenesis was promoted by a high-fat stress diet, resulting in HgPIN that developed earlier and in advanced lesions displayed features consistent with carcinoma in situ. This dietary carcinogen-induced prostate cancer model, recapitulating important features of early human prostate carcinogenesis, constitutes a new experimental system for prostate cancer research.
Collapse
Affiliation(s)
- Guangxun Li
- Department of Chemical Biology, Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Van Hemelrijck M, Rohrmann S, Steinbrecher A, Kaaks R, Teucher B, Linseisen J. Heterocyclic aromatic amine [HCA] intake and prostate cancer risk: effect modification by genetic variants. Nutr Cancer 2012; 64:704-13. [PMID: 22564066 DOI: 10.1080/01635581.2012.678548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The association between heterocyclic aromatic amine (HCA) intake and prostate cancer (PCa) risk may be modified by genetic variation in enzymes involved in HCA metabolism. We examined this question in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition Heidelberg cohort. The study included 204 PCa cases and 360 matched controls. At baseline, participants provided dietary and lifestyle data and blood samples that were used for genotyping. Dietary HCA intake-2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP), 2-amino-3,8-dimethylimidazo [4,5-f]quinoxaline (MeIQx), and 2-amino-3,4,8-dimethylimidazo [4,5-f]quinoxaline (DiMeIQx-was estimated using information on meat consumption, cooking methods, and browning degree. Risk estimates for gene × HCA interactions were calculated by unconditional logistic regression. We found inverse associations between PhIP, MeIQx, or DiMeIQx intake and PCa risk when having <2 deletions of the GSTT1 and GSTM1 genes (P(interaction): 0.03, 0.01, and 0.03, respectively), which is supported by analysis of darkly browned meat consumption data. Statistically significant effect modification of both HCA (DiMeIQx) and darkly browned meat intake and PCa risk was observed for allelic variants of MnSOD (rs4880) (P(interaction): 0.02). Despite limitations due to study size, we conclude that the association between HCA intake and PCa risk could be modified by polymorphisms of GSTT1, GSTM1, and MnSOD.
Collapse
Affiliation(s)
- Mieke Van Hemelrijck
- King's College London, School of Medicine, Division of Cancer Studies, London, UK
| | | | | | | | | | | |
Collapse
|
37
|
Lin J, Forman MR, Wang J, Grossman HB, Chen M, Dinney CP, Hawk ET, Wu X. Intake of red meat and heterocyclic amines, metabolic pathway genes and bladder cancer risk. Int J Cancer 2012; 131:1892-903. [PMID: 22261697 DOI: 10.1002/ijc.27437] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 12/08/2011] [Indexed: 11/10/2022]
Abstract
We analyzed the association between meat intake, heterocyclic amines (HCAs) and bladder cancer (BC) risk in a large case-control study comprised of 884 BC cases and 878 healthy controls, recruited from 1999 to 2009. Epidemiologic and dietary data were collected via an in-person interview. Compared to the lowest quartile of red meat intake, the odds ratios (ORs) for the second, third and fourth quartiles were 1.17 (95% CI: 0.87-1.58), 1.47 (95% CI: 1.09-1.99) and 1.95 (95% CI: 1.41-2.68), respectively, (p-for trend <0.001). In a subset of participants with intakes of HCAs available, compared with those with the lowest quartile of intake, the ORs for the second, third and fourth quartiles were 1.47 (95% CI: 0.60-3.64), 2.58 (95% CI: 1.09-6.11) and 3.32 (95% CI: 1.37-8.01), respectively, (p for trend <0.001). In cumulative analysis of SNPs in the pathway, compared with subjects carrying 0-4 unfavorable genotypes, subjects carrying 5 and 6 or more unfavorable genotypes were at 1.60-fold (95% CI: 1.20-2.12) and 2.37-fold (95% CI: 1.82-3.10) increased risk, respectively. Moreover, subjects carrying six or more unfavorable genotypes and whose red meat intake was in the highest quartile were at 5.09-fold increased risk (95% CI: 2.89-8.96; p < 0.001). These results strongly support that high red meat intake, high intake of HCAs and carrying high number of unfavorable genotypes in the HCA metabolic pathways are associated with increased risk of BC in the study population.
Collapse
Affiliation(s)
- Jie Lin
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Leitzmann MF, Rohrmann S. Risk factors for the onset of prostatic cancer: age, location, and behavioral correlates. Clin Epidemiol 2012; 4:1-11. [PMID: 22291478 PMCID: PMC3490374 DOI: 10.2147/clep.s16747] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
At present, only three risk factors for prostate cancer have been firmly established; these are all nonmodifiable: age, race, and a positive family history of prostate cancer. However, numerous modifiable factors have also been implicated in the development of prostate cancer. In the current review, we summarize the epidemiologic data for age, location, and selected behavioral factors in relation to the onset of prostate cancer. Although the available data are not entirely consistent, possible preventative behavioral factors include increased physical activity, intakes of tomatoes, cruciferous vegetables, and soy. Factors that may enhance prostate cancer risk include frequent consumption of dairy products and, possibly, meat. By comparison, alcohol probably exerts no important influence on prostate cancer development. Similarly, dietary supplements are unlikely to protect against the onset of prostate cancer in healthy men. Several factors, such as smoking and obesity, show a weak association with prostate cancer incidence but a positive relation with prostate cancer mortality. Other factors, such as fish intake, also appear to be unassociated with incident prostate cancer but show an inverse relation with fatal prostate cancer. Such heterogeneity in the relationship between behavioral factors and nonadvanced, advanced, or fatal prostate cancers helps shed light on the carcinogenetic process because it discerns the impact of exposure on early and late stages of prostate cancer development. Inconsistent associations between behavioral factors and prostate cancer risk seen in previous studies may in part be due to uncontrolled detection bias because of current widespread use of prostate-specific antigen testing for prostate cancer, and the possibility that certain behavioral factors are systematically related to the likelihood of undergoing screening examinations. In addition, several genes may modify the study results, but data concerning specific gene-environment interactions are currently sparse. Despite large improvements in our understanding of prostate cancer risk factors in the past two decades, present knowledge does not allow definitive recommendations for specific preventative behavioral interventions.
Collapse
Affiliation(s)
- Michael F Leitzmann
- Department of Epidemiology and Preventive Medicine, Regensburg University Medical Center, Regensburg, Germany
| | | |
Collapse
|
39
|
Arlt VM, Singh R, Stiborová M, Gamboa da Costa G, Frei E, Evans JD, Farmer PB, Wolf CR, Henderson CJ, Phillips DH. Effect of hepatic cytochrome P450 (P450) oxidoreductase deficiency on 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine-DNA adduct formation in P450 reductase conditional null mice. Drug Metab Dispos 2011; 39:2169-73. [PMID: 21940903 DOI: 10.1124/dmd.111.041343] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), formed during the cooking of foods, induces colon cancer in rodents. PhIP is metabolically activated by cytochromes P450 (P450s). To evaluate the role of hepatic P450s in the bioactivation of PhIP, we used Reductase Conditional Null (RCN) mice, in which cytochrome P450 oxidoreductase (POR), the unique electron donor to P450s, can be specifically deleted in hepatocytes by pretreatment with 3-methylcholanthrene (3-MC), resulting in the loss of essentially all hepatic P450 function. RCN mice were treated orally with 50 mg/kg b.wt. PhIP daily for 5 days, with and without 3-MC pretreatment. PhIP-DNA adducts (i.e., N-(deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine [dG-C8-PhIP]), measured by liquid chromatography-tandem mass spectrometry, were highest in colon (1362 adducts/10(8) deoxynucleosides), whereas adduct levels in liver were ∼3.5-fold lower. Whereas no differences in PhIP-DNA adduct levels were found in livers with active POR versus inactivated POR, adduct levels were on average ∼2-fold lower in extrahepatic tissues of mice lacking hepatic POR. Hepatic microsomes from RCN mice with or without 3-MC pretreatment were also incubated with PhIP and DNA in vitro. PhIP-DNA adduct formation was ∼8-fold lower with hepatic microsomes from POR-inactivated mice than with those with active POR. Most of the hepatic microsomal activation of PhIP in vitro was attributable to CYP1A. Our results show that PhIP-DNA adduct formation in colon involves hepatic N-oxidation, circulation of activated metabolites via the bloodstream to extrahepatic tissues, and further activation, resulting in the formation of dG-C8-PhIP. Besides hepatic P450s, PhIP may be metabolically activated mainly by a non-P450 pathway in liver.
Collapse
Affiliation(s)
- Volker M Arlt
- Section of Molecular Carcinogenesis, Institute of Cancer Research, Brookes Lawley Building, Sutton, Surrey SM2 5NG, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Punnen S, Hardin J, Cheng I, Klein EA, Witte JS. Impact of meat consumption, preparation, and mutagens on aggressive prostate cancer. PLoS One 2011; 6:e27711. [PMID: 22132129 PMCID: PMC3223211 DOI: 10.1371/journal.pone.0027711] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/22/2011] [Indexed: 12/04/2022] Open
Abstract
Background The association between meat consumption and prostate cancer remains unclear, perhaps reflecting heterogeneity in the types of tumors studied and the method of meat preparation—which can impact the production of carcinogens. Methods We address both issues in this case-control study focused on aggressive prostate cancer (470 cases and 512 controls), where men reported not only their meat intake but also their meat preparation and doneness level on a semi-quantitative food-frequency questionnaire. Associations between overall and grilled meat consumption, doneness level, ensuing carcinogens and aggressive prostate cancer were assessed using multivariate logistic regression. Results Higher consumption of any ground beef or processed meats were positively associated with aggressive prostate cancer, with ground beef showing the strongest association (OR = 2.30, 95% CI:1.39–3.81; P-trend = 0.002). This association primarily reflected intake of grilled or barbequed meat, with more well-done meat conferring a higher risk of aggressive prostate cancer. Comparing high and low consumptions of well/very well cooked ground beef to no consumption gave OR's of 2.04 (95% CI:1.41–2.96) and 1.51 (95% CI:1.06–2.14), respectively. In contrast, consumption of rare/medium cooked ground beef was not associated with aggressive prostate cancer. Looking at meat mutagens produced by cooking at high temperatures, we detected an increased risk with 2-amino-3,8-Dimethylimidazo-[4,5-f]Quinolaxine (MelQx) and 2-amino-3,4,8-trimethylimidazo(4,5-f)qunioxaline (DiMelQx), when comparing the highest to lowest quartiles of intake: OR = 1.69 (95% CI:1.08–2.64;P-trend = 0.02) and OR = 1.53 (95% CI:1.00–2.35; P-trend = 0.005), respectively. Discussion Higher intake of well-done grilled or barbequed red meat and ensuing carcinogens could increase the risk of aggressive prostate cancer.
Collapse
Affiliation(s)
- Sanoj Punnen
- Department of Urology, University of California San Francisco, San Francisco, California, United States of America
| | - Jill Hardin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| | - Iona Cheng
- Epidemiology Program, University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, Hawai'i, United States of America
| | - Eric A. Klein
- Cleveland Clinic Glickman Urological and Kidney Institute and Taussig Cancer Institute, Cleveland, Ohio, United States of America
| | - John S. Witte
- Department of Urology, University of California San Francisco, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Rybicki BA, Neslund-Dudas C, Bock CH, Nock NL, Rundle A, Jankowski M, Levin AM, Beebe-Dimmer J, Savera AT, Takahashi S, Shirai T, Tang D. Red wine consumption is inversely associated with 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine-DNA adduct levels in prostate. Cancer Prev Res (Phila) 2011; 4:1636-44. [PMID: 21846795 DOI: 10.1158/1940-6207.capr-11-0100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In humans, genetic variation and dietary factors may alter the biological effects of exposure to 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), one of the major heterocyclic amines generated from cooking meats at high temperatures that has carcinogenic potential through the formation of DNA adducts. Previously, we reported grilled red meat consumption associated with PhIP-DNA adduct levels in human prostate. In this study, we expanded our investigation to estimate the associations between beverage consumption and PhIP-DNA adduct levels in prostate for 391 prostate cancer cases. Of the 15 beverages analyzed, red wine consumption had the strongest association with PhIP-DNA adduct levels showing an inverse correlation in both tumor (P = 0.006) and nontumor (P = 0.002) prostate cells. Red wine consumption was significantly lower in African American compared with white cases, but PhIP-DNA adduct levels in prostate did not vary by race. In African Americans compared with whites, however, associations between red wine consumption and PhIP-DNA adduct levels were not as strong as associations with specific (e.g., SULT1A1 and UGT1A10 genotypes) and nonspecific (e.g., African ancestry) genetic variation. In a multivariable model, the covariate for red wine consumption explained a comparable percentage (13%-16%) of the variation in PhIP-DNA adduct levels in prostate across the two racial groups, but the aforementioned genetic factors explained 33% of the PhIP-DNA adduct variation in African American cases, whereas only 19% of the PhIP-DNA adduct variation in whites. We conclude that red wine consumption may counteract biological effects of PhIP exposure in human prostate, but genetic factors may play an even larger role, particularly in African Americans.
Collapse
Affiliation(s)
- Benjamin A Rybicki
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Turesky RJ, Le Marchand L. Metabolism and biomarkers of heterocyclic aromatic amines in molecular epidemiology studies: lessons learned from aromatic amines. Chem Res Toxicol 2011; 24:1169-214. [PMID: 21688801 PMCID: PMC3156293 DOI: 10.1021/tx200135s] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aromatic amines and heterocyclic aromatic amines (HAAs) are structurally related classes of carcinogens that are formed during the combustion of tobacco or during the high-temperature cooking of meats. Both classes of procarcinogens undergo metabolic activation by N-hydroxylation of the exocyclic amine group to produce a common proposed intermediate, the arylnitrenium ion, which is the critical metabolite implicated in toxicity and DNA damage. However, the biochemistry and chemical properties of these compounds are distinct, and different biomarkers of aromatic amines and HAAs have been developed for human biomonitoring studies. Hemoglobin adducts have been extensively used as biomarkers to monitor occupational and environmental exposures to a number of aromatic amines; however, HAAs do not form hemoglobin adducts at appreciable levels, and other biomarkers have been sought. A number of epidemiologic studies that have investigated dietary consumption of well-done meat in relation to various tumor sites reported a positive association between cancer risk and well-done meat consumption, although some studies have shown no associations between well-done meat and cancer risk. A major limiting factor in most epidemiological studies is the uncertainty in quantitative estimates of chronic exposure to HAAs, and thus, the association of HAAs formed in cooked meat and cancer risk has been difficult to establish. There is a critical need to establish long-term biomarkers of HAAs that can be implemented in molecular epidemioIogy studies. In this review, we highlight and contrast the biochemistry of several prototypical carcinogenic aromatic amines and HAAs to which humans are chronically exposed. The biochemical properties and the impact of polymorphisms of the major xenobiotic-metabolizing enzymes on the biological effects of these chemicals are examined. Lastly, the analytical approaches that have been successfully employed to biomonitor aromatic amines and HAAs, and emerging biomarkers of HAAs that may be implemented in molecular epidemiology studies are discussed.
Collapse
Affiliation(s)
- Robert J Turesky
- Division of Environmental Health Sciences, Wadsworth Center , Albany, New York 12201, United States.
| | | |
Collapse
|
43
|
Berhane N, Sobti RC, Mahdi SA. DNA repair genes polymorphism (XPG and XRCC1) and association of prostate cancer in a north Indian population. Mol Biol Rep 2011; 39:2471-9. [PMID: 21670956 DOI: 10.1007/s11033-011-0998-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 06/01/2011] [Indexed: 12/16/2022]
Abstract
Prostate cancer is the most commonly diagnosed cancer in men worldwide and is the second leading cause of cancer related mortality. Genetic background may account for the difference in susceptibility of individuals to different diseases and the relationship between genetic polymorphism and some diseases has been extensively studied. There are several common polymorphisms in genes encoding DNA repair enzymes, some of these polymorphisms are reported to result in subtle structural alterations of the repair enzyme and modulation of the repair capacity. The aim of the present study was to analyze the effect of XPG Asp 1104His and XRCC1 Arg309Gln polymorphisms on risk of prostate cancer in north Indian population. Statistically significant increased risk of prostate cancer was observed on individuals that posses His/His genotype of XPG (OR 2.53, 95% CI 0.99-6.56, P = 0.031). In this study 150 prostate cancer diagnosed patients, 150 healthy controls and 150 BPH (benign prostate hyper plasia) were recruited from north Indian population. Moreover, individuals that carried the Gln/Gln genotype of XRCC1 also showed statistically increased risk of prostate cancer (OR 2.06, 95% CI 1.07-4.00, P = 0.033). The Asp/Asp of XPG and Gln/Gln of XRCC1 in combination showed statistically increased risk of prostate cancer in cases (OR 3.29, 95% CI 1.09-10.16, P = 0.032).
Collapse
Affiliation(s)
- Nega Berhane
- Department of Biotechnology, University of Gondar, 196 Gondar, Ethiopia.
| | | | | |
Collapse
|
44
|
Abstract
Consumption of red meat, particularly well-done meat, has been associated with increased prostate cancer risk. High-temperature cooking methods such as grilling and barbecuing may produce heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs), which are known carcinogens. We assessed the association with meat consumption and estimated HCA and PAH exposure in a population-based case-control study of prostate cancer. Newly diagnosed cases aged 40-79 years (531 advanced cases, 195 localized cases) and 527 controls were asked about dietary intake, including usual meat cooking methods and doneness levels. Odds ratios (OR) and 95% confidence intervals (CI) were calculated using multivariate logistic regression. For advanced prostate cancer, but not localized disease, increased risks were associated with higher consumption of hamburgers (OR = 1.79, CI = 1.10-2.92), processed meat (OR = 1.57, CI = 1.04-2.36), grilled red meat (OR = 1.63, CI = 0.99-2.68), and well-done red meat (OR = 1.52, CI = 0.93-2.46), and intermediate intake of 2-amino-1-methyl1-6-phenylimidazo[4,5-b]pyridine (PhIP) (Quartile 2 vs. 1: OR = 1.41, CI = 0.98-2.01; Quartile 3 vs. 1: OR = 1.42, CI = 0.98-2.04), but not for higher intake. White meat consumption was not associated with prostate cancer. These findings provide further evidence that consumption of processed meat and red meat cooked at high temperature is associated with increased risk of advanced, but not localized, prostate cancer.
Collapse
Affiliation(s)
- Esther M John
- Cancer Prevention Institute of California, Fremont, California 94538, USA.
| | | | | | | |
Collapse
|
45
|
Oxidative balance score and risk of prostate cancer: results from a case-cohort study. Cancer Epidemiol 2010; 35:353-61. [PMID: 21145797 DOI: 10.1016/j.canep.2010.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/15/2010] [Accepted: 11/16/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND Prostate cancer is a disease with a complex etiology. Oxidative stress has been implicated in its pathogenesis; however, few prospective studies have investigated the association between an oxidative stress/balance score and risk of prostate cancer. METHODS We investigated associations between an oxidative balance score, calculated as the summation of individual scores obtained from five pro-oxidative and eight anti-oxidative exposures, as well as each individual constituent of the score and risks of prostate cancer overall, and by clinical characteristics, in a case-cohort study (661 cases and 1864 subcohort) nested within the Canadian Study of Diet, Lifestyle, and Health cohort. Men in the lowest quintiles of each pro-oxidant exposure received a score of four (the highest score), while those in the highest quintile received a score of zero (the lowest score). In contrast, scoring for all anti-oxidants was performed in the opposite way. Total oxidative balance score was calculated by summating all individual scores of pro- and anti-oxidative variables, with higher values indicating a higher antioxidant status. RESULTS The average oxidative balance score was similar between prostate cancer cases and men in the subcohort: 25.2 and 25.3, respectively. There was no association between oxidative balance score and overall risk of prostate cancer with hazard ratios (HRs) of 1.00, 1.02, 1.03, 0.97 and 1.01 for increasing quintiles of the score (p-trend=0.71). There were also no associations for non-advanced or advanced disease, or when analysis was restricted to incident cases that arose after two years of follow-up (n=508). In general constituents of the score were not associated with prostate cancer, except for red meat intake (HR=1.44; 95%CI 1.06-1.95 comparing Q5 vs. Q1) and lycopene (HRs of 0.7-0.8 for increasing quintiles). CONCLUSION Our findings do not support an association between oxidative balance score and risks of overall prostate cancer or advanced disease.
Collapse
|
46
|
Singh R, Arlt VM, Henderson CJ, Phillips DH, Farmer PB, Gamboa da Costa G. Detection and quantitation of N-(deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine adducts in DNA using online column-switching liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:2155-62. [PMID: 20598652 PMCID: PMC2923026 DOI: 10.1016/j.jchromb.2010.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/03/2010] [Accepted: 06/03/2010] [Indexed: 10/19/2022]
Abstract
The heterocyclic aromatic amine, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is formed by the grilled cooking of certain foods such as meats, poultry and fish. PhIP has been shown to induce tumours in the colon, prostate and mammary glands of rats and is regarded as a potential human dietary carcinogen. PhIP is metabolically activated via cytochrome P450 mediated oxidation to an N-hydroxylamino-PhIP intermediate that is subsequently converted to an ester by N-acetyltransferases or sulfotransferases and undergoes heterolytic cleavage to produce a PhIP-nitrenium ion, which reacts with DNA to form the N-(deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP-C8-dG) adduct. Thus far, the detection and quantification of PhIP-DNA adducts has relied to a large extent on (32)P-postlabelling methodologies. In order to expand the array of available techniques for the detection and improved quantification of PhIP-C8-dG adducts in DNA we have developed an online column-switching liquid chromatography (LC)-electrospray ionization (ESI)-tandem mass spectrometry (MS/MS) selected reaction monitoring (SRM) method incorporating an isotopically [(13)C(10)]-labelled PhIP-C8-dG internal standard for the analysis of DNA enzymatically hydrolysed to 2'-deoxynucleosides. A dose-dependent increase was observed for PhIP-C8-dG adducts when salmon testis DNA was reacted with N-acetoxy-PhIP. Analysis of DNA samples isolated from colon tissue of mice treated by oral gavage daily for 5 days with 50 mg/kg body weight of PhIP resulted in the detection of an average level of 14.8+/-3.7 PhIP-C8-dG adducts per 10(6) 2'-deoxynucleosides. The method required 50 microg of hydrolysed animal DNA on column and the limit of detection for PhIP-C8-dG was 2.5 fmol (1.5 PhIP-C8-dG adducts per 10(8) 2'-deoxynucleosides). In summary, the LC-ESI-MS/MS SRM method provides for the rapid automation of the sample clean up and a reduction in matrix components that would otherwise interfere with the mass spectrometric analysis, with sufficient sensitivity and precision to analyse DNA adducts in animals exposed to PhIP.
Collapse
Affiliation(s)
- Rajinder Singh
- Cancer Biomarkers and Prevention Group, Biocentre, Department of Cancer Studies and Molecular Medicine, University of Leicester, University Road, Leicester LE1 7RH, UK.
| | | | | | | | | | | |
Collapse
|
47
|
Bessette EE, Spivack SD, Goodenough AK, Wang T, Pinto S, Kadlubar FF, Turesky RJ. Identification of carcinogen DNA adducts in human saliva by linear quadrupole ion trap/multistage tandem mass spectrometry. Chem Res Toxicol 2010; 23:1234-44. [PMID: 20443584 PMCID: PMC2916027 DOI: 10.1021/tx100098f] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA adducts of carcinogens derived from tobacco smoke and cooked meat were identified by liquid chromatography-electrospray ionization/multistage tandem mass spectrometry (LC-ESI/MS/MS(n)) in saliva samples from 37 human volunteers on unrestricted diets. The N-(deoxyguanosin-8-yl) (dG-C8) adducts of the heterocyclic aromatic amines 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-9H-pyrido[2,3-b]indole (AalphaC), 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), and the aromatic amine, 4-aminobiphenyl (4-ABP), were characterized and quantified by LC-ESI/MS/MS(n), employing consecutive reaction monitoring at the MS(3) scan stage mode with a linear quadrupole ion trap (LIT) mass spectrometer (MS). DNA adducts of PhIP were found most frequently: dG-C8-PhIP was detected in saliva samples from 13 of 29 ever-smokers and in saliva samples from 2 of 8 never-smokers. dG-C8-AalphaC and dG-C8-MeIQx were identified solely in saliva samples of three current smokers, and dG-C8-4-ABP was detected in saliva from two current smokers. The levels of these different adducts ranged from 1 to 9 adducts per 10(8) DNA bases. These findings demonstrate that PhIP is a significant DNA-damaging agent in humans. Saliva appears to be a promising biological fluid in which to assay DNA adducts of tobacco and dietary carcinogens by selective LIT MS techniques.
Collapse
Affiliation(s)
- Erin E. Bessette
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Simon D. Spivack
- Division of Pulmonary Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York 10461
| | - Angela K. Goodenough
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Tao Wang
- Division of Biostatistics, Dept of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461
| | - Shailesh Pinto
- Pulmonary Medicine-Centennial 4, Montefiore Medical Center, 3332 Rochambeau Ave, Bronx, NY 10467
| | - Fred F. Kadlubar
- Division of Medical Genetics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Robert J. Turesky
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, New York 12201
| |
Collapse
|
48
|
Agalliu I, Kwon EM, Salinas CA, Koopmeiners JS, Ostrander EA, Stanford JL. Genetic variation in DNA repair genes and prostate cancer risk: results from a population-based study. Cancer Causes Control 2010; 21:289-300. [PMID: 19902366 PMCID: PMC2811225 DOI: 10.1007/s10552-009-9461-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 10/22/2009] [Indexed: 01/07/2023]
Abstract
OBJECTIVE DNA repair pathways are crucial to prevent accumulation of DNA damage and maintain genomic stability. Alterations of this pathway have been reported in many cancers. An increase in oxidative DNA damage or decrease in DNA repair capacity with aging or due to germline genetic variation may affect prostate cancer risk. METHODS Pooled data from two population-based studies (1,457 cases and 1,351 controls) were analyzed to examine associations between 28 single-nucleotide polymorphisms (SNPs) in nine DNA repair genes (APEX1, BRCA2, ERCC2, ERCC4, MGMT, MUTYH, OGG1, XPC, and XRCC1) and prostate cancer risk. We also explored whether associations varied by smoking, by family history or clinical features of prostate cancer. RESULTS There were no associations between these SNPs and overall risk of prostate cancer. Risks by genotype also did not vary by smoking or by family history of prostate cancer. Although two SNPs in BRCA2 (rs144848, rs1801406) and two SNPs in ERCC2 (rs1799793, rs13181) showed stronger associations with high Gleason score or advanced-stage tumors when comparing homozygous men carrying the minor versus major allele, results were not statistically significantly different between clinically aggressive and non-aggressive tumors. CONCLUSION Overall, this study found no associations between prostate cancer and the SNPs in DNA repair genes. Given the complexity of this pathway and its crucial role in maintenance of genomic stability, a pathway-based analysis of all 150 genes in DNA repair pathways, as well as exploration of gene-environment interactions may be warranted.
Collapse
Affiliation(s)
- Ilir Agalliu
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
High intake of meat, particularly red and processed meat, has been associated with an increased risk of a number of common cancers such as breast, colorectum, and prostate in many epidemiological studies. Heterocyclic amines (HCAs) are a group of mutagenic compounds found in cooked meats, particularly well-done meats. HCAs are some of most potent mutagens detected using the Ames/salmonella tests and have been clearly shown to induce tumors in experimental animal models. Over the past 10 years, an increasing number of epidemiological studies have evaluated the association of well-done meat intake and meat carcinogen exposure with cancer risk. The results from these epidemiologic studies were evaluated and summarized in this review. The majority of these studies have shown that high intake of well-done meat and high exposure to meat carcinogens, particularly HCAs, may increase the risk of human cancer.
Collapse
Affiliation(s)
- Wei Zheng
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203-1738, USA.
| | | |
Collapse
|
50
|
Cheng KW, Wong CC, Chao J, Lo C, Chen F, Chu IK, Che CM, Ho CT, Wang M. Inhibition of mutagenic PhIP formation by epigallocatechin gallate via scavenging of phenylacetaldehyde. Mol Nutr Food Res 2009; 53:716-25. [PMID: 19437482 DOI: 10.1002/mnfr.200800206] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chemical model investigation showed that both epigallocatechin gallate (EGCG) and its peracetate, which has all the hydroxyl groups acetylated, effectively reduced the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), the most abundant mutagenic heterocyclic amine found in foods. Mechanistic study was subsequently carried out to characterize the probable inhibitory mechanism involved. GC-MS analysis showed that EGCG in only one-fourth molar quantity of phenylalanine reduced formation of phenylacetaldehyde, a key PhIP intermediate by nearly 90%. Its peracetate also showed similar inhibitory activity. This further supported the existence of an antioxidant-independent mechanism contributing to the inhibition of PhIP formation by EGCG. Subsequent LC-MS analyses of samples from a wide range of model systems consisting of PhIP precursors showed the generation of characteristic analytes with molecular weight corresponding to the sum of EGCG and phenylalanine fragment(s) only in models where phenylalanine and EGCG were simultaneously present. An isotope-labeling study revealed that these analytes all contained fragment(s) of phenylalanine origin. Direct reaction employing phenylacetaldehyde and EGCG further confirmed the capability of EGCG to form adducts with phenylacetaldehyde, thus reducing its availability for PhIP formation. Finally, an investigation of the time course of the generation of postulated adduction products supported EGCG as an effective inhibitor of PhIP formation in prolonged heating processes.
Collapse
Affiliation(s)
- Ka-Wing Cheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|