1
|
Yang H, Chen L, Liu Y. Association of leukocyte telomere length with the risk of digestive diseases: A large-scale cohort study. Chin Med J (Engl) 2025; 138:60-67. [PMID: 39647990 PMCID: PMC11717523 DOI: 10.1097/cm9.0000000000002994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND Leukocyte telomere length (LTL) shortening, a biomarker of telomere attrition, has been linked to multiple diseases. However, the relationship between LTL and digestive diseases remains uncertain. This study aimed to investigate the association between LTL and the risk of digestive diseases. METHODS A cohort analysis of over 500,000 participants from the UK Biobank (UKB) between 2006 and 2021 was conducted to estimate the associations of LTL with more than 90 common digestive diseases. LTL was quantified using multiplex quantitative polymerase chain reaction, and cases of each disease were determined according to inpatient and primary care data. Multivariable Cox proportional hazards regression analysis was used to evaluate the associations of LTL with the risk of digestive diseases. Furthermore, such associations were also evaluated after stratification by sex and ethnicity. RESULTS After a mean follow-up time of 11.8 years, over 20 International Classification of Diseases, 10th Revision ( ICD-10 ) codes were showed to be associated with telomere attrition. LTL shortening is associated with an increased risk of several digestive diseases, including gastroesophageal reflux disease (K21: hazard ratio [HR] = 1.30, 95% confidence interval [95% CI]: 1.19-1.42), esophageal ulcer (K221: HR = 1.81, 95% CI: 1.22-2.71), Barrett's esophagus (K227: HR = 1.58, 95% CI: 1.14-2.17), gastritis (K29: HR = 1.39, 95% CI: 1.26-1.52), duodenal ulcer (K26: HR = 1.55, 95% CI: 1.14-2.12), functional dyspepsia (K30X: HR = 1.36, 95% CI: 1.06-1.69), non-alcoholic fatty liver disease (NAFLD) (K760: HR = 1.39, 95% CI: 1.09-1.78), liver cirrhosis (K74: HR = 4.73, 95% CI: 3.27-6.85), cholangitis (K830: HR = 2.55, 95% CI: 1.30-5.00), and hernia (K43: HR = 1.50, 95% CI: 1.17-1.94; K44: HR = 1.29, 95% CI: 1.17-1.42). The risk of rectal polyps (K621: HR = 0.77, 95% CI: 0.63-0.92) decreased per unit shortening of LTL. CONCLUSIONS This study suggests that LTL shortening is associated with an increased risk of most digestive diseases except for rectal polyps. These findings may provide some clues for understanding the pathogenesis of digestive diseases.
Collapse
Affiliation(s)
- Hongqun Yang
- The Secondary Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lanlan Chen
- The First Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yahui Liu
- The Secondary Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
2
|
Loukopoulou C, Nikolouzakis T, Koliarakis I, Vakonaki E, Tsiaoussis J. Telomere Length and Telomerase Activity as Potential Biomarkers for Gastrointestinal Cancer. Cancers (Basel) 2024; 16:3370. [PMID: 39409990 PMCID: PMC11482595 DOI: 10.3390/cancers16193370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Gastrointestinal (GI) cancers, such as colorectal and gastric cancers, pose significant global health challenges due to their high rates of incidence and mortality. Even with advancements in treatment and early detection, many patients still face poor outcomes, highlighting the critical need for new biomarkers and therapeutic targets. Telomere length (TL) and telomerase activity (TA) have gained attention in this context. Telomeres, protective nucleotide sequences at chromosome ends, shorten with each cell division, leading to cellular aging. Telomerase, a ribonucleoprotein enzyme, counteracts this shortening by adding telomeric repeats, a process tightly regulated in normal cells but often dysregulated in cancer. This review critically evaluates the role of TL and TA in the pathogenesis of GI cancers, examining their potential as diagnostic, prognostic, and predictive biomarkers. It explores how alterations in telomere biology contribute to the initiation and progression of GI tumors and assesses the therapeutic implications of targeting telomerase. By integrating findings from diverse studies, this review aims to elucidate the intricate relationship between telomere dynamics and gastrointestinal carcinogenesis, offering insights into how TL and TA could be leveraged to enhance the early detection, treatment, and prognosis of GI cancers.
Collapse
Affiliation(s)
- Christina Loukopoulou
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.L.); (T.N.); (I.K.)
| | - Taxiarchis Nikolouzakis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.L.); (T.N.); (I.K.)
| | - Ioannis Koliarakis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.L.); (T.N.); (I.K.)
| | - Elena Vakonaki
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.L.); (T.N.); (I.K.)
| |
Collapse
|
3
|
Wong JYY, Blechter B, Liu Z, Shi J, Roger VL. Genetic susceptibility to chronic diseases leads to heart failure among Europeans: the influence of leukocyte telomere length. Hum Mol Genet 2024; 33:1262-1272. [PMID: 38676403 PMCID: PMC11227624 DOI: 10.1093/hmg/ddae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Genetic susceptibility to various chronic diseases has been shown to influence heart failure (HF) risk. However, the underlying biological pathways, particularly the role of leukocyte telomere length (LTL), are largely unknown. We investigated the impact of genetic susceptibility to chronic diseases and various traits on HF risk, and whether LTL mediates or modifies the pathways. METHODS We conducted prospective cohort analyses on 404 883 European participants from the UK Biobank, including 9989 incident HF cases. Multivariable Cox regression was used to estimate associations between HF risk and 24 polygenic risk scores (PRSs) for various diseases or traits previously generated using a Bayesian approach. We assessed multiplicative interactions between the PRSs and LTL previously measured in the UK Biobank using quantitative PCR. Causal mediation analyses were conducted to estimate the proportion of the total effect of PRSs acting indirectly through LTL, an integrative marker of biological aging. RESULTS We identified 9 PRSs associated with HF risk, including those for various cardiovascular diseases or traits, rheumatoid arthritis (P = 1.3E-04), and asthma (P = 1.8E-08). Additionally, longer LTL was strongly associated with decreased HF risk (P-trend = 1.7E-08). Notably, LTL strengthened the asthma-HF relationship significantly (P-interaction = 2.8E-03). However, LTL mediated only 1.13% (P < 0.001) of the total effect of the asthma PRS on HF risk. CONCLUSIONS Our findings shed light onto the shared genetic susceptibility between HF risk, asthma, rheumatoid arthritis, and other traits. Longer LTL strengthened the genetic effect of asthma in the pathway to HF. These results support consideration of LTL and PRSs in HF risk prediction.
Collapse
Affiliation(s)
- Jason Y Y Wong
- Epidemiology and Community Health Branch, National Heart Lung and Blood Institute, 10 Center Drive, Bethesda, MD 20892, United States
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, United States
| | - Zhonghua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, 722 W 168th St, New York, NY 10032, United States
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, United States
| | - Véronique L Roger
- Epidemiology and Community Health Branch, National Heart Lung and Blood Institute, 10 Center Drive, Bethesda, MD 20892, United States
| |
Collapse
|
4
|
Kogure GS, Verruma CG, Santana BA, Calado RT, Ferriani RA, Furtado CLM, Dos Reis RM. Obesity contributes to telomere shortening in polycystic ovary syndrome. Reprod Sci 2024; 31:1601-1609. [PMID: 38393627 DOI: 10.1007/s43032-024-01485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a multifactorial disorder and obesity occurs in 38% to 88% of these women. Although hyperandrogenism may contribute to telomere lengthening, increased body mass index (BMI) is associated with telomere erosion. We sought to compare leukocyte telomere length (LTL) in PCOS women with normal, overweight, and obese BMI. We evaluated the relationship between LTL and clinical variables of PCOS and inflammatory biomarkers independent of BMI. A total of 348 women (243 PCOS and 105 non-PCOS) were evaluated for anthropometric measures, total testosterone, androstenedione, estradiol (E2), follicle-stimulating hormone (FSH), luteinizing hormone (LH), sex hormone-binding globulin (SHBG), free androgen index (FAI), fasting insulin and glycemia, lipid profile, homocysteine, C-reactive protein (CRP) and homeostatic model of insulin resistance (HOMA-IR). LTL was measured by qPCR. The PCOS group presented higher weight, waist circumference, BMI, testosterone, LH, fasting insulin, FAI, and HOMA-IR, and lower E2, SHBG, and fasting glycemia measures compared with the non-PCOS. When stratified by BMI, LTL was increased in all subgroups in PCOS compared to non-PCOS. However, in the PCOS group, LTL was lower in overweight (P = 0.0187) and obese (P = 0.0018) compared to normal-weight women. The generalized linear model showed that BMI, androstenedione, homocysteine, and CRP were associated with telomere biology. Women with PCOS had longer LTL, however, overweight or obesity progressively contributes to telomere shortening and may affect reproductive outcomes of PCOS, while androstenedione may increase LTL.
Collapse
Affiliation(s)
- Gislaine Satyko Kogure
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo (FMRP-USP), Ribeirao Preto, Brazil
| | - Carolina Gennari Verruma
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo (FMRP-USP), Ribeirao Preto, Brazil
| | - Barbara A Santana
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Rodrigo T Calado
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Rui Alberto Ferriani
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo (FMRP-USP), Ribeirao Preto, Brazil
| | - Cristiana Libardi Miranda Furtado
- Experimental Biology Center, Universidade de Fortaleza (UNFOR), Fortaleza, Brazil.
- Graduate Program in Medical Sciences, Universidade de Fortaleza, Fortaleza, Brazil.
- Postgraduate Program in Translational Medicine, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil.
| | - Rosana Maria Dos Reis
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo (FMRP-USP), Ribeirao Preto, Brazil.
| |
Collapse
|
5
|
Weusten BLAM, Bisschops R, Dinis-Ribeiro M, di Pietro M, Pech O, Spaander MCW, Baldaque-Silva F, Barret M, Coron E, Fernández-Esparrach G, Fitzgerald RC, Jansen M, Jovani M, Marques-de-Sa I, Rattan A, Tan WK, Verheij EPD, Zellenrath PA, Triantafyllou K, Pouw RE. Diagnosis and management of Barrett esophagus: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy 2023; 55:1124-1146. [PMID: 37813356 DOI: 10.1055/a-2176-2440] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
MR1 : ESGE recommends the following standards for Barrett esophagus (BE) surveillance:- a minimum of 1-minute inspection time per cm of BE length during a surveillance endoscopy- photodocumentation of landmarks, the BE segment including one picture per cm of BE length, and the esophagogastric junction in retroflexed position, and any visible lesions- use of the Prague and (for visible lesions) Paris classification- collection of biopsies from all visible abnormalities (if present), followed by random four-quadrant biopsies for every 2-cm BE length.Strong recommendation, weak quality of evidence. MR2: ESGE suggests varying surveillance intervals for different BE lengths. For BE with a maximum extent of ≥ 1 cm and < 3 cm, BE surveillance should be repeated every 5 years. For BE with a maximum extent of ≥ 3 cm and < 10 cm, the interval for endoscopic surveillance should be 3 years. Patients with BE with a maximum extent of ≥ 10 cm should be referred to a BE expert center for surveillance endoscopies. For patients with an irregular Z-line/columnar-lined esophagus of < 1 cm, no routine biopsies or endoscopic surveillance are advised.Weak recommendation, low quality of evidence. MR3: ESGE suggests that, if a patient has reached 75 years of age at the time of the last surveillance endoscopy and/or the patient's life expectancy is less than 5 years, the discontinuation of further surveillance endoscopies can be considered. Weak recommendation, very low quality of evidence. MR4: ESGE recommends offering endoscopic eradication therapy using ablation to patients with BE and low grade dysplasia (LGD) on at least two separate endoscopies, both confirmed by a second experienced pathologist.Strong recommendation, high level of evidence. MR5: ESGE recommends endoscopic ablation treatment for BE with confirmed high grade dysplasia (HGD) without visible lesions, to prevent progression to invasive cancer.Strong recommendation, high level of evidence. MR6: ESGE recommends offering complete eradication of all remaining Barrett epithelium by ablation after endoscopic resection of visible abnormalities containing any degree of dysplasia or esophageal adenocarcinoma (EAC).Strong recommendation, moderate quality of evidence. MR7: ESGE recommends endoscopic resection as curative treatment for T1a Barrett's cancer with well/moderate differentiation and no signs of lymphovascular invasion.Strong recommendation, high level of evidence. MR8: ESGE suggests that low risk submucosal (T1b) EAC (i. e. submucosal invasion depth ≤ 500 µm AND no [lympho]vascular invasion AND no poor tumor differentiation) can be treated by endoscopic resection, provided that adequate follow-up with gastroscopy, endoscopic ultrasound (EUS), and computed tomography (CT)/positrion emission tomography-computed tomography (PET-CT) is performed in expert centers.Weak recommendation, low quality of evidence. MR9: ESGE suggests that submucosal (T1b) esophageal adenocarcinoma with deep submucosal invasion (tumor invasion > 500 µm into the submucosa), and/or (lympho)vascular invasion, and/or a poor tumor differentiation should be considered high risk. Complete staging and consideration of additional treatments (chemotherapy and/or radiotherapy and/or surgery) or strict endoscopic follow-up should be undertaken on an individual basis in a multidisciplinary discussion.Strong recommendation, low quality of evidence. MR10 A: ESGE recommends that the first endoscopic follow-up after successful endoscopic eradication therapy (EET) of BE is performed in an expert center.Strong recommendation, very low quality of evidence. B: ESGE recommends careful inspection of the neo-squamocolumnar junction and neo-squamous epithelium with high definition white-light endoscopy and virtual chromoendoscopy during post-EET surveillance, to detect recurrent dysplasia.Strong recommendation, very low level of evidence. C: ESGE recommends against routine four-quadrant biopsies of neo-squamous epithelium after successful EET of BE.Strong recommendation, low level of evidence. D: ESGE suggests, after successful EET, obtaining four-quadrant random biopsies just distal to a normal-appearing neo-squamocolumnar junction to detect dysplasia in the absence of visible lesions.Weak recommendation, low level of evidence. E: ESGE recommends targeted biopsies are obtained where there is a suspicion of recurrent BE in the tubular esophagus, or where there are visible lesions suspicious for dysplasia.Strong recommendation, very low level of evidence. MR11: After successful EET, ESGE recommends the following surveillance intervals:- For patients with a baseline diagnosis of HGD or EAC:at 1, 2, 3, 4, 5, 7, and 10 years after last treatment, after which surveillance may be stopped.- For patients with a baseline diagnosis of LGD:at 1, 3, and 5 years after last treatment, after which surveillance may be stopped.Strong recommendation, low quality of evidence.
Collapse
Affiliation(s)
- Bas L A M Weusten
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Gastroenterology and Hepatology, St. Antonius Hospital Nieuwegein, Nieuwegein, The Netherlands
| | - Raf Bisschops
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, TARGID, Leuven, Belgium
| | - Mario Dinis-Ribeiro
- Department of Gastroenterology, Porto Comprehensive Cancer Center, and RISE@CI-IPOP (Health Research Network), Porto Portugal
| | - Massimiliano di Pietro
- Early Cancer Institute, University of Cambridge and Department of Gastroenterology, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Oliver Pech
- Department of Gastroenterology and Interventional Endoscopy, St. John of God Hospital, Regensburg, Germany
| | - Manon C W Spaander
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Francisco Baldaque-Silva
- Advanced Endoscopy Center Carlos Moreira da Silva, Department of Gastroenterology, Pedro Hispano Hospital, Matosinhos, Portugal
- Division of Medicine, Department of Upper Gastrointestinal Diseases, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden
| | - Maximilien Barret
- Department of Gastroenterology and Digestive Oncology, Cochin Hospital and University of Paris, Paris, France
| | - Emmanuel Coron
- Institut des Maladies de l'Appareil Digestif, IMAD, Centre hospitalier universitaire Hôtel-Dieu, Nantes, Nantes, France
- Department of Gastroenterology and Hepatology, University Hospital of Geneva (HUG), Geneva, Switzerland
| | - Glòria Fernández-Esparrach
- Endoscopy Unit, Department of Gastroenterology, Hospital Clínic of Barcelona, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain
| | - Rebecca C Fitzgerald
- Early Cancer Institute, University of Cambridge and Department of Gastroenterology, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Marnix Jansen
- Department of Histopathology, University College London Hospital NHS Trust, London, UK
| | - Manol Jovani
- Division of Gastroenterology, Maimonides Medical Center, New York, New York, USA
| | - Ines Marques-de-Sa
- Department of Gastroenterology, Porto Comprehensive Cancer Center, and RISE@CI-IPOP (Health Research Network), Porto Portugal
| | - Arti Rattan
- Department of Gastroenterology, Wollongong Hospital, Wollongong, New South Wales, Australia
| | - W Keith Tan
- Early Cancer Institute, University of Cambridge and Department of Gastroenterology, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Eva P D Verheij
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers location University of Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Pauline A Zellenrath
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, Second Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Roos E Pouw
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers location University of Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Li S, Hoefnagel SJM, Krishnadath KK. Molecular Biology and Clinical Management of Esophageal Adenocarcinoma. Cancers (Basel) 2023; 15:5410. [PMID: 38001670 PMCID: PMC10670638 DOI: 10.3390/cancers15225410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) is a highly lethal malignancy. Due to its rising incidence, EAC has become a severe health challenge in Western countries. Current treatment strategies are mainly chosen based on disease stage and clinical features, whereas the biological background is hardly considered. In this study, we performed a comprehensive review of existing studies and discussed how etiology, genetics and epigenetic characteristics, together with the tumor microenvironment, contribute to the malignant behavior and dismal prognosis of EAC. During the development of EAC, several intestinal-type proteins and signaling cascades are induced. The anti-inflammatory and immunosuppressive microenvironment is associated with poor survival. The accumulation of somatic mutations at the early phase and chromosomal structural rearrangements at relatively later time points contribute to the dynamic and heterogeneous genetic landscape of EAC. EAC is also characterized by frequent DNA methylation and dysregulation of microRNAs. We summarize the findings of dysregulations of specific cytokines, chemokines and immune cells in the tumor microenvironment and conclude that DNA methylation and microRNAs vary with each different phase of BE, LGD, HGD, early EAC and invasive EAC. Furthermore, we discuss the suitability of the currently employed therapies in the clinic and possible new therapies in the future. The development of targeted and immune therapies has been hampered by the heterogeneous genetic characteristics of EAC. In view of this, the up-to-date knowledge revealed by this work is absolutely important for future EAC studies and the discovery of new therapeutics.
Collapse
Affiliation(s)
- Shulin Li
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | | - Kausilia Krishnawatie Krishnadath
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, 2650 Edegem, Belgium
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, 2000 Antwerpen, Belgium
| |
Collapse
|
7
|
Wan B, Ma N, Lv C. Identifying effects of genetic obesity exposure on leukocyte telomere length using Mendelian randomization. PeerJ 2023; 11:e15085. [PMID: 36967999 PMCID: PMC10038084 DOI: 10.7717/peerj.15085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/26/2023] [Indexed: 03/29/2023] Open
Abstract
Background Observational studies have shown that obesity is closely associated with leukocyte telomere length (LTL). However, the causal relationship between obesity and LTL remains unclear. This study investigated the causal relationship between obesity and LTL through the Mendelian randomization approach. Materials and Methods The genome-wide association study (GWAS) summary data of several studies on obesity-related traits with a sample size of more than 600,000 individuals were extracted from the UK Biobank cohort. The summary-level data of LTL-related GWAS (45 6,717 individuals) was obtained from the IEU Open GWAS database. An inverse-variance-weighted (IVW) algorithm was utilized as the primary MR analysis method. Sensitivity analyses were conducted via MR-Egger regression, IVW regression, leave-one-out test, MR-pleiotropy residual sum, and outlier methods. Results High body mass index was correlated with a short LTL, and the odds ratio (OR) was 0.957 (95% confidence interval [CI] 0.942-0.973, p = 1.17E-07). The six body fat indexes (whole body fat mass, right leg fat mass, left leg fat mass, right arm fat mass, left arm fat mass, and trunk fat mass) were consistently inversely associated with LTL. Multiple statistical sensitive analysis approaches showed that the adverse effect of obesity on LTL was steady and dependable. Conclusion The current study provided robust evidence supporting the causal assumption that genetically caused obesity is negatively associated with LTL. The findings may facilitate the formulation of persistent strategies for maintaining LTL.
Collapse
Affiliation(s)
- Bangbei Wan
- Department of Urology, Haikou Affiliated Hospital of Central South University, Xiangya School of Medicine, Haikou, Hainan, China
- Reproductive Medical Center, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Ning Ma
- Reproductive Medical Center, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Cai Lv
- Department of Urology, Haikou Affiliated Hospital of Central South University, Xiangya School of Medicine, Haikou, Hainan, China
| |
Collapse
|
8
|
Schneider CV, Schneider KM, Teumer A, Rudolph KL, Hartmann D, Rader DJ, Strnad P. Association of Telomere Length With Risk of Disease and Mortality. JAMA Intern Med 2022; 182:291-300. [PMID: 35040871 PMCID: PMC8767489 DOI: 10.1001/jamainternmed.2021.7804] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
IMPORTANCE Telomeres protect DNA from damage. Because they shorten with each mitotic cycle, leukocyte telomere length (LTL) serves as a mitotic clock. Reduced LTL has been associated with multiple human disorders. OBJECTIVE To determine the association between LTL and overall as well as disease-specific mortality and morbidity. DESIGN, SETTING, AND PARTICIPANTS This multicenter, community-based cohort study conducted from March 2006 to December 2010 included longitudinal follow-up (mean [SD], 12 [2] years) for 472 432 English participants from the United Kingdom Biobank (UK Biobank) and analyzed morbidity and mortality. The data were analyzed in 2021. MAIN OUTCOMES AND MEASURES Hazard ratios (HRs) and odds ratios for mortality and morbidity associated with a standard deviation change in LTL, adjusted for age, sex, body mass index (calculated as weight in kilograms divided by height in meters squared), and ethnicity. RESULTS This study included a total of 472 432 English participants, of whom 54% were women (mean age, 57 years). Reduced LTL was associated with increased overall (HR, 1.08; 95% CI, 1.07-1.09), cardiovascular (HR, 1.09; 95% CI, 1.06-1.12), respiratory (HR, 1.40; 95% CI, 1.34-1.45), digestive (HR, 1.26; 95% CI, 1.19-1.33), musculoskeletal (HR, 1.51; 95% CI, 1.35-1.92), and COVID-19 (HR, 1.15; 95% CI, 1.07-1.23) mortality, but not cancer-related mortality. A total of 214 disorders were significantly overrepresented and 37 underrepresented in participants with shorter LTL. Respiratory (11%), digestive/liver-related (14%), circulatory (18%), and musculoskeletal conditions (6%), together with infections (5%), accounted for most positive associations, whereas (benign) neoplasms and endocrinologic/metabolic disorders were the most underrepresented entities. Malignant tumors, esophageal cancer, and lymphoid and myeloid leukemia were significantly more common in participants with shorter LTL, whereas brain cancer and melanoma were less prevalent. While smoking and alcohol consumption were associated with shorter LTL, additional adjustment for both factors, as well as cognitive function/major comorbid conditions, did not significantly alter the results. CONCLUSIONS AND RELEVANCE This cohort study found that shorter LTL was associated with a small risk increase of overall mortality, but a higher risk of mortality was associated with specific organs and diseases.
Collapse
Affiliation(s)
- Carolin V Schneider
- The Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Kai Markus Schneider
- Perelman School of Medicine, Department of Microbiology, University of Pennsylvania, Philadelphia
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany.,Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | | | - Daniel Hartmann
- Department of Surgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Daniel J Rader
- The Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
9
|
van der Spek A, Karamujić-Čomić H, Pool R, Bot M, Beekman M, Garmaeva S, Arp PP, Henkelman S, Liu J, Alves AC, Willemsen G, van Grootheest G, Aubert G, Ikram MA, Jarvelin MR, Lansdorp P, Uitterlinden AG, Zhernakova A, Slagboom PE, Penninx BWJH, Boomsma DI, Amin N, van Duijn CM. Fat metabolism is associated with telomere length in six population-based studies. Hum Mol Genet 2021; 31:1159-1170. [PMID: 34875050 DOI: 10.1093/hmg/ddab281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/13/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Telomeres are repetitive DNA sequences located at the end of chromosomes, which are associated to biological aging, cardiovascular disease, cancer, and mortality. Lipid and fatty acid metabolism have been associated with telomere shortening. We have conducted an in-depth study investigating the association of metabolic biomarkers with telomere length (LTL). We performed an association analysis of 226 metabolic biomarkers with LTL using data from 11 775 individuals from six independent population-based cohorts (BBMRI-NL consortium). Metabolic biomarkers include lipoprotein lipids and subclasses, fatty acids, amino acids, glycolysis measures and ketone bodies. LTL was measured by quantitative polymerase chain reaction or FlowFISH. Linear regression analysis was performed adjusting for age, sex, lipid-lowering medication and cohort-specific covariates (model 1) and additionally for body mass index (BMI) and smoking (model 2), followed by inverse variance-weighted meta-analyses (significance threshold pmeta = 6.5x10-4). We identified four metabolic biomarkers positively associated with LTL, including two cholesterol to lipid ratios in small VLDL (S-VLDL-C % and S-VLDL-ce %) and two omega-6 fatty acid ratios (FAw6/FA and LA/FA). After additionally adjusting for BMI and smoking, these metabolic biomarkers remained associated with LTL with similar effect estimates. In addition, cholesterol esters in very small VLDL (XS-VLDL-ce) became significantly associated with LTL (p = 3.6x10-4). We replicated the association of FAw6/FA with LTL in an independent dataset of 7845 individuals (p = 1.9x10-4). To conclude, we identified multiple metabolic biomarkers involved in lipid and fatty acid metabolism that may be involved in LTL biology. Longitudinal studies are needed to exclude reversed causation.
Collapse
Affiliation(s)
- Ashley van der Spek
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,SkylineDx B.V., Rotterdam, The Netherlands
| | - Hata Karamujić-Čomić
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit University Amsterdam, Amsterdam, The Netherlands.,Amsterdam Public Health research institute, Amsterdam University Medical Centers, The Netherlands.,BBMRI-NL: Infrastructure for the Application of Metabolomics Technology in Epidemiology (RP4), The Netherlands
| | - Mariska Bot
- Department of Psychiatry and GGZ in Geest, Amsterdam Public Health research institute and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Sanzhima Garmaeva
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pascal P Arp
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Sandra Henkelman
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jun Liu
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Alexessander Couto Alves
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom.,School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit University Amsterdam, Amsterdam, The Netherlands.,Amsterdam Public Health research institute, Amsterdam University Medical Centers, The Netherlands
| | - Gerard van Grootheest
- Department of Psychiatry and GGZ in Geest, Amsterdam Public Health research institute and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Geraldine Aubert
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, V5Z 1L3 British Columbia, Canada
| | | | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom.,Center for Life Course Epidemiology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Peter Lansdorp
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, V5Z 1L3 British Columbia, Canada.,Departments of Medical Genetics and Hematology, University of British Columbia, Vancouver, V6T 1Z4 British Columbia, Canada
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - P Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry and GGZ in Geest, Amsterdam Public Health research institute and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit University Amsterdam, Amsterdam, The Netherlands.,Amsterdam Public Health research institute, Amsterdam University Medical Centers, The Netherlands.,BBMRI-NL: Infrastructure for the Application of Metabolomics Technology in Epidemiology (RP4), The Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Telomere Length, Apoptotic, and Inflammatory Genes: Novel Biomarkers of Gastrointestinal Tract Pathology and Meat Quality Traits in Chickens under Chronic Stress ( Gallus gallus domesticus). Animals (Basel) 2021; 11:ani11113276. [PMID: 34828008 PMCID: PMC8614256 DOI: 10.3390/ani11113276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The assessment of poultry’s gastrointestinal (GI) tract and meat quality traits are crucial for sustainable poultry production in the tropics. The search for well-conserved and more reliable biomarkers for the GI tract and meat traits has faced many challenges. In this study, we observed the effect of corticosterone (CORT) and age on body weight, buffy coat telomere length, GI tract, and meat quality traits. The critical evaluation of the GI tract and meat traits in this study revealed that telomere length, mitochondria, and acute phase protein genes were altered by chronic stress and were associated with the traits. This study informed us of the potential of telomere length, mitochondria, and acute phase protein genes in the assessment of GI tract pathological conditions and meat quality in the poultry sector for sustainable production. Abstract This study was designed to examine the potentials of telomere length, mitochondria, and acute phase protein genes as novel biomarkers of gastrointestinal (GI) tract pathologies and meat quality traits. Chickens were fed a diet containing corticosterone (CORT) for 4 weeks and records on body weight, telomere length, GI tract and muscle histopathological test, meat quality traits, mitochondria, and acute phase protein genes were obtained at weeks 4 and 6 of age. The body weight of CORT-fed chickens was significantly suppressed (p < 0.05). CORT significantly altered the GI tract and meat quality traits. The interaction effect of CORT and age on body weight, duodenum and ileum crypt depth, pH, and meat color was significant (p < 0.05). CORT significantly (p < 0.05) shortened buffy coat telomere length. UCP3 and COX6A1 were diversely and significantly expressed in the muscle, liver, and heart of the CORT-fed chicken. Significant expression of SAAL1 and CRP in the liver and hypothalamus of the CORT-fed chickens was observed at week 4 and 6. Therefore, telomere lengths, mitochondria, and acute phase protein genes could be used as novel biomarkers for GI tract pathologies and meat quality traits.
Collapse
|
11
|
Giaccherini M, Gentiluomo M, Fornili M, Lucenteforte E, Baglietto L, Campa D. Association between telomere length and mitochondrial copy number and cancer risk in humans: A meta-analysis on more than 300,000 individuals. Crit Rev Oncol Hematol 2021; 167:103510. [PMID: 34695574 DOI: 10.1016/j.critrevonc.2021.103510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
In the last decades the association of leukocyte telomere length (LTL) and mitochondrial copy number (mtDNAcn) with cancer risk has been the focus of many reports, however the relation is not yet completely understood. A meta-analysis of 112 studies including 64,184 cancer cases and 278,641 controls that analysed LTL and mtDNAcn in relation to cancer risk has been conducted to further our understanding of the topic. Stratified analyses for tumor type were also performed. Overall, no association was observed for all cancer combined neither for LTL nor mtDNAcn. Significant associations were detected for these biomarkers and specific cancer type; however, a large degree of heterogeneity was present, even within the same tumor type. Alternatives approaches based on polymorphic variants, such as polygenic risk scores and mendelian randomization, could be adopted to unravel the causal correlation of telomere length and mitochondrial copy number with cancer risk.
Collapse
Affiliation(s)
| | | | - Marco Fornili
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Laura Baglietto
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Daniele Campa
- Department of Biology, University of Pisa, 56126, Pisa, Italy.
| |
Collapse
|
12
|
Goswami A, Huda N, Yasmin T, Hosen MI, Hasan AKMM, Nabi AHMN. Association study of leukocyte telomere length and genetic polymorphism within hTERT promoter with type 2 diabetes in Bangladeshi population. Mol Biol Rep 2021; 48:285-295. [PMID: 33389530 DOI: 10.1007/s11033-020-06045-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022]
Abstract
Telomeres are protective cap on the ends of DNA of non-coding tandem repeats of TTAGGG. Human telomerase reverse transcriptase (hTERT) is a catalytic subunit of telomerase that maintains the structure of telomeres. Type 2 diabetes (T2D) affects multi-organ and telomere length by altering telomerase activity. We aimed to evaluate the relative telomere length (RTL) and risk association of rs2853669 with T2D in Bangladeshi population. RTL was measured in 408 unrelated Bangladeshi (224 T2D and 184 healthy) using primers for target gene and reference gene albumin. Genotypic frequencies for rs2853669 were determined using TaqMan® probes. The mean level of age adjusted RTL (AARTL) varied significantly between the healthy and individuals with T2D for all the genotypes with respect to rs2853669. Moreover, healthy individuals had significantly higher AARTL than T2D. Similar findings were observed when study participants were stratified based on their gender. Association studies revealed that under codominant model of inheritance, TC genotype showed protective role against development of type 2 diabetes. This study suggests a possible role of telomere biology in T2DM, but their association needs to be evaluated further with a larger series and matched healthy controls.
Collapse
Affiliation(s)
- Atoll Goswami
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Nafiul Huda
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Tahirah Yasmin
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Md Ismail Hosen
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka-1000, Bangladesh
| | - A K M Mahbub Hasan
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka-1000, Bangladesh
| | - A H M Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka-1000, Bangladesh.
| |
Collapse
|
13
|
Developing a blood-based gene mutation assay as a novel biomarker for oesophageal adenocarcinoma. Sci Rep 2019; 9:5168. [PMID: 30914682 PMCID: PMC6435702 DOI: 10.1038/s41598-019-41490-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022] Open
Abstract
The Phosphatidylinositol glycan class A (PIG-A) gene mutation assay phenotypically measures erythrocyte mutations, assessed here for their correlation to neoplastic progression in the gastro-oesophageal reflux disease (GORD)-Barrett’s metaplasia (BM)-oesophageal adenocarcinoma (OAC) model. Endoscopy patients underwent venipuncture and erythrocytes fluorescently stained for glycosyl phosphatidylinositol (GPI)–anchored proteins; CD55 and CD59. Using flow cytometry, GPI–anchor negative erythrocytes (mutants) were scored and compared amongst groups. The study enlisted 200 patients and 137 healthy volunteers. OAC patients had a three–fold increase in erythrocyte mutant frequency (EMF) compared to GORD patients (p < 0.001) and healthy volunteers (p < 0.001). In OAC patients, higher EMF was associated with worsening tumour staging (p = 0.014), nodal involvement (p = 0.019) and metastatic disease (p = 0.008). Chemotherapy patients demonstrated EMF’s over 19–times higher than GORD patients. Patients were further classified into groups containing those with non-neoplastic disease and those with high-grade dysplasia/cancer with 72.1% of cases correctly classified by high EMF. Within the non-neoplastic group, aspirin users had lower EMF (p = 0.001) and there was a positive correlation between body mass index (p = 0.03) and age (p < 0.001) and EMF. Smokers had EMF’s over double that of non-smokers (p = 0.011). Results suggest this test could help detect OAC and may be a useful predictor of disease progression.
Collapse
|
14
|
Nomikos NN, Nikolaidis PT, Sousa CV, Papalois AE, Rosemann T, Knechtle B. Exercise, Telomeres, and Cancer: "The Exercise-Telomere Hypothesis". Front Physiol 2018; 9:1798. [PMID: 30618810 PMCID: PMC6305363 DOI: 10.3389/fphys.2018.01798] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022] Open
Abstract
Telomeres are genomic complex at the end of chromosomes that protects the DNA and telomere length (TL) is related to several age-related diseases, lifespan, and cancer. On the other hand, cancer is a multifactorial disease that is responsible for reduce the quality of life and kills millions of people every year. Both, shorter TL and cancer are related and could be treated or prevented depending of the lifestyle. In this review we discuss the possible role of exercise in the relationship between shorter telomeres, telomerase activity, and cancer. In summary, there is evidence that exercise leads to less telomere attrition and exercise also may diminish the risk of cancer, these two outcomes are possible intermediated by a reduction in oxidative stress, and chronic inflammation. Although, there is evidence that shorter TL are associated with cancer, the possible mechanisms that one may lead to the other remains to be clarified. We assume that humans under cancer treatment may suffer a great decrease in quality of life, which may increase sedentary behavior and lead to increased telomere attrition. And those humans with already shorter TL likely lived under a poor lifestyle and might have an increased risk to have cancer.
Collapse
Affiliation(s)
- Nikitas N Nomikos
- Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Caio V Sousa
- Graduate Program in Physical Education, Catholic University of Brasília, Brasília, Brazil
| | | | - Thomas Rosemann
- Institute of Primary Care, University of Zürich, Zürich, Switzerland
| | - Beat Knechtle
- Institute of Primary Care, University of Zürich, Zürich, Switzerland.,Mebase St. Gallen Am Vadianplatz St. Gallen, Switzerland
| |
Collapse
|
15
|
Qureshi AP, Stachler MD, Haque O, Odze RD. Biomarkers for Barrett's esophagus - a contemporary review. Expert Rev Mol Diagn 2018; 18:939-946. [PMID: 30345836 DOI: 10.1080/14737159.2018.1538793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Esophageal adenocarcinoma (EAC) has a poor 5-year survival rate (10%-18%), and incidence has increased dramatically in the past three decades. Barrett's esophagus (BE) is the precursor lesion to EAC and is the replacement of the normally squamous lined esophagus with columnar cells that develop an intestinal phenotype characterized by the presence of goblet cells. Given the known precursor state, EAC is amenable to screening and surveillance strategies (analogous to colon cancer). However, unlike from colon cancer screening, BE poses challenges that make effective screening difficult. Robust and concerted effort is under way to find biomarkers of BE. Areas covered: This review summarizes current known biomarkers for BE. These include dysplasia, genomic markers, and gene expression alterations that occur early in the dysplasia/carcinoma sequence. Expert commentary: Despite the tremendous breadth of work in studying molecular advances, the ideal biomarker for BE has not yet been discerned. This review comments on innovations in the field of BE research that combine state-of-the-art molecular advances with simple technologies.
Collapse
Affiliation(s)
- Alia P Qureshi
- a Beth Israel Deaconess Medical Center, Department of Surgery , Harvard Medical School , Boston , MA
| | - Matthew D Stachler
- b Department of Pathology, Harvard Medical School , Brigham and Women's Hospital , Boston , MA
| | - Omar Haque
- a Beth Israel Deaconess Medical Center, Department of Surgery , Harvard Medical School , Boston , MA
| | - Robert D Odze
- b Department of Pathology, Harvard Medical School , Brigham and Women's Hospital , Boston , MA
| |
Collapse
|
16
|
Usman M, Volpi EV. DNA damage in obesity: Initiator, promoter and predictor of cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 778:23-37. [PMID: 30454680 DOI: 10.1016/j.mrrev.2018.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/29/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022]
Abstract
Epidemiological evidence linking obesity with increased risk of cancer is steadily growing, although the causative aspects underpinning this association are only partially understood. Obesity leads to a physiological imbalance in the regulation of adipose tissue and its normal functioning, resulting in hyperglycaemia, dyslipidaemia and inflammation. These states promote the generation of oxidative stress, which is exacerbated in obesity by a decline in anti-oxidant defence systems. Oxidative stress can have a marked impact on DNA, producing mutagenic lesions that could prove carcinogenic. Here we review the current evidence for genomic instability, sustained DNA damage and accelerated genome ageing in obesity. We explore the notion of genotoxicity, ensuing from systemic oxidative stress, as a key oncogenic factor in obesity. Finally, we advocate for early, pre-malignant assessment of genome integrity and stability to inform surveillance strategies and interventions.
Collapse
Affiliation(s)
- Moonisah Usman
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Emanuela V Volpi
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK.
| |
Collapse
|
17
|
Randomized controlled trial of weight loss versus usual care on telomere length in women with breast cancer: the lifestyle, exercise, and nutrition (LEAN) study. Breast Cancer Res Treat 2018; 172:105-112. [DOI: 10.1007/s10549-018-4895-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/15/2018] [Indexed: 01/01/2023]
|
18
|
Wang H, Yu J, Guo Y, Zhang Z, Liu G, Li J, Zhang X, Jin T, Wang Z. Genetic variants in the ZNF208 gene are associated with esophageal cancer in a Chinese Han population. Oncotarget 2018; 7:86829-86835. [PMID: 27907911 PMCID: PMC5349957 DOI: 10.18632/oncotarget.13468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/29/2016] [Indexed: 01/23/2023] Open
Abstract
Previous studies showed an association between the ZNF208 gene and gastric cancer. In this study, we investigated the association between single nucleotide polymorphisms (SNPs) in ZNF208 and the risk of esophageal cancer in a Chinese Han population. We conducted a case-control study that included 386 cases and 495 controls. Five SNPs were selected from previous genome-wide association studies and genotyped using the Sequenom MassARRAY platform. Unconditional logistic regression was used to calculate odds ratios and 95% confidence intervals after adjustment for age and gender. Logistic regressionl analysis showed that two SNPs (rs8103163 and rs7248488) were associated with an increased risk of esophageal cancer under different inheritance models after Bonferroni correction. Haplotype analysis suggested that the four variants comprised one block, and that the Grs2188972Crs2188971Crs8103163Crs7248488 haplotype was significantly correlated with an increased risk of esophageal cancer. Our data indicate that variants in ZNF208 are contribute to the susceptibility to esophageal cancer in a Chinese Han population.
Collapse
Affiliation(s)
- Huijie Wang
- Department of Intergrated Traditional Chinese and Western Medicine in Oncology, Affiliated Luoyang Central Hospital, Zhengzhou University, Luoyang 471000, China
| | - Jianzhong Yu
- Department of Neurology, Haikou People's Hospital, Haikou 570208, Hainan, China
| | - Yanling Guo
- Department of Intergrated Traditional Chinese and Western Medicine in Oncology, Affiliated Luoyang Central Hospital, Zhengzhou University, Luoyang 471000, China
| | - Zhengxing Zhang
- Department of Intergrated Traditional Chinese and Western Medicine in Oncology, Affiliated Luoyang Central Hospital, Zhengzhou University, Luoyang 471000, China
| | - Guoqi Liu
- Department of Intergrated Traditional Chinese and Western Medicine in Oncology, Affiliated Luoyang Central Hospital, Zhengzhou University, Luoyang 471000, China
| | - Jingjie Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xiyang Zhang
- Xi'an Tiangen Precision Medical Institute, Xi'an, Shaanxi 710075, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Zhaoxia Wang
- Department of Intergrated Traditional Chinese and Western Medicine in Oncology, Affiliated Luoyang Central Hospital, Zhengzhou University, Luoyang 471000, China
| |
Collapse
|
19
|
Abstract
Many risk factors have been firmly established for pancreatic cancer (PC), but the molecular processes by which known risk factors influence susceptibility to PC are not clear. There has been a recent upsurge of interest in the role of telomere length (TL), the protective DNA sequence repeats at chromosome ends, in pancreatic carcinogenesis. Given this heightened interest, we performed an in-depth, focused, and up-to-date review of the epidemiological evidence linking leukocyte TL (LTL) with PC risk. We searched MEDLINE, Embase, and the Cochrane Library databases for all published studies on LTL and PC risk, up to May 2017. Five studies were identified for review: four nested case-control studies and one retrospective case-control study. Two studies found opposite associations between LTL and PC risk; one found a dose-response positive association and the other found a dose-response inverse association. Two studies also found a “U-shaped” association, while another reported a weak nonlinear relationship. We offer potential reasons for the conflicting findings including variation in study design, biospecimen characteristics, and differences in inter-laboratory measurements of TL. Future studies should carefully control for risk factors of PC that are associated also with telomere attrition, and investigate the role of genetic variation in TL maintenance.
Collapse
Affiliation(s)
- Samuel O. Antwi
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL
| | - Gloria M. Petersen
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| |
Collapse
|
20
|
Kunzmann AT, McMenamin ÚC, Spence AD, Gray RT, Murray LJ, Turkington RC, Coleman HG. Blood biomarkers for early diagnosis of oesophageal cancer: a systematic review. Eur J Gastroenterol Hepatol 2018; 30:263-273. [PMID: 29189391 DOI: 10.1097/meg.0000000000001029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Oesophageal cancer prognosis remains poor owing to the inability to detect the disease at an early stage. Nontissue (serum, urinary or salivary) biomarkers potentially offer less invasive methods to aid early detection of oesophageal cancer. We aimed to systematically review studies assessing the relationship between nontissue biomarkers and subsequent development of oesophageal cancer. METHODS Using terms for biomarkers and oesophageal cancer, Medline, EMBASE and Web of Science were systematically searched for longitudinal studies, published until April 2016, which assessed the association between nontissue biomarkers and subsequent oesophageal cancer risk. Random effects meta-analyses were used to calculate pooled relative risk (RR) and 95% confidence intervals (CIs), where possible. RESULTS A total of 39 studies were included. Lower serum pepsinogen I concentrations were associated with an increased risk of oesophageal squamous cell carcinoma (n=3 studies, pooled RR=2.20, 95% CI: 1.31-3.70). However, the association for the pepsinogen I : II ratio was not statistically significant (n=3 studies, pooled RR=2.22, 95% CI: 0.77-6.40), with a large degree of heterogeneity observed (I=68.0%). Higher serum glucose concentrations were associated with a modestly increased risk of total oesophageal cancer (n=3 studies, pooled RR=1.27, 95% CI: 1.02-1.57). No association was observed for total cholesterol and total oesophageal cancer risk (n=3 studies, pooled RR=0.95, 95% CI: 0.58-1.54). Very few studies have assessed other biomarkers for meta-analyses. CONCLUSION Serum pepsinogen I concentrations could aid early detection of oesophageal squamous cell carcinoma. More prospective studies are needed to determine the use of other nontissue biomarkers in the early detection of oesophageal cancer.
Collapse
Affiliation(s)
- Andrew T Kunzmann
- Cancer Epidemiology and Health Services Research Group, Centre for Public Health
| | - Úna C McMenamin
- Cancer Epidemiology and Health Services Research Group, Centre for Public Health
| | - Andrew D Spence
- Cancer Epidemiology and Health Services Research Group, Centre for Public Health
| | - Ronan T Gray
- Cancer Epidemiology and Health Services Research Group, Centre for Public Health
| | - Liam J Murray
- Cancer Epidemiology and Health Services Research Group, Centre for Public Health
| | - Richard C Turkington
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Helen G Coleman
- Cancer Epidemiology and Health Services Research Group, Centre for Public Health
| |
Collapse
|
21
|
Renault AL, Mebirouk N, Cavaciuti E, Le Gal D, Lecarpentier J, d'Enghien CD, Laugé A, Dondon MG, Labbé M, Lesca G, Leroux D, Gladieff L, Adenis C, Faivre L, Gilbert-Dussardier B, Lortholary A, Fricker JP, Dahan K, Bay JO, Longy M, Buecher B, Janin N, Zattara H, Berthet P, Combès A, Coupier I, Hall J, Stoppa-Lyonnet D, Andrieu N, Lesueur F. Telomere length, ATM mutation status and cancer risk in Ataxia-Telangiectasia families. Carcinogenesis 2017; 38:994-1003. [PMID: 28981872 PMCID: PMC5862273 DOI: 10.1093/carcin/bgx074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 07/08/2017] [Indexed: 11/12/2022] Open
Abstract
Recent studies have linked constitutive telomere length (TL) to aging-related diseases including cancer at different sites. ATM participates in the signaling of telomere erosion, and inherited mutations in ATM have been associated with increased risk of cancer, particularly breast cancer. The goal of this study was to investigate whether carriage of an ATM mutation and TL interplay to modify cancer risk in ataxia-telangiectasia (A-T) families.The study population consisted of 284 heterozygous ATM mutation carriers (HetAT) and 174 non-carriers (non-HetAT) from 103 A-T families. Forty-eight HetAT and 14 non-HetAT individuals had cancer, among them 25 HetAT and 6 non-HetAT were diagnosed after blood sample collection. We measured mean TL using a quantitative PCR assay and genotyped seven single-nucleotide polymorphisms (SNPs) recurrently associated with TL in large population-based studies.HetAT individuals were at increased risk of cancer (OR = 2.3, 95%CI = 1.2-4.4, P = 0.01), and particularly of breast cancer for women (OR = 2.9, 95%CI = 1.2-7.1, P = 0.02), in comparison to their non-HetAT relatives. HetAT individuals had longer telomeres than non-HetAT individuals (P = 0.0008) but TL was not associated with cancer risk, and no significant interaction was observed between ATM mutation status and TL. Furthermore, rs9257445 (ZNF311) was associated with TL in HetAT subjects and rs6060627 (BCL2L1) modified cancer risk in HetAT and non-HetAT women.Our findings suggest that carriage of an ATM mutation impacts on the age-related TL shortening and that TL per se is not related to cancer risk in ATM carriers. TL measurement alone is not a good marker for predicting cancer risk in A-T families.
Collapse
Affiliation(s)
- Anne-Laure Renault
- INSERM, U900, Paris, France.,PSL Research University, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France
| | - Noura Mebirouk
- INSERM, U900, Paris, France.,PSL Research University, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France
| | - Eve Cavaciuti
- INSERM, U900, Paris, France.,PSL Research University, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France
| | - Dorothée Le Gal
- INSERM, U900, Paris, France.,PSL Research University, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France
| | - Julie Lecarpentier
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | | | - Marie-Gabrielle Dondon
- INSERM, U900, Paris, France.,PSL Research University, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France
| | - Martine Labbé
- INSERM, U900, Paris, France.,PSL Research University, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France
| | - Gaetan Lesca
- CHU de Lyon, Groupement Hospitalier Est, Service de Génétique Médicale, Lyon, France
| | - Dominique Leroux
- CHU de Grenoble, Hôpital Couple-Enfant, Département de Génétique, Grenoble, France
| | - Laurence Gladieff
- Institut Claudius Regaud-IUCT-Oncopole, Service d'Oncologie Médicale, Toulouse, France
| | | | - Laurence Faivre
- Hôpital d'Enfants, Service de Génétique Médicale, Dijon, France
| | | | - Alain Lortholary
- Centre Catherine de Sienne, Service d'Oncologie Médicale, Nantes, France
| | | | - Karin Dahan
- Clinique Universitaire Saint-Luc, Génétique, Bruxelles, Belgium
| | | | | | | | - Nicolas Janin
- Clinique Universitaire Saint-Luc, Génétique, Bruxelles, Belgium
| | | | - Pascaline Berthet
- Centre François Baclesse, Unité de Pathologie Gynécologique, Caen, France
| | - Audrey Combès
- Centre Hospitalier Universitaire de Nîmes, Unité de Génétique Médicale et Cytogénétique, Nîmes, France
| | - Isabelle Coupier
- Hôpital Arnaud de Villeneuve, CHU Montpellier, Service de Génétique Médicale et Oncogénétique, Montpellier, France.,ICM Val d'Aurel, Unité d'Oncogénétique, Montpellier, France
| | | | - Janet Hall
- Centre de Recherche en Cancérologie de Lyon, Lyon, France.,UMR INSERM 1052, Lyon, France.,CNRS 5286, Lyon, France
| | - Dominique Stoppa-Lyonnet
- Service de Génétique, Institut Curie, Paris, France.,INSERM, U830, Paris, France.,Université Paris Descartes, Paris, France
| | - Nadine Andrieu
- INSERM, U900, Paris, France.,PSL Research University, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France
| | - Fabienne Lesueur
- INSERM, U900, Paris, France.,PSL Research University, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France
| |
Collapse
|
22
|
Karimi B, Yunesian M, Nabizadeh R, Mehdipour P, Aghaie A. Is Leukocyte Telomere Length Related with Lung Cancer Risk?: A Meta-Analysis. IRANIAN BIOMEDICAL JOURNAL 2017; 21:142-153. [PMID: 27874106 PMCID: PMC5392217 DOI: 10.18869/acadpub.ibj.21.3.142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/12/2016] [Accepted: 07/11/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Epidemiological studies have probed the correlation between telomere length and the risk of lung cancer, but their findings are inconsistent in this regard. The present meta-analysis study has been carried out to demonstrate the association between relative telomere length in peripheral blood leukocytes and the risk of lung cancer using an established Q-PCR technique. METHODS A systematic search was carried out using PubMed, EMBASE, and ISI before 2015. A total of 2925 cases of lung cancer and 2931 controls from 9 studies were employed to probe the relationship between lung cancer and telomere length .ORs were used at 95% CI. Random-effects models were used to investigate this relationship based on the heterogeneity test. Heterogeneity among studies was analyzed employing subgroup analysis based on type studies and the year of publication. RESULTS Random-effects meta-analysis revealed that patients with lung cancer were expected to have shorter telomere length than the control (1.13, 95% CI: 0.82-1.81, P=0.46). The summary of the pooled ORs of telomere length in adenocarcinoma lung cancer patients was 1 (95%CI=0.68-1.47, I2=93%) compared to patients with squamous cell lung cancer, which was 1.78 (95% CI=1.25-2.53, I2=3.9%). The meta-regression revealed that the effect of telomere length shortening, decreased and increased with the year of publication and the age of risks to lung cancer, was clearly related to short telomeres lengths. CONCLUSION Lung cancer risks clearly related with short telomeres lengths. In patients with breathing problems, lung cancer risk can be predicted by telomere length adjustment with age, sex, and smoking.
Collapse
Affiliation(s)
- Behrooz Karimi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab St., Tehran, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab St., Tehran, Iran
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Kargar St., Enghelab Sq., Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab St., Tehran, Iran
| | - Parvin Mehdipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Enghelab St., Tehran, Iran
| | - Afsaneh Aghaie
- High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
23
|
Haycock PC, Burgess S, Nounu A, Zheng J, Okoli GN, Bowden J, Wade KH, Timpson NJ, Evans DM, Willeit P, Aviv A, Gaunt TR, Hemani G, Mangino M, Ellis HP, Kurian KM, Pooley KA, Eeles RA, Lee JE, Fang S, Chen WV, Law MH, Bowdler LM, Iles MM, Yang Q, Worrall BB, Markus HS, Hung RJ, Amos CI, Spurdle AB, Thompson DJ, O'Mara TA, Wolpin B, Amundadottir L, Stolzenberg-Solomon R, Trichopoulou A, Onland-Moret NC, Lund E, Duell EJ, Canzian F, Severi G, Overvad K, Gunter MJ, Tumino R, Svenson U, van Rij A, Baas AF, Bown MJ, Samani NJ, van t'Hof FNG, Tromp G, Jones GT, Kuivaniemi H, Elmore JR, Johansson M, Mckay J, Scelo G, Carreras-Torres R, Gaborieau V, Brennan P, Bracci PM, Neale RE, Olson SH, Gallinger S, Li D, Petersen GM, Risch HA, Klein AP, Han J, Abnet CC, Freedman ND, Taylor PR, Maris JM, Aben KK, Kiemeney LA, Vermeulen SH, Wiencke JK, Walsh KM, Wrensch M, Rice T, Turnbull C, Litchfield K, Paternoster L, Standl M, Abecasis GR, SanGiovanni JP, Li Y, Mijatovic V, Sapkota Y, Low SK, Zondervan KT, Montgomery GW, Nyholt DR, van Heel DA, Hunt K, Arking DE, Ashar FN, Sotoodehnia N, Woo D, Rosand J, et alHaycock PC, Burgess S, Nounu A, Zheng J, Okoli GN, Bowden J, Wade KH, Timpson NJ, Evans DM, Willeit P, Aviv A, Gaunt TR, Hemani G, Mangino M, Ellis HP, Kurian KM, Pooley KA, Eeles RA, Lee JE, Fang S, Chen WV, Law MH, Bowdler LM, Iles MM, Yang Q, Worrall BB, Markus HS, Hung RJ, Amos CI, Spurdle AB, Thompson DJ, O'Mara TA, Wolpin B, Amundadottir L, Stolzenberg-Solomon R, Trichopoulou A, Onland-Moret NC, Lund E, Duell EJ, Canzian F, Severi G, Overvad K, Gunter MJ, Tumino R, Svenson U, van Rij A, Baas AF, Bown MJ, Samani NJ, van t'Hof FNG, Tromp G, Jones GT, Kuivaniemi H, Elmore JR, Johansson M, Mckay J, Scelo G, Carreras-Torres R, Gaborieau V, Brennan P, Bracci PM, Neale RE, Olson SH, Gallinger S, Li D, Petersen GM, Risch HA, Klein AP, Han J, Abnet CC, Freedman ND, Taylor PR, Maris JM, Aben KK, Kiemeney LA, Vermeulen SH, Wiencke JK, Walsh KM, Wrensch M, Rice T, Turnbull C, Litchfield K, Paternoster L, Standl M, Abecasis GR, SanGiovanni JP, Li Y, Mijatovic V, Sapkota Y, Low SK, Zondervan KT, Montgomery GW, Nyholt DR, van Heel DA, Hunt K, Arking DE, Ashar FN, Sotoodehnia N, Woo D, Rosand J, Comeau ME, Brown WM, Silverman EK, Hokanson JE, Cho MH, Hui J, Ferreira MA, Thompson PJ, Morrison AC, Felix JF, Smith NL, Christiano AM, Petukhova L, Betz RC, Fan X, Zhang X, Zhu C, Langefeld CD, Thompson SD, Wang F, Lin X, Schwartz DA, Fingerlin T, Rotter JI, Cotch MF, Jensen RA, Munz M, Dommisch H, Schaefer AS, Han F, Ollila HM, Hillary RP, Albagha O, Ralston SH, Zeng C, Zheng W, Shu XO, Reis A, Uebe S, Hüffmeier U, Kawamura Y, Otowa T, Sasaki T, Hibberd ML, Davila S, Xie G, Siminovitch K, Bei JX, Zeng YX, Försti A, Chen B, Landi S, Franke A, Fischer A, Ellinghaus D, Flores C, Noth I, Ma SF, Foo JN, Liu J, Kim JW, Cox DG, Delattre O, Mirabeau O, Skibola CF, Tang CS, Garcia-Barcelo M, Chang KP, Su WH, Chang YS, Martin NG, Gordon S, Wade TD, Lee C, Kubo M, Cha PC, Nakamura Y, Levy D, Kimura M, Hwang SJ, Hunt S, Spector T, Soranzo N, Manichaikul AW, Barr RG, Kahali B, Speliotes E, Yerges-Armstrong LM, Cheng CY, Jonas JB, Wong TY, Fogh I, Lin K, Powell JF, Rice K, Relton CL, Martin RM, Davey Smith G. Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases: A Mendelian Randomization Study. JAMA Oncol 2017; 3:636-651. [PMID: 28241208 PMCID: PMC5638008 DOI: 10.1001/jamaoncol.2016.5945] [Show More Authors] [Citation(s) in RCA: 336] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPORTANCE The causal direction and magnitude of the association between telomere length and incidence of cancer and non-neoplastic diseases is uncertain owing to the susceptibility of observational studies to confounding and reverse causation. OBJECTIVE To conduct a Mendelian randomization study, using germline genetic variants as instrumental variables, to appraise the causal relevance of telomere length for risk of cancer and non-neoplastic diseases. DATA SOURCES Genomewide association studies (GWAS) published up to January 15, 2015. STUDY SELECTION GWAS of noncommunicable diseases that assayed germline genetic variation and did not select cohort or control participants on the basis of preexisting diseases. Of 163 GWAS of noncommunicable diseases identified, summary data from 103 were available. DATA EXTRACTION AND SYNTHESIS Summary association statistics for single nucleotide polymorphisms (SNPs) that are strongly associated with telomere length in the general population. MAIN OUTCOMES AND MEASURES Odds ratios (ORs) and 95% confidence intervals (CIs) for disease per standard deviation (SD) higher telomere length due to germline genetic variation. RESULTS Summary data were available for 35 cancers and 48 non-neoplastic diseases, corresponding to 420 081 cases (median cases, 2526 per disease) and 1 093 105 controls (median, 6789 per disease). Increased telomere length due to germline genetic variation was generally associated with increased risk for site-specific cancers. The strongest associations (ORs [95% CIs] per 1-SD change in genetically increased telomere length) were observed for glioma, 5.27 (3.15-8.81); serous low-malignant-potential ovarian cancer, 4.35 (2.39-7.94); lung adenocarcinoma, 3.19 (2.40-4.22); neuroblastoma, 2.98 (1.92-4.62); bladder cancer, 2.19 (1.32-3.66); melanoma, 1.87 (1.55-2.26); testicular cancer, 1.76 (1.02-3.04); kidney cancer, 1.55 (1.08-2.23); and endometrial cancer, 1.31 (1.07-1.61). Associations were stronger for rarer cancers and at tissue sites with lower rates of stem cell division. There was generally little evidence of association between genetically increased telomere length and risk of psychiatric, autoimmune, inflammatory, diabetic, and other non-neoplastic diseases, except for coronary heart disease (OR, 0.78 [95% CI, 0.67-0.90]), abdominal aortic aneurysm (OR, 0.63 [95% CI, 0.49-0.81]), celiac disease (OR, 0.42 [95% CI, 0.28-0.61]) and interstitial lung disease (OR, 0.09 [95% CI, 0.05-0.15]). CONCLUSIONS AND RELEVANCE It is likely that longer telomeres increase risk for several cancers but reduce risk for some non-neoplastic diseases, including cardiovascular diseases.
Collapse
Affiliation(s)
- Philip C Haycock
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, England2School of Social and Community Medicine, University of Bristol, Bristol, England
| | - Stephen Burgess
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, England
| | - Aayah Nounu
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, England2School of Social and Community Medicine, University of Bristol, Bristol, England
| | - Jie Zheng
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, England2School of Social and Community Medicine, University of Bristol, Bristol, England
| | - George N Okoli
- School of Social and Community Medicine, University of Bristol, Bristol, England
| | - Jack Bowden
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, England2School of Social and Community Medicine, University of Bristol, Bristol, England
| | - Kaitlin Hazel Wade
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, England2School of Social and Community Medicine, University of Bristol, Bristol, England
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, England2School of Social and Community Medicine, University of Bristol, Bristol, England
| | - David M Evans
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, England2School of Social and Community Medicine, University of Bristol, Bristol, England4University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Peter Willeit
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, England5Department of Neurology, Innsbruck Medical University, Austria
| | - Abraham Aviv
- Center of Human Development and Aging, Department of Pediatrics, New Jersey Medical School, Rutgers, The State University of New Jersey
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, England2School of Social and Community Medicine, University of Bristol, Bristol, England
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, England2School of Social and Community Medicine, University of Bristol, Bristol, England
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London England8NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, England
| | - Hayley Patricia Ellis
- Brain Tumour Research Group, Institute of Clinical Neuroscience, Learning and Research Building, Southmead Hospital, University of Bristol
| | - Kathreena M Kurian
- Brain Tumour Research Group, Institute of Clinical Neuroscience, Learning and Research Building, Southmead Hospital, University of Bristol
| | - Karen A Pooley
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, England
| | - Rosalind A Eeles
- The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Shenying Fang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Wei V Chen
- Department of Clinical Applications & Support, The University of Texas MD Anderson Cancer Center, Houston
| | - Matthew H Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Lisa M Bowdler
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Mark M Iles
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, England
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Bradford B Worrall
- Departments of Neurology and Public Health Sciences, University of Virginia Charlottesville, Virginia
| | | | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada21Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Chris I Amos
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Amanda B Spurdle
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, England
| | - Tracy A O'Mara
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Brian Wolpin
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Laufey Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Rachael Stolzenberg-Solomon
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece28WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Athens, Greece
| | - N Charlotte Onland-Moret
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands
| | - Eiliv Lund
- Institute of Community Medicine, UiT The Arctic University of Norway, Tromso, Norway
| | - Eric J Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gianluca Severi
- Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France34Institut Gustave Roussy, Villejuif, France35Human Genetics Foundation (HuGeF), Torino, Italy36Cancer Council Victoria and University of Melbourne, Melbourne, Australia
| | - Kim Overvad
- Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark
| | - Marc J Gunter
- School of Public Health, Imperial College London, London, England
| | - Rosario Tumino
- Cancer Registry, Azienda Ospedaliera "Civile M.P. Arezzo," Ragusa, Italy
| | - Ulrika Svenson
- Department of Medical Biosciences, Umea University, Umea, Sweden
| | - Andre van Rij
- Surgery Department, University of Otago, Dunedin, New Zealand
| | - Annette F Baas
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Matthew J Bown
- Department of Cardiovascular Sciences and the NIHR Leicester, Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Leicester, England
| | - Nilesh J Samani
- Department of Cardiovascular Sciences and the NIHR Leicester, Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Leicester, England
| | - Femke N G van t'Hof
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Gerard Tromp
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa46The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, Pennsylvania
| | - Gregory T Jones
- Surgery Department, University of Otago, Dunedin, New Zealand
| | - Helena Kuivaniemi
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa46The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, Pennsylvania
| | - James R Elmore
- Department of Vascular and Endovascular Surgery, Geisinger Health System, Danville, Pennsylvania
| | - Mattias Johansson
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - James Mckay
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer, Lyon, France
| | - Ghislaine Scelo
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | | | - Valerie Gaborieau
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Rachel E Neale
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Sara H Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston
| | - Gloria M Petersen
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Harvey A Risch
- Yale School of Public Health, Yale School of Medicine, and Yale Cancer Center, New Haven, Connecticut
| | - Alison P Klein
- Departments of Oncology, Pathology and Epidemiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jiali Han
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, Indianapolis57Indiana University Melvin and Bren Simon Cancer Center, Indianapolis
| | - Christian C Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Philip R Taylor
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - John M Maris
- Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania
| | - Katja K Aben
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands61Netherlands Comprehensive Cancer Organization, Utrecht, The Netherlands
| | - Lambertus A Kiemeney
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Sita H Vermeulen
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - John K Wiencke
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California63Institute of Human Genetics, University of California, San Francisco, San Francisco, California
| | - Kyle M Walsh
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California63Institute of Human Genetics, University of California, San Francisco, San Francisco, California
| | - Margaret Wrensch
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California63Institute of Human Genetics, University of California, San Francisco, San Francisco, California
| | - Terri Rice
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Clare Turnbull
- The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England64William Harvey Research Institute, Queen Mary University, London, England
| | - Kevin Litchfield
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, England
| | - Lavinia Paternoster
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, England2School of Social and Community Medicine, University of Bristol, Bristol, England
| | - Marie Standl
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | | | - John Paul SanGiovanni
- National Institute of Alcohol Abuse and Alcoholism, Laboratory of Membrane Biophysics and Biochemistry, Section on Nutritional Neuroscience, Bethesda, Maryland69Department of Biochemistry and Molecular and Cellular Biology, Georgetown School of Medicine, Washington, DC
| | - Yong Li
- Division of Genetic Epidemiology, Institute for Medical Biometry and Statistics, Faculty of Medicine, and Medical Centre, University of Freiburg, Freiburg, Germany
| | - Vladan Mijatovic
- Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - Yadav Sapkota
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Siew-Kee Low
- Laboratory of Statistical Analysis, Centre for Integrative Medical Sciences, The Institute of Physical and Chemical Research (RIKEN), Yokohama, Japan
| | - Krina T Zondervan
- Genetic and Genomic Epidemiology Unit, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, England74Nuffield Department of Obstetrics and Gynecology, University of Oxford, John Radcliffe Hospital, Oxford, England
| | | | - Dale R Nyholt
- QIMR Berghofer Medical Research Institute, Brisbane, Australia75Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - David A van Heel
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, England
| | - Karen Hunt
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, England
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Foram N Ashar
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nona Sotoodehnia
- Division of Cardiology and Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington
| | - Daniel Woo
- University of Cincinnati College of Medicine, Department of Neurology, Cincinnati, Ohio
| | - Jonathan Rosand
- Massachusetts General Hospital, Neurology, Center for Human Genetic Research, Boston, Massachusetts
| | - Mary E Comeau
- Center for Public Health Genomics, Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - W Mark Brown
- Center for Public Health Genomics, Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - John E Hokanson
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jennie Hui
- Busselton Population Medical Research Institute Inc, Sir Charles Gairdner Hospital, Perth, Australia85PathWest Laboratory Medicine of Western Australia, Perth, Australia86School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia87School of Population Health, University of WA, Perth, Australia
| | | | - Philip J Thompson
- The Lung Health Clinic and Institute for Respiratory Health, University of Western Australia, Perth, Australia
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Houston, Houston
| | - Janine F Felix
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Angela M Christiano
- Departments of Dermatology and Genetics & Development, Columbia University, New York, New York
| | - Lynn Petukhova
- Departments of Dermatology and Epidemiology, Columbia University, New York, New York
| | - Regina C Betz
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Xing Fan
- Institute of Dermatology & Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xuejun Zhang
- Institute of Dermatology & Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Caihong Zhu
- Institute of Dermatology & Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Carl D Langefeld
- Center for Public Health Genomics, Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Susan D Thompson
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Feijie Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xu Lin
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - David A Schwartz
- Department of Medicine, School of Medicine, University of Colorado, Aurora
| | - Tasha Fingerlin
- Department of Biomedical Research, National Jewish Health Hospital, Denver, Colorado
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California101Departments of Pediatrics and Medicine, Harbor-UCLA Medical Center, Torrance, California
| | - Mary Frances Cotch
- Epidemiology Branch, Division of Epidemiology and Clinical Applications, Intramural Research Program, National Eye Institute, National Institutes of Health, Clinical Research Center, Bethesda, Maryland
| | - Richard A Jensen
- Cardiovascular Health Research Unit, University of Washington, Seattle104Department of Medicine, University of Washington, Seattle
| | - Matthias Munz
- Department of Periodontology and Synoptic Dentistry, Center for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany106Institute for Integrative and Experimental Genomics, University of Lübeck, Lübeck, Germany
| | - Henrik Dommisch
- Department of Periodontology and Synoptic Dentistry, Center for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany
| | - Arne S Schaefer
- Department of Periodontology and Synoptic Dentistry, Center for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany
| | - Fang Han
- Department of Pulmonary Medicine, Peking University People's Hospital, Beijing, China
| | - Hanna M Ollila
- Stanford University, Center for Sleep Sciences, Palo Alto, California
| | - Ryan P Hillary
- Stanford University, Center for Sleep Sciences, Palo Alto, California
| | - Omar Albagha
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar110Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland
| | - Stuart H Ralston
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland
| | - Chenjie Zeng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Andre Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrike Hüffmeier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yoshiya Kawamura
- Department of Psychiatry, Shonan Kamakura General Hospital, Kanagawa, Japan
| | - Takeshi Otowa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan115Graduate School of Clinical Psychology, Teikyo Heisei University Major of Professional Clinical Psychology, Tokyo, Japan
| | - Tsukasa Sasaki
- Department of Physical and Health Education, Graduate School of Education, University of Tokyo, Tokyo, Japan
| | | | - Sonia Davila
- Human Genetics, Genome Institute of Singapore, Singapore
| | - Gang Xie
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada119Departments of Medicine, Immunology, Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Katherine Siminovitch
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada119Departments of Medicine, Immunology, Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jin-Xin Bei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yi-Xin Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China121Peking Union Medical College, Beijing, China
| | - Asta Försti
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany123Center for Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden
| | - Bowang Chen
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Andre Franke
- University Hospital Schleswig-Holstein, Kiel, Germany
| | - Annegret Fischer
- University Hospital Schleswig-Holstein, Kiel, Germany126Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Tenerife, Spain128CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Imre Noth
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois
| | - Shwu-Fan Ma
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois
| | - Jia Nee Foo
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore
| | - Jong-Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan, University School of Medicine, Gangnam-gu, Seoul, South Korea
| | - David G Cox
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France
| | | | | | | | - Clara S Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Merce Garcia-Barcelo
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Kai-Ping Chang
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital at Lin-Kou, Taoyuan, Taiwan
| | - Wen-Hui Su
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital at Lin-Kou, Taoyuan, Taiwan137Department of Biomedical Sciences, Graduate Institute of Biomedical Sciences, College of Medicine, Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Sun Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | | | - Scott Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Tracey D Wade
- School of Psychology, Flinders University, Adelaide, South Australia
| | - Chaeyoung Lee
- School of Systems Biomedical Science, Soongsil University, Dongjak-gu, Seoul, South Korea
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Science, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Pei-Chieng Cha
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kusunoki-chou, Chuo-ku, Kobe, Japan
| | - Yusuke Nakamura
- Center for Personalized Therapeutics, The University of Chicago, Chicago, Illinois
| | - Daniel Levy
- The NHLBI's Framingham Heart Study, Framingham, Massachusetts, Population Sciences Branch of the National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Masayuki Kimura
- Center of Human Development and Aging, Department of Pediatrics, New Jersey Medical School, Rutgers, The State University of New Jersey
| | - Shih-Jen Hwang
- The NHLBI's Framingham Heart Study, Framingham, Massachusetts, Population Sciences Branch of the National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Steven Hunt
- Department of Genetic Medicine, Weill Cornell Medicine in Qatar, Doha, Qatar
| | - Tim Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London England
| | - Nicole Soranzo
- Human Genetics, Wellcome Trust Sanger Institute, Genome Campus, Hinxton Cambridge, England
| | - Ani W Manichaikul
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville
| | - R Graham Barr
- Department of Medicine and Department of Epidemiology, Columbia University Medical Center, New York, New York
| | - Bratati Kahali
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor
| | - Elizabeth Speliotes
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor
| | | | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore152Department of Ophthalmology, National University of Singapore and National University Health System, Singapore153Duke-NUS Medical School, Singapore
| | - Jost B Jonas
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China155Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karls-University Heidelberg, Mannheim, Germany
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore152Department of Ophthalmology, National University of Singapore and National University Health System, Singapore153Duke-NUS Medical School, Singapore
| | - Isabella Fogh
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Kuang Lin
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - John F Powell
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, England2School of Social and Community Medicine, University of Bristol, Bristol, England
| | - Richard M Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, England2School of Social and Community Medicine, University of Bristol, Bristol, England158University of Bristol/University Hospitals Bristol NHS Foundation Trust National Institute for Health Research Bristol Nutrition Biomedical Research Unit, Bristol, England
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, England2School of Social and Community Medicine, University of Bristol, Bristol, England
| |
Collapse
|
24
|
Lu Y, Yan C, Du J, Ji Y, Gao Y, Zhu X, Yu F, Huang T, Dai J, Ma H, Jiang Y, Chen J, Shen H, Jin G, Yin Y, Hu Z. Genetic variants affecting telomere length are associated with the prognosis of esophageal squamous cell carcinoma in a Chinese population. Mol Carcinog 2016; 56:1021-1029. [PMID: 27597395 DOI: 10.1002/mc.22567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/22/2016] [Accepted: 09/04/2016] [Indexed: 02/02/2023]
Abstract
Telomeres are essential for maintaining chromosomal stability and are crucial in tumor progression. Previous studies have explored the associations between telomere length and cancer prognosis, but the findings are inconclusive. Genome-wide association studies have identified several genetic variants associated with telomere length in Caucasians. However, the roles of telomere length and related genetic variants on esophageal squamous cell carcinoma (ESCC) prognosis are largely unknown. Therefore, we conducted a case-cohort study with 431 ESCC patients to assess the associations between relative telomere length (RTL), eight known telomere length related variants and the overall survival of ESCC in Chinese population. We found that as compared with the reference group, patients in the fifth (the longest) quintile had a significantly better prognosis [(adjusted hazard ratio (HR) = 0.58, 95% confidence interval (CI) = 0.34-0.98, P = 0.041]. Furthermore, A allele of rs2736108 was significantly associated with both the increased RTL (P = 0.048) and the better prognosis of ESCC (adjusted HR = 0.55, 95%CI = 0.38-0.79, P = 1.31 × 10-3 ). Mediation analysis indicated that the effect of rs2736108 on ESCC prognosis was partly explained by RTL (1.99%). Stepwise Cox proportional hazard analysis suggested that rs2736108 played an important protective role in ESCC prognosis (HR = 0.57, 95%CI = 0.40-0.81, P = 1.97 × 10-3 ). Our findings provide evidence that prolonged telomere length is a protective factor for ESCC patients' survival and the known telomere length related genetic variant rs2736108 can contribute to the prognosis of ESCC as well in Chinese population. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yue Lu
- Department of Radiotherapy, the Affiliated Cancer Hospital of Jiangsu Province of Nanjing Medical University, Nanjing, China
| | - Caiwang Yan
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiangbo Du
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yong Ji
- Department of Cardiothoracic Surgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yong Gao
- Department of Medical Oncology, the Affiliated Huaian First People's Hospital of Nanjing Medical University, Huaian, China
| | - Xun Zhu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fei Yu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tongtong Huang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yue Jiang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiaping Chen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yongmei Yin
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Workalemahu T, Enquobahrie DA, Yohannes E, Sanchez SE, Gelaye B, Qiu C, Williams MA. Placental telomere length and risk of placental abruption. J Matern Fetal Neonatal Med 2016; 29:2767-72. [PMID: 26611732 PMCID: PMC4984533 DOI: 10.3109/14767058.2015.1103224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the associations of placental telomere length with placental abruption (PA) risk and interactions between placental telomere length and placental mitochondrial DNA (mtDNA) copy number on PA risk. MATERIALS AND METHODS Relative telomere length and mtDNA copy number in placental samples collected from 105 cases and 73 controls were measured in two batches using qRT-PCR. Mean differences in relative telomere length between PA cases and controls were examined. After creating batch-specific median cutoffs for relative telomere length (84.92 and 102.53) and mtDNA copy number (2.32 and 1.42), interaction between the two variables was examined using stratified logistic regression models. RESULTS Adjusted mean difference in relative telomere length between PA cases and controls was -0.07 (p > 0.05). Among participants with low mtDNA copy number, participants with short relative telomere length had a 3.07-fold higher odds (95% CI: 1.13-8.38) of PA as compared with participants with long relative telomere length (the reference group). Among participants with high mtDNA copy number, participants with short relative telomere length had a 0.71-fold lower odds (95% CI: 0.28-1.83) of PA as compared with the reference group (interaction p values = 0.03). CONCLUSION Findings suggest complex relationships between placental telomere length, mtDNA copy number and PA risk which warrant further larger studies.
Collapse
Affiliation(s)
| | - Daniel A. Enquobahrie
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
- Center for Perinatal Studies, Swedish Medical Center, Seattle, Washington
| | - Ermias Yohannes
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| | | | - Bizu Gelaye
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Chunfang Qiu
- Center for Perinatal Studies, Swedish Medical Center, Seattle, Washington
| | - Michelle A. Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
26
|
Tokita M, Kennedy SR, Risques RA, Chun SG, Pritchard C, Oshima J, Liu Y, Bryant-Greenwood PK, Welcsh P, Monnat RJ. Werner syndrome through the lens of tissue and tumour genomics. Sci Rep 2016; 6:32038. [PMID: 27559010 PMCID: PMC4997333 DOI: 10.1038/srep32038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022] Open
Abstract
Werner syndrome (WS) is the canonical adult human progeroid ('premature aging') syndrome. Patients with this autosomal recessive Mendelian disorder display constitutional genomic instability and an elevated risk of important age-associated diseases including cancer. Remarkably few analyses of WS patient tissue and tumors have been performed to provide insight into WS disease pathogenesis or the high risk of neoplasia. We used autopsy tissue from four mutation-typed WS patients to characterize pathologic and genomic features of WS, and to determine genomic features of three neoplasms arising in two of these patients. The results of these analyses provide new information on WS pathology and genomics; provide a first genomic characterization of neoplasms arising in WS; and provide new histopathologic and genomic data to test several popular models of WS disease pathogenesis.
Collapse
Affiliation(s)
- Mari Tokita
- Department of Medicine Division of Medical Genetics, University of Washington, Seattle, WA USA
| | - Scott R. Kennedy
- Department of Pathology, University of Washington, Seattle, WA USA
| | - Rosa Ana Risques
- Department of Pathology, University of Washington, Seattle, WA USA
| | - Stephen G. Chun
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX USA
| | - Colin Pritchard
- Department of Laboratory Medicine, University of Washington, Seattle, WA USA
| | - Junko Oshima
- Department of Pathology, University of Washington, Seattle, WA USA
- Department of Medicine, Chiba University, Chiba, Japan
| | - Yan Liu
- Department of Pathology, University of Washington, Seattle, WA USA
| | - Peter K. Bryant-Greenwood
- Department of Pathology, John Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI USA
| | - Piri Welcsh
- Department of Pathology, University of Washington, Seattle, WA USA
| | - Raymond J. Monnat
- Department of Pathology, University of Washington, Seattle, WA USA
- Department of Genome Sciences, University of Washington, Seattle, WA USA
| |
Collapse
|
27
|
Wennerström ECM, Risques RA, Prunkard D, Giffen C, Corley DA, Murray LJ, Whiteman DC, Wu AH, Bernstein L, Ye W, Chow WH, Vaughan TL, Liao LM. Leukocyte telomere length in relation to the risk of Barrett's esophagus and esophageal adenocarcinoma. Cancer Med 2016; 5:2657-65. [PMID: 27384379 PMCID: PMC5055192 DOI: 10.1002/cam4.810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/27/2016] [Accepted: 06/02/2016] [Indexed: 01/02/2023] Open
Abstract
Chronic inflammation and oxidative damage caused by obesity, cigarette smoking, and chronic gastroesophageal reflux disease (GERD) are major risk factors associated with Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). EAC has been increasing the past few decades, and early discovery and treatment are crucial for survival. Telomere shortening due to cell division and oxidative damage may reflect the impact of chronic inflammation and could possibly be used as predictor for disease development. We examined the prevalence of shorter leukocyte telomere length (LTL) among individuals with GERD, BE, or EAC using a pooled analysis of studies from the Barrett's and Esophageal Adenocarcinoma Consortium (BEACON). Telomere length was measured in leukocyte DNA samples by Q-PCR. Participants included 1173 patients (386 with GERD, 384 with EAC, 403 with BE) and 736 population-based controls. The association of LTL (in tertiles) along the continuum of disease progression from GERD to BE to EAC was calculated using study-specific odds ratios (ORs) and 95% confidence intervals (CIs) from logistic regression models adjusted for potential confounders. Shorter LTL were less prevalent among GERD patients (OR 0.57; 95% CI: 0.35-0.93), compared to population-based controls. No statistically significant increased prevalence of short/long LTL among individuals with BE or EAC was observed. In contrast to some earlier reports, our findings add to the evidence that leukocyte telomere length is not a biomarker of risk related to the etiology of EAC. The findings do not suggest a relationship between LTL and BE or EAC.
Collapse
Affiliation(s)
- E Christina M Wennerström
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland.,Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Rosa A Risques
- Department of Pathology, University of Washington, Seattle, Washington
| | - Donna Prunkard
- Department of Pathology, University of Washington, Seattle, Washington
| | - Carol Giffen
- Information Management Services, Bethesda, Maryland
| | - Douglas A Corley
- Division of Research and Oakland Medical Center, Kaiser Permanente, Northern California, Oakland, California
| | - Liam J Murray
- Centre for Public Health, Queen's University, Belfast, United Kingdom
| | - David C Whiteman
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Population Health, University of Queensland, Brisbane, Australia
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California
| | - Leslie Bernstein
- Division of Cancer Etiology, Department of Population Science, Beckman Research Institute, City of Hope, Duarte, California
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Thomas L Vaughan
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Linda M Liao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
28
|
Abstract
The article by Banerjee and colleagues published in this issue of the journal involving a randomized control prevention trial of ursodeoxycholic acid (UDCA) in Barrett esophagus reported a null outcome despite being well designed and executed. Possible reasons for this null outcome are discussed focusing on use of surrogate endpoints in the trial. The trial is especially topical because it comes at a time when there are calls for a Pre-Cancer Genome Atlas (PCGA) for "understanding the earliest molecular and cellular events associated with cancer initiation…" This commentary discusses current concepts in prevention research including branched evolution that leads to therapeutic resistance. Length bias sampling postulates underdiagnosis is due to rapidly progressing disease that is difficult to detect by screening because it progresses to cancer too rapidly and that overdiagnosis is the result of very slowly or nonprogressing disease that is easy to detect by screening because it persists for a lifetime and the patient dies of unrelated causes. Finally, it also explores study designs, including surrogate endpoints in Barrett esophagus trials, and opportunities and pitfalls for a PCGA in the context of high levels of over and underdiagnosis of Barrett esophagus as well as many other cancers and their precursors. Cancer Prev Res; 9(7); 512-7. ©2016 AACRSee related article by Banerjee, et al., p. 528.
Collapse
Affiliation(s)
- Brian J Reid
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington. Departments of Genome Sciences and Medicine, University of Washington, Seattle, Washington.
| |
Collapse
|
29
|
The association between telomere length and cancer risk in population studies. Sci Rep 2016; 6:22243. [PMID: 26915412 PMCID: PMC4768100 DOI: 10.1038/srep22243] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/25/2016] [Indexed: 12/19/2022] Open
Abstract
Telomeres are crucial in the maintenance of chromosome integrity and genomic stability. A series of epidemiological studies have examined the association between telomere length and the risk of cancers, but the findings remain conflicting. We performed literature review and meta-analysis to demonstrate the relationship between telomere length and cancer risk. A total of 23,379 cases and 68,792 controls from 51 publications with 62 population studies were included in this meta-analysis to assess the association between overall cancer or cancer-specific risk and telomere length. General association and dose-response relationship were evaluated based on two and three groups, respectively. The estimates of association were evaluated with odds ratios and 95% confidence intervals by the random-effects or fixed-effects model based on heterogeneity test. We observed a non-significant association between short telomeres and overall risk of cancer. Convincing evidence was observed for the association of short telomeres with an increased risk of gastrointestinal tumor and head and neck cancer. Significant dose-response associations were also observed for gastrointestinal tumor and head and neck cancer. Our findings indicate that telomeres may play diverse roles in different cancers, and short telomeres may be risk factors for the tumors of digestive system.
Collapse
|
30
|
Abstract
Beginning in the 1980s, an alarming rise in the incidence of esophageal adenocarcinoma (EA) led to screening of patients with reflux to detect Barrett's esophagus (BE) and surveillance of BE to detect early EA. This strategy, based on linear progression disease models, resulted in selective detection of BE that does not progress to EA over a lifetime (overdiagnosis) and missed BE that rapidly progresses to EA (underdiagnosis). Here we review the historical thought processes that resulted in this undesired outcome and the transformation in our understanding of genetic and evolutionary principles governing neoplastic progression that has come from application of modern genomic technologies to cancers and their precursors. This new synthesis provides improved strategies for prevention and early detection of EA by addressing the environmental and mutational processes that can determine "windows of opportunity" in time to detect rapidly progressing BE and distinguish it from slowly or nonprogressing BE.
Collapse
Affiliation(s)
- Brian J. Reid
- Division of Human Biology, FredHutch, Seattle WA,Division of Public Health Sciences, FredHutch, Seattle WA,Department of Genome Sciences, University of Washington,Department of Medicine, University of Washington,Corresponding author Brian J. Reid, M.D., Ph.D. 1100 Fairview Ave N., C1-157 P.O. Box 19024 Seattle, WA 98109-1024 206-667-4073 (phone) 206-667-6192 (FAX)
| | | | - Xiaohong Li
- Division of Human Biology, FredHutch, Seattle WA
| |
Collapse
|
31
|
Hardikar S, Song X, Risques RA, Montine TJ, Duggan C, Blount PL, Reid BJ, Anderson GL, Kratz M, White E, Vaughan TL. Obesity and inflammation markers in relation to leukocyte telomere length in a cross-sectional study of persons with Barrett's esophagus. BMC OBESITY 2015; 2:32. [PMID: 26380096 PMCID: PMC4566310 DOI: 10.1186/s40608-015-0063-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 08/20/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Telomere shortening is associated with increasing age, male gender and lifestyle factors such as obesity and smoking. Inflammation has also been implicated in cellular senescence and may promote telomere shortening in chronic conditions such as obesity and diabetes. However, little is known about the relationship between markers of obesity and inflammation, and leukocyte telomere length (LTL). METHODS LTL was measured using quantitative polymerase chain reaction in peripheral leukocytes from 295 individuals diagnosed with Barrett's esophagus (BE) between 1995 and 2009. Data on lifestyle variables including obesity and smoking were collected at in-person interviews. Biomarkers of obesity (leptin, adiponectin), diabetes (glucose, insulin), inflammation (C-reactive protein, Interleukin-6, surface tumor necrosis factor receptor (sTNFR) I & II) and oxidative stress (F2-isoprostanes) were measured in stored blood samples. We examined associations between these covariates and LTL in a cross-sectional analysis using linear and logistic regression models, adjusting for possible confounders. RESULTS LTL was significantly associated with age (r = -0.30, p < 0.001), gender (r = 0.14 for females, p = 0.01) and inversely associated with cigarette pack-years (r = -0.11, p = 0.04). Odds of having short LTL were significantly higher for participants in the highest tertile for sTNF-RI (Odds ratio adjusted for age, gender, smoking, and obesity = 2.19; 95 % CI 1.00-4.85, p-trend = 0.02). LTL was not significantly associated with any other lifestyle factors, including smoking or obesity, or other inflammation-, obesity-/diabetes-related biomarkers measured. CONCLUSIONS Increasing age, male gender, smoking history, and sTNF-RI levels were associated with short LTL among persons with BE but no correlations were observed between LTL and other inflammatory markers or measures of obesity. Larger longitudinal studies are necessary in order to further establish the potential relationships between obesity, inflammation markers and LTL.
Collapse
Affiliation(s)
- Sheetal Hardikar
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ; Department of Epidemiology, University of Washington, Seattle, WA USA ; 1100 Fairview Ave. N., M4-B402, PO Box 19024, Seattle, WA 98109-1024 USA
| | - Xiaoling Song
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Rosa Ana Risques
- Department of Pathology, University of Washington, Seattle, WA USA
| | - Thomas J Montine
- Department of Pathology, University of Washington, Seattle, WA USA
| | - Catherine Duggan
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Patricia L Blount
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ; Department of Medicine, University of Washington, Seattle, WA USA
| | - Brian J Reid
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ; Department of Medicine, University of Washington, Seattle, WA USA ; Department of Genome Sciences, University of Washington, Seattle, WA USA
| | - Garnet L Anderson
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ; Department of Biostatistics, University of Washington, Seattle, WA USA
| | - Mario Kratz
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ; Department of Epidemiology, University of Washington, Seattle, WA USA ; Department of Genome Sciences, University of Washington, Seattle, WA USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ; Department of Epidemiology, University of Washington, Seattle, WA USA
| | - Thomas L Vaughan
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ; Department of Epidemiology, University of Washington, Seattle, WA USA
| |
Collapse
|
32
|
Micronucleus frequency in peripheral blood lymphocytes and frailty status in elderly. A lack of association with clinical features. Mutat Res 2015; 780:47-54. [PMID: 26292172 DOI: 10.1016/j.mrfmmm.2015.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/14/2015] [Accepted: 07/25/2015] [Indexed: 01/02/2023]
Abstract
Frailty is a condition of vulnerability that carries an increased risk of poor outcome in elder adults. Frail individuals show fatigue, weight loss, muscle weakness, and a reduced physical function, and are known to frequently experience disability, social isolation, and institutionalization. Identifying frail people is a critical step for geriatricians to provide timely geriatric care and, eventually, to improve the quality of life in elderly. The aim of the present study is to investigate the association between frailty status and micronucleus (MN) frequency, a known marker of genomic instability, in a sample of elder adults. Several clinical features were evaluated and their possible association with MN frequency was tested. Criteria proposed by Fried were used to identify frail subjects. Overall, 180 elder adults entered the study, 93 of them (51.7%) frail. No association between MN frequency and frailty status was found under the specific conditions tested in this study (mean ratio=1.06; 95% CI 0.96-1.18). The inclusion of MN frequency in the Fried's frailty scale minimally improved the classification of study subjects according to the multidimensional prognostic index (MPI). The presence of genomic instability in the ageing process and in most chronic diseases, demands further investigation on this issue.
Collapse
|
33
|
Barrett JH, Iles MM, Dunning AM, Pooley KA. Telomere length and common disease: study design and analytical challenges. Hum Genet 2015; 134:679-89. [PMID: 25986438 PMCID: PMC4460268 DOI: 10.1007/s00439-015-1563-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/04/2015] [Indexed: 01/22/2023]
Abstract
Telomeres, the repetitive sequences that protect the ends of chromosomes, help to maintain genomic integrity and are of key importance to human health. The aim here is to give an overview of the evidence for the importance of telomere length (TL) to the risk of common disease, considering the strengths and weaknesses of different epidemiological study designs. Methods for measuring TL are described, all of which are subject to considerable measurement error. TL declines with age and varies in relation to factors such as smoking and obesity. It is also highly heritable (estimated heritability of ~40 to 50%), and genome-wide studies have identified a number of associated genetic variants. Epidemiological studies have shown shorter TL to be associated with risk of a number of common diseases, including cardiovascular disease and some cancers. The relationship with cancer appears complex, in that longer telomeres are associated with higher risk of some cancers. Prospective studies of the relationship between TL and disease, where TL is measured before diagnosis, have numerous advantages over retrospective studies, since they avoid the problems of reverse causality and differences in sample handling, but they are still subject to potential confounding. Studies of the genetic predictors of TL in relation to disease risk avoid these drawbacks, although they are not without limitations. Telomere biology is of major importance to the risk of common disease, but the complexities of the relationship are only now beginning to be understood.
Collapse
Affiliation(s)
- Jennifer H Barrett
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK,
| | | | | | | |
Collapse
|
34
|
Valls-Bautista C, Piñol-Felis C, Reñé-Espinet JM, Buenestado-García J, Viñas-Salas J. In colon cancer, normal colon tissue and blood cells have altered telomere lengths. J Surg Oncol 2015; 111:899-904. [PMID: 25873347 DOI: 10.1002/jso.23894] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/16/2015] [Indexed: 01/25/2023]
Abstract
BACKGROUND Telomere length (TL) shortened occurs in colorectal carcinogenetic process. Our objective is to determine if it is only a local fact or there are alterations in normal colon cells and in other body cells. METHODS TL of tumoral and normal mucosa and leukocytes of 40 patients operated of colorectal cancer (CRC) and 40 control patients with normal colonoscopy were measured by Southern-blot. Groups were matched by the same localization as tumors, sex, and age. RESULTS In CRC patients, TRFL (Telomere Repeat Factor Length) leukocytes mean was 8.84 kpb, normal colonic mucosa 7.97 kpb, and tumoral mucosa 7.33 kpb (P < 0.001). In the 40 normal control patients, mean TRFL of colonic mucosa was 7.76 kpb, while in blood cells was 7.01 kpb (P < 0.001). We observed an inverse correlation between leukocytes TRFL and age (r(2) = 0.17, P = 0.008). Mucosa TRFL correlates significantly with patient's age (r(2) = 0.138, P = 0.018). TRFL of controls colonic mucosa correlates with TRFL of their blood cells (r(2) = 0.354, P < 0.001). CONCLUSIONS Normal colonic mucosa and leukocytes in CCR patients presents telomere altered in respect to normal patients. Telomere length in normal leukocytes could be an initial marker for colorectal cancer.
Collapse
Affiliation(s)
- Cristina Valls-Bautista
- Department of Medicine, Medical School, Lleida University, Lleida, Spain; IRBLleida, Lleida, Spain
| | | | | | | | | |
Collapse
|
35
|
The use of molecular markers in predicting dysplasia and guiding treatment. Best Pract Res Clin Gastroenterol 2015; 29:113-24. [PMID: 25743460 DOI: 10.1016/j.bpg.2014.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/02/2014] [Indexed: 01/31/2023]
Abstract
The ability to stratify patients based on the risk of progression to oesophageal adenocarcinoma would provide benefit to patients as well as deliver a more cost effective surveillance programme. Current practice is to survey all patients with Barrett's oesophagus (BO) and use histological diagnoses to guide further management. However, reliance on histology alone has its drawbacks. We are currently unable to reliably stratify the risk of progression of patients with non-dysplastic BO based on any particular histological feature. There is also considerable variability in histological interpretation. An obvious recourse has been to rely on identifying molecular features possibly as an adjunct to histology, to better diagnose and stratify patients. To this end, p53 immunohistochemistry can be used as a useful adjunct to risk stratify and clarify histological grades, particularly low-grade dysplasia. Other markers of progression, although not yet in a clinically applicable format, are promising. Measurements of promoter methylation and also genomic instability such as loss of heterozygosity and copy number alterations show promise especially as high throughput genetic technologies reach maturity. The enduring hope is that these molecular biomarkers will make the transition to clinical applicability either in the direct endoscopic setting or even using non-endoscopic methods.
Collapse
|
36
|
Hosnijeh FS, Matullo G, Russo A, Guarrera S, Modica F, Nieters A, Overvad K, Guldberg P, Tjønneland A, Canzian F, Boeing H, Aleksandrova K, Trichopoulou A, Lagiou P, Trichopoulos D, Tagliabue G, Tumino R, Panico S, Palli D, Olsen KS, Weiderpass E, Dorronsoro M, Ardanaz E, Chirlaque MD, Sánchez MJ, Quirós JR, Venceslá A, Melin B, Johansson AS, Nilsson P, Borgquist S, Peeters PH, Onland-Moret NC, Bueno-de-Mesquita HB, Travis RC, Khaw KT, Wareham N, Brennan P, Ferrari P, Gunter MJ, Vineis P, Vermeulen R. Prediagnostic telomere length and risk of B-cell lymphoma-Results from the EPIC cohort study. Int J Cancer 2014; 135:2910-7. [PMID: 24771230 DOI: 10.1002/ijc.28934] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/27/2014] [Indexed: 11/08/2022]
Abstract
Recent epidemiological investigations have reported on the association between telomere length (TL) and a number of malignancies, including B-cell lymphoma (BCL). The reported results for BCLs are however inconsistent. We carried out a nested case-control study to determine whether TL is associated with future risk of BCL. Using quantitative polymerase chain reaction, the relative TL (i.e. the ratio of telomere repeat copy number to single gene copy number) was measured in mononuclear cell DNA of prediagnostic peripheral blood samples of 464 lymphoma cases and 464 matched controls (median time between blood collection and diagnosis, 4.6 years). Conditional logistic regression was used to analyze the association between TL and the risk of developing lymphoma and histologic subtypes. TL was significantly longer in cases compared to controls (p = 0.01). Multivariable models showed a significantly increased risk of BCL [odds ratio (OR) = 1.66, 1.80 and 3.20 for quartiles 2-4, respectively, p-trend = 0.001], diffuse large B-cell lymphoma (DLBCL) (OR = 1.20, 2.48 and 2.36 for quartiles 2-4, respectively, p-trend = 0.03) and follicular lymphoma (FL) (OR = 1.39, 1.90 and 2.69 for quartiles 2-4, respectively, p-trend = 0.02) with increasing TL. This study suggests an association between longer leucocyte TL and increased risk of BCL which was most pronounced for DLBCL and FL.
Collapse
Affiliation(s)
- Fatemeh Saberi Hosnijeh
- Institute for Risk Assessment Sciences (IRAS), Division Environmental Epidemiology, Utrecht University, Utrecht, The Netherlands; Zanjan University of Medical Sciences, Zanjan, Iran
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Glei DA, Goldman N, Weinstein M, Risques RA. Shorter Ends, Faster End? Leukocyte Telomere Length and Mortality Among Older Taiwanese. J Gerontol A Biol Sci Med Sci 2014; 70:1490-8. [PMID: 25326284 DOI: 10.1093/gerona/glu191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/09/2014] [Indexed: 12/20/2022] Open
Abstract
Recent studies have found mixed results regarding the association between leukocyte telomere length (LTL)--thought to be a marker of cellular aging--and all-cause mortality. Some studies have reported a significant inverse relationship, but others have not, perhaps in part owing to insufficient power. We examine the relationship using data from a nationally representative sample of older Taiwanese (54+ in 2000), which is larger (n = 942) than most previous studies, and which includes comprehensive information on potential confounders including white blood cell distribution and inflammatory markers. Results from a Cox hazards model demonstrate a small, but significant, association between LTL and mortality that is independent of age, sex, and lifestyle factors. White blood cell distribution, especially the proportion of neutrophils, is an important predictor of LTL; however, the association between LTL and mortality changes little controlling for white blood cell distribution. In contrast, the association between LTL and mortality weakens considerably (by 48%) after adjustment for inflammatory markers and homocysteine. Our results suggest that the relationship between short telomeres and mortality is tied to inflammation and homocysteine. Longitudinal studies are needed to explore bidirectional influences resulting from the fact that inflammation leads to shorter leukocyte telomeres, which in turn results in senescence, which exacerbates inflammation.
Collapse
Affiliation(s)
- Dana A Glei
- Center for Population and Health, Georgetown University, Washington, District of Columbia.
| | - Noreen Goldman
- Office of Population Research, Princeton University, Princeton, New Jersey
| | - Maxine Weinstein
- Center for Population and Health, Georgetown University, Washington, District of Columbia
| | - Rosa Ana Risques
- Department of Pathology, University of Washington, Seattle, Washington
| |
Collapse
|
38
|
Association between CLPTM1L-TERT rs401681 polymorphism and risk of pancreatic cancer: a meta-analysis. Clin Exp Med 2014; 15:477-82. [PMID: 25284078 DOI: 10.1007/s10238-014-0316-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/15/2014] [Indexed: 12/19/2022]
Abstract
Telomere biology plays a critical and complex role in the initiation and progression of cancer. Several recent studies have provided evidence that rs401681 polymorphisms in intronic region of cleft lip and palate trans-membrane 1-like (CLPTM1L) gene sequence are associated with pancreatic cancer (PC) development, but a comprehensive synopsis is not available. We performed a meta-analysis of 6 case-control studies that included 8,253 pancreatic cancer cases and 37,646 case-free controls. We assessed the strength of the association, using odds ratios (ORs) with 95 % confidence intervals (CIs). Overall, this meta-analysis showed that rs401681 allele T was associated with a significantly increased PC risk (OR = 1.17, 95 % CI = 1.12-1.22, P heterpgeneity = 0.596 and I (2) = 0). Similarly, in the subgroup analysis by ethnicity, a significantly increased risk was found among Asians (OR = 1.15, 95 % CI = 1.07-1.24, P heterpgeneity = 0.297 and I (2) = 8.0 %) and among Caucasian (OR = 1.13, 95 % CI = 1.02-1.26, P heterpgeneity = 0.385 and I (2) = 0). No publication bias was found in the present study. This meta-analysis suggests that T allele of CLPTM1L-telomerase reverse transcriptase rs401681 polymorphism is associated with an increased PC risk, especially among Chinese. Further large and well-designed studies are needed to confirm this association.
Collapse
|
39
|
Baruah A, Buttar N, Chandra R, Chen X, Clemons NJ, Compare D, El-Rifai W, Gu J, Houchen CW, Koh SY, Li W, Nardone G, Phillips WA, Sharma A, Singh I, Upton MP, Vega KJ, Wu X. Translational research on Barrett's esophagus. Ann N Y Acad Sci 2014; 1325:170-86. [DOI: 10.1111/nyas.12531] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Anushka Baruah
- Division of Gastroenterology & Hepatology; Mayo Clinic College of Medicine; Rochester Minnesota
| | - Navtej Buttar
- Division of Gastroenterology & Hepatology; Mayo Clinic College of Medicine; Rochester Minnesota
| | - Raghav Chandra
- Division of Gastroenterology & Hepatology; Mayo Clinic College of Medicine; Rochester Minnesota
| | - Xiaoxin Chen
- Cancer Research Program, JLC-BBRI; North Carolina Central University; Durham North Carolina
- Center for Esophageal Disease and Swallowing, Division of Gastroenterology and Hepatology, Department of Medicine; University of North Carolina at Chapel Hill; Chapel Hill North Carolina
| | - Nicholas J. Clemons
- Surgical Oncology Research Laboratory; Peter MacCallum Cancer Centre; East Melbourne Australia
- Department of Surgery (St. Vincent's Hospital); University of Melbourne; Melbourne Australia
- Sir Peter MacCallum Department of Oncology; University of Melbourne; Melbourne Australia
| | - Debora Compare
- Department of Clinical Medicine and Surgery, Gastroenterology Unit; University Federico II; Naples Italy
| | - Wael El-Rifai
- Surgical Oncology Research; Vanderbilt University Medical Center; Nashville Tennessee
| | - Jian Gu
- Department of Epidemiology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Courtney W. Houchen
- Division of Digestive Diseases and Nutrition; University of Oklahoma Health Sciences Center; Oklahoma City Oklahoma
| | - Shze Yung Koh
- Surgical Oncology Research Laboratory; Peter MacCallum Cancer Centre; East Melbourne Australia
- Department of Surgery (St. Vincent's Hospital); University of Melbourne; Melbourne Australia
| | - Wenbo Li
- Cancer Research Program, JLC-BBRI; North Carolina Central University; Durham North Carolina
- Department of Gastroenterology; General Hospital of Jinan Military Command; Jinan China
| | - Gerardo Nardone
- Department of Clinical Medicine and Surgery, Gastroenterology Unit; University Federico II; Naples Italy
| | - Wayne A. Phillips
- Surgical Oncology Research Laboratory; Peter MacCallum Cancer Centre; East Melbourne Australia
- Department of Surgery (St. Vincent's Hospital); University of Melbourne; Melbourne Australia
- Sir Peter MacCallum Department of Oncology; University of Melbourne; Melbourne Australia
| | - Anamay Sharma
- Division of Gastroenterology & Hepatology; Mayo Clinic College of Medicine; Rochester Minnesota
| | - Ishtpreet Singh
- Division of Gastroenterology & Hepatology; Mayo Clinic College of Medicine; Rochester Minnesota
| | - Melissa P. Upton
- Department of Pathology; University of Washington; Seattle Washington
| | - Kenneth J. Vega
- Division of Digestive Diseases and Nutrition; University of Oklahoma Health Sciences Center; Oklahoma City Oklahoma
| | - Xifeng Wu
- Department of Epidemiology; The University of Texas MD Anderson Cancer Center; Houston Texas
| |
Collapse
|
40
|
Abstract
Our understanding of the pathophysiology of aplastic anemia is undergoing significant revision, with implications for diagnosis and treatment. Constitutional and acquired disease is poorly delineated, as lesions in some genetic pathways cause stereotypical childhood syndromes and also act as risk factors for clinical manifestations in adult life. Telomere diseases are a prominent example of this relationship. Accelerated telomere attrition is the result of mutations in telomere repair genes and genes encoding components of the shelterin complex and related proteins. Genotype-phenotype correlations show genes responsible for X-linked (DKC1) and severe recessive childhood dyskeratosis congenita, typically with associated mucocutaneous features, and others (TERC and TERT) for more subtle presentation as telomeropathy in adults, in which multiorgan failure may be prominent. Telomerase mutations also are etiologic in familial pulmonary fibrosis and cryptic liver disease. Detection of a telomere disease requires awareness in the clinic, appropriate laboratory testing of telomere content, and genetic sequencing. In treatment decisions, genetic screening of related donors for hematopoietic stem cell transplantation is critical, and androgen therapy may be helpful. Telomeres shorten normally with aging, as well as under environmental circumstances, with regenerative stress and oxidative damage. Telomere biology is complexly related to oncogenesis: telomere attrition is protective by enforcing senescence or apoptosis in cells with a long mitotic history, but telomere loss also can destabilize the genome by chromosome rearrangement and aneuploidy.
Collapse
|
41
|
Inherited bone marrow failure associated with germline mutation of ACD, the gene encoding telomere protein TPP1. Blood 2014; 124:2767-74. [PMID: 25205116 DOI: 10.1182/blood-2014-08-596445] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Telomerase is a ribonucleoprotein enzyme that is necessary for overcoming telomere shortening in human germ and stem cells. Mutations in telomerase or other telomere-maintenance proteins can lead to diseases characterized by depletion of hematopoietic stem cells and bone marrow failure (BMF). Telomerase localization to telomeres requires an interaction with a region on the surface of the telomere-binding protein TPP1 known as the TEL patch. Here, we identify a family with aplastic anemia and other related hematopoietic disorders in which a 1-amino-acid deletion in the TEL patch of TPP1 (ΔK170) segregates with disease. All family members carrying this mutation, but not those with wild-type TPP1, have short telomeres. When introduced into 293T cells, TPP1 with the ΔK170 mutation is able to localize to telomeres but fails to recruit telomerase to telomeres, supporting a causal relationship between this TPP1 mutation and bone marrow disorders. ACD/TPP1 is thus a newly identified telomere-related gene in which mutations cause aplastic anemia and related BMF disorders.
Collapse
|
42
|
Yu Q, Yang J, Liu B, Li W, Hu G, Qiu H, Huang L, Xiong H, Yuan X. Combined effects of leukocyte telomere length, p53 polymorphism and human papillomavirus infection on esophageal squamous cell carcinoma in a Han Chinese population. Cancer Epidemiol 2014; 38:569-75. [PMID: 25153662 DOI: 10.1016/j.canep.2014.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/22/2014] [Accepted: 07/28/2014] [Indexed: 12/23/2022]
Abstract
Telomere shortening has been suggested to be a genetic predictor for various cancers. However, evidences about this point with respect to esophageal squamous cell carcinoma (ESCC) in Han Chinese populations remain limited. Our previous study demonstrated that p53 Arg72Pro polymorphism was associated with the risk of human papillomavirus (HPV)-related ESCC. Telomeres and p53 play important roles in maintaining genomic stability and regulating the cell cycle. HPV impacts both telomere length stabilization and p53 degradation. Given the roles of the three factors, we evaluated leukocyte telomere length, p53 variants and HPV-16 serology to examine the potential associations between them and ESCC risk in a case-control study with 308 patients and 309 cancer-free controls matched by age and sex. Compared with long telomere length, short telomere length was significantly associated with an increased risk of ESCC (adjusted OR 2.01; 95% CI 1.41-2.80). Moreover, this association was enhanced when combined with HPV-16 seropositivity and p53 Arg/Arg or Arg/Pro genotypes. Notably, individuals with short telomere length, Arg/Pro or Arg/Arg genotypes and HPV-16 seropositivity had a 12.08-fold (95% CI 5.49-26.56) increased risk of ESCC compared to those with none of the three investigated risk factors. Taken together, these results indicate that short telomere length in peripheral blood leukocytes is a biomarker for ESCC risk, and has statistically additive effects with p53 variants and HPV seropositivity with regard to the risk of ESCC in a Han Chinese population.
Collapse
Affiliation(s)
- Qianqian Yu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ju Yang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wen Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Liu Huang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
43
|
Hardikar S, Onstad L, Song X, Wilson AM, Montine TJ, Kratz M, Anderson GL, Blount PL, Reid BJ, White E, Vaughan TL. Inflammation and oxidative stress markers and esophageal adenocarcinoma incidence in a Barrett's esophagus cohort. Cancer Epidemiol Biomarkers Prev 2014; 23:2393-403. [PMID: 25106775 DOI: 10.1158/1055-9965.epi-14-0384] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Persons with Barrett's esophagus experience increased risk of esophageal adenocarcinoma. Prediagnostic inflammation markers predict several cancers, but their role in predicting esophageal adenocarcinoma is unknown. METHODS We investigated whether biomarkers of inflammation [C-reactive protein (CRP), interleukin-6 (IL6), soluble tumor necrosis factor (sTNF) receptors I and II], and of oxidative stress (F2-isoprostanes) predicted progression to esophageal adenocarcinoma in a prospective cohort of 397 patients with Barrett's esophagus, 45 of whom developed esophageal adenocarcinoma. Biomarkers were measured in stored plasma samples from two time points during follow-up, the mean of which served as the primary predictor. Adjusted hazard ratios (HR) and 95% confidence intervals (CI) were estimated using Cox regression. RESULTS CRP level above the median was associated with an 80% increased risk of esophageal adenocarcinoma. The HR and 95% CI adjusted for age, gender, and further adjusted for waist-hip ratio and smoking were 1.98 (1.05-3.73) and 1.77 (0.93-3.37), respectively, with Ptrend for continuous CRP = 0.04. Persons with IL6 levels above the median also had almost 2-fold increased risk [HR and 95% CI adjusted for age and gender, and further adjusted for waist-hip ratio and smoking were 1.95 (1.03-3.72) and 1.79 (0.93-3.43), respectively, but no evidence of a trend was observed]. Concentrations of TNF receptors and F2-isoprostanes were not associated with esophageal adenocarcinoma risk. CONCLUSIONS Further research is needed to evaluate the role of inflammation and associated markers in esophageal adenocarcinoma development in persons with Barrett's esophagus. IMPACT This prospective study suggests that inflammation markers, particularly CRP and IL6, may help identify persons at higher risk of progression to esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Sheetal Hardikar
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Epidemiology, University of Washington, Seattle, Washington.
| | - Lynn Onstad
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Xiaoling Song
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Angela M Wilson
- Department of Pathology, University of Washington, Seattle, Washington
| | - Thomas J Montine
- Department of Pathology, University of Washington, Seattle, Washington
| | - Mario Kratz
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Epidemiology, University of Washington, Seattle, Washington. Department of Medicine, University of Washington, Seattle, Washington
| | - Garnet L Anderson
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Biostatistics, University of Washington, Seattle, Washington
| | - Patricia L Blount
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Medicine, University of Washington, Seattle, Washington. Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Brian J Reid
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Medicine, University of Washington, Seattle, Washington. Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Epidemiology, University of Washington, Seattle, Washington
| | - Thomas L Vaughan
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Epidemiology, University of Washington, Seattle, Washington
| |
Collapse
|
44
|
Zhang Y, Calado R, Rao M, Hong JA, Meeker AK, Dumitriu B, Atay S, McCormick PJ, Garfield SH, Wangsa D, Padilla-Nash HM, Burkett S, Zhang M, Kunst TF, Peterson NR, Xi S, Inchauste S, Altorki NK, Casson AG, Beer DG, Harris CC, Ried T, Young NS, Schrump DS. Telomerase variant A279T induces telomere dysfunction and inhibits non-canonical telomerase activity in esophageal carcinomas. PLoS One 2014; 9:e101010. [PMID: 24983628 PMCID: PMC4077737 DOI: 10.1371/journal.pone.0101010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 06/02/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Although implicated in the pathogenesis of several chronic inflammatory disorders and hematologic malignancies, telomerase mutations have not been thoroughly characterized in human cancers. The present study was performed to examine the frequency and potential clinical relevance of telomerase mutations in esophageal carcinomas. METHODS Sequencing techniques were used to evaluate mutational status of telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC) in neoplastic and adjacent normal mucosa from 143 esophageal cancer (EsC) patients. MTS, flow cytometry, time lapse microscopy, and murine xenograft techniques were used to assess proliferation, apoptosis, chemotaxis, and tumorigenicity of EsC cells expressing either wtTERT or TERT variants. Immunoprecipitation, immunoblot, immunofluorescence, promoter-reporter and qRT-PCR techniques were used to evaluate interactions of TERT and several TERT variants with BRG-1 and β-catenin, and to assess expression of cytoskeletal proteins, and cell signaling. Fluorescence in-situ hybridization and spectral karyotyping techniques were used to examine telomere length and chromosomal stability. RESULTS Sequencing analysis revealed one deletion involving TERC (TERC del 341-360), and two non-synonymous TERT variants [A279T (2 homozygous, 9 heterozygous); A1062T (4 heterozygous)]. The minor allele frequency of the A279T variant was five-fold higher in EsC patients compared to healthy blood donors (p<0.01). Relative to wtTERT, A279T decreased telomere length, destabilized TERT-BRG-1-β-catenin complex, markedly depleted β-catenin, and down-regulated canonical Wnt signaling in cancer cells; these phenomena coincided with decreased proliferation, depletion of additional cytoskeletal proteins, impaired chemotaxis, increased chemosensitivity, and significantly decreased tumorigenicity of EsC cells. A279T expression significantly increased chromosomal aberrations in mouse embryonic fibroblasts (MEFs) following Zeocin™ exposure, as well as Li Fraumeni fibroblasts in the absence of pharmacologically-induced DNA damage. CONCLUSIONS A279T induces telomere dysfunction and inhibits non-canonical telomerase activity in esophageal cancer cells. These findings warrant further analysis of A279T expression in esophageal cancers and premalignant esophageal lesions.
Collapse
Affiliation(s)
- Yuwei Zhang
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Rodrigo Calado
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States of America
| | - Mahadev Rao
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Julie A. Hong
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Alan K. Meeker
- Departments of Pathology and Oncology, Johns Hopkins University of Medicine, Baltimore, Maryland, United States of America
| | - Bogdan Dumitriu
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States of America
| | - Scott Atay
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Peter J. McCormick
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Susan H. Garfield
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Danny Wangsa
- Section of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Hesed M. Padilla-Nash
- Section of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Sandra Burkett
- Comparative Molecular Cytogenetics Core Facility, National Cancer Institute, Frederick, Maryland, United States of America
| | - Mary Zhang
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Tricia F. Kunst
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Nathan R. Peterson
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States of America
| | - Sichuan Xi
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Suzanne Inchauste
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Nasser K. Altorki
- Department of Thoracic Surgery, Weill Cornell Medical Center, New York, New York, United States of America
| | - Alan G. Casson
- Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - David G. Beer
- Section of Thoracic Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Thomas Ried
- Section of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Neal S. Young
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States of America
| | - David S. Schrump
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
45
|
Zhang DH, Chen JY, Hong CQ, Yi DQ, Wang F, Cui W. High-risk human papillomavirus infection associated with telomere elongation in patients with esophageal squamous cell carcinoma with poor prognosis. Cancer 2014; 120:2673-83. [PMID: 24840723 DOI: 10.1002/cncr.28797] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/04/2014] [Accepted: 04/22/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Telomere maintenance is crucial in carcinogenesis and tumor progression. The results of a previous study from the authors indicated that infection with high-risk human papillomavirus (HR-HPV) types 16, 18, and 58 was a risk factor for esophageal squamous cell carcinoma (ESCC) in the Shantou region of China. In the current study, the authors explored the association between HR-HPV infection, telomere length (TL), and DNA methylation and their significance in the prognosis of patients with ESCC. METHODS TL and DNA methylation were analyzed by real-time polymerase chain reaction and methylation-specific polymerase chain reaction in 70 cases of ESCC tumor (T) and paired nontumor (NT) tissues and 50 cases of normal esophagus (NE). The prognostic value of TL and DNA methylation in ESCC was analyzed. RESULTS TL gradually decreased from NE to NT to T tissue. TL in tumor tissue (T-TL) was found to be longer in tissue that was positive for HR-HPV compared with negative tissue and was found to be positively associated with viral load (Spearman correlation, 0.410; P = .037) and integration (represented by the ratio of HR-HPV E2 to E6/E7 genes; P = .01). The DNA methylation ratio of human telomerase reverse transcriptase was more prevalent with long (≥ 0.7) compared with short (< 0.7) T-TL and was positively correlated with T-TL (Spearman correlation, 0.318; P = .007) and HR-HPV integration (P = .036). Furthermore, Cox proportional hazards modeling revealed a high ratio of T-TL to NT-TL (≥ 0.80) as a factor of poor prognosis, independent of other clinicopathologic variables. CONCLUSIONS HR-HPV infection and integration related to telomere elongation and DNA methylation of human telomerase reverse transcriptase may be a potential biomarker of prognosis in patients with ESCC.
Collapse
Affiliation(s)
- Dong-Hong Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital and Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Telomeres are ribonucleoprotein structures capping the end of every linear chromosome. In all vertebrates, they are composed of TTAGGG repeats coated with specific protecting proteins. Telomeres shorten with each mitotic cell division, but telomerase, a reverse transcriptase, elongate telomeres in very specific cells, such as embryonic and adult stem cells. Although telomere sequence is identical in mice and humans and telomeres serve the same role of protecting chromosomes and genetic information from damage and erosion in both species, abnormalities in telomere maintenance and in telomerase function do not coincide in phenotype in humans and mice. The telomeres of most laboratory mice are 5 to 10 times longer than in humans, but their lifespan is 30 times shorter. Complete absence of telomerase has little expression in phenotype over several generations in mice, whereas heterozygosity for telomerase mutations in humans is sufficient to result in organ regeneration defect and cancer development. Patients with telomerase deficiency and very short telomeres may develop aplastic anemia, pulmonary fibrosis, or cirrhosis, whereas telomerase-null murine models display only modest hematopoietic deficiency and develop emphysema when exposed to cigarette smoke. In summary, telomerase deficiency in both humans and mice accelerate telomere shortening, but its consequences in the different organs and in the organism diverge, mainly due to telomere length differences.
Collapse
|
47
|
Boardman LA, Litzelman K, Seo S, Johnson RA, Vanderboom RJ, Kimmel GW, Cunningham JM, Gangnon RE, Engelman CD, Riegert-Johnson DL, Potter J, Haile R, Buchanan D, Jenkins MA, Rider DN, Thibodeau SN, Petersen GM, Skinner HG. The association of telomere length with colorectal cancer differs by the age of cancer onset. Clin Transl Gastroenterol 2014; 5:e52. [PMID: 24598784 PMCID: PMC3972691 DOI: 10.1038/ctg.2014.3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 01/03/2014] [Accepted: 01/08/2014] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES: Telomeres are nucleoprotein structures that cap the end of chromosomes and shorten with sequential cell divisions in normal aging. Short telomeres are also implicated in the incidence of many cancers, but the evidence is not conclusive for colorectal cancer (CRC). Therefore, the aim of this study was to assess the association of CRC and telomere length. METHODS: In this case–control study, we measured relative telomere length from peripheral blood leukocytes (PBLs) DNA with quantitative PCR in 598 CRC patients and 2,212 healthy controls. RESULTS: Multivariate analysis indicated that telomere length was associated with risk for CRC, and this association varied in an age-related manner; younger individuals (≤50 years of age) with longer telomeres (80–99 percentiles) had a 2–6 times higher risk of CRC, while older individuals (>50 years of age) with shortened telomeres (1–10 percentiles) had 2–12 times the risk for CRC. The risk for CRC varies with extremes in telomere length in an age-associated manner. CONCLUSIONS: Younger individuals with longer telomeres or older individuals with shorter telomeres are at higher risk for CRC. These findings indicate that the association of PBL telomere length varies according to the age of cancer onset and that CRC is likely associated with at minimum two different mechanisms of telomere dynamics.
Collapse
Affiliation(s)
- Lisa A Boardman
- Department of Gastroenterology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Kristin Litzelman
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Songwon Seo
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Ruth A Johnson
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | | | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Ronald E Gangnon
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Corinne D Engelman
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | | | - John Potter
- Public Health Sciences Division, Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Robert Haile
- Department of Oncology, Stanford School of Medicine, The Stanford Cancer Institute, Stanford, California, USA
| | - Daniel Buchanan
- Queensland Institute of Medical Research, Clive Berghofer Cancer Research Centre, Brisbane, Queensland, Australia
| | - Mark A Jenkins
- Melbourne School of Population Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - David N Rider
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Stephen N Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Gloria M Petersen
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Halcyon G Skinner
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
48
|
Telomere length in peripheral blood leukocytes is associated with risk of colorectal cancer in Chinese population. PLoS One 2014; 9:e88135. [PMID: 24498432 PMCID: PMC3912164 DOI: 10.1371/journal.pone.0088135] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/05/2014] [Indexed: 02/07/2023] Open
Abstract
Background Human telomeres, tandem repeats of TTAGGG nucleotides at the ends of chromosomes, are essential for maintaining genomic integrity and stability. Results of previous epidemiologic studies about the association of telomere length with risk of colorectal cancer (CRC) have been conflicting. Methods A case-control study was conducted in a Han population in Wuhan, central China. The relative telomere length (RTL) was measured in peripheral blood leukocytes (PBLs) using quantitative real-time polymerase chain reaction (PCR) in 628 CRC cases and 1,256 age and sex frequency matched cancer-free controls. Odds ratios (OR) and 95% confidence intervals (95% CI) were calculated using unconditional logistic regression models to evaluate the association between RTL and CRC risk. Results Using median RTL in the controls as the cutoff, individuals with shorter RTL were associated with a significantly increased risk of CRC (adjusted OR = 1.27, 95%CI: 1.05–1.55). When participants were further categorized into 3 and 4 groups according to the tertile and quartile RTL values of controls, significant relationships were still observed between shorter RTL and increased CRC risk (OR per tertile = 1.13, 95%CI: 1.00–1.28, Ptrend = 0.045; OR per quartile = 1.12, 95%CI: 1.03–1.23, Ptrend = 0.012). In stratified analyses, significant association between shorter RTL and increased CRC risk was found in females, individuals younger than 60 years old, never smokers and never drinkers. Conclusions This study suggested that short telomere length in PBLs was significantly associated with an increased risk of CRC in Chinese Han population. Further validation in large prospective studies and investigation of the biologic mechanisms are warranted.
Collapse
|
49
|
Alemán JO, Eusebi LH, Ricciardiello L, Patidar K, Sanyal AJ, Holt PR. Mechanisms of obesity-induced gastrointestinal neoplasia. Gastroenterology 2014; 146:357-373. [PMID: 24315827 PMCID: PMC3978703 DOI: 10.1053/j.gastro.2013.11.051] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/30/2013] [Accepted: 11/14/2013] [Indexed: 02/06/2023]
Abstract
Obesity is among the fastest growing diseases worldwide; treatment is inadequate, and associated disorders, including gastrointestinal cancers, have high morbidity and mortality. An increased understanding of the mechanisms of obesity-induced carcinogenesis is required to develop methods to prevent or treat these cancers. In this report, we review the mechanisms of obesity-associated colorectal, esophageal, gastric, and pancreatic cancers and potential treatment strategies.
Collapse
Affiliation(s)
| | - Leonardo H. Eusebi
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, and Center for Applied Biomedical Research (CRBA), University of Bologna, Italy
| | - Kavish Patidar
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Arun J. Sanyal
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | |
Collapse
|
50
|
O'Callaghan NJ, Bull C, Fenech M. Elevated plasma magnesium and calcium may be associated with shorter telomeres in older South Australian women. J Nutr Health Aging 2014; 18:131-6. [PMID: 24522463 DOI: 10.1007/s12603-013-0401-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Telomeres are structures that cap the ends of chromosomes. The integrity of the telomere structure and its DNA hexamer (TTAGGG)n repeat sequence is critical for protecting the ends of chromosomes from degradation and in maintaining overall chromosomal stability. Currently, there are limited data on the influence that nutrition has on telomere length. Recent studies have suggested that micronutrients may influence telomere length. Here we examined the relationship between telomere length in lymphocytes and plasma calcium, magnesium, selenium and zinc status in a healthy cohort of younger and older adults. We report a negative association between telomere length and both plasma calcium and magnesium levels, (r=-0.47, P=0.03 and r=-0.61, P=0.001 respectively), in older females; Intriguingly Ca/Mg ratio was positively associated with telomere length (r=0.55, P=0.007). These relationships were not observed in the younger adults, nor in the older males. In conclusion, our study provides preliminary evidence suggesting that levels of plasma magnesium and calcium may impact on telomere length in lymphocytes in older women.
Collapse
Affiliation(s)
- N J O'Callaghan
- Nathan J. O'Callaghan, CSIRO Animal, Food and Health Sciences. PO Box 10041, Adelaide, South Australia, AUSTRALIA 5000, nathan.o', Phone: +61 8 8303 8867
| | | | | |
Collapse
|