1
|
O'Malley DE, Raspin K, Melton PE, Burdon KP, Dickinson JL, FitzGerald LM. Acquired copy number variation in prostate tumours: a review of common somatic copy number alterations, how they are formed and their clinical utility. Br J Cancer 2024; 130:347-357. [PMID: 37945750 PMCID: PMC10844642 DOI: 10.1038/s41416-023-02485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Prostate cancer is one of the most commonly diagnosed cancers in men and unfortunately, disease will progress in up to a third of patients despite primary treatment. Currently, there is a significant lack of prognostic tests that accurately predict disease course; however, the acquisition of somatic chromosomal variation in the form of DNA copy number variants may help understand disease progression. Notably, studies have found that a higher burden of somatic copy number alterations (SCNA) correlates with more aggressive disease, recurrence after surgery and metastasis. Here we will review the literature surrounding SCNA formation, including the roles of key tumour suppressors and oncogenes (PTEN, BRCA2, NKX3.1, ERG and AR), and their potential to inform diagnostic and prognostic clinical testing to improve predictive value. Ultimately, SCNAs, or inherited germline alterations that predispose to SCNAs, could have significant clinical utility in diagnostic and prognostic tests, in addition to guiding therapeutic selection.
Collapse
Affiliation(s)
- Dannielle E O'Malley
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Kelsie Raspin
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Phillip E Melton
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
- School of Population and Global Health, The University of Western Australia, Crawley, WA, Australia
| | - Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Liesel M FitzGerald
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
| |
Collapse
|
2
|
Janaththani P, Tevz G, Fernando A, Malik A, Rockstroh A, Kryza T, Walpole C, Moya L, Lehman M, Nelson C, Srinivasan S, Clements J, Batra J. Unravelling the Role of Iroquois Homeobox 4 and its Interplay with Androgen Receptor in Prostate Cancer. RESEARCH SQUARE 2023:rs.3.rs-3295914. [PMID: 38076926 PMCID: PMC10705702 DOI: 10.21203/rs.3.rs-3295914/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Genome-wide association studies have linked Iroquois-Homeobox 4 (IRX4) as a robust expression quantitative-trait locus associated with prostate cancer (PCa) risk. However, the intricate mechanism and regulatory factors governing IRX4 expression in PCa remain poorly understood. Here, we unveil enrichment of androgen-responsive gene signatures in metastatic prostate tumors exhibiting heightened IRX4 expression. Furthermore, we uncover a novel interaction between IRX4 and the androgen receptor (AR) co-factor, FOXA1, suggesting that IRX4 modulates PCa cell behavior through AR cistrome alteration. Remarkably, we identified a distinctive short insertion-deletion polymorphism (INDEL), upstream of the IRX4 gene that differentially regulates IRX4 expression through the disruption of AR binding. This INDEL emerges as the most significant PCa risk-associated variant within the 5p15 locus, in a genetic analysis involving 82,591 PCa cases and 61,213 controls and was associated with PCa survival in patients undergoing androgen-deprivation therapy. These studies suggest the potential of this INDEL as a prognostic biomarker for androgen therapy in PCa and IRX4 as a potential therapeutic target in combination with current clinical management.
Collapse
Affiliation(s)
- Panchadsaram Janaththani
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Victoria
| | - Gregor Tevz
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Achala Fernando
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Adil Malik
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Anja Rockstroh
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Thomas Kryza
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Mater Research UQ, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Carina Walpole
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Mater Research UQ, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Leire Moya
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Melanie Lehman
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada
| | - Colleen Nelson
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - The Australian Prostate Cancer BioResource
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | | | - Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Ma C, Wang X, Dai JY, Turman C, Kraft P, Stopsack KH, Loda M, Pettersson A, Mucci LA, Stanford JL, Penney KL. Germline Genetic Variants Associated with Somatic TMPRSS2:ERG Fusion Status in Prostate Cancer: A Genome-Wide Association Study. Cancer Epidemiol Biomarkers Prev 2023; 32:1436-1443. [PMID: 37555839 PMCID: PMC10592169 DOI: 10.1158/1055-9965.epi-23-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/12/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND The prostate cancer subtype defined by the presence of TMPRSS2:ERG has been shown to be molecularly and epidemiologically distinct. However, few studies have investigated germline genetic variants associating with TMPRSS2:ERG fusion status. METHODS We performed a genome-wide association study with 396 TMPRSS2:ERG(+) cases, 390 TMPRSS2:ERG(-) cases, and 2,386 cancer-free controls from the Physicians' Health Study (PHS), the Health Professionals Follow-up Study (HPFS), and a Seattle-based Fred Hutchinson (FH) Cancer Center Prostate Cancer Study. We applied logistic regression models to test the associations between ∼5 million SNPs with TMPRSS2:ERG fusion status accounting for population stratification. RESULTS We did not identify genome-wide significant variants comparing the TMPRSS2:ERG(+) to the TMPRSS2:ERG(-) prostate cancer cases in the meta-analysis. When comparing TMPRSS2:ERG(+) prostate cancer cases with controls without prostate cancer, 10 genome-wide significant SNPs on chromosome 17q24.3 were observed in the meta-analysis. When comparing TMPRSS2:ERG(-) prostate cancer cases with controls without prostate cancer, two SNPs on chromosome 8q24.21 in the meta-analysis reached genome-wide significance. CONCLUSIONS We observed SNPs at several known prostate cancer risk loci (17q24.3, 1q32.1, and 8q24.21) that were differentially and exclusively associated with the risk of developing prostate tumors either with or without the gene fusion. IMPACT Our findings suggest that tumors with the TMPRSS2:ERG fusion exhibit a different germline genetic etiology compared with fusion negative cases.
Collapse
Affiliation(s)
- Chaoran Ma
- Department of Nutrition, University of Massachusetts Amherst, Amherst, MA
| | - Xiaoyu Wang
- Division of Public Health Sciences, Fred Hutchison Cancer Center, Seattle, WA
| | - James Y. Dai
- Division of Public Health Sciences, Fred Hutchison Cancer Center, Seattle, WA
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Konrad H. Stopsack
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | - Andreas Pettersson
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Janet L. Stanford
- Division of Public Health Sciences, Fred Hutchison Cancer Center, Seattle, WA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA
| | - Kathryn L. Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
4
|
von Danwitz M, Klümper N, Bernhardt M, Cox A, Krausewitz P, Alajati A, Kristiansen G, Ritter M, Ellinger J, Stein J. Identification of F-Box/SPRY Domain-Containing Protein 1 (FBXO45) as a Prognostic Biomarker for TMPRSS2-ERG-Positive Primary Prostate Cancers. Cancers (Basel) 2023; 15:cancers15061890. [PMID: 36980776 PMCID: PMC10046786 DOI: 10.3390/cancers15061890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/23/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND F-box/SPRY domain-containing protein 1 (FBXO45) plays a crucial role in the regulation of apoptosis via the ubiquitylation and degradation of specific targets. Recent studies indicate the prognostic potential of FBXO45 in several cancers. However, its specific role in prostate carcinoma remains unclear. METHODS A systematic analysis of FBXO45 mRNA expression in PCA was performed using The Cancer Genome Atlas database and a publicly available Gene Expression Omnibus progression PCA cohort. Subsequently, FBXO45 protein expression was assessed via immunohistochemical analysis of a comprehensive tissue microarray cohort. The expression data were correlated with the clinicopathological parameters and biochemical-free survival. The immunohistochemical analyses were stratified according to the TMPRSS2-ERG rearrangement status. To assess the impact of FBXO45 knockdown on the tumour proliferation capacity of cells and metastatic potential, transfection with antisense-oligonucleotides was conducted within a cell culture model. RESULTS FBXO45 mRNA expression was associated with adverse clinicopathological parameters in the TCGA cohort and was enhanced throughout progression to distant metastasis. FBXO45 was associated with shortened biochemical-free survival, which was pronounced for the TMPRSS2-ERG-positive tumours. In vitro, FBXO45 knockdown led to a significant reduction in migration capacity in the PC3, DU145 and LNCaP cell cultures. CONCLUSIONS Comprehensive expression analysis and functional data suggest FBXO45 as a prognostic biomarker in PCA.
Collapse
Affiliation(s)
- Marthe von Danwitz
- Department of Urology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Center for Integrated Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Niklas Klümper
- Department of Urology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Center for Integrated Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Institute of Experimental Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Marit Bernhardt
- Center for Integrated Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Institute of Pathology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Alexander Cox
- Department of Urology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Center for Integrated Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Philipp Krausewitz
- Department of Urology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Center for Integrated Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Abdullah Alajati
- Department of Urology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Center for Integrated Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Glen Kristiansen
- Center for Integrated Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Institute of Pathology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Manuel Ritter
- Department of Urology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Center for Integrated Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Jörg Ellinger
- Department of Urology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Center for Integrated Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Johannes Stein
- Department of Urology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Center for Integrated Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
5
|
Stopsack KH, Su XA, Vaselkiv JB, Graff RE, Ebot EM, Pettersson A, Lis RT, Fiorentino M, Loda M, Penney KL, Lotan TL, Mucci LA. Transcriptomes of Prostate Cancer with TMPRSS2:ERG and Other ETS Fusions. Mol Cancer Res 2023; 21:14-23. [PMID: 36125519 PMCID: PMC9812892 DOI: 10.1158/1541-7786.mcr-22-0446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/30/2022] [Accepted: 09/15/2022] [Indexed: 02/03/2023]
Abstract
The most common somatic event in primary prostate cancer is a fusion between the androgen-related TMPRSS2 gene and the ERG oncogene. Tumors with these fusions, which occur early in carcinogenesis, have a distinctive etiology. A smaller subset of other tumors harbor fusions between TMPRSS2 and members of the ETS transcription factor family other than ERG. To assess the genomic similarity of tumors with non-ERG ETS fusions and those with fusions involving ERG, this study derived a transcriptomic signature of non-ERG ETS fusions and assessed this signature and ERG-related gene expression in 1,050 men with primary prostate cancer from three independent population-based and hospital-based studies. Although non-ERG ETS fusions involving ETV1, ETV4, ETV5, or FLI1 were individually rare, they jointly accounted for one in seven prostate tumors. Genes differentially regulated between non-ERG ETS tumors and tumors without ETS fusions showed similar differential expression when ERG tumors and tumors without ETS fusions were compared (differences explained: R2 = 69-77%), including ETS-related androgen receptor (AR) target genes. Differences appeared to result from similarities among ETS tumors rather than similarities among non-ETS tumors. Gene sets associated with ERG fusions were consistent with gene sets associated with non-ERG ETS fusions, including fatty acid and amino acid metabolism, an observation that was robust across cohorts. IMPLICATIONS Considering ETS fusions jointly may be useful for etiologic studies on prostate cancer, given that the transcriptome is profoundly impacted by ERG and non-ERG ETS fusions in a largely similar fashion, most notably genes regulating metabolic pathways.
Collapse
Affiliation(s)
- Konrad H. Stopsack
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Xiaofeng A. Su
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
| | - J. Bailey Vaselkiv
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Rebecca E. Graff
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA., Division of Research, Kaiser Permanente Northern California, Oakland, CA, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Ericka M. Ebot
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Andreas Pettersson
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Rosina T. Lis
- Department of Pathology and Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
| | - Michelangelo Fiorentino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, Pathology Unit, Addarii Institute, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Massimo Loda
- Department of Pathology, Weill Cornell Medical College, New York, NY
| | - Kathryn L. Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Tamara L. Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
6
|
Raspin K, O'Malley DE, Marthick JR, Donovan S, Malley RC, Banks A, Redwig F, Skala M, Dickinson JL, FitzGerald LM. Analysis of a large prostate cancer family identifies novel and recurrent gene fusion events providing evidence for inherited predisposition. Prostate 2022; 82:540-550. [PMID: 34994974 DOI: 10.1002/pros.24300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/27/2021] [Accepted: 12/21/2021] [Indexed: 11/12/2022]
Abstract
There is strong interest in the characterisation of gene fusions and their use to enhance clinical practices in prostate cancer (PrCa). Significantly, ~50% of prostate tumours harbour a gene fusion. Inherited factors are thought to predispose to these events but, to date, only one study has investigated gene fusions in a familial context. Here, we examined the prevalence and diversity of gene fusions in 14 tumours from a single large PrCa family, PcTas9, using the TruSight® RNA Fusion Panel and Sanger sequencing validation. These fusions were then explored in The Cancer Genome Atlas (TCGA) PrCa data set (n = 494). Overall, 64.3% of PcTas9 tumours harboured a gene fusion, including known erythroblast transformation-specific (ETS) fusions involving ERG and ETV1, and two novel gene fusions, C19orf48:ETV4 and RYBP:FOXP1. Although 3' ETS genes were overexpressed in PcTas9 and TCGA tumour samples, 3' fusion of FOXP1 did not appear to alter its expression. In addition, PcTas9 fusion carriers were more likely to have lower-grade disease than noncarriers (p = 0.02). Likewise, TCGA tumours with high-grade disease were less likely to harbour fusions (p = 0.03). Our study further implicates an inherited predisposition to PrCa gene fusion events, which are associated with less aggressive tumours. This knowledge could lead to clinical strategies to predict men at risk for fusion-positive PrCa and, thus, identify patients who are more or less at risk of aggressive disease and/or responsive to particular therapies.
Collapse
Affiliation(s)
- Kelsie Raspin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Dannielle E O'Malley
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - James R Marthick
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | | | - Roslyn C Malley
- Hobart Pathology, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Annette Banks
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Frank Redwig
- Department of Urology, Royal Hobart Hospital, Hobart, TAS, Australia
| | - Marketa Skala
- WP Holman Clinic, Royal Hobart Hospital, Hobart, TAS, Australia
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Liesel M FitzGerald
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
7
|
Feng X, Zhou CK, Clish CB, Wilson KM, Pernar CH, Dickerman BA, Loda M, Finn SP, Penney KL, Schmidt DR, Heiden MGV, Giovannucci EL, Ebot EM, Mucci LA. Association of Prediagnostic Blood Metabolomics with Prostate Cancer Defined by ERG or PTEN Molecular Subtypes. Cancer Epidemiol Biomarkers Prev 2021; 30:1000-1008. [PMID: 33627383 DOI: 10.1158/1055-9965.epi-20-1363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The TMPRSS2:ERG gene fusion and PTEN loss are two of the most common somatic molecular alterations in prostate cancer. Here, we investigated the association of prediagnostic-circulating metabolomics and prostate cancer defined by ERG or PTEN status to improve understanding of these etiologically distinct molecular prostate cancer subtypes. METHODS The study was performed among 277 prostate cancer cases with ERG status, 211 with PTEN status, and 294 controls nested in the Health Professionals Follow-up Study (HPFS) and the Physicians' Health Study (PHS). We profiled 223 polar and non-polar metabolites using LC-MS in prediagnostic plasma specimens. We applied enrichment analysis and multinomial logistic regression models to identify biological metabolite classes and individual metabolites associated with prostate cancer defined by ERG or PTEN status. RESULTS Compared with noncancer controls, sphingomyelin (P: 0.01), ceramide (P: 0.04), and phosphatidylethanolamine (P: 0.03) circulating levels were enriched among ERG-positive prostate cancer cases. Sphingomyelins (P: 0.02), ceramides (P: 0.005), and amino acids (P: 0.02) were enriched among tumors exhibiting PTEN-loss; unsaturated diacylglycerols (P: 0.003) were enriched among PTEN-intact cases; and unsaturated triacylglycerols were enriched among both PTEN-loss (P: 0.001) and PTEN-intact (P: 0.0001) cases. Although several individual metabolites identified in the above categories were nominally associated with ERG or PTEN-defined prostate cancer, none remained significant after accounting for multiple testing. CONCLUSIONS The molecular process of prostate carcinogenesis may be distinct for men with different metabolomic profiles. IMPACT These novel findings provide insights into the metabolic environment for the development of prostate cancer.
Collapse
Affiliation(s)
- Xiaoshuang Feng
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| | - Cindy Ke Zhou
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | - Kathryn M Wilson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Claire H Pernar
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Barbra A Dickerman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Massimo Loda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Stephen P Finn
- Department of Histopathology Research, Trinity College, Dublin, Ireland
| | - Kathryn L Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Daniel R Schmidt
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Matthew G Vander Heiden
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Ericka M Ebot
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Yamoah K, Lal P, Awasthi S, Naghavi AO, Rounbehler RJ, Gerke T, Berglund AE, Pow-Sang JM, Schaeffer EM, Dhillon J, Park JY, Rebbeck TR. TMPRSS2-ERG fusion impacts anterior tumor location in men with prostate cancer. Prostate 2021; 81:109-117. [PMID: 33141952 PMCID: PMC7810127 DOI: 10.1002/pros.24086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND In prostate cancer (PCa), lack of androgen receptor (AR) regulated TMPRSS2-ETS-related gene (ERG) gene fusion (ERGnegative ) status has been associated with African American race; however, the implications of ERG status for the location of dominant tumors within the prostate remains understudied. METHODS An African American-enriched multiinstitutional cohort of 726 PCa patients consisting of both African American men (AAM; n = 254) and European American men (EAM; n = 472) was used in the analyses. Methods of categorical analysis were used. Messenger RNA (mRNA) expression differences between anterior and posterior tumor lesions were analyzed using Wilcoxon rank-sum tests with multiple comparison corrections. RESULTS Anti-ERG immunohistochemistry staining showed that the association between ERG status and anterior tumors is independent of race and is consistently robust for both AAM (ERGnegative 81.4% vs. ERGpositive 18.6%; p = .005) and EAM (ERGnegative 60.4% vs. ERGpositive 39.6%; p < .001). In a multivariable model, anterior tumors were more likely to be IHC-ERGnegative (odds ratio [OR]: 3.20; 95% confidence interval [CI]: 2.14-4.78; p < .001). IHC-ERGnegative were also more likely to have high-grade tumors (OR: 1.73; 95% CI: 1.06-2.82; p = .02). In the exploratory genomic analysis, mRNA expression of location-dependent genes is highly influenced by ERG status and African American race. However, tumor location did not impact the expression of AR or the major canonical AR-target genes (KLK3, AMACR, and MYC). CONCLUSIONS ERGnegative tumor status is the strongest predictor of anterior prostate tumors, regardless of race. Furthermore, AR expression and canonical AR signaling do not impact tumor location.
Collapse
Affiliation(s)
- Kosj Yamoah
- H Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Priti Lal
- The Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | | | | | - Travis Gerke
- H Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | | | | | | | | | - Jong Y. Park
- H Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Timothy R. Rebbeck
- Dana Farber Cancer Institute and Harvard TH Chan School of Public Health, Boston, MA
| |
Collapse
|
9
|
Hashim D, Gonzalez-Feliciano AG, Ahearn TU, Pettersson A, Barber L, Pernar CH, Ebot EM, Isikbay M, Finn SP, Giovannucci EL, Lis RT, Loda M, Parmigiani G, Lotan T, Kantoff PW, Mucci LA, Graff RE. Family history of prostate cancer and the incidence of ERG- and phosphatase and tensin homolog-defined prostate cancer. Int J Cancer 2020; 146:2694-2702. [PMID: 31318977 DOI: 10.1002/ijc.32577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/18/2019] [Accepted: 06/28/2019] [Indexed: 01/08/2023]
Abstract
Family history is among the strongest known risk factors for prostate cancer (PCa). Emerging data suggest molecular subtypes of PCa, including two somatic genetic aberrations: fusions of androgen-regulated promoters with ERG and, separately, phosphatase and tensin homolog (PTEN) loss. We examined associations between family history and incidence of these subtypes in 44,126 men from the prospective Health Professionals Follow-up Study. ERG and PTEN status were assessed by immunohistochemistry. Multivariable competing risks models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for associations between self-reported family history of PCa and molecular subtypes of disease. Thirteen percent of men had a positive family history of PCa at baseline. During a median follow-up of 18.5 years, 5,511 PCa cases were diagnosed. Among them, 888 were assayed for ERG status (47% ERG-positive) and 715 were assayed for PTEN loss (14% PTEN null). Family history was more strongly associated with risk of ERG-negative (HR: 2.15; 95% CI: 1.71-2.70) than ERG-positive (HR: 1.49; 95% CI: 1.13-1.95) disease (pheterogeneity : 0.04). The strongest difference was among men with an affected father (HRERG-negative : 2.09; 95% CI: 1.64-2.66; HRERG-positive : 1.30; 95% CI: 0.96-1.76; pheterogeneity : 0.01). Family history of PCa was positively associated with both PTEN null (HR: 2.10; 95% CI: 1.26-3.49) and PTEN intact (HR: 1.72; 95% CI: 1.39-2.13) PCa (pheterogeneity : 0.47). Our results indicate that PCa family history may be positively associated with PCa in all ERG and PTEN subtypes, suggesting a role of genetic susceptibility in their development. It is possible that ERG-negative disease could be especially associated with positive family history.
Collapse
Affiliation(s)
- Dana Hashim
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY
| | | | - Thomas U Ahearn
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Andreas Pettersson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lauren Barber
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Claire H Pernar
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Ericka M Ebot
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Masis Isikbay
- Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Stephen P Finn
- Department of Histopathology, St. James's Hospital and Trinity College Dublin Medical School, Dublin, Ireland
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Rosina T Lis
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Massimo Loda
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Giovanni Parmigiani
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Tamara Lotan
- Department of Pathology, Johns Hopkins Bayview Medical Center, Baltimore, MD
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Rebecca E Graff
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
10
|
Association of germline genetic variants with TMPRSS2-ERG fusion status in prostate cancer. Oncotarget 2020; 11:1321-1333. [PMID: 32341752 PMCID: PMC7170497 DOI: 10.18632/oncotarget.27534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/03/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction: Oncogenic activation of ERG resulting from TMPRSS2-ERG gene fusion is a key molecular genetic alteration in prostate cancer (CaP). The frequency of ERG fusion is variable by race; however, there are limited data available on germline polymorphisms associating with ERG fusion status. The goal of this study is to identify the inherited risk variants associating with ERG status of CaP. Materials and Methods: SNP genotyping was performed on the Illumina platform using Infinium Oncoarray SNP chip on blood derived genomic DNA samples from 400 patients treated by radical prostatectomy at a single military institution. ERG status was determined in whole mounted prostate specimens by immuno-histochemistry (IHC) for ERG protein expression. Data analysis approaches included association analyses based on EMMAX and imputation by IMPUTE2. Imputed SNPs were validated by ddPCR. Results: SNP genotyping analysis using imputation identified rs34349373 (p 4.68 × 10-8) and rs2055272 (p 5.62 × 10-8) in TBC1D22B to be significantly associated with ERG fusion status in index tumor and non-index tumor foci. Imputed SNP rs2055272 was further experimentally validated by ddPCR with 98.04% (100/102) concordance. Initial discovery analysis based on SNPs on Oncoarray SNP chip, showed significant (p 10-5) association for SNPs (rs6698333, rs1889877, rs3798999, rs10215144, rs3818136, rs9380660 and rs1792695) with ERG fusion status. The study also replicated two previously known ERG fusion associated SNPs (rs11704416 in chromsome 22; rs16901979 in chromosome 8). Conclusions: This study identified SNPs associated with ERG status of CaP. Impact: The findings may contribute towards defining the underlying genetics of ERG positive and ERG negative CaP patients.
Collapse
|
11
|
Stopsack KH, Mucci LA, Antonarakis ES, Nelson PS, Kantoff PW. TMPRSS2 and COVID-19: Serendipity or Opportunity for Intervention? Cancer Discov 2020; 10:779-782. [PMID: 32276929 DOI: 10.1158/2159-8290.cd-20-0451] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
TMPRSS2 is both the most frequently altered gene in primary prostate cancer and a critical factor enabling cellular infection by coronaviruses, including SARS-CoV-2. The modulation of its expression by sex steroids could contribute to the male predominance of severe infections, and given that TMPRSS2 has no known indispensable functions, and inhibitors are available, it is an appealing target for prevention or treatment of respiratory viral infections.
Collapse
Affiliation(s)
- Konrad H Stopsack
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Emmanuel S Antonarakis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Peter S Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center and Department of Medicine, University of Washington, Seattle, Washington
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
12
|
Kensler KH, Rebbeck TR. Cancer Progress and Priorities: Prostate Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:267-277. [PMID: 32024765 PMCID: PMC7006991 DOI: 10.1158/1055-9965.epi-19-0412] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/10/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
- Kevin H Kensler
- Division of Population Sciences, Dana-Farber Cancer Institute and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Timothy R Rebbeck
- Division of Population Sciences, Dana-Farber Cancer Institute and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
13
|
Gerke JS, Orth MF, Tolkach Y, Romero‐Pérez L, Wehweck FS, Stein S, Musa J, Knott MM, Hölting TL, Li J, Sannino G, Marchetto A, Ohmura S, Cidre‐Aranaz F, Müller‐Nurasyid M, Strauch K, Stief C, Kristiansen G, Kirchner T, Buchner A, Grünewald TG. Integrative clinical transcriptome analysis reveals
TMPRSS2‐ERG
dependency of prognostic biomarkers in prostate adenocarcinoma. Int J Cancer 2019; 146:2036-2046. [DOI: 10.1002/ijc.32792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Julia S. Gerke
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of Pathology, Faculty of Medicine, LMU Munich Munich Germany
| | - Martin F. Orth
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of Pathology, Faculty of Medicine, LMU Munich Munich Germany
| | - Yuri Tolkach
- Institute of Pathology, University Hospital Bonn Bonn Germany
| | - Laura Romero‐Pérez
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of Pathology, Faculty of Medicine, LMU Munich Munich Germany
| | - Fabienne S. Wehweck
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of Pathology, Faculty of Medicine, LMU Munich Munich Germany
| | - Stefanie Stein
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of Pathology, Faculty of Medicine, LMU Munich Munich Germany
| | - Julian Musa
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of Pathology, Faculty of Medicine, LMU Munich Munich Germany
| | - Maximilian M.L. Knott
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of Pathology, Faculty of Medicine, LMU Munich Munich Germany
- Institute of Pathology, Faculty of Medicine, LMU Munich Munich Germany
| | - Tilman L.B. Hölting
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of Pathology, Faculty of Medicine, LMU Munich Munich Germany
| | - Jing Li
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of Pathology, Faculty of Medicine, LMU Munich Munich Germany
| | - Giuseppina Sannino
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of Pathology, Faculty of Medicine, LMU Munich Munich Germany
| | - Aruna Marchetto
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of Pathology, Faculty of Medicine, LMU Munich Munich Germany
| | - Shunya Ohmura
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of Pathology, Faculty of Medicine, LMU Munich Munich Germany
| | - Florencia Cidre‐Aranaz
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of Pathology, Faculty of Medicine, LMU Munich Munich Germany
| | - Martina Müller‐Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health Neuherberg Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich Munich Germany
- Department of Internal Medicine I (Cardiology)Hospital of the LMU Munich Munich Germany
| | - Konstantin Strauch
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University Mainz Germany
| | - Christian Stief
- Urologic Clinic und PolyclinicClinical Center of the University of Munich Munich Germany
| | | | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, LMU Munich Munich Germany
- German Cancer Consortium (DKTK), partner site Munich Munich Germany
- German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Alexander Buchner
- Department of Internal Medicine I (Cardiology)Hospital of the LMU Munich Munich Germany
| | - Thomas G.P. Grünewald
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of Pathology, Faculty of Medicine, LMU Munich Munich Germany
- Institute of Pathology, Faculty of Medicine, LMU Munich Munich Germany
- German Cancer Consortium (DKTK), partner site Munich Munich Germany
- German Cancer Research Center (DKFZ) Heidelberg Germany
| |
Collapse
|
14
|
Campbell PT, Ambrosone CB, Nishihara R, Aerts HJWL, Bondy M, Chatterjee N, Garcia-Closas M, Giannakis M, Golden JA, Heng YJ, Kip NS, Koshiol J, Liu XS, Lopes-Ramos CM, Mucci LA, Nowak JA, Phipps AI, Quackenbush J, Schoen RE, Sholl LM, Tamimi RM, Wang M, Weijenberg MP, Wu CJ, Wu K, Yao S, Yu KH, Zhang X, Rebbeck TR, Ogino S. Proceedings of the fourth international molecular pathological epidemiology (MPE) meeting. Cancer Causes Control 2019; 30:799-811. [PMID: 31069578 PMCID: PMC6614001 DOI: 10.1007/s10552-019-01177-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/27/2019] [Indexed: 02/06/2023]
Abstract
An important premise of epidemiology is that individuals with the same disease share similar underlying etiologies and clinical outcomes. In the past few decades, our knowledge of disease pathogenesis has improved, and disease classification systems have evolved to the point where no complex disease processes are considered homogenous. As a result, pathology and epidemiology have been integrated into the single, unified field of molecular pathological epidemiology (MPE). Advancing integrative molecular and population-level health sciences and addressing the unique research challenges specific to the field of MPE necessitates assembling experts in diverse fields, including epidemiology, pathology, biostatistics, computational biology, bioinformatics, genomics, immunology, and nutritional and environmental sciences. Integrating these seemingly divergent fields can lead to a greater understanding of pathogenic processes. The International MPE Meeting Series fosters discussion that addresses the specific research questions and challenges in this emerging field. The purpose of the meeting series is to: discuss novel methods to integrate pathology and epidemiology; discuss studies that provide pathogenic insights into population impact; and educate next-generation scientists. Herein, we share the proceedings of the Fourth International MPE Meeting, held in Boston, MA, USA, on 30 May-1 June, 2018. Major themes of this meeting included 'integrated genetic and molecular pathologic epidemiology', 'immunology-MPE', and 'novel disease phenotyping'. The key priority areas for future research identified by meeting attendees included integration of tumor immunology and cancer disparities into epidemiologic studies, further collaboration between computational and population-level scientists to gain new insight on exposure-disease associations, and future pooling projects of studies with comparable data.
Collapse
Affiliation(s)
- Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, 250 Williams Street NW, Atlanta, GA, 30303, USA.
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 450 Brookline Ave, Room SM1036, Boston, MA, 02215, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hugo J W L Aerts
- Departments of Radiation Oncology and Radiology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa Bondy
- Cancer Prevention and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Nilanjan Chatterjee
- Department of Biostatistics, Bloomberg School of Public Health, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard & MIT, Cambridge, MA, USA
| | - Jeffrey A Golden
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yujing J Heng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - N Sertac Kip
- Sema4, Mount Sinai Icahn School of Medicine, Genetics & Genomic Sciences and Pathology, Branford, CT, USA
| | - Jill Koshiol
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - X Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Camila M Lopes-Ramos
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jonathan A Nowak
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Amanda I Phipps
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Robert E Schoen
- Departments of Medicine and Epidemiology, The University of Pittsburgh, Pittsburgh, PA, USA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rulla M Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Molin Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Matty P Weijenberg
- Department of Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard & MIT, Cambridge, MA, USA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kun-Hsing Yu
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Timothy R Rebbeck
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 450 Brookline Ave, Room SM1036, Boston, MA, 02215, USA.
- Broad Institute of Harvard & MIT, Cambridge, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
15
|
Abstract
Aneuploidy, defined as chromosome gains and losses, is a hallmark of cancer. However, compared with other tumor types, extensive aneuploidy is relatively rare in prostate cancer. Thus, whether numerical chromosome aberrations dictate disease progression in prostate cancer patients is not known. Here, we report the development of a method based on whole-transcriptome profiling that allowed us to identify chromosome-arm gains and losses in 333 primary prostate tumors. In two independent cohorts (n = 404) followed prospectively for metastases and prostate cancer-specific death for a median of 15 years, increasing extent of tumor aneuploidy as predicted from the tumor transcriptome was strongly associated with higher risk of lethal disease. The 23% of patients whose tumors had five or more predicted chromosome-arm alterations had 5.3 times higher odds of lethal cancer (95% confidence interval, 2.2 to 13.1) than those with the same Gleason score and no predicted aneuploidy. Aneuploidy was associated with lethality even among men with high-risk Gleason score 8-to-10 tumors. These results point to a key role of aneuploidy in driving aggressive disease in primary prostate cancer.
Collapse
|
16
|
Khan NA, Stopsack KH, Allott EH, Gerke T, Giovannucci EL, Mucci LA, Kantoff PW. Intratumoral Sterol-27-Hydroxylase ( CYP27A1) Expression in Relation to Cholesterol Synthesis and Vitamin D Signaling and Its Association with Lethal Prostate Cancer. Cancer Epidemiol Biomarkers Prev 2019; 28:1052-1058. [PMID: 30867220 DOI: 10.1158/1055-9965.epi-18-1083] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/09/2019] [Accepted: 03/05/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Higher intratumoral cholesterol synthesis is associated with a worse prognosis in prostate cancer. The vitamin D-regulated enzyme sterol-27-hydroxylase (CYP27A1) converts cholesterol to 27-hydroxycholesterol, potentially lowering intracellular cholesterol levels. We hypothesized that low CYP27A1 expression is associated with high cholesterol synthesis, low vitamin D signaling, and higher risk of lethal prostate cancer. METHODS In 404 patients from the prospective prostate cancer cohorts within the Health Professionals Follow-up Study (HPFS) and the Physicians' Health Study (PHS), we assessed intratumoral CYP27A1 expression and proxies of cholesterol synthesis using transcriptome profiling, prediagnostic plasma 25-hydroxyvitamin D [25(OH)D; n = 132], and intratumoral vitamin D receptor protein expression (VDR; n = 300). Patients were followed for metastases and prostate cancer mortality (lethal cancer; median follow-up, 15.3 years). RESULTS CYP27A1 expression was lower in tumors with higher Gleason grade and higher expression of cholesterol synthesis enzymes, including the second rate-limiting enzyme, SQLE. We did not detect consistent associations between CYP27A1 and 25(OH)D, VDR, or CYP24A1 mRNA expression. Lower CYP27A1 was associated with higher risk of lethal cancer in both cohorts, independent of SQLE [adjusted OR for lowest vs. highest quartile of CYP27A1, 2.64; 95% confidence interval (CI), 1.24-5.62]. This association was attenuated when additionally adjusting for Gleason grade (OR, 1.76; 95% CI, 0.75-4.17). CONCLUSIONS Low CYP27A1 expression was associated with higher cholesterol synthesis and a higher risk of lethal disease. IMPACT These observations further support the hypothesis that intratumoral cholesterol accumulation through higher synthesis and decreased catabolism is a feature of lethal prostate cancer.
Collapse
Affiliation(s)
- Nabeela A Khan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Konrad H Stopsack
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Emma H Allott
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Travis Gerke
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
17
|
García-Perdomo HA, Chaves MJ, Osorio JC, Sanchez A. Association between TMPRSS2:ERG fusion gene and the prostate cancer: systematic review and meta-analysis. Cent European J Urol 2018; 71:410-419. [PMID: 30680235 PMCID: PMC6338815 DOI: 10.5173/ceju.2018.1752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/28/2018] [Accepted: 11/01/2018] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION To identify the association between the TMPRSS2:ERG fusion gene, their variants and the onset of localized prostate cancer. MATERIAL AND METHODS A systematic search strategy was carried out through MEDLINE, EMBASE, LILACS, CENTRAL and unpublished literature. We included randomized control trials, cohort, case-control and cross-sectional studies that involved patients >18 years-old assessing the association between TMPRSS2 fusion gene, its single nucleotide polymorphisms and prostate cancer. The primary outcome was prostate cancer defined by histology of the tumor coming from transrectal ultrasound guided biopsy, transurethral resection of the prostate or radical prostatectomy. We assessed the risk of bias with QUADAS2 and performed a meta-analysis with Stata 14. RESULTS We found 241 records with the search strategies. After duplicates were removed, 18 studies were included in qualitative analysis and 15 studies in meta-analysis. All included studies that had no applicability concerns and low risk of bias for flow and timing. Nine studies had an unclear risk of bias for index and reference tests, since they did not describe the blinding assessment appropriately. Regarding the association between TMPRSS2:ERG and prostate cancer, we found an odds ratio (OR) 2.24 and a 95% confidence interval (CI) (1.29 to 3.91). Regarding the kind of sample, urine showed an OR 2.79 and a 95% CI (1.12 to 6.98) and when using a DNA molecular template, the OR was 3.55 with a 95% CI (1.08 to 11.65). CONCLUSIONS There was an association between TMPRSS2:ERG fusion gene with the diagnosis of prostate cancer, mainly in urine samples and DNA-based molecular templates. TMPRSS2:ERG might be used as the gold standard biomarker for diagnosis and stratification of PCa.
Collapse
|
18
|
Stopsack KH, Gonzalez-Feliciano AG, Peisch SF, Downer MK, Gage RA, Finn S, Lis RT, Graff RE, Pettersson A, Pernar CH, Loda M, Kantoff PW, Ahearn TU, Mucci LA. A Prospective Study of Aspirin Use and Prostate Cancer Risk by TMPRSS2:ERG Status. Cancer Epidemiol Biomarkers Prev 2018; 27:1231-1233. [PMID: 30108097 PMCID: PMC6170677 DOI: 10.1158/1055-9965.epi-18-0510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/30/2018] [Accepted: 07/30/2018] [Indexed: 01/21/2023] Open
Abstract
Background: In a case-control study, aspirin use was associated with a lower risk of a common prostate cancer molecular subtype, the TMPRSS2:ERG gene fusion. We sought to validate this finding in a prospective cohort.Methods: In the Health Professionals Follow-up Study, 49,395 men reported on aspirin use on biennial questionnaires and were followed for prostate cancer incidence over 23 years. TMPRSS2:ERG status was assessed by IHC for presence of ERG on archival tumor specimens for 912 patients with prostate cancer, of whom 48% were ERG-positive.Results: In multivariable models, we found no association between regular use of aspirin and risk of ERG-positive prostate cancer (HR, 1.02; 95% confidence interval, 0.85-1.23), nor any association with duration or frequency of aspirin use. In restricting to cases with either high Gleason grade or advanced stage disease, there remained no association with aspirin use.Conclusions: Data from this prospective study with repeated assessments of aspirin use do not support the hypothesis that aspirin use is associated with a lower risk of ERG-positive prostate cancer.Impact: Aspirin use is unlikely to lower the risk of this common molecular subtype of prostate cancer. However, there is emerging data supporting the role of other lifestyle and genetic factors underlying the development of the TMPRSS2:ERG fusion. Cancer Epidemiol Biomarkers Prev; 27(10); 1231-3. ©2018 AACR.
Collapse
Affiliation(s)
- Konrad H Stopsack
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | - Samuel F Peisch
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Mary K Downer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Riley A Gage
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Stephen Finn
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Trinity College Dublin, Dublin, Ireland
| | - Rosina T Lis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Rebecca E Graff
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Andreas Pettersson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Medicine, Clinical Epidemiology Unit, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Claire H Pernar
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Massimo Loda
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas U Ahearn
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, Epidemiology and Biostatistics Program, Bethesda, Maryland
| | | |
Collapse
|
19
|
Edwards DR, Moroz K, Zhang H, Mulholland D, Abdel-Mageed AB, Mondal D. PRL‑3 increases the aggressive phenotype of prostate cancer cells in vitro and its expression correlates with high-grade prostate tumors in patients. Int J Oncol 2017; 52:402-412. [PMID: 29207031 PMCID: PMC5741371 DOI: 10.3892/ijo.2017.4208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
The increased expression of phosphatase of regenerating liver-3 (PRL-3) has been shown to be associated with the aggressive and metastatic phenotype of different solid tumors. However, it is not known whether PRL-3 plays a similar role in the progression of prostate cancer (PCa). In this study, immunoblot analysis of androgen receptor (AR)-positive PCa lines (LNCaP and LNCaP-SF) revealed the constitutive cytoplasmic expression of PRL-3, and stimulation with R1881 (AR agonist) rapidly increased the nuclear translocation of PRL-3. The AR-negative cell lines exhibited negligible PRL-3 expression, and the ectopic overexpression of PRL-3 increased both the proliferative and invasive potential of PC3 and DU145 cells. In addition, we measured PRL-3 protein expression in human prostate tumor sections. A high-density prostate tumor microarray (TMA) was immunostained to assess whether PRL-3 expression and its subcellular localization (cytoplasmic and nuclear levels) is associated with the Gleason score (GS), Gleason grade (GG) and tumor stage (T-stage). Digital image analysis (DIA) revealed that PRL-3 expression was significantly higher in the malignant cores, as compared to the non-malignant areas. Increases in both total and nuclear PRL-3 levels were also associated with a higher GS and GG. Metastatic tumors (T4-stage) had lower cytoplasmic, but higher nuclear PRL-3 levels. Furthermore, the nuclear/cytoplasmic ratio for PRL-3 in the tumors graded as GS7 could effectively distinguish between indolent (3+4) and aggressive (4+3) disease. Thus, our experiments using PCa lines suggested that PRL-3 is an AR-regulated gene and its androgen-induced nuclear localization may increase the aggressive behavior of PCa cells. Furthermore, the digital analysis of immunostained tumor sections suggested that PRL-3 may be an effective biomarker of high-grade PCa, and its nuclear/cytoplasmic ratio may be used to distinguish between indolent vs. aggressive tumors.
Collapse
Affiliation(s)
- Donna R Edwards
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Krzysztof Moroz
- Department of Pathology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Haitao Zhang
- Department of Pathology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - David Mulholland
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Asim B Abdel-Mageed
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Debasis Mondal
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
20
|
Graff RE, Ahearn TU, Pettersson A, Ebot EM, Gerke T, Penney KL, Wilson KM, Markt SC, Pernar CH, Gonzalez-Feliciano AG, Song M, Lis RT, Schmidt DR, Vander Heiden MG, Fiorentino M, Giovannucci EL, Loda M, Mucci LA. Height, Obesity, and the Risk of TMPRSS2:ERG-Defined Prostate Cancer. Cancer Epidemiol Biomarkers Prev 2017; 27:193-200. [PMID: 29167279 DOI: 10.1158/1055-9965.epi-17-0547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/08/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022] Open
Abstract
Background: The largest molecular subtype of primary prostate cancer is defined by the TMPRSS2:ERG gene fusion. Few studies, however, have investigated etiologic differences by TMPRSS2:ERG status. Because the fusion is hormone-regulated and a man's hormonal milieu varies by height and obesity status, we hypothesized that both may be differentially associated with risk of TMPRSS2:ERG-defined disease.Methods: Our study included 49,372 men from the prospective Health Professionals Follow-up Study. Participants reported height and weight at baseline in 1986 and updated weight biennially thereafter through 2009. Tumor ERG protein expression (a TMPRSS2:ERG marker) was immunohistochemically assessed. We used multivariable competing risks models to calculate HRs and 95% confidence intervals (CIs) for the risk of ERG-positive and ERG-negative prostate cancer.Results: During 23 years of follow-up, we identified 5,847 incident prostate cancers, among which 913 were ERG-assayed. Taller height was associated with an increased risk of ERG-positive disease only [per 5 inches HR 1.24; 95% confidence interval (CI), 1.03-1.50; Pheterogeneity = 0.07]. Higher body mass index (BMI) at baseline (per 5 kg/m2 HR 0.75; 95% CI, 0.61-0.91; Pheterogeneity = 0.02) and updated BMI over time (per 5 kg/m2 HR 0.86; 95% CI, 0.74-1.00; Pheterogeneity = 0.07) were associated with a reduced risk of ERG-positive disease only.Conclusions: Our results indicate that anthropometrics may be uniquely associated with TMPRSS2:ERG-positive prostate cancer; taller height may be associated with greater risk, whereas obesity may be associated with lower risk.Impact: Our study provides strong rationale for further investigations of other prostate cancer risk factors that may be distinctly associated with subtypes. Cancer Epidemiol Biomarkers Prev; 27(2); 193-200. ©2017 AACR.
Collapse
Affiliation(s)
- Rebecca E Graff
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California. .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Thomas U Ahearn
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Andreas Pettersson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ericka M Ebot
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Travis Gerke
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Kathryn L Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kathryn M Wilson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sarah C Markt
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Claire H Pernar
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | - Mingyang Song
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Rosina T Lis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Daniel R Schmidt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Harvard Radiation Oncology Program, Harvard Medical School, Boston, Massachusetts
| | - Matthew G Vander Heiden
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Massimo Loda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
Luedeke M, Rinckleb AE, FitzGerald LM, Geybels MS, Schleutker J, Eeles RA, Teixeira MR, Cannon-Albright L, Ostrander EA, Weikert S, Herkommer K, Wahlfors T, Visakorpi T, Leinonen KA, Tammela TL, Cooper CS, Kote-Jarai Z, Edwards S, Goh CL, McCarthy F, Parker C, Flohr P, Paulo P, Jerónimo C, Henrique R, Krause H, Wach S, Lieb V, Rau TT, Vogel W, Kuefer R, Hofer MD, Perner S, Rubin MA, Agarwal AM, Easton DF, Al Olama AA, Benlloch S, Hoegel J, Stanford JL, Maier C. Prostate cancer risk regions at 8q24 and 17q24 are differentially associated with somatic TMPRSS2:ERG fusion status. Hum Mol Genet 2016; 25:5490-5499. [PMID: 27798103 PMCID: PMC5418832 DOI: 10.1093/hmg/ddw349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/23/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022] Open
Abstract
Molecular and epidemiological differences have been described between TMPRSS2:ERG fusion-positive and fusion-negative prostate cancer (PrCa). Assuming two molecularly distinct subtypes, we have examined 27 common PrCa risk variants, previously identified in genome-wide association studies, for subtype specific associations in a total of 1221 TMPRSS2:ERG phenotyped PrCa cases. In meta-analyses of a discovery set of 552 cases with TMPRSS2:ERG data and 7650 unaffected men from five centers we have found support for the hypothesis that several common risk variants are associated with one particular subtype rather than with PrCa in general. Risk variants were analyzed in case-case comparisons (296 TMPRSS2:ERG fusion-positive versus 256 fusion-negative cases) and an independent set of 669 cases with TMPRSS2:ERG data was established to replicate the top five candidates. Significant differences (P < 0.00185) between the two subtypes were observed for rs16901979 (8q24) and rs1859962 (17q24), which were enriched in TMPRSS2:ERG fusion-negative (OR = 0.53, P = 0.0007) and TMPRSS2:ERG fusion-positive PrCa (OR = 1.30, P = 0.0016), respectively. Expression quantitative trait locus analysis was performed to investigate mechanistic links between risk variants, fusion status and target gene mRNA levels. For rs1859962 at 17q24, genotype dependent expression was observed for the candidate target gene SOX9 in TMPRSS2:ERG fusion-positive PrCa, which was not evident in TMPRSS2:ERG negative tumors. The present study established evidence for the first two common PrCa risk variants differentially associated with TMPRSS2:ERG fusion status. TMPRSS2:ERG phenotyping of larger studies is required to determine comprehensive sets of variants with subtype-specific roles in PrCa.
Collapse
Affiliation(s)
- Manuel Luedeke
- Institute of Human Genetics, University of Ulm, Ulm, Germany
- Department of Urology, University of Ulm, Ulm, Germany
| | - Antje E. Rinckleb
- Institute of Human Genetics, University of Ulm, Ulm, Germany
- Department of Urology, University of Ulm, Ulm, Germany
| | - Liesel M. FitzGerald
- Fred Hutchinson Cancer Research Center, Division of Public Health Science, Seattle, Washington, USA
- Cancer, Genetics and Immunology, Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Milan S. Geybels
- Fred Hutchinson Cancer Research Center, Division of Public Health Science, Seattle, Washington, USA
| | - Johanna Schleutker
- Institute of Biomedical Technology/BioMediTech, University of Tampere, Tampere, Finland
- Department of Medical Biochemistry and Genetics, University of Turku, and Tyks Microbiology and Genetics, Department of Medical Genetics, Turku University Hospital, Turku, Finland
| | - Rosalind A. Eeles
- The Institute of Cancer Research, London, UK
- Royal Marsden National Health Service Foundation Trust, London and Sutton, UK
| | - Manuel R. Teixeira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
- Abel Salazar Biomedical Sciences Institute, Porto University, Porto, Portugal
| | - Lisa Cannon-Albright
- Division of Genetic Epidemiology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | | | - Steffen Weikert
- Department of Urology, Vivantes Humboldt Hospital, Berlin, Germany
- Department of Urology, University Hospital Charité, Berlin, Germany
| | - Kathleen Herkommer
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tiina Wahlfors
- Institute of Biomedical Technology/BioMediTech, University of Tampere, Tampere, Finland
| | - Tapio Visakorpi
- Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | | | - Teuvo L.J. Tammela
- Department of Urology, Tampere University Hospital and School of Medicine, University of Tampere, Tampere, Finland
| | - Colin S. Cooper
- The Institute of Cancer Research, London, UK
- Department of Biological Science, University of East Anglia, Norwich, UK
| | | | | | - Chee L. Goh
- The Institute of Cancer Research, London, UK
| | | | - Chris Parker
- Royal Marsden National Health Service Foundation Trust, London and Sutton, UK
| | - Penny Flohr
- The Institute of Cancer Research, London, UK
| | - Paula Paulo
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
- Abel Salazar Biomedical Sciences Institute, Porto University, Porto, Portugal
| | - Carmen Jerónimo
- Abel Salazar Biomedical Sciences Institute, Porto University, Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute, Porto, Portugal
| | - Rui Henrique
- Abel Salazar Biomedical Sciences Institute, Porto University, Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute, Porto, Portugal
| | - Hans Krause
- Department of Urology, University Hospital Charité, Berlin, Germany
| | - Sven Wach
- Department of Urology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Verena Lieb
- Department of Urology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Tilman T. Rau
- Institute of Pathology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Institute of Pathology, University Bern, Bern Switzerland
| | - Walther Vogel
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Rainer Kuefer
- Department of Urology, Klinik am Eichert, Göppingen, Germany
| | - Matthias D. Hofer
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sven Perner
- Pathology of the University Medical Center Schleswig-Holstein, Campus Luebeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, Luebeck and Borstel, Germany
| | - Mark A. Rubin
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | | | - Doug F. Easton
- Centre for Cancer Genetics Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Ali Amin Al Olama
- Centre for Cancer Genetics Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Sara Benlloch
- Centre for Cancer Genetics Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | | | - Josef Hoegel
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Janet L. Stanford
- Fred Hutchinson Cancer Research Center, Division of Public Health Science, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Christiane Maier
- Institute of Human Genetics, University of Ulm, Ulm, Germany
- Department of Urology, University of Ulm, Ulm, Germany
| |
Collapse
|