1
|
Chen D, Jiang J, Hayes N, Su Z, Wei GW. Artificial intelligence approaches for anti-addiction drug discovery. DIGITAL DISCOVERY 2025:d5dd00032g. [PMID: 40401266 PMCID: PMC12086782 DOI: 10.1039/d5dd00032g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025]
Abstract
Drug addiction remains a complex global public health challenge, with traditional anti-addiction drug discovery hindered by limited efficacy and slow progress in targeting intricate neurochemical systems. Advanced algorithms within artificial intelligence (AI) present a transformative solution that boosts both speed and precision in therapeutic development. This review examines how artificial intelligence serves as a crucial element in developing anti-addiction medications by targeting the opioid system along with dopaminergic and GABAergic systems, which are essential in addiction pathology. It identifies upcoming trends promising in studying less-researched addiction-linked systems through innovative general-purpose drug discovery techniques. AI holds the potential to transform anti-addiction research by breaking down conventional limitations, which will enable the development of superior treatment methods.
Collapse
Affiliation(s)
- Dong Chen
- Department of Mathematics, Michigan State University MI 48824 USA
| | - Jian Jiang
- Department of Mathematics, Michigan State University MI 48824 USA
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University Wuhan 430200 P. R. China
| | - Nicole Hayes
- Department of Mathematics, Michigan State University MI 48824 USA
| | - Zhe Su
- Department of Mathematics, Michigan State University MI 48824 USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University MI 48824 USA
- Department of Electrical and Computer Engineering, Michigan State University MI 48824 USA
- Department of Biochemistry and Molecular Biology, Michigan State University MI 48824 USA
| |
Collapse
|
2
|
Zeng C, Jiang X, Ji M, Chu C, Liu B, Yin T, Tang X, Gou J, He H, Zhang Y. pH-responsive ZIF-8 nanoplatform co-loaded with DSF and ICG for multiple synergistic antitumor therapy. Int J Pharm 2025; 672:125343. [PMID: 39947360 DOI: 10.1016/j.ijpharm.2025.125343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
Disulfiram (Allensworth et al.), an "old drug" for the treatment of chronic alcohol dependence, has received extensive attention due to its potential antitumor activity for new medical applications. However, the application of DSF in cancer therapy was limited by its extremely terrible solubility in water. Meanwhile, Cu2+ was used to enhance the antitumor activity of DSF in most of the current studies, while few studies related to the combination of Zn2+ and DSF. Herein, we developed a pH-responsive hyaluronic acid/polyethylene glycol-graft-polyglutamic acid (HPG) modified zeolitic imidazolate framework-8 (ZIF-8) nanoparticle system (ID@ZIF-8@HPG) to achieve the co-delivery of Zn2+/indocyanine green (ICG)/DSF and the improvement of the solubility of DSF, which conducted an efficient anticancer effectiveness through its chemotherapy/photothermal/photodynamic multiple synergistic antitumor effects. The obtained ID@ZIF-8@HPG demonstrated acid-sensitive and photothermal-sensitive release behavior, which contributed to the release of DSF from nanoparticles within tumor cells upon laser irradiation of the tumor site and was beneficial to reduce the toxicity produced by chemotherapy. In vitro experiments demonstrated that ID@ZIF-8@HPG could be better taken up by tumor cells, resulting in excellent photothermal and photodynamic properties. In addition, ID@ZIF-8@HPG exhibited outstanding intratumor retention capacity and powerful tumor cell-killing ability while maintaining favorable biocompatibility. In summary, this study presents a promising nanoparticle delivery platform for cancer treatment, broadening the application of ZIF-8 in the field of tumor combination therapy.
Collapse
Affiliation(s)
- Chunwen Zeng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xueyan Jiang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Muse Ji
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Chenxiao Chu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Boyuan Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Tian Yin
- Department of Traditional Chinese Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - JingXin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
3
|
Tang YC, Ou JJ, Hsu SC, Huang CH, Lin LM, Chang HH, Wang YH, Huang ZT, Sun M, Liu KJ, Hung YM, Lai CY, Shih C, Chen CT, Chang JY, Hsieh HP, Jiaang WT, Kuo CC. Advancing precision therapy for colorectal cancer: Developing clinical indications for multi-target kinase inhibitor BPR1J481 using patient-derived xenograft models. Pharmacol Res 2025; 211:107556. [PMID: 39709137 DOI: 10.1016/j.phrs.2024.107556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
The large and rapid increase in the incidence and mortality of colorectal cancer (CRC) demonstrates the urgent need for new drugs with higher efficacy to treat CRC. However, the lack of applicable and reliable preclinical models significantly hinders the progress of drug development. Patient-derived xenograft (PDX) models are currently considered reliable in vivo preclinical models for predicting drug efficacy in cancer patients. This study successfully uses the CRC PDX model to develop clinical indications for the new multi-target kinase inhibitor BPR1J481 and demonstrated the anti-cancer mechanism and competitive advantages of this drug candidate. The results demonstrate that BPR1J481 exhibits significant anticancer efficacy by inducing apoptosis in CRC PDX tumor tissues and corresponding PDX-derived CRC cells. Through kinase competitive binding and kinase activity assays, we discover that BPR1J481 effectively inhibits SRC kinase activity by directly binding to its active site. The reduction in SRC phosphorylation observed in CRC PDX tumor tissues and derived cells upon treatment with BPR1J481 further validates its inhibitory potential. Furthermore, the decrease in viable cells after SRC knockout and the poorer prognosis observed in patients with higher SRC expression, emphasizes the critical significance and clinical relevance of SRC in CRC. Additionally, BPR1J481 exhibits robust anti-angiogenic effects by suppressing VEGF- and PDGF-induced endothelial cell proliferation, migration, and capillary-like tube formation through inhibition of VEGFR2 and PDGFRβ phosphorylation. Remarkably, BPR1J481 appears to demonstrate greater efficacy against CRC compared to regorafenib. These findings highlight the therapeutic potential of BPR1J481 for patients with CRC.
Collapse
Affiliation(s)
- Ya-Chu Tang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Jing-Jim Ou
- Department of Surgery, Chang Bing Show Chwan Memorial Hospital, Changhua County 505029, Taiwan
| | - Shu-Ching Hsu
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Chih-Hsiang Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Li-Mei Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Hsin-Huei Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Yi-Hsin Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Zih-Ting Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Manwu Sun
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, National Health Research Institutes, Tainan City 704016, Taiwan
| | - Yi-Mei Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan City 704016, Taiwan
| | - Chi-Yun Lai
- Pathology Core Laboratory, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Chuan Shih
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Jang-Yang Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan; Taipei Medical University Hospital, College of Medicine, Taipei Medical University, Taipei City 110301, Taiwan; Taipei Cancer Center, Taiwan; TMU Research Center of Cancer Translational Medicine, 110301, Taiwan
| | - Hsing-Pang Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Weir-Torn Jiaang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan.
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan.
| |
Collapse
|
4
|
Han R, Guo H, Shi J, Zhao S, Jia Y, Liu X, Liu Y, Cheng L, Zhao C, Li X, Zhou C. Osimertinib in combination with anti-angiogenesis therapy presents a promising option for osimertinib-resistant non-small cell lung cancer. BMC Med 2024; 22:174. [PMID: 38658988 PMCID: PMC11040894 DOI: 10.1186/s12916-024-03389-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Osimertinib has become standard care for epidermal growth factor receptor (EGFR)-positive non-small cell lung cancer (NSCLC) patients whereas drug resistance remains inevitable. Now we recognize that the interactions between the tumor and the tumor microenvironment (TME) also account for drug resistance. Therefore, we provide a new sight into post-osimertinib management, focusing on the alteration of TME. METHODS We conducted a retrospective study on the prognosis of different treatments after osimertinib resistance. Next, we carried out in vivo experiment to validate our findings using a humanized mouse model. Furthermore, we performed single-cell transcriptome sequencing (scRNA-seq) of tumor tissue from the above treatment groups to explore the mechanisms of TME changes. RESULTS Totally 111 advanced NSCLC patients have been enrolled in the retrospective study. The median PFS was 9.84 months (95% CI 7.0-12.6 months) in the osimertinib plus anti-angiogenesis group, significantly longer than chemotherapy (P = 0.012) and osimertinib (P = 0.003). The median OS was 16.79 months (95% CI 14.97-18.61 months) in the osimertinib plus anti-angiogenesis group, significantly better than chemotherapy (P = 0.026), the chemotherapy plus osimertinib (P = 0.021), and the chemotherapy plus immunotherapy (P = 0.006). The efficacy of osimertinib plus anlotinib in the osimertinib-resistant engraft tumors (R-O+A) group was significantly more potent than the osimertinib (R-O) group (P<0.05) in vitro. The combinational therapy could significantly increase the infiltration of CD4+ T cells (P<0.05), CD25+CD4+ T cells (P<0.001), and PD-1+CD8+ T cells (P<0.05) compared to osimertinib. ScRNA-seq demonstrated that the number of CD8+ T and proliferation T cells increased, and TAM.mo was downregulated in the R-O+A group compared to the R-O group. Subtype study of T cells explained that the changes caused by combination treatment were mainly related to cytotoxic T cells. Subtype study of macrophages showed that proportion and functional changes in IL-1β.mo and CCL18.mo might be responsible for rescue osimertinib resistance by combination therapy. CONCLUSIONS In conclusion, osimertinib plus anlotinib could improve the prognosis of patients with a progressed disease on second-line osimertinib treatment, which may ascribe to increased T cell infiltration and TAM remodeling via VEGF-VEGFR blockage.
Collapse
Affiliation(s)
- Ruoshuang Han
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
- Department of Oncology, The First Affiliated Hospital of Army Medical University, Chongqing, People's Republic of China
| | - Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jinpeng Shi
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yijun Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiaozhen Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yiwei Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Lei Cheng
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
5
|
Shramova EI, Deyev SM, Proshkina GM. A Vector Nanoplatform for the Bioimaging of Deep-Seated Tumors. Acta Naturae 2024; 16:72-81. [PMID: 39188260 PMCID: PMC11345090 DOI: 10.32607/actanaturae.27425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 08/28/2024] Open
Abstract
Today, in preclinical studies, optical bioimaging based on luminescence and fluorescence is indispensable in studying the development of neoplastic transformations, the proliferative activity of the tumor, its metastatic potential, as well as the therapeutic effect of antitumor agents. In order to expand the capabilities of optical imaging, sensors based on the bioluminescence resonance energy transfer (BRET) mechanism and, therefore, independent of an external light source are being developed. A targeted nanoplatform based on HER2-specific liposomes whose internal environment contains a genetically encoded BRET sensor was developed in this study to visualize deep-seated tumors characterized by overexpression of human epidermal growth factor receptor type 2 (HER2). The BRET sensor is a hybrid protein consisting of the highly catalytic luciferase NanoLuc (an energy donor) and a LSSmKate1 red fluorescent protein with a large Stokes shift (an energy acceptor). During the bioimaging of disseminated intraperitoneal tumors formed by HER2-positive SKOV3.ip1cells of serous ovarian cystadenocarcinoma, it was shown that the developed system is applicable in detecting deep-seated tumors of a certain molecular profile. The developed system can become an efficient platform for optimizing preclinical studies of novel targeted drugs.
Collapse
Affiliation(s)
- E. I. Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science, Moscow, 117997 Russian Federation
| | - S. M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science, Moscow, 117997 Russian Federation
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991 Russian Federation
- National Research Centre “Kurchatov Institute”, Moscow, 123098 Russian Federation
| | - G. M. Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science, Moscow, 117997 Russian Federation
| |
Collapse
|
6
|
Tang S, Wang Y, Luo R, Fang R, Liu Y, Xiang H, Ran P, Tong Y, Sun M, Tan S, Huang W, Huang J, Lv J, Xu N, Yao Z, Zhang Q, Xu Z, Yue X, Yu Z, Akesu S, Ding Y, Xu C, Lu W, Zhou Y, Hou Y, Ding C. Proteomic characterization identifies clinically relevant subgroups of soft tissue sarcoma. Nat Commun 2024; 15:1381. [PMID: 38360860 PMCID: PMC10869728 DOI: 10.1038/s41467-024-45306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Soft tissue sarcoma is a broad family of mesenchymal malignancies exhibiting remarkable histological diversity. We portray the proteomic landscape of 272 soft tissue sarcomas representing 12 major subtypes. Hierarchical classification finds the similarity of proteomic features between angiosarcoma and epithelial sarcoma, and elevated expression of SHC1 in AS and ES is correlated with poor prognosis. Moreover, proteomic clustering classifies patients of soft tissue sarcoma into 3 proteomic clusters with diverse driven pathways and clinical outcomes. In the proteomic cluster featured with the high cell proliferation rate, APEX1 and NPM1 are found to promote cell proliferation and drive the progression of cancer cells. The classification based on immune signatures defines three immune subtypes with distinctive tumor microenvironments. Further analysis illustrates the potential association between immune evasion markers (PD-L1 and CD80) and tumor metastasis in soft tissue sarcoma. Overall, this analysis uncovers sarcoma-type-specific changes in proteins, providing insights about relationships of soft tissue sarcoma.
Collapse
Affiliation(s)
- Shaoshuai Tang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rundong Fang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yufeng Liu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hang Xiang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Peng Ran
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yexin Tong
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Mingjun Sun
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Subei Tan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Wen Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiacheng Lv
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Ning Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Zhenmei Yao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Qiao Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Ziyan Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Xuetong Yue
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Zixiang Yu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sujie Akesu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuqin Ding
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Weiqi Lu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
7
|
Workman P. The NCI-60 Human Tumor Cell Line Screen: A Catalyst for Progressive Evolution of Models for Discovery and Development of Cancer Drugs. Cancer Res 2023; 83:3170-3173. [PMID: 37779429 DOI: 10.1158/0008-5472.can-23-2612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Following three decades of systematic primary empirical screening against mice bearing two transplantable murine leukemias, the NCI took the bold step of switching to a radically different approach-initial screening of 10,000 diverse compounds/year against a panel of 60 human tumor cell lines in vitro. The establishment of the "NCI-60" screen was announced in the landmark Cancer Research article by Alley and colleagues, published in 1988, which exemplified the technological basis for the new microculture screen, operating at unprecedented scale. The underlying concept was that NCI-60 might expedite the discovery of innovative cancer drugs, especially those with predicted activity against particular solid cancers-not then possible. We discuss how NCI-60 provided a major technological advance and delivered a successful legacy for cancer research and development. While not immediately cracking the thorny problem of model-to-human tumor type prediction, NCI-60 nevertheless provided the conceptual and methodologic foundation for subsequent, much larger-scale human cancer cell panel screens with detailed molecular annotation and sophisticated informatics. Now used in modern molecular target-based drug discovery, these panels help enable the implementation of contemporary biomarker-led precision oncology. See related article by Alley and colleagues, Cancer Res 1988;48:589-601.
Collapse
Affiliation(s)
- Paul Workman
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
8
|
Galvão FHF, Traldi MCC, Araújo RSS, Stefano JT, D'Albuquerque LAC, Oliveira CP. PRECLINICAL MODELS OF LIVER CÂNCER. ARQUIVOS DE GASTROENTEROLOGIA 2023; 60:383-392. [PMID: 37792769 DOI: 10.1590/s0004-2803.230302023-58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 10/06/2023]
Abstract
•In this review, we described different murine models of carcinogenesis: classic models, new transgenic and combined models, that reproduce the key points for HCC and CCA genesis allowing a better understanding of its genetic physiopathological, and environmental abnormalities. •Each model has its advantages, disadvantages, similarities, and differences with the corresponding human disease and should be chosen according to the specificity of the study. Ultimately, those models can also be used for testing new anticancer therapeutic approaches. •Cholangiocarcinoma has been highlighted, with an increase in prevalence. This review has an important role in understanding the pathophysiology and the development of new drugs. Background - This manuscript provides an overview of liver carcinogenesis in murine models of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Objective - A review through MEDLINE and EMBASE was performed to assess articles until August 2022.Methods - Search was conducted of the entire electronic databases and the keywords used was HCC, CCA, carcinogenesis, animal models and liver. Articles exclusion was based on the lack of close relation to the subject. Carcinogenesis models of HCC include HCC induced by senescence in transgenic animals, HCC diet-induced, HCC induced by chemotoxicagents, xenograft, oncogenes, and HCC in transgenic animals inoculated with B and C virus. The models of CCA include the use of dimethylnitrosamine (DMN), diethylnitrosamine (DEN), thioacetamide (TAA), and carbon tetrachloride (CCl4). CCA murine models may also be induced by: CCA cells, genetic manipulation, Smad4, PTEN and p53 knockout, xenograft, and DEN-left median bile duct ligation. Results - In this review, we described different murine models of carcinogenesis that reproduce the key points for HCC and CCA genesis allowing a better understanding of its genetic, physiopathological, and environmental abnormalities. Conclusion - Each model has its advantages, disadvantages, similarities, and differences with the corresponding human disease and should be chosen according to the specificity of the study. Ultimately, those models can also be used for testing new anticancer therapeutic approaches.
Collapse
Affiliation(s)
- Flávio Henrique Ferreira Galvão
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Transplante e Cirurgia do Fígado (LIM-37), São Paulo, SP, Brasil
| | - Maria Clara Camargo Traldi
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Transplante e Cirurgia do Fígado (LIM-37), São Paulo, SP, Brasil
| | | | - Jose Tadeu Stefano
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Gastroenterologia Clínica e Experimental (LIM-07), São Paulo, SP, Brasil
| | - Luiz Augusto Carneiro D'Albuquerque
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Transplante e Cirurgia do Fígado (LIM-37), São Paulo, SP, Brasil
| | - Claudia P Oliveira
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Gastroenterologia Clínica e Experimental (LIM-07), São Paulo, SP, Brasil
| |
Collapse
|
9
|
Newcomer MM, Dorayappan KDP, Wagner V, Suarez AA, Calo CA, Kalmar EL, Maxwell GL, O'Malley D, Cohn DE, Tweedle MF, Selvendiran K. Tissue factor as a novel diagnostic target for early detection of ovarian cancer using ultrasound microbubbles. Gynecol Oncol 2023; 173:138-150. [PMID: 37178671 DOI: 10.1016/j.ygyno.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
INTRODUCTION Ovarian cancer (OC) is the deadliest gynecologic malignancy, with an overall 5-year survival rate of less than 30%. The existing paradigm for OC detection involves a serum marker, CA125, and ultrasound examination, neither of which is sufficiently specific for OC. This study addresses this deficiency through the use of a targeted ultrasound microbubble directed against tissue factor (TF). METHODS TF expression was examined in both OC cell lines and patient-derived tumor samples via western blotting and IHC. In vivo microbubble ultrasound imaging was analyzed using high grade serous ovarian carcinoma orthotopic mouse models. RESULTS While TF expression has previously been described on angiogenic, tumor-associated vascular endothelial cells (VECs) of several tumor types, this is first study to show TF expression on both murine and patient-derived ovarian tumor-associated VECs. Biotinylated anti-TF antibody was conjugated to streptavidin-coated microbubbles and in vitro binding assays were performed to assess the binding efficacy of these agents. TF-targeted microbubbles successfully bound to TF-expressing OC cells, as well as an in vitro model of angiogenic endothelium. In vivo, these microbubbles bound to the tumor-associated VECs of a clinically relevant orthotopic OC mouse model. CONCLUSION Development of a TF-targeted microbubble capable of successfully detecting ovarian tumor neovasculature could have significant implications towards increasing the number of early-stage OC diagnoses. This preclinical study shows potential for translation to clinical use, which could ultimately help increase the number of early OC detections and decrease the mortality associated with this disease.
Collapse
Affiliation(s)
- Meghan M Newcomer
- Division of Anatomy, College of Medicine, The Ohio State University, Columbus, OH, USA; Department of Anatomy, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kalpana Deepa Priya Dorayappan
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Vincent Wagner
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Adrian A Suarez
- Department of Pathology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Corinne A Calo
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Eileen L Kalmar
- Division of Anatomy, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - G Larry Maxwell
- Inova Women's Service Line and the Inova Schar Cancer Institute, Falls Church, VA, USA
| | - David O'Malley
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - David E Cohn
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Michael F Tweedle
- Department of Radiology, Comprehensive Cancer Center, The Ohio State University, USA
| | - Karuppaiyah Selvendiran
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA..
| |
Collapse
|
10
|
Zhang BT, Xu JY, Wang W, Zeng Y, Jiang J. Obesity and cancer: Mouse models used in studies. Front Oncol 2023; 13:1125178. [PMID: 37007087 PMCID: PMC10061215 DOI: 10.3389/fonc.2023.1125178] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
There is increasing evidence that obesity is associated with the occurrence and development of malignant tumors. When studying the relationship between obesity and malignant tumors, it is very important to choose an appropriate animal model. However, BALB/c nude mice and other animals commonly used to study tumor xenograft (human-derived tumor cell lines) transplantation models are difficult to induce obesity, while C57BL/6 mice and other model animals commonly used for obesity research are not suitable for tumor xenograft transplantation. Therefore, it is difficult to replicate both obesity and malignancy in animal models at the same time. This review summarizes several experimental animal models and protocols that can simultaneously induce obesity and tumor xenografts.
Collapse
Affiliation(s)
- Bo-Tao Zhang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jia-Ying Xu
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Wang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yang Zeng
- Department of Orthodontic, the Affiliated Stomatological Hospital of Southwest Medical University, Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China
- *Correspondence: Jun Jiang, ; Yang Zeng,
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Jun Jiang, ; Yang Zeng,
| |
Collapse
|
11
|
Jiang L, Li Q, Liang W, Du X, Yang Y, Zhang Z, Xu L, Zhang J, Li J, Chen Z, Gu Z. Organ-On-A-Chip Database Revealed-Achieving the Human Avatar in Silicon. Bioengineering (Basel) 2022; 9:685. [PMID: 36421086 PMCID: PMC9687773 DOI: 10.3390/bioengineering9110685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Organ-on-a-chip (OOC) provides microphysiological conditions on a microfluidic chip, which makes up for the shortcomings of traditional in vitro cellular culture models and animal models. It has broad application prospects in drug development and screening, toxicological mechanism research, and precision medicine. A large amount of data could be generated through its applications, including image data, measurement data from sensors, ~omics data, etc. A database with proper architecture is required to help scholars in this field design experiments, organize inputted data, perform analysis, and promote the future development of novel OOC systems. In this review, we overview existing OOC databases that have been developed, including the BioSystics Analytics Platform (BAP) developed by the University of Pittsburgh, which supports study design as well as data uploading, storage, visualization, analysis, etc., and the organ-on-a-chip database (Ocdb) developed by Southeast University, which has collected a large amount of literature and patents as well as relevant toxicological and pharmaceutical data and provides other major functions. We used examples to overview how the BAP database has contributed to the development and applications of OOC technology in the United States for the MPS consortium and how the Ocdb has supported researchers in the Chinese Organoid and Organs-On-A-Chip society. Lastly, the characteristics, advantages, and limitations of these two databases were discussed.
Collapse
Affiliation(s)
- Lincao Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou # 2, Nanjing 210096, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou # 2, Nanjing 210096, China
| | - Weicheng Liang
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Xuan Du
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou # 2, Nanjing 210096, China
| | - Yi Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou # 2, Nanjing 210096, China
| | - Zilin Zhang
- Jiangsu Avartarget Biotechnology Corp., Suzhou 215163, China
| | - Lili Xu
- Jiangsu Avartarget Biotechnology Corp., Suzhou 215163, China
| | - Jing Zhang
- Jiangsu Avartarget Biotechnology Corp., Suzhou 215163, China
| | - Jian Li
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou # 2, Nanjing 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou # 2, Nanjing 210096, China
| |
Collapse
|
12
|
Rethi L, Mutalik C, Anurogo D, Lu LS, Chu HY, Yougbaré S, Kuo TR, Cheng TM, Chen FL. Lipid-Based Nanomaterials for Drug Delivery Systems in Breast Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2948. [PMID: 36079985 PMCID: PMC9458017 DOI: 10.3390/nano12172948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Globally, breast cancer is one of the most prevalent diseases, inducing critical intimidation to human health. Lipid-based nanomaterials have been successfully demonstrated as drug carriers for breast cancer treatment. To date, the development of a better drug delivery system based on lipid nanomaterials is still urgent to make the treatment and diagnosis easily accessible to breast cancer patients. In a drug delivery system, lipid nanomaterials have revealed distinctive features, including high biocompatibility and efficient drug delivery. Specifically, a targeted drug delivery system based on lipid nanomaterials has inherited the advantage of optimum dosage and low side effects. In this review, insights on currently used potential lipid-based nanomaterials are collected and introduced. The review sheds light on conjugation, targeting, diagnosis, treatment, and clinical significance of lipid-based nanomaterials to treat breast cancer. Furthermore, a brighter side of lipid-based nanomaterials as future potential drug delivery systems for breast cancer therapy is discussed.
Collapse
Affiliation(s)
- Lekshmi Rethi
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chinmaya Mutalik
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Dito Anurogo
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan or
- Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar City 90221, South Sulawesi, Indonesia
| | - Long-Sheng Lu
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsiu-Yi Chu
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de la Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro BP 218, 11, Burkina Faso
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsai-Mu Cheng
- Graduate Institute of Translational Medicine, College of Medicine and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Fu-Lun Chen
- Department of Internal Medicine, Division of Infectious Diseases, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
13
|
Sahan AZ, Baday M, Patel CB. Biomimetic Hydrogels in the Study of Cancer Mechanobiology: Overview, Biomedical Applications, and Future Perspectives. Gels 2022; 8:gels8080496. [PMID: 36005097 PMCID: PMC9407355 DOI: 10.3390/gels8080496] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 11/18/2022] Open
Abstract
Hydrogels are biocompatible polymers that are tunable to the system under study, allowing them to be widely used in medicine, bioprinting, tissue engineering, and biomechanics. Hydrogels are used to mimic the three-dimensional microenvironment of tissues, which is essential to understanding cell–cell interactions and intracellular signaling pathways (e.g., proliferation, apoptosis, growth, and survival). Emerging evidence suggests that the malignant properties of cancer cells depend on mechanical cues that arise from changes in their microenvironment. These mechanobiological cues include stiffness, shear stress, and pressure, and have an impact on cancer proliferation and invasion. The hydrogels can be tuned to simulate these mechanobiological tissue properties. Although interest in and research on the biomedical applications of hydrogels has increased in the past 25 years, there is still much to learn about the development of biomimetic hydrogels and their potential applications in biomedical and clinical settings. This review highlights the application of hydrogels in developing pre-clinical cancer models and their potential for translation to human disease with a focus on reviewing the utility of such models in studying glioblastoma progression.
Collapse
Affiliation(s)
- Ayse Z. Sahan
- Biomedical Sciences Graduate Program, Department of Pharmacology, School of Medicine, University California at San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Murat Baday
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Precision Health and Integrated Diagnostics Center, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Correspondence: (M.B.); (C.B.P.)
| | - Chirag B. Patel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
- Correspondence: (M.B.); (C.B.P.)
| |
Collapse
|
14
|
Yang XM, Wu Z, Wang X, Zhou Y, Zhu L, Li D, Nie HZ, Wang YH, Li J, Ma X. Disulfiram inhibits liver fibrosis in rats by suppressing hepatic stellate cell activation and viability. BMC Pharmacol Toxicol 2022; 23:54. [PMID: 35864505 PMCID: PMC9306139 DOI: 10.1186/s40360-022-00583-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Liver fibrosis is a wound-healing response to chronic injury, featuring with excess accumulation of extracellular matrix secreted by the activated hepatic stellate cells (HSC). Disulfiram (DSF), also known as Antabuse, has been used for the treatment of alcohol addiction and substance abuse. Recently, overwhelming studies had revealed anti-cancer effects of DSF in multiple cancers, including liver cancer. But the actual effects of DSF on liver fibrosis and liver function remain unknown. Methods In this study, we evaluated the effects of low-dose DSF in CCl4- and Bile Duct Ligation (BDL)—induced hepatic fibrosis rat models. Cell proliferation was detected by using the Cell-Light™ EdU Apollo®567 Cell Tracking Kit. Cell apoptosis was analyzed using a TdT-mediated dUTP nick end labeling (TUNEL) kit, viability was measured with Cell Counting Kit-8(CCK8). Relative mRNA expression of pro-fibrogenic was assessed using quantitative RT-PCR. The degree of liver fibrosis, activated HSCs, were separately evaluated through Sirius Red-staining, immunohistochemistry and immunofluorescence. Serum alanine aminotransferase (ALT) and asparagine aminotransferase (AST) activities were detected with ALT and AST detecting kits using an automated analyzer. Results Liver fibrosis was distinctly attenuated while liver functions were moderately ameliorated in the DSF-treated group. Activation and proliferation of primary rat HSCs isolated from rat livers were significantly suppressed by low-dose DSF. DSF also inhibited the viability of in vitro cultured rat or human HSC cells dose-dependently but had no repressive role on human immortalized hepatocyte THLE-2 cells. Interestingly, upon DSF treatment, the viability of LX-2 cells co-cultured with THLE-2 was significantly inhibited, while that of THLE-2 co-cultured with LX-2 was increased. Further study indicated that HSCs apoptosis was increased in DSF/CCl4-treated liver samples. These data indicated that DSF has potent anti-fibrosis effects and protective effects toward hepatocytes and could possibly be repurposed as an anti-fibrosis drug in the clinic. Conclusions DSF attenuated ECM remodeling through suppressing the transformation of quiet HSCs into proliferative, fibrogenic myofibroblasts in hepatic fibrosis rat models. DSF provides a novel approach for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xiao-Mei Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Dongchuan Road, NO. 800, Shanghai, 200240, China
| | - Zheng Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Dongchuan Road, NO. 800, Shanghai, 200240, China.,Department of Radiation Oncology, Affiliated to School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Xiaoqi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Dongchuan Road, NO. 800, Shanghai, 200240, China
| | - Yaoqi Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Dongchuan Road, NO. 800, Shanghai, 200240, China
| | - Lei Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Dongchuan Road, NO. 800, Shanghai, 200240, China
| | - Dongxue Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Dongchuan Road, NO. 800, Shanghai, 200240, China
| | - Hui-Zhen Nie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Dongchuan Road, NO. 800, Shanghai, 200240, China
| | - Ya-Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Dongchuan Road, NO. 800, Shanghai, 200240, China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Dongchuan Road, NO. 800, Shanghai, 200240, China.
| | - Xueyun Ma
- Institute of Biomedical Sciences, East China Normal University, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
15
|
Hollingshead MG, Greenberg N, Gottholm-Ahalt M, Camalier R, Johnson BC, Collins JM, Doroshow JH. ROADMAPS: An Online Database of Response Data, Dosing Regimens, and Toxicities of Approved Oncology Drugs as Single Agents to Guide Preclinical In Vivo Studies. Cancer Res 2022; 82:2219-2225. [PMID: 35472132 PMCID: PMC9203935 DOI: 10.1158/0008-5472.can-21-4151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 01/09/2023]
Abstract
Preclinical studies provide valuable data in the early development of novel drugs for patients with cancer. Many cancer treatment regimens now utilize multiple agents with different targets to delay the emergence of drug-resistant tumor cells, and experimental agents are often evaluated in combination with FDA-approved drugs. The Biological Testing Branch (BTB) of the U.S. NCI has evaluated more than 70 FDA-approved oncology drugs to date in human xenograft models. Here, we report the first release of a publicly available, downloadable spreadsheet, ROADMAPS (Responses to Oncology Agents and Dosing in Models to Aid Preclinical Studies, dtp.cancer.gov/databases_tools/roadmaps.htm), that provides data filterable by agent, dose, dosing schedule, route of administration, tumor models tested, responses, host mouse strain, maximum weight loss, drug-related deaths, and vehicle formulation for preclinical experiments conducted by the BTB. Data from 70 different single targeted and cytotoxic agents and 140 different xenograft models were included. Multiple xenograft models were tested in immunocompromised mice for many cancer histologies, with lung cancer as the most broadly tested (24 models). Many of the dose levels and schedules used in these experiments were comparable with those tolerated in humans. Targeted and cytotoxic single agents were included. The online spreadsheet will be updated periodically as additional agent/dose/model combinations are evaluated. ROADMAPS is intended to serve as a publicly available resource for the research community to inform the design of clinically relevant, tolerable single and combinatorial regimens in preclinical mouse models. SIGNIFICANCE ROADMAPS includes data that can be used to identify tolerable dosing regimens with activity against a variety of human tumors in different mouse strains, providing a resource for planning preclinical studies.
Collapse
Affiliation(s)
- Melinda G. Hollingshead
- Biological Testing Branch, Developmental Therapeutics Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Nathaniel Greenberg
- Biological Testing Branch, Developmental Therapeutics Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Michelle Gottholm-Ahalt
- Biological Testing Branch, Developmental Therapeutics Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Richard Camalier
- Biological Testing Branch, Developmental Therapeutics Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Barry C. Johnson
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
| | - Jerry M. Collins
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
| | - James H. Doroshow
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
- Center for Cancer Research, NCI, Bethesda, Maryland
| |
Collapse
|
16
|
Mishra R, Mishra PS, Varshney S, Mazumder R, Mazumder A. In Vitro and In Vivo Approaches for Screening the Potential of Anticancer Agents: A Review. Curr Drug Discov Technol 2022; 19:e060122200071. [PMID: 34994330 DOI: 10.2174/1570163819666220106122811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/08/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Anticancer drug development is a tedious process, requiring several in vitro, in vivo, and clinical studies. In order to avoid chemical toxicity in animals during an experiment, it is necessary to envisage toxic doses of screened drugs in vivo at different concentrations. Several in vitro and in vivo studies have been reported to discover the management of cancer. MATERIALS AND METHODS This study focused on bringing together a wide range of in vivo and in vitro assay methods developed to evaluate each hallmark feature of cancer. RESULT This review provides detailed information on target-based and cell-based screening of new anticancer drugs in the molecular targeting period. This would help in inciting an alteration from the preclinical screening of pragmatic compound-orientated to target-orientated drug selection. CONCLUSION Selection methodologies for finding anticancer activity have importance for tumor- specific agents. In this study, advanced rationalization of the cell-based assay is explored along with broad applications of the cell-based methodologies considering other opportunities.
Collapse
|
17
|
Overgaard NH, Fan TM, Schachtschneider KM, Principe DR, Schook LB, Jungersen G. Of Mice, Dogs, Pigs, and Men: Choosing the Appropriate Model for Immuno-Oncology Research. ILAR J 2019; 59:247-262. [PMID: 30476148 DOI: 10.1093/ilar/ily014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
The immune system plays dual roles in response to cancer. The host immune system protects against tumor formation via immunosurveillance; however, recognition of the tumor by immune cells also induces sculpting mechanisms leading to a Darwinian selection of tumor cell variants with reduced immunogenicity. Cancer immunoediting is the concept used to describe the complex interplay between tumor cells and the immune system. This concept, commonly referred to as the three E's, is encompassed by 3 distinct phases of elimination, equilibrium, and escape. Despite impressive results in the clinic, cancer immunotherapy still has room for improvement as many patients remain unresponsive to therapy. Moreover, many of the preclinical results obtained in the widely used mouse models of cancer are lost in translation to human patients. To improve the success rate of immuno-oncology research and preclinical testing of immune-based anticancer therapies, using alternative animal models more closely related to humans is a promising approach. Here, we describe 2 of the major alternative model systems: canine (spontaneous) and porcine (experimental) cancer models. Although dogs display a high rate of spontaneous tumor formation, an increased number of genetically modified porcine models exist. We suggest that the optimal immuno-oncology model may depend on the stage of cancer immunoediting in question. In particular, the spontaneous canine tumor models provide a unique platform for evaluating therapies aimed at the escape phase of cancer, while genetically engineered swine allow for elucidation of tumor-immune cell interactions especially during the phases of elimination and equilibrium.
Collapse
Affiliation(s)
- Nana H Overgaard
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana-Champaign, Illinois
| | | | - Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, Illinois
| | - Lawrence B Schook
- Department of Radiology, University of Illinois, Chicago, Illinois.,Department of Animal Sciences, University of Illinois, Urbana-Champaign, Illinois
| | - Gregers Jungersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
18
|
Cancer Cell Lines Are Useful Model Systems for Medical Research. Cancers (Basel) 2019; 11:cancers11081098. [PMID: 31374935 PMCID: PMC6721418 DOI: 10.3390/cancers11081098] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022] Open
Abstract
Cell lines are in vitro model systems that are widely used in different fields of medical research, especially basic cancer research and drug discovery. Their usefulness is primarily linked to their ability to provide an indefinite source of biological material for experimental purposes. Under the right conditions and with appropriate controls, authenticated cancer cell lines retain most of the genetic properties of the cancer of origin. During the last few years, comparing genomic data of most cancer cell lines has corroborated this statement and those that were observed studying the tumoral tissue equivalents included in the The Cancer Genome Atlas (TCGA) database. We are at the disposal of comprehensive open access cell line datasets describing their molecular and cellular alterations at an unprecedented level of accuracy. This aspect, in association with the possibility of setting up accurate culture conditions that mimic the in vivo microenvironment (e.g., three-dimensional (3D) coculture), has strengthened the importance of cancer cell lines for continuing to sustain medical research fields. However, it is important to consider that the appropriate use of cell lines needs to follow established guidelines for guaranteed data reproducibility and quality, and to prevent the occurrence of detrimental events (i.e., those that are linked to cross-contamination and mycoplasma contamination).
Collapse
|
19
|
Arafat M, Fouladian P, Blencowe A, Albrecht H, Song Y, Garg S. Drug-eluting non-vascular stents for localised drug targeting in obstructive gastrointestinal cancers. J Control Release 2019; 308:209-231. [DOI: 10.1016/j.jconrel.2019.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/08/2023]
|
20
|
Butler CT, Kennedy SA, Buckley A, Doyle R, Conroy E, Gallagher WM, O'Sullivan J, Kennedy BN. 1,4-dihydroxy quininib attenuates growth of colorectal cancer cells and xenografts and regulates the TIE-2 signaling pathway in patient tumours. Oncotarget 2019; 10:3725-3744. [PMID: 31217905 PMCID: PMC6557215 DOI: 10.18632/oncotarget.26966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/21/2019] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer associated deaths in developed countries. Cancer progression and metastatic spread is reliant on new blood vasculature, or angiogenesis. Tumour-related angiogenesis is regulated by pro- and anti-angiogenic factors secreted from malignant tissue in a stepwise process. Previously we structurally modified the small anti-angiogenic molecule quininib and discovered a more potent anti-angiogenic compound 1, 4 dihydroxy quininib (Q8), an antagonist of cysteinyl leukotriene receptor-1 with VEGF-independent bioactivity. Here, Q8, quininib (Q1) and five structural analogues were assayed for anti-tumorigenic effects in pre-clinical cancer models. Q8 reduced clone formation of the human colorectal cancer cell line HT29-Luc2. Gene silencing of CysLT1 in HT29-Luc2 cells significantly reduced expression of calpain-2. In human ex vivo colorectal cancer tumour explants, Q8 significantly decreased the secretion of both TIE-2 and VCAM-1 expression. In vivo Q8 was well tolerated up to 50 mg/kg by Balb/C mice and significantly more effective at reducing tumour volume in colorectal tumour xenografts compared to the parent drug quininib. In tumour xenografts, Q8 significantly reduced expression of the angiogenic marker calpain-2. In summary, we propose Q8 may act on the TIE-2-Angiopoietin signalling pathway to significantly inhibit the process of tumour angiogenesis in colorectal cancer.
Collapse
Affiliation(s)
- Clare T Butler
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, Dublin, Ireland
| | - Susan A Kennedy
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Amy Buckley
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Ronan Doyle
- Department of Histopathology, Trinity College Dublin Central Pathology Laboratory, St James's Hospital, Dublin, Ireland
| | - Emer Conroy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, Dublin, Ireland
| | - William M Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, Dublin, Ireland
| | - Jacintha O'Sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin, Ireland.,These authors contributed equally to this work
| | - Breandán N Kennedy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, Dublin, Ireland.,These authors contributed equally to this work
| |
Collapse
|
21
|
Establishment and characterization of melanoma patient-derived xenograft models for preclinical evaluation of novel therapeutics. Melanoma Res 2019; 28:527-535. [PMID: 30086074 DOI: 10.1097/cmr.0000000000000494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Patient-derived xenograft (PDX) models mostly retain the histological and genetic features of their donor tumors, which have been used for investigating various types of cancer. However, PDX models for melanoma, especially acral melanoma, are reported occasionally. We aimed to establish a large panel of melanoma PDX models representing the predominant Asian melanomas. Ninety-three fresh melanoma samples were implanted subcutaneously into nonobese diabetic/severe combined immunodeficiency mice. The histological and genetic characteristics were analyzed in both patient tumors and PDX models using immunohistochemistry, PCR amplification, and Sanger sequencing. Furthermore, the sensitivities of PDX models harboring distinct mutation profiles to binimetinib (a MEK inhibitor), vemubrafenib (a BRAF inhibitor), and imatinib (a KIT inhibitor) were also evaluated. Twenty-five PDX models were established successfully [25/93 (26.9%)] and passaged to maintain tumors in vivo. Clinical stage and origin of tumor sample were correlated with successful establishment rates (P=0.008 and <0.001, respectively). The histological (expression of NRAS, P16, and RB) and genetic (mutation status of NRAS, BRAF, and KIT) characteristics were stably maintained from patient tumors to PDX models. Targeted drugs could inhibit the tumor growth of PDX models harboring the corresponding target gene mutations. These PDX models constitute a pharmacological platform, enabling personalized development of therapeutic strategies for Asian melanomas.
Collapse
|
22
|
Ling L, Ismail M, Du Y, Yao C, Li X. Lipoic acid-derived cross-linked liposomes for reduction-responsive delivery of anticancer drug. Int J Pharm 2019; 560:246-260. [PMID: 30769133 DOI: 10.1016/j.ijpharm.2019.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/19/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
Liposomes have emerged as a fascinating nanocarriers for the delivery of cancer therapeutics. However, their efficacy for cancer therapy is reduced partially because of the serum-instability and incomplete drug release. In this study, a novel disulfide cross-linked liposomes (CLs) assembled from dimeric lipoic acid-derived glycerophosphorylcholine (di-LA-PC) conjugate was developed. The conjugate was synthesized by a facial esterification of lipoic acid (LA) and glycerophosphorylcholine (GPC) and characterized by MS, 1H NMR and 13C NMR. Featuring the enhanced serum-stability and intracellular drug release determined by in vitro stability and GSH-responsive behavior, CLs prepared with dried thin film technique following 10 % dithiothreitol (DTT) cross-linking can attain effective delivery of anticancer candidates. Notably, CLs stably encapsulated doxorubicin (Dox) in their vesicular structures and showed a remarkable thiol-sensitive release of payload upon cellular uptake by cancer cells, compared to that of uncross-linked liposomes (uCLs) or Doxil-like liposome (DLLs). The cell viability and apoptosis of Dox-loaded CLs worked the pronounced cytotoxic effects to MCF-7 cells with an IC50 value of 10.8 μg Dox equiv./mL comparable to free Dox and 2.8-fold higher than DLLs. More importantly, it is demonstrated that the nanoscale characteristics of Dox-loaded CLs could prevent the proliferation of adriamycin-resistant MCF-7/ADR cell line, highlighting their potential in reversal of drug resistance. Furthermore, the preliminary in vivo test (n = 3) showed that disulfide cross-linked liposomal formulation of Dox (Dox-CLs) improved the therapeutic efficacy compared to free Dox and DLLs in a human breast carcinoma xenograft mouse model. Therefore, the current thiol-responsive cross-linked liposome may provide a robust drug delivery platform for cancer therapy.
Collapse
Affiliation(s)
- Longbing Ling
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Muhammad Ismail
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yawei Du
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Chen Yao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
23
|
Wang Z, Fu S, Zhao J, Zhao W, Shen Z, Wang D, Duan J, Bai H, Wan R, Yu J, Wang S, Chen H, Chen B, Wang L, Wang J. Transbronchoscopic patient biopsy-derived xenografts as a preclinical model to explore chemorefractory-associated pathways and biomarkers for small-cell lung cancer. Cancer Lett 2019; 440-441:180-188. [PMID: 30347283 DOI: 10.1016/j.canlet.2018.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/29/2018] [Accepted: 10/08/2018] [Indexed: 12/28/2022]
Abstract
Insufficient tumor tissue is a major barrier for cancer biology research in small-cell lung cancer (SCLC) and has driven the development of patient-derived xenografts (PDXs) from biopsy tumor tissues. Here, we utilized transbronchoscopic biopsy specimens from SCLC tumors to establish PDXs and evaluated the genomic profile using next-generation sequencing and an RNA sequencing platform. The PDX establishment rate was 54.1% (40/74). PDXs largely recapitulated the major characteristics of their corresponding primary tumors, such as histopathology, genetic profile, and chemo-responsiveness. Compared with chemosensitive (chemo-S) PDXs, chemorefractory (chemo-R) PDXs demonstrated significant gene aberrances in the mitogen-activated protein kinase (MAPK) pathway and a higher frequency of receptor tyrosine kinase (RTK)-related genes. Phosphorylated ERK (pERK) was associated with chemo-R status. Patients with positive pERK expression demonstrated significantly inferior progression-free survival after first-line chemotherapy compared with that of patients who were negative for pERK (p < 0.001). Collectively, transbronchoscopic biopsy SCLC PDXs can serve as a model for genomic profiling and identifying biomarkers predictive of chemo-R status. Using PDXs, RTK-related gene aberrances and pERK expression were found to be associated with chemo-R SCLC.
Collapse
Affiliation(s)
- Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuai Fu
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, China
| | - Jun Zhao
- Department of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wei Zhao
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhirong Shen
- The BeiGene Pharmaceutical Co. Ltd., Zhongguancun Life Science Park, Beijing, China
| | - Di Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rui Wan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiangyong Yu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuhang Wang
- GCP Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hanxiao Chen
- Department of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bolu Chen
- CATS Academy Boston, 2001 Washington Street, Braintree, MA, 02184, USA
| | - Lai Wang
- The BeiGene Pharmaceutical Co. Ltd., Zhongguancun Life Science Park, Beijing, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
24
|
Comparison of cell-based assays to quantify treatment effects of anticancer drugs identifies a new application for Bodipy-L-cystine to measure apoptosis. Sci Rep 2018; 8:16363. [PMID: 30397244 PMCID: PMC6218539 DOI: 10.1038/s41598-018-34696-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
Cell-based assays that measure anticancer drug effects are essential for evaluating chemotherapeutic agents. Many assays targeting various cellular mechanisms are available, leading to inconsistent results when using different techniques. We critically compared six common assays, as well as a new assay using Bodipy.FL.L-cystine (BFC), to identify the most accurate and reproducible in measuring anticancer drug effects. We tested three common chemotherapies (methotrexate, paclitaxel, and etoposide) in two cell lines (Ln229 and MDA-MB231). Spectroscopic assays such as Cell Titer Blue, and 2′,7′-dichlorofluorescin diacetate (DCFDA) yielded a strong drug dose response, especially for paclitaxel and etoposide (R2 = 0.9). MTT and Calcein-AM fluorescent dye-based assays were less consistent in that regard. Among three flow cytometry assays, Propidium Iodide (PI)-based DNA content analysis and a new BFC-based glutathione-redox (GSH) assay produced drug dose dependent results. Compared to PI, BFC showed a better correlation (R2 = 0.7–0.9) in depicting live and apoptotic cells. We found that the combination of Cell Titer Blue spectroscopy and BFC flow cytometry assays were most accurate in assessing anticancer drug effects by clear distinction between live and apoptotic cells, independent of drug mechanism of action. We present a new application of BFC as an agent for measuring cellular apoptosis.
Collapse
|
25
|
Guo X, Zhu H, Zhou N, Chen Z, Liu T, Liu F, Xu X, Jin H, Shen L, Gao J, Yang Z. Noninvasive Detection of HER2 Expression in Gastric Cancer by 64Cu-NOTA-Trastuzumab in PDX Mouse Model and in Patients. Mol Pharm 2018; 15:5174-5182. [PMID: 30251865 DOI: 10.1021/acs.molpharmaceut.8b00673] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The purpose of this study was to establish the quality control and quantify the novel 64Cu-NOTA-Trastuzumab in gastric cancer patient-derived xenografts (PDX) mice models and patients by applying the molecular imaging technique. Trastuzumab was labeled with 64Cu using NCS-Bz-NOTA as bifunctional chelator, and hIgG1 was labeled with the same procedures as a negative control agent. HER2-positive (case 176, n = 12) and HER2-negative (case 168, n = 3) PDX models were established and validated by Western blot, DNA amplification, and immunohistochemistry (IHC). Both models were conducted for micro-PET imaging by tail injection of 18.5 MBq of 64Cu-NOTA-Trastuzumab or 64Cu-NOTA-hIgG1. Radioprobe uptake in tumor and main organs was quantified by region of interested (ROI) analysis of the micro-PET images and autoradiography. Finally, gastric cancer patients were enrolled in preliminary 64Cu-NOTA-Trastuzumab PET/CT scans. NOTA-Trastuzumab was efficiently radiolabeled with 64Cu over a 99% radiochemical purity and 17.5 GBq/μmol specific activity. The immune activity was preserved as the nonmodified antibody, and the radiopharmaceutical proved to be stable for up to 5 half-decay lives of 64Cu both in vitro and in vivo. Two serials of PDX gastric cancer models were successfully established: case 176 for HER2 positive and case 168 for HER2 negative. In micro-PET imaging studies, 64Cu-NOTA-Trastuzumab exhibits a significant higher tumor uptake (11.45 ± 0.42 ID%/g) compared with 64Cu-NOTA-IgG1 (3.25 ± 0.28 ID%/g, n = 5, p = 0.0004) at 36 h after intravenous injection. Lower level uptake of 64Cu-NOTA-Trastuzumab (6.35 ± 0.48 ID%/g) in HER2-negative PDX tumor models further confirmed specific binding of the radioprobe. Interestingly, the coinjection of 2.0 mg of Trastuzumab (15.52 ± 1.97 ID%/g) or 2.0 mg of hIgG1 (15.64 ± 3.54 ID%/g) increased the 64Cu-NOTA-Trastuzumab tumor uptake in PDX tumor (HER2+) models compared with 64Cu-NOTA-Trastuzumab alone ( p < 0.05) at 36 h postinjection. There were good correlations between micro-PET images and IHC ( n = 4) and autoradiography in PDX (HER2+) tumor tissues. Therefore, 64Cu-NOTA-Trastuzumab successfully translated to clinical PET imaging, and 64Cu-NOTA-Trastuzumab PET/CT scan in gastric cancer patients showed good detection ability. In conclusion, we reported quality control and application of novel 64Cu-NOTA-Trastuzumab for HER2 expression in PDX gastric cancer mice models and gastric cancer patients. Moreover, 64Cu-NOTA-Trastuzumab holds great potential for noninvasive PET detection, staging, and follow-up of HER2 expression in gastric cancer.
Collapse
Affiliation(s)
- Xiaoyi Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Nina Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Zuhua Chen
- Department of Gastrointestinal Oncology , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Teli Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Fei Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Xiaoxia Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Hongjun Jin
- Research Center of Molecular Imaging and Engineering , Sun Yat-sen University, the Fifth Affiliation Hospital , Zhuhai , Guangdong Province 519000 , China
| | - Lin Shen
- Department of Gastrointestinal Oncology , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Jing Gao
- Department of Gastrointestinal Oncology , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| |
Collapse
|
26
|
Padinjarathil H, Joseph MM, Unnikrishnan B, Preethi G, Shiji R, Archana M, Maya S, Syama H, Sreelekha T. Galactomannan endowed biogenic silver nanoparticles exposed enhanced cancer cytotoxicity with excellent biocompatibility. Int J Biol Macromol 2018; 118:1174-1182. [DOI: 10.1016/j.ijbiomac.2018.06.194] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/22/2018] [Accepted: 06/30/2018] [Indexed: 12/17/2022]
|
27
|
C-phycocyanin to overcome the multidrug resistance phenotype in human erythroleukemias with or without interaction with ABC transporters. Biomed Pharmacother 2018; 106:532-542. [DOI: 10.1016/j.biopha.2018.06.145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/26/2018] [Indexed: 01/12/2023] Open
|
28
|
Zhang F, Wang W, Long Y, Liu H, Cheng J, Guo L, Li R, Meng C, Yu S, Zhao Q, Lu S, Wang L, Wang H, Wen D. Characterization of drug responses of mini patient-derived xenografts in mice for predicting cancer patient clinical therapeutic response. Cancer Commun (Lond) 2018; 38:60. [PMID: 30257718 PMCID: PMC6158900 DOI: 10.1186/s40880-018-0329-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/15/2018] [Indexed: 12/24/2022] Open
Abstract
Background Patient-derived organoids and xenografts (PDXs) have emerged as powerful models in functional diagnostics with high predictive power for anticancer drug response. However, limitations such as engraftment failure and time-consuming for establishing and expanding PDX models followed by testing drug efficacy, and inability to subject to systemic drug administration for ex vivo organoid culture hinder realistic and fast decision-making in selecting the right therapeutics in the clinic. The present study aimed to develop an advanced PDX model, namely MiniPDX, for rapidly testing drug efficacy to strengthen its value in personalized cancer treatment. Methods We developed a rapid in vivo drug sensitivity assay, OncoVee® MiniPDX, for screening clinically relevant regimens for cancer. In this model, patient-derived tumor cells were arrayed within hollow fiber capsules, implanted subcutaneously into mice and cultured for 7 days. The cellular activity morphology and pharmacokinetics were systematically evaluated. MiniPDX performance (sensitivity, specificity, positive and negative predictive values) was examined using PDX as the reference. Drug responses were examined by tumor cell growth inhibition rate and tumor growth inhibition rate in PDX models and MiniPDX assays respectively. The results from MiniPDX were also used to evaluate its predictive power for clinical outcomes. Results Morphological and histopathological features of tumor cells within the MiniPDX capsules matched those both in PDX models and in original tumors. Drug responses in the PDX tumor graft assays correlated well with those in the corresponding MiniPDX assays using 26 PDX models generated from patients, including 14 gastric cancer, 10 lung cancer and 2 pancreatic cancer. The positive predictive value of MiniPDX was 92%, and the negative predictive value was 81% with a sensitivity of 80% and a specificity of 93%. Through expanding to clinical tumor samples, MiniPDX assay showed potential of wide clinical application. Conclusions Fast in vivo MiniPDX assay based on capsule implantation was developed-to assess drug responses of both PDX tumor grafts and clinical cancer specimens. The high correlation between drug responses of paired MiniPDX and PDX tumor graft assay, as well as translational data suggest that MiniPDX assay is an advanced tool for personalized cancer treatment.
Collapse
Affiliation(s)
- Feifei Zhang
- Shanghai LIDE Biotech Co., LTD, Shanghai, 201203, P. R. China
| | - Wenjie Wang
- Shanghai LIDE Biotech Co., LTD, Shanghai, 201203, P. R. China
| | - Yuan Long
- Shanghai LIDE Biotech Co., LTD, Shanghai, 201203, P. R. China
| | - Hui Liu
- Shanghai LIDE Biotech Co., LTD, Shanghai, 201203, P. R. China
| | - Jijun Cheng
- Shanghai LIDE Biotech Co., LTD, Shanghai, 201203, P. R. China
| | - Lin Guo
- Shanghai LIDE Biotech Co., LTD, Shanghai, 201203, P. R. China
| | - Rongyu Li
- Shanghai LIDE Biotech Co., LTD, Shanghai, 201203, P. R. China
| | - Chao Meng
- Shanghai LIDE Biotech Co., LTD, Shanghai, 201203, P. R. China
| | - Shan Yu
- Shanghai LIDE Biotech Co., LTD, Shanghai, 201203, P. R. China
| | - Qingchuan Zhao
- Department of Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Shun Lu
- Department of Oncology, Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Lili Wang
- The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Urology, Tianjin, 300211, P. R. China
| | - Haitao Wang
- The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Urology, Tianjin, 300211, P. R. China
| | - Danyi Wen
- Shanghai LIDE Biotech Co., LTD, Shanghai, 201203, P. R. China.
| |
Collapse
|
29
|
Ahmmed SM, Bithi SS, Pore AA, Mubtasim N, Schuster C, Gollahon LS, Vanapalli SA. Multi-sample deformability cytometry of cancer cells. APL Bioeng 2018; 2:032002. [PMID: 31069319 PMCID: PMC6481721 DOI: 10.1063/1.5020992] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/21/2018] [Indexed: 12/03/2022] Open
Abstract
There is growing recognition that cell deformability can play an important role in cancer metastasis and diagnostics. Advancement of methods to characterize cell deformability in a high throughput manner and the capacity to process numerous samples can impact cancer-related applications ranging from analysis of patient samples to discovery of anti-cancer compounds to screening of oncogenes. In this study, we report a microfluidic technique called multi-sample deformability cytometry (MS-DC) that allows simultaneous measurement of flow-induced deformation of cells in multiple samples at single-cell resolution using a combination of on-chip reservoirs, distributed pressure control, and data analysis system. Cells are introduced at rates of O(100) cells per second with a data processing speed of 10 min per sample. To validate MS-DC, we tested more than 50 cell-samples that include cancer cell lines with different metastatic potential and cells treated with several cytoskeletal-intervention drugs. Results from MS-DC show that (i) the cell deformability correlates with metastatic potential for both breast and prostate cancer cells but not with their molecular histotype, (ii) the strongly metastatic breast cancer cells have higher deformability than the weakly metastatic ones; however, the strongly metastatic prostate cancer cells have lower deformability than the weakly metastatic counterparts, and (iii) drug-induced disruption of the actin network, microtubule network, and actomyosin contractility increased cancer cell deformability, but stabilization of the cytoskeletal proteins does not alter deformability significantly. Our study demonstrates the capacity of MS-DC to mechanically phenotype tumor cells simultaneously in many samples for cancer research.
Collapse
Affiliation(s)
- Shamim M. Ahmmed
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Swastika S. Bithi
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Adity A. Pore
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Noshin Mubtasim
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409, USA
| | - Caroline Schuster
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409, USA
| | - Lauren S. Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409, USA
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
30
|
Patient-Derived Xenograft Models for Endometrial Cancer Research. Int J Mol Sci 2018; 19:ijms19082431. [PMID: 30126113 PMCID: PMC6121639 DOI: 10.3390/ijms19082431] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/03/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022] Open
Abstract
Endometrial cancer (EC) is the most common malignancy of the genital tract among women in developed countries. Recently, a molecular classification of EC has been performed providing a system that, in conjunction with histological observations, reliably improves EC classification and enhances patient management. Patient-derived xenograft models (PDX) represent nowadays a promising tool for translational research, since they closely resemble patient tumour features and retain molecular and histological features. In EC, PDX models have already been used, mainly as an individualized approach to evaluate the efficacy of novel therapies and to identify treatment-response biomarkers; however, their uses in more global or holistic approaches are still missing. As a collaborative effort within the ENITEC network, here we describe one of the most extensive EC PDX cohorts developed from primary tumour and metastasis covering all EC subtypes. Our models are histologically and molecularly characterized and represent an excellent reservoir of EC tumour samples for translational research. This review compiles the information on current methods of EC PDX generation and their utility and provides new perspectives for the exploitation of these valuable tools in order to increase the success ratio for translating results to clinical practice.
Collapse
|
31
|
Spyridopoulou K, Aindelis G, Lampri E, Giorgalli M, Lamprianidou E, Kotsianidis I, Tsingotjidou A, Pappa A, Kalogirou O, Chlichlia K. Improving the Subcutaneous Mouse Tumor Model by Effective Manipulation of Magnetic Nanoparticles-Treated Implanted Cancer Cells. Ann Biomed Eng 2018; 46:1975-1987. [PMID: 30076502 DOI: 10.1007/s10439-018-2107-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022]
Abstract
Murine tumor models have played a fundamental role in the development of novel therapeutic interventions and are currently widely used in translational research. Specifically, strategies that aim at reducing inter-animal variability of tumor size in transplantable mouse tumor models are of particular importance. In our approach, we used magnetic nanoparticles to label and manipulate colon cancer cells for the improvement of the standard syngeneic subcutaneous mouse tumor model. Following subcutaneous injection on the scruff of the neck, magnetically-tagged implanted cancer cells were manipulated by applying an external magnetic field towards localized tumor formation. Our data provide evidence that this approach can facilitate the formation of localized tumors of similar shape, reducing thereby the tumor size's variability. For validating the proof-of-principle, a low-dose of 5-FU was administered in small animal groups as a representative anticancer therapy. Under these experimental conditions, the 5-FU-induced tumor growth inhibition was statistically significant only after the implementation of the proposed method. The presented approach is a promising strategy for studying accurately therapeutic interventions in subcutaneous experimental solid tumor models allowing for the detection of statistically significant differences between smaller experimental groups.
Collapse
Affiliation(s)
- Katerina Spyridopoulou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100, Alexandroupolis, Greece
| | - Georgios Aindelis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100, Alexandroupolis, Greece
| | - Evangeli Lampri
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100, Alexandroupolis, Greece
| | - Maria Giorgalli
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100, Alexandroupolis, Greece
| | - Eleftheria Lamprianidou
- Department of Hematology, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Kotsianidis
- Department of Hematology, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Anastasia Tsingotjidou
- Laboratory of Anatomy, Histology and Embryology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100, Alexandroupolis, Greece
| | - Orestis Kalogirou
- Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Chlichlia
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100, Alexandroupolis, Greece.
| |
Collapse
|
32
|
Janker F, Weder W, Jang JH, Jungraithmayr W. Preclinical, non-genetic models of lung adenocarcinoma: a comparative survey. Oncotarget 2018; 9:30527-30538. [PMID: 30093966 PMCID: PMC6078138 DOI: 10.18632/oncotarget.25668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 06/06/2018] [Indexed: 11/25/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Animal models are key in analyzing cancer biology and therapy evaluation. We here compared relevant non-genetic lung cancer models with regard to tumor induction period, incidence, morbidity and mortality rate and the immunological composition of primary tumors and the occurrence of tertiary lymphoid organs (TLO): (I) intraperitoneal Urethane injection (1g/kg), (II) Lewis lung carcinoma (LLC) cell line model (intravenous or subcutaneous), and (III) ex vivo three-dimensional (3D) primary cell culture model established from subcutaneously developed LLC-induced tumors. The incidence of Urethane induced lung tumors was 100% in both, C57BL/6 and BALB/c strains without morbidity or mortality at twenty weeks after injection. The mean size of tumor nodules after Urethane injection was significantly larger in BALB/c mice vs. C57BL/6 (p<0.01). Three times of Urethane injection produced significantly more tumor nodules in both mouse strains compared to one injection (BALB/c: p<0.01; C57BL/6: p<0.05). TLOs were only found in the Urethane-induced model. Although the cell line models also showed 100% induction rate, morbidity was high due to skin ulceration on the inoculation site and the development of pleural effusions in the subcutaneous model and the intravenous model, respectively. Tendencies, but no significant differences (p>0.05) could be found in the count of CD4+, CD8+, F4/80+ and NKp46+ cells in a tumor nodule among investigated models. All discussed models provided a high tumor incidence rate. TLOs were exclusively found in the Urethane-induced model. No significant difference could be found regarding immune cells across models.
Collapse
Affiliation(s)
- Florian Janker
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Walter Weder
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Jae-Hwi Jang
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland.,Department of Thoracic Surgery, Brandenburg Medical School, Neuruppin, Germany
| |
Collapse
|
33
|
Hsu DS, Kornepati AV, Glover W, Kennedy EM, Cullen BR. Targeting HPV16 DNA using CRISPR/Cas inhibits anal cancer growth in vivo. Future Virol 2018; 13:475-482. [PMID: 30245733 PMCID: PMC6136077 DOI: 10.2217/fvl-2018-0010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/19/2018] [Indexed: 01/10/2023]
Abstract
Aim: The goal of this study was to determine if a single AAV vector, encoding Cas9 and guide RNAs specific for the HPV16 E6 and E7 genes, could inhibit the growth of an HPV16-induced tumor in vivo. Materials & methods: We grew HPV16+, patient-derived anal cancer explants in immunodeficient mice and then challenged these by injection of AAV-based vectors encoding Cas9 and control or HPV16-specific guide RNAs. Results & conclusion: We observed a significant and selective reduction in tumor growth when the HPV16 E6 and E7 genes were targeted using Cas9. These studies provide proof of principle for the hypothesis that CRISPR/Cas has the potential to be used to selectively treat HPV-induced tumors in humans.
Collapse
Affiliation(s)
- David S Hsu
- Departments of Medicine & Molecular Genetics & Microbiology, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Anand Vr Kornepati
- Departments of Medicine & Molecular Genetics & Microbiology, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Wayne Glover
- Departments of Medicine & Molecular Genetics & Microbiology, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Edward M Kennedy
- Departments of Medicine & Molecular Genetics & Microbiology, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Bryan R Cullen
- Departments of Medicine & Molecular Genetics & Microbiology, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
34
|
Woźniak M, Wołos A, Modrzyk U, Górski RL, Winkowski J, Bajczyk M, Szymkuć S, Grzybowski BA, Eder M. Linguistic measures of chemical diversity and the "keywords" of molecular collections. Sci Rep 2018; 8:7598. [PMID: 29765058 PMCID: PMC5953938 DOI: 10.1038/s41598-018-25440-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/27/2018] [Indexed: 12/23/2022] Open
Abstract
Computerized linguistic analyses have proven of immense value in comparing and searching through large text collections (“corpora”), including those deposited on the Internet – indeed, it would nowadays be hard to imagine browsing the Web without, for instance, search algorithms extracting most appropriate keywords from documents. This paper describes how such corpus-linguistic concepts can be extended to chemistry based on characteristic “chemical words” that span more than traditional functional groups and, instead, look at common structural fragments molecules share. Using these words, it is possible to quantify the diversity of chemical collections/databases in new ways and to define molecular “keywords” by which such collections are best characterized and annotated.
Collapse
Affiliation(s)
- Michał Woźniak
- Institute of Polish Language, Polish Academy of Sciences, Cracow, Poland
| | - Agnieszka Wołos
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Modrzyk
- Institute of Polish Language, Polish Academy of Sciences, Cracow, Poland
| | - Rafał L Górski
- Institute of Polish Language, Polish Academy of Sciences, Cracow, Poland
| | - Jan Winkowski
- Institute of Polish Language, Polish Academy of Sciences, Cracow, Poland
| | - Michał Bajczyk
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Sara Szymkuć
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz A Grzybowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland. .,Center for Soft and Living Matter of Korea's Institute for Basic Science (IBS), Ulsan, South Korea. .,Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| | - Maciej Eder
- Institute of Polish Language, Polish Academy of Sciences, Cracow, Poland.
| |
Collapse
|
35
|
Shah B, Zhao X, Silva AS, Shain KH, Tao J. Resistance to Ibrutinib in B Cell Malignancies: One Size Does Not Fit All. Trends Cancer 2018; 4:197-206. [PMID: 29506670 DOI: 10.1016/j.trecan.2018.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/28/2017] [Accepted: 01/17/2018] [Indexed: 12/16/2022]
Abstract
Ibrutinib resistance, as a result of coordinated rewiring of signaling networks and enforced tumor microenvironment (TME)-lymphoma interactions, drives unrestrained proliferation and disease progression. To combat resistance mechanisms, we must identify the compensatory resistance pathways and the central modulators of reprogramming events. Targeting the transcriptome and kinome reprogramming of lymphoma cells represents a rational approach to mitigate ibrutinib resistance in B cell malignancies. However, with the apparent heterogeneity and plasticity of tumors shown in therapy response, a one size fits all approach may be unattainable. To this end, a reliable and real-time drug screening platform to tailor effective individualized therapies in patients with B cell malignancies is warranted. Here, we describe the complexity of ibrutinib resistance in B cell lymphomas and the current approaches, including a drug screening assay, which has the potential to further explore the mechanisms of ibrutinib resistance and to design effective individualized combination therapies to overcome resistance and disable aggressive lymphomas (see Outstanding Questions).
Collapse
Affiliation(s)
- Bijal Shah
- Department of Malignant Hematology and Department of Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Xiaohong Zhao
- Department of Malignant Hematology and Department of Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Ariosto S Silva
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Kenneth H Shain
- Department of Malignant Hematology and Department of Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jianguo Tao
- Department of Hematopathology and Laboratory Medicine and Department of Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
36
|
Li Z, Persson H, Adolfsson K, Abariute L, Borgström MT, Hessman D, Åström K, Oredsson S, Prinz CN. Cellular traction forces: a useful parameter in cancer research. NANOSCALE 2017; 9:19039-19044. [PMID: 29188243 DOI: 10.1039/c7nr06284b] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The search for new cancer biomarkers is essential for fundamental research, diagnostics, as well as for patient treatment and monitoring. Whereas most cancer biomarkers are biomolecules, an increasing number of studies show that mechanical cues are promising biomarker candidates. Although cell deformability has been shown to be a possible cancer biomarker, cellular forces as cancer biomarkers have been left largely unexplored. Here, we measure traction forces of cancer and normal-like cells at high spatial resolution using a robust method based on dense vertical arrays of nanowires. A force map is created using automated image analysis based on the localization of the fluorescent tips of the nanowires. We show that the force distribution and magnitude differ between MCF7 breast cancer cells and MCF10A normal-like breast epithelial cells, and that monitoring traction forces can be used to investigate the effects of anticancer drugs.
Collapse
Affiliation(s)
- Zhen Li
- Division of Solid State Physics, Lund University, 221 00 Lund, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gengenbacher N, Singhal M, Augustin HG. Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat Rev Cancer 2017; 17:751-765. [PMID: 29077691 DOI: 10.1038/nrc.2017.92] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oncology research in humans is limited to analytical and observational studies for obvious ethical reasons, with therapy-focused clinical trials being the one exception to this rule. Preclinical mouse tumour models therefore serve as an indispensable intermediate experimental model system bridging more reductionist in vitro research with human studies. Based on a systematic survey of preclinical mouse tumour studies published in eight scientific journals in 2016, this Analysis provides an overview of how contemporary preclinical mouse tumour biology research is pursued. It thereby identifies some of the most important challenges in this field and discusses potential ways in which preclinical mouse tumour models could be improved for better relevance, reproducibility and translatability.
Collapse
Affiliation(s)
- Nicolas Gengenbacher
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Mahak Singhal
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Cancer Consortium, 69120 Heidelberg, Germany
| |
Collapse
|
38
|
Gamerith G, Rainer J, Huber JM, Hackl H, Trajanoski Z, Koeck S, Lorenz E, Kern J, Kofler R, Kelm JM, Zwierzina H, Amann A. 3D-cultivation of NSCLC cell lines induce gene expression alterations of key cancer-associated pathways and mimic in-vivo conditions. Oncotarget 2017; 8:112647-112661. [PMID: 29348853 PMCID: PMC5762538 DOI: 10.18632/oncotarget.22636] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022] Open
Abstract
This work evaluated gene expression differences between a hanging-drop 3D NSCLC model and 2D cell cultures and their in-vivo relevance by comparison to patient-derived data from The Cancer Genome Atlas. Gene expression of 2D and 3D cultures for Colo699 and A549 were assessed using Affymetrix HuGene 1.0 ST gene chips. Biostatistical analyses tested for reproducibility, comparability and significant differences in gene expression profiles between cell lines, experiments and culture methods. The analyses revealed a high interassay correlation within specific culture systems proving a high validity. 979 genes were altered in A549 and 1106 in Colo699 cells due to 3D cultivation. The overlap of changed genes between the cell lines was small (149), but the involved pathways in the reactome and GO- analyses showed a high overlap with DNA methylation, cell cycle, SIRT1, PKN1 pathway, DNA repair and oxidative stress as well known cancer-associated representatives. Additional specific GSEA-analyses revealed changes in immunologic and endothelial cell proliferation pathways, whereas hypoxic, EMT and angiogenic pathways were downregulated. Gene enrichment analyses showed 3D-induced gene up-regulations in the cell lines 38 to be represented in in-vivo samples of NSCLC patients using data of The Cancer Genome Atlas. Thus, our 3D NSCLC model might provide a tool for early drug development and investigation of microenvironment-associated mechanisms. However, this work also highlights the need for further individualization and model adaption to address remaining challenges.
Collapse
Affiliation(s)
- Gabriele Gamerith
- Medical University of Innsbruck, Department of Internal Medicine V, 6020 Innsbruck, Austria.,Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria
| | - Johannes Rainer
- Medical University of Innsbruck, Biocenter, Division of Molecular Pathophysiology, 6020 Innsbruck, Austria.,European Academy of Bolzano/Bozen (EURAC), Center for Biomedicine, 39100 Bolzano, Italy
| | - Julia M Huber
- Medical University of Innsbruck, Department of Internal Medicine V, 6020 Innsbruck, Austria.,Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria.,Oncotyrol, Innsbruck, 6020 Innsbruck, Austria
| | - Hubert Hackl
- Medical University of Innsbruck, Biocenter, Division of Bioinformatics, 6020 Innsbruck, Austria
| | - Zlatko Trajanoski
- Medical University of Innsbruck, Biocenter, Division of Bioinformatics, 6020 Innsbruck, Austria
| | - Stefan Koeck
- Medical University of Innsbruck, Department of Internal Medicine V, 6020 Innsbruck, Austria.,Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria
| | - Edith Lorenz
- Medical University of Innsbruck, Department of Internal Medicine V, 6020 Innsbruck, Austria.,Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria
| | - Johann Kern
- Oncotyrol, Innsbruck, 6020 Innsbruck, Austria
| | - Reinhard Kofler
- Medical University of Innsbruck, Biocenter, Division of Molecular Pathophysiology, 6020 Innsbruck, Austria
| | | | - Heinz Zwierzina
- Medical University of Innsbruck, Department of Internal Medicine V, 6020 Innsbruck, Austria.,Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria
| | - Arno Amann
- Medical University of Innsbruck, Department of Internal Medicine V, 6020 Innsbruck, Austria.,Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria
| |
Collapse
|
39
|
Miyai M, Tomita H, Soeda A, Yano H, Iwama T, Hara A. Current trends in mouse models of glioblastoma. J Neurooncol 2017; 135:423-432. [PMID: 29052807 PMCID: PMC5700231 DOI: 10.1007/s11060-017-2626-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/01/2017] [Indexed: 12/13/2022]
Abstract
Glioblastoma is the most deadly brain tumor type and is characterized by a severe and high rate of angiogenesis, remaining an incurable disease in the majority of cases. Mechanistic understanding of glioblastoma initiation and progression is complicated by the complexity of genetic and/or environmental initiating events and lack of clarity regarding the cell or tissue of origin. To determine these mechanisms, mouse models that recapitulate the molecular and histological characteristics of glioblastoma are required. Unlike in other malignancies, viral-mediated mouse models of glioblastoma rather than chemically induced mouse models have been developed because of its sensitivity to viruses. Based on recent molecular analyses reported for human glioblastoma, this review critically evaluates genetically engineered, xenograft, allograft, viral-mediated, and chemically induced mouse models of glioblastoma. Further, we focus on the clinical value of these models by examining their contributions to studies of glioblastoma prevention, tumorigenesis, and chemoresistance.
Collapse
Affiliation(s)
- Masafumi Miyai
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.,Department of Neurosurgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Akio Soeda
- Department of Neurosurgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hirohito Yano
- Department of Neurosurgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| |
Collapse
|
40
|
Montón H, Medina-Sánchez M, Soler JA, Chałupniak A, Nogués C, Merkoçi A. Rapid on-chip apoptosis assay on human carcinoma cells based on annexin-V/quantum dot probes. Biosens Bioelectron 2017; 94:408-414. [DOI: 10.1016/j.bios.2017.03.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/06/2017] [Accepted: 03/16/2017] [Indexed: 01/09/2023]
|
41
|
Xu D, Jiang L, DeRidder L, Elmore B, Bukhari M, Wei Q, Samways DSK, Dong H. Membrane activity of a supramolecular peptide-based chemotherapeutic enhancer. MOLECULAR BIOSYSTEMS 2017; 12:2695-9. [PMID: 27397555 DOI: 10.1039/c6mb00369a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Self-assembly of de novo designed multidomain peptides (MDPs) resulted in functional membrane-active supramolecular nanofibers. The membrane activity was analyzed through fluorescence membrane localization and patch-clamp electrophysiology yielding important information that can be used for the development of a new type of supramolecular peptide-based chemotherapeutic enhancer.
Collapse
Affiliation(s)
- Dawei Xu
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA.
| | - Linhai Jiang
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA.
| | - Louis DeRidder
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA.
| | - Brendan Elmore
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA.
| | - Maurish Bukhari
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA
| | - Qiang Wei
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA.
| | | | - He Dong
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA.
| |
Collapse
|
42
|
Silva A, Silva MC, Sudalagunta P, Distler A, Jacobson T, Collins A, Nguyen T, Song J, Chen DT, Chen L, Cubitt C, Baz R, Perez L, Rebatchouk D, Dalton W, Greene J, Gatenby R, Gillies R, Sontag E, Meads MB, Shain KH. An Ex Vivo Platform for the Prediction of Clinical Response in Multiple Myeloma. Cancer Res 2017; 77:3336-3351. [PMID: 28400475 DOI: 10.1158/0008-5472.can-17-0502] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/19/2022]
Abstract
Multiple myeloma remains treatable but incurable. Despite a growing armamentarium of effective agents, choice of therapy, especially in relapse, still relies almost exclusively on clinical acumen. We have developed a system, Ex vivo Mathematical Myeloma Advisor (EMMA), consisting of patient-specific mathematical models parameterized by an ex vivo assay that reverse engineers the intensity and heterogeneity of chemosensitivity of primary cells from multiple myeloma patients, allowing us to predict clinical response to up to 31 drugs within 5 days after bone marrow biopsy. From a cohort of 52 multiple myeloma patients, EMMA correctly classified 96% as responders/nonresponders and correctly classified 79% according to International Myeloma Working Group stratification of level of response. We also observed a significant correlation between predicted and actual tumor burden measurements (Pearson r = 0.5658, P < 0.0001). Preliminary estimates indicate that, among the patients enrolled in this study, 60% were treated with at least one ineffective agent from their therapy combination regimen, whereas 30% would have responded better if treated with another available drug or combination. Two in silico clinical trials with experimental agents ricolinostat and venetoclax, in a cohort of 19 multiple myeloma patient samples, yielded consistent results with recent phase I/II trials, suggesting that EMMA is a feasible platform for estimating clinical efficacy of drugs and inclusion criteria screening. This unique platform, specifically designed to predict therapeutic response in multiple myeloma patients within a clinically actionable time frame, has shown high predictive accuracy in patients treated with combinations of different classes of drugs. The accuracy, reproducibility, short turnaround time, and high-throughput potential of this platform demonstrate EMMA's promise as a decision support system for therapeutic management of multiple myeloma. Cancer Res; 77(12); 3336-51. ©2017 AACR.
Collapse
Affiliation(s)
- Ariosto Silva
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Maria C Silva
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Praneeth Sudalagunta
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Allison Distler
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Timothy Jacobson
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Aunshka Collins
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Tuan Nguyen
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jinming Song
- Department of Hematologic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Dung-Tsa Chen
- Department of Statistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Lu Chen
- Department of Statistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Christopher Cubitt
- Translational Medicine Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Rachid Baz
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Lia Perez
- Department of Bone Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | | | | | - Robert Gatenby
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Robert Gillies
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Mark B Meads
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kenneth H Shain
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida. .,Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
43
|
Cannon TM, Shah AT, Skala MC. Autofluorescence imaging captures heterogeneous drug response differences between 2D and 3D breast cancer cultures. BIOMEDICAL OPTICS EXPRESS 2017; 8:1911-1925. [PMID: 28663873 PMCID: PMC5480588 DOI: 10.1364/boe.8.001911] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/02/2017] [Accepted: 02/12/2017] [Indexed: 05/13/2023]
Abstract
Two-photon microscopy of cellular autofluorescence intensity and lifetime (optical metabolic imaging, or OMI) is a promising tool for preclinical drug development. OMI, which exploits the endogenous fluorescence from the metabolic coenzymes NAD(P)H and FAD, is sensitive to changes in cell metabolism produced by drug treatment. Previous studies have shown that drug response, genetic expression, cell-cell communication, and cell signaling in 3D culture match those of the original in vivo tumor, but not those of 2D culture. The goal of this study is to use OMI to quantify dynamic cell-level metabolic differences in drug response in 2D cell lines vs. 3D organoids generated from xenograft tumors of the same cell origin. BT474 cells and Herceptin-resistant BT474 (HR6) cells were tested. Cells were treated with vehicle control, Herceptin, XL147 (PI3K inhibitor), and the combination. The OMI index was used to quantify response, and is a linear combination of the redox ratio (intensity of NAD(P)H divided by FAD), mean NADH lifetime, and mean FAD lifetime. The results confirm that the OMI index resolves significant differences (p<0.05) in drug response for 2D vs. 3D cultures, specifically for BT474 cells 24 hours after Herceptin treatment, for HR6 cells 24 and 72 hours after combination treatment, and for HR6 cells 72 hours after XL147 treatment. Cell-level analysis of the OMI index also reveals differences in the number of cell sub-populations in 2D vs. 3D culture at 24, 48, and 72 hours post-treatment in control and treated groups. Finally, significant increases (p<0.05) in the mean lifetime of NADH and FAD were measured in 2D vs. 3D for both cell lines at 72 hours post-treatment in control and all treatment groups. These whole-population differences in the mean NADH and FAD lifetimes are supported by differences in the number of cell sub-populations in 2D vs. 3D. Overall, these studies confirm that OMI is sensitive to differences in drug response in 2D vs. 3D, and provides further information on dynamic changes in the relative abundance of metabolic cell sub-populations that contribute to this difference.
Collapse
Affiliation(s)
- T. M. Cannon
- Department of Biomedical Engineering, Vanderbilt University, Station B, Box 1631, Nashville, TN 37235, USA
| | - A. T. Shah
- Department of Biomedical Engineering, Vanderbilt University, Station B, Box 1631, Nashville, TN 37235, USA
| | - M. C. Skala
- Morgridge Institute for Research, University of Wisconsin—Madison, 330 North Orchard Street, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| |
Collapse
|
44
|
Lu M, Zessin AS, Glover W, Hsu DS. Activation of the mTOR Pathway by Oxaliplatin in the Treatment of Colorectal Cancer Liver Metastasis. PLoS One 2017; 12:e0169439. [PMID: 28060954 PMCID: PMC5218497 DOI: 10.1371/journal.pone.0169439] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 12/16/2016] [Indexed: 11/18/2022] Open
Abstract
Background Standard of care treatment for colorectal cancer liver metastasis consists of a cytotoxic chemotherapy in combination with a targeted agent. Clinical trials have guided the use of these combinatory therapies, but it remains unclear what the optimal combinations of cytotoxic chemotherapy with a targeted agent are. Methods Using a genomic based approach, gene expression profiling was obtained from tumor samples of patient with colorectal cancer liver metastasis who received an oxaliplatin based therapy. Early passaged colorectal cancer liver metastasis cell lines and patient derived xenografts of colorectal cancer liver metastasis were then treated with oxaliplatin and a mTOR inhibitor. Results Gene set enrichment analysis revealed that the mTOR pathway was activated in patients receiving oxaliplatin based therapy. Treatment of early passaged colorectal cancer lines and patient derived xenografts with oxaliplatin resulted in activation of the mTOR pathway. Combination therapy with oxaliplatin and a mTOR inhibitor resulted in a synergistic effect both in vitro and in vivo. Conclusion Our findings suggest a genomic based approach can be used to identify optimal combinations of cytotoxic chemotherapy with a targeted agent and that these observations can be validated both in vitro and in vivo using patient derived colorectal cancer cell lines and patient derived xenografts prior to clinical use.
Collapse
Affiliation(s)
- Min Lu
- Department of Medical Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - Amelia S. Zessin
- Department of Medical Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Wayne Glover
- Department of Medical Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - David S. Hsu
- Department of Medical Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
45
|
Abstract
Fundamental cancer research and the development of efficacious antineoplastic treatments both rely on experimental systems in which the relationship between malignant cells and immune cells can be studied. Mouse models of transplantable, carcinogen-induced or genetically engineered malignancies - each with their specific advantages and difficulties - have laid the foundations of oncoimmunology. These models have guided the immunosurveillance theory that postulates that evasion from immune control is an essential feature of cancer, the concept that the long-term effects of conventional cancer treatments mostly rely on the reinstatement of anticancer immune responses and the preclinical development of immunotherapies, including currently approved immune checkpoint blockers. Specific aspects of pharmacological development, as well as attempts to personalize cancer treatments using patient-derived xenografts, require the development of mouse models in which murine genes and cells are replaced with their human equivalents. Such 'humanized' mouse models are being progressively refined to characterize the leukocyte subpopulations that belong to the innate and acquired arms of the immune system as they infiltrate human cancers that are subjected to experimental therapies. We surmise that the ever-advancing refinement of murine preclinical models will accelerate the pace of therapeutic optimization in patients.
Collapse
Affiliation(s)
- Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), INSERM U1015, 114 rue Edouard Vaillant, 94805 Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer, CICBT1428, GRCC, 94805 Villejuif, France
| | - Jonathan M Pitt
- Gustave Roussy Cancer Campus (GRCC), INSERM U1015, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Romain Daillère
- Gustave Roussy Cancer Campus (GRCC), INSERM U1015, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; University of Queensland, Herston, QLD, Australia
| | - Guido Kroemer
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
- University of Pierre et Marie Curie, 75006 Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, 75015 Paris, France
- Metabolomics and Cell Biology Platforms, GRCC, 94805 Villejuif, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
46
|
Farhane Z, Bonnier F, Byrne HJ. Monitoring doxorubicin cellular uptake and trafficking using in vitro Raman microspectroscopy: short and long time exposure effects on lung cancer cell lines. Anal Bioanal Chem 2016; 409:1333-1346. [DOI: 10.1007/s00216-016-0065-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/18/2016] [Accepted: 10/26/2016] [Indexed: 01/01/2023]
|
47
|
Kim EJ, Lee H, Yeom A, Hong KS. In vivo fluorescence imaging to assess early therapeutic response to tumor progression in a xenograft cancer model. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-016-0251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Huber JM, Amann A, Koeck S, Lorenz E, Kelm JM, Obexer P, Zwierzina H, Gamerith G. Evaluation of assays for drug efficacy in a three-dimensional model of the lung. J Cancer Res Clin Oncol 2016; 142:1955-66. [PMID: 27424189 PMCID: PMC4978763 DOI: 10.1007/s00432-016-2198-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/18/2016] [Indexed: 01/20/2023]
Abstract
Background The focus of the outlined work is the establishment of a three-dimensional lung model for various drug-screening applications. Methods The non-small cell lung cancer (NSCLC) cell line Colo699 was cultivated as monolayer (2D) on plates for 5 days or as microtissues (3D) using a hanging-drop system for 5 and 10 days. Cells and microtissues were treated with afatinib (10–80 µM), cisplatin (100–800 µM) or vinorelbine (25–200 µM) for 24 or 48 hours (h). Cell proliferation and viability were analysed by intra-cellular adenosine triphosphate (ATP) and lactate dehydrogenase release (LDH) assays, annexin V/propidium iodide (PI) staining, and cell cycle determination. Microtissue morphology and size, as well as cell death were evaluated via phase contrast microscopy. Results Our results demonstrate the valid determination of viability and cell death using established assays in the 3D system for drug testing. The comparison of ATP, LDH and cytometry data showed moderate (0.40) to very strong (0.99) correlations. Thereby, we observed partially significant differences in drug efficacy between microtissues and 2D cultures dependent from the applied treatment and read-out method. Altogether, microtissues developed resistance to cisplatin and vinorelbine; but remained more vulnerable to afatinib. These findings were confirmed with microscopy. Conclusion In summary, we established an NSCLC 3D test system with multiple assays compatible for drug-testing applications of substances with different mechanisms of action. In addition, our data support the usage of microtissues as more accurate tools for drug-efficacy testing with the possibility of long-term cultivation and treatment. Electronic supplementary material The online version of this article (doi:10.1007/s00432-016-2198-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia M Huber
- Tyrolean Cancer Research Institute, Innrain 66, 6020, Innsbruck, Austria.,Oncotyrol, Innrain 66, 6020, Innsbruck, Austria
| | - Arno Amann
- University Hospital for Internal Medicine V (Hematology and Oncology), Medical University of Innsbruck, Anichstr. 35, 6020, Innsbruck, Austria
| | - Stefan Koeck
- University Hospital for Internal Medicine V (Hematology and Oncology), Medical University of Innsbruck, Anichstr. 35, 6020, Innsbruck, Austria
| | - Edith Lorenz
- University Hospital for Internal Medicine V (Hematology and Oncology), Medical University of Innsbruck, Anichstr. 35, 6020, Innsbruck, Austria.,Oncotyrol, Innrain 66, 6020, Innsbruck, Austria
| | - Jens M Kelm
- InSphero AG, Wagistr. 27, 8952, Schlieren, Switzerland
| | - Petra Obexer
- University Hospital for Pediatrics II, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innrain 66, 6020, Innsbruck, Austria
| | - Heinz Zwierzina
- University Hospital for Internal Medicine V (Hematology and Oncology), Medical University of Innsbruck, Anichstr. 35, 6020, Innsbruck, Austria
| | - Gabriele Gamerith
- University Hospital for Internal Medicine V (Hematology and Oncology), Medical University of Innsbruck, Anichstr. 35, 6020, Innsbruck, Austria. .,Oncotyrol, Innrain 66, 6020, Innsbruck, Austria.
| |
Collapse
|
49
|
Hong AL, Tseng YY, Cowley GS, Jonas O, Cheah JH, Kynnap BD, Doshi MB, Oh C, Meyer SC, Church AJ, Gill S, Bielski CM, Keskula P, Imamovic A, Howell S, Kryukov GV, Clemons PA, Tsherniak A, Vazquez F, Crompton BD, Shamji AF, Rodriguez-Galindo C, Janeway KA, Roberts CWM, Stegmaier K, van Hummelen P, Cima MJ, Langer RS, Garraway LA, Schreiber SL, Root DE, Hahn WC, Boehm JS. Integrated genetic and pharmacologic interrogation of rare cancers. Nat Commun 2016; 7:11987. [PMID: 27329820 PMCID: PMC4917959 DOI: 10.1038/ncomms11987] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/18/2016] [Indexed: 02/06/2023] Open
Abstract
Identifying therapeutic targets in rare cancers remains challenging due to the paucity of established models to perform preclinical studies. As a proof-of-concept, we developed a patient-derived cancer cell line, CLF-PED-015-T, from a paediatric patient with a rare undifferentiated sarcoma. Here, we confirm that this cell line recapitulates the histology and harbours the majority of the somatic genetic alterations found in a metastatic lesion isolated at first relapse. We then perform pooled CRISPR-Cas9 and RNAi loss-of-function screens and a small-molecule screen focused on druggable cancer targets. Integrating these three complementary and orthogonal methods, we identify CDK4 and XPO1 as potential therapeutic targets in this cancer, which has no known alterations in these genes. These observations establish an approach that integrates new patient-derived models, functional genomics and chemical screens to facilitate the discovery of targets in rare cancers.
Collapse
Affiliation(s)
- Andrew L. Hong
- Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Yuen-Yi Tseng
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Glenn S. Cowley
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Oliver Jonas
- Koch Institute for Integrative Cancer Research at MIT, 500 Main Street, Cambridge, Massachusetts 02139, USA
| | - Jaime H. Cheah
- Koch Institute for Integrative Cancer Research at MIT, 500 Main Street, Cambridge, Massachusetts 02139, USA
| | - Bryan D. Kynnap
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Mihir B. Doshi
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Coyin Oh
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Stephanie C. Meyer
- Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Alanna J. Church
- Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Shubhroz Gill
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Craig M. Bielski
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Paula Keskula
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Alma Imamovic
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Sara Howell
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Gregory V. Kryukov
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
- Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA
| | - Paul A. Clemons
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Aviad Tsherniak
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Francisca Vazquez
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Brian D. Crompton
- Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Alykhan F. Shamji
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Carlos Rodriguez-Galindo
- Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Katherine A. Janeway
- Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Charles W. M. Roberts
- Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Kimberly Stegmaier
- Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Paul van Hummelen
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Michael J. Cima
- Koch Institute for Integrative Cancer Research at MIT, 500 Main Street, Cambridge, Massachusetts 02139, USA
| | - Robert S. Langer
- Koch Institute for Integrative Cancer Research at MIT, 500 Main Street, Cambridge, Massachusetts 02139, USA
| | - Levi A. Garraway
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
- Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Stuart L. Schreiber
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - David E. Root
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - William C. Hahn
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
- Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA
| | - Jesse S. Boehm
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
50
|
Nanoparticle-based combination drug delivery systems for synergistic cancer treatment. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2016. [DOI: 10.1007/s40005-016-0252-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|