1
|
O'Brien RM, Meltzer S, Buckley CE, Heeran AB, Nugent TS, Donlon NE, Reynolds JV, Ree AH, Redalen KR, Hafeez A, O'Ríordáin DS, Hannon RA, Neary P, Kalbassi R, Mehigan BJ, McCormick PH, Dunne C, Kelly ME, Larkin JO, O'Sullivan J, Lysaght J, Lynam-Lennon N. Complement is increased in treatment resistant rectal cancer and modulates radioresistance. Cancer Lett 2024; 604:217253. [PMID: 39278399 DOI: 10.1016/j.canlet.2024.217253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Resistance to neoadjuvant chemoradiation therapy (neo-CRT) is a significant clinical problem in the treatment of locally advanced rectal cancer. Identification of novel therapeutic targets and biomarkers predicting therapeutic response is required to improve patient outcomes. Increasing evidence supports a role for the complement system in resistance to anti-cancer therapy. In this study, increased expression of complement effectors C3 and C5 and increased production of anaphylatoxins, C3a and C5a, was observed in radioresistant rectal cancer cells. Modulation of the central complement effector, C3, was demonstrated to functionally alter the radioresponse, with C3 overexpression significantly enhancing radioresistance, whilst C3 inhibition significantly increased sensitivity to a clinically-relevant dose of radiation. Inhibition of C3 was demonstrated to increase DNA damage and alter cell cycle distribution, mediating a shift towards a radiosensitive cell cycle phenotype suggesting a role for C3 in reprogramming of the tumoural radioresponse. Expression of the complement effectors C3 and C5 was significantly increased in human rectal tumour tissue, as was expression of CFB, a component of the alternative pathway of activation. Elevated levels of C3a and C5b-9 in pre-treatment sera from rectal cancer patients was associated with subsequent poor responses to neo-CRT and poorer survival. Together these data demonstrate a role for complement in the radioresistance of rectal cancer and identify key complement components as potential biomarkers predicting response to neo-CRT and outcome in rectal cancer.
Collapse
Affiliation(s)
- Rebecca M O'Brien
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Sebastian Meltzer
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway.
| | - Croí E Buckley
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Aisling B Heeran
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Timothy S Nugent
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Department of Surgery, Beacon Hospital, Dublin, Ireland.
| | - Noel E Donlon
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Department of Surgery, Beacon Hospital, Dublin, Ireland; Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James's Hospital, Dublin, Ireland.
| | - John V Reynolds
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Kathrine Røe Redalen
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Adnan Hafeez
- Department of Surgery, Beacon Hospital, Dublin, Ireland.
| | | | | | - Paul Neary
- Department of Surgery, Beacon Hospital, Dublin, Ireland.
| | - Reza Kalbassi
- Department of Surgery, Beacon Hospital, Dublin, Ireland.
| | - Brian J Mehigan
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James's Hospital, Dublin, Ireland.
| | - Paul H McCormick
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James's Hospital, Dublin, Ireland.
| | - Cara Dunne
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James's Hospital, Dublin, Ireland.
| | - Michael E Kelly
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James's Hospital, Dublin, Ireland.
| | - John O Larkin
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James's Hospital, Dublin, Ireland.
| | - Jacintha O'Sullivan
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Niamh Lynam-Lennon
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Li J, Qi G, Liu Y. Proteomics analysis of serum from thymoma patients. Sci Rep 2023; 13:5117. [PMID: 36991043 PMCID: PMC10060243 DOI: 10.1038/s41598-023-32339-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Thymoma is the most common malignant tumor in thymic epithelial tumors (TETS). This study aimed to identify the changes in serum proteomics in patients with thymoma. Proteins were extracted from twenty patients with thymoma serum and nine healthy controls and prepared for mass spectrometry (MS) analysis. Data independent acquisition (DIA) quantitative proteomics technique was used to examine the serum proteome. Differential proteins of abundance changes in the serum were identified. Bioinformatics was used to examine the differential proteins. Functional tagging and enrichment analysis were conducted using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The string database was used to assess the interaction of different proteins. In all, 486 proteins were found in all samples. There were differences in 58 serum proteins between patients and healthy blood donors, 35 up-regulated and 23 down-regulated. These proteins are primarily exocrine and serum membrane proteins involved in controlling immunological responses and antigen binding, according to GO functional annotation. KEGG functional annotation showed that these proteins play a significant role in the complement and coagulation cascade and the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signal pathway. Notably, the KEGG pathway (complement and coagulation cascade) is enriched, and three key activators were up-regulated: von willebrand factor (VWF), coagulation factor v (F5) and vitamin k-dependent protein c (PC). Protein-protein interaction (PPI) analysis showed that six proteins ((VWF, F5, thrombin reactive protein 1 (THBS1), mannose-binding lectin-associated serine protease 2 (MASP2), apolipoprotein B (APOB), and apolipoprotein (a) (LPA)) were up-regulated and two proteins (Metalloproteinase inhibitor 1(TIMP1), ferritin light chain (FTL)) were down-regulated. The results of this study showed that several proteins involved in complement and coagulation cascades were up-regulated in the serum of patients.
Collapse
Affiliation(s)
- Jiaduo Li
- People's Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
| | - Guoyan Qi
- People's Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Yaling Liu
- People's Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Damoah CE, Snir O, Hindberg K, Garred P, Ludviksen JK, Brækkan SK, Morelli VM, Eirik Mollnes T, Hansen JB. High Levels of Complement Activating Enzyme MASP-2 Are Associated With the Risk of Future Incident Venous Thromboembolism. Arterioscler Thromb Vasc Biol 2022; 42:1186-1197. [PMID: 35861070 DOI: 10.1161/atvbaha.122.317746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Experimental studies have shown that the complement activating enzyme MASP-2 (mannose-binding lectin associated serine protease 2) exhibits a thrombin-like activity and that inhibition of MASP-2 protects against thrombosis. In this study, we investigated whether plasma MASP-2 levels were associated with risk of future venous thromboembolism (VTE) and whether genetic variants linked to MASP-2 levels were associated with VTE risk. METHODS We conducted a population-based nested case-control study involving 410 VTE patients and 842 age- and sex-matched controls derived from the Norwegian Tromsø Study. Logistic regression was used to estimate odds ratios (ORs) of VTE across MASP-2 quartiles. Whole-exome sequencing and protein quantitative trait loci analyses were performed to assess genetic variants associated with MASP-2 levels. A 2-sample Mendelian randomization study, also including data from the INVENT consortium (International Network of Venous Thrombosis), was performed to assess causality. RESULTS Subjects with plasma MASP-2 in the highest quartile had a 48% higher OR of VTE (OR, 1.48 [95% CI, 1.06-2.06]) and 83% higher OR of deep vein thrombosis (OR, 1.83 [95% CI, 1.23-2.73]) compared with those with MASP-2 levels in the lowest quartile. The protein quantitative trait loci analysis revealed that 3 previously described gene variants, rs12711521 (minor allele frequency, 0.153), rs72550870 (minor allele frequency, 0.045; missense variants in the MASP2 gene), and rs2275527 (minor allele frequency, 0.220; exon variant in the adjacent MTOR gene) explained 39% of the variation of MASP-2 plasma concentration. The OR of VTE per 1 SD increase in genetically predicted MASP-2 was 1.03 ([95% CI, 1.01-1.05] P=0.0011). CONCLUSIONS Our findings suggest that high plasma MASP-2 levels are causally associated with risk of future VTE.
Collapse
Affiliation(s)
- Christabel Esi Damoah
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.)
| | - Omri Snir
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.)
| | - Kristian Hindberg
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.)
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark (P.G.)
| | | | - Sigrid K Brækkan
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.).,Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway (S.K.B., V.M.M., J.-B.H.)
| | - Vânia M Morelli
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.).,Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway (S.K.B., V.M.M., J.-B.H.)
| | - Tom Eirik Mollnes
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.).,Research Laboratory, Nordland Hospital, Bodø, Norway (J.K.L., T.E.M.).,Department of Immunology, Oslo University Hospital and University of Oslo, Norway (T.E.M.).,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.)
| | - John-Bjarne Hansen
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.).,Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway (S.K.B., V.M.M., J.-B.H.)
| | | |
Collapse
|
4
|
Götz MP, Skjoedt MO, Bayarri-Olmos R, Hansen CB, Pérez-Alós L, Jarlhelt I, Benfield T, Rosbjerg A, Garred P. Lectin Pathway Enzyme MASP-2 and Downstream Complement Activation in COVID-19. J Innate Immun 2022; 15:122-135. [PMID: 35816998 PMCID: PMC10643890 DOI: 10.1159/000525508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/05/2022] [Indexed: 12/15/2022] Open
Abstract
Mannose-binding lectin-associated serine protease 2 (MASP-2) is the main activator of the lectin complement pathway and has been suggested to be involved in the pathophysiology of coronavirus disease 2019 (COVID-19). To study a possible association between MASP-2 and COVID-19, we aimed at developing a sensitive and reliable MASP-2 ELISA. From an array of novel mouse-monoclonal antibodies using recombinant MASP-2 as antigen, two clones were selected to create a sandwich ELISA. Plasma samples were obtained from 216 healthy controls, 347 convalescent COVID-19 patients, and 147 prospectively followed COVID-19 patients. The assay was specific towards MASP-2 and did not recognize the truncated MASP2 splice variant MAP-2 (MAp19). The limit of quantification was shown to be 0.1 ng/mL. MASP-2 concentration was found to be stable after multiple freeze-thaw cycles. In healthy controls, the mean MASP-2 concentration was 524 ng/mL (95% CI: 496.5-551.6). No significant difference was found in the MASP-2 concentrations between COVID-19 convalescent samples and controls. However, a significant increase was observed in prospectively followed COVID-19 patients (mean: 834 ng/mL [95% CI: 765.3-902.7, p < 0.0001]). In these patients, MASP-2 concentration correlated significantly with the concentrations of the terminal complement complex (ρ = 0.3596, p < 0.0001), with the lectin pathway pattern recognition molecules ficolin-2 (ρ = 0.2906, p = 0.0004) and ficolin-3 (ρ = 0.3952, p < 0.0001) and with C-reactive protein (ρ = 0.3292, p = 0.0002). Overall, we developed a specific quantitative MASP-2 sandwich ELISA. MASP-2 correlated with complement activation and inflammatory markers in COVID-19 patients, underscoring a possible role of MASP-2 in COVID-19 pathophysiology.
Collapse
Affiliation(s)
- Maximilian Peter Götz
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark,
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Cecilie Bo Hansen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Laura Pérez-Alós
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ida Jarlhelt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Smolnikova MV, Tereshchenko SY. Proteins of the lectin pathway of the complement system activation: immunobiological functions, genetics and involvement in the pathogenesis of human diseases. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2022; 12:209-221. [DOI: 10.15789/2220-7619-pot-1777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The complement system is the most ancient components in the innate immunity, mainly functioning to primarily eliminate bacterial agents intravascularly. Moreover, the complement complex proteins play a role as a bridge between the systems of innate and adaptive immunity providing adequate conditions for maturation and differentiation of B- and T-lymphocytes. The complement system consists of plasma proteins and membrane receptors. Plasma proteins interact with each other via the three described cascade pathways lectin (which is most ancient phylogenetically), alternative and classical. Lectins are proteins comprising a separate superfamily of pattern-recognizing receptors able to sense molecules of oligo- and polysaccharide nature and induce their aggregation. Among all the lectins, ficolins (FCN) (common domain fibrinogen) and collectins (common domain collagen) mannose-binding lectin (MBL), hepatic and renal collectins have exert unique functions by complexing with carbohydrate components of microbial wall. Formation of a compound complex microbial wall polysaccharides + collectin/ficolin + specific mannose-binding lectin-associated serine proteases (MARP) results in the complement system activation, inflammatory reaction and bacterium elimination. Such scenario is proceeded along the lectin pathway compared to the two other pathways called classical and alternative. Examining a role of the complement system and congenital protein defects in the pathogenesis of various diseases is of topical interest because inborn deficiency of the complement components comprises at least 5% out of total primary immunodeficiency rate, whereas the aspects of their prevalence and pathogenesis remain unexplored. Relevance of investigating the complement system components for diverse populations is tremendous, taking into consideration accumulated evidence regarding an important role of the lectin pathway in viral infections. Lectins, the main proteins in the lectin pathway of the complement activation, are encoded by polymorphic genes, wherein single nucleotide polymorphisms (SNPs) result in altered protein conformation and expression, which, in turn, affects functionality and potential to respond to a pathogen. The distribution of the lectin polymorphic gene frequencies and their haplotypes displays extremely marked population differences. According to analyzing available data, population SNP frequencies including those associated with inborn deficiencies for components of the lectin pathway have been currently scarce or unexplored. hence, here we review major lectins and their functions, their functionally significant SNPs in diverse populations and their pathogenetic importance for host defense functions.
Collapse
|
6
|
Cedzyński M, Świerzko AS. Components of the Lectin Pathway of Complement in Solid Tumour Cancers. Cancers (Basel) 2022; 14:cancers14061543. [PMID: 35326694 PMCID: PMC8946279 DOI: 10.3390/cancers14061543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
The complement system is an important branch of the humoral innate immune response that can be activated via three distinct pathways (classical, alternative, lectin), contributing to keeping/restoring homeostasis. It can also interact with cellular innate immunity and with components of acquired immunity. Cross-talk between the complement system and other enzyme-dependent cascades makes it a more influential defence system, but on the other hand, over- or chronic activation can be harmful. This short review is focused on the dual role of the lectin pathway of complement activation in human solid tumour cancers, including those of the female reproductive system, lung, and alimentary tract, with emphasis on the aforementioned cross-talk.
Collapse
|
7
|
Strybel U, Marczak L, Zeman M, Polanski K, Mielańczyk Ł, Klymenko O, Samelak-Czajka A, Jackowiak P, Smolarz M, Chekan M, Zembala-Nożyńska E, Widlak P, Pietrowska M, Wojakowska A. Molecular Composition of Serum Exosomes Could Discriminate Rectal Cancer Patients with Different Responses to Neoadjuvant Radiotherapy. Cancers (Basel) 2022; 14:993. [PMID: 35205741 PMCID: PMC8870712 DOI: 10.3390/cancers14040993] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
Identification of biomarkers that could be used for the prediction of the response to neoadjuvant radiotherapy (neo-RT) in locally advanced rectal cancer remains a challenge addressed by different experimental approaches. Exosomes and other classes of extracellular vesicles circulating in patients' blood represent a novel type of liquid biopsy and a source of cancer biomarkers. Here, we used a combined proteomic and metabolomic approach based on mass spectrometry techniques for studying the molecular components of exosomes isolated from the serum of rectal cancer patients with different responses to neo-RT. This allowed revealing several proteins and metabolites associated with common pathways relevant for the response of rectal cancer patients to neo-RT, including immune system response, complement activation cascade, platelet functions, metabolism of lipids, metabolism of glucose, and cancer-related signaling pathways. Moreover, the composition of serum-derived exosomes and a whole serum was analyzed in parallel to compare the biomarker potential of both specimens. Among proteins that the most properly discriminated good and poor responders were GPLD1 (AUC = 0.85, accuracy of 74%) identified in plasma as well as C8G (AUC = 0.91, accuracy 81%), SERPINF2 (AUC = 0.91, accuracy 79%) and CFHR3 (AUC = 0.90, accuracy 81%) identified in exosomes. We found that the proteome component of serum-derived exosomes has the highest capacity to discriminate samples of patients with different responses to neo-RT when compared to the whole plasma proteome and metabolome. We concluded that the molecular components of exosomes are associated with the response of rectal cancer patients to neo-RT and could be used for the prediction of such response.
Collapse
Affiliation(s)
- Urszula Strybel
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| | - Lukasz Marczak
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| | - Marcin Zeman
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK;
| | - Łukasz Mielańczyk
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (Ł.M.); (O.K.)
| | - Olesya Klymenko
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (Ł.M.); (O.K.)
| | - Anna Samelak-Czajka
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| | - Paulina Jackowiak
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| | - Mateusz Smolarz
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Mykola Chekan
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Ewa Zembala-Nożyńska
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Piotr Widlak
- Clinical Research Support Centre, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Anna Wojakowska
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| |
Collapse
|
8
|
Talaat IM, Elemam NM, Saber-Ayad M. Complement System: An Immunotherapy Target in Colorectal Cancer. Front Immunol 2022; 13:810993. [PMID: 35173724 PMCID: PMC8841337 DOI: 10.3389/fimmu.2022.810993] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/14/2022] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor and the second most fatal cancer worldwide. Several parts of the immune system contribute to fighting cancer including the innate complement system. The complement system is composed of several players, namely component molecules, regulators and receptors. In this review, we discuss the complement system activation in cancer specifically CRC and highlight the possible interactions between the complement system and the various TME components. Additionally, the role of the complement system in tumor immunity of CRC is reviewed. Hence, such work could provide a framework for researchers to further understand the role of the complement system in CRC and explore the potential therapies targeting complement activation in solid tumors such as CRC.
Collapse
Affiliation(s)
- Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha Mousaad Elemam
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Zhu H, Yu X, Zhang S, Shu K. Targeting the Complement Pathway in Malignant Glioma Microenvironments. Front Cell Dev Biol 2021; 9:657472. [PMID: 33869223 PMCID: PMC8047198 DOI: 10.3389/fcell.2021.657472] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Malignant glioma is a highly fatal type of brain tumor, and its reoccurrence is largely due to the ordered interactions among the components present in the complex microenvironment. Besides its role in immune surveillance and clearance under physiological conditions, the complement system is expressed in a variety of tumor types and mediates the interactions within the tumor microenvironments. Recent studies have uncovered the broad expression spectrum of complement signaling molecules in the tumor microenvironment and various tumor cells, in particular, malignant glioma cells. Involvement of the complement system in tumor growth, immunosuppression and phenotype transition have also been elucidated. In this review, we enumerate the expression and function of complement molecules in multiple tumor types reported. Moreover, we elaborate the complement pathways in glioma cells and various components of malignant glioma microenvironments. Finally, we summarize the possibility of the complement molecules as prognostic factors and therapeutic targets in the treatment of malignant glioma. Specific targeting of the complement system maybe of great significance and value in the future treatment of multi-type tumors including malignant glioma.
Collapse
Affiliation(s)
- Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjiang Yu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suojun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
O’Brien RM, Cannon A, Reynolds JV, Lysaght J, Lynam-Lennon N. Complement in Tumourigenesis and the Response to Cancer Therapy. Cancers (Basel) 2021; 13:1209. [PMID: 33802004 PMCID: PMC7998562 DOI: 10.3390/cancers13061209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, our knowledge of the complement system beyond innate immunity has progressed significantly. A modern understanding is that the complement system has a multifaceted role in malignancy, impacting carcinogenesis, the acquisition of a metastatic phenotype and response to therapies. The ability of local immune cells to produce and respond to complement components has provided valuable insights into their regulation, and the subsequent remodeling of the tumour microenvironment. These novel discoveries have advanced our understanding of the immunosuppressive mechanisms supporting tumour growth and uncovered potential therapeutic targets. This review discusses the current understanding of complement in cancer, outlining both direct and immune cell-mediated roles. The role of complement in response to therapies such as chemotherapy, radiation and immunotherapy is also presented. While complement activities are largely context and cancer type-dependent, it is evident that promising therapeutic avenues have been identified, in particular in combination therapies.
Collapse
Affiliation(s)
- Rebecca M. O’Brien
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
- Cancer Immunology and Immunotherapy Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland
| | - Aoife Cannon
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| | - John V. Reynolds
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| | - Joanne Lysaght
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
- Cancer Immunology and Immunotherapy Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland
| | - Niamh Lynam-Lennon
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| |
Collapse
|
11
|
Malik A, Thanekar U, Amarachintha S, Mourya R, Nalluri S, Bondoc A, Shivakumar P. "Complimenting the Complement": Mechanistic Insights and Opportunities for Therapeutics in Hepatocellular Carcinoma. Front Oncol 2021; 10:627701. [PMID: 33718121 PMCID: PMC7943925 DOI: 10.3389/fonc.2020.627701] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and a leading cause of death in the US and worldwide. HCC remains a global health problem and is highly aggressive with unfavorable prognosis. Even with surgical interventions and newer medical treatment regimens, patients with HCC have poor survival rates. These limited therapeutic strategies and mechanistic understandings of HCC immunopathogenesis urgently warrant non-palliative treatment measures. Irrespective of the multitude etiologies, the liver microenvironment in HCC is intricately associated with chronic necroinflammation, progressive fibrosis, and cirrhosis as precedent events along with dysregulated innate and adaptive immune responses. Central to these immunological networks is the complement cascade (CC), a fundamental defense system inherent to the liver which tightly regulates humoral and cellular responses to noxious stimuli. Importantly, the liver is the primary source for biosynthesis of >80% of complement components and expresses a variety of complement receptors. Recent studies implicate the complement system in liver inflammation, abnormal regenerative responses, fibrosis, carcinogenesis, and development of HCC. Although complement activation differentially promotes immunosuppressive, stimulant, and angiogenic microenvironments conducive to HCC development, it remains under-investigated. Here, we review derangement of specific complement proteins in HCC in the context of altered complement regulatory factors, immune-activating components, and their implications in disease pathogenesis. We also summarize how complement molecules regulate cancer stem cells (CSCs), interact with complement-coagulation cascades, and provide therapeutic opportunities for targeted intervention in HCC.
Collapse
Affiliation(s)
- Astha Malik
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Unmesha Thanekar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Surya Amarachintha
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Shreya Nalluri
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Alexander Bondoc
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
12
|
Bao D, Zhang C, Li L, Wang H, Li Q, Ni L, Lin Y, Huang R, Yang Z, Zhang Y, Hu Y. Integrative Analysis of Complement System to Prognosis and Immune Infiltrating in Colon Cancer and Gastric Cancer. Front Oncol 2021; 10:553297. [PMID: 33614473 PMCID: PMC7886994 DOI: 10.3389/fonc.2020.553297] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background The complement system acts as an integral part of the innate immune response, which acts primarily to remove pathogens and injured cells. Emerging evidence has shown the activation of the immune regulatory function of complements in the tumor microenvironment (TME). We revealed the expression levels of various complements in human cancers and their role in tumor prognosis and immune infiltration. Methods The differential expression of complements was explored via the Tumor Immune Estimation Resource (TIMER) site and the Oncomine database. To investigate whether these differentially expressed complements have correlation with the prognosis of gastric cancer (GC) and colon cancer, their impact on survival was assessed using the PrognoScan database and Kaplan-Meier plotter. The correlations between complements and tumor immune-infiltrating levels and immune gene markers were statistically explored in TIMER based on Spearman's correlation coefficients and p-values. Results In two colon cancer cohorts, an increased expression level of DAF (CD55) has statistically significant correlation with poor disease-free survival (DFS). High C3, CR4, and C5aR1 expression levels were significantly related with poor prognosis in GC patients. In addition, C3, CR4, and C5aR1 expression was positively related to the tumor purity and infiltration levels of multiple immune cells in stomach adenocarcinoma (STAD). Moreover, the expression levels of C3, CR4, and C5aR1 were also strongly correlated with various immune marker sets, such as those of tumor-associated macrophages (TAMs), M1 and M2 macrophages, T cell exhaustion, Tregs, and DCs, in STAD. Additionally, CD55 has positive correlation with few immune cell infiltration levels in colon adenocarcinoma (COAD), but its correlation with immune marker sets was not statistically significant. Conclusion These findings confirm the relationship between various complements and tumor prognosis and immune infiltration in colon cancer and GC. CD55 may serve as an indicator on the survival prognosis of patients with colon cancer. Furthermore, as biomarkers for poor prognosis in GC, complements C3, CR4, and C5aR1 may provide potential biological targets for GC immunotherapy.
Collapse
Affiliation(s)
- Dandan Bao
- Department of General Surgery, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Chenghao Zhang
- Emergency department, Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Longlong Li
- Department of Gastrointestinal Surgery, People's Hospital of Deyang City, Sichuan, China
| | - Haihong Wang
- Department of General Surgery, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Qiuyan Li
- Department of Oncology, Wenzhou Medical University, Wenzhou, China
| | - Leilei Ni
- Department of General Surgery, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Yinfeng Lin
- Department of Oncology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Rong Huang
- Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Zhangwei Yang
- Department of General Surgery, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Yan Zhang
- Department of Gastroenterology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yiren Hu
- Department of General Surgery, Medical College of Soochow University, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| |
Collapse
|
13
|
Bordron A, Bagacean C, Tempescul A, Berthou C, Bettacchioli E, Hillion S, Renaudineau Y. Complement System: a Neglected Pathway in Immunotherapy. Clin Rev Allergy Immunol 2020; 58:155-171. [PMID: 31144209 DOI: 10.1007/s12016-019-08741-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Approved for the treatment of autoimmune diseases, hematological malignancies, and solid cancers, several monoclonal antibodies (mAb) make use of complement in their mechanism of action. Such an assessment is based on comprehensive investigations that used mouse models, in vitro studies, and analyses from patients at initiation (basal level to highlight deficiencies) and after treatment initiation (mAb impact on complement), which have further provided key insights into the importance of the complement activation and/or complement deficiencies in mAb activity. Accordingly, new approaches can now be developed with the final objective of increasing the clinical efficacy of mAb. These improvements include (i) the concurrent administration of fresh frozen plasma during mAb therapy; (ii) mAb modifications such as immunoglobulin G subclass switching, Fc mutation, or IgG hexamerization to improve the fixation and activation of C1q; (iii) optimization of the target recognition to induce a higher complement-dependent cytotoxicity (CDC) and/or complement-dependant cellular cytotoxicity (CDCC); and (iv) the control of soluble and cellular complement inhibitors.
Collapse
Affiliation(s)
- Anne Bordron
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Cristina Bagacean
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Service d'Hématologie, CHU de Brest, Brest, France
| | - Adrian Tempescul
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Service d'Hématologie, CHU de Brest, Brest, France
| | - Christian Berthou
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Service d'Hématologie, CHU de Brest, Brest, France
| | | | - Sophie Hillion
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Laboratory of Immunology and Immunotherapy, CHU de Brest, Brest, France
| | - Yves Renaudineau
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France. .,Laboratory of Immunology and Immunotherapy, CHU de Brest, Brest, France.
| |
Collapse
|
14
|
Zengin T, Önal-Süzek T. Analysis of genomic and transcriptomic variations as prognostic signature for lung adenocarcinoma. BMC Bioinformatics 2020; 21:368. [PMID: 32998690 PMCID: PMC7526001 DOI: 10.1186/s12859-020-03691-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Lung cancer is the leading cause of the largest number of deaths worldwide and lung adenocarcinoma is the most common form of lung cancer. In order to understand the molecular basis of lung adenocarcinoma, integrative analysis have been performed by using genomics, transcriptomics, epigenomics, proteomics and clinical data. Besides, molecular prognostic signatures have been generated for lung adenocarcinoma by using gene expression levels in tumor samples. However, we need signatures including different types of molecular data, even cohort or patient-based biomarkers which are the candidates of molecular targeting. Results We built an R pipeline to carry out an integrated meta-analysis of the genomic alterations including single-nucleotide variations and the copy number variations, transcriptomics variations through RNA-seq and clinical data of patients with lung adenocarcinoma in The Cancer Genome Atlas project. We integrated significant genes including single-nucleotide variations or the copy number variations, differentially expressed genes and those in active subnetworks to construct a prognosis signature. Cox proportional hazards model with Lasso penalty and LOOCV was used to identify best gene signature among different gene categories. We determined a 12-gene signature (BCHE, CCNA1, CYP24A1, DEPTOR, MASP2, MGLL, MYO1A, PODXL2, RAPGEF3, SGK2, TNNI2, ZBTB16) for prognostic risk prediction based on overall survival time of the patients with lung adenocarcinoma. The patients in both training and test data were clustered into high-risk and low-risk groups by using risk scores of the patients calculated based on selected gene signature. The overall survival probability of these risk groups was highly significantly different for both training and test datasets. Conclusions This 12-gene signature could predict the prognostic risk of the patients with lung adenocarcinoma in TCGA and they are potential predictors for the survival-based risk clustering of the patients with lung adenocarcinoma. These genes can be used to cluster patients based on molecular nature and the best candidates of drugs for the patient clusters can be proposed. These genes also have a high potential for targeted cancer therapy of patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Talip Zengin
- Department of Bioinformatics, Muğla Sıtkı Koçman University, Muğla, Turkey.,Department of Molecular Biology and Genetics, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Tuğba Önal-Süzek
- Department of Bioinformatics, Muğla Sıtkı Koçman University, Muğla, Turkey. .,Department of Computer Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey.
| |
Collapse
|
15
|
Water-Pipe Smoking Exposure Deregulates a Set of Genes Associated with Human Head and Neck Cancer Development and Prognosis. TOXICS 2020; 8:toxics8030073. [PMID: 32961854 PMCID: PMC7560251 DOI: 10.3390/toxics8030073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/31/2022]
Abstract
Water-pipe smoking (WPS) is becoming the most popular form of tobacco use among the youth, especially in the Middle East, replacing cigarettes rapidly and becoming a major risk of tobacco addiction worldwide. Smoke from WPS contains similar toxins as those present in cigarette smoke and is linked directly with different types of cancers including lung and head and neck (HN) carcinomas. However, the underlying molecular pathways and/or target genes responsible for the carcinogenic process are still unknown. In this study, human normal oral epithelial (HNOE) cells, NanoString PanCancer Pathways panel of 770 gene transcripts and quantitative real-time polymerase chain reaction (qRT-PCR) analysis were applied to discover differentially expressed genes (DEG) modulated by WPS. In silico analysis was performed to analyze the impact of these genes in HN cancer patient’s biology and outcome. We found that WPS can induce the epithelial–mesenchymal transition (EMT: hallmark of cancer progression) of HNOE cells. More significantly, our analysis of NanoString revealed 23 genes deregulated under the effect of WPS, responsible for the modulation of cell cycle, proliferation, migration/invasion, apoptosis, signal transduction, and inflammatory response. Further analysis was performed using qRT-PCR of HNOE WPS-exposed and unexposed cells supported the reliability of our NanoString data. Moreover, we demonstrate those DEG to be upregulated in cancer compared with normal tissue. Using the Kaplan–Meier analysis, we observed a significant association between WPS-deregulated genes and relapse-free survival/overall survival in HN cancer patients. Our findings imply that WPS can modulate EMT as well as a set of genes that are directly involved in human HN carcinogenesis, thereby affecting HN cancer patients’ survival.
Collapse
|
16
|
Li X, Larsson P, Ljuslinder I, Öhlund D, Myte R, Löfgren-Burström A, Zingmark C, Ling A, Edin S, Palmqvist R. Ex Vivo Organoid Cultures Reveal the Importance of the Tumor Microenvironment for Maintenance of Colorectal Cancer Stem Cells. Cancers (Basel) 2020; 12:E923. [PMID: 32290033 PMCID: PMC7226030 DOI: 10.3390/cancers12040923] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease, with varying clinical presentations and patient prognosis. Different molecular subgroups of CRC should be treated differently and therefore, must be better characterized. Organoid culture has recently been suggested as a good model to reflect the heterogeneous nature of CRC. However, organoid cultures cannot be established from all CRC tumors. The study examines which CRC tumors are more likely to generate organoids and thus benefit from ex vivo organoid drug testing. Long-term organoid cultures from 22 out of 40 CRC tumor specimens were established. It was found that organoid cultures were more difficult to establish from tumors characterized as microsatellite instable (MSI), BRAF-mutated, poorly differentiated and/or of a mucinous type. This suggests that patients with such tumors are less likely to benefit from ex vivo organoid drug testing, but it may also suggest biological difference in tumor growth. RNA sequencing analysis of tumor sections revealed that the in vivo maintenance of these non-organoid-forming tumors depends on factors related to inflammation and pathogen exposure. Furthermore, using TCGA data we could show a trend towards a worse prognosis for patients with organoid-forming tumors, suggesting also clinical differences. Results suggest that organoids are more difficult to establish from tumors characterized as MSI, BRAF-mutated, poorly differentiated and/or of a mucinous type. We further suggest that the maintenance of cell growth of these tumors in vivo may be promoted by immune-related factors and other stromal components within the tumor microenvironment.
Collapse
Affiliation(s)
- Xingru Li
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (P.L.); (A.L.-B.); (C.Z.); (A.L.); (S.E.)
| | - Pär Larsson
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (P.L.); (A.L.-B.); (C.Z.); (A.L.); (S.E.)
| | - Ingrid Ljuslinder
- Department of Radiation Sciences, Oncology, Umeå University, 90185 Umeå, Sweden; (I.L.); (D.O.); (R.M.)
| | - Daniel Öhlund
- Department of Radiation Sciences, Oncology, Umeå University, 90185 Umeå, Sweden; (I.L.); (D.O.); (R.M.)
- Wallenberg Center for Molecular Medicine, Umeå University, 90185 Umeå, Sweden
| | - Robin Myte
- Department of Radiation Sciences, Oncology, Umeå University, 90185 Umeå, Sweden; (I.L.); (D.O.); (R.M.)
| | - Anna Löfgren-Burström
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (P.L.); (A.L.-B.); (C.Z.); (A.L.); (S.E.)
| | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (P.L.); (A.L.-B.); (C.Z.); (A.L.); (S.E.)
| | - Agnes Ling
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (P.L.); (A.L.-B.); (C.Z.); (A.L.); (S.E.)
| | - Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (P.L.); (A.L.-B.); (C.Z.); (A.L.); (S.E.)
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (P.L.); (A.L.-B.); (C.Z.); (A.L.); (S.E.)
| |
Collapse
|
17
|
Frederiksen K, Krag AE, Larsen JB, Kiil BJ, Thiel S, Hvas AM. Remote ischemic preconditioning does not influence lectin pathway protein levels in head and neck cancer patients undergoing surgery. PLoS One 2020; 15:e0230411. [PMID: 32267878 PMCID: PMC7141620 DOI: 10.1371/journal.pone.0230411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/14/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cancer patients who undergo tumor removal, and reconstructive surgery by transfer of a free tissue flap, are at high risk of surgical site infection and ischemia-reperfusion injury. Complement activation through the lectin pathway (LP) may contribute to ischemia-reperfusion injury. Remote ischemic preconditioning (RIPC) is a recent experimental treatment targeting ischemia-reperfusion injury. The study aims were to investigate LP protein plasma levels in head and neck cancer patients compared with healthy individuals, to explore whether RIPC affects LP protein levels in head and neck cancer surgery, and finally to examine the association between postoperative LP protein levels and the risk of surgical site infection. METHODS Head and neck cancer patients (n = 60) undergoing tumor resection and reconstructive surgery were randomized 1:1 to RIPC or sham intervention administered intraoperatively. Blood samples were obtained preoperatively, 6 hours after RIPC/sham, and on the first postoperative day. LP protein plasma levels were measured utilizing time-resolved immunofluorometric assays. RESULTS H-ficolin and M-ficolin levels were significantly increased in cancer patients compared with healthy individuals (both P ≤ 0.02). Conversely, mannan-binding lectin (MBL)-associated serine protease (MASP)-1, MASP-3, collectin liver-1 (CL-L1), and MBL-associated protein of 44 kilodalton (MAp44) levels were decreased in cancer patients compared with healthy individuals (all P ≤ 0.04). A significant reduction in all LP protein levels was observed after surgery (all P < 0.001); however, RIPC did not affect LP protein levels. No difference was demonstrated in postoperative LP protein levels between patients who developed surgical site infection and patients who did not (all P > 0.13). CONCLUSIONS The LP was altered in head and neck cancer patients. LP protein levels were reduced after surgery, but intraoperative RIPC did not influence the LP. Postoperative LP protein levels were not associated with surgical site infection.
Collapse
Affiliation(s)
- Kristine Frederiksen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Andreas Engel Krag
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark
| | | | - Birgitte Jul Kiil
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anne-Mette Hvas
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Zhao L, Cong X, Zhai L, Hu H, Xu JY, Zhao W, Zhu M, Tan M, Ye BC. Comparative evaluation of label-free quantification strategies. J Proteomics 2020; 215:103669. [DOI: 10.1016/j.jprot.2020.103669] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/28/2019] [Accepted: 01/22/2020] [Indexed: 12/17/2022]
|
19
|
Zhang R, Liu Q, Li T, Liao Q, Zhao Y. Role of the complement system in the tumor microenvironment. Cancer Cell Int 2019; 19:300. [PMID: 31787848 PMCID: PMC6858723 DOI: 10.1186/s12935-019-1027-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
The complement system has traditionally been considered a component of innate immunity against invading pathogens and "nonself" cells. Recent studies have demonstrated the immunoregulatory functions of complement activation in the tumor microenvironment (TME). The TME plays crucial roles in tumorigenesis, progression, metastasis and recurrence. Imbalanced complement activation and the deposition of complement proteins have been demonstrated in many types of tumors. Plasma proteins, receptors, and regulators of complement activation regulate several biological functions of stromal cells in the TME and promote the malignant biological properties of tumors. Interactions between the complement system and cancer cells contribute to the proliferation, epithelial-mesenchymal transition, migration and invasion of tumor cells. In this review, we summarize recent advances related to the function of the complement system in the TME and discuss the therapeutic potential of targeting complement-mediated immunoregulation in cancer immunotherapy.
Collapse
Affiliation(s)
- Ronghua Zhang
- 0000 0001 0662 3178grid.12527.33Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| | - Qiaofei Liu
- 0000 0001 0662 3178grid.12527.33Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| | - Tong Li
- 0000 0001 0662 3178grid.12527.33Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| | - Quan Liao
- 0000 0001 0662 3178grid.12527.33Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| | - Yupei Zhao
- 0000 0001 0662 3178grid.12527.33Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| |
Collapse
|
20
|
Bareke H, Akbuga J. Complement system's role in cancer and its therapeutic potential in ovarian cancer. Scand J Immunol 2018; 88:e12672. [PMID: 29734524 DOI: 10.1111/sji.12672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022]
Abstract
Cancer immunotherapy is a strong candidate for the long-awaited new edition to standard cancer therapies. For an effective immunotherapy, it is imperative to delineate the players of antitumour immune response. As an important innate immune system effector mechanism, complement is highly likely to play a substantial role in cancer immunity. Studies suggest that there may be two different "states of complement" that show opposing effects on cancer cells; a complement profile that has antitumour effects with low expression of membrane-bound complement regulator proteins (mCRPs), lytic membrane attack complex (MAC) concentration and moderate C5a concentration, and a complement profile that has protumour effects with high expression of mCRPs, sublytic MAC and high concentrations of C5a. One of the cancers that urgently require innovative therapeutic approaches is ovarian cancer, and complement has a potential to be a good target for this purpose. A combinatorial approach where the complement cascade is fine-tuned by inhibiting some of its activities while promoting the others can prove to be a fruitful approach. Herein, we will briefly discuss the cancer-immune system interaction and then present a discussion of complement system's role in tumour immunity and its therapeutic potential for ovarian cancer immunotherapy.
Collapse
Affiliation(s)
- H Bareke
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey.,Faculty of Pharmacy, Girne American University, Kyrenia, North Cyprus, Turkey
| | - J Akbuga
- Faculty of Pharmacy, Girne American University, Kyrenia, North Cyprus, Turkey
| |
Collapse
|
21
|
Chakraborti S, Dhalla NS, Catarino SJ, Messias-Reason IJ. Serine Proteases in the Lectin Pathway of the Complement System. PROTEASES IN PHYSIOLOGY AND PATHOLOGY 2017. [PMCID: PMC7120406 DOI: 10.1007/978-981-10-2513-6_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The complement system plays a crucial role in host defense against pathogen infections and in the recognition and removal of damaged or altered self-components. Complement system activation can be initiated by three different pathways—classical, alternative, and lectin pathways—resulting in a proteolytic cascade, which culminates in multiple biological processes including opsonization and phagocytosis of intruders, inflammation, cell lysis, and removal of immune complexes and apoptotic cells. Furthermore, it also functions as a link between the innate and adaptive immune responses. The lectin pathway (LP) activation is mediated by serine proteases, termed mannan-binding lectin (MBL)-associated serine proteases (MASPs), which are associated with the pattern recognition molecules (PRMs) that recognize carbohydrates or acetylated compounds on surfaces of pathogens or apoptotic cells. These result in the proteolysis of complement C2 and C4 generating C3 convertase (C4b2a), which carries forward the activation cascade of complements, culminating in the elimination of foreign molecules. This chapter presents an overview of the complement system focusing on the characterization of MASPs and its genes, as well as its functions in the immune response.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal India
| | - Naranjan S. Dhalla
- St. Boniface Hospital Research Centre, University of Manitoba, Faculty of Health Sciences, College of Medicine, Institute of Cardiovascular Sciences, Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
22
|
Abstract
In addition to being a component of innate immunity and an ancient defense mechanism against invading pathogens, complement activation also participates in the adaptive immune response, inflammation, hemostasis, embryogenesis, and organ repair and development. Activation of the complement system via classical, lectin, or alternative pathways generates anaphylatoxins (C3a and C5a) and membrane attack complex (C5b-9) and opsonizes targeted cells. Complement activation end products and their receptors mediate cell-cell interactions that regulate several biological functions in the extravascular tissue. Signaling of anaphylatoxin receptors or assembly of membrane attack complex promotes cell dedifferentiation, proliferation, and migration in addition to reducing apoptosis. As a result, complement activation in the tumor microenvironment enhances tumor growth and increases metastasis. In this Review, I discuss immune and nonimmune functions of complement proteins and the tumor-promoting effect of complement activation.
Collapse
|
23
|
Smedbråten J, Mjøen G, Hartmann A, Åsberg A, Rollag H, Mollnes TE, Sandvik L, Fagerland MW, Thiel S, Sagedal S. Low level of MAp44, an inhibitor of the lectin complement pathway, and long-term graft and patient survival; a cohort study of 382 kidney recipients. BMC Nephrol 2016; 17:148. [PMID: 27760523 PMCID: PMC5070230 DOI: 10.1186/s12882-016-0373-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/14/2016] [Indexed: 12/19/2022] Open
Abstract
Background Higher incidence of malignancy and infectious diseases in kidney transplant recipients is related to immunosuppressive treatment after transplantation and the recipient’s native immune system. The complement system is an essential component of the innate immunity. The aim of the present study was to investigate the association of effector molecules of the lectin complement pathway with graft and patient survival after kidney transplantation. Methods Two mannan-binding lectin (MBL) associated proteases, MASP-2 and MASP-3 (activators of the lectin pathway) and two MBL-associated proteins, MAp44 and MAp19 (inhibitors of the lectin pathway) were measured at the time of transplantation in 382 patients (≥17 years old) transplanted in 2000–2001. The cohort was followed until December 31, 2014. Data on patient and graft survival were obtained from the Norwegian Renal Registry. Cox proportional hazard regression models were performed for survival analyses. Results Low MAp44 level (1st versus 2–4 quartile) was significantly associated with overall mortality; HR 1.52, 95 % CI 1.08–2.14, p = 0.017. In the sub analyses in groups below and above median age (51.7 years), low MAp44 as a predictor of overall mortality was statistically significant only in recipients of ≤51.7 years; HR 2.57, 95 % CI 1.42–4.66, p = 0.002. Furthermore, low MAp44 was associated with mortality due to infectious diseases; HR 2.22, 95 % CI 1.11–4.41, p = 0.023. There was no association between MASP-2, MASP-3 or MAp19 levels and patient mortality. No association between any measured biomarkers and death censored graft loss was found. Conclusions Low MAp44 level at the time of transplantation was associated with increased overall mortality in kidney recipients of median age of 51.7 years or below and with mortality due to infectious diseases in the whole patient cohort after nearly 14-years of follow up after transplantation. No associations between other effector molecules; MASP-2, MASP-3 or MAp19 and recipient mortality were found, as well as no association of any biomarker with death censored graft loss. Electronic supplementary material The online version of this article (doi:10.1186/s12882-016-0373-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Smedbråten
- Department of Nephrology, Ullevål Oslo University Hospital, Postbox 4950, Nydalen, 0424, Oslo, Norway. .,Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Geir Mjøen
- Department of Transplant Medicine, Rikshospitalet Oslo University Hospital, Oslo, Norway
| | - Anders Hartmann
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Transplant Medicine, Rikshospitalet Oslo University Hospital, Oslo, Norway
| | - Anders Åsberg
- Department of Transplant Medicine, Rikshospitalet Oslo University Hospital, Oslo, Norway.,Norwegian Renal Registry, Oslo University Hospital, Oslo, Norway.,School of Pharmacy, University of Oslo, Oslo, Norway
| | - Halvor Rollag
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Microbiology, Rikshospitalet Oslo University Hospital, Oslo, Norway
| | - Tom Eirik Mollnes
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Immunology, Rikshospitalet Oslo University Hospital and K.G Jebsen IRC, University of Oslo, Oslo, Norway.,Research Laboratory, Nordland Hospital, Bodø, and Faculty of Health Sciences, K.G.Jebsen TREC, University of Tromsø, Tromsø, Norway.,Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Leiv Sandvik
- Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - Morten W Fagerland
- Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Solbjørg Sagedal
- Department of Nephrology, Ullevål Oslo University Hospital, Postbox 4950, Nydalen, 0424, Oslo, Norway
| |
Collapse
|
24
|
Bonavita E, Galdiero MR, Jaillon S, Mantovani A. Phagocytes as Corrupted Policemen in Cancer-Related Inflammation. Adv Cancer Res 2015. [PMID: 26216632 DOI: 10.1016/bs.acr.2015.04.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Inflammation is a key component of the tumor microenvironment. Tumor-associated macrophages (TAMs) and tumor-associated neutrophils (TANs) are prototypic inflammatory cells in cancer-related inflammation. Macrophages provide a first line of resistance against infectious agents but in the ecological niche of cancer behave as corrupted policemen. TAMs promote tumor growth and metastasis by direct interactions with cancer cells, including cancer stem cells, as well as by promoting angiogenesis and tissue remodeling and suppressing effective adaptive immunity. In addition, the efficacy of chemotherapy, radiotherapy, and checkpoint blockade inhibitors is profoundly affected by regulation of TAMs. In particular, TAMs can protect and rescue tumor cells from cytotoxic therapy by orchestrating a misguided tissue repair response. Following extensive preclinical studies, there is now proof of concept that targeting tumor-promoting macrophages by diverse strategies (e.g., Trabectedin, anti-colony-stimulating factor-1 receptor antibodies) can result in antitumor activity in human cancer and further studies are ongoing. Neutrophils have long been overlooked as a minor component of the tumor microenvironment, but there is evidence for an important role of TANs in tumor progression. Targeting phagocytes (TAMs and TANs) as corrupted policemen in cancer may pave the way to innovative therapeutic strategies complementing cytoreductive therapies and immunotherapy.
Collapse
Affiliation(s)
| | - Maria Rosaria Galdiero
- IRCCS Istituto Clinico Humanitas, Rozzano, Italy; Division of Clinical Immunology and Allergy, University of Naples Federico II, Naples, Italy
| | | | - Alberto Mantovani
- IRCCS Istituto Clinico Humanitas, Rozzano, Italy; Humanits University, Rozzano, Italy.
| |
Collapse
|
25
|
Abstract
The observation that a subset of cancer patients show evidence for spontaneous CD8+ T cell priming against tumor-associated antigens has generated renewed interest in the innate immune pathways that might serve as a bridge to an adaptive immune response to tumors. Manipulation of this endogenous T cell response with therapeutic intent-for example, using blocking antibodies inhibiting PD-1/PD-L1 (programmed death-1/programmed death ligand 1) interactions-is showing impressive clinical results. As such, understanding the innate immune mechanisms that enable this T cell response has important clinical relevance. Defined innate immune interactions in the cancer context include recognition by innate cell populations (NK cells, NKT cells, and γδ T cells) and also by dendritic cells and macrophages in response to damage-associated molecular patterns (DAMPs). Recent evidence has indicated that the major DAMP driving host antitumor immune responses is tumor-derived DNA, sensed by the stimulator of interferon gene (STING) pathway and driving type I IFN production. A deeper knowledge of the clinically relevant innate immune pathways involved in the recognition of tumors is leading toward new therapeutic strategies for cancer treatment.
Collapse
|
26
|
Storm L, Christensen IJ, Jensenius JC, Nielsen HJ, Thiel S. Evaluation of complement proteins as screening markers for colorectal cancer. Cancer Immunol Immunother 2015; 64:41-50. [PMID: 25261356 PMCID: PMC11028411 DOI: 10.1007/s00262-014-1615-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 09/17/2014] [Indexed: 01/28/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cause of cancer death worldwide. Lack of symptoms results in late detection and increased mortality. Inflammation, including complement activation, plays an important role in tumorigenesis. EXPERIMENTAL DESIGN The concentrations of nine proteins of the lectin pathway of the complement system were determined using time-resolved immunofluorometric assays. The first cohort investigated comprised a matched case-control study of 95 patients with CRC, 48 patients with adenomas and 48 individuals without neoplastic findings. Based on the results, Collectin-liver 1 (CL-L1), M-ficolin and MAp44 were determined as the most promising biomarkers and were subsequently evaluated in a case-control study of 99 CRC patients, 196 patients with adenomas and 696 individuals without neoplastic bowel lesions. RESULTS Using logistic regression, we found that CL-L1, M-ficolin and MAp44 levels could significantly distinguish between patients with CRC, patients with adenomas and individuals without neoplastic bowel lesions. Higher levels of CL-L1 or MAp44 were associated with lower odds of CRC (OR 0.42 (0.25-0.70) p = 0.0003 and OR 0.39 (0.23-0.65) p = 0.0003, respectively), whereas higher levels of M-ficolin were associated with higher odds of CRC compared to individuals without CRC (OR 1.94 (1.46-2.59) p < 0.0001). The combination of CL-L1, M-ficolin and MAp44 in a test of CRC versus individuals without CRC resulted in 36 % sensitivity at 83 % specificity. CONCLUSION CL-L1, M-ficolin and MAp44 in combination discriminate between CRC and patients without cancer. The markers did not have sufficient discriminatory value for CRC detection, but may prove useful for screening when combined with other markers.
Collapse
Affiliation(s)
- Line Storm
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Wilhelm Meyers Allé 4, Aarhus C, Denmark
| | - Ib J. Christensen
- Finsen Laboratory, Rigshospitalet and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jens C. Jensenius
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Wilhelm Meyers Allé 4, Aarhus C, Denmark
| | - Hans J. Nielsen
- Department of Surgical Gastroenterology, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Wilhelm Meyers Allé 4, Aarhus C, Denmark
| | - the Danish Study Group on Early Detection of Colorectal Cancer
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Wilhelm Meyers Allé 4, Aarhus C, Denmark
- Finsen Laboratory, Rigshospitalet and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- Department of Surgical Gastroenterology, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| |
Collapse
|
27
|
Posaric-Bauden M, Isaksson K, Akerberg D, Andersson R, Tingstedt B. Novel anti-adhesive barrier Biobarrier reduces growth of colon cancer cells. J Surg Res 2014; 191:196-202. [PMID: 24801543 DOI: 10.1016/j.jss.2014.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 03/08/2014] [Accepted: 04/03/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Postoperative peritoneal carcinomatosis together with adhesion formation are considered as two major clinical complications after resection of malignant abdominal tumors, jeopardizing the beneficial effect of the curative surgery. Biobarrier is a novel anti-adhesive barrier fulfilling the criteria for a good adhesion preventive agent, possessing biochemical properties that may enable it to function as a dual efficient device, reducing both adhesion and tumor development. This study aims to evaluate the effect of novel anti-adhesive device Biobarrier on intra-abdominal tumor progression. MATERIALS AND METHODS Cells from cancer cell line BN7005H1D2 were treated with Biobarrier to determine the effect of Biobarrier on cell attachment and viability in vitro. For the in vivo experiments, bilateral peritoneal trauma was inflicted in a reproducible syngeneic rat model. To mimic the clinical situation, the animals received an intraperitoneal injection of BN7005H1D2 cancer cells at the end of surgery, resembling perioperative tumor spill after intraperitoneal instillation of Biobarrier. Animals without given anti-adhesive treatment were used as control. RESULTS Biobarrier applied in vitro hindered cells from attachment to the wells. In vivo treatment with Biobarrier significantly reduced tumor growth at both sites of surgical trauma (P = 0.001 and 0.015) and other non-traumatized intraperitoneal sites (P = 0.021). CONCLUSIONS Biobarrier maybe effective in reducing intra-abdominal tumor cell implantation with subsequent tumor development in conjunction with peritoneal trauma in a syngeneic rat model.
Collapse
Affiliation(s)
- Monika Posaric-Bauden
- Department of Surgery, Skåne University Hospital at Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Karolin Isaksson
- Department of Surgery, Skåne University Hospital at Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Daniel Akerberg
- Department of Surgery, Skåne University Hospital at Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Roland Andersson
- Department of Surgery, Skåne University Hospital at Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Bobby Tingstedt
- Department of Surgery, Skåne University Hospital at Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
28
|
Swierzko AS, Szala A, Sawicki S, Szemraj J, Sniadecki M, Sokolowska A, Kaluzynski A, Wydra D, Cedzynski M. Mannose-Binding Lectin (MBL) and MBL-associated serine protease-2 (MASP-2) in women with malignant and benign ovarian tumours. Cancer Immunol Immunother 2014; 63:1129-40. [PMID: 25038892 PMCID: PMC4209098 DOI: 10.1007/s00262-014-1579-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 07/02/2014] [Indexed: 11/28/2022]
Abstract
Mannose-Binding Lectin (MBL) is a serum pattern recognition molecule, able to activate complement in association with MASP proteases. Serum levels of MBL and MASP-2, activities of MBL-MASP complexes, single nucleotide polymorphisms of the MBL2 and MASP2 genes and/or their specific mRNA expression in ovarian sections were investigated in 128 patients suffering from primary ovarian cancer (OC) and compared with 197 controls (C), encompassing both patients with benign ovarian tumours (n = 123) and others with no ovarian pathology (n = 74). MBL deficiency-associated genotypes were more common among OC patients than among controls. The O/O group of genotypes was associated with ovarian cancer (OR 3.5, p = 0.02). In A/A homozygotes, MBL concentrations and activities were elevated in the OC group and correlated with C-reactive protein. Moreover, high MBL serum levels were associated with more advanced disease stage. No differences in distribution of the MASP2 +359 A>G (D120G) SNP or MASP-2 serum levels were found between cancer patients and their controls. However, the highest frequency of the A/G (MASP2) and LXA/O or O/O (MBL2) genotypes was found among OC patients with tumours of G1-2 grade (well/moderately differentiated). Furthermore, MBL deficiency-associated genotypes predicted prolonged survival. None of the parameters investigated correlated with CA125 antigen or patients' age. The local expression of MBL2 and MASP2 genes was higher in women with ovarian cancer compared with controls. It is concluded that the expression of MBL and MASP-2 is altered in ovarian cancer, possibly indicating involvement of the lectin pathway of complement activation in the disease.
Collapse
Affiliation(s)
- Anna St Swierzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dogan MV, Shields B, Cutrona C, Gao L, Gibbons FX, Simons R, Monick M, Brody GH, Tan K, Beach SRH, Philibert RA. The effect of smoking on DNA methylation of peripheral blood mononuclear cells from African American women. BMC Genomics 2014; 15:151. [PMID: 24559495 PMCID: PMC3936875 DOI: 10.1186/1471-2164-15-151] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 02/17/2014] [Indexed: 11/10/2022] Open
Abstract
Background Regular smoking is associated with a wide variety of syndromes with prominent inflammatory components such as cancer, obesity and type 2 diabetes. Heavy regular smoking is also associated with changes in the DNA methylation of peripheral mononuclear cells. However, in younger smokers, inflammatory epigenetic findings are largely absent which suggests the inflammatory response(s) to smoking may be dose dependent. To help understand whether peripheral mononuclear cells have a role in mediating these responses in older smokers with higher cumulative smoke exposure, we examined genome-wide DNA methylation in a group of well characterized adult African American subjects informative for smoking, as well as serum C-reactive protein (CRP) and interleukin-6 receptor (IL6R) levels. In addition, complementary bioinformatic analyses were conducted to delineate possible pathways affected by long-term smoking. Results Genome-wide DNA methylation analysis with respect to smoking status yielded 910 significant loci after Benjamini-Hochberg correction. In particular, two loci from the AHRR gene (cg05575921 and cg23576855) and one locus from the GPR15 gene (cg19859270) were identified as highly significantly differentially methylated between smokers and non-smokers. The bioinformatic analyses showed that long-term chronic smoking is associated with altered promoter DNA methylation of genes coding for proteins mapping to critical sub-networks moderating inflammation, immune function, and coagulation. Conclusions We conclude that chronic regular smoking is associated with changes in peripheral mononuclear cell methylation signature which perturb inflammatory and immune function pathways and may contribute to increased vulnerability for complex illnesses with inflammatory components.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Robert A Philibert
- Department of Psychiatry, University of Iowa, Rm 2-126 MEB, 500 Newton Road, Iowa City, IA 52242, USA.
| |
Collapse
|
30
|
Pio R, Corrales L, Lambris JD. The role of complement in tumor growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 772:229-62. [PMID: 24272362 DOI: 10.1007/978-1-4614-5915-6_11] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Complement is a central part of the immune system that has developed as a first defense against non-self cells. Neoplastic transformation is accompanied by an increased capacity of the malignant cells to activate complement. In fact, clinical data demonstrate complement activation in cancer patients. On the basis of the use of protective mechanisms by malignant cells, complement activation has traditionally been considered part of the body's immunosurveillance against cancer. Inhibitory mechanisms of complement activation allow cancer cells to escape from complement-mediated elimination and hamper the clinical efficacy of monoclonal antibody-based cancer immunotherapies. To overcome this limitation, many strategies have been developed with the goal of improving complement-mediated effector mechanisms. However, significant work in recent years has identified new and surprising roles for complement activation within the tumor microenvironment. Recent reports suggest that complement elements can promote tumor growth in the context of chronic inflammation. This chapter reviews the data describing the role of complement activation in cancer immunity, which offers insights that may aid the development of more effective therapeutic approaches to control cancer.
Collapse
Affiliation(s)
- Ruben Pio
- Oncology Division (CIMA), and Department of Biochemistry and Genetics (School of Science), University of Navarra, Pamplona, Spain,
| | | | | |
Collapse
|
31
|
Beltrame MH, Catarino SJ, Goeldner I, Boldt ABW, de Messias-Reason IJ. The lectin pathway of complement and rheumatic heart disease. Front Pediatr 2014; 2:148. [PMID: 25654073 PMCID: PMC4300866 DOI: 10.3389/fped.2014.00148] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/29/2014] [Indexed: 12/19/2022] Open
Abstract
The innate immune system is the first line of host defense against infection and is comprised of humoral and cellular mechanisms that recognize potential pathogens within minutes or hours of entry. The effector components of innate immunity include epithelial barriers, phagocytes, and natural killer cells, as well as cytokines and the complement system. Complement plays an important role in the immediate response against microorganisms, including Streptococcus sp. The lectin pathway is one of three pathways by which the complement system can be activated. This pathway is initiated by the binding of mannose-binding lectin (MBL), collectin 11 (CL-K1), and ficolins (Ficolin-1, Ficolin-2, and Ficolin-3) to microbial surface oligosaccharides and acetylated residues, respectively. Upon binding to target molecules, MBL, CL-K1, and ficolins form complexes with MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2), which cleave C4 and C2 forming the C3 convertase (C4b2a). Subsequent activation of complement cascade leads to opsonization, phagocytosis, and lysis of target microorganisms through the formation of the membrane-attack complex. In addition, activation of complement may induce several inflammatory effects, such as expression of adhesion molecules, chemotaxis and activation of leukocytes, release of reactive oxygen species, and secretion of cytokines and chemokines. In this chapter, we review the general aspects of the structure, function, and genetic polymorphism of lectin-pathway components and discuss most recent understanding on the role of the lectin pathway in the predisposition and clinical progression of Rheumatic Fever.
Collapse
Affiliation(s)
- Marcia Holsbach Beltrame
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná , Curitiba , Brazil
| | - Sandra Jeremias Catarino
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná , Curitiba , Brazil
| | - Isabela Goeldner
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná , Curitiba , Brazil
| | | | | |
Collapse
|
32
|
Holt CB, Thiel S, Munk K, Østergaard JA, Bøtker HE, Hansen TK. Association between endogenous complement inhibitor and myocardial salvage in patients with myocardial infarction. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2013; 3:3-9. [PMID: 24562799 DOI: 10.1177/2048872613507004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Many pathogenic processes and diseases are the result of an erroneous activation of the complement cascade and a number of inhibitors of complement have thus been examined for anti-inflammatory actions. It was recently demonstrated that supraphysiological concentrations of the endogenous complement inhibitor MAp44 (also denoted MAP1) protect against myocardial reperfusion injury. In the present study, we examined the association between outcome after acute myocardial infarction (MI) and the plasma levels of MAp44 and its related proteins MASP-1 and MASP-3 in patients with first-time MI. In addition, we compared plasma levels of MAp44, MASP-1, and MASP-3 in MI patients to levels in a healthy control group. METHODS A total of 192 MI patients and 140 control persons were included. Plasma samples were obtained and analysed with time-resolved immunofluorometric assays determining the plasma levels of MAp44, MASP-1, and MASP-3. The myocardial outcomes (salvage index and final infarct size) were measured by gated single-photon emission CT. RESULTS MI patients had 18 % higher plasma levels of MAp44 (IQR 11-25%) as compared to the healthy control group (p<0.001. However, neither salvage index (Spearman rho -0.1, p=0.28) nor final infarct size (Spearman rho 0.02, p=0.83) correlated with plasma levels of MAp44. Likewise, MASP-1 and MASP-3 were elevated in MI patients (p=0.002 and p<0.001), but the levels were not correlated to outcome. CONCLUSIONS Plasma levels of MAp44, MASP-1, and MASP-3 are significantly higher in patients with MI compared to healthy control persons, but are not associated with short-term outcome measured as salvage index and final infarct.
Collapse
|
33
|
Wu CH, Chung FY, Chang JY, Wang JY. Rapid detection of gene expression by a colorectal cancer Enzymatic Gene Chip Detection Kit. BIOMARKERS AND GENOMIC MEDICINE 2013; 5:87-91. [DOI: 10.1016/j.gmbhs.2013.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
34
|
Szala A, Sawicki S, Swierzko AS, Szemraj J, Sniadecki M, Michalski M, Kaluzynski A, Lukasiewicz J, Maciejewska A, Wydra D, Kilpatrick DC, Matsushita M, Cedzynski M. Ficolin-2 and ficolin-3 in women with malignant and benign ovarian tumours. Cancer Immunol Immunother 2013; 62:1411-9. [PMID: 23744477 PMCID: PMC3717161 DOI: 10.1007/s00262-013-1445-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/27/2013] [Indexed: 12/17/2022]
Abstract
Ficolins are serum pattern recognition molecules. They have opsonic properties and are able to activate complement via the lectin pathway. This paper reports investigations concerning ficolin-2 and ficolin-3 in ovarian cancer (OC). Their serum levels, single nucleotide polymorphisms of the corresponding FCN2 and FCN3 genes and specific mRNA expression in ovarian sections were investigated in 128 patients suffering from primary OC and 197 controls operated on for reasons other than malignancies. The latter consisted of two reference groups: those with benign tumours (n = 123) and those with normal ovaries (NO) (n = 74). Serum ficolin-2 and ficolin-3 concentrations were higher among patients with malignant disease when compared with either of the reference groups. A significant correlation between ficolin-2 and ficolin-3 concentrations was found, while no correlations with CA125 antigen or CRP were observed. No differences in the frequency of single nucleotide polymorphisms at sites -64, -4 (promoter), +6359, or +6424 (exon 8) (FCN2 gene) nor in the frame-shift mutation 1637delC (FCN3 gene) were found between investigated groups. In contrast to serum concentrations, the expression of FCN2 gene (reported for the first time in ovarian sections) was significantly lower in women with OC in comparison with patients with NO but not with benign ovarian tumours. In case of FCN3 gene, its expression levels in OC group inversely correlated with serum ficolin-3 and were lower in comparison with controls.
Collapse
Affiliation(s)
- Agnieszka Szala
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Sambor Sawicki
- Chair and Department of Gynaecology, Oncologic Gynaecology and Gynaecologic Endocrinology, Medical University of Gdansk, Kliniczna 1a, 80-402 Gdańsk, Poland
| | - Anna St. Swierzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Janusz Szemraj
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Marcin Sniadecki
- Chair and Department of Gynaecology, Oncologic Gynaecology and Gynaecologic Endocrinology, Medical University of Gdansk, Kliniczna 1a, 80-402 Gdańsk, Poland
| | - Mateusz Michalski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
- Institute of Microbiology, Immunology and Biotechnology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Andrzej Kaluzynski
- Department of Clinical Pathomorphology, Polish Mother`s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| | - Jolanta Lukasiewicz
- Department of Immunochemistry, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Anna Maciejewska
- Department of Immunochemistry, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Dariusz Wydra
- Chair and Department of Gynaecology, Oncologic Gynaecology and Gynaecologic Endocrinology, Medical University of Gdansk, Kliniczna 1a, 80-402 Gdańsk, Poland
| | - David C. Kilpatrick
- Scottish National Blood Transfusion Service, National Science Laboratory, Ellen’s Glen Road, Edinburgh, EH17 7QT Scotland UK
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292 Japan
| | - Maciej Cedzynski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| |
Collapse
|
35
|
Pio R, Ajona D, Lambris JD. Complement inhibition in cancer therapy. Semin Immunol 2013; 25:54-64. [PMID: 23706991 DOI: 10.1016/j.smim.2013.04.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/13/2013] [Indexed: 02/08/2023]
Abstract
For decades, complement has been recognized as an effector arm of the immune system that contributes to the destruction of tumor cells. In fact, many therapeutic strategies have been proposed that are based on the intensification of complement-mediated responses against tumors. However, recent studies have challenged this paradigm by demonstrating a tumor-promoting role for complement. Cancer cells seem to be able to establish a convenient balance between complement activation and inhibition, taking advantage of complement initiation without suffering its deleterious effects. Complement activation may support chronic inflammation, promote an immunosuppressive microenvironment, induce angiogenesis, and activate cancer-related signaling pathways. In this context, inhibition of complement activation would be a therapeutic option for treating cancer. This concept is relatively new and deserves closer attention. In this article, we summarize the mechanisms of complement activation on cancer cells, the cancer-promoting effect of complement initiation, and the rationale behind the use of complement inhibition as a therapeutic strategy against cancer.
Collapse
Affiliation(s)
- Ruben Pio
- Oncology Division, Center for Applied Medical Research-CIMA, Pamplona, Spain. rpio.@unav.es
| | | | | |
Collapse
|
36
|
Nielsen HJ, Jess P, Aldulaymi BH, Jørgensen LN, Laurberg S, Nielsen KT, Madsen MR, Brünner N, Christensen IJ. Early detection of recurrence after curative resection for colorectal cancer - obstacles when using soluble biomarkers? Scand J Gastroenterol 2013; 48:326-33. [PMID: 23324066 DOI: 10.3109/00365521.2012.758774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Results from monitoring studies using biomarkers in blood samples aiming at early detection of recurrent colorectal cancer (CRC) are presently evaluated. However, some serological biomarker levels are influenced by the surgical trauma, which may complicate translation of the levels in relation to recurrence. The primary purpose of the present study was to evaluate the frequency of postoperative surgical interventions during a follow-up period of patients who have undergone surgery for primary CRC. METHODS In a prospective multicenter, clinical study, 634 patients resected for primary CRC were followed in the outpatient clinic every third month. Blood samples were drawn at each visit. A subgroup of 165 stage II and III patients, who had been followed for at least 3 years, was selected. Any recent surgical intervention associated with the primary disease and/or other diseases were recorded at each visit to the outpatient clinic. RESULTS Among the 165 patients, 49 developed recurrence (R+), 107 did not (R-) and 11 developed a new primary cancer, including 2 in the R+ group. Within the 3 years of observation, 78 (47.3%) of the 165 patients underwent 117 (range 1-5) postoperative surgical interventions. Seventy-five operations were related to CRC and 42 to benign diseases, while none were related to a new primary, malignant disease. CONCLUSION Patients resected for CRC are frequently undergoing surgical procedures in the postoperative follow-up period. Therefore, postoperative monitoring using soluble biomarker levels, which may be influenced by the surgical trauma, must be adjusted in relation to postoperative surgical interventions.
Collapse
Affiliation(s)
- Hans Jørgen Nielsen
- Department of Surgical Gastroenterology 360, Hvidovre Hospital, Hvidovre, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Arshad A, Chung W, Isherwood J, Steward W, Metcalfe M, Dennison A. Restoration of Mannose-Binding Lectin Complement Activity Is Associated With Improved Outcome in Patients With Advanced Pancreatic Cancer Treated With Gemcitabine and Intravenous ω-3 Fish Oil. JPEN J Parenter Enteral Nutr 2013; 38:214-9. [DOI: 10.1177/0148607113476304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Ali Arshad
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Wen Chung
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - John Isherwood
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - William Steward
- Department of Medical Oncology, University Hospitals of Leicester, Leicester, UK
| | - Matthew Metcalfe
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Ashley Dennison
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| |
Collapse
|
38
|
Tung TC, Lin SR, Wang JY, Chung FY. The use of multiple molecular markers as predictors of the clinical prognosis of patients with colorectal cancer. GENOMIC MEDICINE, BIOMARKERS, AND HEALTH SCIENCES 2012; 4:30-33. [DOI: 10.1016/j.gmbhs.2012.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Nielsen HJ, Jakobsen KV, Christensen IJ, Brünner N. Screening for colorectal cancer: possible improvements by risk assessment evaluation? Scand J Gastroenterol 2011; 46:1283-94. [PMID: 21854094 PMCID: PMC3205805 DOI: 10.3109/00365521.2011.610002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 06/24/2011] [Accepted: 07/07/2011] [Indexed: 02/06/2023]
Abstract
Emerging results indicate that screening improves survival of patients with colorectal cancer. Therefore, screening programs are already implemented or are being considered for implementation in Asia, Europe and North America. At present, a great variety of screening methods are available including colono- and sigmoidoscopy, CT- and MR-colonography, capsule endoscopy, DNA and occult blood in feces, and so on. The pros and cons of the various tests, including economic issues, are debated. Although a plethora of evaluated and validated tests even with high specificities and reasonable sensitivities are available, an international consensus on screening procedures is still not established. The rather limited compliance in present screening procedures is a significant drawback. Furthermore, some of the procedures are costly and, therefore, selection methods for these procedures are needed. Current research into improvements of screening for colorectal cancer includes blood-based biological markers, such as proteins, DNA and RNA in combination with various demographically and clinically parameters into a "risk assessment evaluation" (RAE) test. It is assumed that such a test may lead to higher acceptance among the screening populations, and thereby improve the compliances. Furthermore, the involvement of the media, including social media, may add even more individuals to the screening programs. Implementation of validated RAE and progressively improved screening methods may reform the cost/benefit of screening procedures for colorectal cancer. Therefore, results of present research, validating RAE tests, are awaited with interest.
Collapse
Affiliation(s)
- Hans J Nielsen
- Department of Surgical Gastroenterology, Hvidovre Hospital, Hvidovre, Denmark.
| | | | | | | |
Collapse
|
40
|
Ytting H, Christensen IJ, Steffensen R, Alsner J, Thiel S, Jensenius JC, Hansen U, Nielsen HJ. Mannan-binding lectin (MBL) and MBL-associated serine protease 2 (MASP-2) genotypes in colorectal cancer. Scand J Immunol 2011; 73:122-7. [PMID: 21198752 DOI: 10.1111/j.1365-3083.2010.02480.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mannan-binding lectin (MBL) and MBL-associated serine protease 2 (MASP-2) are key factors of the lectin pathway of complement activation. Polymorphisms of the MBL2 and MASP-2 genes affect serum levels of MBL and MASP-2. In patients with colorectal cancer (CRC), the MBL and MASP-2 serum levels are increased and high MASP-2 levels are associated with recurrence and poor survival, whereas low MBL levels predict post-operative pneumonia. It is not known whether these associations are genetically based. In this study, the MBL and MASP-2 genotypes are investigated in 593 patients with CRC and 348 healthy controls. The potential association between genetic profile and infections, recurrence and survival is evaluated. Four single-nucleotide polymorphisms (SNPs) of MBL2 were analysed using TaqMan assays, with characterization of MBL2 wildtype A, variants B, C and D and alleles H/L, Y/X and P/Q. The SNP D120G for MASP-2 was determined. Serum levels of MBL and MASP-2 were measured. The MBL2 and MASP-2 genotype distribution was similar among patients with CRC and healthy controls and MBL2 genotype significantly associated with MBL concentration in serum (P<0.0001). No significant association between MBL2/MASP-2 genotype and post-operative infectious complications (P=0.33 and 0.22), recurrent cancer or survival (P=0.74 and P=0.61 respectively) was found. Thus, the increased serum levels of MBL and MASP-2 found in patients with CRC are not explained for by genetic profiles. In contrast to what has been demonstrated for serum levels of MBL and MASP-2, the genotypes do not predict disease course of the CRC patients.
Collapse
Affiliation(s)
- H Ytting
- Department of Surgical Gastroenterology, Hvidovre University Hospital, Hvidovre, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Nielsen HJ, Brünner N, Jorgensen LN, Olsen J, Rahr HB, Thygesen K, Hoyer U, Laurberg S, Stieber P, Blankenstein MA, Davis G, Dowell BL, Christensen IJ. Plasma TIMP-1 and CEA in detection of primary colorectal cancer: a prospective, population based study of 4509 high-risk individuals. Scand J Gastroenterol 2011; 46:60-9. [PMID: 20799911 DOI: 10.3109/00365521.2010.513060] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The combination of plasma tissue inhibitor of metalloproteinases-1 (TIMP-1) and carcinoembryonic antigen (CEA) may be valuable biomarkers for early detection of colorectal cancer (CRC). A prospective, population based study was performed to validate this hypothesis. MATERIAL AND METHODS Individuals (n = 4509) referred for large bowel endoscopy due to symptoms of CRC were prospectively included. Baseline data and concurrent diseases were recorded. The primary endpoint was detection of CRC and findings at examinations were recorded using International Classification of Diseases-10 codes. Plasma was obtained before endoscopy and TIMP-1 and CEA levels were determined after the inclusion of all individuals. RESULTS Findings were based on sigmoidoscopy in 1766 and colonoscopy in 2743 individuals. Colon cancer (CC) was detected in 184 and rectal cancer in 110 individuals. Ten individuals with other cancers, 856 with adenomas and 1176 with non-neoplastic findings were also detected. The biomarker levels were increased in a variety of diseases including CRC compared to individuals without any findings at endoscopy. A multivariable analysis demonstrated that both markers were significant and independent detectors of CRC. Combining both biomarkers, independent contributions from each (TIMP-1, odds ratio (OR) = 1.8 (95% confidence interval (CI): 1.4-2.2), p < 0.0001; CEA < 5 ng/ml, OR = 1.6, 1.3-1.9, or ≥ 5 ng/ml, OR = 2.3, 95% CI: 1.9-2.7 (p < 0.0001)) were obtained. Subgroup analysis of individuals examined by colonoscopy with CC as the endpoint showed that combining both biomarkers, independent contributions from each (TIMP-1, OR = 2.5, 95% CI: 1.8-3.4, p < 0.0001; CEA < 5 ng/ml, OR = 1.4, 95% CI: 1.1-1.8, and CEA ≥ 5 ng/ml, OR = 2.3, 95% CI: 1.8-3.0 (p < 0.0001)) were obtained. CONCLUSIONS This prospective validation study supports the use of the combination of plasma TIMP-1 and CEA protein measurements as a potential aid in early detection of CRC and specifically of CC.
Collapse
Affiliation(s)
- Hans J Nielsen
- Department of Surgical Gastroenterology, Hvidovre Hospital, Hvidovre, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nielsen HJ, Christensen IJ, Brünner N. A novel prognostic index in colorectal cancer defined by serum carcinoembryonic antigen and plasma tissue inhibitor of metalloproteinases-1. Scand J Gastroenterol 2010; 45:200-7. [PMID: 20095885 DOI: 10.3109/00365520903429406] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The introduction of stage-independent prognostic markers may play a significant role in future selection for adjuvant treatment for early-stage colorectal cancer (CRC). The purpose of this study was to assess the combination of preoperative serum carcinoembryonic antigen (CEA) and plasma tissue inhibitor of metalloproteinases (TIMP)-1 as a prognostic index in patients with primary, curatively resected CRC. MATERIAL AND METHODS Blood samples were collected before surgery from 422 patients with CRC stage I-III (Dukes' stage A-C). CEA was determined in serum by a routine analysis and TIMP-1 was determined in plasma using a validated in-house enzyme-linked immunosorbent assay. Disease-free survival (DFS) was registered and its associations with serum CEA and plasma TIMP-1 levels were studied using a Cox multivariate model. Hazard ratios (HRs) and 95% confidence intervals (95% CIs) for DFS were calculated. RESULTS An event was recorded in 186 patients: 75 had local recurrence, 75 had distant metastases, 28 had both local recurrence and distant metastases, and 36 died from their cancer without a registered recurrence. Scoring CEA and TIMP-1 as continuous variables on a logarithmic scale, serum CEA and plasma TIMP-1 were statistically significant in a multivariate analysis with HR = 1.1 (95% CI 1.0-1.2) and HR = 1.5 (95% CI 1.1-2.0), respectively. The two serological markers could be combined to form a prognostic index adjusted for baseline variables. This index showed a 51% increase in HR for a given CEA level if the TIMP-1 level was doubled. CONCLUSIONS Preoperative serum CEA and plasma TIMP-1 levels are independent predictors of DFS in patients with primary resectable CRC. In combination these two proteins could form an index for the assessment of risk of disease recurrence in early-stage CRC.
Collapse
Affiliation(s)
- Hans J Nielsen
- Department of Surgical Gastroenterology, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark.
| | | | | |
Collapse
|
43
|
Zehnder A, Fisch U, Hirt A, Niggli FK, Simon A, Ozsahin H, Schlapbach LJ, Ammann RA. Prognosis in pediatric hematologic malignancies is associated with serum concentration of mannose-binding lectin-associated serine protease-2 (MASP-2). Pediatr Blood Cancer 2009; 53:53-7. [PMID: 19343776 DOI: 10.1002/pbc.22028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Mannose-binding lectin (MBL) and MBL-associated serine protease-2 (MASP-2) are key components of the lectin pathway of complement activation. Their serum concentrations show a wide interindividual variability. This study investigated whether the concentration of MBL and MASP-2 is associated with prognosis in pediatric patients with cancer. METHODS In this retrospective multicenter study, MBL and MASP-2 were measured by commercially available ELISA in frozen remnants of serum taken at diagnosis. Associations of overall survival (OS) and event-free survival (EFS) with MBL and MASP-2 were assessed by multivariate Cox regression accounting for prognostically relevant clinical variables. RESULTS In the 372 patients studied, median serum concentration of MBL was 2,808 microg/L (range, 2-10,060) and 391 microg/L (46-2,771) for MASP-2. The estimated 4-year EFS was 0.60 (OS, 0.78). In the entire, heterogeneous sample, MBL and MASP-2 were not significantly associated with OS or EFS. In patients with hematologic malignancies, however, higher MASP-2 was associated with better EFS in a significant and clinically relevant way (hazard ratio per tenfold increase (HR), 0.22; 95% CI, 0.09-0.54; P = 0.001). This was due to patients with lymphoma (HR, 0.11; 95% CI, 0.03-0.47; P = 0.003), but less for those with acute leukemia (HR, 0.35; 95% CI, 0.11-1.15; P = 0.083). CONCLUSION In this study, higher MASP-2 was associated with better EFS in pediatric patients with hematologic malignancies, especially lymphoma. Whether MASP-2 is an independent prognostic factor affecting risk stratification and anticancer therapy needs to be assessed in prospective, disease-specific studies.
Collapse
Affiliation(s)
- Aina Zehnder
- Department of Pediatrics, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Schlapbach LJ, Aebi C, Fisch U, Ammann RA, Otth M, Bigler S, Nelle M, Berger S, Kessler U. Higher cord blood levels of mannose-binding lectin-associated serine protease-2 in infants with necrotising enterocolitis. Pediatr Res 2008; 64:562-6. [PMID: 18596574 DOI: 10.1203/pdr.0b013e3181841335] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Necrotising enterocolitis (NEC) causes significant morbidity and mortality in premature infants. The role of innate immunity in the pathogenesis of NEC remains unclear. Mannose-binding lectin (MBL) recognizes microorganisms and activates the complement system via MBL-associated serine protease-2 (MASP-2). The aim of this study was to investigate whether MBL and MASP-2 are associated with NEC. This observational case-control study included 32 infants with radiologically confirmed NEC and 64 controls. MBL and MASP-2 were measured in cord blood using ELISA. Multivariate logistic regression was performed. Of the 32 NEC cases (median gestational age, 30.5 wk), 13 (41%) were operated and 5 (16%) died. MASP-2 cord blood concentration ranged from undetectable (<10 ng/mL) to 277 ng/mL. Eighteen of 32 (56%) NEC cases had higher MASP-2 levels (> or =30 ng/mL) compared with 22 of 64 (34%) controls (univariate OR 2.46; 95% CI 1.03-5.85; p = 0.043). Higher cord blood MASP-2 levels were significantly associated with an increased risk of NEC in multivariate analysis (OR 3.00; 95% CI 1.17-7.93; p = 0.027). MBL levels were not associated with NEC (p = 0.64). In conclusion, infants later developing NEC had significantly higher MASP-2 cord blood levels compared with controls. Higher MASP-2 may favor complement-mediated inflammation and could thereby predispose to NEC.
Collapse
|
45
|
Pre- and postoperative levels in serum of mannan-binding lectin associated serine protease-2 -a prognostic marker in colorectal cancer. Hum Immunol 2008; 69:414-20. [PMID: 18638656 DOI: 10.1016/j.humimm.2008.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Revised: 05/16/2008] [Accepted: 05/18/2008] [Indexed: 11/20/2022]
Abstract
Mannan-binding lectin-associated serine protease-2 (MASP-2) is the initiating enzyme of the lectin pathway of complement activation. High preoperative serum levels of MASP-2 are associated with recurrence and poor survival in patients with colorectal cancer (CRC). In this study we investigate the prognostic role of MASP-2 in patients curatively resected for primary CRC. Serum concentrations of MASP-2 were determined in 281 patients prior to surgery and 7 months postoperatively using a time-resolved immunofluorometric assay. End points were recurrent cancer and death within a median follow-up time of 7.9 years. The correlation between pre- and postoperative levels was 0.49. High postoperative levels of MASP-2 were significantly associated with poor survival [p = 0.04; hazard ratio (HR) = 1.35; 95% confidence interval (CI), 1.02-1.80] and recurrence (p = 0.01, HR = 1.6, 95% CI, 1.1-1.6). The inclusion of age, gender, tumor localization, and Dukes stage in multivariate analysis demonstrated that high MASP-2 levels were independently predictive of survival (p = 0.01; HR = 1.5, 95% CI, 1.1-2.0) and recurrence (p = 0.01, HR = 1.6; 95% CI, 1.1-2.4). Combining pre- and postoperative MASP-2 levels did not improve the prediction of survival/recurrence. High postoperative levels of MASP-2 are associated with poor prognosis in patients curatively resected for CRC. A change of the MASP-2 level from preoperative levels was not, per se, predictive of recurrent disease or survival.
Collapse
|
46
|
Nielsen HJ, Brünner N, Frederiksen C, Lomholt AF, King D, Jørgensen LN, Olsen J, Rahr HB, Thygesen K, Hoyer U, Laurberg S, Christensen IJ. Plasma tissue inhibitor of metalloproteinases-1 (TIMP-1): a novel biological marker in the detection of primary colorectal cancer. Protocol outlines of the Danish-Australian endoscopy study group on colorectal cancer detection. Scand J Gastroenterol 2008; 43:242-8. [PMID: 18224568 DOI: 10.1080/00365520701523439] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Hans Jørgen Nielsen
- Department of Surgical Gastroenterology, Hvidovre University Hospital, Hvidovre, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Findeisen P, Peccerella T, Post S, Wenz F, Neumaier M. Spiking of serum specimens with exogenous reporter peptides for mass spectrometry based protease profiling as diagnostic tool. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:1223-1229. [PMID: 18348224 DOI: 10.1002/rcm.3496] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Serum is a difficult matrix for the identification of biomarkers by mass spectrometry (MS). This is due to high-abundance proteins and their complex processing by a multitude of endogenous proteases making rigorous standardisation difficult. Here, we have investigated the use of defined exogenous reporter peptides as substrates for disease-specific proteases with respect to improved standardisation and disease classification accuracy. A recombinant N-terminal fragment of the Adenomatous Polyposis Coli (APC) protein was digested with trypsin to yield a peptide mixture for subsequent Reporter Peptide Spiking (RPS) of serum. Different preanalytical handling of serum samples was simulated by storage of serum samples for up to 6 h at ambient temperature, followed by RPS, further incubation under standardised conditions and testing for stability of protease-generated MS profiles. To demonstrate the superior classification accuracy achieved by RPS, a pilot profiling experiment was performed using serum specimens from pancreatic cancer patients (n = 50) and healthy controls (n = 50). After RPS six different peak categories could be defined, two of which (categories C and D) are modulated by endogenous proteases. These latter are relevant for improved classification accuracy as shown by enhanced disease-specific classification from 78% to 87% in unspiked and spiked samples, respectively. Peaks of these categories presented with unchanged signal intensities regardless of preanalytical conditions. The use of RPS generally improved the signal intensities of protease-generated peptide peaks. RPS circumvents preanalytical variabilities and improves classification accuracies. Our approach will be helpful to introduce MS-based proteomic profiling into routine laboratory testing.
Collapse
Affiliation(s)
- Peter Findeisen
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
48
|
Ytting H, Christensen IJ, Thiel S, Jensenius JC, Svendsen MN, Nielsen L, Lottenburger T, Nielsen HJ. Biological variation in circulating levels of mannan-binding lectin (MBL) and MBL-associated serine protease-2 and the influence of age, gender and physical exercise. Scand J Immunol 2007; 66:458-64. [PMID: 17850591 DOI: 10.1111/j.1365-3083.2007.01991.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mannan-binding lectin (MBL) and MBL-associated serine protease 2 (MASP-2) are central components of the MBL pathway of complement activation, and may have potential as clinical biomarkers in colorectal cancer (CRC). Prior to clinical usage, knowledge of the biological variations of the molecules is needed. We here investigate variations of MBL and MASP-2 in healthy persons over time and in relation to gender, age and physical activity. MBL and MASP-2 concentrations were determined in serum from healthy adults over a 3-week period and this was repeated 6 months later (n = 32); during a 24-h period (n = 16); and in relation to physical exercise (n = 14). Concentrations in serum and plasma were compared (n = 198). No significant variation over 6 months and no circadian variation was found for MBL (P = 0.39 and P = 0.34 respectively) or MASP-2 (P = 0.54 and P = 0.55). Physical exercise did not affect the levels (P > 0.8). Serum and plasma levels were only marginally different, and were independent of age and gender. Circulating levels of MBL and MASP-2 are stable over time in healthy individuals, which is advantageous for their potential application as biomarkers.
Collapse
Affiliation(s)
- H Ytting
- Department of Surgical Gastroenterology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Deficiency of mannose-binding lectin-associated serine protease-2 associated with increased risk of fever and neutropenia in pediatric cancer patients. Pediatr Infect Dis J 2007; 26:989-94. [PMID: 17984804 DOI: 10.1097/inf.0b013e31811ffe6a] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mannose-binding lectin-associated serine protease-2 (MASP-2) is an essential component of the lectin pathway of complement activation. MASP-2 deficiency is common because of genetic polymorphisms, but its impact on susceptibility to infection is largely unknown. The aim of the present study was to determine whether children with cancer and MASP-2 deficiency develop more frequent or more severe episodes of fever and severe chemotherapy-induced neutropenia (FN). METHODS Serum MASP-2 was measured by enzyme-linked immunosorbent assay at the time of diagnosis in children treated with chemotherapy for cancer. Association of FN episodes with MASP-2 concentration was analyzed using Poisson regression accounting for chemotherapy intensity and duration. RESULTS Median MASP-2 in 94 children was 527 ng/mL (interquartile range, 367-686). Nine (10%) children had MASP-2 deficiency (<200 ng/mL). During a cumulative chemotherapy exposure time of 82 years, 177 FN episodes were recorded. MASP-2 deficient children had a significantly increased risk of developing FN (multivariate risk ratio, 2.08; 95% confidence interval, 1.31-3.21; P = 0.002), translating into significantly prolonged cumulative duration of hospitalization and of intravenous antimicrobial therapy. They experienced significantly more episodes of FN without a microbiologically defined etiology, and there was a trend toward more frequent episodes of FN with bacteremia. CONCLUSION In this study, MASP-2 deficiency was associated with an increased risk of FN in children treated with chemotherapy for cancer. MASP-2 deficiency represents a novel risk factor for chemotherapy-related infections.
Collapse
|
50
|
Swierzko AS, Florczak K, Cedzyński M, Szemraj J, Wydra D, Bak-Romaniszyn L, Emerich J, Sułowska Z. Mannan-binding lectin (MBL) in women with tumours of the reproductive system. Cancer Immunol Immunother 2007; 56:959-71. [PMID: 17131120 PMCID: PMC11031024 DOI: 10.1007/s00262-006-0250-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 10/28/2006] [Indexed: 11/27/2022]
Abstract
Mannan-binding lectin (MBL) is an important factor of innate immunity contributing to the clearance of microorganisms. Recently, an antitumourigenic role of MBL has been suggested. We investigated mbl2 genotypes, MBL concentrations, and MBL-MASP-2 complex activity in patients with ovarian cancer. The expression of both mbl2 and masp-2 genes were investigated in ovarian tissue sections. Additionally, samples from patients with other malignant and benign tumours of the reproductive tract were tested. A significantly higher incidence of MBL deficiency/insufficiency-associated genotypes was found among patients with malignant disease compared to age-matched controls. Unexpectedly, no differences in median MBL level or MBL-MASP-2 complex activity were found between the groups. This was partly a reflection of higher MBL concentrations and MBL-MASP-2 activity in cancer patients compared with healthy women carrying corresponding genotypes. MBL-specific mRNA expression was detected in several normal and malignant ovarian tissues, as well as in ovarian epithelial cell lines. Intracellular staining with MBL-specific antibodies demonstrated the presence of MBL in ovarian cell lines, and in normal as well as malignant ovarian tissue sections. In contrast, MASP-2-specific mRNA expression was detected only in the ovary tissues of patients with malignant disease. No significant changes in MBL concentration during 3 months of chemotherapy were noticed. MBL was detected in ascites and in the fluid of benign ovarian cysts. Our findings may reflect anti-tumourigenic activity of MBL protein which might suggest potential therapeutic application. However, it cannot be excluded that mbl-2 mutant alleles may be in linkage disequilibrium with an unidentified tumour susceptibility gene(s).
Collapse
Affiliation(s)
- A St Swierzko
- Laboratory of Immunobiology of Infections, Centre of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Poland.
| | | | | | | | | | | | | | | |
Collapse
|