1
|
Song Y, Li H, Jiang Q, Wu L. Prognostic and clinicopathological value of osteopontin expression in non-small cell lung cancer: a meta-analysis and systematic review. Biomarkers 2024; 29:105-113. [PMID: 38376506 DOI: 10.1080/1354750x.2024.2319702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Although Osteopontin (OPN) has been reported to be associated with many different human cancers, the data on non-small cell lung cancer (NSCLC) are not definitive. This study aimed to explore the prognostic effect of OPN expression and clinicopathological characteristics in patients with NSCLC. METHODS This study followed all aspects of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) report. PubMed, Embase and the Cochrane Library were searched to identify the relative studies. The pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated to estimate the prognostic value of the OPN in patients with NSCLC. The odds ratio (OR) was calculated to represent the relationship between OPN expression and clinicopathological parameters. RESULTS A total of fifteen studies with 2173 participants were finally included. The results revealed that high expression of OPN was significantly associated with poorer overall survival (OS) (HR = 1.89; 95%CI = 1.68-2.11; p < 0.001). Moreover, a significant correlation was observed between increased OPN expression and poorly differentiated (well and moderately differentiated vs. poorly differentiated; pooled OR = 0.38; 95% CI = 0.23-0.64; p < 0.001), lymph node metastasis (absence vs. presence; pooled OR = 0.49; 95%CI = 0.32-0.74; p < 0.001), and distant metastasis (absence vs. presence; pooled OR = 0.18; 95%CI = 0.11-0.29; p < 0.001). CONCLUSION This meta-analysis implies that OPN might be a valuable biomarker for a poor prognosis and poor clinicopathological outcomes for patients with NSCLC.
Collapse
Affiliation(s)
- Yu Song
- Department of Thoracic Surgery, Chengdu First People's Hospital, Chengdu, China
| | - Haibo Li
- Department of Thoracic Surgery, Chengdu First People's Hospital, Chengdu, China
| | - Qing Jiang
- Department of Thoracic Surgery, Chengdu First People's Hospital, Chengdu, China
| | - Lianghong Wu
- Department of Thoracic Surgery, Chengdu First People's Hospital, Chengdu, China
| |
Collapse
|
2
|
Jia Q, Ouyang Y, Yang Y, Yao S, Chen X, Hu Z. Osteopontin: A Novel Therapeutic Target for Respiratory Diseases. Lung 2024; 202:25-39. [PMID: 38060060 DOI: 10.1007/s00408-023-00665-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
Osteopontin (OPN) is a multifunctional phosphorylated protein that is involved in physiological and pathological events. Emerging evidence suggests that OPN also plays a critical role in the pathogenesis of respiratory diseases. OPN can be produced and secreted by various cell types in lungs and overexpression of OPN has been found in acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary hypertension (PH), pulmonary fibrosis diseases, lung cancer, lung infection, chronic obstructive pulmonary disease (COPD), and asthma. OPN exerts diverse effects on the inflammatory response, immune cell activation, fibrosis and tissue remodeling, and tumorigenesis of these respiratory diseases, and genetic and pharmacological moudulation of OPN exerts therapeutic effects in the treatment of respiratory diseases. In this review, we summarize the recent evidence of multifaceted roles and underlying mechanisms of OPN in these respiratory diseases, and targeting OPN appears to be a potential therapeutic intervention for these diseases.
Collapse
Affiliation(s)
- Qi Jia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Yeling Ouyang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Yiyi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Zhiqiang Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China.
| |
Collapse
|
3
|
Sito H, Tan SC. Genetic polymorphisms as potential pharmacogenetic biomarkers for platinum-based chemotherapy in non-small cell lung cancer. Mol Biol Rep 2024; 51:102. [PMID: 38217759 DOI: 10.1007/s11033-023-08915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/08/2023] [Indexed: 01/15/2024]
Abstract
Platinum-based chemotherapy (PBC) is a widely used treatment for various solid tumors, including non-small cell lung cancer (NSCLC). However, its efficacy is often compromised by the emergence of drug resistance in patients. There is growing evidence that genetic variations may influence the susceptibility of NSCLC patients to develop resistance to PBC. Here, we provide a comprehensive overview of the mechanisms underlying platinum drug resistance and highlight the important role that genetic polymorphisms play in this process. This paper discussed the genetic variants that regulate DNA repair, cellular movement, drug transport, metabolic processing, and immune response, with a focus on their effects on response to PBC. The potential applications of these genetic polymorphisms as predictive indicators in clinical practice are explored, as are the challenges associated with their implementation.
Collapse
Affiliation(s)
- Hilary Sito
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Salvato I, Ricciardi L, Nucera F, Nigro A, Dal Col J, Monaco F, Caramori G, Stellato C. RNA-Binding Proteins as a Molecular Link between COPD and Lung Cancer. COPD 2023; 20:18-30. [PMID: 36655862 DOI: 10.1080/15412555.2022.2107500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) represents an independent risk factor for lung cancer development. Accelerated cell senescence, induced by oxidative stress and inflammation, is a common pathogenic determinant of both COPD and lung cancer. The post transcriptional regulation of genes involved in these processes is finely regulated by RNA-binding proteins (RBPs), which regulate mRNA turnover, subcellular localization, splicing and translation. Multiple pro-inflammatory mediators (including cytokines, chemokines, proteins, growth factors and others), responsible of lung microenvironment alteration, are regulated by RBPs. Several mouse models have shown the implication of RBPs in multiple mechanisms that sustain chronic inflammation and neoplastic transformation. However, further studies are required to clarify the role of RBPs in the pathogenic mechanisms shared by lung cancer and COPD, in order to identify novel biomarkers and therapeutic targets. This review will therefore focus on the studies collectively indicating the role of RBPs in oxidative stress and chronic inflammation as common pathogenic mechanisms shared by lung cancer and COPD.
Collapse
Affiliation(s)
- Ilaria Salvato
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Luca Ricciardi
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Francesco Monaco
- Chirurgia Toracica, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| |
Collapse
|
5
|
Gałecki S, Gdowicz-Kłosok A, Deja R, Masłyk B, Giglok M, Suwiński R, Butkiewicz D. Common Variants in Osteopontin and CD44 Genes as Predictors of Treatment Outcome in Radiotherapy and Chemoradiotherapy for Non-Small Cell Lung Cancer. Cells 2023; 12:2721. [PMID: 38067149 PMCID: PMC10706014 DOI: 10.3390/cells12232721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Osteopontin (OPN)-CD44 signaling plays an important role in promoting tumor progression and metastasis. In cancer, OPN and CD44 overexpression is a marker of aggressive disease and poor prognosis, and correlates with therapy resistance. In this study, we aimed to evaluate the association of single nucleotide polymorphisms (SNPs) in the OPN and CD44 genes with clinical outcomes in 307 non-small cell lung cancer (NSCLC) patients treated with radiotherapy or chemoradiotherapy. The potential impact of the variants on plasma OPN levels was also investigated. Multivariate analysis showed that OPN rs11730582 CC carriers had a significantly increased risk of death (p = 0.029), while the CD44 rs187116 A allele correlated with a reduced risk of locoregional recurrence (p = 0.016) in the curative treatment subset. The rs11730582/rs187116 combination was associated with an elevated risk of metastasis in these patients (p = 0.016). Furthermore, the OPN rs1126772 G variant alone (p = 0.018) and in combination with rs11730582 CC (p = 7 × 10-5) was associated with poor overall survival (OS) in the squamous cell carcinoma subgroup. The rs11730582 CC, rs187116 GG, and rs1126772 G, as well as their respective combinations, were independent risk factors for unfavorable treatment outcomes. The impact of rs11730582-rs1126772 haplotypes on OS was also observed. These data suggest that OPN and CD44 germline variants may predict treatment effects in NSCLC.
Collapse
Affiliation(s)
- Seweryn Gałecki
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Agnieszka Gdowicz-Kłosok
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Regina Deja
- Analytics and Clinical Biochemistry Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Barbara Masłyk
- Analytics and Clinical Biochemistry Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Monika Giglok
- II Radiotherapy and Chemotherapy Clinic and Teaching Hospital, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Rafał Suwiński
- II Radiotherapy and Chemotherapy Clinic and Teaching Hospital, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Dorota Butkiewicz
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| |
Collapse
|
6
|
Yan Z, Hu X, Tang B, Deng F. Role of osteopontin in cancer development and treatment. Heliyon 2023; 9:e21055. [PMID: 37867833 PMCID: PMC10587537 DOI: 10.1016/j.heliyon.2023.e21055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023] Open
Abstract
Osteopontin (OPN) is a multifunctional protein secreted intracellularly and extracellularly by various cell types, including NK cells, macrophages, osteoblasts, T cells, and cancer cells. Owing to its diverse distribution, OPN plays a role in cell proliferation, stem-cell-like properties, epithelial-mesenchymal transformation, glycolysis, angiogenesis, fibrosis, invasion, and metastasis. In this review, we discuss recent findings, interpret representative studies on OPN expression in cancer, clarify that elevated OPN levels are observed in multiple cancer types (including colorectal, breast, lung, and liver cancer), and explore how OPN-macrophage interactions shape the tumor microenvironment. We also summarize progress in OPN research with regard to tumor therapy, which can facilitate the development of novel anti-tumor treatment strategies.
Collapse
Affiliation(s)
- Zhihua Yan
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Xue Hu
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| | - Bin Tang
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Fengmei Deng
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
7
|
Huang X, Lu Z, Jiang X, Zhang Z, Yan K, Yu G. Single-cell RNA sequencing reveals distinct tumor microenvironment of ground glass nodules and solid nodules in lung adenocarcinoma. Front Cell Dev Biol 2023; 11:1198338. [PMID: 37745301 PMCID: PMC10513029 DOI: 10.3389/fcell.2023.1198338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/04/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction: Lung adenocarcinoma (LUAD) is the most prevalent lung cancer. LUAD presents as ground glass nodules (GGN) and solid nodules (SN) in imaging studies. GGN is an early type of LUAD with good prognosis. However, SN exhibits a more malignant behavior than GGN, including worse pathological staging and tumor prognosis. The mechanism leading to the different malignancy levels of GGN and SN remains elusive. Methods: Three patients with GGN and three patients with SN diagnosed with early LUAD were enrolled. The tumor samples were digested to a single-cell suspension and analyzed using 10× Genomic Single-cell ribonucleic acid sequences (scRNA-seq) techniques. Results: A total of 15,902 cells were obtained and classified into nine major types. The tumor microenvironment (TME) was subsequently described in detail. ScRNA-seq revealed that ribosome-related pathways and cell adhesion played similar but distinct roles in the two groups. SN also had more active cell proliferation, enriched cell cycle regulatory pathways, and severe inflammatory responses. Conclusion: We observed changes in the cellular composition and transcriptomic profile of GGN and SN. The study improved the understanding of the underlying mechanisms of lung carcinogenesis and contributed to lung cancer prevention and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Guiping Yu
- Department of Cardiothoracic Surgery, Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, China
| |
Collapse
|
8
|
Barkas GI, Kotsiou OS. The Role of Osteopontin in Respiratory Health and Disease. J Pers Med 2023; 13:1259. [PMID: 37623509 PMCID: PMC10455105 DOI: 10.3390/jpm13081259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
The biological functions of osteopontin (OPN) are diverse and specific to physiological and pathophysiological conditions implicated in inflammation, biomineralization, cardiovascular diseases, cellular viability, cancer, diabetes, and renal stone disease. We aimed to present the role of OPN in respiratory health and disease. OPN influences the immune system and is a chemo-attractive protein correlated with respiratory disease severity. There is evidence that OPN can advance the disease stage associated with its fibrotic, inflammatory, and immune functions. OPN contributes to eosinophilic airway inflammation. OPN can destroy the lung parenchyma through its neutrophil influx and fibrotic mechanisms, linking OPN to at least one of the two major chronic obstructive pulmonary disease phenotypes. Respiratory diseases that involve irreversible lung scarring, such as idiopathic pulmonary disease, are linked to OPN, with protein levels being overexpressed in individuals with severe or advanced stages of the disorders and considerably lower levels in those with less severe symptoms. OPN plays a significant role in lung cancer progression and metastasis. It is also implicated in the pathogenesis of pulmonary hypertension, coronavirus disease 2019, and granuloma generation.
Collapse
Affiliation(s)
- Georgios I. Barkas
- Department of Human Pathophysiology, Faculty of Nursing, University of Thessaly, 41500 Larissa, Greece
| | - Ourania S. Kotsiou
- Department of Human Pathophysiology, Faculty of Nursing, University of Thessaly, 41500 Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
9
|
Zhang Z, Cao Z, Hou L, Song M, Zhou Y, Chen Y, Hu H, Hou Y, Liu Y, Li B, Song X, Ge W, Li B, Jiang X, Yang J, Song D, Zhang X, Pang J, Zhang T, Zhang H, Yang P, Wang J, Wang C. Adenovirus-mediated Overexpression of FcγRIIB Attenuates Pulmonary Inflammation and Fibrosis. Am J Respir Cell Mol Biol 2023; 68:213-227. [PMID: 36227848 DOI: 10.1165/rcmb.2022-0056oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Progressive fibrosing interstitial lung diseases (PF-ILDs) result in high mortality and lack effective therapies. The pathogenesis of PF-ILDs involves macrophages driving inflammation and irreversible fibrosis. Fc-γ receptors (FcγRs) regulate macrophages and inflammation, but their roles in PF-ILDs remain unclear. We characterized the expression of FcγRs and found upregulated FcγRIIB in human and mouse lungs after exposure to silica. FcγRIIB deficiency aggravated lung dysfunction, inflammation, and fibrosis in silica-exposed mice. Using single-cell transcriptomics and in vitro experiments, FcγRIIB was found in alveolar macrophages, where it regulated the expression of fibrosis-related genes Spp1 and Ctss. In mice with macrophage-specific overexpression of FcγRIIB and in mice treated with adenovirus by intratracheal instillation to upregulate FcγRIIB, silica-induced functional and histological changes were ameliorated. Our data from three genetic models and a therapeutic model suggest that FcγRIIB plays a protective role that can be enhanced by adenoviral overexpression, representing a potential therapeutic strategy for PF-ILDs.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Physiology and.,Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,National Health Commission Key Laboratory of Pneumoconiosis, Taiyuan, China
| | | | - Lin Hou
- Department of Physiology and
| | - Meiyue Song
- Department of Physiology and.,Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yitian Zhou
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yiling Chen
- Department of Physiology and.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiao tong University, Xi'an, China; and
| | - Huiyuan Hu
- Department of Physiology and.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiao tong University, Xi'an, China; and
| | - Yangfeng Hou
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | | | - Bolun Li
- Department of Physiology and.,Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaomin Song
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Weipeng Ge
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Baicun Li
- Department of Physiology and.,Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | | | | | - Dingyun Song
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xinri Zhang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China.,National Health Commission Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Junling Pang
- Department of Physiology and.,Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Tiantian Zhang
- Department of Physiology and.,Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | | | | | - Jing Wang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Physiology and.,National Health Commission Key Laboratory of Pneumoconiosis, Taiyuan, China.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
10
|
Gao W, Liu D, Sun H, Shao Z, Shi P, Li T, Yin S, Zhu T. SPP1 is a prognostic related biomarker and correlated with tumor-infiltrating immune cells in ovarian cancer. BMC Cancer 2022; 22:1367. [PMID: 36585688 PMCID: PMC9805166 DOI: 10.1186/s12885-022-10485-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Secreted phosphoprotein 1 (SPP1) plays a vital role in tumor progression of multiple cancer types However, it still awaits further exploration whether SPP1 is a bystander or an actual player in the modulation of immune infiltration in ovarian cancer. METHODS In this study, the expression level of SPP1 was identified by Oncomine, GEPIA and TIMER databases, and the result of SPP1 immumohistochemical staining was acquired by The HPA database. The impact of SPP1 expression level on the clinical outcome of ovarian cancer patients were evaluated via Kaplan-Meier Plotter and PrognoScan dataset. Immune infiltration analyses were conducted using TIMER and TISIDB dataset. In addition, Functional enrichment analyses were performed with Metascape and GeneMANIA database. To verify these findings from the public database, the results were validated in a cohort of ovarian cancer patients. RESULTS SPP1 was found to be overexpressed in ovarian tumor tissues and high SPP1 expression was correlated with shorter survivals. Notably, SPP1 expression was positively correlated with infiltrating levels of CD4 + T cells, CD8 + T cells, macrophages, neutrophils, and dendritic cells. Furthermore, SPP1 expression level showed strong correlation with diverse immune cells in ovarian cancer. Of note, functional enrichment analysis suggested that SPP1 was strongly correlated with immune response. CONCLUSIONS These findings imply that SPP1 is correlated with prognosis and immune cell infiltrating, offering a new potential immunotherapeutic target in ovarian cancer. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Wen Gao
- grid.9227.e0000000119573309The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022 Zhejiang China
| | - Dongli Liu
- grid.16821.3c0000 0004 0368 8293Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080 Shanghai, P. R. China
| | - Haiyan Sun
- grid.9227.e0000000119573309The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022 Zhejiang China
| | - Zhuyan Shao
- grid.9227.e0000000119573309The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022 Zhejiang China
| | - Peipei Shi
- grid.413087.90000 0004 1755 3939Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Tingting Li
- grid.413087.90000 0004 1755 3939Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Sheng Yin
- grid.413087.90000 0004 1755 3939Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Tao Zhu
- grid.9227.e0000000119573309The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022 Zhejiang China
| |
Collapse
|
11
|
Parker AL, Bowman E, Zingone A, Ryan BM, Cooper WA, Kohonen-Corish M, Harris CC, Cox TR. Extracellular matrix profiles determine risk and prognosis of the squamous cell carcinoma subtype of non-small cell lung carcinoma. Genome Med 2022; 14:126. [PMID: 36404344 PMCID: PMC9677915 DOI: 10.1186/s13073-022-01127-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/14/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Squamous cell carcinoma (SqCC) is a subtype of non-small cell lung cancer for which patient prognosis remains poor. The extracellular matrix (ECM) is critical in regulating cell behavior; however, its importance in tumor aggressiveness remains to be comprehensively characterized. METHODS Multi-omics data of SqCC human tumor specimens was combined to characterize ECM features associated with initiation and recurrence. Penalized logistic regression was used to define a matrix risk signature for SqCC tumors and its performance across a panel of tumor types and in SqCC premalignant lesions was evaluated. Consensus clustering was used to define prognostic matreotypes for SqCC tumors. Matreotype-specific tumor biology was defined by integration of bulk RNAseq with scRNAseq data, cell type deconvolution, analysis of ligand-receptor interactions and enriched biological pathways, and through cross comparison of matreotype expression profiles with aging and idiopathic pulmonary fibrosis lung profiles. RESULTS This analysis revealed subtype-specific ECM signatures associated with tumor initiation that were predictive of premalignant progression. We identified an ECM-enriched tumor subtype associated with the poorest prognosis. In silico analysis indicates that matrix remodeling programs differentially activate intracellular signaling in tumor and stromal cells to reinforce matrix remodeling associated with resistance and progression. The matrix subtype with the poorest prognosis resembles ECM remodeling in idiopathic pulmonary fibrosis and may represent a field of cancerization associated with elevated cancer risk. CONCLUSIONS Collectively, this analysis defines matrix-driven features of poor prognosis to inform precision medicine prevention and treatment strategies towards improving SqCC patient outcome.
Collapse
Affiliation(s)
- Amelia L. Parker
- grid.415306.50000 0000 9983 6924Matrix and Metastasis Lab, Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, 384 Victoria St, Darlinghurst, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432School of Clinical Medicine, UNSW Sydney, Sydney, 2052 Australia
| | - Elise Bowman
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Adriana Zingone
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Brid M. Ryan
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA ,Present address: MiNA Therapeutics, London, UK
| | - Wendy A. Cooper
- grid.413249.90000 0004 0385 0051Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 Australia ,grid.1013.30000 0004 1936 834XSydney Medical School, University of Sydney, Sydney, NSW 2050 Australia ,grid.1029.a0000 0000 9939 5719Discipline of Pathology, School of Medicine, Western Sydney University, Liverpool, NSW 2170 Australia
| | - Maija Kohonen-Corish
- grid.417229.b0000 0000 8945 8472Woolcock Institute of Medical Research, Sydney, NSW 2037 Australia ,grid.1005.40000 0004 4902 0432Microbiome Research Centre, School of Clinical Medicine, UNSW Sydney, Sydney, 2052 Australia ,grid.415306.50000 0000 9983 6924Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
| | - Curtis C. Harris
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Thomas R. Cox
- grid.415306.50000 0000 9983 6924Matrix and Metastasis Lab, Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, 384 Victoria St, Darlinghurst, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432School of Clinical Medicine, UNSW Sydney, Sydney, 2052 Australia
| |
Collapse
|
12
|
Miao TW, Yang DQ, Gao LJ, Yin J, Zhu Q, Liu J, He YQ, Chen X. Construction of a redox-related gene signature for overall survival prediction and immune infiltration in non-small-cell lung cancer. Front Mol Biosci 2022; 9:942402. [PMID: 36052170 PMCID: PMC9425056 DOI: 10.3389/fmolb.2022.942402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: An imbalance in the redox homeostasis has been reported in multiple cancers and is associated with a poor prognosis of disease. However, the prognostic value of redox-related genes in non-small-cell lung cancer (NSCLC) remains unclear. Methods: RNA sequencing data, DNA methylation data, mutation, and clinical data of NSCLC patients were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. Redox-related differentially expressed genes (DEGs) were used to construct the prognostic signature using least absolute shrinkage and selection operator (LASSO) regression analysis. Kaplan–Meier survival curve and receiver operator characteristic (ROC) curve analyses were applied to validate the accuracy of the gene signature. Nomogram and calibration plots of the nomogram were constructed to predict prognosis. Pathway analysis was performed using gene set enrichment analysis. The correlations of risk score with tumor stage, immune infiltration, DNA methylation, tumor mutation burden (TMB), and chemotherapy sensitivity were evaluated. The prognostic signature was validated using GSE31210, GSE26939, and GSE68465 datasets. Real-time polymerase chain reaction (PCR) was used to validate dysregulated genes in NSCLC. Results: A prognostic signature was constructed using the LASSO regression analysis and was represented as a risk score. The high-risk group was significantly correlated with worse overall survival (OS) (p < 0.001). The area under the ROC curve (AUC) at the 5-year stage was 0.657. The risk score was precisely correlated with the tumor stage and was an independent prognostic factor for NSCLC. The constructed nomogram accurately predicted the OS of patients after 1-, 3-, and 5-year periods. DNA replication, cell cycle, and ECM receptor interaction were the main pathways enriched in the high-risk group. In addition, the high-risk score was correlated with higher TMB, lower methylation levels, increased infiltrating macrophages, activated memory CD4+ T cells, and a higher sensitivity to chemotherapy. The signature was validated in GSE31210, GSE26939, and GSE68465 datasets. Real-time PCR validated dysregulated mRNA expression levels in NSCLC. Conclusions: A prognostic redox-related gene signature was successfully established in NSCLC, with potential applications in the clinical setting.
Collapse
Affiliation(s)
- Ti-wei Miao
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People’s Hospital, Zigong, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - De-qing Yang
- Department of Pharmacy, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li-juan Gao
- Division of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Jie Yin
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, China
| | - Qi Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People’s Hospital, Zigong, China
| | - Jie Liu
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People’s Hospital, Zigong, China
| | - Yan-qiu He
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xin Chen
- Department of Integrated Traditional Chinese and Western Medicine, Zigong First People’s Hospital, Zigong, China
- *Correspondence: Xin Chen,
| |
Collapse
|
13
|
da Silva-Oliveira RJ, Gomes INF, da Silva LS, Lengert AVH, Laus AC, Melendez ME, Munari CC, Cury FDP, Longato GB, Reis RM. Efficacy of Combined Use of Everolimus and Second-Generation Pan-EGRF Inhibitors in KRAS Mutant Non-Small Cell Lung Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms23147774. [PMID: 35887120 PMCID: PMC9317664 DOI: 10.3390/ijms23147774] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
Background: EGFR mutations are present in approximately 15−50% of non-small cell lung cancer (NSCLC), which are predictive of anti-EGFR therapies. At variance, NSCLC patients harboring KRAS mutations are resistant to those anti-EGFR approaches. Afatinib and allitinib are second-generation pan-EGFR drugs, yet no predictive biomarkers are known in the NSCLC context. In the present study, we evaluated the efficacy of pan-EGFR inhibitors in a panel of 15 lung cancer cell lines associated with the KRAS mutations phenotype. Methods: KRAS wild-type sensitive NCI-H292 cell line was further transfected with KRAS mutations (p.G12D and p.G12S). The pan-EGFR inhibitors’ activity and biologic effect of KRAS mutations were evaluated by cytotoxicity, MAPK phospho-protein array, colony formation, migration, invasion, and adhesion. In addition, in vivo chicken chorioallantoic membrane assay was performed in KRAS mutant cell lines. The gene expression profile was evaluated by NanoString. Lastly, everolimus and pan-EGFR combinations were performed to determine the combination index. Results: The GI50 score classified two cell lines treated with afatinib and seven treated with allitinib as high-sensitive phenotypes. All KRAS mutant cell lines demonstrated a resistant profile for both therapies (GI50 < 30%). The protein array of KRAS edited cells indicated a significant increase in AKT, CREB, HSP27, JNK, and, importantly, mTOR protein levels compared with KRAS wild-type cells. The colony formation, migration, invasion, adhesion, tumor perimeter, and mesenchymal phenotype were increased in the H292 KRAS mutated cells. Gene expression analysis showed 18 dysregulated genes associated with the focal adhesion-PI3K-Akt-mTOR-signaling correlated in KRAS mutant cell lines. Moreover, mTOR overexpression in KRAS mutant H292 cells was inhibited after everolimus exposure, and sensitivity to afatinib and allitinib was restored. Conclusions: Our results indicate that allitinib was more effective than afatinib in NSCLC cell lines. KRAS mutations increased aggressive behavior through upregulation of the focal adhesion-PI3K-Akt-mTOR-signaling in NSCLC cells. Significantly, everolimus restored sensibility and improved cytotoxicity of EGFR inhibitors in the KRAS mutant NSCLC cell lines.
Collapse
Affiliation(s)
- Renato José da Silva-Oliveira
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
- Correspondence: (R.J.d.S.-O.); (R.M.R.)
| | - Izabela Natalia Faria Gomes
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
| | - Luciane Sussuchi da Silva
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
| | - André van Helvoort Lengert
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
| | - Ana Carolina Laus
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
| | - Matias Eliseo Melendez
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
| | - Carla Carolina Munari
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
| | - Fernanda de Paula Cury
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
| | - Giovanna Barbarini Longato
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
| | - Rui Manuel Reis
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
- Life and Health Sciences Research Institute (ICVS) Medical School, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (R.J.d.S.-O.); (R.M.R.)
| |
Collapse
|
14
|
Single-cell characterization of malignant phenotypes and microenvironment alteration in retinoblastoma. Cell Death Dis 2022; 13:438. [PMID: 35523772 PMCID: PMC9076657 DOI: 10.1038/s41419-022-04904-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
Retinoblastoma (RB) is the most common primary intraocular malignancy of childhood. It is known that the tumor microenvironment (TME) regulates tumorigenesis and metastasis. However, how the malignant progression in RB is determined by the heterogeneity of tumor cells and TME remains uncharacterized. Here, we conducted integrative single-cell transcriptome and whole-exome sequencing analysis of RB patients with detailed pathological and clinical measurements. By single-cell transcriptomic sequencing, we profiled around 70,000 cells from tumor samples of seven RB patients. We identified that the major cell types in RB were cone precursor-like (CP-like) and MKI67+ cone precursor (MKI67+ CP) cells. By integrating copy number variation (CNV) analysis, we found that RB samples had large clonal heterogeneity, where the malignant MKI67+ CP cells had significantly larger copy number changes. Enrichment analysis revealed that the conversion of CP-like to MKI67+ CP resulted in the loss of photoreceptor function and increased cell proliferation ability. The TME in RB was composed of tumor-associated macrophages (TAMs), astrocyte-like, and cancer-associated fibroblasts (CAFs). Particularly, during the invasion process, TAMs created an immunosuppressive environment, in which the proportion of TAMs decreased, M1-type macrophage was lost, and the TAMs-related immune functions were depressed. Finally, we identified that TAMs regulated tumor cells through GRN and MIF signaling pathways, while TAMs self-regulated through inhibition of CCL and GALECTIN signaling pathways during the invasion process. Altogether, our study creates a detailed transcriptomic map of RB with single-cell characterization of malignant phenotypes and provides novel molecular insights into the occurrence and progression of RB.
Collapse
|
15
|
EMT, Stemness, and Drug Resistance in Biological Context: A 3D Tumor Tissue/In Silico Platform for Analysis of Combinatorial Treatment in NSCLC with Aggressive KRAS-Biomarker Signatures. Cancers (Basel) 2022; 14:cancers14092176. [PMID: 35565305 PMCID: PMC9099837 DOI: 10.3390/cancers14092176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The phenotypic transition of tumor cells from epithelial to mesenchymal characteristics is called EMT and is widely discussed in the scientific community as a game changer in drug resistance and metastasis formation. However, clinical studies could not prove the efficacy of EMT-interfering treatments, and in clinical routine, EMT is not investigated to assess invasion. To fill this gap between bench and bedside, we use in this study a lung tumor tissue model with a preserved basement membrane for investigation of EMT functions with respect to invasion across this membrane and drug resistance. Our results suggest EMT is more a marker of drug resistance than a maker. Invasion is enhanced by EMT but more dependent on intrinsic factors, and EMT is not detected in the center of invasive tumor nodules. An in silico signaling network model is used to integrate these in vitro results and to reveal determinants for drug response. Abstract Epithelial-to-mesenchymal transition (EMT) is discussed to be centrally involved in invasion, stemness, and drug resistance. Experimental models to evaluate this process in its biological complexity are limited. To shed light on EMT impact and test drug response more reliably, we use a lung tumor test system based on a decellularized intestinal matrix showing more in vivo-like proliferation levels and enhanced expression of clinical markers and carcinogenesis-related genes. In our models, we found evidence for a correlation of EMT with drug resistance in primary and secondary resistant cells harboring KRASG12C or EGFR mutations, which was simulated in silico based on an optimized signaling network topology. Notably, drug resistance did not correlate with EMT status in KRAS-mutated patient-derived xenograft (PDX) cell lines, and drug efficacy was not affected by EMT induction via TGF-β. To investigate further determinants of drug response, we tested several drugs in combination with a KRASG12C inhibitor in KRASG12C mutant HCC44 models, which, besides EMT, display mutations in P53, LKB1, KEAP1, and high c-MYC expression. We identified an aurora-kinase A (AURKA) inhibitor as the most promising candidate. In our network, AURKA is a centrally linked hub to EMT, proliferation, apoptosis, LKB1, and c-MYC. This exemplifies our systemic analysis approach for clinical translation of biomarker signatures.
Collapse
|
16
|
Shao Z, Bi S. Endocrine regulation and metabolic mechanisms of osteopontin in the development and progression of osteosarcoma, metastasis and prognosis. Front Endocrinol (Lausanne) 2022; 13:1100063. [PMID: 36714568 PMCID: PMC9880040 DOI: 10.3389/fendo.2022.1100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Osteosarcoma is the most common type of malignant bone tumor, occurring in adolescents and patients over 60. It has a bimodal onset and a poor prognosis, and its development has not yet been fully explained. Osteopontin (OPN) is a high protein consisting of 314 amino acid residues with a negative charge and is involved in many biological activities. OPN is not only an essential part of the regulation of the nervous system and endocrine metabolism of skeletal cells. Still, it is also involved in several other important biological activities, such as the division, transformation, and proliferation of skeletal cells and their associated cells, such as bone tumor cells, including bone marrow mesenchymal stem cells, hematopoietic stem cells, osteoblasts, and osteoclasts. Osteoblasts and osteocytes. Recent studies have shown a strong correlation between OPN and the development and progression of many skeletal diseases, such as osteosarcoma and rheumatoid arthritis. This review aims to understand the mechanisms and advances in the role of OPN as a factor in the development, progression, metastasis, and prognosis of osteosarcoma in an attempt to provide a comprehensive summary of the mechanisms by which OPN regulates osteosarcoma progression and in the hope of contributing to the advancement of osteosarcoma research and clinical treatment.
Collapse
|
17
|
Wang YJ, Wang QW, Yu DH, Song CK, Guo ZX, Liu XP, Chen C, Yao J, Wang AF, Hu WD. Osteopontin improves sensitivity to tyrosine kinase inhibitor in lung adenocarcinoma in vitro by promoting epidermal growth factor receptor phosphorylation. J Cancer Res Clin Oncol 2021; 147:3245-3254. [PMID: 34255150 DOI: 10.1007/s00432-021-03731-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) improve the prognosis of lung adenocarcinoma (LUAD). However, the factors affecting its clinical efficacy remain unclear. This study aimed to determine the correlation between Osteopontin (OPN) and EGFR, and explore the inhibitory effect of first-generation TKI gefitinib on LUAD cells. METHODS The correlation between OPN and EGFR was determined through bioinformatics technology, and the clinical information as well as samples of related patients were collected to verify the relationship between them. Using three different NSCLC cell lines A549, H1299 and PC9, we studied the effects of OPN expression and EGFR phosphorylation on the first-generation TKI's efficacy in vitro. RESULTS Our data revealed that OPN staining positively linked to a more advanced clinical stage. Compared with the control group, LUAD cells with elevated OPN levels are more sensitive to the growth inhibitory effect of TKI. Knocking down of OPN decreased the response of cells to gefitinib. Besides, OPN also upregulated the phosphorylation of EGFR, thereby affecting the effect of TKI. CONCLUSION OPN enhanced the sensitivity of LUAD cells to gefitinib by promoting EGFR phosphorylation. OPN may be a potential target for evaluating TKI efficacy and a potential target for molecular therapy.
Collapse
Affiliation(s)
- Yu-Jin Wang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, No. 169, East Lake Road, Wuchang, Wuhan, 430071, Hubei, China
| | - Qing-Wen Wang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, No. 169, East Lake Road, Wuchang, Wuhan, 430071, Hubei, China
| | - Dong-Hu Yu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, No. 169, East Lake Road, Wuchang, Wuhan, 430071, Hubei, China
| | - Cong-Kuan Song
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, No. 169, East Lake Road, Wuchang, Wuhan, 430071, Hubei, China
| | - Zi-Xin Guo
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, No. 169, East Lake Road, Wuchang, Wuhan, 430071, Hubei, China
| | - Xiao-Ping Liu
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Chen Chen
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Human Genetics Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jie Yao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Human Genetics Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ai-Fen Wang
- Department of Obstetrics and Gynecology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 S Changan Road, Zhangjiagang, Jiangsu, China
| | - Wei-Dong Hu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China. .,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, No. 169, East Lake Road, Wuchang, Wuhan, 430071, Hubei, China.
| |
Collapse
|
18
|
Giopanou I, Kanellakis NI, Giannou AD, Lilis I, Marazioti A, Spella M, Papaleonidopoulos V, Simoes DCM, Zazara DE, Agalioti T, Moschos C, Magkouta S, Kalomenidis I, Panoutsakopoulou V, Lamort AS, Stathopoulos GT, Psallidas I. Osteopontin drives KRAS-mutant lung adenocarcinoma. Carcinogenesis 2021; 41:1134-1144. [PMID: 31740923 DOI: 10.1093/carcin/bgz190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 10/15/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
Increased expression of osteopontin (secreted phosphoprotein 1, SPP1) is associated with aggressive human lung adenocarcinoma (LADC), but its function remains unknown. Our aim was to determine the role of SPP1 in smoking-induced LADC. We combined mouse models of tobacco carcinogen-induced LADC, of deficiency of endogenous Spp1 alleles, and of adoptive pulmonary macrophage reconstitution to map the expression of SPP1 and its receptors and determine its impact during carcinogenesis. Co-expression of Spp1 and mutant KrasG12C in benign cells was employed to investigate SPP1/KRAS interactions in oncogenesis. Finally, intratracheal adenovirus encoding Cre recombinase was delivered to LSL.KRASG12D mice lacking endogenous or overexpressing transgenic Spp1 alleles. SPP1 was overexpressed in experimental and human LADC and portended poor survival. In response to two different smoke carcinogens, Spp1-deficient mice developed fewer and smaller LADC with decreased cellular survival and angiogenesis. Both lung epithelial- and macrophage-secreted SPP1 drove tumor-associated inflammation, while epithelial SPP1 promoted early tumorigenesis by fostering the survival of KRAS-mutated cells. Finally, loss and overexpression of Spp1 was, respectively, protective and deleterious for mice harboring KRASG12D-driven LADC. Our data support that SPP1 is functionally involved in early stages of airway epithelial carcinogenesis driven by smoking and mutant KRAS and may present an important therapeutic target.
Collapse
Affiliation(s)
- Ioanna Giopanou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Nikolaos I Kanellakis
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Anastasios D Giannou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Ioannis Lilis
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Antonia Marazioti
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Magda Spella
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Vassilios Papaleonidopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Davina C M Simoes
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle Upon Tyne, UK
| | - Dimitra E Zazara
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Theodora Agalioti
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Charalampos Moschos
- "Marianthi Simou Laboratory," 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Sophia Magkouta
- "Marianthi Simou Laboratory," 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Ioannis Kalomenidis
- "Marianthi Simou Laboratory," 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Vily Panoutsakopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Anne-Sophie Lamort
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilians University and Helmholtz ZentrumMünchen, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece.,Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilians University and Helmholtz ZentrumMünchen, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany
| | - Ioannis Psallidas
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece.,Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Trust, Oxford, UK.,Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| |
Collapse
|
19
|
Li T, Li R, Dong X, Shi L, Lin M, Peng T, Wu P, Liu Y, Li X, He X, Han X, Kang B, Wang Y, Liu Z, Chen Q, Shen Y, Feng M, Wang X, Wu D, Wang J, Li C. Integrative Analysis of Genome, 3D Genome, and Transcriptome Alterations of Clinical Lung Cancer Samples. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:741-753. [PMID: 34116262 PMCID: PMC9170781 DOI: 10.1016/j.gpb.2020.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/28/2020] [Accepted: 06/11/2020] [Indexed: 10/31/2022]
Abstract
Genomic studies of cancer cell alterations, such as mutations, copy number variations (CNVs), and translocations, greatly promote our understanding of the genesis and development of cancer. However, the 3D genome architecture of cancers remains less studied due to the complexity of cancer genomes and technical difficulties. To explore the 3D genome structure in clinical lung cancer, we performed Hi-C experiments using paired normal and tumor cells harvested from patients with lung cancer, combining with RNA-seq analysis. We demonstrated the feasibility of studying 3D genome of clinical lung cancer samples with a small number of cells (1 × 104), compared the genome architecture between clinical samples and cell lines of lung cancer, and identified conserved and changed spatial chromatin structures between normal and cancer samples. We also showed that Hi-C data can be used to infer CNVs and point mutations in cancer. By integrating those different types of cancer alterations, we showed significant associations between CNVs, 3D genome, and gene expression. We propose that 3D genome mediates the effects of cancer genomic alterations on gene expression through altering regulatory chromatin structures. Our study highlights the importance of analyzing 3D genomes of clinical cancer samples in addition to cancer cell lines and provides an integrative genomic analysis pipeline for future larger-scale studies in lung cancer and other cancers.
Collapse
Affiliation(s)
- Tingting Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing 100871, China; State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ruifeng Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing 100871, China
| | - Xuan Dong
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Lin Shi
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Institute of Clinical Bioinformatics, Shanghai 200433, China; Fudan University Center for Clinical Bioinformatics, Shanghai 200433, China
| | - Miao Lin
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Ting Peng
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing 100871, China
| | - Pengze Wu
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing 100871, China
| | - Yuting Liu
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing 100871, China
| | - Xiaoting Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing 100871, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuheng He
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Xu Han
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Bin Kang
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Yinan Wang
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing 100871, China
| | - Zhiheng Liu
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing 100871, China
| | - Qing Chen
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing 100871, China
| | - Yue Shen
- BGI-Shenzhen, Shenzhen 518083, China; BGI-Qingdao, Qingdao 266426, China; Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, BGI-Shenzhen, Shenzhen 518083, China
| | - Mingxiang Feng
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Institute of Clinical Bioinformatics, Shanghai 200433, China; Fudan University Center for Clinical Bioinformatics, Shanghai 200433, China
| | - Duojiao Wu
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Institute of Clinical Bioinformatics, Shanghai 200433, China.
| | - Jian Wang
- iCarbonX, Shenzhen 518053, China; Digital Life Research Institute, Shenzhen 518110, China.
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing 100871, China.
| |
Collapse
|
20
|
Lin Z, Miao D, Xu Q, Wang X, Yu F. A novel focal adhesion related gene signature for prognostic prediction in hepatocellular carcinoma. Aging (Albany NY) 2021; 13:10724-10748. [PMID: 33850056 PMCID: PMC8064231 DOI: 10.18632/aging.202871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/14/2021] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous disease. Reduced expression of focal adhesion is considered as an important prerequisite for tumor cell invasion and metastasis. However, the prognostic value of focal adhesion related genes in HCC remains to be further determined. In this study, RNA expression profiles were downloaded from public databases. A five focal adhesion related gene signature model was established by the least absolute shrinkage and selection operator Cox regression analysis, which categorized patients into high- and low-risk groups. Multivariate Cox regression analysis showed that the risk score was an independent predictor for overall survival. Single-sample gene set enrichment analysis revealed that immune status was different between the two risk groups, and tumor-related pathways were enriched in high-risk group. The risk score was significantly associated with tumor grade, tumor stage, immune scores, and immune infiltrate types. Pearson correlation showed that the expression level of prognostic genes was associated with anti-tumor drug sensitivity. Besides, the mRNA and protein expression of prognostic genes was significantly different between HCC tissues and adjacent non-tumorous tissues in our separate cohort. Taken together, a novel focal adhesion related gene signature can be used for prognostic prediction in HCC, which may be a therapeutic alternative.
Collapse
Affiliation(s)
- Zhuo Lin
- Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, Zhejiang, China
| | - Dan Miao
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qian Xu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Wang
- Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, Zhejiang, China
| | - Fujun Yu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Identification of Key Genes Related to the Prognosis of Esophageal Squamous Cell Carcinoma Based on Chip Re-Annotation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Esophageal cancer (EC) is one of the deadliest cancers worldwide. However, reliable biomarkers for early diagnosis, or those for the prognosis of therapy, remain unfulfilled goals for its subtype esophageal squamous cell carcinoma (ESCC). The purpose of this study was to identify reliable biomarkers for the diagnosis and prognosis of ESCC by gene chip re-annotation technique and downstream bioinformatics analysis. In our research, the GSE53624 dataset was downloaded from the GEO database. Then, we reannotated the gene expression probe and obtained the gene expression matrix. Differential expressed genes (DEGs) were found by R packages and they were subjected to Gene Ontology enrichment analysis and protein–protein interaction (PPI) network construction. As a result, a total of 28,885 mRNA probes were reannotated, among which 210 down-regulated and 80 up-regulated DEGs were screened out. By combining these genes set in clinical prognosis information and Western blot analysis, we found four genes with diagnostic and prognostic significance, including MMP13, SPP1, MMP10, and COL1A1. Furthermore, markers of infiltrating immune cells exhibited different DEG-related immune infiltration patterns.
Collapse
|
22
|
Shi Y, Chang D, Li W, Zhao F, Ren X, Hou B. Identification of core genes and clinical outcomes in tumors originated from endoderm (gastric cancer and lung carcinoma) via bioinformatics analysis. Medicine (Baltimore) 2021; 100:e25154. [PMID: 33761685 PMCID: PMC10545272 DOI: 10.1097/md.0000000000025154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 11/30/2020] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
ABSTRACT During last decade, bioinformatics analysis has provided an effective way to study the relationship between various genes and biological processes. In this study, we aimed to identify potential core candidate genes and underlying mechanisms of progression of lung and gastric carcinomas which both originated from endoderm. The expression profiles, GSE54129 (gastric carcinoma) and GSE27262 (lung carcinoma), were collected from GEO database. One hundred eleven patients with gastric carcinoma and 21 health people were included in this research. Meanwhile, there were 25 lung carcinoma patients. Then, 75 differentially expressed genes were selected via GEO2R online tool and Venn software, including 31 up-regulated genes and 44 down-regulated genes. Next, we used Database for Annotation, Visualization, and Integrated Discovery and Metascpe software to analyze Kyoto Encyclopedia of Gene and Genome pathway and gene ontology. Furthermore, Cytoscape software and MCODE App were performed to construct complex of these differentially expressed genes . Twenty core genes were identified, which mainly enriched in extracellular matrix-receptor interaction, focal adhesion, and PI3K-Akt pathway (P < .01). Finally, the significant difference of gene expression between cancer tissues and normal tissues in both lung and gastric carcinomas was examined by Gene Expression Profiling Interactive Analysis database. Twelve candidate genes with positive statistical significance (P < .01), COMP CTHRC1 COL1A1 SPP1 COL11A1 COL10A1 CXCL13 CLDN3 CLDN1 matrix metalloproteinases 7 ADAM12 PLAU, were picked out to further analysis. The Kaplan-Meier plotter website was applied to examine relationship among these genes and clinical outcomes. We found 4 genes (ADAM12, SPP1, COL1A1, COL11A1) were significantly associated with poor prognosis in both lung and gastric carcinoma patients (P < .05). In conclusion, these candidate genes may be potential therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Yewen Shi
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University
| | - Dongmin Chang
- Department of Surgical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University
| | - Wenhan Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital
- The Third Affiliated Hospital, the School of Medicine Xi’an Jiaotong University
| | - FengYu Zhao
- Department of Surgical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University
| | - Xiaoyong Ren
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University
| | - Bin Hou
- The Third Affiliated Hospital, the School of Medicine Xi’an Jiaotong University
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
23
|
Miao TW, Xiao W, Du LY, Mao B, Huang W, Chen XM, Li C, Wang Y, Fu JJ. High expression of SPP1 in patients with chronic obstructive pulmonary disease (COPD) is correlated with increased risk of lung cancer. FEBS Open Bio 2021; 11:1237-1249. [PMID: 33626243 PMCID: PMC8016137 DOI: 10.1002/2211-5463.13127] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/07/2021] [Accepted: 02/22/2021] [Indexed: 02/05/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by persistent airway inflammation and fixed airflow obstruction. Patients with COPD have increased risk of lung cancer (LC), and the coexistence of both diseases is associated with poorer survival. However, the mechanisms predisposing patients with COPD to LC development and poor prognosis remain unclear. Gene expression profiles were downloaded from the Gene Expression Omnibus. Twenty‐two data sets were included (n = 876). We identified 133 DEGs and 145 DEGs in patients with COPD and LC compared with healthy controls, respectively. There were 1544 DEGs in patients with LC and coexisting COPD compared with COPD, and these DEGs are mainly involved in the cell cycle, DNA replication, p53 signalling and insulin signalling. The biological processes primarily associated with these DEGs are oxidation reduction and apoptosis. SPP1 was the only overlapping DEG that was up‐regulated in patients with COPD and/or LC, and this was validated by qPCR in an independent cohort. The area under the curve value for SPP1 was 0.893 (0.822–0.963) for the prediction of LC in patients with COPD. High expression of SPP1 in patients with LC was associated with shorter survival time. Up‐regulation of SPP1 may be associated with increased risk of LC in patients with COPD and therefore may have potential as a therapeutic target for LC in patients with COPD.
Collapse
Affiliation(s)
- Ti-Wei Miao
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Xiao
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Long-Yi Du
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Mao
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- West China Biobanks, Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China
| | - Xue-Mei Chen
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, China
| | - Cong Li
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Wang
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, China
| | - Juan-Juan Fu
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Hughes AM, Kolb AD, Shupp AB, Shine KM, Bussard KM. Printing the Pathway Forward in Bone Metastatic Cancer Research: Applications of 3D Engineered Models and Bioprinted Scaffolds to Recapitulate the Bone-Tumor Niche. Cancers (Basel) 2021; 13:507. [PMID: 33572757 PMCID: PMC7865550 DOI: 10.3390/cancers13030507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer commonly metastasizes to bone, resulting in osteolytic lesions and poor patient quality of life. The bone extracellular matrix (ECM) plays a critical role in cancer cell metastasis by means of the physical and biochemical cues it provides to support cellular crosstalk. Current two-dimensional in-vitro models lack the spatial and biochemical complexities of the native ECM and do not fully recapitulate crosstalk that occurs between the tumor and endogenous stromal cells. Engineered models such as bone-on-a-chip, extramedullary bone, and bioreactors are presently used to model cellular crosstalk and bone-tumor cell interactions, but fall short of providing a bone-biomimetic microenvironment. Three-dimensional bioprinting allows for the deposition of biocompatible materials and living cells in complex architectures, as well as provides a means to better replicate biological tissue niches in-vitro. In cancer research specifically, 3D constructs have been instrumental in seminal work modeling cancer cell dissemination to bone and bone-tumor cell crosstalk in the skeleton. Furthermore, the use of biocompatible materials, such as hydroxyapatite, allows for printing of bone-like microenvironments with the ability to be implanted and studied in in-vivo animal models. Moreover, the use of bioprinted models could drive the development of novel cancer therapies and drug delivery vehicles.
Collapse
Affiliation(s)
- Anne M. Hughes
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| | - Alexus D. Kolb
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.D.K.); (A.B.S.)
| | - Alison B. Shupp
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.D.K.); (A.B.S.)
| | - Kristy M. Shine
- Health Design Lab, Jefferson Bioprinting Lab, Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Karen M. Bussard
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.D.K.); (A.B.S.)
| |
Collapse
|
25
|
Fu Y, Zhang Y, Lei Z, Liu T, Cai T, Wang A, Du W, Zeng Y, Zhu J, Liu Z, Huang JA. Abnormally activated OPN/integrin αVβ3/FAK signalling is responsible for EGFR-TKI resistance in EGFR mutant non-small-cell lung cancer. J Hematol Oncol 2020; 13:169. [PMID: 33287873 PMCID: PMC7720454 DOI: 10.1186/s13045-020-01009-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/24/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Acquired epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) resistance limits the long-term clinical efficacy of tyrosine kinase-targeting drugs. Although most of the mechanisms of acquired EGFR-TKI resistance have been revealed, the mechanism of ~ 15% of cases has not yet been elucidated. METHODS Cell viability was analysed using the Cell Counting Kit-8 (CCK-8) assay. Proteome profiler array analysis was performed to find proteins contributing to acquired EGFR-TKI resistance. Secreted OPN was detected by ELISA. Immunohistochemical analysis was conducted to detect expression of integrin αV in NSCLC tissue. The effect of VS-6063 on apoptosis and proliferation of PC9 gefitinib-resistant cells was detected by fluorescence-activated cell sorting (FACS) and clonogenic assays. A mouse xenograft model was used to assess the effect of VS-6063 on the sensitivity of PC9 gefitinib-resistant cells to gefitinib. RESULTS OPN was overexpressed in acquired EGFR-TKI-resistant NSCLCs. Secreted OPN contributed to acquired EGFR-TKI resistance by activating the integrin αVβ3/FAK pathway. Inhibition of FAK signalling increased sensitivity to EGFR-TKIs in PC9 gefitinib-resistant cells both in vitro and in vivo. CONCLUSIONS OPN contributes to acquired EGFR-TKI resistance by up-regulating expression of integrin αVβ3, which activates the downstream FAK/AKT and ERK signalling pathways to promote cell proliferation in NSCLC.
Collapse
Affiliation(s)
- Yulong Fu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, People's Republic of China
| | - Yang Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, People's Republic of China
| | - Zhe Lei
- Department of Genetics, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, 215123, People's Republic of China
| | - Ting Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, People's Republic of China
| | - Tingting Cai
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, People's Republic of China
| | - Anqi Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, People's Republic of China
| | - Wenwen Du
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, People's Republic of China
| | - Yuanyuan Zeng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, People's Republic of China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, People's Republic of China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, People's Republic of China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, People's Republic of China
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, People's Republic of China.
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, People's Republic of China.
| | - Jian-An Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, People's Republic of China.
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, People's Republic of China.
| |
Collapse
|
26
|
Osteopontin: A Key Regulator of Tumor Progression and Immunomodulation. Cancers (Basel) 2020; 12:cancers12113379. [PMID: 33203146 PMCID: PMC7698217 DOI: 10.3390/cancers12113379] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Anti-PD-1/PD-L1 and anti-CTLA-4-based immune checkpoint blockade (ICB) immunotherapy have recently emerged as a breakthrough in human cancer treatment. Durable efficacy has been achieved in many types of human cancers. However, not all human cancers respond to current ICB immunotherapy and only a fraction of the responsive cancers exhibit efficacy. Osteopontin (OPN) expression is highly elevated in human cancers and functions as a tumor promoter. Emerging data suggest that OPN may also regulate immune cell function in the tumor microenvironment. This review aims at OPN function in human cancer progression and new findings of OPN as a new immune checkpoint. We propose that OPN compensates PD-L1 function to promote tumor immune evasion, which may underlie human cancer non-response to current ICB immunotherapy. Abstract OPN is a multifunctional phosphoglycoprotein expressed in a wide range of cells, including osteoclasts, osteoblasts, neurons, epithelial cells, T, B, NK, NK T, myeloid, and innate lymphoid cells. OPN plays an important role in diverse biological processes and is implicated in multiple diseases such as cardiovascular, diabetes, kidney, proinflammatory, fibrosis, nephrolithiasis, wound healing, and cancer. In cancer patients, overexpressed OPN is often detected in the tumor microenvironment and elevated serum OPN level is correlated with poor prognosis. Initially identified in activated T cells and termed as early T cell activation gene, OPN links innate cells to adaptive cells in immune response to infection and cancer. Recent single cell RNA sequencing revealed that OPN is primarily expressed in tumor cells and tumor-infiltrating myeloid cells in human cancer patients. Emerging experimental data reveal a key role of OPN is tumor immune evasion through regulating macrophage polarization, recruitment, and inhibition of T cell activation in the tumor microenvironment. Therefore, in addition to its well-established direct tumor cell promotion function, OPN also acts as an immune checkpoint to negatively regulate T cell activation. The OPN protein level is highly elevated in peripheral blood of human cancer patients. OPN blockade immunotherapy with OPN neutralization monoclonal antibodies (mAbs) thus represents an attractive approach in human cancer immunotherapy.
Collapse
|
27
|
Parker AL, Cox TR. The Role of the ECM in Lung Cancer Dormancy and Outgrowth. Front Oncol 2020; 10:1766. [PMID: 33014869 PMCID: PMC7516130 DOI: 10.3389/fonc.2020.01766] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
The dissemination of tumor cells to local and distant sites presents a significant challenge in the clinical management of many solid tumors. These cells may remain dormant for months or years before overt metastases are re-awakened. The components of the extracellular matrix, their posttranslational modifications and their associated factors provide mechanical, physical and chemical cues to these disseminated tumor cells. These cues regulate the proliferative and survival capacity of these cells and lay the foundation for their engraftment and colonization. Crosstalk between tumor cells, stromal and immune cells within primary and secondary sites is fundamental to extracellular matrix remodeling that feeds back to regulate tumor cell dormancy and outgrowth. This review will examine the role of the extracellular matrix and its associated factors in establishing a fertile soil from which individual tumor cells and micrometastases establish primary and secondary tumors. We will focus on the role of the lung extracellular matrix in providing the architectural support for local metastases in lung cancer, and distant metastases in many solid tumors. This review will define how the matrix and matrix associated components are collectively regulated by lung epithelial cells, fibroblasts and resident immune cells to orchestrate tumor dormancy and outgrowth in the lung. Recent advances in targeting these lung-resident tumor cell subpopulations to prevent metastatic disease will be discussed. The development of novel matrix-targeted strategies have the potential to significantly reduce the burden of metastatic disease in lung and other solid tumors and significantly improve patient outcome in these diseases.
Collapse
Affiliation(s)
- Amelia L Parker
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Thomas R Cox
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| |
Collapse
|
28
|
Squalene synthase promotes the invasion of lung cancer cells via the osteopontin/ERK pathway. Oncogenesis 2020; 9:78. [PMID: 32862200 PMCID: PMC7456423 DOI: 10.1038/s41389-020-00262-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/31/2022] Open
Abstract
Cholesterol is the major component of lipid rafts. Squalene synthase (SQS) is a cholesterol biosynthase that functions in cholesterol biosynthesis, modulates the formation of lipids rafts and promotes lung cancer metastasis. In this study, we investigated the lipid raft-associated pathway of SQS in lung cancer. Gene expression microarray data revealed the upregulation of secreted phosphoprotein 1 (SPP1; also known as osteopontin, OPN) in CL1-0/SQS-overexpressing cells. Knockdown of OPN in SQS-overexpressing cells inhibits their migration and invasion, whereas an OPN treatment rescues the migration and invasion of SQS knockdown cells. High OPN expression is associated with lymph node status, advanced stage and poor prognosis in patients with lung cancer. Moreover, patients with high SQS expression and high OPN expression show poor survival compared with patients with low SQS expression and low OPN expression. SQS induces the phosphorylation of Src and ERK1/2 via OPN, resulting in increased expression of MMP1 and subsequent metastasis of lung cancer cells. Based on our findings, SQS expression increases the expression of OPN and phosphorylation of Src through cholesterol synthesis to modulate the formation of lipid rafts. SQS may represent a therapeutic strategy for lung cancer.
Collapse
|
29
|
Liu K, Hu H, Jiang H, Liu C, Zhang H, Gong S, Wei D, Yu Z. Upregulation of secreted phosphoprotein 1 affects malignant progression, prognosis, and resistance to cetuximab via the KRAS/MEK pathway in head and neck cancer. Mol Carcinog 2020; 59:1147-1158. [PMID: 32805066 DOI: 10.1002/mc.23245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
Acquired resistance is a barrier to cetuximab efficacy in patients with head and neck squamous cell carcinoma (HNSCC). Secreted phosphoprotein 1 (SPP1) is involved in various biological processes, including immune responses, cancer progression, and prognosis in many cancers, while little is known in HNSCC. Bioinformatics methods were used to identify candidate genes and further in vivo and in vitro experiments were performed to examine and validate the function of SPP1. We found that SPP1 was upregulated and has been found to have an oncogenic role in HNSCC. We further confirmed that overexpression of SPP1 affected proliferation, migration, invasion, and survival, and inhibited apoptosis, whereas silencing of SPP1 yielded opposite results to those of SPP1 overexpression. In addition, activation of the KRAS/MEK pathway contributed to the SPP1-induced malignant progression of HNSCC and resistance to cetuximab. Furthermore, SPP1 knockdown or an MEK inhibitor overcame this cetuximab-resistance pattern. Taken together, our findings for the first time identify the role of SPP1 in tumor promotion, prognostic prediction, and potential therapeutic targeting, as well as resistance to cetuximab in HNSCC.
Collapse
Affiliation(s)
- Kai Liu
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Center of Yu Zhenkun Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huiying Hu
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Center of Yu Zhenkun Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huanyu Jiang
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Center of Yu Zhenkun Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenglei Liu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haidong Zhang
- Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Center of Yu Zhenkun Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shanchun Gong
- Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Center of Yu Zhenkun Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongmin Wei
- Department of Otorhinolaryngology, Key Laboratory of Otolaryngology, Qilu Hospital, Shandong University, NHFPC (Shandong University), Jinan, Shandong, China
| | - Zhenkun Yu
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Center of Yu Zhenkun Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
30
|
Li J, Wang B, Li X, Zhu Y. Estimation of Hub Genes and Infiltrating Immune Cells in Non-Smoking Females with Lung Adenocarcinoma by Integrated Bioinformatic Analysis. Med Sci Monit 2020; 26:e922680. [PMID: 32669531 PMCID: PMC7384333 DOI: 10.12659/msm.922680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In recent years, the morbidity and mortality rates of lung adenocarcinoma in non-smoking females have been increasing dramatically. Although much research has been done with some progress, the molecular mechanism remains unclear. In this study we aimed to estimate hub genes and infiltrating immune cells in non-smoking females with lung adenocarcinoma. MATERIAL AND METHODS Firstly, we obtained differentially expressed genes (DEGs) by GEO2R analysis based on 3 independent mRNA microarray datasets of GSE10072, GSE31547, and GSE32863. The DAVID database was utilized for functional enrichment analysis of DEGs. Moreover, we identified hub genes with prognostic value by STRING, Cytoscape, and Kaplan Meier plotter. Subsequently, these genes were further analyzed by Gene Expression Profiling Interactive Analysis, Oncomine, Tumor Immune Estimation Resource, and Human Protein Atlas. Finally, the immune infiltration analysis was performed by CIBERSORT and The Cancer Genome Atlas with R packages. RESULTS We found 315 DEGs enriching in the extracellular matrix organization, cell adhesion, integrin binding, angiogenesis, and hypoxic response. And among these DEGs, we identified 10 hub genes (SPP1, ENG, ATF3, TOP2A, COL1A1, PAICS, CAV1, CAT, TGFBR2, and ANGPT1) of significant prognostic value. Simultaneously, we illustrated the distribution and differential expressions of 22 immune cell subtypes. and dendritic cells resting and macrophages M1 were identified with prognostic significance. CONCLUSIONS The results indicated that 10 hub genes and 2 immune cell subtypes might be promising biomarkers for lung adenocarcinoma in non-smoking females. This finding needs to be further evaluated.
Collapse
Affiliation(s)
- Jie Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Ben Wang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Xin Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Yuxi Zhu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
31
|
Cui J, Wang J, Lin C, Liu J, Zuo W. Osteopontin Mediates Cetuximab Resistance via the MAPK Pathway in NSCLC Cells. Onco Targets Ther 2020; 12:10177-10185. [PMID: 32063712 PMCID: PMC6884967 DOI: 10.2147/ott.s228437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/05/2019] [Indexed: 01/21/2023] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. The high expression of osteopontin (OPN) is an important factor that aggravates drug resistance and causes a poor prognosis in this disease. Therefore, understanding the molecular mechanism of OPN is critical for the treatment and prognosis of NSCLC. Methods We used bioinformatics analysis to verify the expression of OPN in normal lung tissues and lung cancer tissues. Then we overexpressed and knocked down OPN in cell lines to detect cell proliferation, migration, invasion, and effects on signaling pathways. Finally, malignant progression and drug resistance induced by OPN were investigated by the wound healing assay, transwell assay, clone formation assay, and Western blot analysis. Results We verified that OPN was upregulated in NSCLC tissues, and its overexpression induced NSCLC cell proliferation, migration, and invasion via the mitogen-activated protein kinase (MAPK) pathway. Furthermore, overexpression of OPN reduced the sensitivity of NSCLC cells to cetuximab by upregulating MAPK pathway-related proteins. These results suggested that OPN promoted malignant progression and mediated drug resistance via the MAPK signaling pathway in NSCLC cells. Conclusion This study reveals the important role of OPN in NSCLC cells, making it a potential target for improving chemotherapy efficiency in patients with NSCLC.
Collapse
Affiliation(s)
- Jian Cui
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Jun Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Chao Lin
- Department of General Practice, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Jixiang Liu
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Wei Zuo
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| |
Collapse
|
32
|
Mukama O, Wu W, Wu J, Lu X, Liu Y, Liu Y, Liu J, Zeng L. A highly sensitive and specific lateral flow aptasensor for the detection of human osteopontin. Talanta 2019; 210:120624. [PMID: 31987218 DOI: 10.1016/j.talanta.2019.120624] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
The rapid determination of human osteopontin (OPN) protein, a potential cancer biomarker, holds substantial promise for point-of-care diagnostics and biomedical applications. To date, most reported platforms for OPN detection are apparatus-dependent, time-consuming, and expensive. Herein, we established a lateral flow biosensor (LFB) for OPN detection. A biotinylated aptamer was used for OPN pre-capture from samples, an antibody for OPN was immobilized on the test line for a second specific target identification, and streptavidin-modified gold nanoparticles were sprayed on the conjugation pad for color detection. This LFB achieved as low as 0.1 ng mL-1 OPN sensitivity with a good dynamic detection between 10 and 500 ng mL-1 within 5 min. Intriguingly, the LFB allowed a qualitative and semi-quantitative detection of OPN in serum at clinically cut-off levels as in cancer patients, and can discriminate OPN from interfering proteins with high specificity. Thus, it is a promising alterative approach for point-of-care OPN screening and detection.
Collapse
Affiliation(s)
- Omar Mukama
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Department of Applied Biology, College of Science and Technology, University of Rwanda, Avenue de l'armée, P.O. Box: 3900, Kigali, Rwanda; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jinghua Wu
- School of Food Science and Engineering, Foshan University, Foshan, 528231, China
| | - Xuewen Lu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yumei Liu
- School of Food Science and Engineering, Foshan University, Foshan, 528231, China
| | - Yujie Liu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiaxin Liu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Lingwen Zeng
- School of Food Science and Engineering, Foshan University, Foshan, 528231, China.
| |
Collapse
|
33
|
Kolb AD, Bussard KM. The Bone Extracellular Matrix as an Ideal Milieu for Cancer Cell Metastases. Cancers (Basel) 2019; 11:cancers11071020. [PMID: 31330786 PMCID: PMC6678871 DOI: 10.3390/cancers11071020] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/01/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Bone is a preferential site for cancer metastases, including multiple myeloma, prostate, and breast cancers.The composition of bone, especially the extracellular matrix (ECM), make it an attractive site for cancer cell colonization and survival. The bone ECM is composed of living cells embedded within a matrix composed of both organic and inorganic components. Among the organic components, type I collagen provides the tensile strength of bone. Inorganic components, including hydroxyapatite crystals, are an integral component of bone and provide bone with its rigidity. Under normal circumstances, two of the main cell types in bone, the osteoblasts and osteoclasts, help to maintain bone homeostasis and remodeling through cellular communication and response to biophysical signals from the ECM. However, under pathological conditions, including osteoporosis and cancer, bone remodeling is dysregulated. Once in the bone matrix, disseminated tumor cells utilize normal products of bone remodeling, such as collagen type I, to fuel cancer cell proliferation and lesion outgrowth. Models to study the complex interactions between the bone matrix and metastatic cancer cells are limited. Advances in understanding the interactions between the bone ECM and bone metastatic cancer cells are necessary in order to both regulate and prevent metastatic cancer cell growth in bone.
Collapse
Affiliation(s)
- Alexus D Kolb
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Karen M Bussard
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
34
|
Sun R, Meng X, Wang W, Liu B, Lv X, Yuan J, Zeng L, Chen Y, Yuan B, Yang S. Five genes may predict metastasis in non-small cell lung cancer using bioinformatics analysis. Oncol Lett 2019; 18:1723-1732. [PMID: 31423239 PMCID: PMC6607402 DOI: 10.3892/ol.2019.10498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 05/14/2019] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is one of the most common types of malignancy worldwide. The prognosis of lung cancer is poor, due to the onset of metastases. The aim of the present study was to examine lung cancer metastasis-associated genes. To identify novel metastasis-associated targets, our previous study detected the differentially expressed mRNAs and long non-coding RNAs between the large-cell lung cancer high-metastatic 95D cell line and the low-metastatic 95C cell line by microarray assay. In the present study, these differentially expressed genes (DEGs) were analyzed via bioinformatics methods, including Gene Ontology functional analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. A protein-protein interaction network was subsequently constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins online database and Cytoscape software, and 17 hub genes were screened out on the basis of connectivity degree. These hub genes were further validated in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) using the online Gene Expression Profiling Interactive Analysis database. A total of seven hub genes were identified to be significantly differentially expressed in LUAD and LUSC. The prognostic information was detected using Kaplan-Meier plotter. As a result, five genes were revealed to be closely associated with the overall survival time of patients with lung cancer, including phosphoinositide-3-kinase regulatory subunit 1, FYN, thrombospondin 1, nonerythrocytic α-spectrin 1 and secreted phosphoprotein 1. In addition, lung cancer and adjacent lung tissue samples were used to validate these hub genes by reverse transcription-quantitative polymerase chain reaction. In conclusion, the results of the present study may provide novel metastasis-associated therapeutic strategies or potential biomarkers in non-small cell lung cancer.
Collapse
Affiliation(s)
- Ruiying Sun
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xia Meng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Boxuan Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xin Lv
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jingyan Yuan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Lizhong Zeng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yang Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Bo Yuan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
35
|
Cheng Y, Wen G, Sun Y, Shen Y, Zeng Y, Du M, Zhu G, Wang G, Meng X. Osteopontin Promotes Colorectal Cancer Cell Invasion and the Stem Cell-Like Properties through the PI3K-AKT-GSK/3β-β/Catenin Pathway. Med Sci Monit 2019; 25:3014-3025. [PMID: 31017126 PMCID: PMC6496974 DOI: 10.12659/msm.913185] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Osteopontin (OPN) is a molecule expressed in numerous cancers including colorectal cancer (CRC) that correlates disease progression. The interaction of OPN that promotes CRC cell migration, invasion, and cancer stem-like cells (CSCs) have not been elucidated. Hence, we aimed to investigate the mechanisms that might be involved. MATERIAL AND METHODS Expression of OPN in tumor tissues derived from patients was monitored with real-time quantitative polymerase chain reaction and western blot. Wound healing and Transwell assay were used to test the differences in migration and invasion in an OPN enriched environment and OPN knockdown condition. Aldehyde dehydrogenase 1 (ALDH1) positive stem cells were isolated using fluorescence-activated cell sorting (FACS) following the protocol of the ALDEFLUOR™ kit. The expression of protein participation in the PI3K-Akt-GSK/3ß-ß/catenin pathway was detected by western blot. RESULTS OPN exhibited increased levels in CRC tumor tissue compared with non-tumor normal tissue and the high level of which correlated with lymphatic metastasis and late TNM stage. Additional rhOPN co-cultured low-expression CRC cells demonstrated more aggressive capability of proliferation, migration, and invasion. For knockdown of OPN in high-expression CRC cells, the bioactivities of proliferation, migration, and invasion were significantly inhibited. Interestingly, the percentage of ALDH1 labeled stem cells was dramatically decreased by OPN inhibition. The phosphorylation of PI3K-Akt-GSK/3ß-ß/catenin pathway was involved in the OPN signaling. Furthermore, Ly294002, a specific PI3K inhibitor, can reverse the promotion of bioactivities and stem cell proportion among rhOPN treated CRC cells. CONCLUSIONS OPN promoted cell proliferation, migration, and invasion, and was accompanied by upregulation of ALDH1-positive CSC in CRC through activation of PI3K-Akt-GSK/3ß-ß/catenin pathway.
Collapse
Affiliation(s)
- Yuanguang Cheng
- Department of Gastrointestinal Surgery, The First Afliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Gang Wen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Yong Sun
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Yang Shen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Yongqing Zeng
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Ming Du
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Guangyu Zhu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Guanglong Wang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Xiangling Meng
- Department of Gastrointestinal Surgery, The First Afliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| |
Collapse
|
36
|
Wang X, Zhang F, Yang X, Xue M, Li X, Gao Y, Liu L. Secreted Phosphoprotein 1 (SPP1) Contributes to Second-Generation EGFR Tyrosine Kinase Inhibitor Resistance in Non-Small Cell Lung Cancer. Oncol Res 2019; 27:871-877. [PMID: 30832751 PMCID: PMC7848392 DOI: 10.3727/096504018x15426271404407] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Second-generation irreversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), afatinib, has been approved for treating EGFR mutant lung cancer patients, but the mechanism of acquired resistance to afatinib has not been well studied. In this study, we established afatinib acquired resistant cell lines. Gene array technology was used to screen changes in gene expression between afatinib-resistant lung cancer cells and parental cells. Our results showed that secreted phosphoprotein 1 (SPP1) was significantly increased in afatinib-resistant lung cancer cells. To study the effect of SPP1 on afatinib resistance, siSPP1 was used to knock down SSP1 in afatinib-resistant lung cancer cells. Then sensitivity to afatinib and invasive ability were studied. We found that knockdown of SPP1 increased sensitivity of lung cancer cells to afatinib and decrease the ability of invasion. Of clinical significance, we found that SSP1 was upregulated in lung cancer tissues compared with adjacent normal tissues, and low level of SSP1 was strongly associated with better overall survival. Our results suggest that SPP1 enhanced the second-generation EGFR TKI resistance in lung cancer, and inhibiting SPP1 might be a therapeutic target to overcome afatinib resistance.
Collapse
Affiliation(s)
- Xinwen Wang
- Department of Oncology, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, P.R. China
| | - Fupeng Zhang
- Department of Oncology, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, P.R. China
| | - Xi Yang
- Department of Oncology, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, P.R. China
| | - Meiping Xue
- Department of Oncology, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, P.R. China
| | - Xiaoli Li
- Department of Oncology, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, P.R. China
| | - Yu Gao
- Department of Oncology, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, P.R. China
| | - Likun Liu
- Department of Oncology, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, P.R. China
| |
Collapse
|
37
|
Han X, Wang W, He J, Jiang L, Li X. Osteopontin as a biomarker for osteosarcoma therapy and prognosis. Oncol Lett 2019; 17:2592-2598. [PMID: 30854034 PMCID: PMC6365895 DOI: 10.3892/ol.2019.9905] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma (OS) is the most common bone malignancy, and is particularly prevalent in children and adolescents. OS is an aggressive tumor with a tendency to metastasize and invade to para-carcinoma tissues. The primary treatment for this tumor is a combination of surgery and chemotherapy. However, the prognosis remains poor due to chemoresistance and early metastasis. Osteopontin (OPN), a multifunctional secreted protein, has emerged as an important potential biomarker for diagnosing and treating cancer. The overexpression of OPN has been found in numerous malignant tumors, including breast, lung, gastric and ovarian cancer, as well as melanoma. Recent studies have suggested that OPN may provide an important function in the diagnosis and treatment of OS. The present review summarizes current knowledge and progress in understanding the potential role of OPN as a biomarker in OS.
Collapse
Affiliation(s)
- Xingwen Han
- Department of Orthopedics, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wenji Wang
- Department of Orthopedics, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jingjing He
- Department of Liver Diseases, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lei Jiang
- Department of Oncology Surgery, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xun Li
- Department of General Surgery, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
38
|
Xu Y, Shen K. Identification of potential key genes associated with ovarian clear cell carcinoma. Cancer Manag Res 2018; 10:5461-5470. [PMID: 30519094 PMCID: PMC6234989 DOI: 10.2147/cmar.s187156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Ovarian cancer is the major cause of death from cancer among females worldwide. Ovarian clear cell carcinoma (OCCC) is considered a distinct histopathologic subtype with worse prognosis and resistance to conventional chemotherapy. Materials and methods We analyzed five microarray datasets derived from the Gene Expression Omnibus database. GEO2R tool was used to screen out differentially expressed genes (DEGs) between OCCC tumor and normal ovary tissue. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed using the g:Profiler database and Cytoscape. Based on Search Tool for the Retrieval of Interacting Genes, we performed protein-protein interaction (PPI) network analysis on the DEGs. Real-time PCR (RT-PCR) and Western blotting in frozen samples of normal ovary and OCCC were performed to verify the expression difference of hub genes in OCCC patients. Results Thirty upregulated DEGs and 13 downregulated DEGs were identified by cross referencing. Six were chosen as hub genes with high connectivity degree via PPI network analysis, including two upregulated and four downregulated. RT-PCR and Western blotting results showed significant expression difference of the two upregulated genes, SPP1 and EPCAM, between tumor and normal tissues. Conclusion Our research suggests that SPP1 and EPCAM are overexpressed in OCCC compared with normal ovary tissue. Clinical study of large sample is required to evaluate the value of SPP1 and EPCAM in the precision treatment and prognostic influence on OCCC in the future.
Collapse
Affiliation(s)
- Youzheng Xu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Eastern District, Beijing 100730, China,
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Eastern District, Beijing 100730, China,
| |
Collapse
|
39
|
Ouyang X, Huang Y, Jin X, Zhao W, Hu T, Wu F, Huang J. Osteopontin promotes cancer cell drug resistance, invasion, and lactate production and is associated with poor outcome of patients with advanced non-small-cell lung cancer. Onco Targets Ther 2018; 11:5933-5941. [PMID: 30275702 PMCID: PMC6157984 DOI: 10.2147/ott.s164007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Osteopontin (OPN), a member of the small integrin binding ligand N-linked glycoprotein family, has been analyzed in numerous types of human malignancy. PURPOSE The present study detected the expression levels of OPN and evaluated its role in tumor progression in patients with non-small cell lung cancer (NSCLC). PATIENTS AND METHODS OPN expression levels were detected using immunohistochemistry in 101 NSCLC tumors. The mRNA and protein levels have significant difference between advanced NSCLC and stage I/II NSCLC. The drug resistance, invasive ability and lactate production of NSCLC cancer cell lines (A549 and SK-MES-1) were detected in cancer cells with the disturbance of OPN. RESULTS Immunostaining indicated that OPN was primarily expressed in the cytoplasm of NSCLC cells. Moreover, OPN correlates with NSCLC clinical traits. The results demonstrated that OPN expression levels significantly correlated with cancer differentiation, distant metastasis and the efficacy of platinum-based treatment. Notably, the results identified OPN expression levels as a potential factor for predicting the response of cells to first-line platinum-based chemotherapy using multivariate analysis, as well as predicting cancer differentiation and distant metastasis. Additionally, the abrogation of OPN levels reduced lactate production in NSCLC cells and occurred along side with the downregulation of lactate dehydrogenase A (LDHA). CONCLUSION The results of the current study suggest that OPN may be able to predict poor prognosis and cisplatin resistance in patients.
Collapse
Affiliation(s)
- Xiaoping Ouyang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China,
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, People's Republic of China
| | - Yumin Huang
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, People's Republic of China
| | - Xing Jin
- Department of Clinical Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou, People's Republic of China
| | - Wei Zhao
- Department of Clinical Biochemistry, School of Laboratory Medicine, Chengdu Medical College, Chengdu, People's Republic of China
- Department of Pulmonary Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People's Republic of China
| | - Tao Hu
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, People's Republic of China
| | - Feng Wu
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, People's Republic of China
| | - Jianan Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China,
| |
Collapse
|
40
|
Zeng B, Zhou M, Wu H, Xiong Z. SPP1 promotes ovarian cancer progression via Integrin β1/FAK/AKT signaling pathway. Onco Targets Ther 2018; 11:1333-1343. [PMID: 29559792 PMCID: PMC5856063 DOI: 10.2147/ott.s154215] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Ovarian cancer is one of the most lethal malignant tumors in women. Secreted phosphoprotein 1 (SPP1) plays an important role in some cancer types. Therefore, the role of SPP1 in ovarian cancer was determined and the potential mechanism was elucidated. MATERIALS AND METHODS The expression of SPP1 in ovarian cancer was determined by immunohistochemistry in ovarian cancer tissues and normal ovarian tissues. Cellular proliferation, migration, and invasion were determined by cell counting kit-8 assay, wound healing assay, and Matrigel invasion assay in SKOV3 and A2780 cells. The protein expression of SPP1, integrin subunit β1 (Integrin β1), focal adhesion kinase (FAK), and phosphorylation protein kinase B (p-AKT) was detected by Western blotting in SKOV3 cells after silencing SPP1. The expression of SPP1 was determined in SKOV3 cells after transfecting with miR-181a mimics or inhibitors. The growth of SKOV3 cells in vivo was determined in a nude mouse model of ovarian cancer after silencing SPP1. RESULTS The expression of SPP1 was higher in epithelial ovarian cancer tissues than in normal ovarian tissues. Silencing SPP1 decreased the cell proliferation, migration, and invasion. Ectopic expression of SPP1 increased the cell proliferation, migration, and invasion. Silencing SPP1 prevented ovarian cancer growth in mice. Silencing SPP1 inhibited Integrin β1/FAK/AKT pathway. In agreement, ectopically expressed SPP1 activated Integrin β1/FAK/AKT pathway. Also, SPP1 was regulated by miR-181a. CONCLUSION SPP1 is a biomarker for the prognosis of ovarian cancer. It is also oncogenic and a potential target for ovarian cancer therapy.
Collapse
Affiliation(s)
- Biao Zeng
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Min Zhou
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Huan Wu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhengai Xiong
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
41
|
Prognostic implications of the co-detection of the urokinase plasminogen activator system and osteopontin in patients with non-small-cell lung cancer undergoing radiotherapy and correlation with gross tumor volume. Strahlenther Onkol 2018; 194:539-551. [PMID: 29340706 DOI: 10.1007/s00066-017-1255-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND The urokinase plasminogen activator system (uPA, uPAR, PAI‑1) is upregulated in cancer and high plasma levels are associated with poor prognosis. Their interaction with hypoxia-related osteopontin (OPN) which is also overexpressed in malignant tumors suggests potential clinical relevance. However, the prognostic role of the uPA system in the radiotherapy (RT) of non-small-cell lung cancer (NSCLC), particularly in combination with OPN, has not been investigated so far. METHODS uPA, uPAR, PAI‑1 and OPN plasma levels of 81 patients with locally advanced or metastasized NSCLC were prospectively analyzed by ELISA before RT and were correlated to clinical patient/tumor data and prognosis after RT. RESULTS uPAR plasma levels were higher in M1; uPA and PAI‑1 levels were higher in M0 NSCLC patients. uPAR correlated with uPA (p < 0.001) which also correlated with PAI‑1 (p < 0.001). The prognostic impact of OPN plasma levels in the RT of NSCLC was previously reported by our group. PAI‑I plasma levels significantly impacted overall (OS) and progression-free survival (PFS). Low PAI‑1 levels were associated with a significantly reduced OS and PFS with a nearly 2‑fold increased risk of death (p = 0.029) and tumor progression (p = 0.029). In multivariate analysis, PAI‑1 levels remained an independent prognostic factor for OS and PFS with a 3‑fold increased risk of death (p = 0.001). If PAI‑1 plasma levels were combined with OPN or tumor volume, we found an additive prognostic impact on OS and PFS with a 2.5- to 3‑fold increased risk of death (p = 0.01). CONCLUSION Our results suggest that PAI-1 but not uPA and uPAR might add prognostic information in patients with advanced NSCLC undergoing RT. High pretreatment PAI-1 plasma levels were found predominantly in M0-stage patients and indicate a favorable prognosis as opposed to OPN where high plasma levels are associated with poor survival and metastasis. In combination, PAI-1 and OPN levels successfully predicted outcome and additively correlated with prognosis. These findings support the notion of an antidromic prognostic impact of OPN and PAI-1 plasma levels in the RT of advanced NSCLC.
Collapse
|
42
|
Paleari L, Rotolo N, Imperatori A, Puzone R, Sessa F, Franzi F, Meacci E, Camplese P, Cesario A, Paganuzzi M. Osteopontin is not a Specific Marker in Malignant Pleural Mesothelioma. Int J Biol Markers 2018; 24:112-7. [DOI: 10.1177/172460080902400208] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background and aims: Osteopontin (OPN) is an integrin-binding protein recently shown to be related to tumorigenesis, progression and metastasis in different experimental models of malignancy. Malignant pleural mesothelioma (MPM) is a fatal disease in which the prognosis remains very poor and the knowledge of predictive factors for outcome is insufficient. The identification of new molecules involved in cancer initiation and development is a fundamental step for improving the curability of this kind of tumor. The purpose of this study is to define the role of OPN in the diagnosis of MPM by determining its prognostic and diagnostic value. Methods: a group of 24 surgically staged MPM subjects was compared with a group of 31 subjects with non-malignant pulmonary diseases, and with 37 healthy controls. Tumor tissue was analyzed for OPN by immunohistochemical tests, and plasma OPN levels were measured by an enzyme-linked immunosorbent assay. Results: Plasma OPN levels were not significantly higher in either of the patient groups compared with the control group. Immunohistochemical analysis revealed OPN staining of tumor cells in 21 of 24 MPMs. Receiver operating characteristic curve/area under the curve (ROC/AUC) analysis comparing the plasma OPN levels in the healthy group with those of MPM patients showed 40% sensitivity and 100% specificity at a cutoff value of 60.8 ng of OPN per milliliter (AUC 0.6). Conclusion: Plasma OPN levels do not discriminate between chronic inflammatory and malignant lung diseases and staining intensity in MPM specimens does not correlate with OPN plasma levels.
Collapse
Affiliation(s)
- Laura Paleari
- Lung Cancer Unit, National Cancer
Research Institute, Genoa
| | - Nicola Rotolo
- Thoracic Surgery Unit, University of
Insubria, Varese
| | | | - Roberto Puzone
- Clinical Epidemiology, National Cancer
Research Institute, Genoa
| | - Fausto Sessa
- IRCCS Multimedica, Milan
- Pathology Unit, University of
Insubria, Varese
| | | | - Elisa Meacci
- Thoracic Surgery Unit, Catholic
University, Rome
| | | | - Alfredo Cesario
- Thoracic Surgery Unit, Catholic
University, Rome
- IRCCS San Raffaele Pisana, Rome
| | - Michela Paganuzzi
- Clinical Pathology Laboratory,
National Cancer Research Institute, Genoa - Italy
| |
Collapse
|
43
|
Gao Y, Chen L, Song H, Chen Y, Wang R, Feng B. A double-negative feedback loop between E2F3b and miR- 200b regulates docetaxel chemosensitivity of human lung adenocarcinoma cells. Oncotarget 2018; 7:27613-26. [PMID: 27027446 PMCID: PMC5053675 DOI: 10.18632/oncotarget.8376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/16/2016] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding small RNAs which negatively regulate gene expressions mainly through 3'-untranslated region (3'-UTR) binding of target mRNAs. Recent studies have highlighted the feedback loops between miRNAs and their target genes in physiological and pathological processes including chemoresistance of cancers. Our previous study identified miR-200b/E2F3 axis as a chemosensitivity restorer of human lung adenocarcinoma (LAD) cells. Moreover, E2F3b was bioinformatically proved to be a potential transcriptional regulator of pre-miR-200b gene promoter. The existance of this double-negative feedback minicircuitry comprising E2F3b and miR-200b was confirmed by chromatin immunoprecipitation (ChIP) assay, site-specific mutation and luciferase reporter assay. And the underlying regulatory mechanisms of this feedback loop on docetaxel resistance of LAD cells were further investigated by applying in vitro chemosensitivity assay, colony formation assay, flow cytometric analysis of cell cycle and apoptosis, as well as mice xenograft model. In conclusion, our results suggest that the double-negative feedback loop between E2F3b and miR-200b regulates docetaxel chemosensitivity of human LAD cells mainly through cell proliferation, cell cycle distribution and apoptosis.
Collapse
Affiliation(s)
- Yanping Gao
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Haizhu Song
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Yitian Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| |
Collapse
|
44
|
Fang Y, Wolfson B, Godbey WT. Non-invasive detection of bladder cancer via expression-targeted gene delivery. J Gene Med 2017; 19:366-375. [PMID: 29024250 DOI: 10.1002/jgm.2992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Because of the time and expense associated with the procedures and possible distress to the patient, cystoscopy or other imaging techniques are typically not used for bladder cancer detection before symptoms become present. Alternatively, commercial assays for urinary tumor markers exist but are marred by low sensitivity and high cost. There is a need for a simple and sensitive means of tumor detection, such as via the analysis of urine. METHODS Plasmids encoding the secretable reporter Gaussia Luciferase (G.LUC), under the control of cmv, cox2 or opn promoters, were delivered via polyethylenimine into bladder tumor cells in culture and into the bladders of mice. Expression profiles of the reporter were recorded, the optimal times for reporter detection were determined and the relationship of reporter expression with tumor size was calculated. RESULTS In vitro results showed that both the cox2 and opn promoters can drive significant expression of G.LUC in bladder carcinoma cells in a targeted fashion. In vivo results demonstrated that the cox2 promoter caused expression of G.LUC at detectable levels in the urine, with local signal maxima occurring at 48 and 72 h post-transfection. G.LUC levels in the urine had a 24-h periodicity, with the periodicity partly being the result of an agent secreted by tumor cells that served to mask the luciferase signal. CONCLUSIONS Having shown tumor specificity and having been calibrated with respect to circadian expression patterns, the detection system shows great promise for future investigation of tumor presence both in the urinary bladder and other models of cancer.
Collapse
Affiliation(s)
- Yunlan Fang
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA, USA
| | - Benjamin Wolfson
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA, USA
| | - W T Godbey
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA, USA
| |
Collapse
|
45
|
Novikova SE, Kurbatov LK, Zavialova MG, Zgoda VG, Archakov AI. [Omics technologies in diagnostics of lung adenocarcinoma]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:181-210. [PMID: 28781253 DOI: 10.18097/pbmc20176303181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To date lung adenocarcinoma (LAC) is the most common type of lung cancer. Numerous studies on LAC biology resulted in identification of crucial mutations in protooncogenes and activating neoplastic transformation pathways. Therapeutic approaches that significantly increase the survival rate of patients with LAC of different etiology have been developed and introduced into clinical practice. However, the main problem in the treatment of LAC is early diagnosis, taking into account both factors and mechanisms responsible in tumor initiation and progression. Identification of a wide biomarker repertoire with high specificity and reliability of detection appears to be a solution to this problem. In this context, proteins with differential expression in normal and pathological condition, suitable for detection in biological fluids are the most promising biomarkers. In this review we have analyzed literature data on studies aimed at search of LAC biomarkers. The major attention has been paid to protein biomarkers as the most promising and convenient subject of clinical diagnosis. The review also summarizes existing knowledge on posttranslational modifications, splice variants, isoforms, as well as model systems and transcriptome changes in LAC.
Collapse
Affiliation(s)
- S E Novikova
- Institute of Biomedical Chemistry, Moscow, Russia
| | - L K Kurbatov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
46
|
Zhang Y, Du W, Chen Z, Xiang C. Upregulation of PD-L1 by SPP1 mediates macrophage polarization and facilitates immune escape in lung adenocarcinoma. Exp Cell Res 2017; 359:449-457. [PMID: 28830685 DOI: 10.1016/j.yexcr.2017.08.028] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAMs) polarization represents a key regulatory process of tumor progression. However, the underlying mechanisms are unclear. This study aimed to investigate the relationship between secreted phosphoprotein 1 (SPP1) and TAMs in lung adenocarcinoma cells. THP-1 monocytes were differentiated into macrophages using PMA. PMA-treated THP-1 cells were co-cultured with human A549 cells culture supernatant. SPP1 expression in TAMs isolated from lung adenocarcinoma tissues and PMA-treated THP-1 cells were measured. Macrophage polarization was identified by flow cytometric analysis. Cell migration and apoptosis were assessed by Transwell migration assays and flow cytometric analysis, respectively. SPP1 is highly expressed in tumor tissues and TAMs isolated from patients with an advanced TNM stage, and also in PMA-treated THP-1 cells. Co-culture with A549 cells strongly induced SPP-1 expression as well as M2 polarization of THP-1 cells, but it had little effect on short hairpin SPP1 (shSPP1)-transfected THP-1 cells. Interestingly, programmed death ligand 1 (PD-L1), a critical regulator of M2 polarization, was downregulated in SPP1 knockdown THP-1 cells. Inhibition of PD-L1 induced a greater decline of the M2 markers IL-10 and Arg-1 but an increase in the M1 markers IL-12 and TNF-α. In addition, SPP1 knockdown in THP-1 cells can mitigate migration but promote apoptosis of A549 cells, and PD-L1 inhibition can further enhance this effect. THP-1 cells co-cultured with A549 cells attenuated CD4+ T-cell activation, whereas SPP1 inhibition restored T-cell activation. These results highlight the importance of SPP1 in mediating macrophage polarization and lung cancer evasion, suggesting a potential therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oncology, The First Hospital of Shijiazhuang City, Shijiazhuang 050010, China
| | - Weiwei Du
- Department of Oncology, Henan Province Hospital of TCM, Zhengzhou 450002, China
| | - Zhaoliang Chen
- Department of Oncology, Binzhou City Center Hospital, Binzhou 251700, China
| | - Cheng Xiang
- Department of Oncology, The First Hospital of Shijiazhuang City, Shijiazhuang 050010, China.
| |
Collapse
|
47
|
Kerenidi T, Kazakou AP, Lada M, Tsilioni I, Daniil Z, Gourgoulianis KI. Clinical Significance of Circulating Osteopontin Levels in Patients With Lung Cancer and Correlation With VEGF and MMP-9. Cancer Invest 2016; 34:385-92. [PMID: 27624849 DOI: 10.1080/07357907.2016.1223301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteopontin (OPN) is a multifunctional cytokine involved in carcinogenesis. Serum levels of OPN, vascular endothelial growth factor (VEGF), and matrix metalloproteinase-9 (MMP-9) were measured by ELISA in 90 lung cancer patients. OPN levels were elevated in patients compared to controls (p <.0001). Smokers, patients with worse performance status, and weight loss exhibited higher OPN levels (p =.0012,.00036, and.0003, respectively). Increased OPN levels were associated with worse survival (p =.0018). Finally, OPN levels were positively correlated with both VEGF (p =.0008) and MMP-9 (p <.0001). OPN might serve as a prognostic biomarker, and the positive correlation between OPN and both VEGF and MMP-9 could implicate new insights in tumor angiogenesis.
Collapse
Affiliation(s)
- Theodora Kerenidi
- a Respiratory Medicine Department , University of Thessaly Medical School, University Hospital of Larissa , Larissa , Greece
| | - Aikaterini P Kazakou
- a Respiratory Medicine Department , University of Thessaly Medical School, University Hospital of Larissa , Larissa , Greece
| | - Martha Lada
- a Respiratory Medicine Department , University of Thessaly Medical School, University Hospital of Larissa , Larissa , Greece
| | - Irini Tsilioni
- a Respiratory Medicine Department , University of Thessaly Medical School, University Hospital of Larissa , Larissa , Greece
| | - Zoe Daniil
- a Respiratory Medicine Department , University of Thessaly Medical School, University Hospital of Larissa , Larissa , Greece
| | - Konstantinos I Gourgoulianis
- a Respiratory Medicine Department , University of Thessaly Medical School, University Hospital of Larissa , Larissa , Greece
| |
Collapse
|
48
|
Shi L, Wang X. Role of osteopontin in lung cancer evolution and heterogeneity. Semin Cell Dev Biol 2016; 64:40-47. [PMID: 27578008 DOI: 10.1016/j.semcdb.2016.08.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022]
Abstract
Patients with lung cancer still have high mortality, recurrence rate after adjuvant treatment, and poor five-year survival rates, despite of advances in multidisciplinary anti-cancer therapies, e.g. chemotherapy, radiotherapy and targeted therapies, It depends upon the presence of intratumoral heterogeneity and complexity of lung cancer. There is growing evidence to suggest that osteopontin (OPN) may play a critical role in tumor progression and metastasis. The present review briefly describes the structure and molecular biology of OPN, highlights the role of OPN in the development and metastasis of lung cancer, and summarizes potential mechanisms of OPN heterogeneity in tumor to underline some of these inconsistencies. The article will emphasize the importance to understand the role of OPN in cancer evolution and heterogeneity and explore the potential of OPN as a therapeutic target.
Collapse
Affiliation(s)
- Lin Shi
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Shanghai, China.
| |
Collapse
|
49
|
Rouanne M, Adam J, Goubar A, Robin A, Ohana C, Louvet E, Cormier J, Mercier O, Dorfmüller P, Fattal S, de Montpreville VT, Lebret T, Dartevelle P, Fadel E, Besse B, Olaussen KA, Auclair C, Soria JC. Osteopontin and thrombospondin-1 play opposite roles in promoting tumor aggressiveness of primary resected non-small cell lung cancer. BMC Cancer 2016; 16:483. [PMID: 27422280 PMCID: PMC4947364 DOI: 10.1186/s12885-016-2541-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/28/2016] [Indexed: 01/15/2023] Open
Abstract
Background Osteopontin (OPN) and thrombospondin-1 (TSP-1) are extracellular matrix proteins secreted by stromal and tumor cells. These proteins appear to have a key role in the tumor microenvironment for cancer development and metastasis. There is little information regarding the prognostic value of the combination of these two proteins in human cancers. Our aim was to clarify clinical significance and prognostic value of each circulating protein and their combination in primary resected non-small cell lung cancer (NSCLC) patients. Methods We retrospectively reviewed 171 patients with NSCLC following curative intent surgery from January to December of 2012. Preoperative serums, demographics, clinical and pathological data and molecular profiling were analyzed. Pre-treatment OPN and TSP-1 serum levels were measured by ELISA. Tissue protein expression in primary tumor samples was determined by immunohistochemical analysis. Results OPN and TSP-1 serum levels were inversely correlated with survival rates. For each 50 units increment of serum OPN, an increased risk of metastasis by 69 % (unadjusted HR 1.69, 95 % CI 1.12–2.56, p = 0.01) and an increased risk of death by 95 % (unadjusted HR 1.95, 95 % CI 1.15–3.32, p = 0.01) were observed. Conversely, for each 10 units increment in TSP-1, the risk of death was decreased by 85 % (unadjusted HR 0.15, 95 % CI 0.03–0.89; p = 0.04). No statistically significant correlation was found between TSP-1 serum level and distant metastasis-free survival (p = 0.2). On multivariate analysis, OPN and TSP-1 serum levels were independent prognostic factors of overall survival (HR 1.71, 95 % CI 1.04–2.82, p = 0.04 for an increase of 50 ng/mL in OPN; HR 0.18, 95 % CI 0.04–0.87, p = 0.03 for an increase of 10 ng/mL in TSP-1). In addition, the combination of OPN and TSP-1 serum levels remained an independent prognostic factor for overall survival (HR 1.31, 95 % CI 1.03–1.67, p = 0.03 for an increase of 6 ng/mL in OPN/TSP-1 ratio). Conclusions Our results show that pre-treatment OPN and TSP-1 serum levels may reflect the aggressiveness of the tumor and might serve as prognostic markers in patients with primary resected NSCLC. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2541-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mathieu Rouanne
- INSERM Unit U981, Gustave Roussy Cancer Campus, 114, rue Edouard Vaillant, 94805, Villejuif, France. .,Université Paris Sud, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France. .,CNRS UMR 8113, Ecole Normale Supérieure de Cachan, Cachan, France. .,Hôpital Foch, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 92150, Suresnes, France.
| | - Julien Adam
- INSERM Unit U981, Gustave Roussy Cancer Campus, 114, rue Edouard Vaillant, 94805, Villejuif, France.,Université Paris Sud, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France
| | - Aïcha Goubar
- INSERM Unit U981, Gustave Roussy Cancer Campus, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - Angélique Robin
- INSERM Unit U981, Gustave Roussy Cancer Campus, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - Caroline Ohana
- CNRS UMR 8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Emilie Louvet
- INSERM Unit U981, Gustave Roussy Cancer Campus, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - Jiemin Cormier
- INSERM Unit U981, Gustave Roussy Cancer Campus, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - Olaf Mercier
- Université Paris Sud, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France.,Departement of Thoracic and Vascular Surgery, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France.,Thoracic Multidisciplinary Committee, Institut d'Oncologie Thoracique, Le Plessis-Robinson, France
| | - Peter Dorfmüller
- Thoracic Multidisciplinary Committee, Institut d'Oncologie Thoracique, Le Plessis-Robinson, France.,Department of Pathology, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Soly Fattal
- Department of Biology, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Vincent Thomas de Montpreville
- Thoracic Multidisciplinary Committee, Institut d'Oncologie Thoracique, Le Plessis-Robinson, France.,Department of Pathology, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Thierry Lebret
- Hôpital Foch, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 92150, Suresnes, France
| | - Philippe Dartevelle
- Université Paris Sud, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France.,Departement of Thoracic and Vascular Surgery, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France.,Thoracic Multidisciplinary Committee, Institut d'Oncologie Thoracique, Le Plessis-Robinson, France
| | - Elie Fadel
- Université Paris Sud, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France.,Departement of Thoracic and Vascular Surgery, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France.,Thoracic Multidisciplinary Committee, Institut d'Oncologie Thoracique, Le Plessis-Robinson, France
| | - Benjamin Besse
- INSERM Unit U981, Gustave Roussy Cancer Campus, 114, rue Edouard Vaillant, 94805, Villejuif, France.,Thoracic Multidisciplinary Committee, Institut d'Oncologie Thoracique, Le Plessis-Robinson, France.,Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Ken André Olaussen
- INSERM Unit U981, Gustave Roussy Cancer Campus, 114, rue Edouard Vaillant, 94805, Villejuif, France.,Université Paris Sud, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France.,Thoracic Multidisciplinary Committee, Institut d'Oncologie Thoracique, Le Plessis-Robinson, France
| | - Christian Auclair
- Université Paris Sud, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France.,CNRS UMR 8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Jean-Charles Soria
- INSERM Unit U981, Gustave Roussy Cancer Campus, 114, rue Edouard Vaillant, 94805, Villejuif, France.,Université Paris Sud, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France.,Thoracic Multidisciplinary Committee, Institut d'Oncologie Thoracique, Le Plessis-Robinson, France.,Drug Development Department (DITEP: Département d'Innnovations Thérapeutiques et Essais Précoces), Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
50
|
Li D, Qian W, Li RR, Zhang J, Li KE, Wu Y. Correlation between lung neoplasm and serum level of osteopontin: A meta-analysis. Biomed Rep 2016; 4:567-572. [PMID: 27123248 PMCID: PMC4840616 DOI: 10.3892/br.2016.619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/29/2016] [Indexed: 12/22/2022] Open
Abstract
The aim of this meta-analysis was to evaluate the clinical significance of serum osteopontin (OPN) levels in lung neoplasm in patients to establish a novel diagnostic score model. Articles were identified by searching the PubMed, Web of Science, Google Scholar, China National Knowledge Infrastructure, and Wang Fang databases. Studies identified were pooled, and the standardized mean difference (SMD) and its corresponding 95% confidence interval (CI) were calculated. Subgroup analyses and publication bias detection were also conducted. Version 12.0 STATA software was used for statistical analysis. A final analysis of 1,327 subjects together (740 patients with lung neoplasms and 587 controls) was performed from 10 clinical case-control studies. The meta-analysis results showed a positive association between serum OPN levels and lung neoplasm (SMD=5.59, 95% CI: 1.85–3.32, P<0.001). The subgroup analysis by ethnicity detected that high levels of serum OPN may be the main risk factor for lung neoplasms in Asians (SMD=1.76, 95% CI: 1.24–2.29, P<0.001), but not in Caucasians (P=0.072). In conclusion, the present meta-analysis indicated that serum OPN levels were generally elevated in lung neoplasm patients, and thus, serum levels of OPN may be useful in diagnosing lung neoplasm in certain population groups.
Collapse
Affiliation(s)
- Dan Li
- Department of Respiratory Medicine, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| | - Wang Qian
- Department of Hematology, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| | - Ruo Ran Li
- Department of Respiratory Medicine, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| | - Jinghao Zhang
- Department of Respiratory Medicine, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| | - K E Li
- Department of Respiratory Medicine, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| | - Yanmin Wu
- Department of Respiratory Medicine, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|