1
|
Nemunaitis J, Stanbery L, Walter A, Wallraven G, Nemunaitis A, Horvath S, Bognar E, Rao D, Engle S, Brun S, Ghisoli M, Rocconi RP, Monk BJ, Coleman RL. Gemogenovatucel-T (Vigil): bi-shRNA plasmid-based targeted immunotherapy. Future Oncol 2024; 20:2149-2164. [PMID: 39101448 PMCID: PMC11509044 DOI: 10.1080/14796694.2024.2376518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
We describe in this review the historical evidence leading up to the concept and design of Vigil and subsequent clinical applications including safety and efficacy in a randomized, controlled Phase IIB trial. Vigil (gemogenovatucel-T) is a unique triple function targeted immunotherapy that demonstrates preclinical and clinical systemic anticancer activity. Construction of Vigil involves harvest of autologous malignant tissue for neoantigen targeting (ideally containing clonal neoantigens) followed by a two-day process involving transfection with a plasmid to provide a permissive 'training environment' for the patient's immune system. Transfected plasmid components contain an expressive human GMCSF DNA segment to enhance anticancer immune functional response and a second component expressing bi-shRNAfurin which reduces TGFβ isomers (TGFβ1 and TGFβ2) thereby reducing cancer inhibition of the targeted immune response. Results generated to date justify advancement to confirmatory clinical trials supporting product regulatory approval.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Scott Brun
- Gold Mast Consulting, LLC, The Woodlands, TX77380, USA
| | | | | | - Bradley J Monk
- HonorHealth Research Institute, College of Medicine, University of Arizona, Phoenix, AZ85012, USA
- Creigton University, School of Medicine, Phoenix, AZ85012, USA
| | - Robert L Coleman
- Texas Oncology, US Oncology Network, The Woodlands, TX77380, USA
| |
Collapse
|
2
|
Chen YF, Luh F, Ho YS, Yen Y. Exosomes: a review of biologic function, diagnostic and targeted therapy applications, and clinical trials. J Biomed Sci 2024; 31:67. [PMID: 38992695 PMCID: PMC11238361 DOI: 10.1186/s12929-024-01055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/16/2024] [Indexed: 07/13/2024] Open
Abstract
Exosomes are extracellular vesicles generated by all cells and they carry nucleic acids, proteins, lipids, and metabolites. They mediate the exchange of substances between cells,thereby affecting biological properties and activities of recipient cells. In this review, we briefly discuss the composition of exocomes and exosome isolation. We also review the clinical applications of exosomes in cancer biology as well as strategies in exosome-mediated targeted drug delivery systems. Finally, the application of exosomes in the context of cancer therapeutics both in practice and literature are discussed.
Collapse
Affiliation(s)
- Yi-Fan Chen
- International Master Program in Translation Science, College of Medical Science and Technology, Taipei Medical University, New Taipei City, 23564, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, New Taipei City, 23564, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, New Taipei City, 23564, Taiwan
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Frank Luh
- Sino-American Cancer Foundation, Covina, CA, 91722, USA
| | - Yuan-Soon Ho
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung, 406040, Taiwan.
| | - Yun Yen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung, 406040, Taiwan.
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110301, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110301, Taiwan.
- Cancer Center, Taipei Municipal WanFang Hospital, Taipei, 11696, Taiwan.
- Center for Cancer Translational Research, Tzu Chi University, Hualien City, 970374, Taiwan.
| |
Collapse
|
3
|
Zhang J, Ali K, Wang J. Research Advances of Lipid Nanoparticles in the Treatment of Colorectal Cancer. Int J Nanomedicine 2024; 19:6693-6715. [PMID: 38979534 PMCID: PMC11229238 DOI: 10.2147/ijn.s466490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
Colorectal cancer (CRC) is a common type of gastrointestinal tract (GIT) cancer and poses an enormous threat to human health. Current strategies for metastatic colorectal cancer (mCRC) therapy primarily focus on chemotherapy, targeted therapy, immunotherapy, and radiotherapy; however, their adverse reactions and drug resistance limit their clinical application. Advances in nanotechnology have rendered lipid nanoparticles (LNPs) a promising nanomaterial-based drug delivery system for CRC therapy. LNPs can adapt to the biological characteristics of CRC by modifying their formulation, enabling the selective delivery of drugs to cancer tissues. They overcome the limitations of traditional therapies, such as poor water solubility, nonspecific biodistribution, and limited bioavailability. Herein, we review the composition and targeting strategies of LNPs for CRC therapy. Subsequently, the applications of these nanoparticles in CRC treatment including drug delivery, thermal therapy, and nucleic acid-based gene therapy are summarized with examples provided. The last section provides a glimpse into the advantages, current limitations, and prospects of LNPs in the treatment of CRC.
Collapse
Affiliation(s)
- Junyi Zhang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, People’s Republic of China
| | - Kamran Ali
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, People’s Republic of China
| | - Jianwei Wang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, People’s Republic of China
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
4
|
Lin JC, Liu TP, Chen YB, Huang TS, Chen TY, Yang PM. Inhibition of CDK9 exhibits anticancer activity in hepatocellular carcinoma cells via targeting ribonucleotide reductase. Toxicol Appl Pharmacol 2023; 471:116568. [PMID: 37245555 DOI: 10.1016/j.taap.2023.116568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Cyclin-dependent kinase 9 (CDK9) inhibitors are a novel category of anticancer treatment for cancers. However, their effects on hepatocellular carcinoma (HCC) are rarely investigated. Human ribonucleotide reductase (RR, which consists of RRM1 and RRM2 subunits) catalyzes the conversion of ribonucleoside diphosphate into 2'-deoxyribonucleoside diphosphate to maintain the homeostasis of nucleotide pools, which play essential roles in DNA synthesis and DNA repair. In this study, we identified that CDK9 protein expression in adjacent non-tumor tissues predicted HCC patients' overall and progression-free survivals. The anticancer activity of a CDK9-selective inhibitor, LDC000067, on HCC cells was positively associated with its ability to inhibit the expression of RRM1 and RRM2. LDC000067 downregulated RRM1 and RRM2 expression through post-transcriptional pathway. Specifically, LDC000067 triggered RRM2 protein degradation via multiple pathways, including proteasome-, lysosome-, and calcium-dependent pathways. Furthermore, CDK9 positively correlates with RRM1 or RRM2 expression in HCC patients, and the expressions of these three genes were associated with the higher infiltration of immune cells in HCC. Taken together, this study identified the prognostic relevance of CDK9 in HCC and the molecular mechanism for the anticancer effect of CDK9 inhibitors on HCC.
Collapse
Affiliation(s)
- Jiunn-Chang Lin
- Department of Surgery, MacKay Memorial Hospital, Taipei 10449, Taiwan; MacKay Junior College of Medicine, Nursing, and Management, New Taipei City 11260, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; Liver Medical Center, MacKay Memorial Hospital, Taipei 10449, Taiwan; PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Tsang-Pai Liu
- Department of Surgery, MacKay Memorial Hospital, Taipei 10449, Taiwan; MacKay Junior College of Medicine, Nursing, and Management, New Taipei City 11260, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; Liver Medical Center, MacKay Memorial Hospital, Taipei 10449, Taiwan; PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Yan-Bin Chen
- Department of Surgery, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Tun-Sung Huang
- Department of Surgery, MacKay Memorial Hospital, Taipei 10449, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; Liver Medical Center, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Tung-Ying Chen
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; Department of Pathology, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Pei-Ming Yang
- Liver Medical Center, MacKay Memorial Hospital, Taipei 10449, Taiwan; PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei 11031, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; TMU and Affiliated Hospitals Pancreatic Cancer Groups, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
5
|
Veiga N, Diesendruck Y, Peer D. Targeted nanomedicine: Lessons learned and future directions. J Control Release 2023; 355:446-457. [PMID: 36773958 DOI: 10.1016/j.jconrel.2023.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023]
Abstract
Designing a therapeutic modality that will reach a certain organ, tissue, or cell type is crucial for both the therapeutic efficiency and to limit off-target adverse effects. Nanoparticles carrying various drugs, such as nucleic acids, small molecules and proteins, are promoting modalities to this end. Beyond the need to identify a target for a specific indication, an adequate design has to address the multiple biological barriers, such as systemic barriers, dilution and unspecific distribution, tissue penetration and intracellular trafficking. The field of targeted delivery has developed rapidly in recent years, with tremendous progress made in understating the biological barriers, and new technologies to functionalize nanoparticles with targeting moieties for an accurate, specific and highly selective delivery. Implementing new approaches like multi-functionalized nanocarriers and machine learning models will advance the field for designing safe, cell -specific nanoparticle delivery systems. Here, we will critically review the current progress in the field and suggest novel strategies to improve cell specific delivery of therapeutic payloads.
Collapse
Affiliation(s)
- Nuphar Veiga
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium
| | - Yael Diesendruck
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Dan Peer
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
6
|
Wang H, Wang X, Li M, Sun H, Chen Q, Yan D, Dong X, Pan Y, Lu S. Genome-wide association study reveals genetic loci and candidate genes for meat quality traits in a four-way crossbred pig population. Front Genet 2023; 14:1001352. [PMID: 36814900 PMCID: PMC9939654 DOI: 10.3389/fgene.2023.1001352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Meat quality traits (MQTs) have gained more attention from breeders due to their increasing economic value in the commercial pig industry. In this genome-wide association study (GWAS), 223 four-way intercross pigs were genotyped using the specific-locus amplified fragment sequencing (SLAF-seq) and phenotyped for PH at 45 min post mortem (PH45), meat color score (MC), marbling score (MA), water loss rate (WL), drip loss (DL) in the longissimus muscle, and cooking loss (CL) in the psoas major muscle. A total of 227, 921 filtered single nucleotide polymorphisms (SNPs) evenly distributed across the entire genome were detected to perform GWAS. A total of 64 SNPs were identified for six meat quality traits using the mixed linear model (MLM), of which 24 SNPs were located in previously reported QTL regions. The phenotypic variation explained (PVE) by the significant SNPs was from 2.43% to 16.32%. The genomic heritability estimates based on SNP for six meat-quality traits were low to moderate (0.07-0.47) being the lowest for CL and the highest for DL. A total of 30 genes located within 10 kb upstream or downstream of these significant SNPs were found. Furthermore, several candidate genes for MQTs were detected, including pH45 (GRM8), MC (ANKRD6), MA (MACROD2 and ABCG1), WL (TMEM50A), CL (PIP4K2A) and DL (CDYL2, CHL1, ABCA4, ZAG and SLC1A2). This study provided substantial new evidence for several candidate genes to participate in different pork quality traits. The identification of these SNPs and candidate genes provided a basis for molecular marker-assisted breeding and improvement of pork quality traits.
Collapse
Affiliation(s)
- Huiyu Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China,Faculty of Animal Science, Xichang University, Xichang, Sichuan, China
| | - Xiaoyi Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Mingli Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hao Sun
- Faculty of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dawei Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xinxing Dong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yuchun Pan
- Faculty of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Yuchun Pan, ; Shaoxiong Lu,
| | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China,*Correspondence: Yuchun Pan, ; Shaoxiong Lu,
| |
Collapse
|
7
|
Kitab B, Tsukiyama-Kohara K. Regulatory Role of Ribonucleotide Reductase Subunit M2 in Hepatocyte Growth and Pathogenesis of Hepatitis C Virus. Int J Mol Sci 2023; 24:ijms24032619. [PMID: 36768940 PMCID: PMC9916403 DOI: 10.3390/ijms24032619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Hepatitis C virus (HCV) frequently causes chronic infection in the human liver, which may progress to advanced hepatic fibrosis, cirrhosis, and hepatocellular carcinoma. HCV primarily infects highly differentiated quiescent hepatocytes and can modulate cell cycle-regulatory genes and proliferation pathways, which ultimately contribute to persistent infection and pathogenesis. On the other hand, several studies have shown differential regulation of HCV RNA and viral protein expression levels, depending on the proliferation state of hepatocytes and the phase of the cell cycle. HCV typically requires factors provided by host cells for efficient and persistent viral replication. Previously, we found that HCV infection upregulates the expression of ribonucleotide reductase subunit M2 (RRM2) in quiescent hepatocytes. RRM2 is a rate-limiting protein that catalyzes de novo synthesis of deoxyribonucleotide triphosphates, and its expression is highly regulated during various phases of the cell cycle. RRM2 functions as a pro-viral factor essential for HCV RNA synthesis, but its functional role in HCV-induced liver diseases remains unknown. Here, we present a comprehensive review of the role of the hepatocyte cell cycle, in correlation with RRM2 expression, in the regulation of HCV replication. We also discuss the potential relevance of this protein in the pathogenesis of HCV, particularly in the development of hepatocellular carcinoma.
Collapse
|
8
|
Comprehensive Landscape of RRM2 with Immune Infiltration in Pan-Cancer. Cancers (Basel) 2022; 14:cancers14122938. [PMID: 35740608 PMCID: PMC9221307 DOI: 10.3390/cancers14122938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary RRM2 is a crucial subunit of ribonucleotide reductase. In this article, we provided a comprehensive analysis of RRM2 with immune infiltration in pan-cancer. We focused on the hotspots of ferroptosis-related gene RRM2 and immunotherapy. Via bioinformatics analysis, multiple indicators suggested that RRM2 high expression may enhance immunotherapy sensitivity. For the first time, we systematically analyzed the role of RRM2 in pan-cancer. We provided the prospect of RRM2 and immunotherapy for pan-cancer. Additionally, we proved the expression pattern, clinical value, prognostic value and potential pathways of RRM2 with different platforms. In particular, we confirmed RRM2 expression and function in bladder cancer in our clinical samples and cell lines. Collectively, we found that RRM2 is a novel prognostic biomarker, and these findings may aid in an improved understanding of the role of RRM2 and its clinical application in human cancers. Abstract As a crucial subunit of ribonucleotide reductase, RRM2 plays a significant part in DNA synthesis. This study aimed to elucidate the comprehensive landscape of RRM2 in human cancers. With different bioinformatics platforms, we investigated the expression pattern, prognostic significance, mutational landscapes, gene interaction network, signaling pathways and immune infiltration of RRM2 in tumors. We found that RRM2 expression was predominantly up-expressed in tumor tissues in most tumors. Concurrently, RRM2 expression was significantly associated with worse prognosis and tumor stage across TCGA cancers. Moreover, RRM2 high levels were critically associated with the infiltration of natural killer T cells and immune scores. RRM2 was positively related to immune checkpoints, tumor mutation burden, microsatellite instability, neoantigen, and cytotoxic T lymphocyte in several cancers, predicting effective response to immunotherapy. Meanwhile, a strong co-expression of RRM2 with immune-related genes was observed. Additionally, multiple Cox regression analysis showed that RRM2 was an independent prognostic factor in bladder cancer (BLCA). Eventually, we verified that RRM2 was overexpressed in BLCA clinical samples and cell lines. Blocking RRM2 could suppress BLCA cells’ growth and proliferation while enhancing sensitivity to cisplatin. This study provided a new perspective for understanding RRM2 in cancers and new strategies for tumor immunotherapy.
Collapse
|
9
|
Hong FU, Castro M, Linse K. Tumor specifically internalizing peptide ‘HN-1’: Targeting the putative receptor retinoblastoma-regulated discoidin domain receptor 1 involved in metastasis. World J Clin Oncol 2022; 13:323-338. [PMID: 35662982 PMCID: PMC9153073 DOI: 10.5306/wjco.v13.i5.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/06/2021] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Less than 0.5% of intravenously injected drugs reach tumors, contributing to side effects. To limit damage to healthy cells, various delivery vectors have been formulated; yet, previously developed vectors suffer from poor penetration into solid tumors. This issue was resolved by the discovery of HN-1 peptide isolated via biopanning a phage-display library. HN-1 targets human head and neck squamous cell carcinoma (HNSCC) (breast, thyroid; potentially lung, cervix, uterine, colon cancer), translocates across the cell membrane, and efficiently infiltrates solid tumors. HN-1 peptide has been conjugated to various anticancer drugs and imaging agents though the identity of its receptor remained enigmatic.
AIM To decipher the clues that pointed to retinoblastoma (Rb)-regulated discoidin-domain receptor 1 as the putative receptor for HN-1 is described.
METHODS HN-1 peptide was synthesized and purified using reverse-phase high-performance liquid chromatography and gel electrophoresis. The predicted mass was confirmed by mass spectroscopy. To image the 3-dimensional structure of HN-1 peptide, PyMOL was used. Molecular modeling was also performed with PEP-FOLD3 software via RPBS bioinformatics web portal (INSERM, France). The immunohistochemistry results of discoidin domain receptor 1 (DDR1) protein were obtained from the publicly accessible database in the Human Protein Atlas portal, which contained the images of immunohistochemically labeled human cancers and the corresponding normal tissues.
RESULTS The clues that led to DDR1 involved in metastasis as the putative receptor mediating HN-1 endocytosis are the following: (1) HN-1 is internalized in phosphate-buffered saline and its uptake is competitively inhibited; (2) HN-1 (TSPLNIHNGQKL) exhibits similarity with a stretch of amino acids in alpha5 beta3 integrin (KLLITIHDRKEF). Aside from two identical residues (Ile-His) in the middle, the overall distribution of polar and nonpolar residues throughout the sequences is nearly identical. As HN-1 sequence lacks the Arg-Gly-Asp motif recognized by integrins, HN-1 may interact with an "integrin-like" molecule. The tertiary structure of both peptides showed similarity at the 3-dimensional level; (3) HN-1 is internalized by attached cells but not by suspended cells. As culture plates are typically coated with collagen, collagen-binding receptor (expressed by adherent but not suspended cells) may represent the receptor for HN-1; (4) DDR1 is highly expressed in head and neck cancer (or breast cancer) targeted by HN-1; (5) Upon activation by collagen, DDR1 becomes internalized and compartmentalized in endosomes consistent with the determination of ’energy-dependent clathrin-mediated endocytosis’ as the HN-1 entry route and the identification of HN-1 entrapped vesicles as endosomes; and (6) DDR1 is essential for the development of mammary glands consistent with the common embryonic lineage rationale used to identify breast cancer as an additional target of HN-1. In summary, collagen-activated tyrosine kinase receptor DDR1 overexpressed in HNSCC assumes a critical role in metastasis. Further studies are warranted to assess HN-1 peptide’s interaction with DDR1 and the therapeutic potential of treating metastatic cancer. Additionally, advances in delivery (conformation, endocytic mechanism, repertoire of targeted cancers of HN-1 peptide), tracking (HN-1 conjugated imaging agents), and activity (HN-1 conjugated therapeutic agents) are described.
CONCLUSION The discovery of DDR1 as HN-1 peptide’s putative receptor represents a significant advance as it enables identification of metastatic cancers or clinical application of previously developed therapeutics to block metastasis.
Collapse
Affiliation(s)
- Frank-Un Hong
- Research & Development, Bio-Synthesis, Inc., Lewisville, TX 75057, United States
| | - Miguel Castro
- Research & Development, Bio-Synthesis, Inc., Lewisville, TX 75057, United States
| | - Klaus Linse
- Research & Development, Bio-Synthesis, Inc., Lewisville, TX 75057, United States
| |
Collapse
|
10
|
Vetter VC, Wagner E. Targeting nucleic acid-based therapeutics to tumors: Challenges and strategies for polyplexes. J Control Release 2022; 346:110-135. [PMID: 35436520 DOI: 10.1016/j.jconrel.2022.04.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
Abstract
The current medical reality of cancer gene therapy is reflected by more than ten approved products on the global market, including oncolytic and other viral vectors and CAR T-cells as ex vivo gene-modified cell therapeutics. The development of synthetic antitumoral nucleic acid therapeutics has been proceeding at a lower but steady pace, fueled by a plethora of alternative nucleic acid platforms (from various antisense oligonucleotides, siRNA, microRNA, lncRNA, sgRNA, to larger mRNA and DNA) and several classes of physical and chemical delivery technologies. This review summarizes the challenges and strategies for tumor-targeted nucleic acid delivery. Focusing primarily on polyplexes (polycation complexes) as nanocarriers, delivery options across multiple barriers into tumor cells are illustrated.
Collapse
Affiliation(s)
- Victoria C Vetter
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians-Universität, Munich 81377, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians-Universität, Munich 81377, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich 81377, Germany.
| |
Collapse
|
11
|
Smith ES, Whitty E, Yoo B, Moore A, Sempere LF, Medarova Z. Clinical Applications of Short Non-Coding RNA-Based Therapies in the Era of Precision Medicine. Cancers (Basel) 2022; 14:cancers14061588. [PMID: 35326738 PMCID: PMC8946086 DOI: 10.3390/cancers14061588] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary RNA-based drugs are an attractive approach for personalized treatment of cancer and other diseases. This review focuses on two related classes of short non-coding RNA: microRNAs (miRNAs) and small interfering RNAs (siRNAs). miRNAs are endogenous short RNAs that bind multiple messenger RNAs (mRNAs) and prevent the production of their gene-products, whereas siRNAs are exogenous RNAs that target a single and specific mRNA for degradation. This review describes the development, challenges, and clinical successes of short RNA-based drugs. We provide several examples of how these RNA drugs are designed, chemically modified and delivered for treatment of different cancer types, cardiovascular disease, and rare genetic disorders. We highlight the similarities, differences, and considerations to maximize the treatment efficacy of miRNA-based vs. siRNA-based drugs. Abstract Traditional targeted therapeutic agents have relied on small synthetic molecules or large proteins, such as monoclonal antibodies. These agents leave a lot of therapeutic targets undruggable because of the lack or inaccessibility of active sites and/or pockets in their three-dimensional structure that can be chemically engaged. RNA presents an attractive, transformative opportunity to reach any genetic target with therapeutic intent. RNA therapeutic design is amenable to modularity and tunability and is based on a computational blueprint presented by the genetic code. Here, we will focus on short non-coding RNAs (sncRNAs) as a promising therapeutic modality because of their potency and versatility. We review recent progress towards clinical application of small interfering RNAs (siRNAs) for single-target therapy and microRNA (miRNA) activity modulators for multi-target therapy. siRNAs derive their potency from the fact that the underlying RNA interference (RNAi) mechanism is catalytic and reliant on post-transcriptional mRNA degradation. Therapeutic siRNAs can be designed against virtually any mRNA sequence in the transcriptome and specifically target a disease-causing mRNA variant. Two main classes of microRNA activity modulators exist to increase (miRNA mimics) or decrease (anti-miRNA inhibitors) the function of a specific microRNA. Since a single microRNA regulates the expression of multiple target genes, a miRNA activity modulator can have a more profound effect on global gene expression and protein output than siRNAs do. Both types of sncRNA-based drugs have been investigated in clinical trials and some siRNAs have already been granted FDA approval for the treatment of genetic, cardiometabolic, and infectious diseases. Here, we detail clinical results using siRNA and miRNA therapeutics and present an outlook for the potential of these sncRNAs in medicine.
Collapse
Affiliation(s)
- Ellen S. Smith
- Department of Biochemistry, Northeastern University, Boston, MA 02115, USA;
| | - Eric Whitty
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; (E.W.); (B.Y.)
| | - Byunghee Yoo
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; (E.W.); (B.Y.)
| | - Anna Moore
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA;
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Lorenzo F. Sempere
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA;
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: (L.F.S.); (Z.M.)
| | - Zdravka Medarova
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; (E.W.); (B.Y.)
- Transcode Therapeutics, Inc., Boston, MA 02109, USA
- Correspondence: (L.F.S.); (Z.M.)
| |
Collapse
|
12
|
Kara G, Calin GA, Ozpolat B. RNAi-based therapeutics and tumor targeted delivery in cancer. Adv Drug Deliv Rev 2022; 182:114113. [PMID: 35063535 DOI: 10.1016/j.addr.2022.114113] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
Over the past decade, non-coding RNA-based therapeutics have proven as a great potential for the development of targeted therapies for cancer and other diseases. The discovery of the critical function of microRNAs (miRNAs) has generated great excitement in developing miRNA-based therapies. The dysregulation of miRNAs contributes to the pathogenesis of various human diseases and cancers by modulating genes that are involved in critical cellular processes, including cell proliferation, differentiation, apoptosis, angiogenesis, metastasis, drug resistance, and tumorigenesis. miRNA (miRNA mimic, anti-miRNA/antagomir) and small interfering RNA (siRNA) can inhibit the expression of any cancer-related genes/mRNAs with high specificity through RNA interference (RNAi), thus representing a remarkable therapeutic tool for targeted therapies and precision medicine. siRNA and miRNA-based therapies have entered clinical trials and recently three novel siRNA-based therapeutics were approved by the Food and Drug Administration (FDA), indicating the beginning of a new era of targeted therapeutics. The successful clinical applications of miRNA and siRNA therapeutics rely on safe and effective nanodelivery strategies for targeting tumor cells or tumor microenvironment. For this purpose, promising nanodelivery/nanoparticle-based approaches have been developed using a variety of molecules for systemic administration and improved tumor targeted delivery with reduced side effects. In this review, we present an overview of RNAi-based therapeutics, the major pharmaceutical challenges, and the perspectives for the development of promising delivery systems for clinical translation. We also highlight the passive and active tumor targeting nanodelivery strategies and primarily focus on the current applications of nanoparticle-based delivery formulations for tumor targeted RNAi molecules and their recent advances in clinical trials in human cancers.
Collapse
Affiliation(s)
- Goknur Kara
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Chemistry, Biochemistry Division, Ordu University, Ordu, Turkey
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Benli-Hoppe T, Göl Öztürk Ş, Öztürk Ö, Berger S, Wagner E, Yazdi M. Transferrin Receptor Targeted Polyplexes Completely Comprised of Sequence-Defined Components. Macromol Rapid Commun 2021; 43:e2100602. [PMID: 34713524 DOI: 10.1002/marc.202100602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/20/2021] [Indexed: 11/08/2022]
Abstract
Human transferrin protein (Tf) modified polyplexes have already displayed encouraging potential for receptor-mediated nucleic acid delivery into tumors. The use of a blood-derived targeting protein and polydisperse macromolecular cationic subunits however presents a practical challenge for pharmaceutical grade production. Here, Tf receptor (TfR) targeted small interfering RNA (siRNA) polyplexes are designed that are completely composed of synthetic, monodisperse, and sequence-defined subunits generated by solid-phase supported synthesis. An optimized cationizable lipo-oligoaminoamide (lipo-OAA) is used for siRNA core polyplex formation, and a retro-enantio peptide (reTfR) attached via a monodisperse polyethylene glycol (PEG) spacer via click chemistry is applied for targeting. Improved gene silencing is demonstrated in TfR-expressing KB and DU145 cells. Analogous plasmid DNA (pDNA) polyplexes are successfully used for receptor-mediated gene delivery in TfR-rich K562 cells and Neuro2a cells. Six lipo-OAAs differing in their lipidic domain and redox-sensitive attachment of lipid residues are tested in order to evaluate the impact of core polyplex stability on receptor-dependent gene transfer.
Collapse
Affiliation(s)
- Teoman Benli-Hoppe
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Şurhan Göl Öztürk
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Özgür Öztürk
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Simone Berger
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Mina Yazdi
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| |
Collapse
|
14
|
Aubets E, Chillon M, Ciudad CJ, Noé V. PolyPurine Reverse Hoogsteen Hairpins Work as RNA Species for Gene Silencing. Int J Mol Sci 2021; 22:10025. [PMID: 34576188 PMCID: PMC8466063 DOI: 10.3390/ijms221810025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
PolyPurine Reverse Hoogsteen Hairpins (PPRHs) are gene-silencing DNA-oligonucleotides developed in our laboratory that are formed by two antiparallel polypurine mirror repeat domains bound intramolecularly by Hoogsteen bonds. The aim of this work was to explore the feasibility of using viral vectors to deliver PPRHs as a gene therapy tool. After treatment with synthetic RNA, plasmid transfection, or viral infection targeting the survivin gene, viability was determined by the MTT assay, mRNA was determined by RT-qPCR, and protein levels were determined by Western blot. We showed that the RNA-PPRH induced a decrease in cell viability in a dose-dependent manner and an increase in apoptosis in PC-3 and HeLa cells. Both synthetic RNA-PPRH and RNA-PPRH intracellularly generated upon the transfection of a plasmid vector were able to reduce survivin mRNA and protein levels in PC-3 cells. An adenovirus type-5 vector encoding the PPRH against survivin was also able to decrease survivin mRNA and protein levels, leading to a reduction in HeLa cell viability. In this work, we demonstrated that PPRHs can also work as RNA species, either chemically synthesized, transcribed from a plasmid construct, or transcribed from viral vectors. Therefore, all these results are the proof of principle that viral vectors could be considered as a delivery system for PPRHs.
Collapse
Affiliation(s)
- Eva Aubets
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Nanoscience and Nanotechnology Institute, IN2UB, University of Barcelona, 08028 Barcelona, Spain; (E.A.); (C.J.C.)
| | - Miguel Chillon
- ICREA, Institute of Neurosciences at UAB, 08193 Bellaterra, Spain;
- Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
| | - Carlos J. Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Nanoscience and Nanotechnology Institute, IN2UB, University of Barcelona, 08028 Barcelona, Spain; (E.A.); (C.J.C.)
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Nanoscience and Nanotechnology Institute, IN2UB, University of Barcelona, 08028 Barcelona, Spain; (E.A.); (C.J.C.)
| |
Collapse
|
15
|
Li JM, Kim S, Zhang Y, Bian F, Hu J, Lu R, Pflugfelder SC, Chen R, Li DQ. Single-Cell Transcriptomics Identifies a Unique Entity and Signature Markers of Transit-Amplifying Cells in Human Corneal Limbus. Invest Ophthalmol Vis Sci 2021; 62:36. [PMID: 34297801 PMCID: PMC8300054 DOI: 10.1167/iovs.62.9.36] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Differentiated from adult stem cells (ASCs), transit-amplifying cells (TACs) play an important role in tissue homeostasis, development, and regeneration. This study aimed to characterize the gene expression profile of a candidate TAC population in limbal basal epithelial cells using single-cell RNA sequencing (scRNA-seq). Methods Single cells isolated from the basal corneal limbus were subjected to scRNA-seq using the 10x Genomics platform. Cell types were clustered by graph-based visualization methods and unbiased computational analysis. BrdU proliferation assays, immunofluorescent staining, and real-time reverse transcription quantitative polymerase chain reaction were performed using multiple culture models of primary human limbal epithelial cells to characterize the TAC pool. Results Single-cell transcriptomics of 16,360 limbal basal cells revealed 12 cell clusters. A unique cluster (3.21% of total cells) was identified as a TAC entity, based on its less differentiated progenitor status and enriched exclusive proliferation marker genes, with 98.1% cells in S and G2/M phases. The cell cycle-dependent genes were revealed to be largely enriched by the TAC population. The top genes were characterized morphologically and functionally at protein and mRNA levels. The specific expression patterns of RRM2, TK1, CENPF, NUSAP1, UBE2C, and CDC20 were well correlated in a time- and cycle-dependent manner with proliferation stages in the cell growth and regeneration models. Conclusions For the first time, to the best of our knowledge, we have identified a unique TAC entity and uncovered a group of cell cycle-dependent genes that serve as TAC signature markers. The findings provide insight into ASCs and TACs and lay the foundation for understanding corneal homeostasis and diseases.
Collapse
Affiliation(s)
- Jin-Miao Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Sangbae Kim
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Yun Zhang
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Fang Bian
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Jiaoyue Hu
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Rong Lu
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Stephen C Pflugfelder
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Rui Chen
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - De-Quan Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
16
|
Yang Q, Dong Y, Wang X, Lin Z, Yan M, Wang W, Dong A, Zhang J, Huang P, Wang C. pH-Sensitive Polycations for siRNA Delivery: Effect of Asymmetric Structures of Tertiary Amine Groups. Macromol Biosci 2021; 21:e2100025. [PMID: 33769670 DOI: 10.1002/mabi.202100025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/07/2021] [Indexed: 12/13/2022]
Abstract
pH-sensitive polyelectrolytes provide enormous opportunity for siRNA delivery. Especially, their tertiary amine structures can not only bind genes but also act as pH-sensitive hydrophobic structure to control genes release. However, the influence of molecular structures on siRNA delivery still remains elusive, especially for the asymmetric alkyl substituents of the tertiary amine groups. Herein, a library of N-methyl-N-alkyl aminoethyl methacrylate monomers (MsAM) with asymmetric alkyl substituents on the tertiary amine group is synthesized and used to prepare a series of tri-block polycationic copolymers poly(aminoethyl methacrylate)-block-poly (N-methyl-N-alkyl aminoethyl methacrylate)-block-poly(ethylene glycol methacrylate) (PAMA-PMsMA-PEG). And the properties of these polycations and their self-assembled micelles are characterized, including molecular structure, proton buffering capacity, pH-sensitivity, size, and zeta potential. With the length increase of one alkyl substituent, the proton buffering capacity of both monomers and polycations is demonstrated to be narrowed down. The siRNA delivery efficiency and cytotoxicity of these micelles are also evaluated on HepG2 cells. In particular, poly(aminoethyl methacrylate)-block-poly(N-methyl-N-ethyl aminoethyl methacrylate)-block-poly(ethylene glycol methacrylate) (PAMA-PMEMA-PEG) elicited the best luciferase knockdown efficiency and low cytotoxicity. Besides, PAMA-PMEMA-PEG/siRRM2 also induced significant anti-tumor activity in vitro. These results indicated PAMA-PMEMA-PEG has potential for further use in the design of gene vehicles with the improved efficiency of siRNA delivery.
Collapse
Affiliation(s)
- Qinping Yang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yanliang Dong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xuanyu Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhihao Lin
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Mingyu Yan
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Anjie Dong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Changrong Wang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, Yantai, 264003, China
| |
Collapse
|
17
|
Wang C, Wang X, Du L, Dong Y, Hu B, Zhou J, Shi Y, Bai S, Huang Y, Cao H, Liang Z, Dong A. Harnessing pH-Sensitive Polycation Vehicles for the Efficient siRNA Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2218-2229. [PMID: 33406826 DOI: 10.1021/acsami.0c17866] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
pH-sensitive hydrophobic segments have been certificated to facilitate siRNA delivery efficiency of amphiphilic polycation vehicles. However, optimal design concepts for these vehicles remain unclear. Herein, by studying the library of amphiphilic polycations mPEG-PAMA50-P(DEAx-r-D5Ay) (EAE5x/y), we concluded a multifactor matching concept (pKa values, "proton buffering capacities" (BCs), and critical micelle concentrations (CMCs)) for polycation vehicles to improve siRNA delivery efficiency in vitro and in vivo. We identified that the stronger BCs in a pH 5.5-7.4 subset induced by EAE548/29 (pKa = 6.79) and EAE539/37 (pKa = 6.20) are effective for siRNA delivery in vitro. Further, the stronger BCs occurred in a narrow subset of pH 5.5-6.5 and the lower CMC attributed to higher siRNA delivery capacity of EAE539/37 in vivo than EAE548/29 after intravenous administration and subcutaneous injection. More importantly, 87.2% gene knockdown efficacy was achieved by EAE539/37 via subcutaneous injection, which might be useful for an mRNA vaccine adjuvant. Furthermore, EAE539/37 also successfully delivered siRRM2 to tumor via intravenous administration and received highly efficient antitumor activity. Taken together, the suitable pKa values, strong BCs occurred in pH 5.5-6.5, and low CMCs were probably the potential solution for designing efficient polycationic vehicles for siRNA delivery.
Collapse
Affiliation(s)
- Changrong Wang
- College of Pharmacy, Xinxiang Medical University, 453003 Xinxiang, P.R. China
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Xiaoxia Wang
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Lili Du
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yanliang Dong
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Bo Hu
- School of Life Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Junhui Zhou
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yongli Shi
- College of Pharmacy, Xinxiang Medical University, 453003 Xinxiang, P.R. China
| | - Suping Bai
- College of Pharmacy, Xinxiang Medical University, 453003 Xinxiang, P.R. China
| | - Yuanyu Huang
- School of Life Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Huiqing Cao
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Zicai Liang
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Anjie Dong
- College of Pharmacy, Xinxiang Medical University, 453003 Xinxiang, P.R. China
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
18
|
Gu W, Meng F, Haag R, Zhong Z. Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation. J Control Release 2021; 329:676-695. [DOI: 10.1016/j.jconrel.2020.10.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/13/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
|
19
|
Noé V, Aubets E, Félix AJ, Ciudad CJ. Nucleic acids therapeutics using PolyPurine Reverse Hoogsteen hairpins. Biochem Pharmacol 2020; 189:114371. [PMID: 33338475 DOI: 10.1016/j.bcp.2020.114371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023]
Abstract
PolyPurine Reverse Hoogsteen hairpins (PPRHs) are DNA hairpins formed by intramolecular reverse Hoogsteen bonds which can bind to polypyrimidine stretches in dsDNA by Watson:Crick bonds, thus forming a triplex and displacing the fourth strand of the DNA complex. PPRHs were first described as a gene silencing tool in vitro for DHFR, telomerase and survivin genes. Then, the effect of PPRHs directed against the survivin gene was also determined in vivo using a xenograft model of prostate cancer cells (PC3). Since then, the ability of PPRHs to inhibit gene expression has been explored in other genes involved in cancer (BCL-2, mTOR, topoisomerase, C-MYC and MDM2), in immunotherapy (SIRPα/CD47 and PD-1/PD-L1 tandem) or in replication stress (WEE1 and CHK1). Furthermore, PPRHs have the ability to target the complementary strand of a G-quadruplex motif as a regulatory element of the TYMS gene. PPRHs have also the potential to correct point mutations in the DNA as shown in two collections of CHO cell lines bearing mutations in either the dhfr or aprt loci. Finally, based on the capability of PPRHs to form triplexes, they have been incorporated as probes in biosensors for the determination of the DNA methylation status of PAX-5 in cancer and the detection of mtLSU rRNA for the diagnosis of Pneumocystis jirovecii. Of note, PPRHs have high stability and do not present immunogenicity, hepatotoxicity or nephrotoxicity in vitro. Overall, PPRHs constitute a new economical biotechnological tool with multiple biomedical applications.
Collapse
Affiliation(s)
- Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Eva Aubets
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Alex J Félix
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Carlos J Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
20
|
Modulating the Crosstalk between the Tumor and the Microenvironment Using SiRNA: A Flexible Strategy for Breast Cancer Treatment. Cancers (Basel) 2020; 12:cancers12123744. [PMID: 33322132 PMCID: PMC7763441 DOI: 10.3390/cancers12123744] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary With this review we aimed to collect the most relevant scientific findings regarding siRNA therapeutic tools against breast cancer microenvironment. Remarkably, breast cancer treatments have been redirected towards the tumor microenvironment components, mainly involved in patients’ relapse and pharmacological resistance. Therefore, siRNAs represent a promising strategy to jeopardize the tumor microenvironment interplay thanks to their non-toxic and specific effects. Abstract Tumorigenesis is a complex and multistep process in which sequential mutations in oncogenes and tumor-suppressor genes result in enhanced proliferation and apoptosis escape. Over the past decades, several studies have provided evidence that tumors are more than merely a mass of malignant cancer cells, with the tumor microenvironment (TME) also contributing to cancer progression. For this reason, the focus of cancer research in recent years has shifted from the malignant cancer cell itself to the TME and its interactions. Since the TME actively participates in tumor progression, therapeutic strategies targeting it have created great interest. In this context, much attention has been paid to the potential application of small interfering RNA (siRNA), a class of non-coding RNA that has the ability to downregulate the expression of target genes in a sequence-specific way. This is paving the way for a novel therapeutic approach for the treatment of several diseases, including cancer. In this review, we describe recent efforts in developing siRNA therapeutics for the treatment of breast cancer, with particular emphasis on TME regulation. We focus on studies that adapt siRNA design to reprogram/re-educate the TME and eradicate the interplay between cancer cells and TME.
Collapse
|
21
|
Sajid MI, Moazzam M, Kato S, Yeseom Cho K, Tiwari RK. Overcoming Barriers for siRNA Therapeutics: From Bench to Bedside. Pharmaceuticals (Basel) 2020; 13:E294. [PMID: 33036435 PMCID: PMC7600125 DOI: 10.3390/ph13100294] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
The RNA interference (RNAi) pathway possesses immense potential in silencing any gene in human cells. Small interfering RNA (siRNA) can efficiently trigger RNAi silencing of specific genes. FDA Approval of siRNA therapeutics in recent years garnered a new hope in siRNA therapeutics. However, their therapeutic use is limited by several challenges. siRNAs, being negatively charged, are membrane-impermeable and highly unstable in the systemic circulation. In this review, we have comprehensively discussed the extracellular barriers, including enzymatic degradation of siRNAs by serum endonucleases and RNAases, rapid renal clearance, membrane impermeability, and activation of the immune system. Besides, we have thoroughly described the intracellular barriers such as endosomal trap and off-target effects of siRNAs. Moreover, we have reported most of the strategies and techniques in overcoming these barriers, followed by critical comments in translating these molecules from bench to bedside.
Collapse
Affiliation(s)
- Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan;
| | - Muhammad Moazzam
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan;
| | - Shun Kato
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
| | - Kayley Yeseom Cho
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
| |
Collapse
|
22
|
Jebelli A, Baradaran B, Mosafer J, Baghbanzadeh A, Mokhtarzadeh A, Tayebi L. Recent developments in targeting genes and pathways by RNAi-based approaches in colorectal cancer. Med Res Rev 2020; 41:395-434. [PMID: 32990372 DOI: 10.1002/med.21735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/16/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022]
Abstract
A wide spectrum of genetic and epigenetic variations together with environmental factors has made colorectal cancer (CRC), which involves the colon and rectum, a challenging and heterogeneous cancer. CRC cannot be effectively overcomed by common conventional therapies including surgery, chemotherapy, targeted therapy, and hormone replacement which highlights the need for a rational design of novel anticancer therapy. Accumulating evidence indicates that RNA interference (RNAi) could be an important avenue to generate great therapeutic efficacy for CRC by targeting genes that are responsible for the viability, cell cycle, proliferation, apoptosis, differentiation, metastasis, and invasion of CRC cells. In this review, we underline the documented benefits of small interfering RNAs and short hairpin RNAs to target genes and signaling pathways related to CRC tumorigenesis. We address the synergistic effects of RNAi-mediated gene knockdown and inhibitors/chemotherapy agents to increase the sensitivity of CRC cells to common therapies. Finally, this review points new delivery systems/materials for improving the cellular uptake efficiency and reducing off-target effects of RNAi.
Collapse
Affiliation(s)
- Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin, USA
| |
Collapse
|
23
|
Caicho J, Mena K. Nanoparticles functionalized for target delivery of siRNA in Lung cancerous cells. BIONATURA 2020. [DOI: 10.21931/rb/2020.05.02.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In the present medical field, scientists have designed new techniques to improve human health. These techniques focus on control at the molecular level. Small interference RNA is an example of genetic control. This, together with Dicer and Argonaute 2, do not allow the transcription process to synthesize new protein. By using this mechanism, it is possible to control some diseases that are responsible for metastasis, such as lung cancer. Some experiments were conducted to prove the effectiveness of this technique. However, the problem is how to introduce the double-strand RNA to the cells. The issue was solved using NPs as nanocarriers. This review paper aims at making a brief overview of lung cancer, the siRNA mechanism, and some different targeting techniques.
Collapse
Affiliation(s)
- Jhonny Caicho
- School of Biologicals Science and Engineering. Yachay Tech University, Ecuador
| | - Kevin Mena
- School of Biologicals Science and Engineering. Yachay Tech University, Ecuador
| |
Collapse
|
24
|
Cyclodextrin as a magic switch in covalent and non-covalent anticancer drug release systems. Carbohydr Polym 2020; 242:116401. [PMID: 32564836 DOI: 10.1016/j.carbpol.2020.116401] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/25/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
Cancer has been a threat to human health, so its treatment is a huge challenge to the present medical field. One of commonly used methods is the controlled release of anticancer drug to reduce the dose for patients, increase the stability of drug treatment and minimize side effects. Cyclodextrin is a kind of cyclic oligosaccharide produced by amylase hydrolysis. Because cyclodextrin contains a cavity structure and active hydroxyl groups, it has a positive effect on the study of the controlled release of anticancer drugs. This article reviews the controlled release of current anticancer drugs based on cyclodextrins as a "flexible switch", and discusses the classification of different types of release systems, highlighting their role in cancer treatment. Moreover, the opportunities and challenges of cyclodextrin as a magic switch in the controlled release of anticancer drugs are discussed.
Collapse
|
25
|
Shek D, Read SA, Akhuba L, Qiao L, Gao B, Nagrial A, Carlino MS, Ahlenstiel G. Non-coding RNA and immune-checkpoint inhibitors: friends or foes? Immunotherapy 2020; 12:513-529. [DOI: 10.2217/imt-2019-0204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are an abundant component of the human transcriptome. Their biological role, however, remains incompletely understood. Nevertheless, ncRNAs are highly associated with cancer development and progression due to their ability to modulate gene expression, protein translation and growth pathways. Immune-checkpoint inhibitors (ICIs) are considered one of the most promising and highly effective therapeutic approaches for cancer treatment. ICIs are monoclonal antibodies targeting immune checkpoints such as CTLA-4, PD-1 and PD-L1 signalling pathways that stimulate T cell cytotoxicity and can result in tumor growth suppression. This Review will summarize existing knowledge regarding ncRNAs and their role in cancer and ICI therapy. In addition, we will discuss potential mechanisms by which ncRNAs may influence ICI treatment outcomes.
Collapse
Affiliation(s)
- Dmitrii Shek
- Blacktown Clinical School & Research Centre, Western Sydney University, Sydney, NSW, Australia
- Accreditation Centre, RUDN University, Moscow, Russia
| | - Scott A Read
- Blacktown Clinical School & Research Centre, Western Sydney University, Sydney, NSW, Australia
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
- Blacktown Hospital, Sydney, NSW, Australia
| | - Liia Akhuba
- Accreditation Centre, RUDN University, Moscow, Russia
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
- Westmead Hospital & Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Bo Gao
- Westmead Hospital & Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
- Blacktown Hospital, Sydney, NSW, Australia
| | - Adnan Nagrial
- Westmead Hospital & Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
- Blacktown Hospital, Sydney, NSW, Australia
| | - Matteo S Carlino
- Westmead Hospital & Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, Sydney, NSW, Australia
- Blacktown Hospital, Sydney, NSW, Australia
| | - Golo Ahlenstiel
- Blacktown Clinical School & Research Centre, Western Sydney University, Sydney, NSW, Australia
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
- Blacktown Hospital, Sydney, NSW, Australia
| |
Collapse
|
26
|
Tian B, Hua S, Liu J. Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: A review. Carbohydr Polym 2020; 232:115805. [DOI: 10.1016/j.carbpol.2019.115805] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
|
27
|
Small interfering RNA from the lab discovery to patients' recovery. J Control Release 2020; 321:616-628. [PMID: 32087301 DOI: 10.1016/j.jconrel.2020.02.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022]
Abstract
In 1998, the RNA interference discovery by Fire and Mello revolutionized the scientific and therapeutic world. They showed that small double-stranded RNAs, the siRNAs, were capable of selectively silencing the expression of a targeted gene by degrading its mRNA. Very quickly, it appeared that the use of this natural mechanism was an excellent way to develop new therapeutics, due to its specificity at low doses. However, one major hurdle lies in the delivery into the targeted cells, given that the different extracellular and intracellular barriers of the organism coupled with the physico-chemical characteristics of siRNA do not allow an efficient and safe administration. The development of nanotechnologies has made it possible to counteract these hurdles by vectorizing the siRNA in a vector composed of cationic lipids or polymers, or to chemically modify it by conjugation to a molecule. This has enabled the first clinical developments of siRNAs to begin very quickly after their discovery, for the treatment of various acquired or hereditary pathologies. In 2018, the first siRNA-containing drug was approved by the FDA and the EMA for the treatment of an inherited metabolic disease, the hereditary transthyretin amyloidosis. In this review, we discuss the different barriers to the siRNA after systemic administration and how vectorization or chemical modifications lead to avoid it. We describe some interesting clinical developments and finally, we present the future perspectives.
Collapse
|
28
|
Yang PM, Lin LS, Liu TP. Sorafenib Inhibits Ribonucleotide Reductase Regulatory Subunit M2 (RRM2) in Hepatocellular Carcinoma Cells. Biomolecules 2020; 10:biom10010117. [PMID: 31936661 PMCID: PMC7022495 DOI: 10.3390/biom10010117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
The main curative treatments for hepatocellular carcinoma (HCC) are surgical resection and liver transplantation, which only benefits 15% to 25% of patients. In addition, HCC is highly refractory and resistant to cytotoxic chemotherapy. Although several multi-kinase inhibitors, such as sorafenib, regorafenib, and lenvatinib, have been approved for treating advanced HCC, only a short increase of median overall survival in HCC patients was achieved. Therefore, there is an urgent need to design more effective strategies for advanced HCC patients. Human ribonucleotide reductase is responsible for the conversion of ribonucleoside diphosphate to 2′-deoxyribonucleoside diphosphate to maintain the homeostasis of nucleotide pools. In this study, mining the cancer genomics and proteomics data revealed that ribonucleotide reductase regulatory subunit M2 (RRM2) serves as a prognosis biomarker and a therapeutic target for HCC. The RNA sequencing (RNA-Seq) analysis and public microarray data mining found that RRM2 was a novel molecular target of sorafenib in HCC cells. In vitro experiments validated that sorafenib inhibits RRM2 expression in HCC cells, which is positively associated with the anticancer activity of sorafenib. Although both RRM2 knockdown and sorafenib induced autophagy in HCC cells, restoration of RRM2 expression did not rescue HCC cells from sorafenib-induced autophagy and growth inhibition. However, long-term colony formation assay indicated that RRM2 overexpression partially rescues HCC cells from the cytotoxicity of sorafenib. Therefore, this study identifies that RRM2 is a novel target of sorafenib, partially contributing to its anticancer activity in HCC cells.
Collapse
Affiliation(s)
- Pei-Ming Yang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Li-Shan Lin
- Department of Surgery, Mackay Memorial Hospital, Taipei 10449, Taiwan
| | - Tsang-Pai Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Surgery, Mackay Memorial Hospital, Taipei 10449, Taiwan
- Mackay Junior College of Medicine, Nursing and Management, New Taipei City 11260, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- Liver Medical Center, Mackay Memorial Hospital, Taipei 10449, Taiwan
- Correspondence: ; Tel.: +886-2-2543-3535 (ext. 9)
| |
Collapse
|
29
|
Sharma A, Kumar P, Ambasta RK. Cancer Fighting SiRNA-RRM2 Loaded Nanorobots. Pharm Nanotechnol 2020; 8:79-90. [PMID: 32003677 DOI: 10.2174/2211738508666200128120142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Silencing of several genes is critical for cancer therapy. These genes may be apoptotic gene, cell proliferation gene, DNA synthesis gene, etc. The two subunits of Ribonucleotide Reductase (RR), RRM1 and RRM2, are critical for DNA synthesis. Hence, targeting the blockage of DNA synthesis at tumor site can be a smart mode of cancer therapy. Specific targeting of blockage of RRM2 is done effectively by SiRNA. The drawbacks of siRNA delivery in the body include the poor uptake by all kinds of cells, questionable stability under physiological condition, non-target effect and ability to trigger the immune response. These obstacles may be overcome by target delivery of siRNA at the tumor site. This review presents a holistic overview regarding the role of RRM2 in controlling cancer progression. The nanoparticles are more effective due to specific characteristics like cell membrane penetration capacity, less toxicity, etc. RRM2 have been found to be elevated in different types of cancer and identified as the prognostic and predictive marker of the disease. Reductase RRM1 and RRM2 regulate the protein and gene expression of E2F, which is critical for protein expression and progression of cell cycle and cancer. The knockdown of RRM2 leads to apoptosis via Bcl2 in cancer. Both Bcl2 and E2F are critical in the progression of cancer, hence a gene that can affect both in regulating DNA replication is essential for cancer therapy. AIM The aim of the review is to identify the related gene whose silencing may inhibit cancer progression. CONCLUSION In this review, we illuminate the critical link between RRM-E2F, RRM-Bcl2, RRM-HDAC for the therapy of cancer. Altogether, this review presents an overview of all types of SiRNA targeted for cancer therapy with special emphasis on RRM2 for controlling the tumor progression.
Collapse
Affiliation(s)
- Arjun Sharma
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, TN, India
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, United States
| | - Pravir Kumar
- Functional Genomics Lab, Department of Biotechnology, Delhi Technological University, DTU, Delhi, India
| | - Rashmi K Ambasta
- Functional Genomics Lab, Department of Biotechnology, Delhi Technological University, DTU, Delhi, India
- CSIR Scientific Pool Officer, Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
30
|
Ling B, Liao X, Huang Y, Liang L, Jiang Y, Pang Y, Qi G. Identification of prognostic markers of lung cancer through bioinformatics analysis and in vitro experiments. Int J Oncol 2020; 56:193-205. [PMID: 31789390 PMCID: PMC6910184 DOI: 10.3892/ijo.2019.4926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is one of the most common types of cancer worldwide. Understanding the molecular mechanisms underlying the development and progression of lung cancer may improve early diagnosis, treatment and prognosis. The aim of the present study was to examine the pathogenesis of lung cancer and to identify potentially novel biomarkers. Gene expression datasets of patients with lung cancer were obtained from the Gene Expression Omnibus. Genes which were most closely associated with lung cancer (core genes) were screened by weighted gene co‑expression network analysis. In vitro cell based experiments were further utilized to verify the effects of the core genes on the proliferation of lung cancer cells, adhesion between cells and the matrix, and the associated metabolic pathways. Based on WGCNA screening, two gene modules and five core genes closely associated with lung cancer, including immunoglobulin superfamily member 10 (IGSF10) from the turquoise module, and ribonucleotide reductase regulatory subunit M2, protein regulator of cytokinesis 1, kinesin family member (KIF)14 and KIF2C from the brown module were identified as relevant. Survival analysis and differential gene expression analysis showed that there were significant differences in IGSF10 expression levels between the healthy controls and patients with lung cancer. In patients with lung cancer, IGSF10 expression was decreased, and the overall survival time of patients with lung cancer was significantly shortened. An MTT and colony formation assay showed that IGSF10‑knockout significantly increased proliferation of lung cancer cells, and Transwell assays and adhesion experiments further suggested that the adhesion between cells and the matrix was significantly increased in IGSF10‑knockout cells. Gene Set Enrichment Analysis showed that the expression level of IGSF10 was significantly associated with the activation of the integrin‑β1/focal adhesion kinase (FAK) pathway. Western blotting revealed that knockout of IGSF10 resulted in the activation of the integrin‑β1/FAK pathway, as the protein expression levels of integrin‑β1, phosphorylated (p)‑FAK and p‑AKT were significantly upregulated. Activation of the integrin‑β1/FAK pathway, following knockout of IGSF10, affected the proliferation and adhesion of lung cancer cells. Therefore, IGSF10 my serve as a potential prognostic marker of lung cancer.
Collapse
Affiliation(s)
| | | | - Yuanhe Huang
- Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi 533000
| | | | - Yan Jiang
- Medical College, Guangxi University, Nanning, Guangxi 530004
| | - Yaqin Pang
- College of Public Health and Management, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Guangzi Qi
- College of Public Health and Management, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| |
Collapse
|
31
|
A Six-Gene Signature Predicts Survival of Adenocarcinoma Type of Non-Small-Cell Lung Cancer Patients: A Comprehensive Study Based on Integrated Analysis and Weighted Gene Coexpression Network. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4250613. [PMID: 31886214 PMCID: PMC6925693 DOI: 10.1155/2019/4250613] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
Background and Goals. To identify a multigene signature model for prognosis of non-small-cell lung cancer (NSCLC) patients, we first found 2146 consensus differentially expressed genes (DEGs) in NSCLC overlapped in Gene Expression Omnibus (GEO) and TCGA lung adenocarcinoma (LUAD) datasets using integrated analysis. We constructed a weighted gene coexpression network (WGCN) using the consensus DEGs and identified the module significantly associated with pathological M stage and consisted of 61 genes. After univariate Cox regression analysis and subsequent stepwise model selection by the Akaike information criterion (AIC) and multivariate Cox hazard model analysis, an mRNA signature model which calculated prognostic score was generated: prognostic score = (-0.2491 × EXPRRAGB) + (-0.0679 × EXPRSPH9) + (-0.2317 × EXPRPS6KL1) + (-0.1035 × EXPRXFP1) + 0.1571 × EXPRRM2 + 0.1104 × EXPRTL1, where EXP is the fragments per kilobase million (FPKM) value of the mRNA included in the model. The prognostic model separated NSCLC patients in the TCGA-LUAD dataset into the low- and high-risk score groups with a median prognostic score of 0.972. Higher scores predicted higher risk. The area under ROC curve (AUC) was 0.994 or 0.776 in predicting the 1- to 10-year survival of NSCLC patients. The prognostic performance of this prognostic model was validated by an independent GSE11969 dataset of NSCLC adenocarcinoma with AUC values between 0.822 and 0.755 in predicting 1- to 10-year survival of NSCLC. These results suggested that the six-gene signature functioned as an independent biomarker to predict the overall survival of NSCLC adenocarcinoma.
Collapse
|
32
|
Shao YT, Ma L, Zhang TH, Xu TR, Ye YC, Liu Y. The Application of the RNA Interference Technologies for KRAS: Current Status, Future Perspective and Associated Challenges. Curr Top Med Chem 2019; 19:2143-2157. [PMID: 31456522 DOI: 10.2174/1568026619666190828162217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/26/2019] [Accepted: 07/07/2019] [Indexed: 02/07/2023]
Abstract
KRAS is a member of the murine sarcoma virus oncogene-RAS gene family. It plays an important role in the prevention, diagnosis and treatment of tumors during tumor cell growth and angiogenesis. KRAS is the most commonly mutated oncogene in human cancers, such as pancreatic cancers, colon cancers, and lung cancers. Detection of KRAS gene mutation is an important indicator for tracking the status of oncogenes, highlighting the developmental prognosis of various cancers, and the efficacy of radiotherapy and chemotherapy. However, the efficacy of different patients in clinical treatment is not the same. Since RNA interference (RNAi) technologies can specifically eliminate the expression of specific genes, these technologies have been widely used in the field of gene therapy for exploring gene function, infectious diseases and malignant tumors. RNAi refers to the phenomenon of highly specific degradation of homologous mRNA induced by double-stranded RNA (dsRNA), which is highly conserved during evolution. There are three classical RNAi technologies, including siRNA, shRNA and CRISPR-Cas9 system, and a novel synthetic lethal interaction that selectively targets KRAS mutant cancers. Therefore, the implementation of individualized targeted drug therapy has become the best choice for doctors and patients. Thus, this review focuses on the current status, future perspective and associated challenges in silencing of KRAS with RNAi technology.
Collapse
Affiliation(s)
- Yu-Ting Shao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Li Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Tie-Hui Zhang
- The First People's Hospital of Heishan County, Jinzhou city, Liaoning, Jinzhou 121400, China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yuan-Chao Ye
- Department of Internal Medicine, Gastroenterology and Hepatology, University of Iowa, Iowa City, IA 52242, United States.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, United States
| | - Ying Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
33
|
Zhang C, Aldrees M, Arif M, Li X, Mardinoglu A, Aziz MA. Elucidating the Reprograming of Colorectal Cancer Metabolism Using Genome-Scale Metabolic Modeling. Front Oncol 2019; 9:681. [PMID: 31417867 PMCID: PMC6682621 DOI: 10.3389/fonc.2019.00681] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer is the third most incidental cancer worldwide, and the response rate of current treatment for colorectal cancer is very low. Genome-scale metabolic models (GEMs) are systems biology platforms, and they had been used to assist researchers in understanding the metabolic alterations in different types of cancer. Here, we reconstructed a generic colorectal cancer GEM by merging 374 personalized GEMs from the Human Pathology Atlas and used it as a platform for systematic investigation of the difference between tumor and normal samples. The reconstructed model revealed the metabolic reprogramming in glutathione as well as the arginine and proline metabolism in response to tumor occurrence. In addition, six genes including ODC1, SMS, SRM, RRM2, SMOX, and SAT1 associated with arginine and proline metabolism were found to be key players in this metabolic alteration. We also investigated these genes in independent colorectal cancer patients and cell lines and found that many of these genes showed elevated level in colorectal cancer and exhibited adverse effect in patients. Therefore, these genes could be promising therapeutic targets for treatment of a specific colon cancer patient group.
Collapse
Affiliation(s)
- Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Mohammed Aldrees
- Department of Medical Genomics, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdul Aziz University for Health Sciences, Riyadh, Saudi Arabia
- Ministry of the National Guard- Health Affairs, Riyadh, Saudi Arabia
| | - Muhammad Arif
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Xiangyu Li
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Host–Microbiome Interactions, Dental Institute, King's College London, London, United Kingdom
| | - Mohammad Azhar Aziz
- King Saud Bin Abdul Aziz University for Health Sciences, Riyadh, Saudi Arabia
- Ministry of the National Guard- Health Affairs, Riyadh, Saudi Arabia
- Colorectal Cancer Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Choudhury H, Gorain B, Pandey M, Khurana RK, Kesharwani P. Strategizing biodegradable polymeric nanoparticles to cross the biological barriers for cancer targeting. Int J Pharm 2019; 565:509-522. [PMID: 31102804 DOI: 10.1016/j.ijpharm.2019.05.042] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
The biological barriers in the body have been fabricated by nature to protect the body from foreign molecules. The successful delivery of drugs is limited and being challenged by these biological barriers including the gastrointestinal tract, brain, skin, lungs, nose, mouth mucosa, and immune system. In this review article, we envisage to understand the functionalities of these barriers and revealing various drug-loaded biodegradable polymeric nanoparticles to overcome these barriers and deliver the entrapped drugs to cancer targeted site. Apart from it, tissue-specific multifunctional ligands, linkers and transporters when employed imparts an effective active delivery strategy by receptor-mediated transcytosis. Together, these strategies enable to deliver various drugs across the biological membranes for the treatment of solid tumors and malignant cancer.
Collapse
Affiliation(s)
- Hira Choudhury
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya, 47500 Selangor, Malaysia.
| | - Manisha Pandey
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Rajneet Kaur Khurana
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Prashant Kesharwani
- School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi 110062, India.
| |
Collapse
|
35
|
Xiao Y, Shi K, Qu Y, Chu B, Qian Z. Engineering Nanoparticles for Targeted Delivery of Nucleic Acid Therapeutics in Tumor. Mol Ther Methods Clin Dev 2019; 12:1-18. [PMID: 30364598 PMCID: PMC6197778 DOI: 10.1016/j.omtm.2018.09.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the past 10 years, with the increase of investment in clinical nano-gene therapy, there are many trials that have been discontinued due to poor efficacy and serious side effects. Therefore, it is particularly important to design a suitable gene delivery system. In this paper, we introduce the application of liposomes, polymers, and inorganics in gene delivery; also, different modifications with some stimuli-responsive systems can effectively improve the efficiency of gene delivery and reduce cytotoxicity and other side effects. Besides, the co-delivery of chemotherapy drugs with a drug tolerance-related gene or oncogene provides a better theoretical basis for clinical cancer gene therapy.
Collapse
Affiliation(s)
- Yao Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ying Qu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Bingyang Chu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, China
| |
Collapse
|
36
|
Raja MAG, Katas H, Amjad MW. Design, mechanism, delivery and therapeutics of canonical and Dicer-substrate siRNA. Asian J Pharm Sci 2019; 14:497-510. [PMID: 32104477 PMCID: PMC7032099 DOI: 10.1016/j.ajps.2018.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/07/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022] Open
Abstract
Upon the discovery of RNA interference (RNAi), canonical small interfering RNA (siRNA) has been recognized to trigger sequence-specific gene silencing. Despite the benefits of siRNAs as potential new drugs, there are obstacles still to be overcome, including off-target effects and immune stimulation. More recently, Dicer substrate siRNA (DsiRNA) has been introduced as an alternative to siRNA. Similarly, it also is proving to be potent and target-specific, while rendering less immune stimulation. DsiRNA is 25–30 nucleotides in length, and is further cleaved and processed by the Dicer enzyme. As with siRNA, it is crucial to design and develop a stable, safe, and efficient system for the delivery of DsiRNA into the cytoplasm of targeted cells. Several polymeric nanoparticle systems have been well established to load DsiRNA for in vitro and in vivo delivery, thereby overcoming a major hurdle in the therapeutic uses of DsiRNA. The present review focuses on a comparison of siRNA and DsiRNA on the basis of their design, mechanism, in vitro and in vivo delivery, and therapeutics.
Collapse
Affiliation(s)
- Maria Abdul Ghafoor Raja
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha 73211, Saudi Arabia
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Muhammad Wahab Amjad
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha 73211, Saudi Arabia
| |
Collapse
|
37
|
|
38
|
Du L, Wang C, Meng L, Cheng Q, Zhou J, Wang X, Zhao D, Zhang J, Deng L, Liang Z, Dong A, Cao H. The study of relationships between pKa value and siRNA delivery efficiency based on tri-block copolymers. Biomaterials 2018; 176:84-93. [DOI: 10.1016/j.biomaterials.2018.05.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/14/2018] [Accepted: 05/27/2018] [Indexed: 12/20/2022]
|
39
|
Goss KL, Gordon DJ. Gene expression signature based screening identifies ribonucleotide reductase as a candidate therapeutic target in Ewing sarcoma. Oncotarget 2018; 7:63003-63019. [PMID: 27557498 PMCID: PMC5325343 DOI: 10.18632/oncotarget.11416] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/13/2016] [Indexed: 11/25/2022] Open
Abstract
There is a critical need in cancer therapeutics to identify targeted therapies that will improve outcomes and decrease toxicities compared to conventional, cytotoxic chemotherapy. Ewing sarcoma is a highly aggressive bone and soft tissue cancer that is caused by the EWS-FLI1 fusion protein. Although EWS-FLI1 is specific for cancer cells, and required for tumorigenesis, directly targeting this transcription factor has proven challenging. Consequently, targeting unique dependencies or key downstream mediators of EWS-FLI1 represent important alternative strategies. We used gene expression data derived from a genetically defined model of Ewing sarcoma to interrogate the Connectivity Map and identify a class of drugs, iron chelators, that downregulate a significant number of EWS-FLI1 target genes. We then identified ribonucleotide reductase M2 (RRM2), the iron-dependent subunit of ribonucleotide reductase (RNR), as one mediator of iron chelator toxicity in Ewing sarcoma cells. Inhibition of RNR in Ewing sarcoma cells caused apoptosis in vitro and attenuated tumor growth in an in vivo, xenograft model. Additionally, we discovered that the sensitivity of Ewing sarcoma cells to inhibition or suppression of RNR is mediated, in part, by high levels of SLFN11, a protein that sensitizes cells to DNA damage. This work demonstrates a unique dependency of Ewing sarcoma cells on RNR and supports further investigation of RNR inhibitors, which are currently used in clinical practice, as a novel approach for treating Ewing sarcoma.
Collapse
Affiliation(s)
- Kelli L Goss
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| | - David J Gordon
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
40
|
The promoted delivery of RRM2 siRNA to vascular smooth muscle cells through liposome-polycation-DNA complex conjugated with cell penetrating peptides. Biomed Pharmacother 2018; 103:982-988. [PMID: 29710515 DOI: 10.1016/j.biopha.2018.03.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/11/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022] Open
Abstract
Peripheral vascular disease (PVD) is a prevalent vascular disease that affect a large number of patients. The establishment of optimal treatments to mitigate the intimal hyperplasia (IH)-induced restenosis would help relieve the health burden of the PVD. Ribonucleotide reductase M2 (RRM2) is critical to cellular migration and proliferation. We have previously demonstrated that suppression of RRM2 expression could substantially inhibit hepatocellular carcinoma cell proliferation and migration. We hereby developed RRM2 small interfering RNA (siRNA)-loaded cell penetrating peptides-conjugated liposome-polycation-DNA complex (LPD) (RRM2-CLPD), aiming to inhibit the migration and proliferation of vascular smooth muscle cells (VSMCs) crucial for IH. RRM2-CLPD is of a small size (∼150 nm) and high siRNA encapsulation efficiency (∼90%). Further, we demonstrated that RRM2-CLPD could significantly inhibited RRM2 gene and protein expression by ∼80%. Notably, RRM2-CLPD was able to effectively bind to VSMCs, resulting in significant cellular proliferation and migration inhibition. Taken together, RRM2-CLPD represent a very promising treatment for IH.
Collapse
|
41
|
Zhao X, Wang X, Sun W, Cheng K, Qin H, Han X, Lin Y, Wang Y, Lang J, Zhao R, Zheng X, Zhao Y, shi J, Hao J, Miao QR, Nie G, Ren H. Precision design of nanomedicines to restore gemcitabine chemosensitivity for personalized pancreatic ductal adenocarcinoma treatment. Biomaterials 2018; 158:44-55. [DOI: 10.1016/j.biomaterials.2017.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
|
42
|
Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee SS. Therapeutic miRNA and siRNA: Moving from Bench to Clinic as Next Generation Medicine. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:132-143. [PMID: 28918016 PMCID: PMC5496203 DOI: 10.1016/j.omtn.2017.06.005] [Citation(s) in RCA: 553] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 12/21/2022]
Abstract
In the past few years, therapeutic microRNA (miRNA) and small interfering RNA (siRNA) are some of the most important biopharmaceuticals that are in commercial space as future medicines. This review summarizes the patents of miRNA- and siRNA-based new drugs, and also provides a snapshot about significant biopharmaceutical companies that are investing for the therapeutic development of miRNA and siRNA molecules. An insightful view about individual siRNA and miRNA drugs has been depicted with their present status, which is gaining attention in the therapeutic landscape. The efforts of the biopharmaceuticals are discussed with the status of their preclinical and/or clinical trials. Here, some of the setbacks have been highlighted during the biopharmaceutical development of miRNA and siRNA as individual therapeutics. Finally, a snapshot is illustrated about pharmacokinetics, pharmacodynamics with absorption, distribution, metabolism, and excretion (ADME), which is the fundamental development process of these therapeutics, as well as the delivery system for miRNA- and siRNA-based drugs.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Bioinformatics and Biochemistry, Galgotias University, Greater Noida 201306, Uttar Pradesh, India; Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Republic of Korea.
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Republic of Korea
| | - Garima Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Republic of Korea
| | - C George Priya Doss
- Department of Integrative Biology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Republic of Korea.
| |
Collapse
|
43
|
|
44
|
Goss KL, Koppenhafer SL, Harmoney KM, Terry WW, Gordon DJ. Inhibition of CHK1 sensitizes Ewing sarcoma cells to the ribonucleotide reductase inhibitor gemcitabine. Oncotarget 2017; 8:87016-87032. [PMID: 29152060 PMCID: PMC5675612 DOI: 10.18632/oncotarget.18776] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/22/2017] [Indexed: 12/22/2022] Open
Abstract
Ewing sarcoma is a bone and soft tissue sarcoma that occurs in children and young adults. The EWS-FLI1 gene fusion is the driver mutation in most Ewing sarcoma tumors and functions, in part, as an aberrant transcription factor. We recently identified that Ewing sarcoma cells are sensitive to inhibition of ribonucleotide reductase (RNR), which catalyzes the formation of deoxyribonucleotides from ribonucleotides. In this report, we show that Ewing sarcoma cells are sensitive to treatment with clofarabine, which is a nucleoside analogue and allosteric inhibitor of RNR. However, clofarabine is a reversible inhibitor of RNR and we found that the effect of clofarabine is limited when using a short (6-hour) drug treatment. Gemcitabine, on the other hand, is an irreversible inhibitor of the RRM1 subunit of RNR and this drug induces apoptosis in Ewing sarcoma cells when used in both 6-hour and longer drug treatments. Treatment of Ewing sarcoma cells with gemcitabine also results in activation of checkpoint kinase 1 (CHK1), which is a critical mediator of cell survival in the setting of impaired DNA replication. Notably, inhibition of CHK1 function in Ewing sarcoma cells using a small-molecule CHK1 inhibitor, or siRNA knockdown, in combination with gemcitabine results in increased toxicity both in vitro and in vivo in a mouse xenograft experiment. Overall, our results provide insight into Ewing sarcoma biology and identify a candidate therapeutic target, and drug combination, in Ewing sarcoma.
Collapse
Affiliation(s)
- Kelli L Goss
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Stacia L Koppenhafer
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Kathryn M Harmoney
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa 52242, USA
| | - William W Terry
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa 52242, USA
| | - David J Gordon
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
45
|
Parvanian S, Mostafavi SM, Aghashiri M. Multifunctional nanoparticle developments in cancer diagnosis and treatment. SENSING AND BIO-SENSING RESEARCH 2017. [DOI: 10.1016/j.sbsr.2016.08.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
46
|
Abstract
Targeted cancer nanotherapeutics offers numerous opportunities for the selective uptake of toxic chemotherapies within tumors and cancer cells. The unique properties of nanoparticles, such as their small size, large surface-to-volume ratios, and the ability to achieve multivalency of targeting ligands on their surface, provide superior advantages for nanoparticle-based drug delivery to a variety of cancers. This review highlights various key concepts in the design of targeted nanotherapeutics for cancer therapy, and discusses physicochemical parameters affecting nanoparticle targeting, along with recent developments for cancer-targeted nanomedicines.
Collapse
Affiliation(s)
| | | | - Joseph Kaplinsky
- Department of Micro and Nanotechnology, DTU Nanotech, Technical University of Denmark, Produktionstorvet, 2800, Kongens Lyngby, Denmark
| | - Nazila Kamaly
- Department of Micro and Nanotechnology, DTU Nanotech, Technical University of Denmark, Produktionstorvet, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
47
|
Youngren-Ortiz SR, Gandhi NS, España-Serrano L, Chougule MB. Aerosol Delivery of siRNA to the Lungs. Part 2: Nanocarrier-based Delivery Systems. KONA : POWDER SCIENCE AND TECHNOLOGY IN JAPAN 2016; 34:44-69. [PMID: 28392618 PMCID: PMC5381822 DOI: 10.14356/kona.2017005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this article, applications of engineered nanoparticles containing siRNA for inhalation delivery are reviewed and discussed. Diseases with identified protein malfunctions may be mitigated through the use of well-designed siRNA therapeutics. The inhalation route of administration provides local delivery of siRNA therapeutics to the lungs for various pulmonary diseases. A siRNA delivery system can be used to overcome the barriers of pulmonary delivery, such as anatomical barriers, mucociliary clearance, cough clearance, and alveolar macrophage clearance. Apart from naked siRNA aerosol delivery, previously studied siRNA carrier systems include those of lipidic, polymeric, peptide, or inorganic origin. These delivery systems can achieve pulmonary delivery through the generation of an aerosol via an inhaler or nebulizer. The preparation methodologies for these siRNA nanocarrier systems will be discussed herein. The use of inhalable nanocarrier siRNA delivery systems have barriers to their effective delivery, but overcoming these constraints while formulating a safe and effective delivery system will offer unique advances to the field of inhaled medicine.
Collapse
Affiliation(s)
- Susanne R. Youngren-Ortiz
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Nishant S. Gandhi
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Laura España-Serrano
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Mahavir B. Chougule
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
- Natural Products and Experimental Therapeutics Program, The Cancer Research Center, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| |
Collapse
|
48
|
A Small Indel Mutant Mouse Model of Epidermolytic Palmoplantar Keratoderma and Its Application to Mutant-specific shRNA Therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e299. [PMID: 27003758 PMCID: PMC5014458 DOI: 10.1038/mtna.2016.17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 12/13/2022]
Abstract
Epidermolytic palmoplantar keratoderma (EPPK) is a relatively common autosomal-dominant skin disorder caused by mutations in the keratin 9 gene (KRT9), with few therapeutic options for the affected so far. Here, we report a knock-in transgenic mouse model that carried a small insertion–deletion (indel) mutant of Krt9, c.434delAinsGGCT (p.Tyr144delinsTrpLeu), corresponding to the human mutation KRT9/c.500delAinsGGCT (p.Tyr167delinsTrpLeu), which resulted in a human EPPK-like phenotype in the weight-stress areas of the fore- and hind-paws of both Krt9+/mut and Krt9mut/mut mice. The phenotype confirmed that EPPK is a dominant-negative condition, such that mice heterozygotic for the K9-mutant allele (Krt9+/mut) showed a clear EPPK-like phenotype. Then, we developed a mutant-specific short hairpin RNA (shRNA) therapy for EPPK mice. Mutant-specific shRNAs were systematically identified in vitro using a luciferase reporter gene assay and delivered into Krt9+/mut mice. shRNA-mediated knockdown of mutant protein resulted in almost normal morphology and functions of the skin, whereas the same shRNA had a negligible effect in wild-type K9 mice. Our results suggest that EPPK can be treated by gene therapy, and this has significant implications for future clinical application.
Collapse
|
49
|
Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem Rev 2016; 116:2602-63. [PMID: 26854975 PMCID: PMC5509216 DOI: 10.1021/acs.chemrev.5b00346] [Citation(s) in RCA: 1726] [Impact Index Per Article: 191.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nazila Kamaly
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Basit Yameen
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jun Wu
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Omid C. Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
50
|
Oocyte-expressed yes-associated protein is a key activator of the early zygotic genome in mouse. Cell Res 2016; 26:275-87. [PMID: 26902285 PMCID: PMC4783469 DOI: 10.1038/cr.2016.20] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 12/20/2022] Open
Abstract
In early mammalian embryos, the genome is transcriptionally quiescent until the zygotic genome activation (ZGA) which occurs 2-3 days after fertilization. Despite a long-standing effort, maternal transcription factors regulating this crucial developmental event remain largely elusive. Here, using maternal and paternal mouse models of Yap1 deletion, we show that maternally accumulated yes-associated protein (YAP) in oocyte is essential for ZGA. Maternal Yap1-knockout embryos exhibit a prolonged two-cell stage and develop into the four-cell stage at a much slower pace than the wild-type controls. Transcriptome analyses identify YAP target genes in early blastomeres; two of which, Rpl13 and Rrm2, are required to mediate maternal YAP's effect in conferring developmental competence on preimplantation embryos. Furthermore, the physiological YAP activator, lysophosphatidic acid, can substantially improve early development of wild-type, but not maternal Yap1-knockout embryos in both oviduct and culture. These observations provide insights into the mechanisms of ZGA, and suggest potentials of YAP activators in improving the developmental competence of cultured embryos in assisted human reproduction and animal biotechnology.
Collapse
|