1
|
Bao J, Wang W, Ma L, Chen G, Lan S, Cao J, Sun P, Qin X, Ma S, Li S. Nitrate reductase BoNIA2b responds to nitric oxide to positively regulate the accumulation of Glucoraphanin and Sulforaphane in broccoli hairy roots. Int J Biol Macromol 2025; 311:143522. [PMID: 40288716 DOI: 10.1016/j.ijbiomac.2025.143522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Glucoraphanin (GRA) and sulforaphane (SF) are potent anticancer compounds. Understanding their accumulation mechanisms is crucial for increasing their levels in broccoli. This study aimed to investigate the role of nitric oxide (NO) in GRA and SF accumulation and identify key genes involved in this process. Low NO concentrations were found to promote GRA and SF accumulation. Transcriptome sequencing and Weighted Gene Co-expression Network Analysis (WGCNA) identified BoNIA2b, a nitrate reductase (NR) gene, as a key regulator of NO-mediated GRA and SF accumulation. Silencing BoNIA2b reduced endogenous NO levels and NR activity in hairy roots, while exogenous treatment with sodium nitroprusside (SNP) restored NO levels without affecting NR activity. Overexpression of BoNIA2b increased NO content and NR activity. Silencing BoNIA2b decreased GRA content, but SF levels remained unaffected. SNP treatment enhanced both GRA and SF accumulation, with GRA being more dependent on BoNIA2b. In BoNIA2b-overexpressing roots, both GRA and SF levels were significantly higher than in controls. Moreover, the interaction between BoNIA2b and BoMYB28 protein was confirmed through Y2H and luciferase complementation assays. These findings underscore BoNIA2b's role in NO-mediated regulation of GRA and SF accumulation in broccoli hairy roots, offering insights to enhancing the production of these anticancer compounds.
Collapse
Affiliation(s)
- Jinyu Bao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenhui Wang
- Laboratory and Practice Base Management Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Lei Ma
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Guiping Chen
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Shimin Lan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jie Cao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ping Sun
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoxiao Qin
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaoying Ma
- Laboratory and Practice Base Management Center, Gansu Agricultural University, Lanzhou 730070, China.
| | - Sheng Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
2
|
Peñata-Taborda A, Espitia-Pérez P, Espitia-Pérez L, Coneo-Pretelt A, Brango H, Ricardo-Caldera D, Arteaga-Arroyo G, Jiménez-Vidal L, Galeano-Páez C, Pastor-Sierra K, Humanez-Alvarez A, Bru-Cordero O, Jones-Cifuentes N, Rincón-Orozco B, Mendez-Sanchez S, Negrette-Guzmán M. Combination of Low-Dose Sulforaphane and Docetaxel on Mitochondrial Function and Metabolic Reprogramming in Prostate Cancer Cell Lines. Int J Mol Sci 2025; 26:1013. [PMID: 39940782 PMCID: PMC11817897 DOI: 10.3390/ijms26031013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 02/16/2025] Open
Abstract
Considering the limitations of monotherapies due to chemoresistance and side effects, this research aimed to determine whether low doses of sulforaphane (SFN) combined with docetaxel (DCT) could enhance therapeutic efficacy. Prostate cancer cell lines LNCaP and PC-3 were treated with individual IC50 doses of SFN and DCT and half-reduced IC50 values for the SFN:DCT combination. Metabolic markers, including glucose consumption, lactate production, reactive oxygen species (ROS), mitochondrial mass, and caspase activity, were assessed. In LNCaP cells, the SFN:DCT combination reduced cell viability to 50%, comparable to DCT monotherapy (48%). Caspase 3 activation was also higher with SFN:DCT (2.4 ± 0.75 RFU) than DCT alone (2.1 ± 0.47 RFU), while caspase 8 activation remained comparable, indicating equivalent effectiveness at lower concentrations. In PC-3 cells, the combination induced caspase 3 activation (1.16 ± 0.0484 RFU) at levels slightly lower than DCT (1.51 ± 0.2062 RFU) but achieved greater reductions in mitochondrial mass, reflecting its ability to target metabolic vulnerabilities in aggressive phenotypes. Our findings suggest that the SFN:DCT combination is a promising strategy for early-stage prostate cancer. By achieving comparable efficacy to DCT monotherapy at low doses, the SFN:DCT combination maintains the therapeutic impact, mitigating the adverse effects of conventional DCT treatment.
Collapse
Affiliation(s)
- Ana Peñata-Taborda
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Pedro Espitia-Pérez
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Lyda Espitia-Pérez
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Andrés Coneo-Pretelt
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Hugo Brango
- Facultad de Educación y Ciencias, Departamento de Matemáticas, Universidad de Sucre, Sincelejo 700003, Colombia;
| | - Dina Ricardo-Caldera
- Grupo de Investigación Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú E.B.Z., Montería 230001, Colombia;
| | - Gean Arteaga-Arroyo
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Luisa Jiménez-Vidal
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Claudia Galeano-Páez
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Karina Pastor-Sierra
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Alicia Humanez-Alvarez
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Osnamir Bru-Cordero
- Dirección Académica, Universidad Nacional de Colombia, Kilómetro 9, Vía Valledupar-La Paz, La Paz 202010, Colombia;
| | - Nathalia Jones-Cifuentes
- Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (N.J.-C.); (B.R.-O.); (M.N.-G.)
| | - Bladimiro Rincón-Orozco
- Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (N.J.-C.); (B.R.-O.); (M.N.-G.)
| | - Stelia Mendez-Sanchez
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680002, Colombia;
| | - Mario Negrette-Guzmán
- Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (N.J.-C.); (B.R.-O.); (M.N.-G.)
| |
Collapse
|
3
|
Chen W, Chen WM, Chen SX, Jiang L, Shu GG, Yin YX, Quan ZP, Zhou ZY, Shen MJ, Qin YT, Yang CL, Su XJ, Kang M. Establishment of a visualized mouse orthotopic xenograft model of nasopharyngeal carcinoma. Cancer Biol Ther 2024; 25:2382531. [PMID: 39206791 PMCID: PMC11364074 DOI: 10.1080/15384047.2024.2382531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 05/30/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Mouse orthotopic xenograft tumor models are commonly employed in studies investigating the mechanisms underlying the development and progression of tumors and their preclinical treatment. However, the unavailability of mature and visualized orthotopic xenograft models of nasopharyngeal carcinoma limits the development of treatment strategies for this cancer. The aim of this study was to provide a simple and reliable method for building an orthotopic xenograft model of nasopharyngeal carcinoma. Human nasopharyngeal carcinoma (C666-1-luc) cells, stably expressing the firefly luciferase gene, were injected subcutaneously into the right axilla of BALB/C nude mice. Four weeks later, the resulting subcutaneous tumors were cut into small blocks and grafted into the nasopharynx of immunodeficient BALB/C nude mice to induce tumor formation. Tumor growth was monitored by bioluminescence imaging and small animal magnetic resonance imaging (MRI). The expression of histological and immunological antigens associated with orthotopic xenograft nasopharyngeal carcinoma was analyzed by tissue section analysis and immunohistochemistry (IHC). A visualized orthotopic xenograft nasopharyngeal carcinoma model was successfully developed in this study. Luminescence signal detection, micro-MRI, and hematoxylin and eosin staining revealed the successful growth of tumors in the nasopharynx of the nude mice. Moreover, IHC analysis detected cytokeratin (CK), CK5/6, P40, and P63 expression in the orthotopic tumors, consistent with the reported expression of these antigens in human nasopharyngeal tumors. This study established a reproducible, visual, and less lethal orthotopic xenograft model of nasopharyngeal carcinoma, providing a platform for preclinical research.
Collapse
Affiliation(s)
- Wei Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Nanning, Guangxi, China
| | - Wei-Min Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Si-Xia Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Li Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Nanning, Guangxi, China
| | - Ge-Ge Shu
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Nanning, Guangxi, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuan-Xiu Yin
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Nanning, Guangxi, China
| | - Zhi-Peng Quan
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Nanning, Guangxi, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zi-Yan Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Nanning, Guangxi, China
| | - Ming-Jun Shen
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ya-Ting Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chao-Lin Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xue-Jin Su
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Nanning, Guangxi, China
| | - Min Kang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Nanning, Guangxi, China
| |
Collapse
|
4
|
Casari G, Romaldi B, Scirè A, Minnelli C, Marzioni D, Ferretti G, Armeni T. Epigenetic Properties of Compounds Contained in Functional Foods Against Cancer. Biomolecules 2024; 15:15. [PMID: 39858410 PMCID: PMC11762081 DOI: 10.3390/biom15010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Epigenetics encompasses reversible and heritable genomic changes in histones, DNA expression, and non-coding RNAs that occur without modifying the nucleotide DNA sequence. These changes play a critical role in modulating cell function in both healthy and pathological conditions. Dysregulated epigenetic mechanisms are implicated in various diseases, including cardiovascular disorders, neurodegenerative diseases, obesity, and mainly cancer. Therefore, to develop innovative therapeutic strategies, research for compounds able to modulate the complex epigenetic landscape of cancer is rapidly surging. Dietary phytochemicals, mostly flavonoids but also tetraterpenoids, organosulfur compounds, and isothiocyanates, represent biologically active molecules found in vegetables, fruits, medicinal plants, and beverages. These natural organic compounds exhibit epigenetic modulatory properties by influencing the activity of epigenetics key enzymes, such as DNA methyltransferases, histone acetyltransferases and deacetylases, and histone methyltransferases and demethylases. Due to the reversibility of the modifications that they induce, their minimal adverse effects, and their potent epigenetic regulatory activity, dietary phytochemicals hold significant promise as antitumor agents and warrant further investigation. This review aims to consolidate current data on the diverse epigenetic effects of the six major flavonoid subclasses, as well as other natural compounds, in the context of cancer. The goal is to identify new therapeutic epigenetic targets for drug development, whether as stand-alone treatments or in combination with conventional antitumor approaches.
Collapse
Affiliation(s)
- Giulia Casari
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| | - Brenda Romaldi
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| | - Andrea Scirè
- Department of Life and Environmental Sciences (DISVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.)
| | - Cristina Minnelli
- Department of Life and Environmental Sciences (DISVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.)
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - Gianna Ferretti
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| | - Tatiana Armeni
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| |
Collapse
|
5
|
El-Shoura EAM, Abdelzaher LA, Mahmoud NI, Farghaly OA, Sabry M, Girgis Shahataa M, Salem EA, Saad HM, Elhussieny O, Kozman MR, Atwa AM. Combined sulforaphane and β-sitosterol mitigate olanzapine-induced metabolic disorders in rats: Insights on FOXO, PI3K/AKT, JAK/STAT3, and MAPK signaling pathways. Int Immunopharmacol 2024; 140:112904. [PMID: 39116489 DOI: 10.1016/j.intimp.2024.112904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
One of the best antipsychotics for treating schizophrenia and bipolar disorders is olanzapine (OLA). However, its use is restricted owing to unfavorable adverse effects as liver damage, dyslipidemia, and weight gain. The primary objective of the present investigation was to examine the signaling mechanisms that underlie the metabolic disruption generated by OLA. Besides, the potential protective effect of sulforaphane (SFN) and β-sitosterol (βSS) against obesity and metabolic toxicity induced by OLA were inspected as well. A total of five groups of male Wistar rats were established, including the control, OLA, SFN+OLA, βSS+OLA, and the combination + OLA groups. Hepatic histopathology, biochemical analyses, ultimate body weights, liver function, oxidative stress, and pro-inflammatory cytokines were evaluated. In addition to the relative expression of FOXO, the signaling pathways for PI3K/AKT, JAK/STAT3, and MAPK were assessed as well. All biochemical and hepatic histopathological abnormalities caused by OLA were alleviated by SFN and/or βSS. A substantial decrease in systolic blood pressure (SBP), proinflammatory cytokines, serum lipid profile parameters, hepatic MDA, TBIL, AST, and ALT were reduced through SFN or/and βSS. To sum up, the detrimental effects of OLA are mediated by alterations in the Akt/FOXO3a/ATG12, Ras/SOS2/Raf-1/MEK/ERK1/2, and Smad3,4/TGF-β signaling pathways. The administration of SFN and/or βSS has the potential to mitigate the metabolic deficit, biochemical imbalances, hepatic histological abnormalities, and the overall unfavorable consequences induced by OLA by modulating the abovementioned signaling pathways.
Collapse
Affiliation(s)
- Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nesreen I Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Omar A Farghaly
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Egypt
| | - Mostafa Sabry
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Egypt
| | - Mary Girgis Shahataa
- Department of Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa A Salem
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen ElKom, 32511, Egypt
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh 51744, Egypt
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh 51744, Egypt
| | - Magy R Kozman
- Clinical Pharmacy Department, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12563, Egypt
| | - Ahmed M Atwa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Ayen Iraqi University, Thi-Qar 64001, Iraq
| |
Collapse
|
6
|
Habrowska-Górczyńska DE, Kozieł MJ, Urbanek KA, Kowalska K, Piastowska-Ciesielska AW. FOXO3a/PI3K/Akt pathway participates in the ROS- induced apoptosis triggered by α-ZEL and β-ZEL. Sci Rep 2024; 14:13281. [PMID: 38858492 PMCID: PMC11164887 DOI: 10.1038/s41598-024-64350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024] Open
Abstract
Zearalenone (ZEN), an estrogenic mycotoxin, is one of the most common food and feed contaminants. Also, its metabolites α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL) are considered to induce oxidative stress, however its effect in prostate cells is not known yet. Our previous observations showed that forehead box transcription factor 3a (FOXO3a) expression is modified in hormone- sensitive cells in the response to mycotoxins, similar to the phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt) pathway. Thus, this study evaluated the direct molecular effect of α-ZEL and β-ZEL in a dose of 30 µM in hormone-dependent human prostate cancer (PCa) cells with the focus of the involvement of FOXO3a and PI3K/Akt signaling pathway in that effect. We observed that both active metabolites of ZEN reduced cell viability, induced oxidative stress, cell cycle arrest and apoptosis in PCa cells. Furthermore, we observed that FOXO3a as well as PI3K/Akt signaling pathway participate in ZELs induced toxicity in PCa cells, indicating that this signaling pathway might be a regulator of mycotoxin-induced toxicity generally.
Collapse
Affiliation(s)
| | - Marta Justyna Kozieł
- Department of Cell Culture and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216, Lodz, Poland
| | - Kinga Anna Urbanek
- Department of Cell Culture and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Karolina Kowalska
- Department of Cell Culture and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Agnieszka Wanda Piastowska-Ciesielska
- Department of Cell Culture and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216, Lodz, Poland
| |
Collapse
|
7
|
Kumari R, Syeda S, Shrivastava A. Nature's Elixir for Cancer Treatment: Targeting Tumor-induced Neovascularization. Curr Med Chem 2024; 31:5281-5304. [PMID: 38425113 DOI: 10.2174/0109298673282525240222050051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Angiogenesis, a multistep process, involves sprouting of new vessels from the pre-existing vessels in response to a stimulus in its microenvironment. Normally, angiogenesis is important for tissue maintenance and homeostasis, however it is also known to be associated with various pathologies, including cancer. Importantly, neovascularization is very crucial for tumors to grow and metastasize since it allows delivery of oxygen and nutrients as well as promotes tumor cell dissemination to distant sites. Activation of angiogenic switch is a consequence of imbalance in pro- as well as anti-angiogenic factors, that are immensely impacted by reactive oxygen species and epigenetic regulation. Several reports have suggested that angiogenic inhibitors significantly inhibit tumor growth. Therefore, anti-angiogenic therapy has gained substantial attention and has been considered a rational approach in cancer therapeutics. In this line, several anti- angiogenic drugs have been approved, however, their long term usage caused several side effects. In view of this, researchers switched to plant-based natural compounds for identifying safe and cost-effective anti-angiogenic drugs. Of note, various phytochemicals have been evaluated to reduce tumor growth by inhibiting tumor-induced angiogenesis. Moreover, the implication of nano-carriers to enhance the bioavailability of phytochemicals has proven to be more efficient anti-cancer agents. The present review highlights the existing knowledge on tumor-induced neovascularization and its regulation at the epigenetic level. Further, we emphasize the inhibitory effect of phytochemicals on tumor- induced angiogenesis that will open up new avenues in cancer therapeutics.
Collapse
Affiliation(s)
- Rani Kumari
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Saima Syeda
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Anju Shrivastava
- Department of Zoology, University of Delhi, Delhi, 110007, India
| |
Collapse
|
8
|
Singh V, Shirbhate E, Kore R, Mishra A, Johariya V, Veerasamy R, Tiwari AK, Rajak H. Dietary Plant Metabolites Induced Epigenetic Modification as a Novel Strategy for the Management of Prostate Cancer. Mini Rev Med Chem 2024; 24:1409-1426. [PMID: 38385496 DOI: 10.2174/0113895575283895240207065454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Prostate cancer is a widespread malignancy among men, with a substantial global impact on morbidity and mortality. Despite advances in conventional therapies, the need for innovative and less toxic treatments remains a priority. Emerging evidence suggests that dietary plant metabolites possess epigenetic-modifying properties, making them attractive candidates for prostate cancer treatment. The present work reviews the epigenetic effects of dietary plant metabolites in the context of prostate cancer therapy. We first outline the key epigenetic mechanisms involved in prostate cancer pathogenesis, including histone modifications, DNA methylation, and miRNA or Long Noncoding RNA (lncRNA) dysregulation. Next, we delve into the vast array of dietary plant metabolites that have demonstrated promising anti-cancer effects through epigenetic regulation. Resveratrol, minerals, isothiocyanates, curcumin, tea polyphenols, soy isoflavones and phytoestrogens, garlic compounds, anthocyanins, lycopene, and indoles are among the most extensively studied compounds. These plant-derived bioactive compounds have been shown to influence DNA methylation patterns, histone modifications, and microRNA expression, thereby altering the gene expression allied with prostate cancer progression, cell proliferation, and apoptosis. We also explore preclinical and clinical studies investigating the efficacy of dietary plant metabolites as standalone treatments or in combination with traditional treatments for people with prostate cancer. The present work highlights the potential of dietary plant metabolites as epigenetic modulators to treat prostate cancer. Continued research in this field may pave the way for personalized and precision medicine approaches, moving us closer to the goal of improved prostate cancer management.
Collapse
Affiliation(s)
- Vaibhav Singh
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Rakesh Kore
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Aditya Mishra
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Varsha Johariya
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Ravichandran Veerasamy
- Departement of Pharmaceutical chemistry, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Amit K Tiwari
- UAMS College of Pharmacy, College of Pharmacy and Pharmaceutical Sciences, UAMS - University of Arkansas for Medical Sciences, Arkansas, (AR) USA
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| |
Collapse
|
9
|
Habrowska-Górczyńska DE, Kowalska K, Urbanek KA, Domińska K, Kozieł MJ, Piastowska-Ciesielska AW. Effect of the mycotoxin deoxynivalenol in combinational therapy with TRAIL on prostate cancer cells. Toxicol Appl Pharmacol 2023; 461:116390. [PMID: 36690084 DOI: 10.1016/j.taap.2023.116390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) is reported as a promising anti-cancer therapeutic target. Unfortunately, prostate cancer cells (PCa) are partially resistant to TRAIL-induced apoptosis limiting its therapeutic potential. The existing body of knowledge suggests that naturally produced compounds, such as mycotoxin deoxynivalenol (DON), might potentially sensitize cells to TRAIL treatment and improve the efficiency of therapy. Previously, we observed that DON induces oxidative stress and apoptosis in PCa cell lines. Thus we addressed here whether DON can sensitize PCa cells to TRAIL-induced apoptosis. Our data demonstrates that three out of four tested PCa cell lines pretreated with DON increased TRAIL-induced apoptosis detected with flow cytometry. This effect was associated with oxidative stress (LNCaP and DU-145 cell line) and elevated DNA damage (DU-145, LNCaP, and 22Rv1 cell lines). Next, in the animal model we inoculated PC tumor to SCKID mice followed by administration of DON intraperitoneally and/or TRIAL intravenously. During 21 days monitoring of tumor growth, the animals received 7 doses of DON, TRAIL, DON+TRAIL or control injections. No significant reduction in tumor mass was observed after combinational treatment of TRAIL and DON compared to 1 μg/kg of body weight DON treatment alone, which itself decreased the tumor growth. However, despite the lack of the TRAIL + DON effect, DON itself inducing apoptosis is an interesting compound worth investigating in the context of other combination therapies.
Collapse
Affiliation(s)
| | - Karolina Kowalska
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland
| | - Kinga Anna Urbanek
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland
| | - Kamila Domińska
- Department of Comparative Endocrinology, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland
| | - Marta Justyna Kozieł
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland
| | | |
Collapse
|
10
|
Pharmacological Small Molecules against Prostate Cancer by Enhancing Function of Death Receptor 5. Pharmaceuticals (Basel) 2022; 15:ph15081029. [PMID: 36015177 PMCID: PMC9413322 DOI: 10.3390/ph15081029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 02/05/2023] Open
Abstract
Death receptor 5 (DR5) is a membrane protein that mediates exogenous apoptosis. Based on its function, it is considered to be a target for the treatment of cancers including prostate cancer. It is encouraging to note that a number of drugs targeting DR5 are now progressing to different stages of clinical trial studies. We collected 38 active compounds that could produce anti-prostate-cancer effects by modulating DR5, 28 of which were natural compounds and 10 of which were synthetic compounds. In addition, 6 clinically used chemotherapeutic agents have also been shown to promote DR5 expression and thus exert apoptosis-inducing effects in prostate cancer cells. These compounds promote the expression of DR5, thereby enhancing its function in inducing apoptosis. When these compounds were used in combination with the natural ligand of DR5, the number of apoptotic cells was significantly increased. These compounds are all promising for development as anti-prostate-cancer drugs, while most of these compounds are currently being evaluated for their anti-prostate-cancer effects at the cellular level and in animal studies. A great deal of more in-depth research is needed to evaluate whether they can be developed as drugs. We collected literature reports on small molecules against prostate cancer through modulation of DR5 to understand the current dynamics in this field and to evaluate the prospects of small molecules against prostate cancer through modulation of DR5.
Collapse
|
11
|
Lin Z, Zhang Z, Ye X, Zhu M, Li Z, Chen Y, Huang S. Based on network pharmacology and molecular docking to predict the mechanism of Huangqi in the treatment of castration-resistant prostate cancer. PLoS One 2022; 17:e0263291. [PMID: 35594510 PMCID: PMC9122509 DOI: 10.1371/journal.pone.0263291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022] Open
Abstract
Background
As a kind of traditional Chinese medicine, HQ is widely mentioned in the treatment of cancerous diseases in China, which has been proven to have a therapeutic effect on cancerous diseases, such as prostate cancer. To predict the specific mechanism of HQ in the treatment of CRPC, we will conduct preliminary verification and discussion based on a comprehensive consideration of network pharmacology and molecular docking.
Methods
TCMSP was used to obtain the compounds and reach the effective targets of HQ. The targets of CRPC were reached based on GeneCards database and CTD database. GO and KEGG were utilized for the analysis of overlapping targets. The software of Openbabel was used to convert the formats of ligands and reporters. In addition, molecular docking studies were performed by using the software of Autodock Vina.
Result
It can be seen from the database results that there were 87 active compounds (20 key active compounds) in HQ, and 33 targets were screened out for CRPC treatment. GO and KEGG pathway enrichment analyses identified 81 significant GO terms and 24 significant KEGG pathways. There is a difference in terms of the expression of core protein between cancer patients and healthy people. The expression of core protein in patients also has an impact on the life cycle. The results of molecular docking showed that the docking activity of drug molecules and core proteins was better.
Conclusions
It is concluded from the results of this network pharmacology and molecular docking that HQ makes a multi-target and multi-biological process, and results in the multi-channel synergistic effect on the treatment of CRPC by regulating cell apoptosis, proliferation and metastasis, which still needs further verification by experimental research.
Collapse
Affiliation(s)
- Zesen Lin
- The Second People’s hospital of Zhaoqing, Zhaoqing, China
| | - Zechao Zhang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xuejin Ye
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Min Zhu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
- * E-mail:
| | - Zhihong Li
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Yu Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Shuping Huang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
12
|
Zhang Y, Lu Q, Li N, Xu M, Miyamoto T, Liu J. Sulforaphane suppresses metastasis of triple-negative breast cancer cells by targeting the RAF/MEK/ERK pathway. NPJ Breast Cancer 2022; 8:40. [PMID: 35332167 PMCID: PMC8948359 DOI: 10.1038/s41523-022-00402-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer metastasis is the main cause of cancer death in women, so far, no effective treatment has inhibited breast cancer metastasis. Sulforaphane (SFN), a natural compound derived from broccoli, has shown potential health benefits in many cancers. However, research on breast cancer metastasis is still insufficient. Here, we showed that SFN, including its two isomers of R-SFN and S-SFN, significantly inhibited TGF-β1-induced migration and invasion in breast cancer cells. Proteomic and phosphoproteomic analysis showed that SFN affected the formation of the cytoskeleton. Subsequent experiments confirmed that SFN significantly inhibited TGF-β1-induced actin stress fiber formation and the expression of actin stress fiber formation-associated proteins, including paxillin, IQGAP1, FAK, PAK2, and ROCK. Additionally, SFN is directly bound to RAF family proteins (including ARAF, BRAF, and CRAF) and inhibited MEK and ERK phosphorylation. These in vitro results indicate that SFN targets the RAF/MEK/ERK signaling pathway to inhibit the formation of actin stress fibers, thereby inhibiting breast cancer cell metastasis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Molecular and Cellular Physiology, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Qian Lu
- Department of Molecular and Cellular Physiology, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Nan Li
- Department of Molecular and Cellular Physiology, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ming Xu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Tatsuo Miyamoto
- Department of Molecular and Cellular Physiology, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
13
|
Wang K, Wang X, Fu X, Sun J, Zhao L, He H, Fan Y. Lung cancer metastasis-related protein 1 promotes the transferring from advanced metastatic prostate cancer to castration-resistant prostate cancer by activating the glucocorticoid receptor α signal pathway. Bioengineered 2022; 13:5373-5385. [PMID: 35184651 PMCID: PMC8974197 DOI: 10.1080/21655979.2021.2020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Androgen deprivation therapy is currently the main therapeutic strategy for the treatment of advanced metastatic prostate cancer (ADPC). However, the tumor type in ADPC patients transforms into castration-resistant prostate cancer (CRPC) after 18–24 months of treatments, the underlying mechanism of which remains unclear. The present study aimed to investigate the potential pathological mechanism of the conversion from ADPC to CRPC by exploring the function of lung cancer metastasis-related protein 1 (LCMR1). We found that LCMR1 and glucocorticoid receptor α (GRα) were highly expressed in CRPC tissues, compared to ADPC tissues, and were accompanied by high concentrations of inflammatory factors. Knocking down LCMR1 or GRα in CRPC cells led to inhibition of metastasis and proliferation and induction of apoptosis. The expression of HSP90 and IL-6 was upregulated and that of androgen receptor was downregulated by knocking down LCMR1 or GRα in CRPC cells. Luciferase assay results indicated that the transcription of GRα was promoted by the LCMR1 promoter. The growth rate of CRPC cells in vivo was greatly decreased by knocking down LCMR1 or GRα. Lastly, CRPC cell sensitivity to enzalutamide treatment was found significantly enhanced by the knockdown of LCMR1. Taken together, LCMR1 might regulate the conversion of ADPC to CRPC by activating the GRα signaling pathway.
Collapse
Affiliation(s)
- Kai Wang
- Department of Urology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Xuliang Wang
- Department of Urology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xian Fu
- Department of Urology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Ji Sun
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Liwei Zhao
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Huadong He
- Department of Urology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yi Fan
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
14
|
Habrowska-Górczyńska DE, Kozieł MJ, Kowalska K, Piastowska-Ciesielska AW. FOXO3a and Its Regulators in Prostate Cancer. Int J Mol Sci 2021; 22:ijms222212530. [PMID: 34830408 PMCID: PMC8625444 DOI: 10.3390/ijms222212530] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Forkhead box O3 (FOXO3a) is a member of a subfamily of forkhead transcription factors involved in the basic processes within a cell, including proliferation, apoptosis, cell cycle regulation, and DNA damage. As a transcription factor, FOXO3a is involved in the response to cellular stress, UV radiation, or oxidative stress. Its regulation is based on the modification of proteins as well as regulation by other proteins, e.g., growth factors. FOXO3a is commonly deregulated in cancer cells, and its inactivation is associated with initiation and progression of tumorigenesis, suggesting its role as a tumor suppressor; however, its role is still disputed and seems to be dependent on upstream signaling. Nevertheless, FOXO3a serves as an interesting potential target in therapies as it is regulated during treatment with very common anti-cancer drugs such as paclitaxel, cisplatin, docetaxel, and doxorubicin. This review aims to update the reported role of FOXO3a in prostate cancer (PCa), with a focus on its regulators that might serve as potential therapeutic agents in PCa therapy.
Collapse
|
15
|
Colapietro A, Rossetti A, Mancini A, Martellucci S, Ocone G, Pulcini F, Biordi L, Cristiano L, Mattei V, Delle Monache S, Marampon F, Gravina GL, Festuccia C. Multiple Antitumor Molecular Mechanisms Are Activated by a Fully Synthetic and Stabilized Pharmaceutical Product Delivering the Active Compound Sulforaphane (SFX-01) in Preclinical Model of Human Glioblastoma. Pharmaceuticals (Basel) 2021; 14:1082. [PMID: 34832864 PMCID: PMC8626029 DOI: 10.3390/ph14111082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Frequent relapses and therapeutic resistance make the management of glioblastoma (GBM, grade IV glioma), extremely difficult. Therefore, it is necessary to develop new pharmacological compounds to be used as a single treatment or in combination with current therapies in order to improve their effectiveness and reduce cytotoxicity for non-tumor cells. SFX-01 is a fully synthetic and stabilized pharmaceutical product containing the α-cyclodextrin that delivers the active compound 1-isothiocyanato-4-methyl-sulfinylbutane (SFN) and maintains biological activities of SFN. In this study, we verified whether SFX-01 was active in GBM preclinical models. Our data demonstrate that SFX-01 reduced cell proliferation and increased cell death in GBM cell lines and patient-derived glioma initiating cells (GICs) with a stem cell phenotype. The antiproliferative effects of SFX-01 were associated with a reduction in the stemness of GICs and reversion of neural-to-mesenchymal trans-differentiation (PMT) closely related to epithelial-to-mesenchymal trans-differentiation (EMT) of epithelial tumors. Commonly, PMT reversion decreases the invasive capacity of tumor cells and increases the sensitivity to pharmacological and instrumental therapies. SFX-01 induced caspase-dependent apoptosis, through both mitochondrion-mediated intrinsic and death-receptor-associated extrinsic pathways. Here, we demonstrate the involvement of reactive oxygen species (ROS) through mediating the reduction in the activity of essential molecular pathways, such as PI3K/Akt/mTOR, ERK, and STAT-3. SFX-01 also reduced the in vivo tumor growth of subcutaneous xenografts and increased the disease-free survival (DFS) and overall survival (OS), when tested in orthotopic intracranial GBM models. These effects were associated with reduced expression of HIF1α which, in turn, down-regulates neo-angiogenesis. So, SFX-01 may have potent anti-glioma effects, regulating important aspects of the biology of this neoplasia, such as hypoxia, stemness, and EMT reversion, which are commonly activated in this neoplasia and are responsible for therapeutic resistance and glioma recurrence. SFX-01 deserves to be considered as an emerging anticancer agent for the treatment of GBM. The possible radio- and chemo sensitization potential of SFX-01 should also be evaluated in further preclinical and clinical studies.
Collapse
Affiliation(s)
- Alessandro Colapietro
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| | - Alessandra Rossetti
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| | - Andrea Mancini
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy; (S.M.); (V.M.)
- Laboratory of Vascular Biology and Stem Cells, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.P.); (S.D.M.)
| | - Giuseppe Ocone
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| | - Fanny Pulcini
- Laboratory of Vascular Biology and Stem Cells, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.P.); (S.D.M.)
| | - Leda Biordi
- Laboratory of Medical Oncology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Loredana Cristiano
- Department of Clinical Medicine, Public Health, Division of Human Anatomy, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy; (S.M.); (V.M.)
| | - Simona Delle Monache
- Laboratory of Vascular Biology and Stem Cells, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.P.); (S.D.M.)
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, La Sapienza University of Rome, 00185 Rome, Italy;
| | - Giovanni Luca Gravina
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, University of L’Aquila, 67100 L’Aquila, Italy
| | - Claudio Festuccia
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| |
Collapse
|
16
|
Aspriţoiu VM, Stoica I, Bleotu C, Diaconu CC. Epigenetic Regulation of Angiogenesis in Development and Tumors Progression: Potential Implications for Cancer Treatment. Front Cell Dev Biol 2021; 9:689962. [PMID: 34552922 PMCID: PMC8451900 DOI: 10.3389/fcell.2021.689962] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is a multi-stage process of new blood vessel development from pre-existing vessels toward an angiogenic stimulus. The process is essential for tissue maintenance and homeostasis during embryonic development and adult life as well as tumor growth. Under normal conditions, angiogenesis is involved in physiological processes, such as wound healing, cyclic regeneration of the endometrium, placental development and repairing certain cardiac damage, in pathological conditions, it is frequently associated with cancer development and metastasis. The control mechanisms of angiogenesis in carcinogenesis are tightly regulated at the genetic and epigenetic level. While genetic alterations are the critical part of gene silencing in cancer cells, epigenetic dysregulation can lead to repression of tumor suppressor genes or oncogene activation, becoming an important event in early development and the late stages of tumor development, as well. The global alteration of the epigenetic spectrum, which includes DNA methylation, histone modification, chromatin remodeling, microRNAs, and other chromatin components, is considered one of the hallmarks of cancer, and the efforts are concentrated on the discovery of molecular epigenetic markers that identify cancerous precursor lesions or early stage cancer. This review aims to highlight recent findings on the genetic and epigenetic changes that can occur in physiological and pathological angiogenesis and analyze current knowledge on how deregulation of epigenetic modifiers contributes to tumorigenesis and tumor maintenance. Also, we will evaluate the clinical relevance of epigenetic markers of angiogenesis and the potential use of "epi-drugs" in modulating the responsiveness of cancer cells to anticancer therapy through chemotherapy, radiotherapy, immunotherapy and hormone therapy as anti-angiogenic strategies in cancer.
Collapse
Affiliation(s)
| | - Ileana Stoica
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Coralia Bleotu
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Romanian Academy, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | | |
Collapse
|
17
|
Chen L, Hao M, Yan J, Sun L, Tai G, Cheng H, Zhou Y. Citrus-derived DHCP inhibits mitochondrial complex II to enhance TRAIL sensitivity via ROS-induced DR5 upregulation. J Biol Chem 2021; 296:100515. [PMID: 33676890 PMCID: PMC8050394 DOI: 10.1016/j.jbc.2021.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/15/2021] [Accepted: 03/03/2021] [Indexed: 10/29/2022] Open
Abstract
Heat-modified citrus pectin, a water-soluble indigestible polysaccharide fiber derived from citrus fruits and modified by temperature treatment, has been reported to exhibit anticancer effects. However, the bioactive fractions and their mechanisms remain unclear. In this current study, we isolated an active compound, trans-4,5-dihydroxy-2-cyclopentene-l-one (DHCP), from heat-treated citrus pectin, and found that is induces cell death in colon cancer cells via induction of mitochondrial ROS. On the molecular level, DHCP triggers ROS production by inhibiting the activity of succinate ubiquinone reductase (SQR) in mitochondrial complex II. Furthermore, cytotoxicity, apoptotic activity, and activation of caspase cascades were determined in HCT116 and HT-29 cell-based systems, the results indicated that DHCP enhances the sensitivity of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), with DHCP-induced ROS accounting for the synergistic effect between DHCP and TRAIL. Furthermore, the combination of DHCP and TRAIL inhibits the growth of HCT116 and HT-29 xenografts synergistically. ROS significantly increases the expression of TRAIL death receptor 5 (DR5) via the p53 and C/EBP homologous protein pathways. Collectively, our findings indicate that DHCP has a favorable toxicity profile and is a new TRAIL sensitizer that shows promise in the development of pectin-based pharmaceuticals, nutraceuticals, and dietary agents aimed at combating human colon cancer.
Collapse
Affiliation(s)
- Lei Chen
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Miao Hao
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Jingmin Yan
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Lin Sun
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Guihua Tai
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Hairong Cheng
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China.
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China.
| |
Collapse
|
18
|
Li S, Wu H, Tollefsbol TO. Combined Broccoli Sprouts and Green Tea Polyphenols Contribute to the Prevention of Estrogen Receptor-Negative Mammary Cancer via Cell Cycle Arrest and Inducing Apoptosis in HER2/neu Mice. J Nutr 2020; 151:73-84. [PMID: 33188406 PMCID: PMC7779229 DOI: 10.1093/jn/nxaa315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/24/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Aberrations in the regulation of cell proliferation perturb cellular homeostasis and lead to malignancies in which dysregulation of the cell cycle and suppressed apoptosis are 2 common phenomena. Combinatorial nutritional approaches could be efficacious in ameliorating these aberrations. OBJECTIVES We sought to investigate the effect of dietary broccoli sprouts (BSp) and green tea polyphenol (GTP) administration on cell cycle progression and apoptosis in mammary tumors. METHODS Forty female HER2/neu transgenic mice were randomly divided into 4 groups and treated with control, 26% BSp (wt:wt) in food, 0.5% GTPs (wt:vol) in drinking water, or combined BSp and GTPs from dams' conception until their pups were killed at 29 wk of age. Pups' tumor growth was monitored weekly for 27 wk. Tumor cell cycle- and apoptosis-related protein expression was measured. Data were analyzed with 2-factor or 3-factor (repeated-measures) ANOVA. RESULTS Compared with the control group, BSp and/or GTPs decreased tumor incidence (P < 0.05) and combined BSp and GTPs synergistically [combination index (CIn) < 1] reduced tumor volume over time (P-time < 0.01). BSp and/or GTPs upregulated the expression of phosphatase and tension homolog, P16, and P53 (P < 0.05) and downregulated myelocytomatosis oncogene, Bmi1 polycomb ring finger oncogene, and telomerase reverse transcriptase (P < 0.05) compared with the control group. Combined BSp and GTPs synergistically (CIn < 1) downregulated the expression of cyclin B1, D1, and E1 and cyclin-dependent kinase 1, 2, and 4 (P < 0.05) compared with the control group. Moreover, combined BSp and GTPs induced apoptosis by regulating Bcl-2-associated X protein and B-cell lymphoma 2 (P < 0.05). BSp and/or GTPs also reduced the expression of DNA methyltransferase 1, 3A, and 3B and histone deacetylase 1 compared with the control group (P < 0.05). CONCLUSIONS Collectively, lifelong BSp and GTP administration can prevent estrogen receptor-negative mammary tumorigenesis through cell cycle arrest and inducing apoptosis in HER2/neu mice.
Collapse
Affiliation(s)
- Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huixin Wu
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
19
|
Zhou Y, Wang Y, Wu S, Yan Y, Hu Y, Zheng Z, Li J, Wu W. Sulforaphane-cysteine inhibited migration and invasion via enhancing mitophagosome fusion to lysosome in human glioblastoma cells. Cell Death Dis 2020; 11:819. [PMID: 33004792 PMCID: PMC7530759 DOI: 10.1038/s41419-020-03024-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/24/2022]
Abstract
Here we uncovered the involved subcellular mechanisms that sulforaphane-cysteine (SFN-Cys) inhibited invasion in human glioblastoma (GBM). SFN-Cys significantly upregulated 45 and downregulated 14 microtubule-, mitophagy-, and invasion-associated proteins in GBM cells via HPLC-MS/MS and GEO ontology analysis; SFN-Cys disrupted microtubule by ERK1/2 phosphorylation-mediated downregulation of α-tubulin and Stathmin-1 leading to the inhibition of cell migration and invasion; SFN-Cys downregulated invasion-associated Claudin-5 and S100A4, and decreased the interaction of α-tubulin to Claudin-5. Knockdown of Claudin-5 and S100A4 significantly reduced the migration and invasion. Besides, SFN-Cys lowered the expressions of α-tubulin-mediated mitophagy-associated proteins Bnip3 and Nix. Transmission electron microscopy showed more membrane-deficient mitochondria and accumulated mitophagosomes in GBM cells, and mitochondria fusion might be downregulated because that SFN-Cys downregulated mitochondrial fusion protein OPA1. SFN-Cys increased the colocalization and interplay of LC3 to lysosomal membrane-associated protein LAMP1, aggravating the fusion of mitophagosome to lysosome. Nevertheless, SFN-Cys inhibited the lysosomal proteolytic capacity causing LC3II/LC3I elevation but autophagy substrate SQSTM1/p62 was not changed, mitophagosome accumulation, and the inhibition of migration and invasion in GBM cells. These results will help us develop high-efficiency and low-toxicity anticancer drugs to inhibit migration and invasion in GBM.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yalin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Sai Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuting Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yabin Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zhongnan Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Juntao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China. .,Beijing Key Laboratory for Invasion and Metastasis, Capital Medical University, No. 10, Xitoutiao, You An Men Wai Ave., Feng Tai District, Beijing, 100069, China.
| |
Collapse
|
20
|
Zheng K, Ma J, Wang Y, He Z, Deng K. Sulforaphane Inhibits Autophagy and Induces Exosome-Mediated Paracrine Senescence via Regulating mTOR/TFE3. Mol Nutr Food Res 2020; 64:e1901231. [PMID: 32476238 DOI: 10.1002/mnfr.201901231] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/27/2020] [Indexed: 12/11/2022]
Abstract
SCOPE The development of novel compounds that trigger non-apoptotic cell death may represent alternative therapeutic strategies for esophageal squamous cell carcinoma (ESCC) treatment. Cellular senescence suppresses tumorigenesis by halting the proliferation of tumor cells, implying the induction of senescence as a promising anticancer strategy, especially when combined with senolytic agents that specially kill senescent cells. This study is designed to screen novel anti-ESCC compounds from a natural product resource and identify its mechanism-of-action. METHODS AND RESULTS Identified are the significant anti-cancer effect and underlying mechanism of SFN, an isothiocyanate derived from cruciferous vegetables, through RNA sequencing, western blot, and immunofluorescent assays. It is found that SFN inhibits proliferation of ESCC cells through inducing senescence. Mechanistically, SFN induces reactive oxygen species (ROS) via disrupting the balance between glutathione and oxidized glutathione, leading to DNA damage. In addition, ROS deregulates autophagy and promotes lysosome abnormal biogenesis through regulating mTOR/TFE3 axis. Finally, the inhibited autophagic flux facilitates exosome production, resulting in exosome-mediated paracrine senescence. CONCLUSIONS This study suggests the important roles of autophagy and exosome-mediated paracrine senescence in cancer therapy and highlights SFN as a potent anti-ESCC drug candidate.
Collapse
Affiliation(s)
- Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jingxin Ma
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yifei Wang
- College of Life Science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, 510632, P. R. China
| | - Zhendan He
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China.,Guangdong Key laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen, 518060, P. R. China
| | - Kejun Deng
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
21
|
Ganesan K, Jayachandran M, Xu B. Diet-Derived Phytochemicals Targeting Colon Cancer Stem Cells and Microbiota in Colorectal Cancer. Int J Mol Sci 2020; 21:E3976. [PMID: 32492917 PMCID: PMC7312951 DOI: 10.3390/ijms21113976] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a fatal disease caused by the uncontrolled propagation and endurance of atypical colon cells. A person's lifestyle and eating pattern have significant impacts on the CRC in a positive and/or negative way. Diet-derived phytochemicals modulate the microbiome as well as targeting colon cancer stem cells (CSCs) that are found to offer significant protective effects against CRC, which were organized in an appropriate spot on the paper. All information on dietary phytochemicals, gut microbiome, CSCs, and their influence on CRC were accessed from the various databases and electronic search engines. The effectiveness of CRC can be reduced using various dietary phytochemicals or modulating microbiome that reduces or inverses the progression of a tumor as well as CSCs, which could be a promising and efficient way to reduce the burden of CRC. Phytochemicals with modulation of gut microbiome continue to be auspicious investigations in CRC through noticeable anti-tumorigenic effects and goals to CSCs, which provides new openings for cancer inhibition and treatment.
Collapse
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China; (K.G.); (M.J.)
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Muthukumaran Jayachandran
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China; (K.G.); (M.J.)
| | - Baojun Xu
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China; (K.G.); (M.J.)
| |
Collapse
|
22
|
Singh KB, Hahm ER, Alumkal JJ, Foley LM, Hitchens TK, Shiva SS, Parikh RA, Jacobs BL, Singh SV. Reversal of the Warburg phenomenon in chemoprevention of prostate cancer by sulforaphane. Carcinogenesis 2020; 40:1545-1556. [PMID: 31555797 DOI: 10.1093/carcin/bgz155] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/23/2019] [Accepted: 09/18/2019] [Indexed: 01/12/2023] Open
Abstract
Inhibition of metabolic re-programming represents an attractive approach for prevention of prostate cancer. Studies have implicated increased synthesis of fatty acids or glycolysis in pathogenesis of human prostate cancers. We have shown previously that prostate cancer prevention by sulforaphane (SFN) in Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model is associated with inhibition of fatty acid metabolism. This study utilized human prostate cancer cell lines (LNCaP, 22Rv1 and PC-3), two different transgenic mouse models (TRAMP and Hi-Myc) and plasma specimens from a clinical study to explore the glycolysis inhibition potential of SFN. We found that SFN treatment: (i) decreased real-time extracellular acidification rate in LNCaP, but not in PC-3 cell line; (ii) significantly downregulated expression of hexokinase II (HKII), pyruvate kinase M2 and/or lactate dehydrogenase A (LDHA) in vitro in cells and in vivo in neoplastic lesions in the prostate of TRAMP and Hi-Myc mice; and (iii) significantly suppressed glycolysis in prostate of Hi-Myc mice as measured by ex vivo1H magnetic resonance spectroscopy. SFN treatment did not decrease glucose uptake or expression of glucose transporters in cells. Overexpression of c-Myc, but not constitutively active Akt, conferred protection against SFN-mediated downregulation of HKII and LDHA protein expression and suppression of lactate levels. Examination of plasma lactate levels in prostate cancer patients following administration of an SFN-rich broccoli sprout extract failed to show declines in its levels. Additional clinical trials are needed to determine whether SFN treatment can decrease lactate production in human prostate tumors.
Collapse
Affiliation(s)
- Krishna B Singh
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eun-Ryeong Hahm
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joshi J Alumkal
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | | | - T Kevin Hitchens
- Animal Imaging Center, Pittsburgh, PA, USA.,Department of Neurobiology, Pittsburgh, PA, USA
| | - Sruti S Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rahul A Parikh
- Department of Oncology, Kansas University Medical Center, Kansas City, KS, USA
| | | | - Shivendra V Singh
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Khandia R, Munjal A. Interplay between inflammation and cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 119:199-245. [DOI: 10.1016/bs.apcsb.2019.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Editor's Note: Sulforaphane Enhances the Therapeutic Potential of TRAIL in Prostate Cancer Orthotopic Model through Regulation of Apoptosis, Metastasis, and Angiogenesis. Clin Cancer Res 2020; 26:312. [DOI: 10.1158/1078-0432.ccr-19-3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
The Molecular Effects of Sulforaphane and Capsaicin on Metabolism upon Androgen and Tip60 Activation of Androgen Receptor. Int J Mol Sci 2019; 20:ijms20215384. [PMID: 31671779 PMCID: PMC6861939 DOI: 10.3390/ijms20215384] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
Androgen receptor (AR) stimulators, such as androgen and Tip60, play a pivotal role in prostatic carcinogenesis as androgen receptor signaling is critical for the growth and transformation of the prostate gland. Moreover, androgen and Tip60 promotes HIF-1α activation, involved in metabolic reprogramming by increasing glycolysis, a hallmark in cancer initiation and development. In this study we evaluated the effect of androgen and Tip60 stimulus in AR pathway activation and HIF-1α stabilization, in terms of proliferation and cell metabolism in androgen-sensitive LNCaP cells. The protective role of the bioactive compounds sulforaphane and capsaicin against the effect of these stimuli leading to pro-carcinogenic features was also addressed. Sulforaphane and capsaicin decreased nuclear AR, prostate specific antigen and Bcl-XL levels, and cell proliferation induced by androgen and Tip60 in LNCaP cells. These bioactive compounds prevented the increase in glycolysis, hexokinase and pyruvate kinase activity, and reduced HIF-1α stabilization induced by androgen and Tip60 in LNCaP cells. The protective role of sulforaphane and capsaicin on prostate cancer may rely on mechanisms involving the inhibition of Tip60, AR and HIF-1α effects.
Collapse
|
26
|
Glucosinolate-Degradation Products as Co-Adjuvant Therapy on Prostate Cancer in Vitro. Int J Mol Sci 2019; 20:ijms20204977. [PMID: 31600887 PMCID: PMC6834131 DOI: 10.3390/ijms20204977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Glucosinolate-degradation products (GS-degradation products) are believed to be responsible for the anticancer effects of cruciferous vegetables. Furthermore, they could improve the efficacy and reduce side-effects of chemotherapy. The aim of the present study was to determine the cytotoxic effects of GS-degradation products on androgen-insensitive human prostate cancer (AIPC) PC-3 and DU 145 cells and investigate their ability to sensitize such cells to chemotherapeutic drug Docetaxel (DOCE). Cells were cultured under growing concentrations of allyl-isothiocyanate (AITC), sulforaphane (SFN), 4-pentenyl-isothiocyanate (4PI), iberin (IB), indole-3-carbinol (I3C), or phenethyl-isothiocyanate (PEITC) in absence or presence of DOCE. The anti-tumor effects of these compounds were analyzed using the trypan blue exclusion, apoptosis, invasion and RT-qPCR assays and confocal microscopy. We observed that AITC, SFN, IB, and/or PEITC induced a dose- and time-dependent cytotoxic effect on PC-3 and DU 145 cells, which was mediated, at least, by apoptosis and cell cycle arrest. Likewise, we showed that these GS-degradation products sensitized both cell lines to DOCE by synergic mechanisms. Taken together, our results indicate that GS-degradation products can be promising compounds as co-adjuvant therapy in prostate cancer.
Collapse
|
27
|
Yasuda S, Horinaka M, Sakai T. Sulforaphane enhances apoptosis induced by Lactobacillus pentosus strain S-PT84 via the TNFα pathway in human colon cancer cells. Oncol Lett 2019; 18:4253-4261. [PMID: 31579089 DOI: 10.3892/ol.2019.10739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 05/29/2019] [Indexed: 01/07/2023] Open
Abstract
Sulforaphane and Lactobacilli induce apoptosis in several cancer cells. Sulforaphane, a dietary isothiocyanate, is an attractive agent due to its potent anticancer effects. Sulforaphane suppresses the proliferation of various cancer cells in vitro and in vivo. The present study investigated the effect of sulforaphane and a co-culture with Lactobacillus-treated peripheral blood mononuclear cells (PBMCs) in human colon cancer cells. The combination markedly induced apoptosis in human colon cancer HCT116 and SW480 cells. A pan-caspase inhibitor markedly inhibited apoptosis, and a tumor necrosis factor (TNF) receptor/Fc chimera partially inhibited apoptosis in both cells. The amount of TNFα secretion in the culture supernatant was significantly increased by co-culture with Lactobacillus-treated normal human PBMCs. On the other hand, the expression of cellular inhibitor of apoptosis-2 (cIAP-2), an anti-apoptotic protein, was increased by co-culture with Lactobacillus-treated PBMCs in colon cancer cells, but sulforaphane treatment significantly suppressed the induction of cIAP-2. The present results revealed that sulforaphane enhances apoptosis in human colon cancer cells under co-culture with Lactobacillus-treated PBMCs via the TNFα signaling pathway.
Collapse
Affiliation(s)
- Shusuke Yasuda
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Mano Horinaka
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Toshiyuki Sakai
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| |
Collapse
|
28
|
Patnaik S, Anupriya. Drugs Targeting Epigenetic Modifications and Plausible Therapeutic Strategies Against Colorectal Cancer. Front Pharmacol 2019; 10:588. [PMID: 31244652 PMCID: PMC6563763 DOI: 10.3389/fphar.2019.00588] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022] Open
Abstract
Genetic variations along with epigenetic modifications of DNA are involved in colorectal cancer (CRC) development and progression. CRC is the fourth leading cause of cancer-related deaths worldwide. Initiation and progression of CRC is the cumulation of a variety of genetic and epigenetic changes in colonic epithelial cells. Colorectal carcinogenesis is associated with epigenetic aberrations including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs. Recently, epigenetic modifications have been identified like association of hypermethylated gene Claudin11 (CLDN11) with metastasis and prognosis of poor survival of CRC. DNA methylation of genes CMTM3, SSTR2, MDF1, NDRG4 and TGFB2 are potential epigenetic biomarkers for the early detection of CRC. Tumor suppressor candidate 3 (TUSC3) mRNA expression is silenced by promoter methylation, which promotes epidermal growth factor receptor (EGFR) signaling and rescues the CRC cells from apoptosis and hence leading to poor survival rate. Previous scientific evidences strongly suggest epigenetic modifications that contribute to anticancer drug resistance. Recent research studies emphasize development of drugs targeting histone deacetylases (HDACs) and DNA methyltransferase inhibitors as an emerging anticancer strategy. This review covers potential epigenetic modification targeting chemotherapeutic drugs and probable implementation for the treatment of CRC, which offers a strong rationale to explore therapeutic strategies and provides a basis to develop potent antitumor drugs.
Collapse
|
29
|
Jiang X, Liu Y, Ma L, Ji R, Qu Y, Xin Y, Lv G. Chemopreventive activity of sulforaphane. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2905-2913. [PMID: 30254420 PMCID: PMC6141106 DOI: 10.2147/dddt.s100534] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancer is one of the major causes of morbidity and mortality in the world. Carcinogenesis is a multistep process induced by genetic and epigenetic changes that disrupt pathways controlling cell proliferation, apoptosis, differentiation, and senescence. In this context, many bioactive dietary compounds from vegetables and fruits have been demonstrated to be effective in cancer prevention and intervention. Over the years, sulforaphane (SFN), found in cruciferous vegetables, has been shown to have chemopreventive activity in vitro and in vivo. SFN protects cells from environmental carcinogens and also induces growth arrest and/or apoptosis in various cancer cells. In this review, we will discuss several potential mechanisms of the chemopreventive activity of SFN, including regulation of Phase I and Phase II drug-metabolizing enzymes, cell cycle arrest, and induction of apoptosis, especially via regulation of signaling pathways such as Nrf2-Keap1 and NF-κB. Recent studies suggest that SFN can also affect the epigenetic control of key genes and greatly influence the initiation and progression of cancer. This research may provide a basis for the clinical use of SFN for cancer chemoprevention and enable us to design preventive strategies for cancer management, reduce cancer development and recurrence, and thus improve patient survival.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Ye Liu
- Department of Pathobiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, China
| | - Lixin Ma
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Rui Ji
- Department of Internal Medicine, Florida Hospital, Orlando, FL, USA
| | - Yaqin Qu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China,
| | - Guoyue Lv
- Department of General Surgery, The First Hospital of Jilin University, Changchun 130021, China,
| |
Collapse
|
30
|
Juengel E, Erb HHH, Haferkamp A, Rutz J, Chun FKH, Blaheta RA. Relevance of the natural HDAC inhibitor sulforaphane as a chemopreventive agent in urologic tumors. Cancer Lett 2018; 435:121-126. [PMID: 30026053 DOI: 10.1016/j.canlet.2018.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 12/17/2022]
Abstract
Due to an increased understanding of molecular biology and the genomics of cancer, new and potent agents have been approved by the Food and Drug Administration (FDA) to fight this disease. However, all of these drugs cause severe side effects and resistance inevitably develops, re-activating tumor growth and dissemination. For this reason, patients turn to natural compounds as alternative or complementary treatment options, since it has been found that natural plant products may block, inhibit, or reverse cancer development. The present review focusses on the role of the natural compound sulforaphane (SFN) as an anti-tumor agent in urologic cancer. SFN is a natural compound found in cruciferous vegetables from the Brassicaceae family such as broccoli, cauliflower and cabbage. Several epidemiologic and clinical studies have documented chemopreventive properties of SFN, making it an interesting candidate for additive cancer treatment. SFN shows remarkable anti-tumor effects in vitro and in vivo without exerting toxicity. The review summarizes the current understanding of SFN and provides insights into its molecular mode of action with particular emphasis on epigenetic tumor control.
Collapse
Affiliation(s)
- Eva Juengel
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Germany; Department of Urology, Goethe-University Hospital, Frankfurt/Main, Germany.
| | - Holger H H Erb
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Germany
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Germany
| | - Jochen Rutz
- Department of Urology, Goethe-University Hospital, Frankfurt/Main, Germany
| | - Felix K-H Chun
- Department of Urology, Goethe-University Hospital, Frankfurt/Main, Germany
| | - Roman A Blaheta
- Department of Urology, Goethe-University Hospital, Frankfurt/Main, Germany
| |
Collapse
|
31
|
Yen GC, Tsai CM, Lu CC, Weng CJ. Recent progress in natural dietary non-phenolic bioactives on cancers metastasis. J Food Drug Anal 2018; 26:940-964. [PMID: 29976413 PMCID: PMC9303016 DOI: 10.1016/j.jfda.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 12/20/2022] Open
Abstract
From several decades ago to now, cancer continues to be the leading cause of death worldwide, and metastasis is the major cause of cancer-related deaths. For health benefits, there is a great desire to use non-chemical therapy such as nutraceutical supplementation to prevent pathology development. Over 10,000 different natural bioactives or phytochemicals have been known that possessing potential preventive or supplementary effects for various diseases including cancer. Previously, the in vitro and in vivo anti-invasive and anti-metastatic activities of phenolic acids, monophenol, polyphenol and their derivatives and flavonoids and their derivatives have been reviewed. However, a vast number of natural dietary compounds other than phenolics have been demonstrated to potentially possess the ability to inhibit the invasion and metastasis of various cancers. In this review, we summarize the studies in recent decade on in vitro and in vivo effects and molecular mechanisms of natural bioactives, excluding the phenolics in food, in cancer invasion and metastasis. By combining this review of non-phenolics with the previous phenolics reviews, the puzzle for the contribution of natural dietary bioactives on cancer invasive or/and metastatic progress will be almost complete and more clear.
Collapse
Affiliation(s)
- Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan; Graduate Institute of Food Safety, National Chung Hsing University, Taichung, Taiwan
| | - Chiung-Man Tsai
- Tainan Hospital, Ministry of Health and Welfare, Tainan City, Taiwan
| | - Chi-Cheng Lu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Chia-Jui Weng
- Department of Living Services Industry, Tainan University of Technology, Tainan City, Taiwan.
| |
Collapse
|
32
|
Jin CY, Molagoda IMN, Karunarathne WAHM, Kang SH, Park C, Kim GY, Choi YH. TRAIL attenuates sulforaphane-mediated Nrf2 and sustains ROS generation, leading to apoptosis of TRAIL-resistant human bladder cancer cells. Toxicol Appl Pharmacol 2018; 352:132-141. [PMID: 29792947 DOI: 10.1016/j.taap.2018.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/08/2018] [Accepted: 05/20/2018] [Indexed: 12/12/2022]
Abstract
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) can preferentially initiate apoptosis in malignant cells with minimal toxicity to normal cells. Unfortunately, many human cancer cells are refractory to TRAIL-induced apoptosis through many unknown mechanisms. Here, we report that TRAIL resistance can be reversed in human bladder cancer cell lines by treatment with sulforaphane (SFN), a well-known chemopreventive isothiocyanate in various cruciferous vegetables. Combined treatment with SFN and TRAIL (SFN/TRAIL) significantly induced apoptosis concomitant with activation of caspases, loss of mitochondrial membrane potential (MMP), Bid truncation, and induction of death receptor 5. Transient knockdown of Bid prevented collapse of MMP induced by SFN/TRAIL, consequently reducing apoptotic effects. Furthermore, SFN increased both the generation of reactive oxygen species (ROS) and the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), which is an anti-oxidant enzyme. Interestingly, TRAIL effectively suppressed SFN-mediated nuclear translocation of Nrf2, and the period of ROS generation was more extended compared to that of treatment with SFN alone. In addition, silencing of Nrf2 increased apoptosis in cells treated with SFN/TRAIL; however, blockade of ROS generation inhibited apoptotic activity. These data suggest that SFN-induced ROS generation promotes TRAIL sensitivity and SFN can be used for the management of TRAIL-resistant cancer.
Collapse
Affiliation(s)
- Cheng-Yun Jin
- School of Pharmaceutical Science, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | | | | | - Sang-Hyuck Kang
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dongeui University, Busan 67340, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea.
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 47227, Republic of Korea.
| |
Collapse
|
33
|
Sulforaphane exerts anti-angiogenesis effects against hepatocellular carcinoma through inhibition of STAT3/HIF-1α/VEGF signalling. Sci Rep 2017; 7:12651. [PMID: 28978924 PMCID: PMC5627255 DOI: 10.1038/s41598-017-12855-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis plays an important role in hepatocellular carcinoma (HCC), the inhibition of which is explored for cancer prevention and treatment. The dietary phytochemical sulforaphane (SFN) is known for its anti-cancer properties in vitro and in vivo; but until now, no study has focused on the role of SFN in HCC tumor angiogenesis. In the present study, in vitro cell models using a HCC cell line, HepG2, and human endothelial cells, HUVECs, as well as ex vivo and in vivo models have been used to investigate the anti-tumor and anti-angiogenic effect of SFN. The results showed that SFN decreased HUVEC cell viability, migration and tube formation, all of which are important steps in angiogenesis. More importantly, SFN markedly supressed HepG2-stimulated HUVEC migration, adhesion and tube formation; which may be due to its inhibition on STAT3/HIF-1α/VEGF signalling in HepG2 cells. In addition, SFN significantly reduced HepG2 tumor growth in a modified chick embryo chorioallantoic membrane (CAM) assay, associated with a decrease of HIF-1α and VEGF expression within tumors. Collectively, these findings provide new insights into the inhibitory effect of SFN on HCC tumor angiogenesis as well as tumor growth, and indicate that SFN has potential for the prevention and treatment of HCC.
Collapse
|
34
|
Targeting epithelial-mesenchymal plasticity in cancer: clinical and preclinical advances in therapy and monitoring. Biochem J 2017; 474:3269-3306. [PMID: 28931648 DOI: 10.1042/bcj20160782] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
The concept of epithelial-mesenchymal plasticity (EMP), which describes the dynamic flux within the spectrum of phenotypic states that invasive carcinoma cells may reside, is being increasingly recognised for its role in cancer progression and therapy resistance. The myriad of events that are able to induce EMP, as well as the more recently characterised control loops, results in dynamic transitions of cancerous epithelial cells to more mesenchymal-like phenotypes through an epithelial-mesenchymal transition (EMT), as well as the reverse transition from mesenchymal phenotypes to an epithelial one. The significance of EMP, in its ability to drive local invasion, generate cancer stem cells and facilitate metastasis by the dissemination of circulating tumour cells (CTCs), highlights its importance as a targetable programme to combat cancer morbidity and mortality. The focus of this review is to consolidate the existing knowledge on the strategies currently in development to combat cancer progression via inhibition of specific facets of EMP. The prevalence of relapse due to therapy resistance and metastatic propensity that EMP endows should be considered when designing therapy regimes, and such therapies should synergise with existing chemotherapeutics to benefit efficacy. To further improve upon EMP-targeted therapies, it is imperative to devise monitoring strategies to assess the impact of such treatments on EMP-related phenomenon such as CTC burden, chemosensitivity/-resistance and micrometastasis in patients.
Collapse
|
35
|
Abu El-Asrar AM, Ahmad A, Alam K, Bittoun E, Siddiquei MM, Mohammad G, Mousa A, De Hertogh G, Opdenakker G. Unbalanced Vitreous Levels of Osteoprotegerin, RANKL, RANK, and TRAIL in Proliferative Diabetic Retinopathy. Ocul Immunol Inflamm 2017; 26:1248-1260. [PMID: 28914577 DOI: 10.1080/09273948.2017.1343855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE We investigated the expression of the proinflammatory and proangiogenic factor osteoprotegerin (OPG) and its ligands, receptor activator of nuclear factor-κB ligand (RANKL), tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), and the receptor RANK in proliferative diabetic retinopathy (PDR). MATERIALS AND METHODS Vitreous samples from PDR and nondiabetic control patients and epiretinal membranes from PDR patients were studied by enzyme-linked immunosorbent assay, immunohistochemistry, and Western blot analysis. RESULTS Vascular endothelial growth factor, OPG, and soluble RANK levels in vitreous samples from PDR patients were significantly higher than that in nondiabetic controls. Soluble TRAIL levels were significantly lower in PDR patients than that in nondiabetic control, whereas soluble RANKL levels did not differ significantly. RANKL, RANK, and TRAIL were expressed in vascular endothelial cells, myofibroblasts, and CD45-expressing leukocytes in PDR epiretinal membranes. CONCLUSIONS Dysregulated expression of OPG/RANKL/RANK pathway and TRAIL might be related to inflammation and angiogenesis in PDR.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- a Department of Ophthalmology , College of Medicine, King Saud University , Riyadh , Saudi Arabia.,b Dr. Nasser Al-Rashid Research Chair in Ophthalmology, College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Ajmal Ahmad
- a Department of Ophthalmology , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Kaiser Alam
- a Department of Ophthalmology , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Emilie Bittoun
- c Laboratory of Histochemistry and Cytochemistry, Department of Pathology, University of Leuven, KU Leuven , Leuven , Belgium
| | | | - Ghulam Mohammad
- a Department of Ophthalmology , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Ahmed Mousa
- a Department of Ophthalmology , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Gert De Hertogh
- c Laboratory of Histochemistry and Cytochemistry, Department of Pathology, University of Leuven, KU Leuven , Leuven , Belgium
| | - Ghislain Opdenakker
- d Rega Institute for Medical Research, Department of Microbiology and Immunology , University of Leuven, KU Leuven , Leuven , Belgium
| |
Collapse
|
36
|
Lefranc F, Tabanca N, Kiss R. Assessing the anticancer effects associated with food products and/or nutraceuticals using in vitro and in vivo preclinical development-related pharmacological tests. Semin Cancer Biol 2017; 46:14-32. [PMID: 28602819 DOI: 10.1016/j.semcancer.2017.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
This review is part of a special issue entitled "Role of dietary pattern, foods, nutrients and nutraceuticals in supporting cancer prevention and treatment" and describes a pharmacological strategy to determine the potential contribution of food-related components as anticancer agents against established cancer. Therefore, this review does not relate to chemoprevention, which is analysed in several other reviews in the current special issue, but rather focuses on the following: i) the biological events that currently represent barriers against the treatment of certain types of cancers, primarily metastatic cancers; ii) the in vitro and in vivo pharmacological pre-clinical tests that can be used to analyse the potential anticancer effects of food-related components; and iii) several examples of food-related components with anticancer effects. This review does not represent a catalogue-based listing of food-related components with more or less anticancer activity. By contrast, this review proposes an original pharmacological strategy that researchers can use to analyse the potential anticancer activity of any food-related component-e.g., by considering the crucial characteristics of cancer biological aggressiveness. This review also highlights that cancer patients undergoing chemotherapy should restrict the use of "food complements" without supervision by a medical nutritionist. By contrast, an equilibrated diet that includes the food-related components listed herein would be beneficial for cancer patients who are not undergoing chemotherapy.
Collapse
Affiliation(s)
- Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles, 808 route de Lennik, 1070 Brussels, Belgium.
| | - Nurhayat Tabanca
- U.S Department of Agriculture-Agricultural Research Service, Subtropical Horticulture Research Station,13601 Old Cutler Rd., Miami, FL 33158, USA.
| | - Robert Kiss
- Retired-formerly at the Fonds National de la Recherche Scientifique (FRS-FNRS, Brussels, Belgium), 5 rue d'Egmont, 1000 Brussels, Belgium.
| |
Collapse
|
37
|
Singh AK, Sharma N, Ghosh M, Park YH, Jeong DK. Emerging importance of dietary phytochemicals in fight against cancer: Role in targeting cancer stem cells. Crit Rev Food Sci Nutr 2017; 57:3449-3463. [DOI: 10.1080/10408398.2015.1129310] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amit Kumar Singh
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, R. S. Pura, Jammu, India
| | - Mrinmoy Ghosh
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | | | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
38
|
Wu S, Zhou Y, Yang G, Tian H, Geng Y, Hu Y, Lin K, Wu W. Sulforaphane-cysteine induces apoptosis by sustained activation of ERK1/2 and caspase 3 in human glioblastoma U373MG and U87MG cells. Oncol Rep 2017; 37:2829-2838. [PMID: 28393231 DOI: 10.3892/or.2017.5562] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/22/2017] [Indexed: 11/05/2022] Open
Abstract
We previously demonstrated that sulforaphane (SFN) inhibited invasion via sustained activation of ERK1/2 in human glioblastoma cells. However, sulforaphane-cysteine (SFN-Cys), an analog of SFN, enriched in plasma with longer half-life, had more potentiality to induce apoptosis. Here we investigated the molecular mechanisms of SFN-Cys-induced apoptosis in human glioblastoma U373MG and U87MG cells. Cell viability assay showed that SFN-Cys inhibited cell viability in a dose-dependent manner. Cell morphology observation also showed SFN-Cys increased the phenotype of cell death in a dose-dependent manner. Furthermore, flow cytometry assay showed that SFN-Cys induced apoptosis significantly in a dose-dependent manner in both cell lines. Furthermore, western blot analysis demonstrated that SFN-Cys induced activation of ERK1/2 in a sustained manner and the activation contributed to upregulation of Bax/Bcl-2 ratio and cleaved caspase 3, and these results can be reversed by the ERK1/2 blocker PD98059. Our results showed that SFN-Cys induced cell apoptosis via sustained activation of ERK1/2 and the ERK1/2 mediated signaling pathways such as activation of caspase 3 and apoptosis-related proteins, thus indicating that SFN-Cys might be a more promising therapeutic agent versus SFN to resist glioblastoma cells, especially in Taxol-resistant cancer cells.
Collapse
Affiliation(s)
- Sai Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Gaoxiang Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Hua Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Yang Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Yabin Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Kai Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
39
|
Negrette-Guzmán M, Huerta-Yepez S, Vega MI, León-Contreras JC, Hernández-Pando R, Medina-Campos ON, Rodríguez E, Tapia E, Pedraza-Chaverri J. Sulforaphane induces differential modulation of mitochondrial biogenesis and dynamics in normal cells and tumor cells. Food Chem Toxicol 2017; 100:90-102. [PMID: 27993529 DOI: 10.1016/j.fct.2016.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/31/2022]
Abstract
Antioxidant-based chemotherapy has been intensely debated. Herein, we show that sulforaphane (SFN) induced mitochondrial biogenesis followed by mitochondrial fusion in a kidney cell line commonly used in nephroprotective models. At the same concentration and exposure time, SFN induced cell death in prostate cancer cells accompanied by mitochondrial biogenesis and fragmentation. Stabilization of the nuclear factor E2-related factor-2 (Nrf2) could be associated with these effects in the tumor cell line. An increase in the peroxisome proliferator-activated receptor-γ co-activator-1α (PGC1α) level and a decrease in the hypoxia-inducible factor-1α (HIF1α) level would suggest a possible metabolic shift. The knockdown in the nuclear respiratory factor-1 (NRF1) attenuated the SFN-induced effect on prostate cancer cells demonstrating that mitochondrial biogenesis plays an important role in cell death for this kind of tumor cells. This evidence supports SFN as a potential antineoplastic agent that could inhibit tumor development and could protect normal tissues by modulating common processes.
Collapse
Affiliation(s)
- Mario Negrette-Guzmán
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Mario I Vega
- Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City 06720, Mexico
| | - Juan Carlos León-Contreras
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14000, Mexico
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14000, Mexico
| | - Omar Noel Medina-Campos
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Esteban Rodríguez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Edilia Tapia
- Laboratorio de Fisiopatología Renal, Departamento de Nefrología, Instituto Nacional de Cardiología Ignacio Chavez, Mexico City 14080, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| |
Collapse
|
40
|
Bijangi-Vishehsaraei K, Reza Saadatzadeh M, Wang H, Nguyen A, Kamocka MM, Cai W, Cohen-Gadol AA, Halum SL, Sarkaria JN, Pollok KE, Safa AR. Sulforaphane suppresses the growth of glioblastoma cells, glioblastoma stem cell-like spheroids, and tumor xenografts through multiple cell signaling pathways. J Neurosurg 2017; 127:1219-1230. [PMID: 28059653 DOI: 10.3171/2016.8.jns161197] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Defects in the apoptotic machinery and augmented survival signals contribute to drug resistance in glioblastoma (GBM). Moreover, another complexity related to GBM treatment is the concept that GBM development and recurrence may arise from the expression of GBM stem cells (GSCs). Therefore, the use of a multifaceted approach or multitargeted agents that affect specific tumor cell characteristics will likely be necessary to successfully eradicate GBM. The objective of this study was to investigate the usefulness of sulforaphane (SFN)-a constituent of cruciferous vegetables with a multitargeted effect-as a therapeutic agent for GBM. METHODS The inhibitory effects of SFN on established cell lines, early primary cultures, CD133-positive GSCs, GSC-derived spheroids, and GBM xenografts were evaluated using various methods, including GSC isolation and the sphere-forming assay, analysis of reactive oxygen species (ROS) and apoptosis, cell growth inhibition assay, comet assays for assessing SFN-triggered DNA damage, confocal microscopy, Western blot analysis, and the determination of in vivo efficacy as assessed in human GBM xenograft models. RESULTS SFN triggered the significant inhibition of cell survival and induced apoptotic cell death, which was associated with caspase 3 and caspase 7 activation. Moreover, SFN triggered the formation of mitochondrial ROS, and SFN-triggered cell death was ROS dependent. Comet assays revealed that SFN increased single- and double-strand DNA breaks in GBM. Compared with the vehicle control cells, a significantly higher amount of γ-H2AX foci correlated with an increase in DNA double-strand breaks in the SFN-treated samples. Furthermore, SFN robustly inhibited the growth of GBM cell-induced cell death in established cell cultures and early-passage primary cultures and, most importantly, was effective in eliminating GSCs, which play a major role in drug resistance and disease recurrence. In vivo studies revealed that SFN administration at 100 mg/kg for 5-day cycles repeated for 3 weeks significantly decreased the growth of ectopic xenografts that were established from the early passage of primary cultures of GBM10. CONCLUSIONS These results suggest that SFN is a potent anti-GBM agent that targets several apoptosis and cell survival pathways and further preclinical and clinical studies may prove that SFN alone or in combination with other therapies may be potentially useful for GBM therapy.
Collapse
Affiliation(s)
| | - M Reza Saadatzadeh
- 1Indiana University Simon Cancer Center.,3Neurosurgery, Indiana University School of Medicine and Goodman Campbell Brain and Spine
| | - Haiyan Wang
- 1Indiana University Simon Cancer Center.,4Herman B. Wells Center for Pediatric Research
| | - Angie Nguyen
- 1Indiana University Simon Cancer Center.,Departments of2Pharmacology and Toxicology and
| | - Malgorzata M Kamocka
- 5Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis
| | | | - Aaron A Cohen-Gadol
- 3Neurosurgery, Indiana University School of Medicine and Goodman Campbell Brain and Spine
| | - Stacey L Halum
- 6Purdue University and the Voice Clinic of Indiana, Lafayette, Indiana; and
| | - Jann N Sarkaria
- 7Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Karen E Pollok
- 1Indiana University Simon Cancer Center.,Departments of2Pharmacology and Toxicology and.,4Herman B. Wells Center for Pediatric Research
| | - Ahmad R Safa
- 1Indiana University Simon Cancer Center.,Departments of2Pharmacology and Toxicology and
| |
Collapse
|
41
|
Hussain SS, Kumar AP, Ghosh R. Food-based natural products for cancer management: Is the whole greater than the sum of the parts? Semin Cancer Biol 2016; 40-41:233-246. [PMID: 27397504 PMCID: PMC5067244 DOI: 10.1016/j.semcancer.2016.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 02/08/2023]
Abstract
The rise in cancer incidence and mortality in developing countries together with the human and financial cost of current cancer therapy mandates a closer look at alternative ways to overcome this burgeoning global healthcare problem. Epidemiological evidence for the association between cancer and diet and the long latency of most cancer progression have led to active exploration of whole and isolated natural chemicals from different naturally occurring substances in various preclinical and clinical settings. In general the lack of systemic toxicities of most 'whole' and 'isolated' natural compounds, their potential to reduce toxic doses and potential to delay the development of drug-resistance makes them promising candidates for cancer management. This review article examines the suggested molecular mechanisms affected by these substances focusing to a large extent on prostate cancer and deliberates on the disparate results obtained from cell culture, preclinical and clinical studies in an effort to highlight the use of whole extracts and isolated constituents for intervention. As such these studies underscore the importance of factors such as treatment duration, bioavailability, route of administration, selection criteria, standardized formulation and clinical end points in clinical trial design with both entities. Overall lack of parallel comparison studies between the whole natural products and their isolated compounds limits decisive conclusions regarding the superior utility of one over the other. We suggest the critical need for rigorous comparative research to identify which one of the two or both entities from nature would be best qualified to take on the mantle of cancer management.
Collapse
Affiliation(s)
- Suleman S Hussain
- Department of Urology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Pharmacology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Addanki P Kumar
- Department of Urology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Pharmacology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Molecular Medicine, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA; Cancer Therapy and Research Center, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA; South Texas Veterans Health Care System, San Antonio, TX 78229, USA.
| | - Rita Ghosh
- Department of Urology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Pharmacology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Molecular Medicine, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA; Cancer Therapy and Research Center, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
42
|
Wang L, Tian Z, Yang Q, Li H, Guan H, Shi B, Hou P, Ji M. Sulforaphane inhibits thyroid cancer cell growth and invasiveness through the reactive oxygen species-dependent pathway. Oncotarget 2016; 6:25917-31. [PMID: 26312762 PMCID: PMC4694875 DOI: 10.18632/oncotarget.4542] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022] Open
Abstract
Sulforaphane (SFN), a natural compound derived from broccoli/broccoli sprouts, has been demonstrated to be used as an antitumor agent in different types of cancers. However, its antitumor effect in thyroid cancer remains largely unknown. The aim of the study was to investigate the therapeutic potential of SFN for thyroid cancer and explore the mechanisms underlying antitumor effects of SFN by in vitro and in vivo studies. Our data demonstrated that SFN significantly inhibited thyroid cancer cell proliferation in a dose- and time-dependent manner, induced G2/M phase cell cycle arrest and apoptosis, and inhibited thyroid cancer cell migration and invasion by suppressing epithelial-mesenchymal transition (EMT) process and expression of Slug, Twist, MMP-2 and -9. Mechanically, SFN inhibited thyroid cancer cell growth and invasiveness through repressing phosphorylation of Akt, enhancing p21 expression by the activation of Erk and p38 signaling cascades, and promoting mitochondrial-mediated apoptosis via reactive oxygen species (ROS)-dependent pathway. Growth of xenograft tumors derived from thyroid cancer cell line FTC133 in nude mice was also significantly inhibited by SFN. Importantly, we did not find significant effect of SFN on body weight and liver function of mice. Collectively, we for the first time demonstrate that SFN is a potentially effective antitumor agent for thyroid cancer.
Collapse
Affiliation(s)
- Liping Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, P.R. China.,Department of Endocrinology, Xi'an Central Hospital, Xi'an 710003, P.R. China
| | - Zhufang Tian
- Department of Endocrinology, Xi'an Central Hospital, Xi'an 710003, P.R. China
| | - Qi Yang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, P.R. China
| | - Heng Li
- Department of Endocrinology, Xi'an Central Hospital, Xi'an 710003, P.R. China
| | - Haixia Guan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, P.R. China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, P.R. China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, P.R. China
| |
Collapse
|
43
|
Oh J, Hlatky L, Jeong YS, Kim D. Therapeutic Effectiveness of Anticancer Phytochemicals on Cancer Stem Cells. Toxins (Basel) 2016; 8:toxins8070199. [PMID: 27376325 PMCID: PMC4963832 DOI: 10.3390/toxins8070199] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 02/06/2023] Open
Abstract
Understanding how to target cancer stem cells (CSCs) may provide helpful insights for the development of therapeutic or preventive strategies against cancers. Dietary phytochemicals with anticancer properties are promising candidates and have selective impact on CSCs. This review summarizes the influence of phytochemicals on heterogeneous cancer cell populations as well as on specific targeting of CSCs.
Collapse
Affiliation(s)
- Jisun Oh
- School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu 41566, Korea.
| | - Lynn Hlatky
- Center of Cancer Systems Biology, Tufts University School of Medicine, Boston, MA 02135, USA.
| | - Yong-Seob Jeong
- Department of Food Science and Technology, Chonbuk National University, Jeonju 54896, Korea.
| | - Dohoon Kim
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
44
|
Novío S, Cartea ME, Soengas P, Freire-Garabal M, Núñez-Iglesias MJ. Effects of Brassicaceae Isothiocyanates on Prostate Cancer. Molecules 2016; 21:E626. [PMID: 27187332 PMCID: PMC6272898 DOI: 10.3390/molecules21050626] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/13/2016] [Accepted: 05/03/2016] [Indexed: 12/21/2022] Open
Abstract
Despite the major progress made in the field of cancer biology, cancer is still one of the leading causes of mortality, and prostate cancer (PCa) is one of the most encountered malignancies among men. The effective management of this disease requires developing better anticancer agents with greater efficacy and fewer side effects. Nature is a large source for the development of chemotherapeutic agents, with more than 50% of current anticancer drugs being of natural origin. Isothiocyanates (ITCs) are degradation products from glucosinolates that are present in members of the family Brassicaceae. Although they are known for a variety of therapeutic effects, including antioxidant, immunostimulatory, anti-inflammatory, antiviral and antibacterial properties, nowadays, cell line and animal studies have additionally indicated the chemopreventive action without causing toxic side effects of ITCs. In this way, they can induce cell cycle arrest, activate apoptosis pathways, increase the sensitivity of resistant PCa to available chemodrugs, modulate epigenetic changes and downregulate activated signaling pathways, resulting in the inhibition of cell proliferation, progression and invasion-metastasis. The present review summarizes the chemopreventive role of ITCs with a particular emphasis on specific molecular targets and epigenetic alterations in in vitro and in vivo cancer animal models.
Collapse
Affiliation(s)
- Silvia Novío
- Lennart Levi Stress and Neuroimmunology Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, c/San Francisco, s/n, 15782 Santiago de Compostela, A Coruña, Spain.
| | - María Elena Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia (CSIC) Aptdo. 28, 36080 Pontevedra, Spain.
| | - Pilar Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia (CSIC) Aptdo. 28, 36080 Pontevedra, Spain.
| | - Manuel Freire-Garabal
- Lennart Levi Stress and Neuroimmunology Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, c/San Francisco, s/n, 15782 Santiago de Compostela, A Coruña, Spain.
| | - María Jesús Núñez-Iglesias
- Lennart Levi Stress and Neuroimmunology Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, c/San Francisco, s/n, 15782 Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
45
|
Combination of lapatinib with isothiocyanates overcomes drug resistance and inhibits migration of HER2 positive breast cancer cells. Breast Cancer 2016; 24:271-280. [PMID: 27154770 PMCID: PMC5318491 DOI: 10.1007/s12282-016-0700-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 04/25/2016] [Indexed: 10/28/2022]
Abstract
BACKGROUND Lapatinib is a commonly used drug that interrupts signaling from the epidermal growth factor receptors, EGFR and HER2/neu. Long-term exposure to lapatinib during therapy eliminates cells that are sensitive to the drug; however, at the same time it increases probability of lapatinib-resistant cell selection. The aim of this study was to verify whether combinations of lapatinib with one of isothiocyanates (sulforaphane, erucin or sulforaphene), targeting different levels of HER2 signaling pathway, exert stronger cytotoxic effect than therapy targeting the receptor only, using heterogeneous populations consisting of lapatinib-sensitive and lapatinib-resistant breast cancer cells. METHODS Lapatinib-sensitive HER2 overproducing SKBR-3 breast cancer cells and their lapatinib-resistant derivatives were combined at different proportions to simulate enrichment of cancer cell population in a drug-resistant fraction during lapatinib therapy. Effects of treatments on cell survival (MTT), apoptosis induction (PARP cleavage), prosurvival signaling (p-Akt, p-S6) as well as cell motility (wound healing assay) and invasion (Boyden chamber assay) were investigated. RESULTS Combination of lapatinib with any of isothiocyanates significantly decreased cell viability and inhibited migration of populations consisting of different amounts of drug-sensitive and drug-resistant cells. In case of population entirely composed of lapatinib-resistant cells the most effective was combination of lapatinib with erucin which decreased cell viability and motility, phosphorylation of Akt, S6 and VEGF level more efficiently than each agent alone. CONCLUSIONS Combination of lapatinib and isothiocyanates, especially erucin, might be considered as an effective treatment reducing metastatic potential of breast cancer cells, even these with the drug resistance phenotype.
Collapse
|
46
|
Chemopreventive effect of 18β-glycyrrhetinic acid via modulation of inflammatory markers and induction of apoptosis in human hepatoma cell line (HepG2). Mol Cell Biochem 2016; 416:169-77. [PMID: 27116616 DOI: 10.1007/s11010-016-2705-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/13/2016] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma is one of the most common lethal diseases worldwide and there is no effective treatment till date. Natural products derived from the plants play an important role in chemoprevention and act as therapeutic antitumor agents. Licorice is a plant that has been used in food and medicine for the treatment of various diseases. 18β-Glycyrrhetinic acid (18β-GA), a pentacyclic triterpenoid obtained from the roots of licorice plant, is reported to possess various pharmacological properties such as antitumor and antiinflammatory activities. The present study was designed to elucidate the chemopreventive effect of 18β-GA through antiinflammation, antiproliferation, and induction of apoptosis in human hepatoma cell line HepG2. 18β-GA significantly inhibits the proliferation of HepG2 cell without affecting the normal liver cell line (Chang's). In the present study, 18β-GA increased the formation of reactive oxygen species, nitric oxide production, and loss of mitochondrial membrane potential, suggesting the involvement of 18β-GA in apoptosis which was also confirmed by assessing the markers involved in apoptosis like caspase-3, caspase-9, Bax:Bcl-2 ratio, and cleaved PARP. 18β-GA also downregulated the expression of inflammatory proteins such as NF-κB, iNOS, and COX-2. Keeping these data into consideration, our results suggest that 18β-GA may be used as a chemopreventive agent in liver cancer.
Collapse
|
47
|
Ganai SA. Histone deacetylase inhibitor sulforaphane: The phytochemical with vibrant activity against prostate cancer. Biomed Pharmacother 2016; 81:250-257. [PMID: 27261601 DOI: 10.1016/j.biopha.2016.04.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 04/10/2016] [Accepted: 04/10/2016] [Indexed: 12/28/2022] Open
Abstract
Epigenetic modifications are closely involved in the patho-physiology of prostate cancer. Histone deacetylases (HDACs), the transcriptional corepressors have strong crosstalk with prostate cancer progression as they influence various genes related to tumour suppression. HDACs play a marked role in myriad of human cancers and as such are emerging as striking molecular targets for anticancer drugs and therapy. Histone deacetylase inhibitors (HDACi), the small-molecules interfering HDACs are emerging as promising chemotherapeutic agents. These inhibitors have shown multiple effects including cell growth arrest, differentiation and apoptosis in prostate cancer. The limited efficacy of HDACi as single agents in anticancer therapy has been strongly improved via novel therapeutic strategies like doublet therapy (combined therapy). More than 20HDACi have already entered into the journey of clinical trials and four have been approved by FDA against diverse cancers. This review deals with plant derived HDACi sulphoraphane (SFN; 1-isothiocyanato-4-(methylsulfinyl)-butane) and its potential role in prostate cancer therapy along with the underlying molecular mechanism being involved. The article further highlights the therapeutic strategy that can be utilized for sensitizing conventional therapy resistant cases and for acquiring the maximum therapeutic benefit from this promising inhibitor in the upcoming future.
Collapse
Affiliation(s)
- Shabir Ahmad Ganai
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006 Jammu & Kashmir, India.
| |
Collapse
|
48
|
Żuryń A, Litwiniec A, Safiejko-Mroczka B, Klimaszewska-Wiśniewska A, Gagat M, Krajewski A, Gackowska L, Grzanka D. The effect of sulforaphane on the cell cycle, apoptosis and expression of cyclin D1 and p21 in the A549 non-small cell lung cancer cell line. Int J Oncol 2016; 48:2521-33. [PMID: 27035641 DOI: 10.3892/ijo.2016.3444] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/20/2016] [Indexed: 11/05/2022] Open
Abstract
Sulforaphane (SFN) is present in plants belonging to Cruciferae family and was first isolated from broccoli sprouts. Chemotherapeutic and anticarcinogenic properties of sulforaphane were demonstrated, however, the underlying mechanisms are not fully understood. In this study we evaluated the expression of cyclin D1 and p21 protein in SFN-treated A549 cells and correlated these results with the extent of cell death and/or cell cycle alterations, as well as determined a potential contribution of cyclin D1 to cell death. A549 cells were treated with increasing concentrations of SFN (30, 60 and 90 µM) for 24 h. Morphological and ultrastructural changes were observed using light, transmission electron microscope and videomicroscopy. Image-based cytometry was applied to evaluate the effect of SFN on apoptosis and the cell cycle. Cyclin D1 and p21 expression was determined by flow cytometry, RT-qPCR and immunofluorescence. siRNA was used to evaluate the role of cyclin D1 in the process of suforaphane-induced cell death. We found that the percentage of cyclin D1-positive cells decreased after the treatment with SFN, but at the same time mean fluorescence intensity reflecting cyclin D1 content was increased at 30 µM SFN and decreased at 60 and 90 µM SFN. Percentage of p21-positive cells increased following the treatment, with the highest increase at 60 µM SFN, at which concentration mean fluorescence intensity of this protein was also significantly increased. The 30-µM dose of SFN induced an increased G2/M phase population along with a decreased polyploid fraction of cells, which implies a functional G2/M arrest. The major mode of cell death induced by SFN was necrosis and, to a lower degree apoptosis. Transfection with cyclin D1-siRNA resulted in significantly compromised fraction of apoptotic and necrotic cells, which suggests that cyclin D1 is an important determinant of the therapeutic efficiency of SFN in the A549 cells.
Collapse
Affiliation(s)
- Agnieszka Żuryń
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, 85-092 Bydgoszcz, Poland
| | - Anna Litwiniec
- Plant Breeding and Acclimatization Institute - National Research Institute, Bydgoszcz Research Center, Department of Genetics and Breeding of Root Crops, Laboratory of Biotechnology, 85-090 Bydgoszcz, Poland
| | | | - Anna Klimaszewska-Wiśniewska
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, 85-092 Bydgoszcz, Poland
| | - Maciej Gagat
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, 85-092 Bydgoszcz, Poland
| | - Adrian Krajewski
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, 85-092 Bydgoszcz, Poland
| | - Lidia Gackowska
- Department of Immunology, Sexually Transmitted Diseases and Immunodermatology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, 85-094 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Dermatology, Sexually Transmitted Diseases and Immunodermatology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, 85-094 Bydgoszcz, Poland
| |
Collapse
|
49
|
Atwell LL, Zhang Z, Mori M, Farris P, Vetto JT, Naik AM, Oh KY, Thuillier P, Ho E, Shannon J. Sulforaphane Bioavailability and Chemopreventive Activity in Women Scheduled for Breast Biopsy. Cancer Prev Res (Phila) 2015; 8:1184-1191. [PMID: 26511489 DOI: 10.1158/1940-6207.capr-15-0119] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 10/13/2015] [Indexed: 12/21/2022]
Abstract
Epidemiologic studies suggest a protective effect of cruciferous vegetables on breast cancer. Sulforaphane (SFN), an active food component derived from crucifers, has been shown to be effective in breast cancer chemoprevention. This study evaluated the chemopreventive effect of SFN on selective biomarkers from blood and breast tissues. In a 2- to 8-week double-blinded, randomized controlled trial, 54 women with abnormal mammograms and scheduled for breast biopsy were randomized to consume a placebo or a glucoraphanin (GFN) supplement providing SFN (n = 27). Plasma and urinary SFN metabolites, peripheral blood mononuclear cell (PBMC) histone deacetylase (HDAC) activity, and tissue biomarkers (H3K18ac, H3K9ac, HDAC3, HDAC6, Ki-67, p21) were measured before and after the intervention in benign, ductal carcinoma in situ, or invasive ductal carcinoma breast tissues. Within the supplement group, Ki-67 (P = 0.003) and HDAC3 (P = 0.044) levels significantly decreased in benign tissue. Pre-to-postintervention changes in these biomarkers were not significantly different between treatment groups after multiple comparison adjustment. GFN supplementation was associated with a significant decrease in PBMC HDAC activity (P = 0.04). No significant associations were observed between SFN and examined tissue biomarkers when comparing treatment groups. This study provides evidence that GFN supplementation for a few weeks is safe but may not be sufficient for producing changes in breast tissue tumor biomarkers. Future studies employing larger sample sizes should evaluate alternative dosing and duration regimens to inform dietary SFN strategies in breast cancer chemoprevention.
Collapse
Affiliation(s)
- Lauren L Atwell
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331.,Department of Nutrition and Food Science, California State University, Chico, 400 West 1 Avenue, Chico, CA 95929
| | - Zhenzhen Zhang
- School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Motomi Mori
- School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239.,Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Paige Farris
- School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - John T Vetto
- Division of Surgical Oncology, Oregon Health & Science University, 3303 SW Bond Ave, Portland, OR 97239
| | - Arpana M Naik
- Division of Surgical Oncology, Oregon Health & Science University, 3303 SW Bond Ave, Portland, OR 97239
| | - Karen Y Oh
- Department of Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Philippe Thuillier
- School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239.,Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239.,Department of Dermatology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331.,Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, Oregon State University, 212 Milam Hall, Corvallis, OR 97331
| | - Jackilen Shannon
- School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| |
Collapse
|
50
|
Watson GW, Wickramasekara S, Fang Y, Palomera-Sanchez Z, Maier CS, Williams DE, Dashwood RH, Perez VI, Ho E. Analysis of autophagic flux in response to sulforaphane in metastatic prostate cancer cells. Mol Nutr Food Res 2015; 59:1954-61. [PMID: 26108801 DOI: 10.1002/mnfr.201500283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/11/2015] [Accepted: 06/16/2015] [Indexed: 12/21/2022]
Abstract
SCOPE The phytochemical sulforaphane (SF) has been shown to decrease prostate cancer metastases in a genetic mouse model of prostate carcinogenesis, though the mechanism of action is not fully known. SF has been reported to stimulate autophagy, and modulation of autophagy has been proposed to influence SF cytotoxicity; however, no conclusions about autophagy can be drawn without assessing autophagic flux, which has not been characterized in prostate cancer cells following SF treatment. METHODS AND RESULTS We conducted an investigation to assess the impact of SF on autophagic flux in two metastatic prostate cancer cell lines at a concentration shown to decrease metastasis in vivo. Autophagic flux was assessed by multiple autophagy related proteins and substrates. We found that SF can stimulate autophagic flux and cell death only at high concentrations, above what has been observed in vivo. CONCLUSION These results suggest that SF does not directly stimulate autophagy or cell death in metastatic prostate cancer cells under physiologically relevant conditions, but instead supports the involvement of in vivo factors as important effectors of SF-mediated prostate cancer suppression.
Collapse
Affiliation(s)
- Gregory W Watson
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, USA.,Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA
| | | | - Yufeng Fang
- Genetics, Bioinformatics & Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | | | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - David E Williams
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA.,Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Roderick H Dashwood
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M Science Center, Houston, TX, USA.,Department of Nutrition & Food Science, Texas A&M University, College Station, TX, USA.,Department of Clinical Cancer Prevention, MD Anderson Cancer Center, Houston, TX, USA.,Department of Molecular & Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Viviana I Perez
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA.,Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Emily Ho
- Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA.,Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| |
Collapse
|