1
|
Büyücek S, Schraps N, Menz A, Lutz F, Chirico V, Viehweger F, Dum D, Schlichter R, Hinsch A, Fraune C, Bernreuther C, Kluth M, Hube-Magg C, Möller K, Reiswich V, Luebke AM, Lebok P, Weidemann S, Sauter G, Lennartz M, Jacobsen F, Clauditz TS, Marx AH, Simon R, Steurer S, Burandt E, Gorbokon N, Minner S, Krech T, Freytag M. Prevalence and clinical significance of Claudin-3 expression in cancer: a tissue microarray study on 14,966 tumor samples. Biomark Res 2024; 12:154. [PMID: 39658782 PMCID: PMC11633013 DOI: 10.1186/s40364-024-00702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/30/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Claudin-3 (CLDN3) participates in the formation of the tight-junctions (TJs) that regulate intercellular permeability. Altered CLDN3 expression has been linked to tumor progression in multiple tumor types. Despite its widespread expression in normal epithelial cells, CLDN3 is considered an attractive drug target candidate, since it may be more accessible in cancer cells than in normal cells due to their less orchestrated cell growth. METHODS To comprehensively determine the prevalence of CLDN3 expression in cancer, a tissue microarray containing 14,966 samples from 133 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. RESULTS CLDN3 immunostaining was observed in 8,479 (68.9%) of 12,314 analyzable tumors, including 11.6% with weak, 6.2% with moderate, and 51.1% with strong positivity. CLDN3 staining was found in 96 of 133 tumor categories, 80 of which contained at least one strongly positive case. CLDN3 positivity was most seen in neuroendocrine neoplasms (92-100%) and in adenocarcinomas (67-100%), tumors of the female genital tract, including various subtypes of ovarian and endometrial carcinoma (up to 100%), as well as different subtypes of breast cancer (95.3-100%). CLDN3 positivity was less common in squamous cell carcinomas (0-43.2%) and mainly absent in melanoma, mesenchymal, and hematolymphatic neoplasms. In clear cell renal cell carcinoma (ccRCC), low CLDN3 was strongly linked to poor ISUP (p < 0.0001), Fuhrman (p < 0.0001), and Thoenes (p < 0.0001) grades, advanced pT category (p < 0.0001), high UICC stage (p = 0.0006) and distant metastasis (p = 0.0011), as well as shortened overall (p = 0.0118) and recurrence-free (p < 0.0001) survival. In papillary RCC (pRCC), low CLDN3 was associated with poor grade (p < 0.05), high pT (p = 0.0273) and distant metastasis (p = 0.0357). In urothelial carcinoma high CLDN3 was linked to high grade (p < 0.0001) and nodal metastasis (p = 0.0111). The level of CLDN3 staining was unrelated to parameters of tumor aggressiveness in pancreatic, gastric, and breast cancer. CONCLUSION In conclusion, our data demonstrate significant levels of CLDN3 expression in many different tumor entities and identify reduced CLDN3 expression as a potential prognostic marker in RCC.
Collapse
Affiliation(s)
- Seyma Büyücek
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Nina Schraps
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Florian Lutz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Viktoria Chirico
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Ria Schlichter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany.
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Morton Freytag
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| |
Collapse
|
2
|
Jeon H, Sterpi M, Mo C, Bteich F. Claudins: from gatekeepers of epithelial integrity to potential targets in hepato-pancreato-biliary cancers. Front Oncol 2024; 14:1454882. [PMID: 39391254 PMCID: PMC11464258 DOI: 10.3389/fonc.2024.1454882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024] Open
Abstract
Claudins, a family of tetraspan transmembrane proteins, are critical to the integrity of tight junctions in epithelia and endothelia, influencing cellular processes such as development, differentiation, and apoptosis. Abnormal claudin expression is associated with various malignancies, particularly affecting tissue architecture and potentially facilitating tumor invasion and metastasis. In this comprehensive review, we explore the multifaceted functions of claudins: their expression, specific roles in cancer with a focus on hepato-pancreato-biliary malignancies and highlight their potential as therapeutic targets. We discuss current claudin-targeted therapies, including monoclonal antibodies, antibody-drug conjugates, bispecific T-cell engager and chimeric antigen receptor T-cell therapies. These approaches show promise in pre-clinical and clinical studies, particularly in hepato-pancreato-biliary cancers with large unmet needs. Despite these early signs of efficacy, challenges remain in effectively targeting these proteins due to their structural resemblance and overlapping functions.
Collapse
Affiliation(s)
- Hyein Jeon
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Michelle Sterpi
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Christiana Mo
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Fernand Bteich
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
3
|
Hua T, Liu DX, Zhang XC, Li ST, Wu JL, Zhao Q, Chen SB. Establishment of an ovarian cancer exhausted CD8+T cells-related genes model by integrated analysis of scRNA-seq and bulk RNA-seq. Eur J Med Res 2024; 29:358. [PMID: 38970067 PMCID: PMC11225302 DOI: 10.1186/s40001-024-01948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 06/24/2024] [Indexed: 07/07/2024] Open
Abstract
Ovarian cancer (OC) was the fifth leading cause of cancer death and the deadliest gynecological cancer in women. This was largely attributed to its late diagnosis, high therapeutic resistance, and a dearth of effective treatments. Clinical and preclinical studies have revealed that tumor-infiltrating CD8+T cells often lost their effector function, the dysfunctional state of CD8+T cells was known as exhaustion. Our objective was to identify genes associated with exhausted CD8+T cells (CD8TEXGs) and their prognostic significance in OC. We downloaded the RNA-seq and clinical data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. CD8TEXGs were initially identified from single-cell RNA-seq (scRNA-seq) datasets, then univariate Cox regression, the least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression were utilized to calculate risk score and to develop the CD8TEXGs risk signature. Kaplan-Meier analysis, univariate Cox regression, multivariate Cox regression, time-dependent receiver operating characteristics (ROC), nomogram, and calibration were conducted to verify and evaluate the risk signature. Gene set enrichment analyses (GSEA) in the risk groups were used to figure out the closely correlated pathways with the risk group. The role of risk score has been further explored in the homologous recombination repair deficiency (HRD), BRAC1/2 gene mutations and tumor mutation burden (TMB). A risk signature with 4 CD8TEXGs in OC was finally built in the TCGA database and further validated in large GEO cohorts. The signature also demonstrated broad applicability across various types of cancer in the pan-cancer analysis. The high-risk score was significantly associated with a worse prognosis and the risk score was proven to be an independent prognostic biomarker. The 1-, 3-, and 5-years ROC values, nomogram, calibration, and comparison with the previously published models confirmed the excellent prediction power of this model. The low-risk group patients tended to exhibit a higher HRD score, BRCA1/2 gene mutation ratio and TMB. The low-risk group patients were more sensitive to Poly-ADP-ribose polymerase inhibitors (PARPi). Our findings of the prognostic value of CD8TEXGs in prognosis and drug response provided valuable insights into the molecular mechanisms and clinical management of OC.
Collapse
Affiliation(s)
- Tian Hua
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, Xingtai, China
| | - Deng-Xiang Liu
- Department of Oncology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, People's Republic of China
| | - Xiao-Chong Zhang
- Department of Oncology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, People's Republic of China
| | - Shao-Teng Li
- Department of Oncology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, People's Republic of China
| | - Jian-Lei Wu
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong, 250021, People's Republic of China
| | - Qun Zhao
- The Third Department of Surgery , Hebei Medical University, Fourth Hospital, Road Jiankang No. 12, Hebei, 050001, People's Republic of China.
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China.
| | - Shu-Bo Chen
- Department of Oncology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, People's Republic of China.
| |
Collapse
|
4
|
Zhu K, Ma J, Tian Y, Liu Q, Zhang J. An immune-related exosome signature predicts the prognosis and immunotherapy response in ovarian cancer. BMC Womens Health 2024; 24:49. [PMID: 38238671 PMCID: PMC10795461 DOI: 10.1186/s12905-024-02881-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Cancer-derived exosomes contribute significantly in intracellular communication, particularly during tumorigenesis. Here, we aimed to identify two immune-related ovarian cancer-derived exosomes (IOCEs) subgroups in ovarian cancer (OC) and establish a prognostic model for OC patients based on immune-related IOCEs. METHODS The Cancer Genome Atlas (TCGA) database was used to obtain RNA-seq data, as well as clinical and prognostic information. Consensus clustering analysis was performed to identify two IOCEs-associated subgroups. Kaplan-Meier analysis was used to compare the overall survival (OS) between IOCEs-high and IOCEs-low subtype. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to investigate the mechanisms and biological effects of differentially expressed genes (DEGs) between the two subtypes. Besides, an IOCE-related prognostic model of OC was constructed by Lasso regression analysis, and the signature was validated using GSE140082 as the validation set. RESULTS In total, we obtained 21 differentially expressed IOCEs in OC, and identified two IOCE-associated subgroups by consensus clustering. IOCE-low subgroup showed a favorable prognosis while IOCE-high subgroup had a higher level of immune cell infiltration and immune response. GSEA showed that pathways in cancer and immune response were mainly enriched in IOCE-high subgroup. Thus, IOCE-high subgroup may benefit more in immunotherapy treatment. In addition, we constructed a risk model based on nine IOCE-associated genes (CLDN4, AKT2, CSPG5, ALDOC, LTA4H, PSMA2, PSMA5, TCIRG1, ANO6). CONCLUSION We developed a novel stratification system for OV based on IOCE signature, which could be used to estimate the prognosis as well as immunotherapy for OC patient.
Collapse
Affiliation(s)
- Kaibo Zhu
- Department of Pathology, Women's Hospital School of Medicine Zhejiang University, No.3, East Qingchun Road, Shangcheng District, Hangzhou, China
| | - Jiao Ma
- Department of Pathology, Zhejiang Hospital, Hangzhou, China
| | - Yiping Tian
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Qin Liu
- Department of Pathology, Women's Hospital School of Medicine Zhejiang University, No.3, East Qingchun Road, Shangcheng District, Hangzhou, China.
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, No.1, Xueshi Road, Shangcheng District, Hangzhou, China.
| |
Collapse
|
5
|
Fujiwara-Tani R, Mori S, Ogata R, Sasaki R, Ikemoto A, Kishi S, Kondoh M, Kuniyasu H. Claudin-4: A New Molecular Target for Epithelial Cancer Therapy. Int J Mol Sci 2023; 24:5494. [PMID: 36982569 PMCID: PMC10051602 DOI: 10.3390/ijms24065494] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Claudin-4 (CLDN4) is a key component of tight junctions (TJs) in epithelial cells. CLDN4 is overexpressed in many epithelial malignancies and correlates with cancer progression. Changes in CLDN4 expression have been associated with epigenetic factors (such as hypomethylation of promoter DNA), inflammation associated with infection and cytokines, and growth factor signaling. CLDN4 helps to maintain the tumor microenvironment by forming TJs and acts as a barrier to the entry of anticancer drugs into tumors. Decreased expression of CLDN4 is a potential marker of epithelial-mesenchymal transition (EMT), and decreased epithelial differentiation due to reduced CLDN4 activity is involved in EMT induction. Non-TJ CLDN4 also activates integrin beta 1 and YAP to promote proliferation, EMT, and stemness. These roles in cancer have led to investigations of molecular therapies targeting CLDN4 using anti-CLDN4 extracellular domain antibodies, gene knockdown, clostridium perfringens enterotoxin (CPE), and C-terminus domain of CPE (C-CPE), which have demonstrated the experimental efficacy of this approach. CLDN4 is strongly involved in promoting malignant phenotypes in many epithelial cancers and is regarded as a promising molecular therapeutic target.
Collapse
Affiliation(s)
- Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.O.); (R.S.); (A.I.); (S.K.)
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.O.); (R.S.); (A.I.); (S.K.)
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.O.); (R.S.); (A.I.); (S.K.)
| | - Rika Sasaki
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.O.); (R.S.); (A.I.); (S.K.)
| | - Ayaka Ikemoto
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.O.); (R.S.); (A.I.); (S.K.)
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.O.); (R.S.); (A.I.); (S.K.)
| | - Masuo Kondoh
- Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, 6-1 Yamadaoka, Suita 565-0871, Japan;
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.O.); (R.S.); (A.I.); (S.K.)
| |
Collapse
|
6
|
Recent advances in microbial toxin-related strategies to combat cancer. Semin Cancer Biol 2022; 86:753-768. [PMID: 34271147 DOI: 10.1016/j.semcancer.2021.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023]
Abstract
It is a major concern to treat cancer successfully, due to the distinctive pathophysiology of cancer cells and the gradual manifestation of resistance. Specific action, adverse effects and development of resistance has prompted the urgent requirement of exploring alternative anti-tumour treatment therapies. The naturally derived microbial toxins as a therapy against cancer cells are a promisingly new dimension. Various important microbial toxins such as Diphtheria toxin, Vibrio cholera toxin, Aflatoxin, Patulin, Cryptophycin-55, Chlorella are derived from several bacterial, fungal and algal species. These agents act on different biotargets such as inhibition of protein synthesis, reduction in cell growth, regulation of cell cycle and many cellular processes. Bacterial toxins produce actions primarily by targeting protein moieties and some immunomodulation and few acts through DNA. Fungal toxins appear to have more DNA damaging activity and affect the cell cycle. Algal toxins produce alteration in mitochondrial phosphorylation. In conclusion, microbial toxins and their metabolites appear to have a great potential to provide a promising option for the treatment and management to combat cancer.
Collapse
|
7
|
Dicks LMT, Vermeulen W. Do Bacteria Provide an Alternative to Cancer Treatment and What Role Does Lactic Acid Bacteria Play? Microorganisms 2022; 10:microorganisms10091733. [PMID: 36144335 PMCID: PMC9501580 DOI: 10.3390/microorganisms10091733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide. According to 2022 statistics from the World Health Organization (WHO), close to 10 million deaths have been reported in 2020 and it is estimated that the number of cancer cases world-wide could increase to 21.6 million by 2030. Breast, lung, thyroid, pancreatic, liver, prostate, bladder, kidney, pelvis, colon, and rectum cancers are the most prevalent. Each year, approximately 400,000 children develop cancer. Treatment between countries vary, but usually includes either surgery, radiotherapy, or chemotherapy. Modern treatments such as hormone-, immuno- and antibody-based therapies are becoming increasingly popular. Several recent reports have been published on toxins, antibiotics, bacteriocins, non-ribosomal peptides, polyketides, phenylpropanoids, phenylflavonoids, purine nucleosides, short chain fatty acids (SCFAs) and enzymes with anticancer properties. Most of these molecules target cancer cells in a selective manner, either directly or indirectly through specific pathways. This review discusses the role of bacteria, including lactic acid bacteria, and their metabolites in the treatment of cancer.
Collapse
|
8
|
Uthayanan L, El-Bahrawy M. Potential roles of claudin-3 and claudin-4 in ovarian cancer management. J Egypt Natl Canc Inst 2022; 34:24. [PMID: 35665865 DOI: 10.1186/s43046-022-00125-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ovarian cancer has the highest mortality amongst all gynaecological malignancies, with around two-thirds of patients diagnosed with advanced disease due to late presentation. Furthermore, around 90% of patients develop recurrence and eventually become chemoresistant. Therefore, there is a high demand to identify biomarkers specific to this disease for screening for early detection, as well as new therapeutic targets. Tight junctions (TJs) regulate paracellular permeability and are vital in establishing epithelial cell polarity. One hallmark of tumorigenesis is the loss of TJs, with loss of cell-to-cell adhesion. Claudins are integral TJ membrane proteins, which have been found to play a critical role in maintaining the TJ's barrier function. Furthermore, claudin-3 (CLDN3) and claudin-4 (CLDN4) are overexpressed in ovarian cancer. This article aims to explore the biological role of CLDN3 and CLDN4 and their potential in different aspects of the management of ovarian cancer. MAIN BODY CLDN3 and CLDN4 have been shown to be effective markers for the early detection of ovarian cancer. Whilst there is difficulty in screening for both claudins in serum, their assessment by gene expression analysis and immunohistochemical methods shows promising potential as diagnostic and prognostic biomarkers for ovarian cancer. The localisation and overexpression of claudins, such as CLDN3, have been shown to correlate with poorer survival outcomes. The added value of combining claudins with other markers such as CA125 for diagnosis has also been highlighted. Therapeutically, CLDN3 and more so CLDN4 have been shown to be effective targets of Clostridium perfringens enterotoxin (CPE). Interestingly, CPE has also been shown to resensitise chemoresistant tumours to therapy. CONCLUSIONS This review presents the diagnostic and prognostic potential of CLDN3 and CLDN4 and their emerging role as therapeutic targets in ovarian cancer. Clinical trials are required to validate the promising results of the in vitro and in vivo studies for CLDN3 and CLDN4, possibly adding onto current ovarian cancer management.
Collapse
Affiliation(s)
- Leshanth Uthayanan
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Hospital, Imperial College London, London, W12 0NN, UK
| | - Mona El-Bahrawy
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Hospital, Imperial College London, London, W12 0NN, UK.
- Department of Pathology, Alexandria Faculty of Medicine, Alexandria, Egypt.
| |
Collapse
|
9
|
Li J. Targeting claudins in cancer: diagnosis, prognosis and therapy. Am J Cancer Res 2021; 11:3406-3424. [PMID: 34354852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/18/2021] [Indexed: 11/09/2022] Open
Abstract
Increasing evidence has linked claudins to signal transduction and tumorigenesis. The expression of claudins is frequently dysregulated in the context of neoplastic transformation, suggesting their promise as biomarkers for diagnosis and prognosis or targets for treatment. Claudin binders (Clostridium perfringens enterotoxin and monoclonal antibody) have been tested in preclinical experiments, and some of them have progressed into clinical trials involving patients with certain cancers. However, the clinical development of many of these agents has not advanced to clinical applications. Herein, I review the current status of preclinical and clinical investigations of agents targeting claudins for diagnosis, prognosis and therapy. I also discuss the potential of combining claudin binders with other currently approved therapeutic agents.
Collapse
Affiliation(s)
- Jian Li
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center Mianyang 621000, Sichuan, China
| |
Collapse
|
10
|
Kuang L, Li L. E74-like factor 3 suppresses microRNA-485-5p transcription to trigger growth and metastasis of ovarian cancer cells with the involvement of CLDN4/Wnt/β-catenin axis. Saudi J Biol Sci 2021; 28:4137-4146. [PMID: 34354393 PMCID: PMC8324996 DOI: 10.1016/j.sjbs.2021.04.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/26/2022] Open
Abstract
Ovarian cancer (OC) is one of the most prevailing gynecological malignancies with high mortality rate, while E74 like ETS transcription factor 3 (ELF3) is reported to be associated with tumorigenesis. This work aims to analyze the role of ELF3 on the suppression of miR-485-5p transcription in OC. Expression of ELF3 in OC and its correlation with overall survival were predicted on a bioinformation system GEPIA. Then, the level of ELF3 in OC tissues and cells and in normal ones was evaluated. Binding relationships between ELF3 and microRNA (miR)-485-5p, and between miR-485-5p and claudin-4 (CLND4) were predicted through Bioinformatics tools. Altered expression of ELF3, miR-485-5p and CLND4 was introduced alone or jointly to probe their influences on OC cell growth. ELF3 was suggested to be highly expressed in OC, which was linked to poor prognosis in patients. Abundant expression of ELF3 was identified in OC tissues and cell lines as relative to the normal ones. ELF3 inhibition suppressed growth and metastasis of OC cells. ELF3 transcriptionally suppressed miR-485-5p expression to further enhance CLDN4 expression. Overexpression of miR-485-5p led to similar trends as ELF3 inhibition did. Importantly, upregulation of CLDN4 was found to block the roles of ELF3 inhibition in OC cells. In addition, the Wnt/signaling pathway suppressed by miR-485-5p mimic was reactivated following CLDN4 overexpression. This study evidenced that ELF3 suppresses miR-485-5p transcription to enhance CLDN4 expression, leading to Wnt/β-catenin activation and promoting OC cell growth and metastasis. This work may provide new ideas for gene-based therapies for OC.
Collapse
Affiliation(s)
- Lei Kuang
- Department of Gynecology, Lianyungang First People's Hospital, Lianyungang 222000, Jiangsu, PR China
| | - Li'an Li
- Department of Gynecology and Obstetrics, First Medical Center of PLA General Hospital, Beijing 100853, PR China
| |
Collapse
|
11
|
Brunner J, Ragupathy S, Borchard G. Target specific tight junction modulators. Adv Drug Deliv Rev 2021; 171:266-288. [PMID: 33617902 DOI: 10.1016/j.addr.2021.02.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Intercellular tight junctions represent a formidable barrier against paracellular drug absorption at epithelia (e.g., nasal, intestinal) and the endothelium (e.g., blood-brain barrier). In order to enhance paracellular transport of drugs and increase their bioavailability and organ deposition, active excipients modulating tight junctions have been applied. First-generation of permeation enhancers (PEs) acted by unspecific interactions, while recently developed PEs address specific physiological mechanisms. Such target specific tight junction modulators (TJMs) have the advantage of a defined specific mechanism of action. To date, merely a few of these novel active excipients has entered into clinical trials, as their lack in safety and efficiency in vivo often impedes their commercialisation. A stronger focus on the development of such active excipients would result in an economic and therapeutic improvement of current and future drugs.
Collapse
Affiliation(s)
- Joël Brunner
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Sakthikumar Ragupathy
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Gerrit Borchard
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
12
|
Gaudelet T, Malod-Dognin N, Pržulj N. Integrative Data Analytic Framework to Enhance Cancer Precision Medicine. NETWORK AND SYSTEMS MEDICINE 2021; 4:60-73. [PMID: 33796878 PMCID: PMC8006589 DOI: 10.1089/nsm.2020.0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
With the advancement of high-throughput biotechnologies, we increasingly accumulate biomedical data about diseases, especially cancer. There is a need for computational models and methods to sift through, integrate, and extract new knowledge from the diverse available data, to improve the mechanistic understanding of diseases and patient care. To uncover molecular mechanisms and drug indications for specific cancer types, we develop an integrative framework able to harness a wide range of diverse molecular and pan-cancer data. We show that our approach outperforms the competing methods and can identify new associations. Furthermore, it captures the underlying biology predictive of drug response. Through the joint integration of data sources, our framework can also uncover links between cancer types and molecular entities for which no prior knowledge is available. Our new framework is flexible and can be easily reformulated to study any biomedical problem.
Collapse
Affiliation(s)
- Thomas Gaudelet
- Department of Computer Science, University College London, London, United Kingdom
| | - Noël Malod-Dognin
- Department of Computer Science, University College London, London, United Kingdom
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Nataša Pržulj
- Department of Computer Science, University College London, London, United Kingdom
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
13
|
Riesenberg C, Iriarte-Valdez CA, Becker A, Dienerowitz M, Heisterkamp A, Ngezahayo A, Torres-Mapa ML. Probing Ligand-Receptor Interaction in Living Cells Using Force Measurements With Optical Tweezers. Front Bioeng Biotechnol 2020; 8:598459. [PMID: 33282853 PMCID: PMC7705203 DOI: 10.3389/fbioe.2020.598459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/01/2020] [Indexed: 01/08/2023] Open
Abstract
This work probes the binding kinetics of COOH-terminus of Clostridium perfringens enterotoxin (c-CPE) and claudin expressing MCF-7 cells using force spectroscopy with optical tweezers. c-CPE is of high biomedical interest due to its ability to specifically bind to claudin with high affinity as well as reversibly disrupt tight junctions whilst maintaining cell viability. We observed single-step rupture events between silica particles functionalized with c-CPE and MCF-7 cells. Extensive calibration of the optical tweezers' trap stiffness and displacement of the particle from trap center extracted a probable bond rupture force of ≈ 18 pN. The probability of rupture events with c-CPE functionalized silica particles increased by 50% compared to unfunctionalized particles. Additionally, rupture events were not observed when probing cells not expressing claudin with c-CPE coated particles. Overall, this work demonstrates that optical tweezers are invaluable tools to probe ligand-receptor interactions and their potential to study dynamic molecular events in drug-binding scenarios.
Collapse
Affiliation(s)
- Carolin Riesenberg
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Christian Alejandro Iriarte-Valdez
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Annegret Becker
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Maria Dienerowitz
- Single-Molecule Microscopy Group, Jena University Hospital, Jena, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Anaclet Ngezahayo
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Maria Leilani Torres-Mapa
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
14
|
Fujiwara-Tani R, Fujii K, Mori S, Kishi S, Sasaki T, Ohmori H, Nakashima C, Kawahara I, Nishiguchi Y, Mori T, Sho M, Kondoh M, Luo Y, Kuniyasu H. Role of Clostridium perfringens Enterotoxin on YAP Activation in Colonic Sessile Serrated Adenoma/ Polyps with Dysplasia. Int J Mol Sci 2020; 21:ijms21113840. [PMID: 32481659 PMCID: PMC7313056 DOI: 10.3390/ijms21113840] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Sessile serrated adenoma/polyp with dysplasia (SSA/P-D) is an SSA/P with cellular dysplasia and has a higher risk of progressing to colon carcinogenesis. Previously, we reported that tight junction impairment by Clostridiumperfringens enterotoxin (CPE) leads to activation of the transcriptional co-activator yes-associated protein (YAP) in oral squamous cell carcinoma. Here, we investigated whether CPE activates YAP to promote the malignant progression of SSA/P. E-cadherin expression was lower in the 12 cases with SSA/P-D examined than that in normal mucosa, SSA/P, or tubular adenoma (TA). Furthermore, intracellular translocation of claudin-4 (CLDN4) and nuclear translocation of YAP were observed. The CPE gene was detected in DNA extracted from SSA/P-D lesions, but not in SSA/P or TA. Treatment of the rat intestinal epithelial cell line IEC6 with low-dose CPE resulted in intracellular translocation of CLDN4 to the cytoplasmic membrane. Cytoplasmic CLDN4 showed co-precipitation with transcriptional co-activator with PDZ-binding motif, zonula occludens (ZO)-1, large tumor suppressor, and mammalian Ste20-like. Additionally, YAP co-precipitated with ZO-2 under CPE treatment led to decreased YAP phosphorylation and nuclear translocation. YAP activation promoted increase in nuclear TEA domain family member level, expression of cyclin D1, snail, vimentin, CD44, NS and decrease in E-cadherin levels, thereby inducing stemness and epithelial-mesenchymal-transition (EMT). The Hippo complex with the incorporation of CLDN4 increased stability. Upon low-dose CPE treatment, HT29 cells with BRAFV600E gene mutation showed increased growth, enhanced invasive potential, stemness, and induced EMT phenotype, whereas HCT116 cells, which carry KRASG13D gene mutation, did not show such changes. In an examination of 10 colorectal cancers, an increase in EMT and stemness was observed in CPE (+) and BRAF mutation (+) cases. These findings suggest that C.perfringens might enhance the malignant transformation of SSA/P-D via YAP activation. Our findings further highlight the importance of controlling intestinal flora using probiotics or antibiotics.
Collapse
Affiliation(s)
- Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Takuya Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Masayuki Sho
- Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan;
| | - Masuo Kondoh
- Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, 6-1 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Yi Luo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China
- Correspondence: (Y.L.); (H.K.); Tel.: +86-0513-8505-1805 (Y.L.); +81-744-22-3051 (H.K.); Fax: +81-744-25-7308 (H.K.)
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
- Correspondence: (Y.L.); (H.K.); Tel.: +86-0513-8505-1805 (Y.L.); +81-744-22-3051 (H.K.); Fax: +81-744-25-7308 (H.K.)
| |
Collapse
|
15
|
Development of Human Monoclonal Antibody for Claudin-3 Overexpressing Carcinoma Targeting. Biomolecules 2019; 10:biom10010051. [PMID: 31905631 PMCID: PMC7022679 DOI: 10.3390/biom10010051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/27/2022] Open
Abstract
Most malignant tumors originate from epithelial tissues in which tight junctions mediate cell-cell interactions. Tight junction proteins, especially claudin-3 (CLDN3), are overexpressed in various cancers. Claudin-3 is exposed externally during tumorigenesis making it a potential biomarker and therapeutic target. However, the development of antibodies against specific CLDN proteins is difficult, because CLDNs are four-transmembrane domain proteins with high homology among CLDN family members and species. Here, we developed a human IgG1 monoclonal antibody (h4G3) against CLDN3 through scFv phage display using CLDN3-overexpressing stable cells and CLDN3-embedded lipoparticles as antigens. The h4G3 recognized the native conformation of human and mouse CLDN3 without cross-reactivity to other CLDNs. The binding kinetics of h4G3 demonstrated a sub-nanomolar affinity for CLDN3 expressed on the cell surface. The h4G3 showed antibody-dependent cellular cytotoxicity (ADCC) according to CLDN3 expression levels in various cancer cells by the activation of FcγRIIIa (CD16a). The biodistribution of h4G3 was analyzed by intravenous injection of fluorescence-conjugated h4G3 which showed that it localized to the tumor site in xenograft mice bearing CLDN3-expressing tumors. These results indicate that h4G3 recognizes CLDN3 specifically, suggesting its value for cancer diagnosis, antibody-drug conjugates, and potentially as a chimeric antigen receptor (CAR) for CLDN3-expressing pan-carcinoma.
Collapse
|
16
|
Hashimoto Y, Okada Y, Shirakura K, Tachibana K, Sawada M, Yagi K, Doi T, Kondoh M. Anti-Claudin Antibodies as a Concept for Development of Claudin-Directed Drugs. J Pharmacol Exp Ther 2019; 368:179-186. [PMID: 30530622 DOI: 10.1124/jpet.118.252361] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/06/2018] [Indexed: 03/08/2025] Open
Abstract
Claudin (CLDN) proteins, a tetra-transmembrane family containing over 20 members, have been identified as key structural and functional components of intercellular seals, tight junctions (TJs). CLDNs are involved in the barrier and fence functions of TJs. Loosening the TJ barrier is one strategy for increasing drug absorption and delivery to the brain. Due to aberrant CLDN expression, the TJ fence function is frequently dysregulated in carcinogenesis. In addition, CLDN-1 is a co-receptor for the hepatitis C virus. Together these characteristics indicate CLDNs as promising targets for drug development, and CLDN binders are potential candidates for delivering drugs, treating cancer, and preventing viral infection. Before 2008, a receptor-binding fragment of Clostridium perfringens enterotoxin was the only CLDN binder available. Since then, several challenges regarding the generation of monoclonal antibodies against CLDNs have been surmounted, leading to breakthroughs in CLDN-targeted drug development. Here, we provide an overview of the recent progress in technology using created CLDN binders-anti-CLDN monoclonal antibodies.
Collapse
Affiliation(s)
- Yosuke Hashimoto
- Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan (Y.H., M.S.) and Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.O., K.S., K.T., K.Y., T.D., M.K.)
| | - Yoshiaki Okada
- Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan (Y.H., M.S.) and Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.O., K.S., K.T., K.Y., T.D., M.K.)
| | - Keisuke Shirakura
- Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan (Y.H., M.S.) and Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.O., K.S., K.T., K.Y., T.D., M.K.)
| | - Keisuke Tachibana
- Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan (Y.H., M.S.) and Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.O., K.S., K.T., K.Y., T.D., M.K.)
| | - Makoto Sawada
- Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan (Y.H., M.S.) and Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.O., K.S., K.T., K.Y., T.D., M.K.)
| | - Kiyohito Yagi
- Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan (Y.H., M.S.) and Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.O., K.S., K.T., K.Y., T.D., M.K.)
| | - Takefumi Doi
- Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan (Y.H., M.S.) and Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.O., K.S., K.T., K.Y., T.D., M.K.)
| | - Masuo Kondoh
- Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan (Y.H., M.S.) and Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (Y.O., K.S., K.T., K.Y., T.D., M.K.)
| |
Collapse
|
17
|
Breed C, Hicks DA, Webb PG, Galimanis CE, Bitler BG, Behbakht K, Baumgartner HK. Ovarian Tumor Cell Expression of Claudin-4 Reduces Apoptotic Response to Paclitaxel. Mol Cancer Res 2019; 17:741-750. [PMID: 30606772 DOI: 10.1158/1541-7786.mcr-18-0451] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/11/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
Abstract
A significant factor contributing to poor survival rates for patients with ovarian cancer is the insensitivity of tumors to standard-of-care chemotherapy. In this study, we investigated the effect of claudin-4 expression on ovarian tumor cell apoptotic response to cisplatin and paclitaxel. We manipulated claudin-4 gene expression by silencing expression [short hairpin RNA (shRNA)] in cells with endogenously expressed claudin-4 or overexpressing claudin-4 in cells that natively do not express claudin-4. In addition, we inhibited claudin-4 activity with a claudin mimic peptide (CMP). We monitored apoptotic response by caspase-3 and Annexin V binding. We examined proliferation rate by counting the cell number over time as well as measuring the number of mitotic cells. Proximity ligation assays, immunoprecipitation (IP), and immunofluorescence were performed to examine interactions of claudin-4. Western blot analysis of tubulin in cell fractions was used to determine the changes in tubulin polymerization with changes in claudin-4 expression. Results show that claudin-4 expression reduced epithelial ovarian cancer (EOC) cell apoptotic response to paclitaxel. EOCs without claudin-4 proliferated more slowly with enhanced mitotic arrest compared with the cells expressing claudin-4. Furthermore, our results indicate that claudin-4 interacts with tubulin, having a profound effect on the structure and polymerization of the microtubule network. In conclusion, we demonstrate that claudin-4 reduces the ovarian tumor cell response to microtubule-targeting paclitaxel and disrupting claudin-4 with CMP can restore apoptotic response. IMPLICATIONS: These results suggest that claudin-4 expression may provide a biomarker for paclitaxel response and can be a target for new therapeutic strategies to improve response.
Collapse
Affiliation(s)
- Christopher Breed
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado.,Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Douglas A Hicks
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Patricia G Webb
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Carly E Galimanis
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Benjamin G Bitler
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Kian Behbakht
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado.,Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Heidi K Baumgartner
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado. .,Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
18
|
Functionalization of gold-nanoparticles by the Clostridium perfringens enterotoxin C-terminus for tumor cell ablation using the gold nanoparticle-mediated laser perforation technique. Sci Rep 2018; 8:14963. [PMID: 30297847 PMCID: PMC6175838 DOI: 10.1038/s41598-018-33392-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022] Open
Abstract
A recombinant produced C-terminus of the C. perfringens enterotoxin (C-CPE) was conjugated to gold nanoparticles (AuNPs) to produce a C-CPE-AuNP complex (C-CPE-AuNP). By binding to claudins, the C- CPE should allow to target the AuNPs onto the claudin expressing tumor cells for a subsequent cell killing by application of the gold nanoparticle-mediated laser perforation (GNOME-LP) technique. Using qPCR and immunocytochemistry, we identified the human Caco-2, MCF-7 and OE-33 as well as the canine TiHoDMglCarc1305 as tumor cells expressing claudin-3, -4 and -7. Transepithelial electrical resistance (TEER) measurements of Caco-2 cell monolayer showed that the recombinant C-CPE bound to the claudins. GNOME-LP at a laser fluence of 60 mJ/cm2 and a scanning speed of 0.5 cm/s specifically eliminated more than 75% of claudin expressing human and canine cells treated with C-CPE-AuNP. The same laser fluence did not affect the cells when non-functionalized AuNPs were used. Furthermore, most of the claudin non-expressing cells treated with C-CPE-AuNP were not killed by GNOME-LP. Additionally, application of C-CPE-AuNP to spheroids formed by MCF-7 and OE-33 cells grown in Matrigel reduced spheroid area. The results demonstrate that specific ablation of claudin expressing tumor cells is efficiently increased by activated C-CPE functionalized AuNPs using optical methods.
Collapse
|
19
|
Disassembling a cancer puzzle: Cell junctions and plasma membrane as targets for anticancer therapy. J Control Release 2018; 286:125-136. [PMID: 30030181 DOI: 10.1016/j.jconrel.2018.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023]
Abstract
Despite an enhanced permeability and retention effect typical of many solid tumors, drug penetration is not always sufficient. Possible strategies for the drug delivery improvement are a modification of the tumor cell-to-cell junctions and usage of cell membrane permeabilization proteins. In this review we discuss epithelial cell junctions as targets for a combined anticancer therapy and propose new possible sources of such agents. We suggest considering viral and bacterial pathogens disrupting epithelial layers as plentiful sources of new therapeutic agents for increasing tumor permeability for other effector agents. We also observe the application of pore forming proteins and peptides of different origin for cytoplasmic delivery of anti-cancer agents and consider the main obstacles of their use in vivo.
Collapse
|
20
|
Regulatory players of DNA damage repair mechanisms: Role in Cancer Chemoresistance. Biomed Pharmacother 2017; 93:1238-1245. [PMID: 28738540 DOI: 10.1016/j.biopha.2017.07.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/28/2017] [Accepted: 07/06/2017] [Indexed: 11/20/2022] Open
Abstract
DNA damaging agents are most common in chemotherapeutic molecules that act against cancer. However, cancer cells possess inherent biological features to overcome DNA damages by activating various distinct repair mechanisms and pathways. Importantly, various oncogenes, cancer stem cells (CSCs), hypoxic environment, transcription factors and bystander signaling that are activated in the cancer cells influence DNA repair, thereby effectively repairing the DNA damage. Repaired cancer cells often become more resistance to further therapy and results in disease recurrence. In this review, we summarize how the various signaling pathways in cancer cells regulates DNA repair and induce chemoresistance.
Collapse
|
21
|
Hashimoto Y, Fukasawa M, Kuniyasu H, Yagi K, Kondoh M. Claudin-targeted drug development using anti-claudin monoclonal antibodies to treat hepatitis and cancer. Ann N Y Acad Sci 2017; 1397:5-16. [PMID: 28415141 DOI: 10.1111/nyas.13337] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 12/26/2022]
Abstract
The 27-member family of tetraspan membrane proteins known as claudins (CLDNs) is a major component of tight junctions. A series of studies elucidating the relationship between CLDNs and various pathological conditions has provided new insights into drug development. For instance, CLDN-1 may be a potent target for epidermal absorption of drugs and for treating hepatitis C virus (HCV) infection. CLDN-4 may be a target for treating cancer. Because CLDNs are also expressed in various normal tissues, safety and efficacy evaluations are critical for translational research. We previously developed several anti-CLDN antibodies and have established proof of concept for CLDN-targeted drug development using these reagents. Here, we provide an overview of CLDN-1 as a target for improving epidermal drug absorption and preventing HCV infection and of CLDN-4 as a target for anticancer therapeutics.
Collapse
Affiliation(s)
- Yosuke Hashimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | - Kiyohito Yagi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
22
|
Tabariès S, Siegel PM. The role of claudins in cancer metastasis. Oncogene 2017; 36:1176-1190. [PMID: 27524421 DOI: 10.1038/onc.2016.289] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 01/24/2023]
Abstract
TJs are large intercellular adhesion complexes that maintain cell polarity in normal epithelia and endothelia. During the metastatic process, TJs must be 'loosened' or dismantled in cancer cells to enable migration and dissemination. Diminished TJ integrity must also occur within endothelial cells to allow intravasation and extravasation of cancer cells across endothelial barriers. Claudins are critical components of TJs, forming homo- and heteromeric interactions between the adjacent cells, which have been implicated as key modulators of carcinogenesis and metastasis. Numerous epithelial-derived cancers display altered claudin expression patterns and certain claudins can now be used as biomarkers to predict patient prognosis. Moreover, claudins have been functionally implicated in numerous steps of the metastatic cascade. The distinct roles played by claudins during the cancer progression to metastatic disease are just starting to be elucidated. A more complete understanding of the mechanisms through which claudins augment cancer metastasis is required to develop new therapeutic agents against this family of proteins. In this review, we will summarize the relationship between the claudin expression and clinical outcomes in diverse cancers, discuss tumor intrinisic roles through which claudins regulate metastasis and explore claudin-mediated functions within stromal cells that influence the metastatic process. Finally, we will consider possible strategies for targeting claudins that have the potential to improve the management of metastatic cancer.
Collapse
Affiliation(s)
- S Tabariès
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | - P M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
23
|
Longitudinal Claudin Gene Expression Analyses in Canine Mammary Tissues and Thereof Derived Primary Cultures and Cell Lines. Int J Mol Sci 2016; 17:ijms17101655. [PMID: 27690019 PMCID: PMC5085688 DOI: 10.3390/ijms17101655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 02/08/2023] Open
Abstract
Human and canine mammary tumours show partial claudin expression deregulations. Further, claudins have been used for directed therapeutic approaches. However, the development of claudin targeting approaches requires stable claudin expressing cell lines. This study reports the establishment and characterisation of canine mammary tissue derived cell lines, analysing longitudinally the claudin-1, -3, -4 and -7 expressions in original tissue samples, primary cultures and developed cell lines. Primary cultures were derived from 17 canine mammary tissues: healthy, lobular hyperplasia, simple adenoma, complex adenoma, simple tubular carcinoma, complex carcinoma, carcinoma arising in a benign mixed tumour and benign mixed tissue. Cultivation was performed, if possible, until passage 30. Claudin mRNA and protein expressions were analysed by PCR, QuantiGene Plex Assay, immunocytochemistry and immunofluorescence. Further, cytokeratin expression was analysed immunocytochemically. Cultivation resulted in 11 established cell lines, eight showing epithelial character. In five of the early passages the claudin expressions decreased compared to the original tissues. In general, claudin expressions were diminished during cultivation. Three cell lines kept longitudinally claudin, as well as epithelial marker expressions, representing valuable tools for the development of claudin targeted anti-tumour therapies.
Collapse
|
24
|
Bacterial toxin's DNA vaccine serves as a strategy for the treatment of cancer, infectious and autoimmune diseases. Microb Pathog 2016; 100:184-194. [PMID: 27671283 DOI: 10.1016/j.micpath.2016.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/18/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
DNA vaccination -a third generation vaccine-is a modern approach to stimulate humoral and cellular responses against different diseases such as infectious diseases, cancer and autoimmunity. These vaccines are composed of a gene that encodes sequences of a desired protein under control of a proper (eukaryotic or viral) promoter. Immune response following DNA vaccination is influenced by the route and the dose of injection. In addition, antigen presentation following DNA administration has three different mechanisms including antigen presentation by transfected myocytes, transfection of professional antigen presenting cells (APCs) and cross priming. Recently, it has been shown that bacterial toxins and their components can stimulate and enhance immune responses in experimental models. A study demonstrated that DNA fusion vaccine encoding the first domain (DOM) of the Fragment C (FrC) of tetanus neurotoxin (CTN) coupled with tumor antigen sequences is highly immunogenic against colon carcinoma. DNA toxin vaccines against infectious and autoimmune diseases are less studied until now. All in all, this novel approach has shown encouraging results in animal models, but it has to go through adequate clinical trials to ensure its effectiveness in human. However, it has been proven that these vaccines are safe, multifaceted and simple and can be used widely in organisms which may be of advantage to public health in the near future. This paper outlines the mechanism of the action of DNA vaccines and their possible application for targeting infectious diseases, cancer and autoimmunity.
Collapse
|
25
|
Clostridium perfringens enterotoxin as a potential drug for intravesical treatment of bladder cancer. Biochem Biophys Res Commun 2016; 478:887-92. [PMID: 27520378 DOI: 10.1016/j.bbrc.2016.08.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 01/25/2023]
Abstract
The current intravesical treatment of bladder cancer (BC) is limited to a few chemotherapeutics that show imperfect effectiveness and are associated with some serious complications. Thus, there is an urgent need for alternative therapies, especially for patients with high-risk non-muscle invasive (NMIBC). Clostridium perfringens enterotoxin (CPE), cytolytic protein binds to its receptors: claudin 3 and 4 that are expressed in epithelial cells. This binding is followed by rapid cell death. Claudin 4 is present in several epithelial tissue including bladder urothelium and its expression is elevated in some forms of BC. In addition to directly targeting BC cells, binding of CPE to claudins increases urothelium permeability that creates conditions for better accession of the tumor. Therefore, we evaluated CPE as a candidate for intravesical treatment of BC using a cellular model. We examined cytotoxicity of CPE against BC cells lines and 3D cultures of cells derived from surgical samples. To better elucidate cellular mechanisms, activated by CPE and to consider the use of CPE non-toxic fragment (C-CPE) for combination treatment with other drugs we synthesized C-CPE, compared its cytotoxic activity with CPE and examined claudin 4 expression and intracellular localization after C-CPE treatment. CPE induced cell death after 1 h in low aggressive RT4 cells, in moderately aggressive 5637 cells and in the primary 3D cultures of BC cells derived from NMIBC. Conversely, non-transformed urothelial cells and cells derived from highly aggressive tumor (T24) survived this treatment. The reason for this resistance to CPE might be the lower expression of CLDNs or their inaccessibility for CPE in these cells. C-CPE treatment for 48 h did not affect cell viability in tested cells, but declined expression of CLDN4 in RT4 cells. C-CPE increased sensitivity of RT4 cells to Mitommycin C and Dasatinib. To better understand mechanisms of this effect we examined expression and phosphorylation status of EphA2 and Src after C-CPE treatment and found changes in expression and phosphorylated status of these regulatory molecules. These observations show that after additional preclinical studies CPE and C-CPE in combinations with other drugs can be considered as a potential modalities for intravesical treatment of BC because of its ability to effectively destroy BC cells expressing claudin 4 and low toxicity against normal urothelium.
Collapse
|
26
|
Hashimoto Y, Yagi K, Kondoh M. Roles of the first-generation claudin binder, Clostridium perfringens enterotoxin, in the diagnosis and claudin-targeted treatment of epithelium-derived cancers. Pflugers Arch 2016; 469:45-53. [PMID: 27629072 DOI: 10.1007/s00424-016-1878-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/20/2016] [Accepted: 09/06/2016] [Indexed: 12/11/2022]
Abstract
Given that most malignant tumors are derived from epithelium, developing a strategy for treatment of epithelium-derived cancers (i.e., carcinomas) is a pivotal issue in cancer therapy. Carcinomas, including ovarian, breast, prostate, and pancreatic cancers, are known to overexpress various claudins (CLDNs); in particular, CLDN-3 and -4 are frequently overexpressed in malignant case. The generation of CLDN binders is a key for expanding CLDN-targeted cancer therapy but has been delayed due to the small size of CLDN extracellular domains (approximately 50 amino acids for the first domain and 15 amino acids for the second) and their high homology among species. Interestingly, however, the receptors for Clostridium perfringens enterotoxin (CPE), a foodborne toxin in humans, happen to be identical to CLDN-3 and -4. Thus, the first CLDN binder, CPE, has provided us CLDN-targeted cancer therapy from a concept into a potential reality. In this review, we describe roles of CPE technology in cancer therapy and discuss future directions in the CLDN-targeting concept-to-therapy process.
Collapse
Affiliation(s)
- Yosuke Hashimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kiyohito Yagi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
27
|
Shrestha A, Uzal FA, McClane BA. The interaction of Clostridium perfringens enterotoxin with receptor claudins. Anaerobe 2016; 41:18-26. [PMID: 27090847 DOI: 10.1016/j.anaerobe.2016.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/07/2016] [Accepted: 04/15/2016] [Indexed: 01/30/2023]
Abstract
Clostridium perfringens enterotoxin (CPE) has significant medical importance due to its involvement in several common human gastrointestinal diseases. This 35 kDa single polypeptide toxin consists of two domains: a C-terminal domain involved in receptor binding and an N-terminal domain involved in oligomerization, membrane insertion and pore formation. The action of CPE starts with its binding to receptors, which include certain members of the claudin tight junction protein family; bound CPE then forms a series of complexes, one of which is a pore that causes the calcium influx responsible for host cell death. Recent studies have revealed that CPE binding to claudin receptors involves interactions between the C-terminal CPE domain and both the 1st and 2nd extracellular loops (ECL-1 and ECL-2) of claudin receptors. Of particular importance for this binding is the docking of ECL-2 into a pocket present in the C-terminal domain of the toxin. This increased understanding of CPE interactions with claudin receptors is now fostering the development of receptor decoy therapeutics for CPE-mediated gastrointestinal disease, reagents for cancer therapy/diagnoses and enhancers of drug delivery.
Collapse
Affiliation(s)
- Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory, San Bernadino Branch, School of Veterinary Medicine, University of California-Davis, USA
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Clostridium perfringens Enterotoxin: Action, Genetics, and Translational Applications. Toxins (Basel) 2016; 8:toxins8030073. [PMID: 26999202 PMCID: PMC4810218 DOI: 10.3390/toxins8030073] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 12/21/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE) is responsible for causing the gastrointestinal symptoms of several C. perfringens food- and nonfood-borne human gastrointestinal diseases. The enterotoxin gene (cpe) is located on either the chromosome (for most C. perfringens type A food poisoning strains) or large conjugative plasmids (for the remaining type A food poisoning and most, if not all, other CPE-producing strains). In all CPE-positive strains, the cpe gene is strongly associated with insertion sequences that may help to assist its mobilization and spread. During disease, CPE is produced when C. perfringens sporulates in the intestines, a process involving several sporulation-specific alternative sigma factors. The action of CPE starts with its binding to claudin receptors to form a small complex; those small complexes then oligomerize to create a hexameric prepore on the membrane surface. Beta hairpin loops from the CPE molecules in the prepore assemble into a beta barrel that inserts into the membrane to form an active pore that enhances calcium influx, causing cell death. This cell death results in intestinal damage that causes fluid and electrolyte loss. CPE is now being explored for translational applications including cancer therapy/diagnosis, drug delivery, and vaccination.
Collapse
|
29
|
Kono T, Kondoh M, Kyuno D, Ito T, Kimura Y, Imamura M, Kohno T, Konno T, Furuhata T, Sawada N, Hirata K, Kojima T. Claudin-4 binder C-CPE 194 enhances effects of anticancer agents on pancreatic cancer cell lines via a MAPK pathway. Pharmacol Res Perspect 2015; 3:e00196. [PMID: 27022469 PMCID: PMC4777248 DOI: 10.1002/prp2.196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 09/28/2015] [Accepted: 10/07/2015] [Indexed: 12/14/2022] Open
Abstract
The C‐terminal fragment of Clostridium perfringens enterotoxin (C‐CPE) modulates the tight junction protein claudin and disrupts the tight junctional barrier. It also can enhance the effectiveness of anticancer agents. However, the detailed mechanisms of the effects of C‐CPE remain unclear in both normal and cancerous cells. The C‐CPE mutant called C‐CPE 194 binds only to claudin‐4, but the C‐CPE 194 mutant called C‐CPE m19 binds not only to claudin‐4 but also to claudin‐1. In the present study, to investigate the mechanisms of the effects of C‐CPE on claudin expression, the tight junctional functions and the cytotoxicity of anticancer agents, human pancreatic cancer cells, and normal human pancreatic duct epithelial cells (HPDEs) were treated with C‐CPE 194 and C‐CPE m19. In well‐differentiated cells of the pancreatic cancer cell line HPAC, C‐CPE 194 and C‐CPE m19 disrupted both the barrier and fence functions without changes in expression of claudin‐1 and ‐4, together with an increase of MAPK phosphorylation. C‐CPE 194, but not C‐CPE m19, enhanced the cytotoxicity of the anticancer agents gemcitabine and S‐1. In poorly differentiated pancreatic cancer cell line PANC‐1, C‐CPE 194, but not C‐CPE m19, decreased claudin‐4 expression and enhanced MAPK activity and the cytotoxicity of the anticancer agents. In normal HPDEs, C‐CPE 194 and C‐CPE m19 decreased claudin‐4 expression and enhanced the MAPK activity, whereas they did not affect the cytotoxicity of the anticancer agents. Our findings suggest that the claudin‐4 binder C‐CPE 194 enhances effects of anticancer agents on pancreatic cancer cell lines via a MAPK pathway.
Collapse
Affiliation(s)
- Tsuyoshi Kono
- Department of Surgery Sapporo Medical University School of Medicine Sapporo Japan; Department of Cell Science Research Institute for Frontier Medicine Sapporo Medical University School of Medicine Sapporo Japan
| | - Masuo Kondoh
- Laboratory of Bio-Functional Molecular Chemistry Graduate School of Pharmaceutical Sciences Osaka University Suita Japan
| | - Daisuke Kyuno
- Department of Surgery Sapporo Medical University School of Medicine Sapporo Japan
| | - Tatsuya Ito
- Department of Surgery Sapporo Medical University School of Medicine Sapporo Japan
| | - Yasutoshi Kimura
- Department of Surgery Sapporo Medical University School of Medicine Sapporo Japan
| | - Masafumi Imamura
- Department of Surgery Sapporo Medical University School of Medicine Sapporo Japan
| | - Takayuki Kohno
- Department of Cell Science Research Institute for Frontier Medicine Sapporo Medical University School of Medicine Sapporo Japan
| | - Takumi Konno
- Department of Cell Science Research Institute for Frontier Medicine Sapporo Medical University School of Medicine Sapporo Japan
| | - Tomohisa Furuhata
- Department of Surgery Sapporo Medical University School of Medicine Sapporo Japan
| | - Norimasa Sawada
- Department of Pathology Sapporo Medical University School of Medicine Sapporo Japan
| | - Koichi Hirata
- Department of Surgery Sapporo Medical University School of Medicine Sapporo Japan
| | - Takashi Kojima
- Department of Cell Science Research Institute for Frontier Medicine Sapporo Medical University School of Medicine Sapporo Japan
| |
Collapse
|
30
|
Kojima T, Kondoh M, Keira T, Takano KI, Kakuki T, Kaneko Y, Miyata R, Nomura K, Obata K, Kohno T, Konno T, Sawada N, Himi T. Claudin-binder C-CPE mutants enhance permeability of insulin across human nasal epithelial cells. Drug Deliv 2015; 23:2703-2710. [PMID: 26036653 DOI: 10.3109/10717544.2015.1050530] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Intranasal insulin administration has therapeutic potential for Alzheimer's disease and in intranasal administration across the nasal mucosa, the paracellular pathway regulated by tight junctions is important. The C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) binds the tight junction protein claudin and disrupts the tight junctional barrier without a cytotoxic effect. The C-CPE mutant called C-CPE 194 binds only to claudin-4, whereas the C-CPE 194 mutant called C-CPE m19 binds not only to claudin-4 but also to claudin-1. METHODS In the present study, to investigate the effects of C-CPE mutants on the tight junctional functions of human nasal epithelial cells (HNECs) and on the permeability of human recombinant insulin across the cells, HNECs were treated with C-CPE 194 and C-CPE m19. RESULTS C-CPE 194 and C-CPE m19 disrupted the barrier and fence functions without changes in expression of claudin-1, -4, -7, and occludin or cytotoxicity, whereas they transiently increased the activity of ERK1/2 phosphorylation. The disruption of the barrier function caused by C-CPE 194 and C-CPE m19 was prevented by pretreatment with the MAPKK inhibitor U0126. Furthermore, C-CPE 194 and C-CPE m19 significantly enhanced the permeability of human recombinant insulin across HNECs and the permeability was also inhibited by U0126. CONCLUSION These findings suggest that C-CPE mutants 194 and m19 can regulate the permeability of insulin across HNECs via the MAPK pathway and may play a crucial role in therapy for the diseases such as Alzheimer's disease via the direct intranasal insulin administration.
Collapse
Affiliation(s)
- Takashi Kojima
- a Department of Cell Science , Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Masuo Kondoh
- b Laboratory of Bio-Functional Molecular Chemistry , Graduate School of Pharmaceutical Sciences, Osaka University , Suita , Japan
| | | | | | - Takuya Kakuki
- a Department of Cell Science , Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine , Sapporo , Japan.,c Department of Otolaryngology and
| | - Yakuto Kaneko
- a Department of Cell Science , Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine , Sapporo , Japan.,c Department of Otolaryngology and
| | | | | | | | - Takayuki Kohno
- a Department of Cell Science , Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Takumi Konno
- a Department of Cell Science , Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Norimasa Sawada
- d Department of Pathology , Sapporo Medical University School of Medicine , Sapporo , Japan
| | | |
Collapse
|
31
|
Clostridium perfringens enterotoxin (CPE) and CPE-binding domain (c-CPE) for the detection and treatment of gynecologic cancers. Toxins (Basel) 2015; 7:1116-25. [PMID: 25835384 PMCID: PMC4417958 DOI: 10.3390/toxins7041116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/17/2015] [Accepted: 03/23/2015] [Indexed: 12/24/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE) is a three-domain polypeptide, which binds to Claudin-3 and Claudin-4 with high affinity. Because these receptors are highly differentially expressed in many human tumors, claudin-3 and claudin-4 may provide an efficient molecular tool to specifically identify and target biologically aggressive human cancer cells for CPE-specific binding and cytolysis. In this review we will discuss these surface proteins as targets for the detection and treatment of chemotherapy-resistant gynecologic malignancies overexpressing claudin-3 and -4 using CPE-based theranostic agents. We will also discuss the use of fluorescent c-CPE peptide in the operative setting for real time detection of micro-metastatic tumors during surgery and review the potential role of CPE in other medical applications.
Collapse
|
32
|
Li X, Iida M, Tada M, Watari A, Kawahigashi Y, Kimura Y, Yamashita T, Ishii-Watabe A, Uno T, Fukasawa M, Kuniyasu H, Yagi K, Kondoh M. Development of an anti-claudin-3 and -4 bispecific monoclonal antibody for cancer diagnosis and therapy. J Pharmacol Exp Ther 2014; 351:206-13. [PMID: 25118216 DOI: 10.1124/jpet.114.216911] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Most malignant tumors are derived from epithelium, and claudin (CLDN)-3 and CLDN-4 are frequently overexpressed in such tumors. Although antibodies have potential in cancer diagnostics and therapy, development of antibodies against CLDNs has been difficult because the extracellular domains of CLDNs are too small and there is high homology among human, rat, and mouse sequences. Here, we created a monoclonal antibody that recognizes human CLDN-3 and CLDN-4 by immunizing rats with a plasmid vector encoding human CLDN-4. A hybridoma clone that produced a rat monoclonal antibody recognizing both CLDN-3 and -4 (clone 5A5) was obtained from a hybridoma screen by using CLDN-3- and -4-expressing cells; 5A5 did not bind to CLDN-1-, -2-, -5-, -6-, -7-, or -9-expressing cells. Fluorescence-conjugated 5A5 injected into xenograft mice bearing human cancer MKN74 or LoVo cells could visualize the tumor cells. The human-rat chimeric IgG1 monoclonal antibody (xi5A5) activated FcγRIIIa in the presence of CLDN-3- or -4-expressing cells, indicating that xi5A5 may exert antibody-dependent cellular cytotoxicity. Administration of xi5A5 attenuated tumor growth in xenograft mice bearing MKN74 or LoVo cells. These results suggest that 5A5 shows promise in the development of a diagnostic and therapeutic antibody for cancers.
Collapse
Affiliation(s)
- Xiangru Li
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| | - Manami Iida
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| | - Minoru Tada
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| | - Akihiro Watari
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| | - Yumi Kawahigashi
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| | - Yuka Kimura
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| | - Taku Yamashita
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| | - Akiko Ishii-Watabe
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| | - Tadayuki Uno
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| | - Masayoshi Fukasawa
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| | - Hiroki Kuniyasu
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| | - Kiyohito Yagi
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| | - Masuo Kondoh
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| |
Collapse
|
33
|
Kyuno D, Yamaguchi H, Ito T, Kono T, Kimura Y, Imamura M, Konno T, Hirata K, Sawada N, Kojima T. Targeting tight junctions during epithelial to mesenchymal transition in human pancreatic cancer. World J Gastroenterol 2014; 20:10813-10824. [PMID: 25152584 PMCID: PMC4138461 DOI: 10.3748/wjg.v20.i31.10813] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 05/05/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer continues to be a leading cause of cancer-related death worldwide and there is an urgent need to develop novel diagnostic and therapeutic strategies to reduce the mortality of patients with this disease. In pancreatic cancer, some tight junction proteins, including claudins, are abnormally regulated and therefore are promising molecular targets for diagnosis, prognosis and therapy. Claudin-4 and -18 are overexpressed in human pancreatic cancer and its precursor lesions. Claudin-4 is a high affinity receptor of Clostridium perfringens enterotoxin (CPE). The cytotoxic effects of CPE and monoclonal antibodies against claudin-4 are useful as novel therapeutic tools for pancreatic cancer. Claudin-18 could be a putative marker and therapeutic target with prognostic implications for patients with pancreatic cancer. Claudin-1, -7, tricellulin and marvelD3 are involved in epithelial to mesenchymal transition (EMT) of pancreatic cancer cells and thus might be useful as biomarkers during disease. Protein kinase C is closely related to EMT of pancreatic cancer and regulates tight junctions of normal human pancreatic duct epithelial cells and the cancer cells. This review focuses on the regulation of tight junctions via protein kinase C during EMT in human pancreatic cancer for the purpose of developing new diagnostic and therapeutic modalities for pancreatic cancer.
Collapse
|
34
|
Tscheik C, Blasig IE, Winkler L. Trends in drug delivery through tissue barriers containing tight junctions. Tissue Barriers 2014; 1:e24565. [PMID: 24665392 PMCID: PMC3887097 DOI: 10.4161/tisb.24565] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 11/22/2022] Open
Abstract
A limitation in the uptake of many drugs is the restricted permeation through tissue barriers. There are two general ways to cross barriers formed by cell layers: by transcytosis or by diffusion through the intercellular space. In the latter, tight junctions (TJs) play the decisive role in the regulation of the barrier permeability. Thus, transient modulation of TJs is a potent strategy to improve drug delivery. There have been extensive studies on surfactant-like absorption enhancers. One of the most effective enhancers found is sodium caprate. However, this modulates TJs in an unspecific fashion. A novel approach would be the specific modulation of TJ-associated marvel proteins and claudins, which are the main structural components of the TJs. Recent studies have identified synthetic peptidomimetics and RNA interference techniques to downregulate the expression of targeted TJ proteins. This review summarizes current progress and discusses the impact on TJs' barrier function.
Collapse
Affiliation(s)
| | - Ingolf E Blasig
- Leibniz Institut für Molekulare Pharmakologie; Berlin-Buch, Germany
| | - Lars Winkler
- Leibniz Institut für Molekulare Pharmakologie; Berlin-Buch, Germany
| |
Collapse
|
35
|
English DP, Santin AD. Claudins overexpression in ovarian cancer: potential targets for Clostridium Perfringens Enterotoxin (CPE) based diagnosis and therapy. Int J Mol Sci 2013; 14:10412-37. [PMID: 23685873 PMCID: PMC3676847 DOI: 10.3390/ijms140510412] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/26/2013] [Accepted: 04/27/2013] [Indexed: 02/06/2023] Open
Abstract
Claudins are a family of tight junction proteins regulating paracellular permeability and cell polarity with different patterns of expression in benign and malignant human tissues. There are approximately 27 members of the claudin family identified to date with varying cell and tissue-specific expression. Claudins-3, -4 and -7 represent the most highly differentially expressed claudins in ovarian cancer. While their exact role in ovarian tumors is still being elucidated, these proteins are thought to be critical for ovarian cancer cell invasion/dissemination and resistance to chemotherapy. Claudin-3 and claudin-4 are the natural receptors for the Clostridium perfringens enterotoxin (CPE), a potent cytolytic toxin. These surface proteins may therefore represent attractive targets for the detection and treatment of chemotherapy-resistant ovarian cancer and other aggressive solid tumors overexpressing claudin-3 and -4 using CPE-based theranostic agents.
Collapse
Affiliation(s)
- Diana P. English
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA; E-Mail:
| | - Alessandro D. Santin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA; E-Mail:
| |
Collapse
|
36
|
Delfino KR, Rodriguez-Zas SL. Transcription factor-microRNA-target gene networks associated with ovarian cancer survival and recurrence. PLoS One 2013; 8:e58608. [PMID: 23554906 PMCID: PMC3595291 DOI: 10.1371/journal.pone.0058608] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/06/2013] [Indexed: 12/24/2022] Open
Abstract
The identification of reliable transcriptome biomarkers requires the simultaneous consideration of regulatory and target elements including microRNAs (miRNAs), transcription factors (TFs), and target genes. A novel approach that integrates multivariate survival analysis, feature selection, and regulatory network visualization was used to identify reliable biomarkers of ovarian cancer survival and recurrence. Expression profiles of 799 miRNAs, 17,814 TFs and target genes and cohort clinical records on 272 patients diagnosed with ovarian cancer were simultaneously considered and results were validated on an independent group of 146 patients. Three miRNAs (hsa-miR-16, hsa-miR-22*, and ebv-miR-BHRF1-2*) were associated with both ovarian cancer survival and recurrence and 27 miRNAs were associated with either one hazard. Two miRNAs (hsa-miR-521 and hsa-miR-497) were cohort-dependent, while 28 were cohort-independent. This study confirmed 19 miRNAs previously associated with ovarian cancer and identified two miRNAs that have previously been associated with other cancer types. In total, the expression of 838 and 734 target genes and 12 and eight TFs were associated (FDR-adjusted P-value <0.05) with ovarian cancer survival and recurrence, respectively. Functional analysis highlighted the association between cellular and nucleotide metabolic processes and ovarian cancer. The more direct connections and higher centrality of the miRNAs, TFs and target genes in the survival network studied suggest that network-based approaches to prognosticate or predict ovarian cancer survival may be more effective than those for ovarian cancer recurrence. This study demonstrated the feasibility to infer reliable miRNA-TF-target gene networks associated with survival and recurrence of ovarian cancer based on the simultaneous analysis of co-expression profiles and consideration of the clinical characteristics of the patients.
Collapse
MESH Headings
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Cohort Studies
- Female
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Genes, Neoplasm
- Humans
- MicroRNAs
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/mortality
- Neoplasm Recurrence, Local/pathology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/mortality
- Ovarian Neoplasms/pathology
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Survival Rate
Collapse
Affiliation(s)
- Kristin R. Delfino
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
- Department of Statistics, University of Illinois, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
37
|
Pan XY, Li X, Che YC, Li HY, Li X, Zhang Y, Yang X. Overexpression of claudin-4 may be involved in endometrial tumorigenesis. Oncol Lett 2013; 5:1422-1426. [PMID: 23599806 PMCID: PMC3628940 DOI: 10.3892/ol.2013.1198] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 02/07/2013] [Indexed: 01/11/2023] Open
Abstract
To clarify the role of claudin-4 in endometrial tumorigenesis and to explore whether claudin-4 could be a potentially useful agent in the treatment of endometrial carcinoma, the expression of claudin-4 in endometrial carcinoma was investigated. The relationship between therapy with anti-neoplastic agents and the expression of claudin-4 was also analyzed using an endometrial carcinoma xenograft model. The expression of claudin-4 in endometrial endometrioid adenocarcinoma (EEC) and normal human endometrial tissue was determined using immunohistochemistry and real-time PCR. Ninety female BALB/c nu/nu mice were transplanted with Ishikawa endometrial cancer cells. The mice were divided into three groups with different intraperitoneal treatments: cisplatin, paclitaxel or saline solution. After the observation period tumors were extracted and stained with monoclonal antibody against claudin-4. The mRNA expression of claudin-4 was also detected using real-time PCR. Expression of claudin-4 was significantly increased at both protein and mRNA levels in the EEC group compared with the group of normal cyclic endometrium. In the study of Ishikawa xenografts, no significant changes in tumor volume and claudin-4 expression were shown in the paclitaxel group compared with the control group. A significant reduction of tumor growth and a significant decrease in claudin-4 expression were observed in the cisplatin group. These results demonstrate that claudin-4 is strongly expressed in EEC. Claudin-4 is a useful biomarker in the treatment of patients with endometrial carcinoma.
Collapse
Affiliation(s)
- Xiao-Yu Pan
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029
| | | | | | | | | | | | | |
Collapse
|
38
|
Regulation of Tight Junctions for Therapeutic Advantages. CANCER METASTASIS - BIOLOGY AND TREATMENT 2013. [DOI: 10.1007/978-94-007-6028-8_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
39
|
Abstract
INTRODUCTION Pancreatic cancer is one of the most malignant human diseases and there is an urgent need to develop novel diagnostic and therapeutic strategies. Claudin-4, overexpressed in pancreatic cancer and its precursor lesions, is a receptor for Clostridium perfringens enterotoxin (CPE). The cytotoxic effects of CPE and monoclonal antibodies against claudin-4 are useful as novel therapeutic tools for pancreatic cancer. AREAS COVERED This review describes and discusses the studies targeting claudin-4 in normal human pancreatic duct epithelial (HPDE) cells and cancer cells. EXPERT OPINION Claudin-4 is in part regulated via a PKCα signal transduction pathway in pancreatic cancer cell lines. PKCα inhibitors may represent potential therapeutic agents against human pancreatic cancer cells by the use of CPE cytotoxicity via claudin-4. The COOH-terminal half fragment of CPE (C-CPE) enhances the effectiveness of clinically relevant chemotherapies and can be used as a carrier for drugs and other bacterial toxins to claudin-4-positive cancer cells. hTERT-HPDE cells, in which the human telomerase reverse transcriptase (hTERT) gene is introduced into normal HPDE cells, may be a useful model of normal HPDE cells not only for physiological regulation of claudin-4 expression but also for developing safer and more effective therapeutic methods targeting claudin-4 in pancreatic cancer.
Collapse
Affiliation(s)
- Takashi Kojima
- Sapporo Medical University School of Medicine, Department of Pathology, Sapporo, Japan.
| | | | | |
Collapse
|
40
|
Davidson B, Tropé CG, Reich R. Epithelial-mesenchymal transition in ovarian carcinoma. Front Oncol 2012; 2:33. [PMID: 22655269 PMCID: PMC3356037 DOI: 10.3389/fonc.2012.00033] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 03/21/2012] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy, with the majority of patients dying within 5 years of diagnosis. This poor survival of patients diagnosed with this malignancy is attributed to diagnosis at advanced stage, when the tumor has metastasized, and to chemotherapy resistance, either primary or developing along tumor progression. However, ovarian carcinomas, constituting the vast majority of ovarian cancers, additionally have unique biology, one aspect of which is the ability to co-express epithelial and mesenchymal determinants. epithelial–mesenchymal transition (EMT), a physiological process by which mesenchymal cells are formed and migrate to target organs during embryogenesis, is involved in cancer cell invasion and metastasis. However, these changes do not fully occur in ovarian carcinoma, and are even reversed in tumor cells present in malignant peritoneal and pleural effusions. This review summarizes current knowledge in this area, including the characteristics of EMT related to adhesion, transcriptional regulation and chemoresistance, and their clinical relevance, as well as the recently observed regulation of EMT by microRNA.
Collapse
Affiliation(s)
- Ben Davidson
- Division of Pathology, Norwegian Radium Hospital, Oslo University Hospital Oslo, Norway
| | | | | |
Collapse
|
41
|
Neesse A, Griesmann H, Gress TM, Michl P. Claudin-4 as therapeutic target in cancer. Arch Biochem Biophys 2012; 524:64-70. [PMID: 22286027 DOI: 10.1016/j.abb.2012.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/19/2011] [Accepted: 01/10/2012] [Indexed: 12/23/2022]
Abstract
BACKGROUND Intercellular junctional complexes such as adherens junctions and tight junctions are critical regulators of cellular polarity, paracellular permeability and metabolic and structural integrity of cellular networks. Abundant expression analysis data have yielded insights into the complex pattern of differentially expressed cell-adhesion proteins in epithelial cancers and provide a useful platform for functional, preclinical and clinical evaluation of novel targets. SCOPE OF REVIEW This review will focus on the role of claudin-4, an integral constituent of tight junctions, in the pathophysiology of epithelial malignancies with particular focus pancreatic cancer, and its potential applicability for prognostic, diagnostic and therapeutic approaches. MAJOR CONCLUSIONS Claudin-4 expression is widely dysregulated in epithelial malignancies and in a number of premalignant precursor lesions. Although the functional implications are only starting to unravel, claudin-4 seems to play an important role in tumour cell invasion and metastasis, and its dual role as receptor of Clostridium perfringens enterotoxin (CPE) opens exciting avenues for molecular targeted approaches. GENERAL SIGNIFICANCE Claudin-4 constitutes a promising molecular marker for prognosis, diagnosis and therapy of epithelial malignancies.
Collapse
Affiliation(s)
- A Neesse
- Department of Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
| | | | | | | |
Collapse
|
42
|
Merikallio H, Pääkkö P, Harju T, Soini Y. Claudins 10 and 18 are predominantly expressed in lung adenocarcinomas and in tumors of nonsmokers. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2011; 4:667-673. [PMID: 22076167 PMCID: PMC3209607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 09/15/2011] [Indexed: 05/31/2023]
Abstract
AIMS We investigated the expression of claudins 18 and 10 in a large set of primary lung carcinomas. METHODS AND RESULTS Immunohistochemical expression of claudin 18 was seen in 12.7 % and claudin 10 in 12.5 % of lung carcinomas. Their expression significantly associated with each other (p<0.001). The expression of claudin 18 and 10 was most prominent in lung adenocarcinomas which displayed positivity in 21.2% and 23.4 % of cases. Female patients had more often claudin 18 and 10 positive tumors, also separately in adenocarcinomas. Interestingly, claudin 10 (p=0.036) and claudin 18 (p=0.001) were more common in tumours of nonsmokers. In adenocarcinomas claudin 18 predicted a better survival (p=0.032). In Cox multivariate analysis, claudin 18 had an independent prognostic value (p=0.027). CONCLUSION The results show that both claudins are most commonly expressed in lung adenocarcinomas and they are more occasionally detected in other histological tumour types. Curiously, female patients and non-smokers express these claudins more commonly suggesting that they may play a part in the carcinogenesis of tobacco unrelated carcinoma. Claudin 18 associated with a better survival in lung adenocarcinoma and had an independent prognostic value and may thus be used in the evaluation of patient prognosis.
Collapse
Affiliation(s)
- Heta Merikallio
- Department of Internal Medicine, Respiratory Research Unit, Clinical Research Center, Oulu University HospitalOulu, Finland
- Institute of Clinical Medicine, Department of Internal Medicine, Respiratory Unit, Centre of Excellence in Research, University of OuluOulu, Finland
| | - Paavo Pääkkö
- Department of Pathology, Oulu University HospitalOulu, Finland
| | - Terttu Harju
- Department of Internal Medicine, Respiratory Research Unit, Clinical Research Center, Oulu University HospitalOulu, Finland
- Institute of Clinical Medicine, Department of Internal Medicine, Respiratory Unit, Centre of Excellence in Research, University of OuluOulu, Finland
| | - Ylermi Soini
- Institute of Clinical Medicine, Department of Clinical Pathology and Forensic Medicine, University of Eastern FinlandKuopio, Finland; Cancer Center of Eastern Finland
| |
Collapse
|
43
|
Use of Clostridium perfringens Enterotoxin and the Enterotoxin Receptor-Binding Domain (C-CPE) for Cancer Treatment: Opportunities and Challenges. J Toxicol 2011; 2012:981626. [PMID: 21941545 PMCID: PMC3173885 DOI: 10.1155/2012/981626] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 06/06/2011] [Indexed: 11/17/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE) causes the symptoms associated with several common gastrointestinal diseases. CPE is a 35 kDa polypeptide consisting of three structured domains, that is, C-terminal domain I (responsible for receptor binding), domain II (responsible for oligomerization and membrane insertion), and domain III (which may participate in physical changes when the CPE protein inserts into membranes). Native CPE binds to claudin receptors, which are components of the tight junction. The bound toxin then assembles into a hexameric prepore on the membrane surface, prior to the insertion of this oligomer into membranes to form an active pore. The toxin is especially lethal for cells expressing large amounts of claudin-3 or -4, which includes many cancer cells. Initial studies suggest that native CPE has potential usefulness for treating several cancers where claudin CPE receptors are overexpressed. However, some challenges with immunogenicity, toxicity, and (possibly) the development of resistance may need to be overcome. An alternative approach now being explored is to utilize C-CPE, which corresponds approximately to receptor binding domain I, to enhance paracellular permeability and delivery of chemotherapeutic agents against cancer cells. Alternatively, C-CPE fusion proteins may prove superior to use of native CPE for cancer treatment. Finally, C-CPE may have application for other medical treatments, including vaccination or increasing drug absorption. The coming years should witness increasing exploitation of this otherwise formidable toxin.
Collapse
|
44
|
Abstract
Tight junctions are the most apically localized part of the epithelial junctional complex. They regulate the permeability and polarity of cell layers and create compartments in cell membranes. Claudins are structural molecules of tight junctions. There are 27 claudins known, and expression of different claudins is responsible for changes in the electrolyte and solute permeability in cells layers. Studies have shown that claudins and tight junctions also protect multicellular organisms from infections and that some infectious agents may use claudins as targets to invade and weaken the host's defense. In neoplastic diseases, claudin expression may be up- or downregulated. Since their expression is associated with specific tumor types or with specific locations of tumors to a certain degree, they can, in a restricted sense, also be used as tumor markers. However, the regulation of claudin expression is complex involving growth factors and integrins, protein kinases, proto-oncogens and transcription factors. In this review, the significance of claudins is discussed in lung disease and development.
Collapse
Affiliation(s)
- Ylermi Soini
- Department of Pathology and Forensic Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Cancer Center of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|