1
|
Pozo-Agundo E, Álvarez-González M, Rivera-García I, García-de-la-Fuente V, de Martino A, Tejedor JR, de Vicente JC, Rodrigo JP, García-Pedrero JM, Álvarez-Fernández M. Expression of MASTL (Greatwall) associates with good prognosis and response to radiotherapy in pharyngeal squamous cell carcinoma. Transl Oncol 2025; 58:102417. [PMID: 40398127 DOI: 10.1016/j.tranon.2025.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 04/16/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are highly heterogeneous in both disease progression and treatment outcome, with hardly any molecular biomarker in clinical practice. Thus, the aim of this study was to investigate the potential prognostic and predictive value of MASTL/Greatwall, a mitotic kinase also involved in PI3K-mTOR signaling and the DNA damage response, in HNSCC. MASTL expression was evaluated by immunohistochemistry in a cohort of 346 surgically treated HPV-negative pharyngeal and laryngeal squamous cell carcinoma patients, as well as in pre-treatment biopsies from a separate cohort of 64 patients treated with induction chemotherapy (ICT). In addition, MASTL mRNA expression was analyzed in 135 patients from The Cancer Genome Atlas (TCGA) database. High MASTL expression was significantly associated with improved disease-specific survival (DSS) (P = 0.029), specifically in well-differentiated pharyngeal squamous cell carcinoma (PSCC) tumors (P = 0.002). Notably, this association was restricted to patients who received adjuvant radiotherapy (RT) (P = 0.009). Consistently, a similar correlation was found at the mRNA level in PSCC tumors from the TCGA dataset. Moreover, the combined expression of MASTL and p21 was significantly associated with better DSS, specifically among patients receiving RT (P = 0.014). Multivariate Cox regression analysis further confirmed that high MASTL expression was independently associated with favorable prognosis in patients who received post-operative RT (HR= 0.65; 95 % CI: 0.45-0.94; P = 0.021). Collectively, these findings unprecedentedly revealed the association between high MASTL expression and favorable outcome in advanced HPV-negative PSCC, in marked contrast to previous reports in other tumor types. Importantly, MASTL expression emerges as an independent predictor of good prognosis in RT-treated PSCC patients.
Collapse
Affiliation(s)
- Esperanza Pozo-Agundo
- Health Research Institute of Asturias (ISPA), Oviedo, Spain; University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Spanish Biomedical Research Network in Cancer (CIBERONC), ISCIII, Madrid, Spain
| | - Miguel Álvarez-González
- Health Research Institute of Asturias (ISPA), Oviedo, Spain; University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Spanish Biomedical Research Network in Cancer (CIBERONC), ISCIII, Madrid, Spain
| | - Israel Rivera-García
- Health Research Institute of Asturias (ISPA), Oviedo, Spain; University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Vanessa García-de-la-Fuente
- Health Research Institute of Asturias (ISPA), Oviedo, Spain; University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Alba de Martino
- Histopathology Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Juan Ramón Tejedor
- Health Research Institute of Asturias (ISPA), Oviedo, Spain; University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Nanomaterials and Nanotechnology Research Centre (CINN-CSIC), Principality of Asturias, Oviedo, Spain
| | - Juan Carlos de Vicente
- Health Research Institute of Asturias (ISPA), Oviedo, Spain; University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Department of Oral and Maxillofacial Surgery, Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Juan P Rodrigo
- Health Research Institute of Asturias (ISPA), Oviedo, Spain; University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Spanish Biomedical Research Network in Cancer (CIBERONC), ISCIII, Madrid, Spain; Department of Otolaryngology, Central University Hospital of Asturias (HUCA), Oviedo, Spain.
| | - Juana M García-Pedrero
- Health Research Institute of Asturias (ISPA), Oviedo, Spain; University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Spanish Biomedical Research Network in Cancer (CIBERONC), ISCIII, Madrid, Spain
| | - Mónica Álvarez-Fernández
- Health Research Institute of Asturias (ISPA), Oviedo, Spain; University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.
| |
Collapse
|
2
|
Kohl S, Subtil FSB, Climenti V, Anees H, Parplys AC, Engenhart-Cabillic R, Adeberg S, Dikomey E, Theiß U. Alteration in ATR protein level does not account for the inherent radiosensitivity of HPV-positive head and neck squamous cell carcinoma. Transl Oncol 2025; 55:102359. [PMID: 40088750 PMCID: PMC11957528 DOI: 10.1016/j.tranon.2025.102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 01/31/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025] Open
Abstract
OBJECTIVES Human papilloma virus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) cells are highly radiosensitive resulting from an elevated number of DNA double-strand breaks (DSB) remaining after irradiation. Partially this effect is due to a defective homologous recombination (HR). HPV-positive cells also show pronounced instability of chromosome 3, which codes for the kinase ataxia-telangiectasia and Rad3-related (ATR) protein, a central player of HR. If there is a contribution of ATR to the radiosensitivity of HPV-positive cells remains unclear, and this in-vitro study tested a functional involvement of ATR expression. METHODS The study was performed with six HPV-negative and six HPV-positive HNSCC cell lines. Gene copy number and gene expression were determined via qRT-PCR, protein expression by Western Blot. Response of cells towards irradiation in dependence of ATR expression was tested after siRNA Knock-down (ATRKD). Clonogenic survival after photon irradiation was evaluated by colony formation assay and DSBs were visualized by γH2AX/53BP1 co-staining. RESULTS ATR gene copy number and expression were not altered. Protein level was almost two-fold lower in HPV-positive compared to HPV-negative cells, but fully functional as observed by active phosphorylation in response towards irradiation. ATRKD resulted in a further increase in both, radiosensitivity as well as number of residual DSBs, but only for HPV-positive cells. CONCLUSION Since the effect of ATRKD was compensated in HPV-negative but not in HPV-positive cells, these data revealed that the two-fold lower level of ATR in HPV-positive cells does not account for their enhanced inherent radiosensitivity, but acts additive to irradiation.
Collapse
Affiliation(s)
- Sibylla Kohl
- Department of Radiotherapy and Radiation Oncology, Philipps-University Marburg, Marburg, Germany
| | - Florentine S B Subtil
- Department of Radiotherapy and Radiation Oncology, Philipps-University Marburg, Marburg, Germany
| | - Vanessa Climenti
- Department of Radiotherapy and Radiation Oncology, Philipps-University Marburg, Marburg, Germany
| | - Houmam Anees
- Department of Radiotherapy and Radiation Oncology, Philipps-University Marburg, Marburg, Germany
| | - Ann C Parplys
- Department of Radiotherapy and Radiation Oncology, Philipps-University Marburg, Marburg, Germany
| | - Rita Engenhart-Cabillic
- Department of Radiotherapy and Radiation Oncology, Philipps-University Marburg, Marburg, Germany; Marburg Ion-Beam Therapy Center (MIT), Department of Radiotherapy and Radiation Oncology, Marburg University Hospital, Marburg, Germany
| | - Sebastian Adeberg
- Department of Radiotherapy and Radiation Oncology, Philipps-University Marburg, Marburg, Germany; Marburg Ion-Beam Therapy Center (MIT), Department of Radiotherapy and Radiation Oncology, Marburg University Hospital, Marburg, Germany
| | - Ekkehard Dikomey
- Department of Radiotherapy and Radiation Oncology, Philipps-University Marburg, Marburg, Germany; Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Ulrike Theiß
- Department of Radiotherapy and Radiation Oncology, Philipps-University Marburg, Marburg, Germany; Marburg Ion-Beam Therapy Center (MIT), Department of Radiotherapy and Radiation Oncology, Marburg University Hospital, Marburg, Germany.
| |
Collapse
|
3
|
Zech HB, von Bargen C, Oetting A, Möckelmann N, Möller-Koop C, Witt M, Struve N, Petersen C, Betz C, Rothkamm K, Münscher A, Clauditz TS, Rieckmann T. Tissue microarray analyses of the essential DNA repair factors ATM, DNA-PKcs and Ku80 in head and neck squamous cell carcinoma. Radiat Oncol 2024; 19:150. [PMID: 39478631 PMCID: PMC11523811 DOI: 10.1186/s13014-024-02541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) negative for Human Papillomavirus (HPV) has remained a difficult to treat entity, whereas tumors positive for HPV are characterized by radiosensitivity and favorable patient outcome. On the cellular level, radiosensitivity is largely governed by the tumor cells` ability to repair radiation-induced DNA double-strand breaks (DSBs), but no biomarker is established that could guide clinical decision making. Therefore, we tested the impact of the expression levels of ATM, the central kinase of the DNA damage response as well as DNA-PKcs and Ku80, two major factors in the main DSB repair pathway non-homologous end joining (NHEJ). METHODS A tissue microarray of a single center HNSCC cohort was stained for ATM, DNA-PKcs and Ku80 and the expression scored based on staining intensity and the percentages of tumor cells stained. Scores were correlated with clinicopathological parameters and survival. RESULTS Samples from 427 HNSCC patients yielded interpretable stainings and were scored following an established algorithm. The majority of tumors showed strong expression of both NHEJ factors, whereas the expression of ATM varied more. The expression scores of ATM and DNA-PKcs were not associated with patient survival. For HPV-negative HNSCC, the minority of tumors without strong Ku80 expression trended towards superior survival when treatment included radiotherapy. Focusing stronger on staining intensity to define the subgroup with lowest and therefore potentially insufficient expression levels in the HPV-negative subgroup, we observed significantly better overall survival for patients treated with radiotherapy but not with surgery alone. CONCLUSIONS Our data suggest that HPV-negative HNSCC with particularly low Ku80 expression represent a highly radiosensitive subpopulation. Confirmation in independent cohorts is required.
Collapse
Affiliation(s)
- Henrike Barbara Zech
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clara von Bargen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Agnes Oetting
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikolaus Möckelmann
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Otorhinolaryngology, Marienkrankenhaus, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Witt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Struve
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Betz
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adrian Münscher
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Otorhinolaryngology, Marienkrankenhaus, Hamburg, Germany
| | | | - Thorsten Rieckmann
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
4
|
Fu X, Duan Z, Lu X, Zhu Y, Ren Y, Zhang W, Sun X, Ge L, Yang J. SND1 Promotes Radioresistance in Cervical Cancer Cells by Targeting the DNA Damage Response. Cancer Biother Radiopharm 2024; 39:425-434. [PMID: 35271349 DOI: 10.1089/cbr.2021.0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Radiotherapy is one of the most effective therapeutic strategies for cervical cancer patients, although radioresistance-mediated residual and recurrent tumors are the main cause of treatment failure. However, the mechanism of tumor radioresistance is still elusive. DNA damage response pathways are key determinants of radioresistance. The purpose of this study was to investigate the role and mechanism of SND1 in radioresistance of cervical cancer. Methods: A stable HeLa cell line with SND1 knockout (HeLa-KO) was generated through a modified CRISPR/Cas9 double-nicking gene editing system. The stable CaSki cell lines with SND1 knockdown (CaSki-Ctrl, CaSki-SND1-sh-1, CaSki-SND1-sh-2) were constructed through lentivirus transfection with the pSil-SND1-sh-1 and pSil-SND1-sh-2 plasmids. Results: It was observed that SND1 deficiency significantly increased the radiosensitivity of cervical cancer cells. It was also found that silencing SND1 promotes radiation-induced apoptosis. Significantly, the cells with a loss of SND1 function exhibited inefficient ataxia telangiectasia mutated pathway activation, subsequently impairing DNA repair and G2/M checkpoint arrest. In addition, threonine 103 is an important phosphorylation site of SND1 under DNA damaging stress. Conclusion: Collectively, the results of this study reveal a potent radiosensitizing effect of silencing SND1 or T103 mutation on cervical cancer cells, providing novel insights into potential therapeutic strategies for cervical cancer treatment.
Collapse
Affiliation(s)
- Xiao Fu
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- Key Laboratory of Cellular and Molecular Immunology in Tianjin, Department of Biochemistry and Molecular Biology, Excellent Talent Project, Tianjin Medical University, Tianjin, China
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhongchao Duan
- Flow Cytometry Lab, Department of Hematopathology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xin Lu
- Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingyu Zhu
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- Key Laboratory of Cellular and Molecular Immunology in Tianjin, Department of Biochemistry and Molecular Biology, Excellent Talent Project, Tianjin Medical University, Tianjin, China
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Ren
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- Key Laboratory of Cellular and Molecular Immunology in Tianjin, Department of Biochemistry and Molecular Biology, Excellent Talent Project, Tianjin Medical University, Tianjin, China
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wei Zhang
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- Key Laboratory of Cellular and Molecular Immunology in Tianjin, Department of Biochemistry and Molecular Biology, Excellent Talent Project, Tianjin Medical University, Tianjin, China
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaoming Sun
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- Key Laboratory of Cellular and Molecular Immunology in Tianjin, Department of Biochemistry and Molecular Biology, Excellent Talent Project, Tianjin Medical University, Tianjin, China
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lin Ge
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- Key Laboratory of Cellular and Molecular Immunology in Tianjin, Department of Biochemistry and Molecular Biology, Excellent Talent Project, Tianjin Medical University, Tianjin, China
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- Key Laboratory of Cellular and Molecular Immunology in Tianjin, Department of Biochemistry and Molecular Biology, Excellent Talent Project, Tianjin Medical University, Tianjin, China
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Yongprayoon V, Wattanakul N, Khomate W, Apithanangsiri N, Kasitipradit T, Nantajit D, Tavassoli M. Targeting BRD4: Potential therapeutic strategy for head and neck squamous cell carcinoma (Review). Oncol Rep 2024; 51:74. [PMID: 38606512 DOI: 10.3892/or.2024.8733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
As a member of BET (bromodomain and extra-terminal) protein family, BRD4 (bromodomain‑containing protein 4) is a chromatin‑associated protein that interacts with acetylated histones and actively recruits regulatory proteins, leading to the modulation of gene expression and chromatin remodeling. The cellular and epigenetic functions of BRD4 implicate normal development, fibrosis and inflammation. BRD4 has been suggested as a potential therapeutic target as it is often overexpressed and plays a critical role in regulating gene expression programs that drive tumor cell proliferation, survival, migration and drug resistance. To address the roles of BRD4 in cancer, several drugs that specifically target BRD4 have been developed. Inhibition of BRD4 has shown promising results in preclinical models, with several BRD4 inhibitors undergoing clinical trials for the treatment of various cancers. Head and neck squamous cell carcinoma (HNSCC), a heterogeneous group of cancers, remains a health challenge with a high incidence rate and poor prognosis. Conventional therapies for HNSCC often cause adverse effects to the patients. Targeting BRD4, therefore, represents a promising strategy to sensitize HNSCC to chemo‑ and radiotherapy allowing de‑intensification of the current therapeutic regime and subsequent reduced side effects. However, further studies are required to fully understand the underlying mechanisms of action of BRD4 in HNSCC in order to determine the optimal dosing and administration of BRD4‑targeted drugs for the treatment of patients with HNSCC.
Collapse
Affiliation(s)
- Voraporn Yongprayoon
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Napasporn Wattanakul
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Winnada Khomate
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Nathakrit Apithanangsiri
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Tarathip Kasitipradit
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Danupon Nantajit
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Mahvash Tavassoli
- Centre for Host Microbiome Interactions, King's College London, London SE1 1UL, UK
| |
Collapse
|
6
|
Batool A, Rashid W, Fatima K, Khan SU. Mechanisms of Cancer Resistance to Various Therapies. DRUG RESISTANCE IN CANCER: MECHANISMS AND STRATEGIES 2024:31-75. [DOI: 10.1007/978-981-97-1666-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Butkiewicz D, Krześniak M, Gdowicz-Kłosok A, Składowski K, Rutkowski T. DNA Double-Strand Break Response and Repair Gene Polymorphisms May Influence Therapy Results and Prognosis in Head and Neck Cancer Patients. Cancers (Basel) 2023; 15:4972. [PMID: 37894339 PMCID: PMC10605140 DOI: 10.3390/cancers15204972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Radiotherapy and cisplatin-based chemotherapy belong to the main treatment modalities for head and neck squamous cell carcinoma (HNSCC) and induce cancer cell death by generating DNA damage, including the most severe double-strand breaks (DSBs). Alterations in DSB response and repair genes may affect individual DNA repair capacity and treatment sensitivity, contributing to the therapy resistance and poor prognosis often observed in HNSCC. In this study, we investigated the association of a panel of single-nucleotide polymorphisms (SNPs) in 20 DSB signaling and repair genes with therapy results and prognosis in 505 HNSCC patients treated non-surgically with DNA damage-inducing therapies. In the multivariate analysis, there were a total of 14 variants associated with overall, locoregional recurrence-free or metastasis-free survival. Moreover, we identified 10 of these SNPs as independent predictors of therapy failure and unfavorable prognosis in the whole group or in two treatment subgroups. These were MRE11 rs2155209, XRCC5 rs828907, RAD51 rs1801321, rs12593359, LIG4 rs1805388, CHEK1 rs558351, TP53 rs1042522, ATM rs1801516, XRCC6 rs2267437 and NBN rs2735383. Only CHEK1 rs558351 remained statistically significant after correcting for multiple testing. These results suggest that specific germline variants related to DSB response and repair may be potential genetic modifiers of therapy effects and disease progression in HNSCC treated with radiotherapy and cisplatin-based chemoradiation.
Collapse
Affiliation(s)
- Dorota Butkiewicz
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Małgorzata Krześniak
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Agnieszka Gdowicz-Kłosok
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Krzysztof Składowski
- I Radiation and Clinical Oncology Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Tomasz Rutkowski
- I Radiation and Clinical Oncology Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
- Radiotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| |
Collapse
|
8
|
Suppression of Long Noncoding RNA SNHG1 Inhibits the Development of Hypopharyngeal Squamous Cell Carcinoma via Increasing PARP6 Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1562219. [PMID: 35836822 PMCID: PMC9276473 DOI: 10.1155/2022/1562219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
Abstract
Purpose This study aimed to explore the function and molecular mechanism of long noncoding RNA Small Nucleolar RNA Host Gene 1 (SNHG1) in the development of hypopharyngeal squamous cell carcinoma (HSCC). Methods Human HSCC cell line FaDu was used in this study. Cell viability and apoptosis were detected using CCK-8 assay and flow cytometry, respectively. Cell migration and invasion were measured by Transwell assay. The expression of PARP6, XRCC6, β-catenin, and EMT-related proteins (E-cadherin and N-cadherin) were determined using western blotting. Moreover, the regulatory relationship between SNHG1 and PARP6 was investigated. Furthermore, the effects of the SNHG1/PARP6 axis on tumorigenicity were explored in vivo. Results Suppression of SNHG1 suppressed the viability, migration, and invasion but promoted apoptosis of FaDu cells in vitro (P < 0.01). PARP6 is a target of SNHG1, which was upregulated by SNHG1 knockdown in FaDu cells (P < 0.01). SNHG1 suppression and RARP6 overexpression inhibited FaDu cell proliferation, migration, and invasion (P < 0.05). SNHG1 suppression and RARP6 overexpression also inhibited tumorigenicity of HSCC in vivo. Furthermore, the protein expression of E-cadherin was significantly increased and that of N-cadherin, β-catenin, and XRCC6 was dramatically decreased in HSCC after SNHG1 suppression or/and RARP6 overexpression both in vitro and in vivo (P < 0.01). Conclusions SNHG1 silencing inhibits HSCC malignant progression via upregulating PARP6. XRCC6/β-catenin/EMT axis may be a possible downstream mechanism of the SNHG1/PARP6 axis in HSCC. SNHG1/PARP6 can be used as a promising target for the treatment of HSCC.
Collapse
|
9
|
Ding L, Sishc BJ, Polsdofer E, Yordy JS, Facoetti A, Ciocca M, Saha D, Pompos A, Davis AJ, Story MD. Evaluation of the Response of HNSCC Cell Lines to γ-Rays and 12C Ions: Can Radioresistant Tumors Be Identified and Selected for 12C Ion Radiotherapy? Front Oncol 2022; 12:812961. [PMID: 35280731 PMCID: PMC8914432 DOI: 10.3389/fonc.2022.812961] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide. Thirty percent of patients will experience locoregional recurrence for which median survival is less than 1 year. Factors contributing to treatment failure include inherent resistance to X-rays and chemotherapy, hypoxia, epithelial to mesenchymal transition, and immune suppression. The unique properties of 12C radiotherapy including enhanced cell killing, a decreased oxygen enhancement ratio, generation of complex DNA damage, and the potential to overcome immune suppression make its application well suited to the treatment of HNSCC. We examined the 12C radioresponse of five HNSCC cell lines, whose surviving fraction at 3.5 Gy ranged from average to resistant when compared with a larger panel of 38 cell lines to determine if 12C irradiation can overcome X-ray radioresistance and to identify biomarkers predictive of 12C radioresponse. Cells were irradiated with 12C using a SOBP with an average LET of 80 keV/μm (CNAO: Pavia, Italy). RBE values varied depending upon endpoint used. A 37 gene signature was able to place cells in their respective radiosensitivity cohort with an accuracy of 86%. Radioresistant cells were characterized by an enrichment of genes associated with radioresistance and survival mechanisms including but not limited to G2/M Checkpoint MTORC1, HIF1α, and PI3K/AKT/MTOR signaling. These data were used in conjunction with an in silico-based modeling approach to evaluate tumor control probability after 12C irradiation that compared clinically used treatment schedules with fixed RBE values vs. the RBEs determined for each cell line. Based on the above analysis, we present the framework of a strategy to utilize biological markers to predict which HNSCC patients would benefit the most from 12C radiotherapy.
Collapse
Affiliation(s)
- Lianghao Ding
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Brock J Sishc
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Elizabeth Polsdofer
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - John S Yordy
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Angelica Facoetti
- Medical Physics Unit & Research Department, Foundazione Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy
| | - Mario Ciocca
- Medical Physics Unit & Research Department, Foundazione Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy
| | - Debabrata Saha
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Arnold Pompos
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Anthony J Davis
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Michael D Story
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| |
Collapse
|
10
|
Larionova I, Rakina M, Ivanyuk E, Trushchuk Y, Chernyshova A, Denisov E. Radiotherapy resistance: identifying universal biomarkers for various human cancers. J Cancer Res Clin Oncol 2022; 148:1015-1031. [PMID: 35113235 DOI: 10.1007/s00432-022-03923-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
Abstract
Radiotherapy (RT) is considered as a standard in the treatment of most solid cancers, including glioblastoma, lung, breast, rectal, prostate, colorectal, cervical, esophageal, and head and neck cancers. The main challenge in RT is tumor cell radioresistance associated with a high risk of locoregional relapse and distant metastasis. Despite significant progress in understanding mechanisms of radioresistance, its prediction and overcoming remain unresolved. This review presents the state-of-the-art for the potential universal biomarkers correlated to the radioresistance and poor outcome in different cancers. We describe radioresistance biomarkers functionally attributed to DNA repair, signal transduction, hypoxia, and angiogenesis. We also focus on high throughput genetic and proteomic studies, which revealed a set of molecular biomarkers related to radioresistance. In conclusion, we discuss biomarkers which are overlapped in most several cancers.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia.
| | - Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Tomsk, Russia
| | - Elena Ivanyuk
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Yulia Trushchuk
- Department of Gynecologic Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Alena Chernyshova
- Department of Gynecologic Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Evgeny Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| |
Collapse
|
11
|
Bos T, Ratti JA, Harada H. Targeting Stress-Response Pathways and Therapeutic Resistance in Head and Neck Cancer. FRONTIERS IN ORAL HEALTH 2021; 2:676643. [PMID: 35048023 PMCID: PMC8757684 DOI: 10.3389/froh.2021.676643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/28/2021] [Indexed: 12/21/2022] Open
Abstract
Head and neck cancer is the sixth leading cancer worldwide; head and neck squamous cell carcinoma (HNSCC) accounts for more than 90% of incident cases. In the US, cases of HNSCC associated with human papillomavirus (HPV) have been growing in proportion amongst a younger demographic with superior outcomes to the same treatments, relative to cases associated with tobacco. Yet failures to improve the long-term prognosis of advanced HNSCC over the last three decades persist in part due to intrinsic and acquired mechanisms of resistance. Deregulation of the pathways to respond to stress, such as apoptosis and autophagy, often contributes to drug resistance and tumor progression. Here we review the stress-response pathways in drug response and resistance in HNSCC to explore strategies to overcome these resistance mechanisms. We focus on the mechanisms of resistance to current standard cares, such as chemotherapy (i.e., cisplatin), radiation, and cetuximab. Then, we discuss the strategies to overcome these resistances, including novel combinations and immunotherapy.
Collapse
Affiliation(s)
| | | | - Hisashi Harada
- School of Dentistry, Philips Institute for Oral Health Research, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
12
|
Bold IT, Specht AK, Droste CF, Zielinski A, Meyer F, Clauditz TS, Münscher A, Werner S, Rothkamm K, Petersen C, Borgmann K. DNA Damage Response during Replication Correlates with CIN70 Score and Determines Survival in HNSCC Patients. Cancers (Basel) 2021; 13:cancers13061194. [PMID: 33801877 PMCID: PMC7998578 DOI: 10.3390/cancers13061194] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Aneuploidy is a consequence of chromosomal instability (CIN) that affects prognosis. Gene expression levels associated with aneuploidy provide insight into the molecular mechanisms underlying CIN. Based on the gene signature whose expression was consistent with functional aneuploidy, the CIN70 score was established. We observed an association of CIN70 score and survival in 519 HNSCC patients in the TCGA dataset; the 15% patients with the lowest CIN70 score showed better survival (p = 0.11), but association was statistically non-significant. This correlated with the expression of 39 proteins of the major repair complexes. A positive association with survival was observed for MSH2, XRCC1, MRE11A, BRCA1, BRCA2, LIG1, DNA2, POLD1, MCM2, RAD54B, claspin, a negative for ERCC1, all related with replication. We hypothesized that expression of these factors leads to protection of replication through efficient repair and determines survival and resistance to therapy. Protein expression differences in HNSCC cell lines did not correlate with cellular sensitivity after treatment. Rather, it was observed that the stability of the DNA replication fork determined resistance, which was dependent on the ATR/CHK1-mediated S-phase signaling cascade. This suggests that it is not the expression of individual DNA repair proteins that causes therapy resistance, but rather a balanced expression and coordinated activation of corresponding signaling cascades.
Collapse
Affiliation(s)
- Ioan T. Bold
- Laboratory of Radiobiology & Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.T.B.); (A.-K.S.); (A.Z.); (F.M.); (K.R.)
| | - Ann-Kathrin Specht
- Laboratory of Radiobiology & Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.T.B.); (A.-K.S.); (A.Z.); (F.M.); (K.R.)
| | - Conrad F. Droste
- University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Alexandra Zielinski
- Laboratory of Radiobiology & Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.T.B.); (A.-K.S.); (A.Z.); (F.M.); (K.R.)
| | - Felix Meyer
- Laboratory of Radiobiology & Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.T.B.); (A.-K.S.); (A.Z.); (F.M.); (K.R.)
| | - Till S. Clauditz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Adrian Münscher
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Stefan Werner
- Department of Tumorbiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Kai Rothkamm
- Laboratory of Radiobiology & Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.T.B.); (A.-K.S.); (A.Z.); (F.M.); (K.R.)
| | - Cordula Petersen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Kerstin Borgmann
- Laboratory of Radiobiology & Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.T.B.); (A.-K.S.); (A.Z.); (F.M.); (K.R.)
- Correspondence:
| |
Collapse
|
13
|
Radiation resistance in head and neck squamous cell carcinoma: dire need for an appropriate sensitizer. Oncogene 2020; 39:3638-3649. [PMID: 32157215 PMCID: PMC7190570 DOI: 10.1038/s41388-020-1250-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 01/11/2023]
Abstract
Radiation is a significant treatment for patients with head and neck cancer. Despite advances to improve treatment, many tumors acquire radiation resistance resulting in poor survival. Radiation kills cancer cells by inducing DNA double-strand breaks. Therefore, radiation resistance is enhanced by efficient repair of damaged DNA. Head and neck cancers overexpress EGFR and have a high frequency of p53 mutations, both of which enhance DNA repair. This review discusses the clinical criteria for radiation resistance in patients with head and neck cancer and summarizes how cancer cells evade radiation-mediated apoptosis by p53- and epidermal growth factor receptor (EGFR)-mediated DNA repair. In addition, we explore the role of cancer stem cells in promoting radiation resistance, and how the abscopal effect provides rationale for combination strategies with immunotherapy.
Collapse
|
14
|
Hernandez AL, Young CD, Bian L, Weigel K, Nolan K, Frederick B, Han G, He G, Devon Trahan G, Rudolph MC, Jones KL, Oweida AJ, Karam SD, Raben D, Wang XJ. PARP Inhibition Enhances Radiotherapy of SMAD4-Deficient Human Head and Neck Squamous Cell Carcinomas in Experimental Models. Clin Cancer Res 2020; 26:3058-3070. [PMID: 32139402 DOI: 10.1158/1078-0432.ccr-19-0514] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/06/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE SMAD4 loss causes genomic instability and the initiation/progression of head and neck squamous cell carcinoma (HNSCC). Here, we study whether SMAD4 loss sensitizes HNSCCs to olaparib (PARP inhibitor) in combination with radiotherapy (RT). EXPERIMENTAL DESIGN We analyzed HNSCC The Cancer Genome Atlas data for SMAD4 expression in association with FANC/BRCA family gene expression. Human HNSCC cell lines were screened for sensitivity to olaparib. Isogenic HNSCC cell lines were generated to restore or reduce SMAD4 expression and treated with olaparib, radiation, or the combination. HNSCC pretreatment specimens from a phase I trial investigating olaparib were analyzed. RESULTS SMAD4 levels correlated with levels of FANC/BRCA genes in HNSCC. HNSCC cell lines with SMAD4 homozygous deletion were sensitive to olaparib. In vivo, olaparib or RT monotherapy reduced tumor volumes in SMAD4-mutant but not SMAD4-positive tumors. Olaparib with RT dual therapy sustained tumor volume reduction in SMAD4-deficient (mutant or knockdown) xenografts, which exhibited increased DNA damage and cell death compared with vehicle-treated tumors. In vitro, olaparib alone or in combination with radiation caused lower clonogenic survival, more DNA damage-associated cell death, and less proliferation in SMAD4-deficient cells than in SMAD4-positive (endogenous SMAD4 or transduced SMAD4) cells. Applicable to clinic, 5 out of 6 SMAD4-negative HNSCCs and 4 out of 8 SMAD4-positive HNSCCs responded to a standard treatment plus olaparib in a phase I clinical trial, and SMAD4 protein levels inversely correlated with DNA damage. CONCLUSIONS SMAD4 levels are causal in determining sensitivity to PARP inhibition in combination with RT in HNSCCs.
Collapse
Affiliation(s)
- Ariel L Hernandez
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Christian D Young
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Li Bian
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kelsey Weigel
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kyle Nolan
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Barbara Frederick
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Gangwen Han
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Guanting He
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - G Devon Trahan
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Michael C Rudolph
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kenneth L Jones
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Ayman J Oweida
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - David Raben
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Xiao-Jing Wang
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado. .,Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado
| |
Collapse
|
15
|
Nicolay NH, Wiedenmann N, Mix M, Weber WA, Werner M, Grosu AL, Kayser G. Correlative analyses between tissue-based hypoxia biomarkers and hypoxia PET imaging in head and neck cancer patients during radiochemotherapy-results from a prospective trial. Eur J Nucl Med Mol Imaging 2019; 47:1046-1055. [PMID: 31811344 DOI: 10.1007/s00259-019-04598-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Tumor hypoxia impairs the response of head-and-neck cancer (HNSCC) patients to radiotherapy and can be detected both by tissue biomarkers and PET imaging. However, the value of hypoxia biomarkers and imaging for predicting HNSCC patient outcomes are incompletely understood, and potential correlations between tissue and PET data remain to be elucidated. Here, we performed exploratory analyses of potential correlations between tissue-based hypoxia biomarkers and longitudinal hypoxia imaging in a prospective trial of HNSCC patients. METHODS Forty-nine patients undergoing chemoradiation for locally advanced HNSCCs were enrolled in this prospective trial. They underwent baseline biopsies and [18F]FDG PET imaging and [18F]FMISO PET at weeks 0, 2, and 5 during treatment. Immunohistochemical analyses for p16, Ki67, CD34, HIF1α, CAIX, Ku80, and CD44 were performed, and HPV status was assessed. Biomarker expression was correlated with biological imaging information and patient outcome data. RESULTS High HIF1α tumor levels significantly correlated with increased tumor hypoxia at week 2 as assessed by the difference in the [18F]FMISO tumor-to-background ratios, and high HIF1α and CAIX expressions were both associated with a deferred decrease in hypoxia between weeks 2 and 5. Loco-regional recurrence rates after radiotherapy were significantly higher in patients with high CAIX expression and also increased for high levels of the DNA repair factor Ku80. HPV status did not correlate with any of the tested hypoxia biomarkers, and HPV-positive patients showed higher loco-regional control rates and progression-free survival independent of their hypoxia dynamics. CONCLUSION In this exploratory trial, high expression of the tissue-based hypoxia biomarkers HIF1α and CAIX correlated with adverse hypoxia dynamics in HNSCCs during chemoradiation as assessed by PET imaging, and high CAIX levels were associated with increased loco-regional recurrence rates. Hence, hypoxia biomarkers warrant further investigations as potential predictors of hypoxia dynamics and hypoxia-associated radiation resistance.
Collapse
Affiliation(s)
- Nils H Nicolay
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany. .,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Nicole Wiedenmann
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang A Weber
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Martin Werner
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Surgical Pathology, Department of Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gian Kayser
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Surgical Pathology, Department of Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Oikawa Y, Michi Y, Tsushima F, Tomioka H, Mochizuki Y, Kugimoto T, Osako T, Nojima H, Yokokawa M, Kashima Y, Harada H. Management of retropharyngeal lymph node metastasis in oral cancer. Oral Oncol 2019; 99:104471. [PMID: 31678766 DOI: 10.1016/j.oraloncology.2019.104471] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/19/2019] [Accepted: 10/25/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Retropharyngeal lymph node (RPLN) metastasis is extremely rare, and prognosis is significantly poor in oral cancer. We retrospectively examined the management of RPLN metastases in oral cancer. MATERIALS AND METHODS A total of 1247 patients with oral cancer were treated at our department from January 2002 and December 2016. Among these patients, 374 (30%) had histologically positive lymph node metastases. Of these, 15 patients (1.2%) were diagnosed with RPLN metastases. We evaluated the diagnostic period, size, recurrence pattern, laterality, treatment, and therapeutic outcomes. The Kaplan-Meier method was used to determine overall survival (OS) among the RPLN metastasis group, cervical lymph node (CLN) metastases group, and treatment methods group for RPLN metastases. RESULTS One patient had RPLN involvement at the initial treatment, and RPLN involvement in other patients was found subsequently. The mean duration in confirming RPLN metastases was 228 days (range, 50-867 days). Surgical therapy was performed in 5 patients, chemoradiotherapy in 7 patients, and best supported care (BSC) in 3 patients. The cumulative 5-year OS rate for the RPLN metastasis group (n = 15) was 38.1%, compared with the rate of 71.3% for the CLN group (n = 359). Regarding the therapeutic approach for RPLN metastases, OS rates were 80.0% (n = 5) in the surgical therapy group, 28.6% (n = 7) in the chemoradiotherapy group, and 0% (n = 3) in the BSC group. CONCLUSION Early detection and surgical treatment of RPLN metastases are associated with increased survival rate in oral cancer.
Collapse
Affiliation(s)
- Yu Oikawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Yasuyuki Michi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Fumihiko Tsushima
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirofumi Tomioka
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yumi Mochizuki
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takuma Kugimoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshimitsu Osako
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hitomi Nojima
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Misaki Yokokawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihisa Kashima
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
17
|
Arenz A, Patze J, Kornmann E, Wilhelm J, Ziemann F, Wagner S, Wittig A, Schoetz U, Engenhart-Cabillic R, Dikomey E, Fritz B. HPV-negative and HPV-positive HNSCC cell lines show similar numerical but different structural chromosomal aberrations. Head Neck 2019; 41:3869-3879. [PMID: 31441163 DOI: 10.1002/hed.25924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/30/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND It was tested whether the difference in carcinogenesis between noxa and human papillomavirus (HPV)-driven head and neck squamous cell carcinoma (HNSCC) is associated with a variation in genomic instability. METHODS Conventional and molecular cytogenetics in HPV-positive and HPV-negative HNSCC cell lines. RESULTS Numerical aneuploidy determined by multicolor fluorescence in situ hybridization and DNA ploidy was very similar for both entities with most chromosomes being present either in quadruplicate or triplicate, and only few are still diploid with, however, a striking similarity in the overall pattern. A clear difference was seen concerning the translocations formed, with no difference in the total amount but with a significantly higher genomic instability of HPV-positive cell lines at chromosome 3 as compared to HPV-negative cells. CONCLUSION The different processes of carcinogenesis of HPV-positive and HPV-negative HNSCC appear to result in a similar pattern of numerical but a clear difference in structural chromosomal aberrations.
Collapse
Affiliation(s)
- Andrea Arenz
- Department of Radiotherapy and Radiooncology, Philipps-University, University Hospital Giessen and Marburg, Marburg, Germany
| | - Johannes Patze
- Department of Radiotherapy and Radiooncology, Philipps-University, University Hospital Giessen and Marburg, Marburg, Germany
| | - Evelyn Kornmann
- Center of Human Genetics, Philipps-University, Marburg, Germany
| | - Jochen Wilhelm
- Department of Pathology, Justus-Liebig-University, Giessen, Germany
| | - Frank Ziemann
- Department of Radiotherapy and Radiooncology, Philipps-University, University Hospital Giessen and Marburg, Marburg, Germany
| | - Steffen Wagner
- Department of Otorhinolaryngology, Head and Neck Surgery, Justus-Liebig University, Giessen, Germany
| | - Andrea Wittig
- Department of Radiotherapy and Radiooncology, Philipps-University, University Hospital Giessen and Marburg, Marburg, Germany.,Department of Radiation Oncology, Friedrich-Schiller-University, Jena, Germany
| | - Ulrike Schoetz
- Department of Radiotherapy and Radiooncology, Philipps-University, University Hospital Giessen and Marburg, Marburg, Germany
| | - Rita Engenhart-Cabillic
- Department of Radiotherapy and Radiooncology, Philipps-University, University Hospital Giessen and Marburg, Marburg, Germany
| | - Ekkehard Dikomey
- Department of Radiotherapy and Radiooncology, Philipps-University, University Hospital Giessen and Marburg, Marburg, Germany.,Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Barbara Fritz
- Center of Human Genetics, Philipps-University, Marburg, Germany
| |
Collapse
|
18
|
Miller AL, Fehling SC, Garcia PL, Gamblin TL, Council LN, van Waardenburg RCAM, Yang ES, Bradner JE, Yoon KJ. The BET inhibitor JQ1 attenuates double-strand break repair and sensitizes models of pancreatic ductal adenocarcinoma to PARP inhibitors. EBioMedicine 2019; 44:419-430. [PMID: 31126889 PMCID: PMC6604668 DOI: 10.1016/j.ebiom.2019.05.035] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND DNA repair deficiency accumulates DNA damage and sensitizes tumor cells to PARP inhibitors (PARPi). Based on our observation that the BET inhibitor JQ1 increases levels of DNA damage, we evaluated the efficacy of JQ1 + the PARPi olaparib in preclinical models of pancreatic ductal adenocarcinoma (PDAC). We also addressed the mechanism by which JQ1 increased DNA damage. METHODS The effect of JQ1 + olaparib on in vivo tumor growth was assessed with patient-derived xenograft (PDX) models of PDAC. Changes in protein expression were detected by immunohistochemistry and immunoblot. In vitro growth inhibition and mechanistic studies were done using alamarBlue, qRT-PCR, immunoblot, immunofluorescence, ChIP, and shRNA knockdown assays. FINDINGS Tumors exposed in vivo to JQ1 had higher levels of the DNA damage marker γH2AX than tumors exposed to vehicle only. Increases in γH2AX was concomitant with decreased expression of DNA repair proteins Ku80 and RAD51. JQ1 + olaparib inhibited the growth of PDX tumors greater than either drug alone. Mechanistically, ChIP assays demonstrated that JQ1 decreased the association of BRD4 and BRD2 with promoter loci of Ku80 and RAD51, and shRNA data showed that expression of Ku80 and RAD51 was BRD4- and BRD2-dependent in PDAC cell lines. INTERPRETATION The data are consistent with the hypothesis that JQ1 confers a repair deficient phenotype and the consequent accumulation of DNA damage sensitizes PDAC cells to PARPi. Combinations of BET inhibitors with PARPi may provide a novel strategy for treating PDAC. FUND: NIH grants R01CA208272 and R21CA205501; UAB CMB T32 predoctoral training grant.
Collapse
Affiliation(s)
- Aubrey L Miller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL, USA
| | - Samuel C Fehling
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL, USA
| | - Patrick L Garcia
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL, USA
| | - Tracy L Gamblin
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL, USA
| | - Leona N Council
- Department of Pathology, Division of Anatomic Pathology, University of Alabama at Birmingham, NP3551 North Pavilion UAB Hospital, Birmingham, AL, USA; The Birmingham Veterans Administration Medical Center, 700 19(th) St S, Birmingham, AL, USA
| | - Robert C A M van Waardenburg
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL, USA
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham, Hazelrig Salter Radiation Oncology Center, 1700 6(th) Avenue S, Birmingham, AL, USA
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL, USA.
| |
Collapse
|
19
|
Jagadeeshan S, Prasad M, Ortiz-Cuaran S, Gregoire V, Saintigny P, Elkabets M. Adaptive Responses to Monotherapy in Head and Neck Cancer: Interventions for Rationale-Based Therapeutic Combinations. Trends Cancer 2019; 5:365-390. [PMID: 31208698 DOI: 10.1016/j.trecan.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022]
Abstract
Most Phase II and III clinical trials in head and neck cancer (HNC) combine two or more treatment modalities, which are based, in part, on knowledge of the molecular mechanisms of innate and acquired resistance to monotherapy. In this review, we describe the range of tumor-cell autonomously derived (intrinsic) and tumor-microenvironment-derived (extrinsic) acquired-resistance mechanisms to various FDA-approved monotherapies for HNC. Specifically, we describe how tumor cells and the tumor microenvironment (TME) respond to radiation, chemotherapy, targeted therapy (cetuximab), and immunotherapies [programmed cell death 1 (PD-1) inhibitors] and adapt to the selective pressure of these monotherapies. Due to the diversity of adaptive responses to monotherapy, monitoring the response to treatment in patients is critical to understand the path that leads to resistance and to guide the optimal therapeutic drug combinations in the clinical setting. We envisage that applying such a rationale-based therapeutic strategy will improve treatment efficacy in HNC patients.
Collapse
Affiliation(s)
- Sankar Jagadeeshan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Manu Prasad
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Sandra Ortiz-Cuaran
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Vincent Gregoire
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France; Department of Radiation Therapy, Centre Léon Bérard, Lyon 69008, France
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France; Department of Medical Oncology, Centre Léon Bérard, Lyon 69008, France
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
20
|
Chang WH, Lai AG. Transcriptional landscape of DNA repair genes underpins a pan-cancer prognostic signature associated with cell cycle dysregulation and tumor hypoxia. DNA Repair (Amst) 2019; 78:142-153. [PMID: 31054516 DOI: 10.1016/j.dnarep.2019.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/26/2022]
Abstract
Overactive DNA repair contributes to therapeutic resistance in cancer. However, pan-cancer comparative studies investigating the contribution of all DNA repair genes in cancer progression employing an integrated approach have remained limited. We performed a multi-cohort retrospective analysis to determine the prognostic significance of 138 DNA repair genes in 16 cancer types (n = 16,225). Cox proportional hazards analyses revealed a significant variation in the number of prognostic genes between cancers; 81 genes were prognostic in clear cell renal cell carcinoma while only two genes were prognostic in glioblastoma. We reasoned that genes that were commonly prognostic in highly correlated cancers revealed by Spearman's correlation analysis could be harnessed as a molecular signature for risk assessment. A 10-gene signature, uniting prognostic genes that were common in highly correlated cancers, was significantly associated with overall survival in patients with clear cell renal cell (P < 0.0001), papillary renal cell (P = 0.0007), liver (P = 0.002), lung (P = 0.028), pancreas (P = 0.00013) or endometrial (P = 0.00063) cancers. Receiver operating characteristic analyses revealed that a combined model of the 10-gene signature and tumor staging outperformed either classifier when considered alone. Multivariate Cox regression models incorporating additional clinicopathological features showed that the signature was an independent predictor of overall survival. Tumor hypoxia is associated with adverse outcomes. Consistent across all six cancers, patients with high 10-gene and high hypoxia scores had significantly higher mortality rates compared to those with low 10-gene and low hypoxia scores. Functional enrichment analyses revealed that high mortality rates in patients with high 10-gene scores were attributable to an overproliferation phenotype. Death risk in these patients was further exacerbated by concurrent mutations of a cell cycle checkpoint protein, TP53. The 10-gene signature identified tumors with heightened DNA repair ability. This information has the potential to radically change prognosis through the use of adjuvant DNA repair inhibitors with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Wai Hoong Chang
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, OX3 7FZ, United Kingdom
| | - Alvina G Lai
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, OX3 7FZ, United Kingdom.
| |
Collapse
|
21
|
Story MD, Durante M. Radiogenomics. Med Phys 2018; 45:e1111-e1122. [DOI: 10.1002/mp.13064] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Michael D. Story
- Department of Radiation Oncology University of Texas, Southwestern Medical Center Dallas TX USA
- Simmons Comprehensive Cancer Center University of Texas, Southwestern Medical Center Dallas TX USA
| | - Marco Durante
- Trento Institute for Fundamental Physics Applications National Institute for Nuclear Physics Trento Italy
- Department of Physics University of Trento Trento Italy
| |
Collapse
|
22
|
Story MD, Wang J. Developing Predictive or Prognostic Biomarkers for Charged Particle Radiotherapy. Int J Part Ther 2018; 5:94-102. [PMID: 30393751 DOI: 10.14338/ijpt-18-00027.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The response to radiotherapy can vary greatly among individuals, even though advances in technology allow for the highly localized placement of therapeutic doses of radiation to a tumor. This variability in patient response to radiation is biologically driven, but the individuality of tumor and healthy tissue biology are not used to create individual treatment plans. Biomarkers of radiosensitivity, whether intrinsic or from hypoxia, would move radiation oncology from precision medicine to precise, personalized medicine. Charged particle radiotherapy allows for even greater dose conformity, but the biological advantages of charged particle radiotherapy have not yet been cultivated. The development of biomarkers that would drive biologically based clinical trials, identify patients for whom charged particles are most appropriate, or aid in particle-selection strategies could be envisioned with appropriate biomarkers. Initially, biomarkers for low-linear energy transfer (LET) radiation responses should be tested against charged particles. Biomarkers of tumor radioresistance to low-LET radiations could be used to identify patients for whom the enhanced relative biological effectiveness (RBE) of charged particles would be more effective compared with low-LET radiations and those for whom specific DNA-repair inhibitors, in combination with charged particles, may also be appropriate. Furthermore, heavy charged particles can overcome the radioresistance of hypoxic tumors when used at the appropriate LET. Biomarkers for hypoxia could identify hypoxic tumors and, in combination with imaging, define hypoxic regions of a tumor for specific ion selection. Moreover, because of the enhanced RBE for charged particles, the risk for adverse healthy tissue effects may be greater, even though charged particles have greater tumor conformality. There are many validated healthy-tissue biomarkers available to test against charged particle exposures. Lastly, newer biological techniques, as well as newer bioinformatic and computational methods, are rapidly changing the landscape for biomarker identification, validation, and clinical trial design.
Collapse
Affiliation(s)
- Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
23
|
Gu Z, Li Y, Yang X, Yu M, Chen Z, Zhao C, Chen L, Wang L. Overexpression of CLC-3 is regulated by XRCC5 and is a poor prognostic biomarker for gastric cancer. J Hematol Oncol 2018; 11:115. [PMID: 30217218 PMCID: PMC6137920 DOI: 10.1186/s13045-018-0660-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023] Open
Abstract
Background Recently, many potential prognostic biomarkers for gastric cancer (GC) have been identified, but the prognosis of advanced GC patients remains poor. Chloride channels are promising cancer biomarkers, and their family member chloride channel-3 (CLC-3) is involved in multiple biological behaviors. However, whether CLC-3 is a prognostic biomarker for GC patients is rarely reported. The molecular mechanisms by which CLC-3 is regulated in GC are unclear. Methods The expression of CLC-3 and XRCC5 in human specimens was analyzed using immunohistochemistry. The primary biological functions and pathways related to CLC-3 were enriched by RNA sequencing. A 5′-biotin-labeled DNA probe with a promoter region between − 248 and + 226 was synthesized to pull down CLC-3 promoter-binding proteins. Functional studies were detected by MTS, clone formation, wound scratch, transwell, and xenograft mice model. Mechanistic studies were investigated by streptavidin-agarose-mediated DNA pull-down, mass spectrometry, ChIP, dual-luciferase reporter assay system, Co-IP, and immunofluorescence. Results The results showed that CLC-3 was overexpressed in human GC tissues and that overexpression of CLC-3 was a poor prognostic biomarker for GC patients (P = 0.012). Furthermore, higher expression of CLC-3 was correlated with deeper tumor invasion (P = 0.006) and increased lymph node metastasis (P = 0.016), and knockdown of CLC-3 inhibited cell proliferation and migration in vitro. In addition, X-ray repair cross-complementing 5 (XRCC5) was identified as a CLC-3 promoter-binding protein, and both CLC-3 (HR 1.671; 95% CI 1.012–2.758; P = 0.045) and XRCC5 (HR 1.795; 95% CI 1.076–2.994; P = 0.025) were prognostic factors of overall survival in GC patients. The in vitro and in vivo results showed that the expression and function of CLC-3 were inhibited after XRCC5 knockdown, and the inhibition effects were rescued by CLC-3 overexpression. Meanwhile, the expression and function of CLC-3 were promoted after XRCC5 overexpression, and the promotion effects were reversed by the CLC-3 knockdown. The mechanistic study revealed that knockdown of XRCC5 suppressed the binding of XRCC5 to the CLC-3 promoter and subsequent promoter activity, thus regulating CLC-3 expression at the transcriptional level by interacting with PARP1. Conclusions Our findings indicate that overexpression of CLC-3 is regulated by XRCC5 and is a poor prognostic biomarker for gastric cancer. Double targeting CLC-3 and XRCC5 may provide the promising therapeutic potential for GC treatment. Electronic supplementary material The online version of this article (10.1186/s13045-018-0660-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhuoyu Gu
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, 510632, China.,Department of Pathophysiology, Medical College, Jinan University, Guangzhou, China
| | - Yixin Li
- Department of Clinical Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiaoya Yang
- Department of Pathophysiology, Medical College, Jinan University, Guangzhou, China.,Department of Physiology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Meisheng Yu
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, 510632, China.,Department of Pathophysiology, Medical College, Jinan University, Guangzhou, China
| | - Zhanru Chen
- Department of Physiology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Chan Zhao
- Department of Physiology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Lixin Chen
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, 510632, China.
| | - Liwei Wang
- Department of Physiology, Medical College, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
24
|
Fu X, Zhang C, Meng H, Zhang K, Shi L, Cao C, Wang Y, Su C, Xin L, Ren Y, Zhang W, Sun X, Ge L, Silvennoinen O, Yao Z, Yang X, Yang J. Oncoprotein Tudor-SN is a key determinant providing survival advantage under DNA damaging stress. Cell Death Differ 2018; 25:1625-1637. [PMID: 29459768 DOI: 10.1038/s41418-018-0068-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/12/2023] Open
Abstract
Herein, Tudor-SN was identified as a DNA damage response (DDR)-related protein that plays important roles in the early stage of DDR. X-ray or laser irradiation could evoke the accumulation of Tudor-SN to DNA damage sites in a poly(ADP-ribosyl)ation-dependent manner via interaction with PARP-1. Additionally, we illustrated that the SN domain of Tudor-SN mediated the association of these two proteins. The accumulated Tudor-SN further recruited SMARCA5 (ATP-dependent chromatin remodeller) and GCN5 (histone acetyltransferase) to DNA damage sites, resulting in chromatin relaxation, and consequently activating the ATM kinase and downstream DNA repair signalling pathways to promote cell survival. Consistently, the loss-of-function of Tudor-SN attenuated the enrichment of SMARCA5, GCN5 and acetylation of histone H3 (acH3) at DNA break sites and abolished chromatin relaxation; as a result, the cells exhibited DNA repair and cell survival deficiency. As Tudor-SN protein is highly expressed in different tumours, it is likely to be involved in the radioresistance of cancer treatment.
Collapse
Affiliation(s)
- Xiao Fu
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Department of Biochemistry and Molecular Biology, Excellent Talent Project, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Chunyan Zhang
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Department of Biochemistry and Molecular Biology, Excellent Talent Project, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Hao Meng
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Department of Biochemistry and Molecular Biology, Excellent Talent Project, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Kai Zhang
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Department of Biochemistry and Molecular Biology, Excellent Talent Project, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Lei Shi
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Department of Biochemistry and Molecular Biology, Excellent Talent Project, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Cheng Cao
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Department of Biochemistry and Molecular Biology, Excellent Talent Project, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Ye Wang
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Department of Biochemistry and Molecular Biology, Excellent Talent Project, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Chao Su
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Department of Biochemistry and Molecular Biology, Excellent Talent Project, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Lingbiao Xin
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Department of Biochemistry and Molecular Biology, Excellent Talent Project, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Yuanyuan Ren
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Department of Biochemistry and Molecular Biology, Excellent Talent Project, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Wei Zhang
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Department of Biochemistry and Molecular Biology, Excellent Talent Project, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Xiaoming Sun
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Department of Biochemistry and Molecular Biology, Excellent Talent Project, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Lin Ge
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Department of Biochemistry and Molecular Biology, Excellent Talent Project, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Olli Silvennoinen
- Institute of Medical Technology, University of Tampere, Tampere University Hospital, Biokatu 8, 33014, Tampere, Finland
| | - Zhi Yao
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Department of Biochemistry and Molecular Biology, Excellent Talent Project, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Xi Yang
- Department of Immunology, University of Manitoba, 471 Apotex Centre, 750 McDermot Avenue, Winnipeg, MB, R3E 0T5, Canada.
| | - Jie Yang
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Department of Biochemistry and Molecular Biology, Excellent Talent Project, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China.
| |
Collapse
|
25
|
Wang Y, Gudikote J, Giri U, Yan J, Deng W, Ye R, Jiang W, Li N, Hobbs BP, Wang J, Swisher SG, Fujimoto J, Wistuba II, Komaki R, Heymach JV, Lin SH. RAD50 Expression Is Associated with Poor Clinical Outcomes after Radiotherapy for Resected Non-small Cell Lung Cancer. Clin Cancer Res 2018; 24:341-350. [PMID: 29030353 DOI: 10.1158/1078-0432.ccr-17-1455] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/30/2017] [Accepted: 10/09/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Although postoperative radiotherapy is often used to maintain local control after surgical resection and chemotherapy for locally advanced non-small cell lung cancer (NSCLC), both locoregional failure and distant metastasis remain problematic. The mechanisms of therapeutic resistance remain poorly understood.Experimental Design: We used reverse-phase protein arrays (RPPA) to profile the baseline expression of 170 total and phosphorylated proteins in 70 NSCLC cell lines to categorize pathways that may contribute to radiation resistance. Significant markers identified by RPPA were further analyzed in tissue microarrays (TMA) of specimens from 127 patients with NSCLC who had received surgery before receiving postoperative radiotherapy. Cox regression analysis and log-rank tests were used to identify potential predictive factors. We then validated the biological function of the markers in NSCLC cell lines in vitroResults: Of the 170 proteins or phospho-proteins profiled, a subset of 12 proteins was found to correlate with radiation response parameters. TMA analysis of the 12 proteins showing the greatest differences in expression in the RPPA analysis demonstrated that RAD50 had the strongest correlation with distant relapse-free survival, locoregional relapse-free survival, and disease-free survival in patients with NSCLC. We confirmed that knockdown of RAD50 sensitized NSCLC cells to radiation and that upregulation of RAD50 increased radioresistance in in vitro experiments.Conclusions: Upregulated RAD50 may be a predictor of radioresistance in patients with lung cancer who received radiotherapy. Clin Cancer Res; 24(2); 341-50. ©2017 AACR.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Jayanthi Gudikote
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Uma Giri
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun Yan
- Oncology Research for Biologics and Immunotherapy Translation, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Weiye Deng
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rui Ye
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nan Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brian P Hobbs
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ritsuko Komaki
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven H Lin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
26
|
Ziemann F, Seltzsam S, Dreffke K, Preising S, Arenz A, Subtil FSB, Rieckmann T, Engenhart-Cabillic R, Dikomey E, Wittig A. Roscovitine strongly enhances the effect of olaparib on radiosensitivity for HPV neg. but not for HPV pos. HNSCC cell lines. Oncotarget 2017; 8:105170-105183. [PMID: 29285242 PMCID: PMC5739629 DOI: 10.18632/oncotarget.22005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023] Open
Abstract
At present, advanced stage human Papillomavirus (HPV) negative and positive head and neck squamous cell carcinoma (HNSCC) are treated by intense multimodal therapy that includes radiochemotherapy, which are associated with relevant side effects. Patients with HPV positive tumors possess a far better prognosis than those with HPV negative cancers. Therefore, new therapeutic strategies are needed to improve the outcome especially of the latter one as well as quality of life for all HNSCC patients. Here we tested whether roscovitine, an inhibitor of cyclin-dependent kinases (CDKs), which hereby also blocks homologous recombination (HR), can be used to enhance the radiation sensitivity of HNSCC cell lines. In all five HPV negative and HPV positive cell lines tested, roscovitine caused inhibition of CDK1 and 2. Surprisingly, all HPV positive cell lines were found to be defective in HR. In contrast, HPV negative strains demonstrated efficient HR, which was completely suppressed by roscovitine. In line with this, for HPV negative but not for HPV positive cell lines, treatment with roscovitine resulted in a pronounced enhancement of the radiation-induced G2 arrest as well as a significant increase in radiosensitivity. Due to a defect in HR, all HPV positive cell lines were efficiently radiosensitized by the PARP-1 inhibitor olaparib. In contrast, in HPV negative cell lines a significant radiosensitization by olaparib was only achieved when combined with roscovitine.
Collapse
Affiliation(s)
- Frank Ziemann
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany
| | - Steve Seltzsam
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany
| | - Kristin Dreffke
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany
| | - Stefanie Preising
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany
| | - Andrea Arenz
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany
| | - Florentine S B Subtil
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany
| | - Thorsten Rieckmann
- Laboratory for Radiobiology & Experimental Radiooncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Rita Engenhart-Cabillic
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany
| | - Ekkehard Dikomey
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany.,Laboratory for Radiobiology & Experimental Radiooncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Andrea Wittig
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany
| |
Collapse
|
27
|
Cheah R, Srivastava R, Stafford ND, Beavis AW, Green V, Greenman J. Measuring the response of human head and neck squamous cell carcinoma to irradiation in a microfluidic model allowing customized therapy. Int J Oncol 2017; 51:1227-1238. [PMID: 28902347 DOI: 10.3892/ijo.2017.4118] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/31/2017] [Indexed: 11/06/2022] Open
Abstract
Radiotherapy is the standard treatment for head and neck squamous cell carcinoma (HNSCC), however, radioresistance remains a major clinical problem despite significant improvements in treatment protocols. Therapeutic outcome could potentially be improved if a patient's tumour response to irradiation could be predicted ex vivo before clinical application. The present study employed a bespoke microfluidic device to maintain HNSCC tissue whilst subjecting it to external beam irradiation and measured the responses using a panel of cell death and proliferation markers. HNSCC biopsies from five newly-presenting patients [2 lymph node (LN); 3 primary tumour (PT)] were divided into parallel microfluidic devices and replicates of each tumour were subjected to single-dose irradiation (0, 5, 10, 15 and 20 Gy). Lactate dehydrogenase (LDH) release was measured and tissue sections were stained for cytokeratin (CK), cleaved-CK18 (cCK18), phosphorylated-H2AX (γH2AX) and Ki‑67 by immunohistochemistry. In addition, fragmented DNA was detected using terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). Compared with non‑irradiated controls, higher irradiation doses resulted in elevated CK18-labelling index in two lymph nodes [15 Gy; 34.8% on LN1 and 31.7% on LN2 (p=0.006)] and a single laryngeal primary tumour (20 Gy; 31.5%; p=0.014). Significantly higher levels of DNA fragmentation were also detected in both lymph node samples and one primary tumour but at varying doses of irradiation, i.e., LN1 (20 Gy; 27.6%; p=0.047), LN2 (15 Gy; 15.3%; p=0.038) and PT3 (10 Gy; 35.2%; p=0.01). The γH2AX expression was raised but not significantly in the majority of samples. The percentage of Ki‑67 positive nuclei reduced dose-dependently following irradiation. In contrast no significant difference in LDH release was observed between irradiated groups and controls. There is clear inter- and intra-patient variability in response to irradiation when measuring a variety of parameters, which offers the potential for the approach to provide clinically valuable information.
Collapse
Affiliation(s)
- Ramsah Cheah
- Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | | | | | - Andrew W Beavis
- Radiation Physics, Hull and East Yorkshire Hospitals NHS Trust, Faculty of Science and Engineering, University of Hull, Hull, HU6 7RX, UK
| | - Victoria Green
- School of Life Sciences, University of Hull, Hull, HU6 7RX, UK
| | - John Greenman
- School of Life Sciences, University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
28
|
Abstract
Cellular chromosomal DNA is the principal target through which ionising radiation exerts it diverse biological effects. This chapter summarises the relevant DNA damage signalling and repair pathways used by normal and tumour cells in response to irradiation. Strategies for tumour radiosensitisation are reviewed which exploit tumour-specific DNA repair deficiencies or signalling pathway addictions, with a special focus on growth factor signalling, PARP, cancer stem cells, cell cycle checkpoints and DNA replication. This chapter concludes with a discussion of DNA repair-related candidate biomarkers of tumour response which are of crucial importance for implementing precision medicine in radiation oncology.
Collapse
|
29
|
The Role of the Core Non-Homologous End Joining Factors in Carcinogenesis and Cancer. Cancers (Basel) 2017; 9:cancers9070081. [PMID: 28684677 PMCID: PMC5532617 DOI: 10.3390/cancers9070081] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
DNA double-strand breaks (DSBs) are deleterious DNA lesions that if left unrepaired or are misrepaired, potentially result in chromosomal aberrations, known drivers of carcinogenesis. Pathways that direct the repair of DSBs are traditionally believed to be guardians of the genome as they protect cells from genomic instability. The prominent DSB repair pathway in human cells is the non-homologous end joining (NHEJ) pathway, which mediates template-independent re-ligation of the broken DNA molecule and is active in all phases of the cell cycle. Its role as a guardian of the genome is supported by the fact that defects in NHEJ lead to increased sensitivity to agents that induce DSBs and an increased frequency of chromosomal aberrations. Conversely, evidence from tumors and tumor cell lines has emerged that NHEJ also promotes chromosomal aberrations and genomic instability, particularly in cells that have a defect in one of the other DSB repair pathways. Collectively, the data present a conundrum: how can a single pathway both suppress and promote carcinogenesis? In this review, we will examine NHEJ's role as both a guardian and a disruptor of the genome and explain how underlying genetic context not only dictates whether NHEJ promotes or suppresses carcinogenesis, but also how it alters the response of tumors to conventional therapeutics.
Collapse
|
30
|
An HJ, Jo H, Jung CK, Kang JH, Kim MS, Sun DI, Cho KJ, Cho JH, Won HS, Sun DS, Ko YH. Prognostic implication of ERCC1 protein expression in resected oropharynx and oral cavity cancer. Pathol Res Pract 2017. [PMID: 28645807 DOI: 10.1016/j.prp.2017.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Excision repair cross complement group 1 (ERCC1) expression is a predictive biomarker for platinum-containing treatment in squamous cell carcinoma of head and neck (SCCHN). However, the prognostic significance after surgical resection is not well understood. METHODS Oropharynx (n=143) or oral cavity (n=61) SCCHN patients undergoing surgery were included. ERCC1 protein expression and HPV status were assessed by ERCC1 and p16 immunohistochemistry. RESULTS The ERCC1, over-expressed in 66.7% of patients, was associated with oral cavity cancer (P<0.001), well differentiation (P=0.036), and HPV negativity (P<0.001). In TCGA database, ERCC1 mRNA upregulation was enriched in HPV-negative and oral cavity cancers, and associated with HRAS mutation (P<0.001). The prognostic role of ERCC1 was not different according to HPV status. High ERCC1 expression showed a trend toward poor prognosis in patients with an advanced stage (P=0.079) with marginal significance. CONCLUSIONS The ERCC1 expression was not prognostic in surgically resected oropharynx/oral cavity SCCHN, irrespective of HPV status. However, it could provide additional prognostic information for advanced stage patients.
Collapse
Affiliation(s)
- Ho Jung An
- Division of Oncology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Heejoon Jo
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Chan Kwon Jung
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin Hyoung Kang
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Min Sik Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Il Sun
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kwang Jae Cho
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung-Hae Cho
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Sung Won
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Der Sheng Sun
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoon Ho Ko
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Skinner HD, Giri U, Yang LP, Kumar M, Liu Y, Story MD, Pickering CR, Byers LA, Williams MD, Wang J, Shen L, Yoo SY, Fan YH, Molkentine DP, Beadle BM, Meyn RE, Myers JN, Heymach JV. Integrative Analysis Identifies a Novel AXL-PI3 Kinase-PD-L1 Signaling Axis Associated with Radiation Resistance in Head and Neck Cancer. Clin Cancer Res 2017; 23:2713-2722. [PMID: 28476872 DOI: 10.1158/1078-0432.ccr-16-2586] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/18/2016] [Accepted: 02/16/2017] [Indexed: 11/16/2022]
Abstract
Purpose: The primary cause of death due to head and neck squamous cell carcinoma (HNSCC) is local treatment failure. The goal of this study was to examine this phenomenon using an unbiased approach.Experimental Design: We utilized human papilloma virus (HPV)-negative cell lines rendered radiation-resistant (RR) via repeated exposure to radiation, a panel of HPV-negative HNSCC cell lines and three cohorts of HPV-negative HNSCC tumors (n = 68, 97, and 114) from patients treated with radiotherapy and subjected to genomic, transcriptomic, and proteomic analysis.Results: RR cell lines exhibited upregulation of several proteins compared with controls, including increased activation of Axl and PI3 kinase signaling as well as increased expression of PD-L1. Additionally, inhibition of either Axl or PI3 kinase led to decreased PD-L1 expression. When clinical samples were subjected to RPPA and mRNA expression analysis, PD-L1 was correlated with both Axl and PI3K signaling as well as dramatically associated with local failure following radiotherapy. This finding was confirmed examining a third cohort using immunohistochemistry. Indeed, tumors with high expression of PD-L1 had failure rates following radiotherapy of 60%, 70%, and 50% compared with 20%, 25%, and 20% in the PD-L1-low expression group (P = 0.01, 1.9 × 10-3, and 9 × 10-4, respectively). This finding remained significant on multivariate analysis in all groups. Additionally, patients with PD-L1 low/CD8+ tumor-infiltrating lymphocytes high had no local failure or death due to disease (P = 5 × 10-4 and P = 4 × 10-4, respectively).Conclusions: Taken together, our data point to a targetable Axl-PI3 kinase-PD-L1 axis that is highly associated with radiation resistance. Clin Cancer Res; 23(11); 2713-22. ©2017 AACR.
Collapse
Affiliation(s)
- Heath D Skinner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Uma Giri
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Liang P Yang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Manish Kumar
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ying Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael D Story
- Simmons Comprehensive Cancer Center, Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren A Byers
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michelle D Williams
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Shen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Suk Y Yoo
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - You Hong Fan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David P Molkentine
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Beth M Beadle
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raymond E Meyn
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
32
|
Sanie-Jahromi F, Saadat I, Saadat M. Effects of extremely low frequency electromagnetic field and cisplatin on mRNA levels of some DNA repair genes. Life Sci 2016; 166:41-45. [DOI: 10.1016/j.lfs.2016.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 10/20/2022]
|
33
|
Ramakodi MP, Devarajan K, Blackman E, Gibbs D, Luce D, Deloumeaux J, Duflo S, Liu JC, Mehra R, Kulathinal RJ, Ragin CC. Integrative genomic analysis identifies ancestry-related expression quantitative trait loci on DNA polymerase β and supports the association of genetic ancestry with survival disparities in head and neck squamous cell carcinoma. Cancer 2016; 123:849-860. [PMID: 27906459 DOI: 10.1002/cncr.30457] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/26/2016] [Accepted: 10/28/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND African Americans with head and neck squamous cell carcinoma (HNSCC) have a lower survival rate than whites. This study investigated the functional importance of ancestry-informative single-nucleotide polymorphisms (SNPs) in HNSCC and also examined the effect of functionally important genetic elements on racial disparities in HNSCC survival. METHODS Ancestry-informative SNPs, RNA sequencing, methylation, and copy number variation data for 316 oral cavity and laryngeal cancer patients were analyzed across 178 DNA repair genes. The results of expression quantitative trait locus (eQTL) analyses were also replicated with a Gene Expression Omnibus (GEO) data set. The effects of eQTLs on overall survival (OS) and disease-free survival (DFS) were evaluated. RESULTS Five ancestry-related SNPs were identified as cis-eQTLs in the DNA polymerase β (POLB) gene (false discovery rate [FDR] < 0.01). The homozygous/heterozygous genotypes containing the African allele showed higher POLB expression than the homozygous white allele genotype (P < .001). A replication study using a GEO data set validated all 5 eQTLs and also showed a statistically significant difference in POLB expression based on genetic ancestry (P = .002). An association was observed between these eQTLs and OS (P < .037; FDR < 0.0363) as well as DFS (P = .018 to .0629; FDR < 0.079) for oral cavity and laryngeal cancer patients treated with platinum-based chemotherapy and/or radiotherapy. Genotypes containing the African allele were associated with poor OS/DFS in comparison with homozygous genotypes harboring the white allele. CONCLUSIONS Analyses show that ancestry-related alleles could act as eQTLs in HNSCC and support the association of ancestry-related genetic factors with survival disparities in patients diagnosed with oral cavity and laryngeal cancer. Cancer 2017;123:849-60. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Meganathan P Ramakodi
- Cancer Prevention and Control Program, Fox Chase Cancer Center-Temple Health, Philadelphia, Pennsylvania.,Department of Biology, Temple University, Philadelphia, Pennsylvania.,Center for Computational Genetics and Genomics, Temple University, Philadelphia, Pennsylvania.,Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania.,African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania
| | - Karthik Devarajan
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center-Temple Health, Philadelphia, Pennsylvania.,Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, Pennsylvania.,Center for High-Dimensional Statistics, Big Data Institute, Temple University, Philadelphia, Pennsylvania
| | - Elizabeth Blackman
- Cancer Prevention and Control Program, Fox Chase Cancer Center-Temple Health, Philadelphia, Pennsylvania.,African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania
| | - Denise Gibbs
- Cancer Prevention and Control Program, Fox Chase Cancer Center-Temple Health, Philadelphia, Pennsylvania.,African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania
| | - Danièle Luce
- African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania.,National Institute for Health and Medical Research (INSERM), Unit 1085;, Institute for Research in Health, Environment, and Work (IRSET), Pointe-à-Pitre, Guadeloupe, French West Indies
| | - Jacqueline Deloumeaux
- African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania.,General Cancer Registry of Guadeloupe, University Hospital of Pointe-à-Pitre, Pointe-a-Pitre, Guadeloupe, French West Indies
| | - Suzy Duflo
- Department of Oto-Rhino-Laryngology and Head and Neck Surgery, University Hospital of Pointe à Pitre, Pointe-a-Pitre, Guadeloupe, French West Indies
| | - Jeffrey C Liu
- Head and Neck Surgery, Fox Chase Cancer Center-Temple Health, Philadelphia, Pennsylvania.,Department of Otolaryngology-Head and Neck Surgery, Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Ranee Mehra
- Department of Hematology/Oncology, Fox Chase Cancer Center-Temple Health, Philadelphia, Pennsylvania
| | - Rob J Kulathinal
- Department of Biology, Temple University, Philadelphia, Pennsylvania.,Center for Computational Genetics and Genomics, Temple University, Philadelphia, Pennsylvania.,Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania.,African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania
| | - Camille C Ragin
- Cancer Prevention and Control Program, Fox Chase Cancer Center-Temple Health, Philadelphia, Pennsylvania.,African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania.,Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, Pennsylvania.,Department of Otolaryngology-Head and Neck Surgery, Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
34
|
Yamamoto VN, Thylur DS, Bauschard M, Schmale I, Sinha UK. Overcoming radioresistance in head and neck squamous cell carcinoma. Oral Oncol 2016; 63:44-51. [PMID: 27938999 DOI: 10.1016/j.oraloncology.2016.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 08/29/2016] [Accepted: 11/06/2016] [Indexed: 12/28/2022]
Abstract
Radiation therapy plays an essential role in the treatment of head and neck squamous cell carcinoma (HNSCC), yet therapeutic efficacy is hindered by treatment-associated toxicity and tumor recurrence. In comparison to other cancers, innovation has proved challenging, with the epidermal growth factor receptor (EGFR) antibody cetuximab being the only new radiosensitizing agent approved by the FDA in over half a century. This review examines the physiological mechanisms that contribute to radioresistance in HNSCC as well as preclinical and clinical data regarding novel radiosensitizing agents, with an emphasis on those with highest translational promise.
Collapse
Affiliation(s)
- Vicky N Yamamoto
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - David S Thylur
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Michael Bauschard
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Isaac Schmale
- Department of Otolaryngology-Head & Neck Surgery, University of Rochester Medical Center, Rochester, NY, United States
| | - Uttam K Sinha
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
35
|
Bittner MI, Wiedenmann N, Bucher S, Hentschel M, Mix M, Rücker G, Weber WA, Meyer PT, Werner M, Grosu AL, Kayser G. Analysis of relation between hypoxia PET imaging and tissue-based biomarkers during head and neck radiochemotherapy. Acta Oncol 2016; 55:1299-1304. [PMID: 27593107 DOI: 10.1080/0284186x.2016.1219046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Tumor hypoxia is associated with poor prognosis and outcome and can be visualized using 18F-MISO-positron emission tomography (PET) imaging. The goal of this study was to evaluate the correlation between biological markers and biological imaging in a group of patients in whom a correlation between biological imaging and outcome has previously been demonstrated. MATERIAL AND METHODS In a prospective pilot project, 16 patients with locally advanced cancer of the head and neck underwent 18F-MISO-PET scans before and during primary radiochemotherapy in addition to 18F-FDG-PET and computed tomography (CT). Tumor biopsies were stained for three tissue-based markers (Ku80, CAIX, CD44); in addition, human papillomavirus (HPV) status was assessed. H-scores of marker expression were generated and the results were correlated with the biological imaging and clinical outcome. RESULTS No statistically significant correlation was established between the H-scores for Ku80, CD44 and CAIX or between any of the H-scores and the imaging variables (tumor volume on 18F-FDG-PET in ml, hypoxic subvolume as assessed by 18F-MISO-PET in ml, and SUVmax tumor/SUVmean muscle during the 18F-MISO-PET). A statistically significant negative correlation was found between CD44 H-score and HPV status (p = .004). Cox regression analysis for overall survival and recurrence-free survival showed one significant result for CAIX being associated with improved overall survival [hazard ratio 0.96 (0.93-1.00), p = .047]. CONCLUSION Expression of Ku80, CAIX and CD44 as assessed by immunohistochemistry of tumor biopsies were not correlated to one another or the biological imaging data. However, there was a significant influence of CAIX on overall survival and between CD44 and HPV.
Collapse
Affiliation(s)
- Martin-Immanuel Bittner
- Department of Radiation Oncology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, UK
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicole Wiedenmann
- Department of Radiation Oncology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabine Bucher
- Department of Radiation Oncology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hentschel
- Department of Radiation Oncology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Nuclear Medicine, Inselspital Bern, Bern, Switzerland
| | - Michael Mix
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Nuclear Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Gerta Rücker
- Institute for Medical Biometry and Statistics, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Wolfgang A. Weber
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Nuclear Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- Molecular Imaging and Therapy Service, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Philipp T. Meyer
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Nuclear Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Martin Werner
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Surgical Pathology, Department of Pathology, Medical Center?University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gian Kayser
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Surgical Pathology, Department of Pathology, Medical Center?University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
36
|
Zhu B, Cheng D, Li S, Zhou S, Yang Q. High Expression of XRCC6 Promotes Human Osteosarcoma Cell Proliferation through the β-Catenin/Wnt Signaling Pathway and Is Associated with Poor Prognosis. Int J Mol Sci 2016; 17:ijms17071188. [PMID: 27455247 PMCID: PMC4964557 DOI: 10.3390/ijms17071188] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/06/2016] [Accepted: 07/14/2016] [Indexed: 01/07/2023] Open
Abstract
Increasing evidences show that XRCC6 (X-ray repair complementing defective repair in Chinese hamster cells 6) was upregulated and involved in tumor growth in several tumor types. However, the correlation of XRCC6 and human osteosarcoma (OS) is still unknown. This study was conducted with the aim to reveal the expression and biological function of XRCC6 in OS and elucidate the potential mechanism. The mRNA expression level of XRCC6 was measured in osteosarcoma cells and OS samples by quantitative transcription-PCR (qRT-PCR). The expression of XRCC6 protein was measured using Western blot and immunohistochemical staining in osteosarcoma cell lines and patient samples. Cell Counting Kit 8 (CCK8), colony-forming and cell cycle assays were used to test cell survival capacity. We found that XRCC6 was overexpressed in OS cells and OS samples compared with the adjacent non-tumorous samples. High expression of XRCC6 was correlated with clinical stage and tumor size in OS. Reduced expression of XRCC6 inhibits OS cell proliferation through G2/M phase arrest. Most importantly, further experiments demonstrated that XRCC6 might regulate OS growth through the β-catenin/Wnt signaling pathway. In conclusion, these findings indicate that XRCC6 exerts tumor-promoting effects for OS through β-catenin/Wnt signaling pathway. XRCC6 may serve as a novel therapeutic target for OS patients.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai 200233, China.
| | - Dongdong Cheng
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai 200233, China.
| | - Shijie Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai 200233, China.
| | - Shumin Zhou
- Institute of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai 200233, China.
| | - Qingcheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai 200233, China.
| |
Collapse
|
37
|
The Expression of Checkpoint and DNA Repair Genes in Head and Neck Cancer as Possible Predictive Factors. Pathol Oncol Res 2016; 23:253-264. [DOI: 10.1007/s12253-016-0088-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/05/2016] [Indexed: 12/12/2022]
|
38
|
Weaver AN, Cooper TS, Rodriguez M, Trummell HQ, Bonner JA, Rosenthal EL, Yang ES. DNA double strand break repair defect and sensitivity to poly ADP-ribose polymerase (PARP) inhibition in human papillomavirus 16-positive head and neck squamous cell carcinoma. Oncotarget 2015; 6:26995-7007. [PMID: 26336991 PMCID: PMC4694969 DOI: 10.18632/oncotarget.4863] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/12/2015] [Indexed: 01/04/2023] Open
Abstract
Patients with human papillomavirus-positive (HPV+) head and neck squamous cell carcinomas (HNSCCs) have increased response to radio- and chemotherapy and improved overall survival, possibly due to an impaired DNA damage response. Here, we investigated the correlation between HPV status and repair of DNA damage in HNSCC cell lines. We also assessed in vitro and in vivo sensitivity to the PARP inhibitor veliparib (ABT-888) in HNSCC cell lines and an HPV+ patient xenograft. Repair of DNA double strand breaks (DSBs) was significantly delayed in HPV+ compared to HPV- HNSCCs, resulting in persistence of γH2AX foci. Although DNA repair activators 53BP1 and BRCA1 were functional in all HNSCCs, HPV+ cells showed downstream defects in both non-homologous end joining and homologous recombination repair. Specifically, HPV+ cells were deficient in protein recruitment and protein expression of DNA-Pk and BRCA2, key factors for non-homologous end joining and homologous recombination respectively. Importantly, the apparent DNA repair defect in HPV+ HNSCCs was associated with increased sensitivity to the PARP inhibitor veliparib, resulting in decreased cell survival in vitro and a 10-14 day tumor growth delay in vivo. These results support the testing of PARP inhibition in combination with DNA damaging agents as a novel therapeutic strategy for HPV+ HNSCC.
Collapse
Affiliation(s)
- Alice N. Weaver
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Tiffiny S. Cooper
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Marcela Rodriguez
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Hoa Q. Trummell
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - James A. Bonner
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Eben L. Rosenthal
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Eddy S. Yang
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| |
Collapse
|
39
|
Ventelä S, Sittig E, Mannermaa L, Mäkelä JA, Kulmala J, Löyttyniemi E, Strauss L, Cárpen O, Toppari J, Grénman R, Westermarck J. CIP2A is an Oct4 target gene involved in head and neck squamous cell cancer oncogenicity and radioresistance. Oncotarget 2015; 6:144-58. [PMID: 25474139 PMCID: PMC4381584 DOI: 10.18632/oncotarget.2670] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 11/02/2014] [Indexed: 12/31/2022] Open
Abstract
Radiotherapy is a mainstay for treatment of many human cancer types, including head and neck squamous cell carcinoma (HNSCC). Thereby, it is clinically very relevant to understand the mechanisms determining radioresistance. Here, we identify CIP2A as an Oct4 target gene and provide evidence that they co-operate in radioresistance. Oct4 positively regulates CIP2A expression both in testicular cancer cell lines as well as in embryonic stem cells. To expand the relevance of these findings we show that Oct4 and CIP2A are co-expressed in CD24 positive side-population of patient-derived HNSCC cell lines. Most importantly, all Oct4 positive HNSCC patient samples were CIP2A positive and this double positivity was linked to poor differentiation level, and predicted for decreased patient survival among radiotherapy treated HNSCC patients. Oct4 and CIP2A expression was also linked with increased aggressiveness and radioresistancy in HNSCC cell lines. Together we demonstrate that CIP2A is a novel Oct4 target gene in stem cells and in human cancer cell lines. Clinically these results suggest that diagnostic evaluation of HNSCC tumors for Oct4 or Oct4/CIP2A positivity might help to predict HNSCC tumor radioresistancy. These results also identify both Oct4 and CIP2A as potential targets for radiosensitation.
Collapse
Affiliation(s)
- Sami Ventelä
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi, Turku, Finland. Department of Physiology, University of Turku, Finland. Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, Turku, Finland
| | - Eleonora Sittig
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi, Turku, Finland
| | - Leni Mannermaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi, Turku, Finland
| | | | - Jarmo Kulmala
- Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
| | | | - Leena Strauss
- Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Finland
| | - Olli Cárpen
- Department of Pathology, University of Turku, Finland
| | - Jorma Toppari
- Department of Physiology, University of Turku, Finland. Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Reidar Grénman
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, Turku, Finland
| | - Jukka Westermarck
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi, Turku, Finland. Department of Pathology, University of Turku, Finland
| |
Collapse
|
40
|
Ow TJ, Pitts CE, Kabarriti R, Garg MK. Effective Biomarkers and Radiation Treatment in Head and Neck Cancer. Arch Pathol Lab Med 2015; 139:1379-88. [PMID: 26046489 DOI: 10.5858/arpa.2014-0574-ra] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Radiation is a key arm in the multidisciplinary treatment of patients with head and neck squamous cell carcinoma. During the past 2 decades, significant changes in the way radiation therapy is planned and delivered have improved efficacy and decreased toxicity. Refined approaches in the application of radiation and chemoradiation have led to organ-sparing treatment regimens for laryngeal and pharyngeal cancers and have improved local and regional control rates in the postoperative, adjuvant setting. The molecular and genetic determinants of tumor cell response to radiation have been studied, and several potential biomarkers are emerging that could further improve application and efficacy of radiation treatment in head and neck squamous cell carcinoma. OBJECTIVE To discuss the current understanding of potential biomarkers related to radiation response in head and neck squamous cell carcinoma. DATA SOURCES Existing published literature. CONCLUSIONS Several potential biomarkers are actively being studied as predictors and targets to improve the use and efficacy of radiation therapy to treat head and neck squamous cell carcinoma. Several promising candidates have been defined, and new markers are on the horizon.
Collapse
Affiliation(s)
| | | | | | - Madhur K Garg
- From the Departments of Otorhinolaryngology-Head and Neck Surgery (Drs Ow and Garg), Pathology (Dr Ow), Radiation Oncology (Drs Kabarriti and Garg), and Urology (Dr Garg) Montefiore Medical Center, Bronx, New York; and the Albert Einstein College of Medicine (Drs Ow, Kabarriti, and Garg, and Ms Pitts), Bronx
| |
Collapse
|
41
|
Ree AH, Redalen KR. Personalized radiotherapy: concepts, biomarkers and trial design. Br J Radiol 2015; 88:20150009. [PMID: 25989697 DOI: 10.1259/bjr.20150009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the past decade, and pointing onwards to the immediate future, clinical radiotherapy has undergone considerable developments, essentially including technological advances to sculpt radiation delivery, the demonstration of the benefit of adding concomitant cytotoxic agents to radiotherapy for a range of tumour types and, intriguingly, the increasing integration of targeted therapeutics for biological optimization of radiation effects. Recent molecular and imaging insights into radiobiology will provide a unique opportunity for rational patient treatment, enabling the parallel design of next-generation trials that formally examine the therapeutic outcome of adding targeted drugs to radiation, together with the critically important assessment of radiation volume and dose-limiting treatment toxicities. In considering the use of systemic agents with presumed radiosensitizing activity, this may also include the identification of molecular, metabolic and imaging markers of treatment response and tolerability, and will need particular attention on patient eligibility. In addition to providing an overview of clinical biomarker studies relevant for personalized radiotherapy, this communication will highlight principles in addressing clinical evaluation of combined-modality-targeted therapeutics and radiation. The increasing number of translational studies that bridge large-scale omics sciences with quality-assured phenomics end points-given the imperative development of open-source data repositories to allow investigators the access to the complex data sets-will enable radiation oncology to continue to position itself with the highest level of evidence within existing clinical practice.
Collapse
Affiliation(s)
- A H Ree
- 1 Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,2 Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - K R Redalen
- 1 Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
42
|
Torgovnick A, Schumacher B. DNA repair mechanisms in cancer development and therapy. Front Genet 2015; 6:157. [PMID: 25954303 PMCID: PMC4407582 DOI: 10.3389/fgene.2015.00157] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/07/2015] [Indexed: 01/18/2023] Open
Abstract
DNA damage has been long recognized as causal factor for cancer development. When erroneous DNA repair leads to mutations or chromosomal aberrations affecting oncogenes and tumor suppressor genes, cells undergo malignant transformation resulting in cancerous growth. Genetic defects can predispose to cancer: mutations in distinct DNA repair systems elevate the susceptibility to various cancer types. However, DNA damage not only comprises a root cause for cancer development but also continues to provide an important avenue for chemo- and radiotherapy. Since the beginning of cancer therapy, genotoxic agents that trigger DNA damage checkpoints have been applied to halt the growth and trigger the apoptotic demise of cancer cells. We provide an overview about the involvement of DNA repair systems in cancer prevention and the classes of genotoxins that are commonly used for the treatment of cancer. A better understanding of the roles and interactions of the highly complex DNA repair machineries will lead to important improvements in cancer therapy.
Collapse
Affiliation(s)
- Alessandro Torgovnick
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases Research Center, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases Research Center, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
43
|
Fitzgerald AL, Osman AA, Xie TX, Patel A, Skinner H, Sandulache V, Myers JN. Reactive oxygen species and p21Waf1/Cip1 are both essential for p53-mediated senescence of head and neck cancer cells. Cell Death Dis 2015; 6:e1678. [PMID: 25766317 PMCID: PMC4385922 DOI: 10.1038/cddis.2015.44] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 12/15/2022]
Abstract
Treatment of head and neck squamous cell carcinoma, HNSCC, often requires multimodal therapy, including radiation therapy. The efficacy of radiotherapy in controlling locoregional recurrence, the most frequent cause of death from HNSCC, is critically important for patient survival. One potential biomarker to determine radioresistance is TP53 whose alterations are predictive of poor radiation response. DNA-damaging reactive oxygen species (ROS) are a by-product of ionizing radiation that lead to the activation of p53, transcription of p21(cip1/waf1) and, in the case of wild-type TP53 HNSCC cells, cause senescence. The expression of p21 and production of ROS have been associated with the induction of cellular senescence, but the intricate relationship between p21 and ROS and how they work together to induce senescence remains elusive. For the first time, we show that persistent exposure to low levels of the ROS, hydrogen peroxide, leads to the long-term expression of p21 in HNSCC cells with a partially functional TP53, resulting in senescence. We conclude that the level of ROS is crucial in initiating p53's transcription of p21 leading to senescence. It is p21's ability to sustain elevated levels of ROS, in turn, that allows for a long-term oxidative stress, and ensures an active p53-p21-ROS signaling loop. Our data offer a rationale to consider the use of either ROS inducing agents or therapies that increase p21 expression in combination with radiation as approaches in cancer therapy and emphasizes the importance of considering TP53 status when selecting a patient's treatment options.
Collapse
Affiliation(s)
- A L Fitzgerald
- Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
- Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - A A Osman
- Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - T-X Xie
- Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - A Patel
- Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - H Skinner
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - V Sandulache
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX
| | - J N Myers
- Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
44
|
Zhang ZY, Fu SL, Xu SQ, Zhou X, Liu XS, Xu YJ, Zhao JP, Wei S. By downregulating Ku80, hsa-miR-526b suppresses non-small cell lung cancer. Oncotarget 2015; 6:1462-1477. [PMID: 25596743 PMCID: PMC4359307 DOI: 10.18632/oncotarget.2808] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/24/2014] [Indexed: 11/25/2022] Open
Abstract
Ku80 is involved in DNA double-strand breaks (DSBs) repair. Ku80 is overexpressed in lung cancer tissues, yet, molecular mechanisms have not been examined. We identified that miRNA, hsa-miR-526b, is bound to the 3'-UTR of Ku80 mRNA, thus decreasing Ku80 expression in NSCLC cells. Hsa-miR-526b was downregulated in NSCLC tissues compared with corresponding non-tumorous tissues, and its expression was inversely correlated with Ku80 upregulation. Overexpression of Ku80 and downregulation of hsa-miR-526b were associated with poor clinical outcomes of NSCLC patients. Hsa-miR-526b suppressed NSCLC cell proliferation, clonogenicity, and induced cell cycle arrest and apoptosis. Hsa-miR-526b inhibited xenografts and orthotopic lung tumor growth. Further, Ku80 knockdown in NSCLC cells suppressed tumor properties in vitro and in vivo similar to hsa-miR-526b overexpression. In agreement, Ku80 restoration partially reversed cell cycle arrest and apoptosis induced by hsa-miR-526b in NSCLC cells in vitro and in vivo. In addition, hsa-miR-526b overexpression or Ku80 knockdown increased p53 and p21CIP1/WAF1 expression. These findings reveal that hsa-miR-526b is a potential target in cancer therapy.
Collapse
Affiliation(s)
- Zun-yi Zhang
- Department of Surgery, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sheng-ling Fu
- Department of Surgery, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, China
| | - Su-qin Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao Zhou
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xian-shen Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong-jian Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian-ping Zhao
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
45
|
Tseng SH, Yang CC, Yu EH, Chang C, Lee YS, Liu CJ, Chang KW, Lin SC. K14-EGFP-miR-31 transgenic mice have high susceptibility to chemical-induced squamous cell tumorigenesis that is associating with Ku80 repression. Int J Cancer 2014; 136:1263-75. [PMID: 25082302 DOI: 10.1002/ijc.29106] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 07/24/2014] [Indexed: 12/18/2022]
Abstract
Squamous cell carcinoma (SCC) occurring in the head and neck region and the esophagus causes tremendous cancer mortality around the world. miR-31 is among the most eminently upregulated MicroRNAs in SCC, when it occurs in the head and neck region and the esophagus. We established miR-31 transgenic mouse lines, in which miR-31 is under the control of the K14 promoter. 4-nitroquinoline 1-oxide (4NQO) is a mutagen that causes double strand breaks. The transgenic mice exhibited a higher potential for tumor induction than wild-type (Wt) mice of the tongue and esophagus after 4NQO treatment. After 4NQO treatment or irradiation, p-γH2AX expression in squamous epithelium of transgenic mice was increased more than in Wt mice. Exogenous expression of miR-31 was also found to be associated with the higher p-γH2AX expression induced by 4NQO in human oral SCC (OSCC) cell lines. The repair genes PARP1 and Ku80 were validated as new targets of miR-31 in human OSCC cell lines, and were found to be downregulated in the squamous epithelium of the tongue in transgenic mice. However, only the downregulation of Ku80 was essential for maintaining the high level of p-γH2AX induced by 4NQO in OSCC cells. Inverse expression profiles for miR-31 and Ku80 were noted in human OSCC tissue. Our study identifies the high sensitivity of K14-EGFP-miR-31 transgenic mice to chemical carcinogen-induced squamous cell tumorigenesis and shows that this seems to be associated with the downregulation of Ku80 and an impairment of repair activity in squamous cells, which are mediated by miR-31.
Collapse
Affiliation(s)
- Ssu-Hsueh Tseng
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Banerjee R, Russo N, Liu M, Basrur V, Bellile E, Palanisamy N, Scanlon CS, van Tubergen E, Inglehart RC, Metwally T, Mani RS, Yocum A, Nyati MK, Castilho RM, Varambally S, Chinnaiyan AM, D'Silva NJ. TRIP13 promotes error-prone nonhomologous end joining and induces chemoresistance in head and neck cancer. Nat Commun 2014; 5:4527. [PMID: 25078033 PMCID: PMC4130352 DOI: 10.1038/ncomms5527] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/27/2014] [Indexed: 12/12/2022] Open
Abstract
Head and neck cancer (SCCHN) is a common, aggressive, treatment-resistant cancer with a high recurrence rate and mortality, but the mechanism of treatment-resistance remains unclear. Here we describe a mechanism where the AAA-ATPase TRIP13 promotes treatment-resistance. Overexpression of TRIP13 in non-malignant cells results in malignant transformation. High expression of TRIP13 in SCCHN leads to aggressive, treatment-resistant tumors and enhanced repair of DNA damage. Using mass spectrometry, we identify DNA-PKcs complex proteins that mediate non homologous end joining (NHEJ), as TRIP13 binding partners. Using repair-deficient reporter systems, we show that TRIP13 promotes NHEJ, even when homologous recombination is intact. Importantly, overexpression of TRIP13 sensitizes SCCHN to an inhibitor of DNA-PKcs. Thus, this study defines a new mechanism of treatment resistance in SCCHN and underscores the importance of targeting NHEJ to overcome treatment failure in SCCHN and potentially in other cancers that overexpress TRIP13.
Collapse
Affiliation(s)
- Rajat Banerjee
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nickole Russo
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Min Liu
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Emily Bellile
- Center for Cancer Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nallasivam Palanisamy
- 1] Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Christina S Scanlon
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Elizabeth van Tubergen
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ronald C Inglehart
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Tarek Metwally
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ram-Shankar Mani
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Anastasia Yocum
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Mukesh K Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sooryanarayana Varambally
- 1] Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Arul M Chinnaiyan
- 1] Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA [3] Department of Urology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nisha J D'Silva
- 1] Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA [3] Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
47
|
Ramzan Z, Nassri AB, Huerta S. Genotypic characteristics of resistant tumors to pre-operative ionizing radiation in rectal cancer. World J Gastrointest Oncol 2014; 6:194-210. [PMID: 25024812 PMCID: PMC4092337 DOI: 10.4251/wjgo.v6.i7.194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/19/2014] [Accepted: 05/08/2014] [Indexed: 02/05/2023] Open
Abstract
Due to a wide range of clinical response in patients undergoing neo-adjuvant chemoradiation for rectal cancer it is essential to understand molecular factors that lead to the broad response observed in patients receiving the same form of treatment. Despite extensive research in this field, the exact mechanisms still remain elusive. Data raging from DNA-repair to specific molecules leading to cell survival as well as resistance to apoptosis have been investigated. Individually, or in combination, there is no single pathway that has become clinically applicable to date. In the following review, we describe the current status of various pathways that might lead to resistance to the therapeutic applications of ionizing radiation in rectal cancer.
Collapse
|
48
|
Valenciano A, Henríquez-Hernández LA, Lloret M, Pinar B, Lara PC. New biological markers in the decision of treatment of head and neck cancer patients. Clin Transl Oncol 2014; 16:849-58. [PMID: 24981589 DOI: 10.1007/s12094-014-1193-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 06/07/2014] [Indexed: 12/22/2022]
Abstract
Head and neck squamous cell carcinoma is the sixth most common cancer type worldwide. Also the 5-year survival rate of less than 50 % seems to be lower than other cancer types. There are some reasons behind this high mortality rate; one of them is the lack of knowledge about the biology and genomic instability behind the carcinogenic processes. These biological features could condition the failure of frontline treatment, in which case rescue treatment should be used, representing an overtreatment for the patients. For years many biological factors have been tested as prognostic and predictive factors in relation to treatment with a modest success. To find appropriate tests which could be used in the context of the individualized treatment decision, we have reviewed new biological markers, not only in tumor tissue, but also in normal tissue from head and neck carcinoma patients.
Collapse
Affiliation(s)
- A Valenciano
- Instituto Canario de Investigación del Cáncer, San Cristóbal de la Laguna, Spain,
| | | | | | | | | |
Collapse
|
49
|
Abstract
Densely ionizing radiation has always been a main topic in radiobiology. In fact, α-particles and neutrons are sources of radiation exposure for the general population and workers in nuclear power plants. More recently, high-energy protons and heavy ions attracted a large interest for two applications: hadrontherapy in oncology and space radiation protection in manned space missions. For many years, studies concentrated on measurements of the relative biological effectiveness (RBE) of the energetic particles for different end points, especially cell killing (for radiotherapy) and carcinogenesis (for late effects). Although more recently, it has been shown that densely ionizing radiation elicits signalling pathways quite distinct from those involved in the cell and tissue response to photons. The response of the microenvironment to charged particles is therefore under scrutiny, and both the damage in the target and non-target tissues are relevant. The role of individual susceptibility in therapy and risk is obviously a major topic in radiation research in general, and for ion radiobiology as well. Particle radiobiology is therefore now entering into a new phase, where beyond RBE, the tissue response is considered. These results may open new applications for both cancer therapy and protection in deep space.
Collapse
Affiliation(s)
- M Durante
- GSI Helmholtz Center for Heavy Ion Research, Biophysics Department, Darmstadt, Germany
| |
Collapse
|
50
|
Sewell A, Brown B, Biktasova A, Mills GB, Lu Y, Tyson DR, Issaeva N, Yarbrough WG. Reverse-phase protein array profiling of oropharyngeal cancer and significance of PIK3CA mutations in HPV-associated head and neck cancer. Clin Cancer Res 2014; 20:2300-11. [PMID: 24599934 DOI: 10.1158/1078-0432.ccr-13-2585] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Human papilloma virus (HPV)-associated (HPV+) oropharyngeal squamous cell carcinomas (OPSCC) have different molecular and biologic characteristics and clinical behavior compared with HPV-negative (HPV-) OPSCC. PIK3CA mutations are more common in HPV(+) OPSCC. To define molecular differences and tumor subsets, protein expression and phosphorylation were compared between HPV(+) and HPV(-) OPSCC and between tumors with and without PIK3CA mutations. EXPERIMENTAL DESIGN Expression of 137 total and phosphorylated proteins was evaluated by reverse-phase protein array in 29 HPV(+) and 13 HPV(-) prospectively collected OPSCCs. Forty-seven OPSCCs were tested for hotspot-activating mutations in PIK3CA and AKT. Activation of PIK3CA downstream targets and sensitivity to pathway inhibitors were determined in HPV(+) head and neck cancer cells overexpressing wild-type or mutant PIK3CA. RESULTS Analyses revealed 41 differentially expressed proteins between HPV(+) and HPV(-) OPSCC categorized into functional groups: DNA repair, cell cycle, apoptosis, phosphoinositide 3-kinase (PI3K)/AKT/mTOR, and receptor kinase pathways. All queried DNA repair proteins were significantly upregulated in HPV(+) samples. A total of 8 of 33 HPV(+) and 0 of 14 HPV(-) tumors contained activating PIK3CA mutations. Despite all activating PIK3CA mutations occurring in HPV(+) samples, HPV(+) tumors had lower mean levels of activated AKT and downstream AKT target phosphorylation. Ectopic expression of mutant PIK3CA in HPV(+) cells increased mTOR, but not AKT activity. HPV E6/E7 overexpression inhibited AKT phosphorylation in HPV-negative cells. Mutant PIK3CA overexpressing cells were more sensitive to a dual PI3K/mTOR inhibitor compared with an AKT inhibitor. CONCLUSIONS Protein expression analyses suggest that HPV(+) and HPV(-) OPSCC differentially activate DNA repair, cell cycle, apoptosis, PI3K/AKT/mTOR, and receptor kinase pathways. PIK3CA mutations are more common in HPV(+) OPSCC and are associated with activation of mTOR, but not AKT. These data suggest that inhibitors for mTOR may have activity against HPV(+) PIK3CA mutant oropharyngeal cancers.
Collapse
Affiliation(s)
- Andrew Sewell
- Authors' Affiliations: Departments of Surgery Division of Otolaryngology and Pathology; Yale Cancer Center, Yale University, New Haven, Connecticut; Departments of Otolaryngology and Cancer Biology, Vanderbilt University, Nashville, Tennessee; and Systems Biology Department, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | | |
Collapse
|