1
|
Yuan Y, Fan T, Wang J, Yuan Y, Tao X. Near-infrared imaging of head and neck squamous cell carcinoma using indocyanine green that targets the αvβ6 peptide. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:046002. [PMID: 38633382 PMCID: PMC11021736 DOI: 10.1117/1.jbo.29.4.046002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Significance Head and neck squamous cell carcinoma (HNSCC) has a particularly poor prognosis. Improving the surgical resection boundary, reducing local recurrence, and ultimately ameliorating the overall survival rate are the treatment goals. Aim To obtain a complete surgical resection (R0 resection), we investigated the use of a fluorescent imaging probe that targets the integrin subtype α v β 6 , which is upregulated in many kinds of epithelial cancer, using animal models. Approach α v β 6 expression was detected using polymerase chain reaction (PCR) and immunoprotein blotting of human tissues for malignancy. Protein expression localization was observed. α v β 6 and epidermal growth factor receptor (EGFR) were quantified by PCR and immunoprotein blotting, and the biosafety of targeting the α v β 6 probe material was examined using Cell Counting Kit-8 assays. Indocyanine green (ICG) was used as a control to determine the localization of the probe at the cellular level. In vivo animal experiments were conducted through tail vein injections to evaluate the probe's imaging effect and to confirm its targeting in tissue sections. Results α v β 6 expression was higher than EGFR expression in HNSCC, and the probe showed good targeting in in vivo and in vitro experiments with a good safety profile. Conclusions The ICG-α v β 6 peptide probe is an exceptional and sensitive imaging tool for HNSCC that can distinguish among tumor, normal, and inflammatory tissues.
Collapse
Affiliation(s)
- Yuan Yuan
- Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Department of Radiology, Shanghai, China
| | - Tengfei Fan
- Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai, China
- Shanghai Jiao Tong University, College of Stomatology, Shanghai, China
- The Second Xiangya Hospital of Central South University, Department of Oral and Maxillofacial Surgery, Changsha, China
| | - Jingbo Wang
- Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Department of Radiology, Shanghai, China
| | - Ying Yuan
- Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Department of Radiology, Shanghai, China
| | - Xiaofeng Tao
- Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Department of Radiology, Shanghai, China
| |
Collapse
|
2
|
Khajeei A, Masoomzadeh S, Gholikhani T, Javadzadeh Y. The Effect of PEGylation on Drugs' Pharmacokinetic Parameters; from Absorption to Excretion. Curr Drug Deliv 2024; 21:978-992. [PMID: 37345248 DOI: 10.2174/1567201820666230621124953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 06/23/2023]
Abstract
Until the drugs enter humans life, they may face problems in transportation, drug delivery, and metabolism. These problems can cause reducing drug's therapeutic effect and even increase its side effects. Together, these cases can reduce the patient's compliance with the treatment and complicate the treatment process. Much work has been done to solve or at least reduce these problems. For example, using different forms of a single drug molecule (like Citalopram and Escitalopram); slight changes in the drug's molecule like Meperidine and α-Prodine, and using carriers (like Tigerase®). PEGylation is a recently presented method that can use for many targets. Poly Ethylene Glycol or PEG is a polymer that can attach to drugs by using different methods and resulting sustained release, controlled metabolism, targeted delivery, and other cases. Although they will not necessarily lead to an increase in the effect of the drug, they will lead to the improvement of the treatment process in certain ways. In this article, the team of authors has tried to collect and carefully review the best cases based on the PEGylation of drugs that can help the readers of this article.
Collapse
Affiliation(s)
- Ali Khajeei
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Salar Masoomzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tooba Gholikhani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Kimura RH, Iagaru A, Guo HH. Mini review of first-in-human integrin αvβ6 PET tracers. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1271208. [PMID: 39355045 PMCID: PMC11440954 DOI: 10.3389/fnume.2023.1271208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2024]
Abstract
This mini review of clinically-evaluated integrin αvβ6 PET-tracers reveals distinct differences in human-biodistribution patterns between linear peptides, including disulfide-stabilized formats, compared to head-to-tail cyclized peptides. All PET tracers mentioned in this mini review were able to delineate disease from normal tissues, but some αvβ6 PET tracers are better than others for particular clinical applications. Each αvβ6 PET tracer was validated for its ability to bind integrin αvβ6 with high affinity. However, all the head-to-tail cyclized peptide PET-tracers reviewed here did not accumulate in the GI-tract, in striking contrast to the linear and disulfide-bonded counterparts currently undergoing clinical evaluation in cancer, IPF and long COVID. Multiple independent investigators have reported the presence of β6 mRNA as well as αvβ6 protein in the GI-tract. Currently, there remains further need for biochemical, clinical, and structural data to satisfactorily explain the state-of-the-art in human αvβ6-imaging.
Collapse
Affiliation(s)
- Richard H. Kimura
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | | | | |
Collapse
|
4
|
Roy A, Shi L, Chang A, Dong X, Fernandez A, Kraft JC, Li J, Le VQ, Winegar RV, Cherf GM, Slocum D, Poulson PD, Casper GE, Vallecillo-Zúniga ML, Valdoz JC, Miranda MC, Bai H, Kipnis Y, Olshefsky A, Priya T, Carter L, Ravichandran R, Chow CM, Johnson MR, Cheng S, Smith M, Overed-Sayer C, Finch DK, Lowe D, Bera AK, Matute-Bello G, Birkland TP, DiMaio F, Raghu G, Cochran JR, Stewart LJ, Campbell MG, Van Ry PM, Springer T, Baker D. De novo design of highly selective miniprotein inhibitors of integrins αvβ6 and αvβ8. Nat Commun 2023; 14:5660. [PMID: 37704610 PMCID: PMC10500007 DOI: 10.1038/s41467-023-41272-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
The RGD (Arg-Gly-Asp)-binding integrins αvβ6 and αvβ8 are clinically validated cancer and fibrosis targets of considerable therapeutic importance. Compounds that can discriminate between homologous αvβ6 and αvβ8 and other RGD integrins, stabilize specific conformational states, and have high thermal stability could have considerable therapeutic utility. Existing small molecule and antibody inhibitors do not have all these properties, and hence new approaches are needed. Here we describe a generalized method for computationally designing RGD-containing miniproteins selective for a single RGD integrin heterodimer and conformational state. We design hyperstable, selective αvβ6 and αvβ8 inhibitors that bind with picomolar affinity. CryoEM structures of the designed inhibitor-integrin complexes are very close to the computational design models, and show that the inhibitors stabilize specific conformational states of the αvβ6 and the αvβ8 integrins. In a lung fibrosis mouse model, the αvβ6 inhibitor potently reduced fibrotic burden and improved overall lung mechanics, demonstrating the therapeutic potential of de novo designed integrin binding proteins with high selectivity.
Collapse
Affiliation(s)
- Anindya Roy
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Lei Shi
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Encodia Inc, 5785 Oberlin Drive, San Diego, CA, 92121, USA
| | - Ashley Chang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Xianchi Dong
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, MA, USA
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, China
| | - Andres Fernandez
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - John C Kraft
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Jing Li
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, MA, USA
| | - Viet Q Le
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, MA, USA
| | - Rebecca Viazzo Winegar
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Gerald Maxwell Cherf
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Denali Therapeutics, South San Francisco, CA, USA
| | - Dean Slocum
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, MA, USA
| | - P Daniel Poulson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Garrett E Casper
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | | | - Jonard Corpuz Valdoz
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Marcos C Miranda
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Hua Bai
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Yakov Kipnis
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Audrey Olshefsky
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Tanu Priya
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Lauren Carter
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Cameron M Chow
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Max R Johnson
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Suna Cheng
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - McKaela Smith
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Catherine Overed-Sayer
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Donna K Finch
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- Alchemab Therapeutics Ltd, Cambridge, UK
| | - David Lowe
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- Evox Therapeutics Limited, Oxford Science Park, Medawar Centre, East Building, Robert Robinson Avenue, Oxford, OX4 4HG, England
| | - Asim K Bera
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Gustavo Matute-Bello
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, USA
| | - Timothy P Birkland
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Frank DiMaio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Ganesh Raghu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Dept of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Lance J Stewart
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Melody G Campbell
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
| | - Pam M Van Ry
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA.
| | - Timothy Springer
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, MA, USA.
| | - David Baker
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
5
|
Roy A, Shi L, Chang A, Dong X, Fernandez A, Kraft JC, Li J, Le VQ, Winegar RV, Cherf GM, Slocum D, Daniel Poulson P, Casper GE, Vallecillo-Zúniga ML, Valdoz JC, Miranda MC, Bai H, Kipnis Y, Olshefsky A, Priya T, Carter L, Ravichandran R, Chow CM, Johnson MR, Cheng S, Smith M, Overed-Sayer C, Finch DK, Lowe D, Bera AK, Matute-Bello G, Birkland TP, DiMaio F, Raghu G, Cochran JR, Stewart LJ, Campbell MG, Van Ry PM, Springer T, Baker D. De novo design of highly selective miniprotein inhibitors of integrins αvβ6 and αvβ8. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544624. [PMID: 37398153 PMCID: PMC10312613 DOI: 10.1101/2023.06.12.544624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The RGD (Arg-Gly-Asp)-binding integrins αvβ6 and αvβ8 are clinically validated cancer and fibrosis targets of considerable therapeutic importance. Compounds that can discriminate between the two closely related integrin proteins and other RGD integrins, stabilize specific conformational states, and have sufficient stability enabling tissue restricted administration could have considerable therapeutic utility. Existing small molecules and antibody inhibitors do not have all of these properties, and hence there is a need for new approaches. Here we describe a method for computationally designing hyperstable RGD-containing miniproteins that are highly selective for a single RGD integrin heterodimer and conformational state, and use this strategy to design inhibitors of αvβ6 and αvβ8 with high selectivity. The αvβ6 and αvβ8 inhibitors have picomolar affinities for their targets, and >1000-fold selectivity over other RGD integrins. CryoEM structures are within 0.6-0.7Å root-mean-square deviation (RMSD) to the computational design models; the designed αvβ6 inhibitor and native ligand stabilize the open conformation in contrast to the therapeutic anti-αvβ6 antibody BG00011 that stabilizes the bent-closed conformation and caused on-target toxicity in patients with lung fibrosis, and the αvβ8 inhibitor maintains the constitutively fixed extended-closed αvβ8 conformation. In a mouse model of bleomycin-induced lung fibrosis, the αvβ6 inhibitor potently reduced fibrotic burden and improved overall lung mechanics when delivered via oropharyngeal administration mimicking inhalation, demonstrating the therapeutic potential of de novo designed integrin binding proteins with high selectivity.
Collapse
Affiliation(s)
- Anindya Roy
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Lei Shi
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Current Address: Encodia Inc, 5785 Oberlin Drive, San Diego, CA 92121
| | - Ashley Chang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Xianchi Dong
- Program in Cellular and Molecular Medicine, Children’s Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, United States
- Current address: State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China; Engineering Research Center of Protein and Peptide Medicine,Ministry of Education
| | - Andres Fernandez
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - John C. Kraft
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jing Li
- Program in Cellular and Molecular Medicine, Children’s Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, United States
| | - Viet Q. Le
- Program in Cellular and Molecular Medicine, Children’s Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, United States
| | - Rebecca Viazzo Winegar
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Gerald Maxwell Cherf
- Department of Bioengineering, Stanford University, Stanford CA 94305
- Current Address: Denali Therapeutics, South San Francisco, CA, USA
| | - Dean Slocum
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - P. Daniel Poulson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Garrett E. Casper
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | | | - Jonard Corpuz Valdoz
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Marcos C. Miranda
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Current Address: Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Hua Bai
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Yakov Kipnis
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Audrey Olshefsky
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Tanu Priya
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
- Current Address: Department of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL 60611, USA
| | - Lauren Carter
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cameron M. Chow
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Max R. Johnson
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Suna Cheng
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - McKaela Smith
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Catherine Overed-Sayer
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
- Current Address: Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Donna K. Finch
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
- Current Address: Alchemab Therapeutics Ltd, Cambridge, United Kingdom
| | - David Lowe
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
- Current Address: Evox Therapeutics Limited, Oxford Science Park, Medawar Centre, East Building, Robert Robinson Avenue, Oxford, OX4 4HG
| | - Asim K. Bera
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Gustavo Matute-Bello
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington
| | - Timothy P Birkland
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Frank DiMaio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Ganesh Raghu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | | | - Lance J. Stewart
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Melody G. Campbell
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Pam M. Van Ry
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Timothy Springer
- Program in Cellular and Molecular Medicine, Children’s Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, United States
| | - David Baker
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Lian Y, Zeng S, Wen S, Zhao X, Fang C, Zeng N. Review and Application of Integrin Alpha v Beta 6 in the Diagnosis and Treatment of Cholangiocarcinoma and Pancreatic Ductal Adenocarcinoma. Technol Cancer Res Treat 2023; 22:15330338231189399. [PMID: 37525872 PMCID: PMC10395192 DOI: 10.1177/15330338231189399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 08/02/2023] Open
Abstract
Integrin Alpha v Beta 6 is expressed primarily in solid epithelial tumors, such as cholangiocarcinoma, pancreatic cancer, and colorectal cancer. It has been considered a potential and promising molecular marker for the early diagnosis and treatment of cancer. Cholangiocarcinoma and pancreatic ductal adenocarcinoma share genetic, histological, and pathophysiological similarities due to the shared embryonic origin of the bile duct and pancreas. These cancers share numerous clinicopathological characteristics, including growth pattern, poor response to conventional radiotherapy and chemotherapy, and poor prognosis. This review focuses on the role of integrin Alpha v Beta 6 in cancer progression. It addition, it reviews how the marker can be used in molecular imaging and therapeutic targets. We propose further research explorations and questions that need to be addressed. We conclude that integrin Alpha v Beta 6 may serve as a potential biomarker for cancer disease progression and prognosis.
Collapse
Affiliation(s)
- Yunyu Lian
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Silue Zeng
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Sai Wen
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Xingyang Zhao
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Chihua Fang
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Ning Zeng
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| |
Collapse
|
7
|
Ren J, Zhu S, Zhang G, Tan X, Qiu L, Lin J, Jiang L. 68Ga-Labeled Cystine Knot Peptide Targeting Integrin α vβ 6 for Lung Cancer PET Imaging. Mol Pharm 2022; 19:2620-2628. [PMID: 35674464 DOI: 10.1021/acs.molpharmaceut.2c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Integrin αvβ6 has been considered as a promising biomarker for lung cancer, and its expression is often related to poor prognosis. An αvβ6-binding cystine knot peptide R01-MG was previously engineered and validated. Here, we developed a positron emission tomography (PET) probe of R01-MG for imaging αvβ6-positive lung cancer. Cystine knot peptide R01-MG was synthesized through solid-phase peptide synthesis chemistry and radiolabeled with 68Ga after being conjugated with 1,4,7,10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid (DOTA). The stability of 68Ga-DOTA-R01-MG was analyzed in phosphate-buffered saline (PBS) (pH 7.4) and fetal bovine serum (FBS). The cell uptake assay of the probe was evaluated using αvβ6-positive (A549 and H1975) and αvβ6-negative (H1299) lung cancer cell lines. In addition, small animal PET imaging and biodistribution studies of 68Ga-DOTA-R01-MG were performed in αvβ6-positive and αvβ6-negative lung cancer models. Our study showed that 68Ga-DOTA-R01-MG exhibited excellent stability in PBS and FBS. Small animal PET imaging and biodistribution data revealed that 68Ga-DOTA-R01-MG displayed rapid and good tumor uptake in animal models with αvβ6-positive lung cancer, and the probe was rapidly cleared from the normal tissues, resulting in good tumor-to-normal tissue contrasts. Meanwhile, no obvious tumor uptake of 68Ga-DOTA-R01-MG was observed in animal models with αvβ6-negative lung cancer, demonstrating specific binding of the probe to integrin αvβ6. In conclusion, 68Ga-DOTA-R01-MG has great potential to be a promising PET tracer for imaging αvβ6-positive lung cancer.
Collapse
Affiliation(s)
- Jingyun Ren
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shiyu Zhu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Guojin Zhang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xiaoyue Tan
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lei Jiang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
8
|
Huynh TT, Sreekumar S, Mpoy C, Rogers BE. A comparison of 64Cu-labeled bi-terminally PEGylated A20FMDV2 peptides targeting integrin α νβ 6. Oncotarget 2022; 13:360-372. [PMID: 35186193 PMCID: PMC8849274 DOI: 10.18632/oncotarget.28197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/07/2022] [Indexed: 11/25/2022] Open
Abstract
Expression of epithelial-specific integrin ανβ6 is up-regulated in various aggressive cancers and serves as a prognostic marker. Integrin-targeted PET imaging probes have been successfully developed and tested in the clinic. Radiotracers based on the peptide A20FMDV2 derived from foot-and-mouth disease virus represent specific and selective PET ligands for imaging ανβ6-positive cancers. The present study aims to describe the radiolabeling, in vitro and in vivo evaluation of a bi-terminally PEGylated A20FMDV2 conjugated with DOTA or PCTA for 64Cu radiolabeling. Stability studies showed radiolabeled complexes remained stable up to 24 h in PBS and human serum. In vitro cell assays in CaSki cervical cancer cells and BxPC-3 pancreatic cancer cells confirmed that the peptides displayed high affinity for αvβ6 with Kd values of ~50 nM. Biodistribution studies revealed that [64Cu] Cu-PCTA-(PEG28)2-A20FMDV2 exhibited higher tumor uptake (1.63 ± 0.53 %ID/g in CaSki and 3.86 ± 0.58 %ID/g in BxPC-3 at 1 h) when compared to [64Cu]Cu-DOTA-(PEG28)2-A20FMDV2 (0.95 ± 0.29 %ID/g in CaSki and 2.12 ± 0.83 %ID/g in BxPC-3 at 1 h) . However, higher tumor uptake was accompanied by increased radioactive uptake in normal organs. Therefore, both peptides are appropriate for imaging ανβ6-positive lesions although further optimization is needed to improve tumor-to-normal-tissue ratios.
Collapse
Affiliation(s)
- Truc T Huynh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Chemistry, Washington University, St. Louis, MO, USA
| | - Sreeja Sreekumar
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cedric Mpoy
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
9
|
Huynh TT, Sreekumar S, Mpoy C, Rogers BE. Therapeutic Efficacy of 177Lu-Labeled A20FMDV2 Peptides Targeting ανβ6. Pharmaceuticals (Basel) 2022; 15:ph15020229. [PMID: 35215341 PMCID: PMC8876964 DOI: 10.3390/ph15020229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/27/2022] Open
Abstract
Integrin ανβ6 promotes migration and invasion of cancer cells, and its overexpression often correlates with poor survival. Therefore, targeting ανβ6 with radioactive peptides would be beneficial for cancer imaging and therapy. Previous studies have successfully developed radiotracers based on the peptide A20FMDV2 that showed good binding specificity for ανβ6. However, one concern of these ανβ6 integrin-targeting probes is that their rapid blood clearance and low tumor uptake would preclude them from being used for therapeutic purposes. In this study, albumin binders were used to increase tumor uptake for therapeutic applications while the non-albumin peptide was evaluated as a potential positron emission tomography (PET) imaging agent. All peptides used the DOTA chelator for radiolabeling with either 68Ga for imaging or 177Lu for therapy. PET imaging with [68Ga]Ga-DOTA-(PEG28)2-A20FMDV2 revealed specific tumor uptake in ανβ6-positive tumors. Albumin-binding peptides EB-DOTA-(PEG28)2-A20FMDV2 and IBA-DOTA-(PEG28)2-A20FMDV2 were radiolabeled with 177Lu. Biodistribution studies in normal mice showed longer blood circulation times for the albumin binding peptides compared to the non-albumin peptide. Therapy studies in mice demonstrated that both 177Lu-labeled albumin binding peptides resulted in significant tumor growth inhibition. We believe these are the first studies to demonstrate the therapeutic efficacy of a radiolabeled peptide targeting an ανβ6-positive tumor.
Collapse
Affiliation(s)
- Truc Thao Huynh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA; (T.T.H.); (S.S.); (C.M.)
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Sreeja Sreekumar
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA; (T.T.H.); (S.S.); (C.M.)
| | - Cedric Mpoy
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA; (T.T.H.); (S.S.); (C.M.)
| | - Buck Edward Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA; (T.T.H.); (S.S.); (C.M.)
- Correspondence:
| |
Collapse
|
10
|
Poels TT, Vuijk FA, de Geus-Oei LF, Vahrmeijer AL, Oprea-Lager DE, Swijnenburg RJ. Molecular Targeted Positron Emission Tomography Imaging and Radionuclide Therapy of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:6164. [PMID: 34944781 PMCID: PMC8699493 DOI: 10.3390/cancers13246164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an inauspicious prognosis, mainly due to difficulty in early detection of the disease by the current imaging modalities. The upcoming development of tumour-specific tracers provides an alternative solution for more accurate diagnostic imaging techniques for staging and therapy response monitoring. The future goal to strive for, in a patient with PDAC, should definitely be first to receive a diagnostic dose of an antibody labelled with a radionuclide and to subsequently receive a therapeutic dose of the same labelled antibody with curative intent. In the first part of this paper, we summarise the available evidence on tumour-targeted diagnostic tracers for molecular positron emission tomography (PET) imaging that have been tested in humans, together with their clinical indications. Tracers such as radiolabelled prostate-specific membrane antigen (PSMA)-in particular, 18F-labelled PSMA-already validated and successfully implemented in clinical practice for prostate cancer, also seem promising for PDAC. In the second part, we discuss the theranostic applications of these tumour-specific tracers. Although targeted radionuclide therapy is still in its infancy, lessons can already be learned from early publications focusing on dose fractioning and adding a radiosensitiser, such as gemcitabine.
Collapse
Affiliation(s)
- Thomas T. Poels
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Floris A. Vuijk
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (F.A.V.); (A.L.V.)
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (F.A.V.); (A.L.V.)
| | - Daniela E. Oprea-Lager
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Rutger-Jan Swijnenburg
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| |
Collapse
|
11
|
Ganguly T, Bauer N, Davis RA, Hausner SH, Tang SY, Sutcliffe JL. Evaluation of Copper-64-Labeled α vβ 6-Targeting Peptides: Addition of an Albumin Binding Moiety to Improve Pharmacokinetics. Mol Pharm 2021; 18:4437-4447. [PMID: 34783573 DOI: 10.1021/acs.molpharmaceut.1c00632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The incorporation of non-covalent albumin binding moieties (ABMs) into radiotracers results in increased circulation time, leading to a higher uptake in the target tissues such as the tumor, and, in some cases, reduced kidney retention. We previously developed [18F]AlF NOTA-K(ABM)-αvβ6-BP, where αvβ6-BP is a peptide with high affinity for the cell surface receptor integrin αvβ6 that is overexpressed in several cancers, and the ABM is an iodophenyl-based moiety. [18F]AlF NOTA-K(ABM)-αvβ6-BP demonstrated prolonged blood circulation compared to the non-ABM parent peptide, resulting in high, αvβ6-targeted uptake with continuously improving detection of αvβ6(+) tumors using PET/CT. To further extend the imaging window beyond that of fluorine-18 (t1/2 = 110 min) and to investigate the pharmacokinetics at later time points, we radiolabeled the αvβ6-BP with copper-64 (t1/2 = 12.7 h). Two peptides were synthesized without (1) and with (2) the ABM and radiolabeled with copper-64 to yield [64Cu]1 and [64Cu]2, respectively. The affinity of [natCu]1 and [natCu]2 for the integrin αvβ6 was assessed by enzyme-linked immunosorbent assay. [64Cu]1 and [64Cu]2 were evaluated in vitro (cell binding and internalization) using DX3puroβ6 (αvβ6(+)), DX3puro (αvβ6(-)), and pancreatic BxPC-3 (αvβ6(+)) cells, in an albumin binding assay, and for stability in both mouse and human serum. In vivo (PET/CT imaging) and biodistribution studies were done in mouse models bearing either the paired DX3puroβ6/DX3puro or BxPC-3 xenograft tumors. [64Cu]1 and [64Cu]2 were synthesized in ≥97% radiochemical purity. In vitro, [natCu]1 and [natCu]2 maintained low nanomolar affinity for integrin αvβ6 (IC50 = 28 ± 3 and 19 ± 5 nM, respectively); [64Cu]1 and [64Cu]2 showed comparable binding to αvβ6(+) cells (DX3puroβ6: ≥70%, ≥42% internalized; BxPC-3: ≥19%, ≥12% internalized) and ≤3% to the αvβ6(-) DX3puro cells. Both radiotracers were ≥98% stable in human serum at 24 h, and [64Cu]2 showed a 6-fold higher binding to human serum protein than [64Cu]1. In vivo, selective uptake in the αvβ6(+) tumors was observed with tumor visualization up to 72 h for [64Cu]2. A 3-5-fold higher αvβ6(+) tumor uptake of [64Cu]2 vs [64Cu]1 was observed throughout, at least 2.7-fold improved BxPC-3-to-kidney and BxPC-3-to-blood ratios, and 2-fold improved BxPC-3-to-stomach ratios were noted for [64Cu]2 at 48 h. Incorporation of an iodophenyl-based ABM into the αvβ6-BP ([64Cu]2) prolonged circulation time and resulted in improved pharmacokinetics, including increased uptake in αvβ6(+) tumors that enabled visualization of αvβ6(+) tumors up to 72 h by PET/CT imaging.
Collapse
Affiliation(s)
- Tanushree Ganguly
- Department of Biomedical Engineering, University of California Davis, Sacramento, California 95817, United States
| | - Nadine Bauer
- Department of Internal Medicine, Division of Hematology/Oncology, University of California Davis, Sacramento, California 95817, United States
| | - Ryan A Davis
- Department of Biomedical Engineering, University of California Davis, Sacramento, California 95817, United States
| | - Sven H Hausner
- Department of Internal Medicine, Division of Hematology/Oncology, University of California Davis, Sacramento, California 95817, United States
| | - Sarah Y Tang
- Department of Internal Medicine, Division of Hematology/Oncology, University of California Davis, Sacramento, California 95817, United States
| | - Julie L Sutcliffe
- Department of Biomedical Engineering, University of California Davis, Sacramento, California 95817, United States.,Department of Internal Medicine, Division of Hematology/Oncology, University of California Davis, Sacramento, California 95817, United States.,Center for Molecular and Genomic Imaging, University of California Davis, Sacramento, California 95817, United States
| |
Collapse
|
12
|
Kossatz S, Beer AJ, Notni J. It's Time to Shift the Paradigm: Translation and Clinical Application of Non-αvβ3 Integrin Targeting Radiopharmaceuticals. Cancers (Basel) 2021; 13:cancers13235958. [PMID: 34885066 PMCID: PMC8657165 DOI: 10.3390/cancers13235958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cancer cells often present a different set of proteins on their surface than normal cells. This also applies to integrins, a class of 24 cell surface receptors which mainly are responsible for physically anchoring cells in tissues, but also fulfil a plethora of other functions. If a certain integrin is found on tumor cells but not on normal ones, radioactive molecules (named tracers) that specifically bind to this integrin will accumulate in the cancer lesion if injected into the blood stream. The emitted radiation can be detected from outside the body and allows for localization and thus, diagnosis, of cancer. Only one of the 24 integrins, the subtype αvβ3, has hitherto been thoroughly investigated in this context. We herein summarize the most recent, pertinent research on other integrins, and argue that some of these approaches might ultimately improve the clinical management of the most lethal cancers, such as pancreatic carcinoma. Abstract For almost the entire period of the last two decades, translational research in the area of integrin-targeting radiopharmaceuticals was strongly focused on the subtype αvβ3, owing to its expression on endothelial cells and its well-established role as a biomarker for, and promoter of, angiogenesis. Despite a large number of translated tracers and clinical studies, a clinical value of αvβ3-integrin imaging could not be defined yet. The focus of research has, thus, been moving slowly but steadily towards other integrin subtypes which are involved in a large variety of tumorigenic pathways. Peptidic and non-peptidic radioligands for the integrins α5β1, αvβ6, αvβ8, α6β1, α6β4, α3β1, α4β1, and αMβ2 were first synthesized and characterized preclinically. Some of these compounds, targeting the subtypes αvβ6, αvβ8, and α6β1/β4, were subsequently translated into humans during the last few years. αvβ6-Integrin has arguably attracted most attention because it is expressed by some of the cancers with the worst prognosis (above all, pancreatic ductal adenocarcinoma), which substantiates a clinical need for the respective theranostic agents. The receptor furthermore represents a biomarker for malignancy and invasiveness of carcinomas, as well as for fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF), and probably even for Sars-CoV-2 (COVID-19) related syndromes. Accordingly, the largest number of recent first-in-human applications has been reported for radiolabeled compounds targeting αvβ6-integrin. The results indicate a substantial clinical value, which might lead to a paradigm change and trigger the replacement of αvβ3 by αvβ6 as the most popular integrin in theranostics.
Collapse
Affiliation(s)
- Susanne Kossatz
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
- Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | | | - Johannes Notni
- Department of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- TRIMT GmbH, 01454 Radeberg, Germany
- Correspondence: ; Tel.: +49-89-4140-6075; Fax: +49-89-4140-6949
| |
Collapse
|
13
|
Steiger K, Quigley NG, Groll T, Richter F, Zierke MA, Beer AJ, Weichert W, Schwaiger M, Kossatz S, Notni J. There is a world beyond αvβ3-integrin: Multimeric ligands for imaging of the integrin subtypes αvβ6, αvβ8, αvβ3, and α5β1 by positron emission tomography. EJNMMI Res 2021; 11:106. [PMID: 34636990 PMCID: PMC8506476 DOI: 10.1186/s13550-021-00842-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In the context of nuclear medicine and theranostics, integrin-related research and development was, for most of the time, focused predominantly on 'RGD peptides' and the subtype αvβ3-integrin. However, there are no less than 24 known integrins, and peptides without the RGD sequence as well as non-peptidic ligands play an equally important role as selective integrin ligands. On the other hand, multimerization is a well-established method to increase the avidity of binding structures, but multimeric radiopharmaceuticals have not made their way into clinics yet. In this review, we describe how these aspects have been interwoven in the framework of the German Research Foundation's multi-group interdisciplinary funding scheme CRC 824, yielding a series of potent PET imaging agents for selective imaging of various integrin subtypes. RESULTS The gallium-68 chelator TRAP was utilized to elaborate symmetrical trimers of various peptidic and non-peptidic integrin ligands. Preclinical data suggested a high potential of the resulting Ga-68-tracers for PET-imaging of the integrins α5β1, αvβ8, αvβ6, and αvβ3. For the first three, we provide some additional immunohistochemistry data in human cancers, which suggest several future clinical applications. Finally, application of αvβ3- and αvβ6-integrin tracers in pancreatic carcinoma patients revealed that unlike αvβ3-targeted PET, αvβ6-integrin PET is not characterized by off-target uptake and thus, enables a substantially improved imaging of this type of cancer. CONCLUSIONS Novel radiopharmaceuticals targeting a number of different integrins, above all, αvβ6, have proven their clinical potential and will play an increasingly important role in future theranostics.
Collapse
Affiliation(s)
- Katja Steiger
- Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany
| | - Neil Gerard Quigley
- Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany
| | - Tanja Groll
- Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany
| | - Frauke Richter
- Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany
| | | | | | - Wilko Weichert
- Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany
| | - Markus Schwaiger
- Klinik Für Nuklearmedizin Und Zentralinstitut Für Translationale Krebsforschung (TranslaTUM), Klinikum Rechts Der Isar der Technischen Universität München, Munich, Germany
| | - Susanne Kossatz
- Klinik Für Nuklearmedizin Und Zentralinstitut Für Translationale Krebsforschung (TranslaTUM), Klinikum Rechts Der Isar der Technischen Universität München, Munich, Germany
| | - Johannes Notni
- Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany. .,Experimental Radiopharmacy, Clinic for Nuclear Medicine, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| |
Collapse
|
14
|
Evaluation of Two Optical Probes for Imaging the Integrin α vβ 6- In Vitro and In Vivo in Tumor-Bearing Mice. Mol Imaging Biol 2021; 22:1170-1181. [PMID: 32002763 DOI: 10.1007/s11307-019-01469-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE The purpose of this study was to develop and evaluate two αvβ6-targeted fluorescent imaging agents. The integrin subtype αvβ6 is significantly upregulated in a wide range of epithelial derived cancers, plays a key role in invasion and metastasis, and expression is often located at the invasive edge of tumors. αvβ6-targeted fluorescent imaging agents have the potential to guide surgical resection leading to improved patient outcomes. Both imaging agents were based on the bi-PEGylated peptide NH2-PEG28-A20FMDV2-K16R-PEG28 (1), a peptide that has high affinity and selectivity for the integrin αvβ6: (a) 5-FAM-X-PEG28-A20FMDV2-K16R-PEG28 (2), and (b) IRDye800-PEG28-A20FMDV2-K16R-PEG28 (3). PROCEDURES Peptides were synthesized using solid-phase peptide synthesis and standard Fmoc chemistry. Affinity for αvβ6 was evaluated by ELISA. In vitro binding, internalization, and localization of 2 was monitored using confocal microscopy in DX3puroβ6 (αvβ6+) and DX3puro (αvβ6-) cells. The in vivo imaging and ex vivo biodistribution of 3 was evaluated in three preclinical mouse models, DX3puroβ6/DX3puro and BxPC-3 (αvβ6+) tumor xenografts and a BxPC-3 orthotopic pancreatic tumor model. RESULTS Peptides were obtained in > 99% purity. IC50 values were 28 nM (2) and 39 nM (3). Rapid αvβ6-selective binding and internalization of 2 was observed. Fluorescent intensity (FLI) measurements extracted from the in vivo images and ex vivo biodistribution confirmed uptake and retention of 3 in the αvβ6 positive subcutaneous and orthotopic tumors, with negligible uptake in the αvβ6-negative tumor. Blocking studies with a known αvβ6-targeting peptide demonstrated αvβ6-specific binding of 3. CONCLUSION Two fluorescence imaging agents were developed. The αvβ6-specific uptake, internalization, and endosomal localization of the fluorescence agent 2 demonstrates potential for targeted therapy. The selective uptake and retention of 3 in the αvβ6-positive tumors enabled clear delineation of the tumors and surgical resection indicating 3 has the potential to be utilized during image-guided surgery.
Collapse
|
15
|
Sachindra S, Hellberg T, Exner S, Prasad S, Beindorff N, Rogalla S, Kimura R, Gambhir SS, Wiedenmann B, Grötzinger C. SPECT/CT Imaging, Biodistribution and Radiation Dosimetry of a 177Lu-DOTA-Integrin αvβ6 Cystine Knot Peptide in a Pancreatic Cancer Xenograft Model. Front Oncol 2021; 11:684713. [PMID: 34136410 PMCID: PMC8200818 DOI: 10.3389/fonc.2021.684713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignant neoplasms, as many cases go undetected until they reach an advanced stage. Integrin αvβ6 is a cell surface receptor overexpressed in PDAC. Consequently, it may serve as a target for the development of probes for imaging diagnosis and radioligand therapy. Engineered cystine knottin peptides specific for integrin αvβ6 have recently been developed showing high affinity and stability. This study aimed to evaluate an integrin αvβ6-specific knottin molecular probe containing the therapeutic radionuclide 177Lu for targeting of PDAC. METHODS The expression of integrin αvβ6 in PDAC cell lines BxPC-3 and Capan-2 was analyzed using RT-qPCR and immunofluorescence. In vitro competition and saturation radioligand binding assays were performed to calculate the binding affinity of the DOTA-coupled tracer loaded with and without lutetium to BxPC-3 and Capan-2 cell lines as well as the maximum number of binding sites in these cell lines. To evaluate tracer accumulation in the tumor and organs, SPECT/CT, biodistribution and dosimetry projections were carried out using a Capan-2 xenograft tumor mouse model. RESULTS RT-qPCR and immunofluorescence results showed high expression of integrin αvβ6 in BxPC-3 and Capan-2 cells. A competition binding assay revealed high affinity of the tracer with IC50 values of 1.69 nM and 9.46 nM for BxPC-3 and Capan-2, respectively. SPECT/CT and biodistribution analysis of the conjugate 177Lu-DOTA-integrin αvβ6 knottin demonstrated accumulation in Capan-2 xenograft tumors (3.13 ± 0.63%IA/g at day 1 post injection) with kidney uptake at 19.2 ± 2.5 %IA/g, declining much more rapidly than in tumors. CONCLUSION 177Lu-DOTA-integrin αvβ6 knottin was found to be a high-affinity tracer for PDAC tumors with considerable tumor accumulation and moderate, rapidly declining kidney uptake. These promising results warrant a preclinical treatment study to establish therapeutic efficacy.
Collapse
Affiliation(s)
- Sachindra Sachindra
- Department of Hepatology and Gastroenterology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Teresa Hellberg
- Department of Hepatology and Gastroenterology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Samantha Exner
- Department of Hepatology and Gastroenterology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Sonal Prasad
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan Rogalla
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Center for Cancer Early Detection, Stanford University, Stanford, CA, United States
| | - Richard Kimura
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Center for Cancer Early Detection, Stanford University, Stanford, CA, United States
| | - Sanjiv Sam Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Center for Cancer Early Detection, Stanford University, Stanford, CA, United States
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Grötzinger
- Department of Hepatology and Gastroenterology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Molecular Cancer Research Center (MKFZ), Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Berlin, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
16
|
Tomassi S, D’Amore VM, Di Leva FS, Vannini A, Quilici G, Weinmüller M, Reichart F, Amato J, Romano B, Izzo AA, Di Maro S, Novellino E, Musco G, Gianni T, Kessler H, Marinelli L. Halting the Spread of Herpes Simplex Virus-1: The Discovery of an Effective Dual αvβ6/αvβ8 Integrin Ligand. J Med Chem 2021; 64:6972-6984. [PMID: 33961417 PMCID: PMC8279406 DOI: 10.1021/acs.jmedchem.1c00533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Over recent years, αvβ6 and αvβ8 Arg-Gly-Asp (RGD) integrins have risen to prominence as interchangeable co-receptors for the cellular entry of herpes simplex virus-1 (HSV-1). In fact, the employment of subtype-specific integrin-neutralizing antibodies or gene-silencing siRNAs has emerged as a valuable strategy for impairing HSV infectivity. Here, we shift the focus to a more affordable pharmaceutical approach based on small RGD-containing cyclic pentapeptides. Starting from our recently developed αvβ6-preferential peptide [RGD-Chg-E]-CONH2 (1), a small library of N-methylated derivatives (2-6) was indeed synthesized in the attempt to increase its affinity toward αvβ8. Among the novel compounds, [RGD-Chg-(NMe)E]-CONH2 (6) turned out to be a potent αvβ6/αvβ8 binder and a promising inhibitor of HSV entry through an integrin-dependent mechanism. Furthermore, the renewed selectivity profile of 6 was fully rationalized by a NMR/molecular modeling combined approach, providing novel valuable hints for the design of RGD integrin ligands with the desired specificity profile.
Collapse
Affiliation(s)
- Stefano Tomassi
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Vincenzo Maria D’Amore
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Francesco Saverio Di Leva
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Andrea Vannini
- Department
of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Giacomo Quilici
- Biomolecular
NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Michael Weinmüller
- Institute
for Advanced Study, Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Florian Reichart
- Institute
for Advanced Study, Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Jussara Amato
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Barbara Romano
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Angelo Antonio Izzo
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Salvatore Di Maro
- DiSTABiF, University of Campania
“Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ettore Novellino
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
- Facoltà
di Medicina e Chirurgia, Università
Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Roma, Italy
| | - Giovanna Musco
- Biomolecular
NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Tatiana Gianni
- Department
of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Horst Kessler
- Institute
for Advanced Study, Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Luciana Marinelli
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
17
|
Ludwig BS, Kessler H, Kossatz S, Reuning U. RGD-Binding Integrins Revisited: How Recently Discovered Functions and Novel Synthetic Ligands (Re-)Shape an Ever-Evolving Field. Cancers (Basel) 2021; 13:1711. [PMID: 33916607 PMCID: PMC8038522 DOI: 10.3390/cancers13071711] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Integrins have been extensively investigated as therapeutic targets over the last decades, which has been inspired by their multiple functions in cancer progression, metastasis, and angiogenesis as well as a continuously expanding number of other diseases, e.g., sepsis, fibrosis, and viral infections, possibly also Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Although integrin-targeted (cancer) therapy trials did not meet the high expectations yet, integrins are still valid and promising targets due to their elevated expression and surface accessibility on diseased cells. Thus, for the future successful clinical translation of integrin-targeted compounds, revisited and innovative treatment strategies have to be explored based on accumulated knowledge of integrin biology. For this, refined approaches are demanded aiming at alternative and improved preclinical models, optimized selectivity and pharmacological properties of integrin ligands, as well as more sophisticated treatment protocols considering dose fine-tuning of compounds. Moreover, integrin ligands exert high accuracy in disease monitoring as diagnostic molecular imaging tools, enabling patient selection for individualized integrin-targeted therapy. The present review comprehensively analyzes the state-of-the-art knowledge on the roles of RGD-binding integrin subtypes in cancer and non-cancerous diseases and outlines the latest achievements in the design and development of synthetic ligands and their application in biomedical, translational, and molecular imaging approaches. Indeed, substantial progress has already been made, including advanced ligand designs, numerous elaborated pre-clinical and first-in-human studies, while the discovery of novel applications for integrin ligands remains to be explored.
Collapse
Affiliation(s)
- Beatrice S. Ludwig
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
| | - Horst Kessler
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, University Hospital Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| |
Collapse
|
18
|
Jugniot N, Bam R, Meuillet EJ, Unger EC, Paulmurugan R. Current status of targeted microbubbles in diagnostic molecular imaging of pancreatic cancer. Bioeng Transl Med 2021; 6:e10183. [PMID: 33532585 PMCID: PMC7823123 DOI: 10.1002/btm2.10183] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often associated with a poor prognosis due to silent onset, resistance to therapies, and rapid spreading. Most patients are ineligible for curable surgery as they present with advanced disease at the time of diagnosis. Present diagnostic methods relying on anatomical changes have various limitations including difficulty to discriminate between benign and malignant conditions, invasiveness, the ambiguity of imaging results, or the inability to detect molecular biomarkers of PDAC initiation and progression. Therefore, new imaging technologies with high sensitivity and specificity are critically needed for accurately detecting PDAC and noninvasively characterizing molecular features driving its pathogenesis. Contrast enhanced targeted ultrasound (CETUS) is an upcoming molecular imaging modality that specifically addresses these issues. Unlike anatomical imaging modalities such as CT and MRI, molecular imaging using CETUS is promising for early and accurate detection of PDAC. The use of molecularly targeted microbubbles that bind to neovascular targets can enhance the ultrasound signal specifically from malignant PDAC tissues. This review discusses the current state of diagnostic imaging modalities for pancreatic cancer and places a special focus on ultrasound targeted-microbubble technology together with its clinical translatability for PDAC detection.
Collapse
Affiliation(s)
- Natacha Jugniot
- Department of RadiologyMolecular Imaging Program at Stanford, Stanford UniversityPalo AltoCaliforniaUSA
| | - Rakesh Bam
- Department of RadiologyMolecular Imaging Program at Stanford, Stanford UniversityPalo AltoCaliforniaUSA
| | | | | | - Ramasamy Paulmurugan
- Department of RadiologyMolecular Imaging Program at Stanford, Stanford UniversityPalo AltoCaliforniaUSA
| |
Collapse
|
19
|
Cardle II, Jensen MC, Pun SH, Sellers DL. Optimized serum stability and specificity of an αvβ6 integrin-binding peptide for tumor targeting. J Biol Chem 2021; 296:100657. [PMID: 33857478 PMCID: PMC8138772 DOI: 10.1016/j.jbc.2021.100657] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/03/2022] Open
Abstract
The integrin αvβ6 is an antigen expressed at low levels in healthy tissue but upregulated during tumorigenesis, which makes it a promising target for cancer imaging and therapy. A20FMDV2 is a 20-mer peptide derived from the foot-and-mouth disease virus that exhibits nanomolar and selective affinity for αvβ6 versus other integrins. Despite this selectivity, A20FMDV2 has had limited success in imaging and treating αvβ6+ tumors in vivo because of its poor serum stability. Here, we explore the cyclization and modification of the A20FMDV2 peptide to improve its serum stability without sacrificing its affinity and specificity for αvβ6. Using cysteine amino acid substitutions and cyclization by perfluoroarylation with decafluorobiphenyl, we synthesized six cyclized A20FMDV2 variants and discovered that two retained binding to αvβ6 with modestly improved serum stability. Further d-amino acid substitutions and C-terminal sequence optimization outside the cyclized region greatly prolonged peptide serum stability without reducing binding affinity. While the cyclized A20FMDV2 variants exhibited increased nonspecific integrin binding compared with the original peptide, additional modifications with the non-natural amino acids citrulline, hydroxyproline, and d-alanine were found to restore binding specificity, with some modifications leading to greater αvβ6 integrin selectivity than the original A20FMDV2 peptide. The peptide modifications detailed herein greatly improve the potential of utilizing A20FMDV2 to target αvβ6 in vivo, expanding opportunities for cancer targeting and therapy.
Collapse
Affiliation(s)
- Ian I Cardle
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; Seattle Children's Therapeutics, Seattle, Washington, USA
| | - Michael C Jensen
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; Seattle Children's Therapeutics, Seattle, Washington, USA; Department of Pediatrics, University of Washington, Seattle, Washington, USA; Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Suzie H Pun
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Drew L Sellers
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
20
|
Abstract
Tumor-homing peptides are widely used for improving tumor selectivity of anticancer drugs and imaging agents. The goal is to increase tumor uptake and reduce accumulation at nontarget sites. Here, we describe current approaches for tumor-homing peptide identification and validation, and provide comprehensive overview of classes of tumor-homing peptides undergoing preclinical and clinical development. We focus on unique mechanistic features and applications of a recently discovered class of tumor-homing peptides, tumor-penetrating C-end Rule (CendR) peptides, that can be used for tissue penetrative targeting of extravascular tumor tissue. Finally, we discuss unanswered questions and future directions in the field of development of peptide-guided smart drugs and imaging agents.
Collapse
|
21
|
Urquiza M, Guevara V, Diaz-Sana E, Mora F. The Role of αvβ6 Integrin Binding Molecules in the Diagnosis and Treatment of Cancer. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200528124936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peptidic and non-peptidic αvβ6 integrin-binding molecules have been used in
the clinic for detection and treatment of tumors expressing αvβ6 integrin, because this protein
is expressed in malignant epithelial cells of the oral cavity, pancreas, breast, ovary,
colon and stomach carcinomas but it is not expressed in healthy adult tissue except during
wound healing and inflammation. This review focuses on the landscape of αvβ6 integrinbinding
molecules and their use in cancer treatment and detection, and discusses recent
designs for tumor detection, treatment, and immunotherapy. In the last ten years, several
reviews abamp;#945;vβ6 integrin-binding molecules and their role in cancer detection and treatment.
Firstly, this review describes the role of the αvβ6 integrin in normal tissues, how the expression
of this protein is correlated with cancer severity and its role in cancer development. Taking into account
the potential of αvβ6 integrin-binding molecules in detection and treatment of specific tumors, special
attention is given to several high-affinity αvβ6 integrin-binding peptides used for tumor imaging; particularly,
the αvβ6-binding peptide NAVPNLRGDLQVLAQKVART [A20FMDV2], derived from the foot and mouth
disease virus. This peptide labeled with either 18F, 111In or with 68Ga has been used for PET imaging of αvβ6
integrin-positive tumors. Moreover, αvβ6 integrin-binding peptides have been used for photoacoustic and fluorescence
imaging and could potentially be used in clinical application in cancer diagnosis and intraoperative
imaging of αvβ6-integrin positive tumors. Additionally, non-peptidic αvβ6-binding molecules have been designed
and used in the clinic for the detection and treatment of αvβ6-expressing tumors. Anti-αvβ6 integrin antibodies
are another useful tool for selective identification and treatment of αvβ6 (+) tumors. The utility of
these αvβ6 integrin-binding molecules as a tool for tumor detection and treatment is discussed, considering
specificity, sensitivity and serum stability. Another use of the αvβ6 integrin-binding peptides is to modify the
Ad5 cell tropism for inducing oncolytic activity of αvβ6-integrin positive tumor cells by expressing
A20FMDV2 peptide within the fiber knob protein (Ad5NULL-A20). The newly designed oncolytic
Ad5NULL-A20 virotherapy is promising for local and systemic targeting of αvβ6-overexpressing cancers. Finally,
new evidence has emerged, indicating that chimeric antigen receptor (CAR) containing the αvβ6 integrin-
binding peptide on top of CD28+CD3 endodomain displays a potent therapeutic activity in a diverse
repertoire of solid tumor models.
Collapse
Affiliation(s)
- Mauricio Urquiza
- Grupo de Investigacion en Hormonas (GIH), Department of Chemistry, National University of Columbia, Cra 30 # 45-03, Bogota, zip code 111321, Colombia
| | - Valentina Guevara
- Grupo de Investigacion en Hormonas (GIH), Department of Chemistry, National University of Columbia, Cra 30 # 45-03, Bogota, zip code 111321, Colombia
| | - Erika Diaz-Sana
- Grupo de Investigacion en Hormonas (GIH), Department of Chemistry, National University of Columbia, Cra 30 # 45-03, Bogota, zip code 111321, Colombia
| | - Felipe Mora
- Grupo de Investigacion en Hormonas (GIH), Department of Chemistry, National University of Columbia, Cra 30 # 45-03, Bogota, zip code 111321, Colombia
| |
Collapse
|
22
|
Integrin alpha V (ITGAV) expression in esophageal adenocarcinoma is associated with shortened overall-survival. Sci Rep 2020; 10:18411. [PMID: 33110104 PMCID: PMC7591891 DOI: 10.1038/s41598-020-75085-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
Valid biomarkers for a better prognostic prediction of the clinical course in esophageal adenocarcinoma (EAC) are still not implemented. Integrin alpha V (ITGAV), a transmembrane glycoprotein responsible for cell-to-matrix binding has been found to enhance tumor progression in several tumor entities. The expression pattern and biological role of ITGAV expression in esophageal adenocarcinoma (EAC) has not been analyzed so far. Aim of the study is to evaluate the expression level of ITGAV in a very large collective of EAC and its impact on individual patients´ prognosis. 585 patients with esophageal adenocarcinoma were analyzed immunohistochemically for ITGAV. The data was correlated with clinical, pathological and molecular data (TP53, HER2/neu, c-myc, GATA6, PIK3CA and KRAS). A total of 85 patients (14.3%) out of 585 analyzable tumors showed an ITGAV expression and intratumoral heterogeneity was low. ITGAV expression was correlated with a shortened overall-survival in the patients´ group that underwent primary surgery (p = 0.014) but not in the group of patients that received neoadjuvant treatment before surgery. No correlation between any of the analyzed molecular marker (mutations or amplifications) (TP53, HER2, c-myc, GATA6, PIK3CA and KRAS) and ITGAV expression could be observed. A multivariate cox-regression model was performed which showed tumor stage, lymph node metastasis and ITGAV expression as independent prognostic markers for overall-survival in the group of patients without neoadjuvant treatment. ITGAV expression is correlated with an impaired patient outcome in the group of patients without neoadjuvant therapy and serves as a prognostic factor in EAC.
Collapse
|
23
|
Feng X, Wang Y, Lu D, Xu X, Zhou X, Zhang H, Zhang T, Zhu H, Yang Z, Wang F, Li N, Liu Z. Clinical Translation of a 68Ga-Labeled Integrin α vβ 6-Targeting Cyclic Radiotracer for PET Imaging of Pancreatic Cancer. J Nucl Med 2020; 61:1461-1467. [PMID: 32086242 DOI: 10.2967/jnumed.119.237347] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
The overexpression of integrin αvβ6 in pancreatic cancer makes it a promising target for noninvasive PET imaging. However, currently, most integrin αvβ6-targeting radiotracers are based on linear peptides, which are quickly degraded in the serum by proteinases. Herein, we aimed to develop and assess a 68Ga-labeled integrin αvβ6-targeting cyclic peptide (68Ga-cycratide) for PET imaging of pancreatic cancer. Methods: 68Ga-cycratide was prepared, and its PET imaging profile was compared with that of the linear peptide (68Ga-linear-pep) in an integrin αvβ6-positive BxPC-3 human pancreatic cancer mouse model. Five healthy volunteers (2 women and 3 men) underwent whole-body PET/CT imaging after injection of 68Ga-cycratide, and biodistribution and dosimetry were calculated. PET/CT imaging of 2 patients was performed to investigate the potential role of 68Ga-cycratide in pancreatic cancer diagnosis and treatment monitoring. Results: 68Ga-cycratide exhibited significantly higher tumor uptake than did 68Ga-linear-pep in BxPC-3 tumor-bearing mice, owing-at least in part-to markedly improved in vivo stability. 68Ga-cycratide could sensitively detect the pancreatic cancer lesions in an orthotopic mouse model and was well tolerated in all healthy volunteers. Preliminary PET/CT imaging in patients with pancreatic cancer demonstrated that 68Ga-cycratide was comparable to 18F-FDG for diagnostic imaging and postsurgery tumor relapse monitoring. Conclusion: 68Ga-cycratide is an integrin αvβ6-specific PET radiotracer with favorable pharmacokinetics and a favorable dosimetry profile. 68Ga-cycratide is expected to provide an effective noninvasive PET strategy for pancreatic cancer lesion detection and therapy response monitoring.
Collapse
Affiliation(s)
- Xun Feng
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; and
| | - Yanpu Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; and
| | - Dehua Lu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; and
| | - Xiaoxia Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xin Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Huiyuan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ting Zhang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; and
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; and
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhaofei Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; and
| |
Collapse
|
24
|
Lui BG, Salomon N, Wüstehube-Lausch J, Daneschdar M, Schmoldt HU, Türeci Ö, Sahin U. Targeting the tumor vasculature with engineered cystine-knot miniproteins. Nat Commun 2020; 11:295. [PMID: 31941901 PMCID: PMC6962393 DOI: 10.1038/s41467-019-13948-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 11/28/2019] [Indexed: 01/08/2023] Open
Abstract
The extra domain B splice variant (EDB) of human fibronectin selectively expressed in the tumor vasculature is an attractive target for cancer imaging and therapy. Here, we describe the generation and characterization of EDB-specific optical imaging probes. By screening combinatorial cystine-knot miniprotein libraries with phage display technology we discover exquisitely EDB-specific ligands that share a distinctive motif. Probes with a binding constant in the picomolar range are generated by chemical oligomerization of selected ligands and fluorophore conjugation. We show by fluorescence imaging that the probes stain EDB in tissue sections derived from human U-87 MG glioblastoma xenografts in mice. Moreover, we demonstrate selective accumulation and retention of intravenously administered probes in the tumor tissue of mice with U-87 MG glioblastoma xenografts by in vivo and ex vivo fluorescence imaging. These data warrants further pursuit of the selected cystine-knot miniproteins for in vivo imaging applications. Cystine-knot miniprotein are small, highly stable, disulfide-rich peptides with increasing potential as drugs and tumor imaging agents. Here the authors develop cystine-knot miniproteins targeting the vascular tumor marker EDB, and use them as probes for in vivo tumor vasculature imaging.
Collapse
|
25
|
Nardelli F, Ghitti M, Quilici G, Gori A, Luo Q, Berardi A, Sacchi A, Monieri M, Bergamaschi G, Bermel W, Chen F, Corti A, Curnis F, Musco G. A stapled chromogranin A-derived peptide is a potent dual ligand for integrins αvβ6 and αvβ8. Chem Commun (Camb) 2020; 55:14777-14780. [PMID: 31755501 DOI: 10.1039/c9cc08518a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Combining 2D STD-NMR, computation, biochemical assays and click-chemistry, we have identified a chromogranin-A derived compound (5) that has high affinity and bi-selectivity for αvβ6 and αvβ8 integrins and is stable in microsomal preparations. 5 is suitable for nanoparticle functionalization and delivery to cancer cells, holding promise for diagnostic and/or therapeutic applications.
Collapse
Affiliation(s)
- Francesca Nardelli
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy.
| | - Michela Ghitti
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy.
| | - Giacomo Quilici
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy.
| | - Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milan, Italy
| | - Qingqiong Luo
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Andrea Berardi
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy.
| | - Angelina Sacchi
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy.
| | - Matteo Monieri
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy.
| | - Greta Bergamaschi
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milan, Italy
| | - Wolfgang Bermel
- Bruker BioSpin GmbH, Silberstreifen 4, Rheinstetten, 76287, Germany
| | - Fuxiang Chen
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Angelo Corti
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy. and Vita Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Flavio Curnis
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy.
| | - Giovanna Musco
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy.
| |
Collapse
|
26
|
Evaluation of integrin αvβ 6 cystine knot PET tracers to detect cancer and idiopathic pulmonary fibrosis. Nat Commun 2019; 10:4673. [PMID: 31611594 PMCID: PMC6791878 DOI: 10.1038/s41467-019-11863-w] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
Advances in precision molecular imaging promise to transform our ability to detect, diagnose and treat disease. Here, we describe the engineering and validation of a new cystine knot peptide (knottin) that selectively recognizes human integrin αvβ6 with single-digit nanomolar affinity. We solve its 3D structure by NMR and x-ray crystallography and validate leads with 3 different radiolabels in pre-clinical models of cancer. We evaluate the lead tracer’s safety, biodistribution and pharmacokinetics in healthy human volunteers, and show its ability to detect multiple cancers (pancreatic, cervical and lung) in patients at two study locations. Additionally, we demonstrate that the knottin PET tracers can also detect fibrotic lung disease in idiopathic pulmonary fibrosis patients. Our results indicate that these cystine knot PET tracers may have potential utility in multiple disease states that are associated with upregulation of integrin αvβ6. Knottin is a cystine knot peptide. Here, the authors develop a knottin-based tracer for positron emission tomography and demonstrate its ability to detect cancer and idiopathic pulmonary fibrosis through selective binding to integrin αvβ6.
Collapse
|
27
|
Bernhagen D, Jungbluth V, Gisbert Quilis N, Dostalek J, White PB, Jalink K, Timmerman P. High-Affinity α 5β 1-Integrin-Selective Bicyclic RGD Peptides Identified via Screening of Designed Random Libraries. ACS COMBINATORIAL SCIENCE 2019; 21:598-607. [PMID: 31269394 DOI: 10.1021/acscombsci.9b00081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report the identification of high-affinity and selectivity integrin α5β1-binding bicyclic peptides via "designed random libraries", that is, the screening of libraries comprising the universal integrin-binding sequence Arg-Gly-Asp (RGD) in the first loop in combination with a randomized sequence (XXX) in the second loop. Screening of first-generation libraries for α5β1-binding peptides yielded a triple-digit nanomolar bicyclic α5β1-binder (CT3RGDcT3AYGCT3, IC50 = 406 nM). Next-generation libraries were designed by partially varying the structure of the strongest first-generation lead inhibitor and screened for improved affinities and selectivities for this receptor. In this way, we identified three high-affinity α5β1-binders (CT3RGDcT3AYJCT3, J = d-Leu, IC50 = 90 nM; CT3RGDcT3AYaCT3, IC50 = 156 nM; CT3RGDcT3AWGCT3, IC50 = 173 nM), of which one even showed a higher α5β1-affinity than the 32 amino acid benchmark peptide knottin-RGD (IC50 = 114 nM). Affinity for α5β1-integrin was confirmed by SPFS analysis showing a Kd of 4.1 nM for Cy5-labeled RGD-bicycle CT3RGDcT3AYJCT3 (J = d-Leu) and a somewhat higher Kd (9.0 nM) for Cy5-labeled knottin-RGD. The α5β1-bicycles, for example, CT3RGDcT3AYJCT3 (J = d-Leu), showed excellent selectivities over αvβ5 (IC50 ratio α5β1/αvβ5 between <0.009 and 0.039) and acceptable selectivities over αvβ3 (IC50 ratios α5β1/αvβ3 between 0.090 and 0.157). In vitro staining of adipose-derived stem cells with Cy5-labeled peptides using confocal microscopy revealed strong binding of the α5β1-selective bicycle CT3RGDcT3AWGCT3 to integrins in their natural environment, illustrating the high potential of these RGD bicycles as markers for α5β1-integrin expression.
Collapse
Affiliation(s)
- Dominik Bernhagen
- Pepscan Therapeutics, Zuidersluisweg 2, 8243 RC Lelystad, the Netherlands
| | - Vanessa Jungbluth
- Biosensor Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Nestor Gisbert Quilis
- Biosensor Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Jakub Dostalek
- Biosensor Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Paul B. White
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Kees Jalink
- The Netherlands Cancer Institute, Plesmanlaan 21, 1066 CX Amsterdam, the Netherlands
| | - Peter Timmerman
- Pepscan Therapeutics, Zuidersluisweg 2, 8243 RC Lelystad, the Netherlands
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| |
Collapse
|
28
|
Poth AG, Huang YH, Le TT, Kan MW, Craik DJ. Pharmacokinetic characterization of kalata B1 and related therapeutics built on the cyclotide scaffold. Int J Pharm 2019; 565:437-446. [DOI: 10.1016/j.ijpharm.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/24/2019] [Accepted: 05/03/2019] [Indexed: 02/08/2023]
|
29
|
Bosma T, Rink R, Moosmeier MA, Moll GN. Genetically Encoded Libraries of Constrained Peptides. Chembiochem 2019; 20:1754-1758. [PMID: 30794341 DOI: 10.1002/cbic.201900031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Indexed: 02/01/2023]
Abstract
Many therapeutic peptides can still be improved with respect to target specificity, target affinity, resistance to peptidases/proteases, physical stability, and capacity to pass through membranes required for oral delivery. Several modifications can improve the peptides' properties, in particular those that impose (a) conformational constraint(s). Screening of constrained peptides and the identification of hits is greatly facilitated by the generation of genetically encoded libraries. Recent breakthrough bacterial, phage, and yeast display screening systems of ribosomally synthesized post-translationally constrained peptides, particularly those of lanthipeptides, are earning special attention. Here we provide an overview of display systems for constrained, genetically encoded peptides and indicate prospects of constrained peptide-displaying phage and bacterial systems as such in vivo.
Collapse
Affiliation(s)
- Tjibbe Bosma
- Lanthio Pharma, a MorphoSys AG Company, Rozenburglaan 13B, 9727 DL, Groningen, The Netherlands
| | - Rick Rink
- Lanthio Pharma, a MorphoSys AG Company, Rozenburglaan 13B, 9727 DL, Groningen, The Netherlands
| | | | - Gert N Moll
- Lanthio Pharma, a MorphoSys AG Company, Rozenburglaan 13B, 9727 DL, Groningen, The Netherlands.,Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
30
|
Bernhagen D, Jungbluth V, Quilis NG, Dostalek J, White PB, Jalink K, Timmerman P. Bicyclic RGD Peptides with Exquisite Selectivity for the Integrin α vβ 3 Receptor Using a "Random Design" Approach. ACS COMBINATORIAL SCIENCE 2019; 21:198-206. [PMID: 30624885 DOI: 10.1021/acscombsci.8b00144] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We describe the identification of bicyclic RGD peptides with high affinity and selectivity for integrin αvβ3 via high-throughput screening of partially randomized libraries. Peptide libraries (672 different compounds) comprising the universal integrin-binding sequence Arg-Gly-Asp (RGD) in the first loop and a randomized sequence XXX (X being one of 18 canonical l-amino acids) in the second loop, both enclosed by either an l- or d-Cys residue, were converted to bicyclic peptides via reaction with 1,3,5-tris(bromomethyl)benzene (T3). Screening of first-generation libraries yielded lead bicyclic inhibitors displaying submicromolar affinities for integrin αvβ3 (e.g., CT3HEQcT3RGDcT3, IC50 = 195 nM). Next generation (second and third) libraries were obtained by partially varying the structure of the strongest lead inhibitors and screening for improved affinities and selectivities. In this way, we identified the highly selective bicyclic αvβ3-binders CT3HPQcT3RGDcT3 (IC50 = 30 nM), CT3HPQCT3RGDcT3 (IC50 = 31 nM), and CT3HSQCT3RGDcT3 (IC50 = 42 nM) with affinities comparable to that of a knottin-RGD-type peptide (32 amino acids, IC50 = 38 nM) and outstanding selectivities over integrins αvβ5 (IC50 > 10000 nM) and α5β1 (IC50 > 10000 nM). Affinity measurements using surface plasmon-enhanced fluorescence spectroscopy (SPFS) yielded Kd values of 0.4 and 0.6 nM for the Cy5-labeled bicycle CT3HPQcT3RGDcT3 and RGD "knottin" peptide, respectively. In vitro staining of HT29 cells with Cy5-labeled bicycles using confocal microscopy revealed strong binding to integrins in their natural environment, which highlights the high potential of these peptides as markers of integrin expression.
Collapse
Affiliation(s)
- Dominik Bernhagen
- Pepscan Therapeutics, Zuidersluisweg 2, 8243 RC Lelystad, The Netherlands
| | - Vanessa Jungbluth
- Biosensor Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Nestor Gisbert Quilis
- Biosensor Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Jakub Dostalek
- Biosensor Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Paul B. White
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Kees Jalink
- The Netherlands Cancer Institute, Plesmanlaan 21, 1066 CX Amsterdam, The Netherlands
| | - Peter Timmerman
- Pepscan Therapeutics, Zuidersluisweg 2, 8243 RC Lelystad, The Netherlands
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
31
|
Hausner SH, Bold RJ, Cheuy LY, Chew HK, Daly ME, Davis RA, Foster CC, Kim EJ, Sutcliffe JL. Preclinical Development and First-in-Human Imaging of the Integrin α vβ 6 with [ 18F]α vβ 6-Binding Peptide in Metastatic Carcinoma. Clin Cancer Res 2019; 25:1206-1215. [PMID: 30401687 PMCID: PMC6377828 DOI: 10.1158/1078-0432.ccr-18-2665] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/28/2018] [Accepted: 11/02/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE The study was undertaken to develop and evaluate the potential of an integrin αvβ6-binding peptide (αvβ6-BP) for noninvasive imaging of a diverse range of malignancies with PET. EXPERIMENTAL DESIGN The peptide αvβ6-BP was prepared on solid phase and radiolabeled with 4-[18F]fluorobenzoic acid. In vitro testing included ELISA, serum stability, and cell binding studies using paired αvβ6-expressing and αvβ6-null cell lines. In vivo evaluation (PET/CT, biodistribution, and autoradiography) was performed in a mouse model bearing the same paired αvβ6-expressing and αvβ6-null cell xenografts. A first-in-human PET/CT imaging study was performed in patients with metastatic lung, colon, breast, or pancreatic cancer. RESULTS [18F]αvβ6-BP displayed excellent affinity and selectivity for the integrin αvβ6 in vitro [IC50(αvβ6) = 1.2 nmol/L vs IC50(αvβ3) >10 μmol/L] in addition to rapid target-specific cell binding and internalization (72.5% ± 0.9% binding and 52.5% ± 1.8%, respectively). Favorable tumor affinity and selectivity were retained in the mouse model and excretion of unbound [18F]αvβ6-BP was rapid, primarily via the kidneys. In patients, [18F]αvβ6-BP was well tolerated without noticeable adverse side effects. PET images showed significant uptake of [18F]αvβ6-BP in both the primary lesion and metastases, including metastasis to brain, bone, liver, and lung. CONCLUSIONS The clinical impact of [18F]αvβ6-BP PET imaging demonstrated in this first-in-human study is immediate for a broad spectrum of malignancies.
Collapse
Affiliation(s)
- Sven H Hausner
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Davis and Sacramento, California
| | - Richard J Bold
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Davis and Sacramento, California
| | - Lina Y Cheuy
- Department of Biomedical Engineering, University of California Davis, Davis and Sacramento, California
| | - Helen K Chew
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Davis and Sacramento, California
| | - Megan E Daly
- Department of Radiation Oncology, University of California Davis, Davis and Sacramento, California
| | - Ryan A Davis
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Davis and Sacramento, California
| | - Cameron C Foster
- Division of Nuclear Medicine, Department of Radiology, University of California Davis, Davis and Sacramento, California
| | - Edward J Kim
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Davis and Sacramento, California
| | - Julie L Sutcliffe
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Davis and Sacramento, California.
- Department of Biomedical Engineering, University of California Davis, Davis and Sacramento, California
- Center for Molecular and Genomic Imaging, University of California Davis, Davis and Sacramento, California
| |
Collapse
|
32
|
|
33
|
Identification, Characterization, and Optimization of Integrin α vβ₆-Targeting Peptides from a One-Bead One-Compound (OBOC) Library: Towards the Development of Positron Emission Tomography (PET) Imaging Agents. Molecules 2019; 24:molecules24020309. [PMID: 30654483 PMCID: PMC6359284 DOI: 10.3390/molecules24020309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
The current translation of peptides identified through the one-bead one-compound (OBOC) technology into positron emission tomography (PET) imaging agents is a slow process, with a major delay between ligand identification and subsequent lead optimization. This work aims to streamline the development process of 18F-peptide based PET imaging agents to target the integrin αvβ6. By directly identify αvβ6–targeting peptides from a 9-mer 4-fluorobenzoyl peptide library using the on-bead two-color (OBTC) cell-screening assay, a total of 185 peptide beads were identified and 5 beads sequenced for further evaluation. The lead peptide 1 (VGDLTYLKK(FB), IC50 = 0.45 ± 0.06 μM, 25% stable in serum at 1 h) was further modified at the N-, C-, and bi-termini. C-terminal PEGylation increased the metabolic stability (>95% stable), but decreased binding affinity (IC50 = 3.7 ± 1 μM) was noted. C-terminal extension (1i, VGDLTYLKK(FB)KVART) significantly increased binding affinity for integrin αvβ6 (IC50 = 0.021 ± 0.002 μM), binding selectivity for αvβ6-expressing cells (3.1 ± 0.8:1), and the serum stability (>99% stable). Our results demonstrate the challenges in optimizing OBOC-derived peptides, indicate both termini of 1 are sensitive to modifications, and show that further modification of 1 is necessary to demonstrate utility as an 18F-peptide imaging agent.
Collapse
|
34
|
Liu X, Yang X, Sun W, Wu Q, Song Y, Yuan L, Yang G. Systematic Evolution of Ligands by Exosome Enrichment: A Proof-of-Concept Study for Exosome-Based Targeting Peptide Screening. ACTA ACUST UNITED AC 2018; 3:e1800275. [PMID: 32627374 DOI: 10.1002/adbi.201800275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/04/2018] [Indexed: 11/10/2022]
Abstract
Selection of a peptide that binds preferentially to targeted cells or tissues is a prerequisite for targeted therapy. Although in vivo phage display is a high-throughput method, it is restricted in identifying target ligands specific for different vascular beds. In this study, the exosomes are repurposed for targeting peptide screening. Briefly, the signal peptide region of Lamp2b (a membrane protein on the exosomes) in the N-terminus is engineered to fuse with 10 aa long random peptides, while the C-terminus of Lamp2b is fused with the MS2 coating protein (MCP). Then, the whole Lamp2b-MCP open reading frame (ORF) is further engineered to harbor a 3'UTR sequence consisting of MS2. The resultant exosomes from engineered Lamp2b-MCP expressing cells display the 10 aa peptides on the outside while containing the genetic information inside. By proof-of-principle experiments, the exosomes with different peptides could preferentially distribute to different tissues besides the spleen and liver. Furthermore, detailed target sequences for different tissues are enriched by rounds of selection. In summary, the established novel targeted peptide screening strategy, namely, "exosome display," has broad applicability, especially for displaying and screening targeted peptides for the cells outside the capillary with condense barriers, like the neurons in the brain.
Collapse
Affiliation(s)
- Xiangwei Liu
- Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture Department of Implant Dentistry, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Xuekang Yang
- Department of Burn Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wenqi Sun
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xinshi Road NO. 569th, Xi'an, 710038, China
| | - Qi Wu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yingliang Song
- Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture Department of Implant Dentistry, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Lijun Yuan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xinshi Road NO. 569th, Xi'an, 710038, China
| | - Guodong Yang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
35
|
Liu H, Gao L, Yu X, Zhong L, Shi J, Jia B, Li N, Liu Z, Wang F. Small-animal SPECT/CT imaging of cancer xenografts and pulmonary fibrosis using a 99mTc-labeled integrin αvβ6-targeting cyclic peptide with improved in vivo stability. BIOPHYSICS REPORTS 2018; 4:254-264. [PMID: 30533490 PMCID: PMC6245143 DOI: 10.1007/s41048-018-0071-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022] Open
Abstract
Abstract Integrin αvβ6 is expressed at an undetectable level in normal tissues, but is remarkably upregulated during many pathological processes, especially in cancer and fibrosis. Noninvasive imaging of integrin αvβ6 expression using a radiotracer with favorable in vivo pharmacokinetics would facilitate disease diagnosis and therapy monitoring. Through disulfide-cyclized method, we synthesized in this study, a new integrin αvβ6-targeted cyclic peptide (denoted as cHK), and radiolabeled it with 99mTc. The ability of the resulting radiotracer 99mTc–HYNIC–cHK to detect integrin αvβ6 expression in pancreatic cancer xenografts and idiopathic pulmonary fibrosis was evaluated using small-animal single-photon emission computed tomography (SPECT)/computed tomography (CT). 99mTc–HYNIC–cHK showed significantly improved in vivo metabolic stability compared to the linear peptide-based radiotracer 99mTc–HYNIC–HK. 99mTc–HYNIC–cHK exhibited similar biodistribution properties to 99mTc–HYNIC–HK, but the tumor-to-muscle ratio was significantly increased (2.99 ± 0.87 vs. 1.82 ± 0.27, P < 0.05). High-contrast images of integrin αvβ6-positive tumors and bleomycin-induced fibrotic lungs were obtained by SPECT/CT imaging using 99mTc–HYNIC–cHK. Overall, our studies demonstrate that 99mTc–HYNIC–cHK is a promising SPECT radiotracer for the noninvasive imaging of integrin αvβ6 in living subjects. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Hao Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Liquan Gao
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Xinhe Yu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Lijun Zhong
- Medical and Healthy Analytical Center, Peking University, Beijing, 100191 China
| | - Jiyun Shi
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Bing Jia
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
- Medical and Healthy Analytical Center, Peking University, Beijing, 100191 China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142 China
| | - Zhaofei Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
36
|
Tummers WS, Willmann JK, Bonsing BA, Vahrmeijer AL, Gambhir SS, Swijnenburg RJ. Advances in Diagnostic and Intraoperative Molecular Imaging of Pancreatic Cancer. Pancreas 2018; 47:675-689. [PMID: 29894417 PMCID: PMC6003672 DOI: 10.1097/mpa.0000000000001075] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis. To improve outcomes, there is a critical need for improved tools for detection, accurate staging, and resectability assessment. This could improve patient stratification for the most optimal primary treatment modality. Molecular imaging, used in combination with tumor-specific imaging agents, can improve established imaging methods for PDAC. These novel, tumor-specific imaging agents developed to target specific biomarkers have the potential to specifically differentiate between malignant and benign diseases, such as pancreatitis. When these agents are coupled to various types of labels, this type of molecular imaging can provide integrated diagnostic, noninvasive imaging of PDAC as well as image-guided pancreatic surgery. This review provides a detailed overview of the current clinical imaging applications, upcoming molecular imaging strategies for PDAC, and potential targets for imaging, with an emphasis on intraoperative imaging applications.
Collapse
Affiliation(s)
- Willemieke S. Tummers
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA. Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Juergen K. Willmann
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA. Juergen K. Willmann died January 8, 2018
| | - Bert A. Bonsing
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Sanjiv S. Gambhir
- Address correspondence to: R.J. Swijnenburg, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands (). Tel: +31 71 526 4005, Fax: +31 71 526 6750
| | - Rutger-Jan Swijnenburg
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
37
|
Lwin TM, Hoffman RM, Bouvet M. The development of fluorescence guided surgery for pancreatic cancer: from bench to clinic. Expert Rev Anticancer Ther 2018; 18:651-662. [PMID: 29768067 PMCID: PMC6298876 DOI: 10.1080/14737140.2018.1477593] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Surgeons face major challenges in achieving curative R0 resection for pancreatic cancers. When the lesion is localized, they must appropriately visualize the tumor, determine appropriate resection margins, and ensure complete tumor clearance. Real-time surgical navigation using fluorescence-guidance has enhanced the ability of surgeons to see the tumor and has the potential to assist in achieving more oncologically complete resections. When there is metastatic disease, fluorescence enhancement can help detect these lesions and prevent unnecessary and futile surgeries. Areas covered: This article reviews different approaches for delivery of a fluorescence signal, their pre-clinical and clinical developments for fluorescence guided surgery, the advantages/challenges of each, and their potential for advancements in the future. Expert commentary: A variety of molecular imaging techniques are available for delivering tumor-specific fluorescence signals. Significant advancements have been made in the past 10 years due to the large body of literature on targeted therapies and this has translated into rapid developments of tumor-specific probes.
Collapse
Affiliation(s)
- Thinzar M. Lwin
- Department of Surgery, University of California San Diego, San Diego, CA
| | - Robert M. Hoffman
- Department of Surgery, University of California San Diego, San Diego, CA
- AntiCancer, Inc., San Diego, CA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, CA
- VA San Diego Healthcare System, San Diego, CA
| |
Collapse
|
38
|
Case BA, Kruziki MA, Johnson SM, Hackel BJ. Engineered Charge Redistribution of Gp2 Proteins through Guided Diversity for Improved PET Imaging of Epidermal Growth Factor Receptor. Bioconjug Chem 2018; 29:1646-1658. [PMID: 29579383 PMCID: PMC6051758 DOI: 10.1021/acs.bioconjchem.8b00144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Gp2 domain is a protein scaffold for synthetic ligand engineering. However, the native protein function results in a heterogeneous distribution of charge on the conserved surface, which may hinder further development and utility. We aim to modulate charge, without diminishing function, which is challenging in small proteins where each mutation is a significant fraction of protein structure. We constructed rationally guided combinatorial libraries with charge-neutralizing or charge-flipping mutations and sorted them, via yeast display and flow cytometry, for stability and target binding. Deep sequencing of functional variants revealed effective mutations both in clone-dependent contexts and broadly across binders to epidermal growth factor receptor (EGFR), insulin receptor, and immunoglobulin G. Functional mutants averaged 4.3 charge neutralizing mutations per domain while maintaining net negative charge. We evolved an EGFR-targeted Gp2 mutant that reduced charge density by 33%, maintained net charge, and improved charge distribution homogeneity while elevating thermal stability ( Tm = 87 ± 1 °C), improving binding specificity, and maintaining affinity ( Kd = 8.8 ± 0.6 nM). This molecule was conjugated with 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid for 64Cu chelation and evaluated for physiological distribution in mice with xenografted A431 (EGFRhigh) and MDA-MB-435 (EGFRlow) tumors. Excised tissue gamma counting and positron emission tomography/computed tomography imaging revealed good EGFRhigh tumor signal (4.7 ± 0.5%ID/g) at 2 h post-injection and molecular specificity evidenced by low uptake in EGFRlow tumors (0.6 ± 0.1%ID/g, significantly lower than for non-charge-modified Gp2, p = 0.01). These results provide charge mutations for an improved Gp2 framework, validate an effective approach to charge engineering, and advance performance of physiological EGFR targeting for molecular imaging.
Collapse
Affiliation(s)
- Brett A. Case
- University of Minnesota – Twin Cities, Department of Chemical Engineering and Materials Science, 421 Washington Avenue SE, Minneapolis, MN 55455
| | - Max A. Kruziki
- University of Minnesota – Twin Cities, Department of Chemical Engineering and Materials Science, 421 Washington Avenue SE, Minneapolis, MN 55455
| | - Sadie M. Johnson
- University of Minnesota – Twin Cities, Department of Chemical Engineering and Materials Science, 421 Washington Avenue SE, Minneapolis, MN 55455
| | - Benjamin J. Hackel
- University of Minnesota – Twin Cities, Department of Chemical Engineering and Materials Science, 421 Washington Avenue SE, Minneapolis, MN 55455
| |
Collapse
|
39
|
Sirois AR, Deny DA, Baierl SR, George KS, Moore SJ. Fn3 proteins engineered to recognize tumor biomarker mesothelin internalize upon binding. PLoS One 2018; 13:e0197029. [PMID: 29738555 PMCID: PMC5940182 DOI: 10.1371/journal.pone.0197029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/20/2018] [Indexed: 11/19/2022] Open
Abstract
Mesothelin is a cell surface protein that is overexpressed in numerous cancers, including breast, ovarian, lung, liver, and pancreatic tumors. Aberrant expression of mesothelin has been shown to promote tumor progression and metastasis through interaction with established tumor biomarker CA125. Therefore, molecules that specifically bind to mesothelin have potential therapeutic and diagnostic applications. However, no mesothelin-targeting molecules are currently approved for routine clinical use. While antibodies that target mesothelin are in development, some clinical applications may require a targeting molecule with an alternative protein fold. For example, non-antibody proteins are more suitable for molecular imaging and may facilitate diverse chemical conjugation strategies to create drug delivery complexes. In this work, we engineered variants of the fibronectin type III domain (Fn3) non-antibody protein scaffold to bind to mesothelin with high affinity, using directed evolution and yeast surface display. Lead engineered Fn3 variants were solubly produced and purified from bacterial culture at high yield. Upon specific binding to mesothelin on human cancer cell lines, the engineered Fn3 proteins internalized and co-localized to early endosomes. To our knowledge, this is the first report of non-antibody proteins engineered to bind mesothelin. The results validate that non-antibody proteins can be engineered to bind to tumor biomarker mesothelin, and encourage the continued development of engineered variants for applications such as targeted diagnostics and therapeutics.
Collapse
Affiliation(s)
- Allison R. Sirois
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
- Picker Engineering Program, Smith College, Northampton, Massachusetts, United States of America
| | - Daniela A. Deny
- Department of Biochemistry, Smith College, Northampton, Massachusetts, United States of America
| | - Samantha R. Baierl
- Picker Engineering Program, Smith College, Northampton, Massachusetts, United States of America
| | - Katia S. George
- Department of Biochemistry, Smith College, Northampton, Massachusetts, United States of America
| | - Sarah J. Moore
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
- Picker Engineering Program, Smith College, Northampton, Massachusetts, United States of America
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
40
|
Di Leva FS, Tomassi S, Di Maro S, Reichart F, Notni J, Dangi A, Marelli UK, Brancaccio D, Merlino F, Wester HJ, Novellino E, Kessler H, Marinelli L. Von einer Helix zu einem kleinen Ring: Metadynamik-inspirierte, selektive Liganden für αvβ6-Integrin. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Francesco Saverio Di Leva
- Dipartimento di Farmacia; Università degli Studi di Napoli Federico II; Via D. Montesano 49 80131 Naples Italien
| | - Stefano Tomassi
- DiSTABiF; Università degli Studi della Campania Luigi Vanvitelli; Via Vivaldi 43 81100 Caserta Italien
| | - Salvatore Di Maro
- DiSTABiF; Università degli Studi della Campania Luigi Vanvitelli; Via Vivaldi 43 81100 Caserta Italien
| | - Florian Reichart
- Institute for Advanced Study and Center of Integrated Protein Science; Department Chemie; Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Johannes Notni
- Lehrstuhl für Pharmazeutische Radiochemie; Technische Universität München; Walther-Meißner Straße 3 85748 Garching Deutschland
| | - Abha Dangi
- Central NMR Facility and Division of Organic Chemistry; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road 411008 Pune Indien
| | - Udaya Kiran Marelli
- Institute for Advanced Study and Center of Integrated Protein Science; Department Chemie; Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
- Central NMR Facility and Division of Organic Chemistry; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road 411008 Pune Indien
| | - Diego Brancaccio
- Dipartimento di Farmacia; Università degli Studi di Napoli Federico II; Via D. Montesano 49 80131 Naples Italien
| | - Francesco Merlino
- Dipartimento di Farmacia; Università degli Studi di Napoli Federico II; Via D. Montesano 49 80131 Naples Italien
| | - Hans-Jürgen Wester
- Lehrstuhl für Pharmazeutische Radiochemie; Technische Universität München; Walther-Meißner Straße 3 85748 Garching Deutschland
| | - Ettore Novellino
- Dipartimento di Farmacia; Università degli Studi di Napoli Federico II; Via D. Montesano 49 80131 Naples Italien
| | - Horst Kessler
- Institute for Advanced Study and Center of Integrated Protein Science; Department Chemie; Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Luciana Marinelli
- Dipartimento di Farmacia; Università degli Studi di Napoli Federico II; Via D. Montesano 49 80131 Naples Italien
| |
Collapse
|
41
|
Di Leva FS, Tomassi S, Di Maro S, Reichart F, Notni J, Dangi A, Marelli UK, Brancaccio D, Merlino F, Wester HJ, Novellino E, Kessler H, Marinelli L. From a Helix to a Small Cycle: Metadynamics-Inspired αvβ6 Integrin Selective Ligands. Angew Chem Int Ed Engl 2018; 57:14645-14649. [DOI: 10.1002/anie.201803250] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Francesco Saverio Di Leva
- Dipartimento di Farmacia; Università degli Studi di Napoli Federico II; Via D. Montesano 49 80131 Naples Italy
| | - Stefano Tomassi
- DiSTABiF; Università degli Studi della Campania Luigi Vanvitelli; Via Vivaldi 43 81100 Caserta Italy
| | - Salvatore Di Maro
- DiSTABiF; Università degli Studi della Campania Luigi Vanvitelli; Via Vivaldi 43 81100 Caserta Italy
| | - Florian Reichart
- Institute for Advanced Study and Center of Integrated Protein Science; Department Chemie; Technische Universität München; Lichtenbergstraße 4 85748 Garching Germany
| | - Johannes Notni
- Lehrstuhl für Pharmazeutische Radiochemie; Technische Universität München; Walther-Meißner Straße 3 85748 Garching Germany
| | - Abha Dangi
- Central NMR Facility and Division of Organic Chemistry; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road 411008 Pune India
| | - Udaya Kiran Marelli
- Institute for Advanced Study and Center of Integrated Protein Science; Department Chemie; Technische Universität München; Lichtenbergstraße 4 85748 Garching Germany
- Central NMR Facility and Division of Organic Chemistry; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road 411008 Pune India
| | - Diego Brancaccio
- Dipartimento di Farmacia; Università degli Studi di Napoli Federico II; Via D. Montesano 49 80131 Naples Italy
| | - Francesco Merlino
- Dipartimento di Farmacia; Università degli Studi di Napoli Federico II; Via D. Montesano 49 80131 Naples Italy
| | - Hans-Jürgen Wester
- Lehrstuhl für Pharmazeutische Radiochemie; Technische Universität München; Walther-Meißner Straße 3 85748 Garching Germany
| | - Ettore Novellino
- Dipartimento di Farmacia; Università degli Studi di Napoli Federico II; Via D. Montesano 49 80131 Naples Italy
| | - Horst Kessler
- Institute for Advanced Study and Center of Integrated Protein Science; Department Chemie; Technische Universität München; Lichtenbergstraße 4 85748 Garching Germany
| | - Luciana Marinelli
- Dipartimento di Farmacia; Università degli Studi di Napoli Federico II; Via D. Montesano 49 80131 Naples Italy
| |
Collapse
|
42
|
Roesch S, Lindner T, Sauter M, Loktev A, Flechsig P, Müller M, Mier W, Warta R, Dyckhoff G, Herold-Mende C, Haberkorn U, Altmann A. Comparison of the RGD Motif–Containing αvβ6 Integrin–Binding Peptides SFLAP3 and SFITGv6 for Diagnostic Application in HNSCC. J Nucl Med 2018; 59:1679-1685. [DOI: 10.2967/jnumed.118.210013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/28/2018] [Indexed: 12/18/2022] Open
|
43
|
Designing macrocyclic disulfide-rich peptides for biotechnological applications. Nat Chem Biol 2018; 14:417-427. [DOI: 10.1038/s41589-018-0039-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
|
44
|
Abou-Elkacem L, Wang H, Chowdhury SM, Kimura RH, Bachawal SV, Gambhir SS, Tian L, Willmann JK. Thy1-Targeted Microbubbles for Ultrasound Molecular Imaging of Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2018; 24:1574-1585. [PMID: 29301827 PMCID: PMC5884723 DOI: 10.1158/1078-0432.ccr-17-2057] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/09/2017] [Accepted: 12/18/2017] [Indexed: 12/17/2022]
Abstract
Purpose: To engineer a dual human and murine Thy1-binding single-chain-antibody ligand (Thy1-scFv) for contrast microbubble-enhanced ultrasound molecular imaging of pancreatic ductal adenocarcinoma (PDAC).Experimental Design: Thy1-scFv were engineered using yeast-surface-display techniques. Binding to soluble human and murine Thy1 and to Thy1-expressing cells was assessed by flow cytometry. Thy1-scFv was then attached to gas-filled microbubbles to create MBThy1-scFv Thy1 binding of MBThy1-scFv to Thy1-expressing cells was evaluated under flow shear stress conditions in flow-chamber experiments. MBscFv-scrambled and MBNon-targeted were used as negative controls. All microbubble types were tested in both orthotopic human PDAC xenografts and transgenic PDAC mice in vivoResults: Thy1-scFv had a KD of 3.4 ± 0.36 nmol/L for human and 9.2 ± 1.7 nmol/L for murine Thy1 and showed binding to both soluble and cellularly expressed Thy1. MBThy1-scFv was attached to Thy1 with high affinity compared with negative control microbubbles (P < 0.01) as assessed by flow cytometry. Similarly, flow-chamber studies showed significantly (P < 0.01) higher binding of MBThy1-scFv (3.0 ± 0.81 MB/cell) to Thy1-expressing cells than MBscFv-scrambled (0.57 ± 0.53) and MBNon-targeted (0.43 ± 0.53). In vivo ultrasound molecular imaging using MBThy1-scFv demonstrated significantly higher signal (P < 0.01) in both orthotopic (5.32 ± 1.59 a.u.) and transgenic PDAC (5.68 ± 2.5 a.u.) mice compared with chronic pancreatitis (0.84 ± 0.6 a.u.) and normal pancreas (0.67 ± 0.71 a.u.). Ex vivo immunofluorescence confirmed significantly (P < 0.01) increased Thy1 expression in PDAC compared with chronic pancreatitis and normal pancreas tissue.Conclusions: A dual human and murine Thy1-binding scFv was designed to generate contrast microbubbles to allow PDAC detection with ultrasound. Clin Cancer Res; 24(7); 1574-85. ©2018 AACR.
Collapse
Affiliation(s)
- Lotfi Abou-Elkacem
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford, California.
| | - Huaijun Wang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford, California
| | - Sayan M Chowdhury
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford, California
| | - Richard H Kimura
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford, California
| | - Sunitha V Bachawal
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford, California
| | - Sanjiv S Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford, California
| | - Lu Tian
- Department of Health, Research and Policy, Stanford University, Stanford, California
| | - Jürgen K Willmann
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford, California
| |
Collapse
|
45
|
Krasniqi A, D'Huyvetter M, Devoogdt N, Frejd FY, Sörensen J, Orlova A, Keyaerts M, Tolmachev V. Same-Day Imaging Using Small Proteins: Clinical Experience and Translational Prospects in Oncology. J Nucl Med 2018; 59:885-891. [PMID: 29545374 DOI: 10.2967/jnumed.117.199901] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/06/2018] [Indexed: 12/12/2022] Open
Abstract
Imaging of expression of therapeutic targets may enable stratification of patients for targeted treatments. The use of small radiolabeled probes based on the heavy-chain variable region of heavy-chain-only immunoglobulins or nonimmunoglobulin scaffolds permits rapid localization of radiotracers in tumors and rapid clearance from normal tissues. This makes high-contrast imaging possible on the day of injection. This mini review focuses on small proteins for radionuclide-based imaging that would allow same-day imaging, with the emphasis on clinical applications and promising preclinical developments within the field of oncology.
Collapse
Affiliation(s)
- Ahmet Krasniqi
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), VUB, Brussels, Belgium
| | - Matthias D'Huyvetter
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), VUB, Brussels, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), VUB, Brussels, Belgium
| | - Fredrik Y Frejd
- Affibody AB, Solna, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jens Sörensen
- Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; and
| | - Marleen Keyaerts
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), VUB, Brussels, Belgium .,Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
46
|
Case BA, Kruziki MA, Stern LA, Hackel BJ. Evaluation of affibody charge modification identified by synthetic consensus design in molecular PET imaging of epidermal growth factor receptor. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2018; 3:171-182. [PMID: 31467687 PMCID: PMC6715147 DOI: 10.1039/c7me00095b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tumor overexpression of epidermal growth factor receptor (EGFR) correlates to therapeutic response in select patient populations. Thus, molecular positron emission tomography (PET) imaging of EGFR could stratify responders versus non-responders. We previously demonstrated effectiveness of a "synthetic consensus" design principle to identify six neutralizing mutations within a 58-amino acid EGFR-targeted affibody domain. Herein, we extend the approach to identify additional neutralized variants that vary net charge from -2 to either -4 or +4 while retaining high affinity (1.6 ± 1.2 nM and 2.5 ± 0.7 nM), specific binding to EGFR, secondary structure, and stability (Tm = 68 °C and 59 °C). We radiolabeled the resultant collection of five charge variants with 64Cu and evaluated PET imaging performance in murine models with subcutaneously xenografted EGFRhigh and EGFRlow tumors. All variants exhibited good EGFRhigh tumor imaging as early as 1 h, with EA35S (+3/-5) achieving 7.7 ± 1.4 %ID/g tumor at 4 h with 1.5 ± 0.3%ID/g EGFRlow tumor, 34 ± 5 tumor:muscle and 12 ± 3 tumor:blood ratios. The positively charged EA62S mutant (+6/-2) exhibited 2.2-3.3-fold higher liver signal than the other variants (p<0.01). The EA68 variant with higher charge density was more stable to human and mouse serum than neutralized variants. In a comparison of radiometal chelators, 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA) exhibited superior physiological specificity to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). In total, these studies comparatively evaluated a set of EGFR-targeted affibodies varying in net charge and charge density, which revealed functional variations that are useful in engineering an ideal probe for translational studies.
Collapse
Affiliation(s)
- Brett A Case
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, Minneapolis, MN 55455
| | - Max A Kruziki
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, Minneapolis, MN 55455
| | - Lawrence A Stern
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, Minneapolis, MN 55455
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, Minneapolis, MN 55455
| |
Collapse
|
47
|
Tummers WS, Kimura RH, Abou-Elkacem L, Beinat C, Vahrmeijer AL, Swijnenburg RJ, Willmann JK, Gambhir SS. Development and Preclinical Validation of a Cysteine Knottin Peptide Targeting Integrin αvβ6 for Near-infrared Fluorescent-guided Surgery in Pancreatic Cancer. Clin Cancer Res 2018; 24:1667-1676. [DOI: 10.1158/1078-0432.ccr-17-2491] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/20/2017] [Accepted: 12/28/2017] [Indexed: 11/16/2022]
|
48
|
Exploring the Role of RGD-Recognizing Integrins in Cancer. Cancers (Basel) 2017; 9:cancers9090116. [PMID: 28869579 PMCID: PMC5615331 DOI: 10.3390/cancers9090116] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 12/18/2022] Open
Abstract
Integrins are key regulators of communication between cells and with their microenvironment. Eight members of the integrin superfamily recognize the tripeptide motif Arg-Gly-Asp (RGD) within extracelluar matrix (ECM) proteins. These integrins constitute an important subfamily and play a major role in cancer progression and metastasis via their tumor biological functions. Such transmembrane adhesion and signaling receptors are thus recognized as promising and well accessible targets for novel diagnostic and therapeutic applications for directly attacking cancer cells and their fatal microenvironment. Recently, specific small peptidic and peptidomimetic ligands as well as antibodies binding to distinct integrin subtypes have been developed and synthesized as new drug candidates for cancer treatment. Understanding the distinct functions and interplay of integrin subtypes is a prerequisite for selective intervention in integrin-mediated diseases. Integrin subtype-specific ligands labelled with radioisotopes or fluorescent molecules allows the characterization of the integrin patterns in vivo and later the medical intervention via subtype specific drugs. The coating of nanoparticles, larger proteins, or encapsulating agents by integrin ligands are being explored to guide cytotoxic reagents directly to the cancer cell surface. These ligands are currently under investigation in clinical studies for their efficacy in interference with tumor cell adhesion, migration/invasion, proliferation, signaling, and survival, opening new treatment approaches in personalized medicine.
Collapse
|
49
|
Tummers WS, Farina-Sarasqueta A, Boonstra MC, Prevoo HA, Sier CF, Mieog JS, Morreau J, van Eijck CH, Kuppen PJ, van de Velde CJ, Bonsing BA, Vahrmeijer AL, Swijnenburg RJ. Selection of optimal molecular targets for tumor-specific imaging in pancreatic ductal adenocarcinoma. Oncotarget 2017; 8:56816-56828. [PMID: 28915633 PMCID: PMC5593604 DOI: 10.18632/oncotarget.18232] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/01/2017] [Indexed: 12/21/2022] Open
Abstract
Discrimination of pancreatic ductal adenocarcinoma (PDAC) from chronic pancreatitis (CP) or peritumoral inflammation is challenging, both at preoperative imaging and during surgery, but it is crucial for proper therapy selection. Tumor-specific molecular imaging aims to enhance this discrimination and to help select and stratify patients for resection. We evaluated various biomarkers for the specific identification of PDAC and associated lymph node metastases. Using immunohistochemistry (IHC), expression levels and patterns were investigated of integrin αvβ6, carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), Cathepsin E (Cath E), epidermal growth factor receptor (EGFR), hepatocyte growth factor receptor (c-MET), thymocyte differentiation antigen 1 (Thy1), and urokinase-type plasminogen activator receptor (uPAR). In a first cohort, multiple types of pancreatic tissue were evaluated (n=62); normal pancreatic tissue (n=8), CP (n=7), PDAC (n=9), tumor associated lymph nodes (n=32), and PDAC after neoadjuvant radiochemotherapy (n=6). In a second cohort, tissues were investigated (n=55) with IHC and immunofluorescence (IF) for concordance of biomarker expression in all tissue types, obtained from an individual patient. Integrin αvβ6 and CEACAM5 showed significantly higher expression levels in PDAC versus normal pancreatic tissue (P=0.001 and P<0.001, respectively) and CP (P=0.003 and P<0.001, respectively). Avβ6 and CEACAM5 expression identified tumor-positive lymph nodes correctly in 84% and 68%, respectively, and in 100% of tumor-negative nodes for both biomarkers. In conclusion, αvβ6 and CEACAM5 are excellent biomarkers to differentiate PDAC from surrounding tissue and to identify lymph node metastases. Individually or combined, these biomarkers are promising targets for tumor-specific molecular imaging of PDAC.
Collapse
Affiliation(s)
- Willemieke S Tummers
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Martin C Boonstra
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Hendrica A Prevoo
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis F Sier
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan S Mieog
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Johannes Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Casper H van Eijck
- Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Peter J Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Bert A Bonsing
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
50
|
Altmann A, Sauter M, Roesch S, Mier W, Warta R, Debus J, Dyckhoff G, Herold-Mende C, Haberkorn U. Identification of a Novel ITGα vβ 6-Binding Peptide Using Protein Separation and Phage Display. Clin Cancer Res 2017; 23:4170-4180. [PMID: 28468949 DOI: 10.1158/1078-0432.ccr-16-3217] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/19/2017] [Accepted: 02/15/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Targeted therapies are regarded as promising approaches to increase 5-year survival rate of head and neck squamous cell carcinoma (HNSCC) patients.Experimental design: For the selection of carcinoma-specific peptides membrane proteome of HNO97 tumor cells fractionated by the ProteomeLab PF2D system and corresponding HNO97 cells were deployed for an alternating biopanning using a sunflower trypsin inhibitor1-based phage display (SFTI8Ph) library. Stability, binding properties and affinity of novel candidates were assessed in vitro using radio-HPLC, binding experiments and surface plasmon resonance assay (SPR), respectively. Subsequently, the affinity of the peptide was verified in situ by using peptide histochemistry, in vitro using flow cytometry, and in vivo by positron emissions tomography (PET/CT).Results: We identified a novel ITGαvβ6 binding peptide (SFITGv6) containing the amino acid sequence FRGDLMQL. SFITGv6 provides stability over a period of 24 hours and demonstrates high affinity (KD = 14.8 nmol/L) for ITGαvβ6 In HNO97 cells, a maximal uptake and internalization of up to 37.3% and 37.5%, respectively, was measured. Small-animal PET imaging and biodistribution studies of HNO97 xenografted Balb/c nu/nu mice showed tumor-specific accumulation of 68Ga- and 177Lu-labeled DOTA-SFITGv6, respectively, 30 to 60 minutes after injection. Moreover, peptide histochemistry revealed a strong and homogenous binding of biotin-labeled SFITGv6 to HNSCC tumors and breast- and lung cancer-derived brain metastases. Finally, first PET/CT scans of HNSCC and NSCLC patients displayed SFITGv6 accumulation specifically in tumors, but not in inflammatory lesions.Conclusions: Thus, SFITGv6 represents a novel powerful tracer for imaging and possibly for endoradiotherapy of ITGαvβ6-positive carcinoma. Clin Cancer Res; 23(15); 4170-80. ©2017 AACR.
Collapse
Affiliation(s)
- Annette Altmann
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ) Heidelberg, Germany.,Department of Nuclear Medicine, University Hospital Heidelberg, Germany
| | - Max Sauter
- Department of Nuclear Medicine, University Hospital Heidelberg, Germany
| | - Saskia Roesch
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, Germany.,Department of Head and Neck Surgery, University of Heidelberg, Germany
| | - Walter Mier
- Department of Nuclear Medicine, University Hospital Heidelberg, Germany
| | - Rolf Warta
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, Germany.,Department of Head and Neck Surgery, University of Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiooncology, University Hospital Heidelberg, Germany
| | - Gerhard Dyckhoff
- Department of Head and Neck Surgery, University of Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, Germany
| | - Uwe Haberkorn
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ) Heidelberg, Germany. .,Department of Nuclear Medicine, University Hospital Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|