1
|
Loers G, Bork U, Schachner M. Functional Relationships between L1CAM, LC3, ATG12, and Aβ. Int J Mol Sci 2024; 25:10829. [PMID: 39409157 PMCID: PMC11476435 DOI: 10.3390/ijms251910829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024] Open
Abstract
Abnormal protein accumulations in the brain are linked to aging and the pathogenesis of dementia of various types, including Alzheimer's disease. These accumulations can be reduced by cell indigenous mechanisms. Among these is autophagy, whereby proteins are transferred to lysosomes for degradation. Autophagic dysfunction hampers the elimination of pathogenic protein aggregations that contribute to cell death. We had observed that the adhesion molecule L1 interacts with microtubule-associated protein 1 light-chain 3 (LC3), which is needed for autophagy substrate selection. L1 increases cell survival in an LC3-dependent manner via its extracellular LC3 interacting region (LIR). L1 also interacts with Aβ and reduces the Aβ plaque load in an AD model mouse. Based on these results, we investigated whether L1 could contribute to autophagy of aggregated Aβ and its clearance. We here show that L1 interacts with autophagy-related protein 12 (ATG12) via its LIR domain, whereas interaction with ubiquitin-binding protein p62/SQSTM1 does not depend on LIR. Aβ, bound to L1, is carried to the autophagosome leading to Aβ elimination. Showing that the mitophagy-related L1-70 fragment is ubiquitinated, we expect that the p62/SQSTM1 pathway also contributes to Aβ elimination. We propose that enhancing L1 functions may contribute to therapy in humans.
Collapse
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ute Bork
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| |
Collapse
|
2
|
Naorem LD, Pathak E, Muthaiyan M, Venkatesan A. Network-based meta-analysis for the identification of potential target for human anaplastic thyroid carcinoma. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
3
|
VCAM-1 Upregulation Contributes to Insensitivity of Vemurafenib in BRAF-Mutant Thyroid Cancer. Transl Oncol 2020; 13:441-451. [PMID: 31911278 PMCID: PMC6948368 DOI: 10.1016/j.tranon.2019.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
Vemurafenib, an inhibitor of mutant BRAF activity, is a promising anticancer agent for patients with BRAF-mutant metastatic melanoma. However, it is less effective in BRAF-mutant thyroid cancer, and the reason for this discrepancy is not yet fully elucidated. By RNA sequencing analysis, we identified vascular cell adhesion molecular-1 (VCAM-1) to be highly upregulated in both time- and dose-dependent manners during BRAF inhibition (BRAFi) in a BRAF-mutant papillary thyroid cancer cell line (BCPAP). Cell cytotoxicity and apoptosis assays showed that knockdown of the induced VCAM-1 in BCPAP cells augmented the antitumor effects of vemurafenib, with decreased IC50 values of 1.4 to 0.8 μM. Meanwhile, overexpression of VCAM-1 in a BRAF-mutant anaplastic thyroid cancer cell line (FRO) reduced the sensitivity to vemurafenib, with increased IC50 values of 1.9 to 5.8 μM. Further investigation showed that PI3K-Akt-mTOR pathway was activated during BRAFi. Co-treatment with Akt signaling inhibitor MK2206 decreased the induced expression of VCAM-1 during BRAFi. This combination further improved the efficacy of vemurafenib. Moreover, VCAM-1 promoted migration and invasion in thyroid cancer cells in vitro, which was also indicated in thyroid cancer patients. The present study is the first to demonstrate that VCAM-1 is upregulated in thyroid cancer cells treated with vemurafenib and contributes to vemurafenib resistance in BRAF-mutant thyroid cancer cells. Targeting the PI3K-Akt-mTOR pathway–mediated VCAM-1 response may be an alternative strategy to sensitize BRAF-mutant thyroid cancers to vemurafenib.
Collapse
|
4
|
Tong AH, Tan J, Zhang JH, Xu FJ, Li FY, Cao CY. Overexpression of RYBP inhibits proliferation, invasion, and chemoresistance to cisplatin in anaplastic thyroid cancer cells via the EGFR pathway. J Biochem Mol Toxicol 2018; 33:e22241. [PMID: 30431689 DOI: 10.1002/jbt.22241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/19/2018] [Accepted: 09/07/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Ai-Hua Tong
- Department of Endocrinology; Linyi Central Hospital; Linyi City China
| | - Juan Tan
- Department of Endocrinology; Linyi Central Hospital; Linyi City China
| | - Jin-Hua Zhang
- Department of Endocrinology; Linyi Central Hospital; Linyi City China
| | - Fang-Jiang Xu
- Department of Endocrinology; Linyi Central Hospital; Linyi City China
| | - Fu-Yuan Li
- Department of Endocrinology; Linyi Central Hospital; Linyi City China
| | - Chun-Yu Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences; Beijing China
| |
Collapse
|
5
|
Kang YE, Kim JM, Kim KS, Chang JY, Jung M, Lee J, Yi S, Kim HW, Kim JT, Lee K, Choi MJ, Kang SK, Lee SE, Yi HS, Koo BS, Shong M. Upregulation of RSPO2-GPR48/LGR4 signaling in papillary thyroid carcinoma contributes to tumor progression. Oncotarget 2017; 8:114980-114994. [PMID: 29383135 PMCID: PMC5777747 DOI: 10.18632/oncotarget.22692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/04/2017] [Indexed: 01/07/2023] Open
Abstract
The signaling pathway involving the R-spondins and its cognate receptor, GPR48/LGR4, is crucial in development and carcinogenesis. However, the functional implications of the R-spondin-GPR48/LGR4 pathway in thyroid remain to be identified. The aim of this study was to investigate the role of R-spondin-GPR48/LGR4 signaling in papillary thyroid carcinomas. We retrospectively reviewed a total of 214 patients who underwent total thyroidectomy and cervical lymph node dissection for papillary thyroid carcinoma. The role of GPR48/LGR4 in proliferation and migration was examined in thyroid cancer cell lines. R-spondin 2, and GPR48/LGR4 were expressed at significantly higher levels in thyroid cancer than in normal controls. Elevated GPR48/LGR4 expression was significantly associated with tumor size (P=0.049), lymph node metastasis (P=0.004), recurrence (P=0.037), and the BRAFV600E mutation (P=0.003). Moreover, high GPR48/LGR4 expression was an independent risk factor for lymph node metastasis (P=0.027) and the BRAFV600E mutation (P=0.009). in vitro assays demonstrated that elevated expression of GPR48/LGR4 promoted proliferation and migration of thyroid cancer cells, whereas downregulation of GPR48/LGR4 decreased proliferation and migration by inhibition of the β-catenin pathway. Moreover, treatment of thyroid cancer cells with exogenous R-spondin 2 induced activation of the β-catenin pathway through GPR48/LGR4. The R-spondin 2-GPR48/LGR4 signaling axis also induced the phosphorylation of ERK, as well as phosphorylation of LRP6 and serine 9 of GSK3β. Our findings demonstrate that upregulation of the R-spondin 2-GPR48/LGR4 pathway contributes to tumor aggressiveness in papillary thyroid carcinoma by promoting ERK phosphorylation, suggesting that this pathway represents a novel therapeutic target for treatment of differentiated thyroid cancer.
Collapse
Affiliation(s)
- Yea Eun Kang
- Department of Endocrinology and Metabolism, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Jin-Man Kim
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Pathology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Koon Soon Kim
- Department of Endocrinology and Metabolism, College of Medicine, Chungnam National University, Daejeon 35015, South Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Joon Young Chang
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Mingyu Jung
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Junguee Lee
- Department of Pathology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daejeon 34943, Republic of Korea
| | - Shinae Yi
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyeon Woo Kim
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jung Tae Kim
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Kyungmin Lee
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Min Jeong Choi
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Seul Ki Kang
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Seong Eun Lee
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyon-Seung Yi
- Department of Endocrinology and Metabolism, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Bon Seok Koo
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Minho Shong
- Department of Endocrinology and Metabolism, College of Medicine, Chungnam National University, Daejeon 35015, South Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
6
|
Jo DH, Lee K, Kim JH, Jun HO, Kim Y, Cho YL, Yu YS, Min JK, Kim JH. L1 increases adhesion-mediated proliferation and chemoresistance of retinoblastoma. Oncotarget 2017; 8:15441-15452. [PMID: 28061460 PMCID: PMC5362498 DOI: 10.18632/oncotarget.14487] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/13/2016] [Indexed: 01/07/2023] Open
Abstract
Retinoblastoma is the most common intraocular cancer in children, affecting 1/20,000 live births. Currently, children with retinoblastoma were treated with chemotherapy using drugs such as carboplatin, vincristine, and etoposide. Unfortunately, if conventional treatment fails, the affected eyes should be removed to prevent extension into adjacent tissues and metastasis. This study is to investigate the roles of L1 in adhesion-mediated proliferation and chemoresistance of retinoblastoma. L1 was differentially expressed in 30 retinoblastoma tissues and 2 retinoblastoma cell lines. Furthermore, the proportions of L1-positive cells in retinoblastoma tumors were negatively linked with the number of Flexner-Wintersteiner rosettes, a characteristic of differentiated retinoblastoma tumors, in each tumor sample. Following in vitro experiments using L1-deleted and -overexpressing cells showed that L1 increased adhesion-mediated proliferation of retinoblastoma cells via regulation of cell cycle-associated proteins with modulation of Akt, extracellular signal-regulated kinase, and p38 pathways. In addition, L1 increased resistance against carboplatin, vincristine, and esoposide through up-regulation of apoptosis- and multidrug resistance-related genes. In vivo tumor formation and chemoresistance were also positively linked with the levels of L1 in an orthotopic transplantation model in mice. In this manner, L1 increases adhesion-mediated proliferation and chemoresistance of retinoblastoma. Targeted therapy to L1 might be effective in the treatment of retinoblastoma tumors, especially which rapidly proliferate and demonstrate resistance to conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Dong Hyun Jo
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Tumor Microenvironment Research Center, Global Core Research Center, Seoul National University, Seoul, Republic of Korea
| | - Kyungmin Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Biomolecular Science, University of Science & Technology, Daejeon, Republic of Korea
| | - Jin Hyoung Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Tumor Microenvironment Research Center, Global Core Research Center, Seoul National University, Seoul, Republic of Korea
| | - Hyoung Oh Jun
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Tumor Microenvironment Research Center, Global Core Research Center, Seoul National University, Seoul, Republic of Korea
| | - Younghoon Kim
- Department of Pathology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Young-Lai Cho
- Department of Chemistry, Dongguk University, Seoul, Republic of Korea
| | - Young Suk Yu
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Biomolecular Science, University of Science & Technology, Daejeon, Republic of Korea
| | - Jeong Hun Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Tumor Microenvironment Research Center, Global Core Research Center, Seoul National University, Seoul, Republic of Korea.,Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Huang Y, Tao Y, Li X, Chang S, Jiang B, Li F, Wang ZM. Bioinformatics analysis of key genes and latent pathway interactions based on the anaplastic thyroid carcinoma gene expression profile. Oncol Lett 2016; 13:167-176. [PMID: 28428828 PMCID: PMC5396846 DOI: 10.3892/ol.2016.5447] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/10/2016] [Indexed: 01/03/2023] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is an aggressive malignant disease in older adults
with a high mortality rate. The present study aimed to examine several key genes and
pathways, which are associated with ATC. The GSE33630 gene expression profile was
downloaded from the Gene Expression Omnibus database, which included 11 ATC and 45
normal thyroid samples. The differentially expressed genes (DEGs) in ATC were
identified using the Limma package in R. The Gene Ontology functions and Kyoto
Encyclopedia of Genes and Genomes pathways of the selected DEGs were enriched using
the Database for Annotation, Visualization and Integrated Discovery. A
protein-protein interaction (PPI) network of the DEGs was constructed to select
significant modules. Furthermore, a latent pathway interactive network was
constructed to select the significant pathways associated with ATC. A total of 665
DEGs in the ATC samples were screened, and four significant modules were selected
from the PPI network. The DEGs in the four modules were enriched in several functions
and pathways. In addition, 29 significant pathways associated with ATC were selected,
and he Toll-like receptor (TLR) signaling pathway, extracellular matrix
(ECM)-receptor interaction and cytokine-cytokine interaction pathway were identified
as important pathways. FBJ murine osteosarcoma viral oncogene homolog (FOS),
chemokine C-X-C motif ligand 10 (CXCL10), collagen type V α1 (COL5A1) and
chemokine (C-C motif) ligand 28 (CCL28) were the key DEGs involved in these
significant pathways. The data obtained in the present study revealed that the TLR
signaling pathway, ECM-receptor interaction and cytokine-cytokine receptor
interaction pathway, and the FOS, CXCL10, COL5A1, COL11A1 and CCL28 genes have
different roles in the progression of ATC, and these may be used as therapeutic
targets for ATC.
Collapse
Affiliation(s)
- Yun Huang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yiming Tao
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xinying Li
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Shi Chang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Bo Jiang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Feng Li
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zhi-Ming Wang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
8
|
Abstract
L1 cell adhesion molecule (L1CAM) is the prototype member of the L1-family of closely related neural adhesion molecules. L1CAM is differentially expressed in the normal nervous system as well as pathological tissues and displays a wide range of biological activities. In human malignancies, L1CAM plays a vital role in tumor growth, invasion and metastasis. Recently, increasing evidence has suggested that L1CAM exerts a variety of functions at different steps of tumor progression through a series of signaling pathways. In addition, L1CAM has been identified as a promising target for cancer therapy by using synthetic and natural inhibitors. In this review, we provide an up-to-date overview of the role of L1CAM involved in cancers and the rationale for L1CAM as a novel molecular target for cancer therapy.
Collapse
Affiliation(s)
- Xinzhe Yu
- a Department of Pancreatic Surgery, Huashan Hospital , Fudan University , Shanghai , China
| | - Feng Yang
- a Department of Pancreatic Surgery, Huashan Hospital , Fudan University , Shanghai , China
| | - De-Liang Fu
- a Department of Pancreatic Surgery, Huashan Hospital , Fudan University , Shanghai , China
| | - Chen Jin
- a Department of Pancreatic Surgery, Huashan Hospital , Fudan University , Shanghai , China
| |
Collapse
|
9
|
Altevogt P, Doberstein K, Fogel M. L1CAM in human cancer. Int J Cancer 2015; 138:1565-76. [DOI: 10.1002/ijc.29658] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/19/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany and Department of Dermatology, Venereology and Allergology; University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg; Mannheim Germany
| | - Kai Doberstein
- Ovarian Cancer Research Center, Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA
| | - Mina Fogel
- Central Laboratories; Kaplan Medical Center; Rehovot Israel
| |
Collapse
|
10
|
Sung SY, Wu IH, Chuang PH, Petros JA, Wu HC, Zeng HJ, Huang WC, Chung LWK, Hsieh CL. Targeting L1 cell adhesion molecule expression using liposome-encapsulated siRNA suppresses prostate cancer bone metastasis and growth. Oncotarget 2015; 5:9911-29. [PMID: 25294816 PMCID: PMC4259447 DOI: 10.18632/oncotarget.2478] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The L1 cell adhesion molecule (L1CAM) has been implicated in tumor progression of many types of cancers, but its role in prostate cancer and its application in targeted gene therapy have not been investigated. Herein, we demonstrated that the L1CAM was expressed in androgen-insensitive and highly metastatic human prostate cancer cell lines. The correlation between L1CAM expression and prostate cancer metastasis was also validated in serum samples of prostate cancer patients. Knockdown of L1CAM expression in prostate cancer cells by RNA interference significantly decreased their aggressive behaviors, including colony formation, migration and invasion in vitro, and tumor formation in a metastatic murine model. These anti-malignant phenotypes of L1CAM-knockdown cancer cells were accompanied by G0/G1 cell cycle arrest and suppression of matrix metalloproteinase (MMP)-2 and MMP-9 expression and nuclear factor NF-κB activation. In vivo targeting of L1CAM expression using liposome-encapsulated L1CAM siRNAs effectively inhibited prostate cancer growth in mouse bone, which was associated with decreased L1CAM expression and cell proliferation by tumor cells. These results provide the first evidence for L1CAM being a major contributor to prostate cancer metastasis and translational application of siRNA-based L1CAM-targeted therapy.
Collapse
Affiliation(s)
- Shian-Ying Sung
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan. These authors contributed equally to this work
| | - I-Hui Wu
- Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan. These authors contributed equally to this work
| | - Pei-Hsin Chuang
- Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan. These authors contributed equally to this work
| | - John A Petros
- Department of Urology, Emory University, Atlanta, GA, USA. Department of Urology, Atlanta VA Medical Center, Decatur GA, USA
| | - Hsi-Chin Wu
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Hong-Jie Zeng
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chien Huang
- Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Leland W K Chung
- Department of Urology, Emory University, Atlanta, GA, USA. Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Chia-Ling Hsieh
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan. Department of Urology, Emory University, Atlanta, GA, USA. Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| |
Collapse
|
11
|
Lee J, Chang JY, Kang YE, Yi S, Lee MH, Joung KH, Kim KS, Shong M. Mitochondrial Energy Metabolism and Thyroid Cancers. Endocrinol Metab (Seoul) 2015; 30:117-23. [PMID: 26194071 PMCID: PMC4508255 DOI: 10.3803/enm.2015.30.2.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 10/13/2014] [Accepted: 12/21/2014] [Indexed: 11/27/2022] Open
Abstract
Primary thyroid cancers including papillary, follicular, poorly differentiated, and anaplastic carcinomas show substantial differences in biological and clinical behaviors. Even in the same pathological type, there is wide variability in the clinical course of disease progression. The molecular carcinogenesis of thyroid cancer has advanced tremendously in the last decade. However, specific inhibition of oncogenic pathways did not provide a significant survival benefit in advanced progressive thyroid cancer that is resistant to radioactive iodine therapy. Accumulating evidence clearly shows that cellular energy metabolism, which is controlled by oncogenes and other tumor-related factors, is a critical factor determining the clinical phenotypes of cancer. However, the role and nature of energy metabolism in thyroid cancer remain unclear. In this article, we discuss the role of cellular energy metabolism, particularly mitochondrial energy metabolism, in thyroid cancer. Determining the molecular nature of metabolic remodeling in thyroid cancer may provide new biomarkers and therapeutic targets that may be useful in the management of refractory thyroid cancers.
Collapse
Affiliation(s)
- Junguee Lee
- Department of Pathology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daejeon, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Yea Eun Kang
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Shinae Yi
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Min Hee Lee
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Kyong Hye Joung
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Kun Soon Kim
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea.
| |
Collapse
|
12
|
Cho SW, Yi KH, Han SK, Sun HJ, Kim YA, Oh BC, Park YJ, Park DJ. Therapeutic potential of metformin in papillary thyroid cancer in vitro and in vivo. Mol Cell Endocrinol 2014; 393:24-9. [PMID: 24905037 DOI: 10.1016/j.mce.2014.05.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 05/07/2014] [Accepted: 05/23/2014] [Indexed: 01/09/2023]
Abstract
Metformin, an anti-diabetic drug used in type 2 diabetes treatment, is reported to have oncopreventive or therapeutic roles in several human cancers. The present study investigated the therapeutic potential of physiologic dose of metformin in PTC. Metformin inhibited PTC cell viability and increased cell apoptosis in various doses (0.5-20mM) in BCPAP and BHP10-3SC cells. Western blot analysis demonstrated that the p-AMPK/AMPK ratio increased with increased metformin treatment. The ectopic tumor experiment was performed using BHP10-3SC cells and athymic nude mice. Oral metformin treatment via drinking water significantly delayed tumor growth in both tumor development model and established tumor models. Necrotic area in tumors significantly increased with metformin treatment. Western blot analysis revealed an increase in p-AMPK/AMPK ratio and suppressions of mTOR and Akt expressions in metformin-treated mice compared to the results in mock-treated control mice. Our results indicate that a physiologic dose of metformin has anti-tumorigenic effects that result from activation of AMPK signaling and inhibition of Akt signaling.
Collapse
Affiliation(s)
- Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, National Medical Center, Seoul, Republic of Korea
| | - Ka Hee Yi
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Sun Kyoung Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jin Sun
- Department of Internal Medicine, National Medical Center, Seoul, Republic of Korea
| | - Ye An Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Byung-Chul Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University Graduate School of Medicine, Incheon, Republic of Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Do Joon Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Liu Y, Yu Y, Schachner M, Zhao W. Neuregulin 1-β regulates cell adhesion molecule L1 expression in the cortex and hippocampus of mice. Biochem Biophys Res Commun 2013; 441:7-12. [PMID: 24140408 DOI: 10.1016/j.bbrc.2013.09.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/20/2013] [Indexed: 02/05/2023]
Abstract
Neuregulin 1 (Nrg1) functions in neuronal migration, survival and differentiation as well as synaptogenesis during ontogenetic development and maintenance of synaptic functions in the adult mammalian brain. The neural adhesion molecule L1 (L1CAM) functions in similar overlapping, but also non-overlapping roles in the nervous system. In the present study, we therefore investigated some aspects of the functional relationship between Nrg1 and L1 in mammalian neural cells. Nrg1 regulates the expression of L1 in cultures of both human neuroblastoma SK-N-SH cells and mouse cortical and hippocampal neurons. To analyze the role of Nrg1 on L1 expression in vivo, young adult male mice received intraperitoneal injections of Nrg1 or PBS (vehicle control). The correlation between Nrg1 and L1 expression was tested by qPCR, Western blot analysis, and immunocytology. Our data indicate that neuregulin 1-β (Nrg1β) increases L1 expression in neurons of the cerebral cortex, and decreases expression in neurons of the hippocampus in vitro and in vivo. In addition, Nrg1 induces phosphorylation of its receptors, ErbB2 and ErbB4, the predominant ErbB receptors in the nervous system. These results show that Nrg1β affects expression of L1 in the central nervous system and in parallel activates the ErbB receptors for Nrg1, suggesting a crosstalk between molecules that are of prime importance for nervous system functions.
Collapse
Affiliation(s)
- Yang Liu
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Rd, Shantou, Guangdong Province 515041, People's Republic of China
| | | | | | | |
Collapse
|
14
|
Ciregia F, Giusti L, Molinaro A, Niccolai F, Agretti P, Rago T, Di Coscio G, Vitti P, Basolo F, Iacconi P, Tonacchera M, Lucacchini A. Presence in the pre-surgical fine-needle aspiration of potential thyroid biomarkers previously identified in the post-surgical one. PLoS One 2013; 8:e72911. [PMID: 24023790 PMCID: PMC3759451 DOI: 10.1371/journal.pone.0072911] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/15/2013] [Indexed: 01/08/2023] Open
Abstract
Fine-needle aspiration biopsy (FNA) is usually applied to distinguish benign from malignant thyroid nodules. However, cytological analysis cannot always allow a proper diagnosis. We believe that the improvement of the diagnostic capability of pre-surgical FNA could avoid unnecessary thyroidectomy. In a previous study, we performed a proteome analysis to examine FNA collected after thyroidectomy. With the present study, we examined the applicability of these results on pre-surgical FNA. We collected pre-surgical FNA from 411 consecutive patients, and to obtain a correct comparison with our previous results, we processed only benign (n = 114), papillary classical variant (cPTC) (n = 34) and papillary tall cell variant (TcPTC) (n = 14) FNA. We evaluated levels of five proteins previously found up-regulated in thyroid cancer with respect to benign nodules. ELISA and western blot (WB) analysis were used to assay levels of L-lactate dehydrogenase B chain (LDHB), Ferritin heavy chain, Ferritin light chain, Annexin A1 (ANXA1), and Moesin in FNA. ELISA assays and WB analysis confirmed the increase of LDHB, Moesin, and ANXA1 in pre-surgical FNA of thyroid papillary cancer. Sensitivity and specificity of ANXA1 were respectively 87 and 94% for cPTC, 85 and 100% for TcPTC. In conclusion, a proteomic analysis of FNA from patients with thyroid nodules may help to distinguish benign versus malignant thyroid nodules. Moreover, ANXA1 appears to be an ideal candidate given the high sensitivity and specificity obtained from ROC curve analysis.
Collapse
Affiliation(s)
| | - Laura Giusti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Angelo Molinaro
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Niccolai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Patrizia Agretti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Teresa Rago
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giancarlo Di Coscio
- Section of Cytopathology, University of Pisa and Pisa University Hospital, Pisa, Italy
| | - Paolo Vitti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fulvio Basolo
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Pietro Iacconi
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Massimo Tonacchera
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
15
|
Lee SE, Lee JU, Lee MH, Ryu MJ, Kim SJ, Kim YK, Choi MJ, Kim KS, Kim JM, Kim JW, Koh YW, Lim DS, Jo YS, Shong M. RAF kinase inhibitor-independent constitutive activation of Yes-associated protein 1 promotes tumor progression in thyroid cancer. Oncogenesis 2013; 2:e55. [PMID: 23857250 PMCID: PMC3740284 DOI: 10.1038/oncsis.2013.12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/20/2013] [Accepted: 04/26/2013] [Indexed: 12/16/2022] Open
Abstract
The transcription coactivator Yes-associated protein 1 (YAP1) is regulated by the Hippo tumor suppressor pathway. However, the role of YAP1 in thyroid cancer, which is frequently associated with the BRAFV600E mutation, remains unknown. This study aimed to investigate the role of YAP1 in thyroid cancer. YAP1 was overexpressed in papillary (PTC) and anaplastic thyroid cancer, and nuclear YAP1 was more frequently detected in BRAFV600E (+) PTC. In the thyroid cancer cell lines TPC-1 and HTH7, which do not have the BRAFV600E mutation, YAP1 was cytosolic and inactive at high cell densities. In contrast, YAP1 was retained in the nucleus and its target genes were expressed in the thyroid cancer cells 8505C and K1, which harbor the BRAFV600E mutation, regardless of cell density. Furthermore, the nuclear activation of YAP1 in 8505C was not inhibited by RAF or MEK inhibitor. In vitro experiments, YAP1 silencing or overexpression affected migratory capacities of 8505C and TPC-1 cells. YAP1 knockdown resulted in marked decrease of tumor volume, invasion and distant metastasis in orthotopic tumor xenograft mouse models using the 8505C thyroid cancer cell line. Taken together, YAP1 is involved in the tumor progression of thyroid cancer and YAP1-mediated effects might not be affected by the currently used RAF kinase inhibitors.
Collapse
Affiliation(s)
- S E Lee
- Department of Internal Medicine, Research Center for Endocrine and Metabolic Disease, Chungnam National University School of Medicine, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chen DL, Zeng ZL, Yang J, Ren C, Wang DS, Wu WJ, Xu RH. L1cam promotes tumor progression and metastasis and is an independent unfavorable prognostic factor in gastric cancer. J Hematol Oncol 2013; 6:43. [PMID: 23806079 PMCID: PMC3717076 DOI: 10.1186/1756-8722-6-43] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/24/2013] [Indexed: 11/10/2022] Open
Abstract
Background Previous reports have demonstrated that L1cam is aberrantly expressed in various tumors. The potential role of L1cam in the progression and metastasis of gastric cancer is still not clear and needs exploring. Methods Expression of L1cam was evaluated in gastric cancer tissues and cell lines by immunohistochemistry and Western blot. The relationship between L1cam expression and clinicopathological characteristics was analyzed. The effects of L1cam on cell proliferation, migration and invasion were investigated in gastric cancer cell lines both in vitro and in vivo. The impact of L1cam on PI3K/Akt pathway was also evaluated. Results L1cam was overexpressed in gastric cancer tissues and cell lines. L1cam expression was correlated with aggressive tumor phenotype and poor overall survival in gastric cancer patients. Ectopic expression of L1cam in gastric cell lines significantly promoted cell proliferation, migration and invasion whereas knockdown of L1cam inhibited cell proliferation, migration and invasion in vitro as well as tumorigenesis and metastasis in vivo. The low level of phosphorylated Akt in HGC27 cells was up-regulated after ectopic expression of L1cam, whereas the high level of phosphorylated Akt in SGC7901 cells was suppressed by knockdown of L1cam. Moreover, the migration and invasion promoted by L1cam overexpression in gastric cancer cells could be abolished by either application of LY294002 (a phosphoinositide-3-kinase inhibitor) or knockdown of endogenous Akt by small interfering RNA. Conclusions Our study demonstrated that L1cam, overexpressed in gastric cancer and associated with poor prognosis, plays an important role in the progression and metastasis of gastric cancer.
Collapse
Affiliation(s)
- Dong-liang Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dong Feng East Load, Guangzhou 510060, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Current World Literature. Curr Opin Oncol 2013; 25:325-30. [DOI: 10.1097/cco.0b013e328360f591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|