1
|
Blanchard PL, Knick BJ, Whelan SA, Hackel BJ. Hyperstable Synthetic Mini-Proteins as Effective Ligand Scaffolds. ACS Synth Biol 2023; 12:3608-3622. [PMID: 38010428 PMCID: PMC10822706 DOI: 10.1021/acssynbio.3c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Small, single-domain protein scaffolds are compelling sources of molecular binding ligands with the potential for efficient physiological transport, modularity, and manufacturing. Yet, mini-proteins require a balance between biophysical robustness and diversity to enable new functions. We tested the developability and evolvability of millions of variants of 43 designed libraries of synthetic 40-amino acid βαββ proteins with diversified sheet, loop, or helix paratopes. We discovered a scaffold library that yielded hundreds of binders to seven targets while exhibiting high stability and soluble expression. Binder discovery yielded 6-122 nM affinities without affinity maturation and Tms averaging ≥78 °C. Broader βαββ libraries exhibited varied developability and evolvability. Sheet paratopes were the most consistently developable, and framework 1 was the most evolvable. Paratope evolvability was dependent on target, though several libraries were evolvable across many targets while exhibiting high stability and soluble expression. Select βαββ proteins are strong starting points for engineering performant binders.
Collapse
Affiliation(s)
- Paul L. Blanchard
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Avenue SE, Minneapolis, MN 55455
| | - Brandon J. Knick
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Avenue SE, Minneapolis, MN 55455
| | - Sarah A. Whelan
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Avenue SE, Minneapolis, MN 55455
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Avenue SE, Minneapolis, MN 55455
| |
Collapse
|
2
|
Antil N, Wang H, Kaffas AE, Desser TS, Folkins A, Longacre T, Berek J, Lutz AM. In Vivo Ultrasound Molecular Imaging in the Evaluation of Complex Ovarian Masses: A Practical Guide to Correlation with Ex Vivo Immunohistochemistry. Adv Biol (Weinh) 2023; 7:e2300091. [PMID: 37403275 DOI: 10.1002/adbi.202300091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/22/2023] [Indexed: 07/06/2023]
Abstract
Ovarian cancer is the fifth leading cause of cancer-related deaths in women and the most lethal gynecologic cancer. It is curable when discovered at an early stage, but usually remains asymptomatic until advanced stages. It is crucial to diagnose the disease before it metastasizes to distant organs for optimal patient management. Conventional transvaginal ultrasound imaging offers limited sensitivity and specificity in the ovarian cancer detection. With molecularly targeted ligands addressing targets, such as kinase insert domain receptor (KDR), attached to contrast microbubbles, ultrasound molecular imaging (USMI) can be used to detect, characterize and monitor ovarian cancer at a molecular level. In this article, the authors propose a standardized protocol is proposed for the accurate correlation between in- vivo transvaginal KDR-targeted USMI and ex vivo histology and immunohistochemistry in clinical translational studies. The detailed procedures of in vivo USMI and ex vivo immunohistochemistry are described for four molecular markers, CD31 and KDR with a focus on how to enable the accurate correlation between in vivo imaging findings and ex vivo expression of the molecular markers, even if not the entire tumor could can be imaged by USMI, which is not an uncommon scenario in clinical translational studies. This work aims to enhance the workflow and the accuracy of characterization of ovarian masses on transvaginal USMI using histology and immunohistochemistry as reference standards, which involves sonographers, radiologists, surgeons, and pathologists in a highly collaborative research effort of USMI in cancer.
Collapse
Affiliation(s)
- Neha Antil
- Department of Radiology, Stanford University, School of Medicine, Stanford, CA, 94304, USA
| | - Huaijun Wang
- Department of Radiology, Stanford University, School of Medicine, Stanford, CA, 94304, USA
| | - Ahmed El Kaffas
- Department of Radiology, Stanford University, School of Medicine, Stanford, CA, 94304, USA
| | - Terry S Desser
- Department of Radiology, Stanford University, School of Medicine, Stanford, CA, 94304, USA
| | - Ann Folkins
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA, 94304, USA
| | - Teri Longacre
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA, 94304, USA
| | - Jonathan Berek
- Stanford Women's Cancer Center, Stanford Cancer Institute, Stanford University, School of Medicine, Stanford, CA, 94304, USA
| | - Amelie M Lutz
- Department of Radiology, Stanford University, School of Medicine, Stanford, CA, 94304, USA
| |
Collapse
|
3
|
Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Yao J, Liang YJ, Li DF, Wang LS. Application of Nanoparticles in the Diagnosis of Gastrointestinal Diseases: A Complete Future Perspective. Int J Nanomedicine 2023; 18:4143-4170. [PMID: 37525691 PMCID: PMC10387254 DOI: 10.2147/ijn.s413141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/02/2023] [Indexed: 08/02/2023] Open
Abstract
The diagnosis of gastrointestinal (GI) diseases currently relies primarily on invasive procedures like digestive endoscopy. However, these procedures can cause discomfort, respiratory issues, and bacterial infections in patients, both during and after the examination. In recent years, nanomedicine has emerged as a promising field, providing significant advancements in diagnostic techniques. Nanoprobes, in particular, offer distinct advantages, such as high specificity and sensitivity in detecting GI diseases. Integration of nanoprobes with advanced imaging techniques, such as nuclear magnetic resonance, optical fluorescence imaging, tomography, and optical correlation tomography, has significantly enhanced the detection capabilities for GI tumors and inflammatory bowel disease (IBD). This synergy enables early diagnosis and precise staging of GI disorders. Among the nanoparticles investigated for clinical applications, superparamagnetic iron oxide, quantum dots, single carbon nanotubes, and nanocages have emerged as extensively studied and utilized agents. This review aimed to provide insights into the potential applications of nanoparticles in modern imaging techniques, with a specific focus on their role in facilitating early and specific diagnosis of a range of GI disorders, including IBD and colorectal cancer (CRC). Additionally, we discussed the challenges associated with the implementation of nanotechnology-based GI diagnostics and explored future prospects for translation in this promising field.
Collapse
Affiliation(s)
- Ning-ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Min-zheng Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
4
|
Wang X, Cao C, Tan X, Liao X, Du X, Wang X, Liu T, Gong D, Hu Z, Tian X. SETD8, a frequently mutated gene in cervical cancer, enhances cisplatin sensitivity by impairing DNA repair. Cell Biosci 2023; 13:107. [PMID: 37308924 DOI: 10.1186/s13578-023-01054-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/17/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Cisplatin is commonly used to treat cervical cancer while drug resistance limits its effectiveness. There is an urgent need to identify strategies that increase cisplatin sensitivity and improve the outcomes of chemotherapy. RESULTS We performed whole exome sequencing (WES) of 156 cervical cancer tissues to assess genomic features related to platinum-based chemoresistance. By using WES, we identified a frequently mutated locus SETD8 (7%), which was associated with drug sensitivity. Cell functional assays, in vivo xenografts tumor growth experiments, and survival analysis were used to investigate the functional significance and mechanism of chemosensitization after SETD8 downregulation. Knockdown of SETD8 increased the responsiveness of cervical cancer cells to cisplatin treatment. The mechanism is exerted by reduced binding of 53BP1 to DNA breaks and inhibition of the non-homologous end joining (NHEJ) repair pathway. In addition, SETD8 expression was positively correlated with resistance to cisplatin and negatively associated with the prognosis of cervical cancer patients. Further, UNC0379 as a small molecule inhibitor of SETD8 was found to enhance cisplatin sensitivity both in vitro and in vivo. CONCLUSIONS SETD8 was a promising therapeutic target to ameliorate cisplatin resistance and improve the efficacy of chemotherapy.
Collapse
Affiliation(s)
- Xin Wang
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chen Cao
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Xiangyu Tan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xueyao Liao
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Xiaofang Du
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Xueqian Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ting Liu
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Danni Gong
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Zheng Hu
- Department of Gynecologic Oncology, Women and Children's Hospital Affiliated to Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
| | - Xun Tian
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China.
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
5
|
Wang YC, Tian JY, Han YY, Liu YF, Chen SY, Guo FJ. Evaluation of the potential of ultrasound-mediated drug delivery for the treatment of ovarian cancer through preclinical studies. Front Oncol 2022; 12:978603. [PMID: 36132133 PMCID: PMC9483181 DOI: 10.3389/fonc.2022.978603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer (OC) has the greatest mortality rate among gynecological cancers, with a five-year survival rate of <50%. Contemporary adjuvant chemotherapy mostly fails in the case of OCs that are refractory, metastatic, recurrent, and drug-resistant. Emerging ultrasound (US)-mediated technologies show remarkable promise in overcoming these challenges. Absorption of US waves by the tissue results in the generation of heat due to its thermal effect causing increased diffusion of drugs from the carriers and triggering sonoporation by increasing the permeability of the cancer cells. Certain frequencies of US waves could also produce a cavitation effect on drug-filled microbubbles (MBs, phospholipid bilayers) thereby generating shear force and acoustic streaming that could assist drug release from the MBs, and promote the permeability of the cell membrane. A new class of nanoparticles that carry therapeutic agents and are guided by US contrast agents for precision delivery to the site of the ovarian tumor has been developed. Phase-shifting of nanoparticles by US sonication has also been engineered to enhance the drug delivery to the ovarian tumor site. These technologies have been used for targeting the ovarian cancer stem cells and protein moieties that are particularly elevated in OCs including luteinizing hormone-releasing hormone, folic acid receptor, and vascular endothelial growth factor. When compared to healthy ovarian tissue, the homeostatic parameters at the tissue microenvironment including pH, oxygen levels, and glucose metabolism differ significantly in ovarian tumors. US-based technologies have been developed to take advantage of these tumor-specific alterations for precision drug delivery. Preclinical efficacy of US-based targeting of currently used clinical chemotherapies presented in this review has the potential for rapid human translation, especially for formulations that use all substances that are deemed to be generally safe by the U.S. Food and Drug Administration.
Collapse
Affiliation(s)
- Yi-Chao Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Jing-Yan Tian
- Department of Urology, The Second Division of the First Hospital of Jilin University, Changchun, China
| | - Ying-Ying Han
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Yun-Fei Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Si-Yao Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Feng-Jun Guo
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Feng-Jun Guo,
| |
Collapse
|
6
|
Ultrasound. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Flem-Karlsen K, Fodstad Ø, Nunes-Xavier CE. B7-H3 Immune Checkpoint Protein in Human Cancer. Curr Med Chem 2020; 27:4062-4086. [PMID: 31099317 DOI: 10.2174/0929867326666190517115515] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023]
Abstract
B7-H3 belongs to the B7 family of immune checkpoint proteins, which are important regulators of the adaptive immune response and emerging key players in human cancer. B7-H3 is a transmembrane protein expressed on the surface of tumor cells, antigen presenting cells, natural killer cells, tumor endothelial cells, but can also be present in intra- and extracellular vesicles. Additionally, B7-H3 may be present as a circulating soluble isoform in serum and other body fluids. B7-H3 is overexpressed in a variety of tumor types, in correlation with poor prognosis. B7-H3 is a promising new immunotherapy target for anti-cancer immune response, as well as a potential biomarker. Besides its immunoregulatory role, B7-H3 has intrinsic pro-tumorigenic activities related to enhanced cell proliferation, migration, invasion, angiogenesis, metastatic capacity and anti-cancer drug resistance. B7-H3 has also been found to regulate key metabolic enzymes, promoting the high glycolytic capacity of cancer cells. B7-H3 receptors are still not identified, and little is known about the molecular mechanisms underlying B7-H3 functions. Here, we review the current knowledge on the involvement of B7-H3 in human cancer.
Collapse
Affiliation(s)
- Karine Flem-Karlsen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øystein Fodstad
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Caroline E Nunes-Xavier
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| |
Collapse
|
8
|
Azizi M, Dianat-Moghadam H, Salehi R, Farshbaf M, Iyengar D, Sau S, Iyer AK, Valizadeh H, Mehrmohammadi M, Hamblin MR. Interactions Between Tumor Biology and Targeted Nanoplatforms for Imaging Applications. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910402. [PMID: 34093104 PMCID: PMC8174103 DOI: 10.1002/adfm.201910402] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Indexed: 05/04/2023]
Abstract
Although considerable efforts have been conducted to diagnose, improve, and treat cancer in the past few decades, existing therapeutic options are insufficient, as mortality and morbidity rates remain high. Perhaps the best hope for substantial improvement lies in early detection. Recent advances in nanotechnology are expected to increase the current understanding of tumor biology, and will allow nanomaterials to be used for targeting and imaging both in vitro and in vivo experimental models. Owing to their intrinsic physicochemical characteristics, nanostructures (NSs) are valuable tools that have received much attention in nanoimaging. Consequently, rationally designed NSs have been successfully employed in cancer imaging for targeting cancer-specific or cancer-associated molecules and pathways. This review categorizes imaging and targeting approaches according to cancer type, and also highlights some new safe approaches involving membrane-coated nanoparticles, tumor cell-derived extracellular vesicles, circulating tumor cells, cell-free DNAs, and cancer stem cells in the hope of developing more precise targeting and multifunctional nanotechnology-based imaging probes in the future.
Collapse
Affiliation(s)
- Mehdi Azizi
- Proteomics Research Centre, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Hassan Dianat-Moghadam
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5165665621, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz 516615731, Iran
| | - Masoud Farshbaf
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 6581151656, Iran
| | - Disha Iyengar
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Samaresh Sau
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun K Iyer
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Hadi Valizadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz 516615731, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
9
|
Lown PS, Hackel BJ. Magnetic Bead-Immobilized Mammalian Cells Are Effective Targets to Enrich Ligand-Displaying Yeast. ACS COMBINATORIAL SCIENCE 2020; 22:274-284. [PMID: 32283920 DOI: 10.1021/acscombsci.0c00036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Yeast surface display empowers selection of protein binding ligands, typically using recombinant soluble antigens. However, ectodomain fragments of transmembrane targets may fail to recapitulate their true, membrane-bound form. Direct selections against adhered mammalian cells empower enrichment of genuine binders yet benefit from high target expression, robustly adherent mammalian cells, and nanomolar affinity ligands. This study evaluates a modified format with mammalian cells immobilized to magnetic beads; yeast-displayed fibronectin domain and affibody ligands of known affinities and cells with expression ranges of epidermal growth factor receptor (EGFR) and CD276 elucidate important parameters to ligand enrichment and yield in cell suspension panning with comparison to adherent panning. Cell suspension panning is hindered by significant background of nondisplaying yeast but exhibits yield advantages in model EGFR systems for a high affinity (KD = 2 nM) binder on cells with both high (106 per cell) target expression (9.6 ± 0.6% vs 3.2 ± 0.4%, p < 0.0001) and mid (105) target expression (2.3 ± 0.5% vs 0.41 ± 0.09%, p = 0.0008), as well as for a low affinity (KD > 600 nM) binder on high target expression cells (2.0 ± 0.5% vs 0.017 ± 0.005%; p = 0.001). Significant enrichment was observed for all EGFR systems except the low-affinity, high expression system. The CD276 system failed to provide significant enrichment, indicating that this technique may not be suitable for all targets. Collectively, this study highlights new approaches that yield successful enrichment of yeast-displayed ligands via panning on immobilized mammalian cells.
Collapse
Affiliation(s)
- Patrick S. Lown
- Department of Chemical Engineering and Materials Science, University of Minnesota−Twin Cities, 421 Washington Avenue Southeast, 356 Amundson Hall, Minneapolis, Minnesota 55455, United States
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota−Twin Cities, 421 Washington Avenue Southeast, 356 Amundson Hall, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Li F, Chen H, Wang D. Silencing of CD276 suppresses lung cancer progression by regulating integrin signaling. J Thorac Dis 2020; 12:2137-2145. [PMID: 32642118 PMCID: PMC7330387 DOI: 10.21037/jtd.2020.04.41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Non-small cell lung cancer (NSCLC) is one of the cancers with the highest morbidity and mortality among the world. Studies have shown that the invasion and metastasis of tumor are biological characteristics of lung cancer, and also the main cause of treatment failure and patient death. In-depth study of lung cancer invasion related genes will help to explore the etiology of lung cancer, molecular typing and individualized treatment of lung cancer. Studies have shown that CD276 molecules are closely related to the prognosis of tumors, but the exact mechanism remains to be unclear. Methods We used the UALCAN and KM-plotter databases to investigate the expression of CD276 in human NSCLC and adjacent normal tissues, and its correlation with clinicopathology. In addition, we analyzed the function of CD276 in NSCLC cell by suppressing the expression of CD276 in A549 and H460 cells. Results In this study, we found that CD276 expression was significantly up-regulated in NSCLC tissues, and its expression was positively correlated with tumor stage in NSCLC. Silencing in CD276 inhibited cell invasion and migration by reducing integrin-associated protein expression. Conclusions Our results indicate functional role of CD276 in the progression of NSCLC.
Collapse
Affiliation(s)
- Fang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hengchi Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dali Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
11
|
Kosareva A, Abou-Elkacem L, Chowdhury S, Lindner JR, Kaufmann BA. Seeing the Invisible-Ultrasound Molecular Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:479-497. [PMID: 31899040 DOI: 10.1016/j.ultrasmedbio.2019.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Ultrasound molecular imaging has been developed in the past two decades with the goal of non-invasively imaging disease phenotypes on a cellular level not depicted on anatomic imaging. Such techniques already play a role in pre-clinical research for the assessment of disease mechanisms and drug effects, and are thought to in the future contribute to earlier diagnosis of disease, assessment of therapeutic effects and patient-tailored therapy in the clinical field. In this review, we first describe the chemical composition and structure as well as the in vivo behavior of the ultrasound contrast agents that have been developed for molecular imaging. We then discuss the strategies that are used for targeting of contrast agents to specific cellular targets and protocols used for imaging. Next we describe pre-clinical data on imaging of thrombosis, atherosclerosis and microvascular inflammation and in oncology, including the pathophysiological principles underlying the selection of targets in each area. Where applicable, we also discuss efforts that are currently underway for translation of this technique into the clinical arena.
Collapse
Affiliation(s)
- Alexandra Kosareva
- Cardiovascular Molecular Imaging, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lotfi Abou-Elkacem
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford, California, USA
| | - Sayan Chowdhury
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford, California, USA
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Portland, Oregon, USA; Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Beat A Kaufmann
- Cardiovascular Molecular Imaging, Department of Biomedicine, University of Basel, Basel, Switzerland; Department of Cardiology, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
12
|
Lau C, Rivas M, Dinalo J, King K, Duddalwar V. Scoping Review of Targeted Ultrasound Contrast Agents in the Detection of Angiogenesis. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:19-28. [PMID: 31237009 DOI: 10.1002/jum.15072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
A systematic search was conducted to categorize targeted ultrasound contrast agents (UCAs) used in cancer-related angiogenesis detection. We identified 15 unique contrast agents from 2008 to March 2018. Most primary research articles studied UCAs targeted to vascular endothelial growth factor receptor or αv β3 -integrin. Breast cancer and colon cancer are the most common neoplastic processes in which these agents were studied. BR55 (Bracco Research SA, Geneva, Switzerland), a vascular endothelial growth factor receptor-targeting UCA, is the first targeted UCA that has completed phase 0 trials. Our review identifies a gap in the literature regarding the application of targeted UCAs in cancer models beyond breast and colon cancers and identifies other promising UCAs.
Collapse
Affiliation(s)
- Christopher Lau
- Department of Radiology, Keck School of Medicine, California, Los Angeles, USA
| | - Marielena Rivas
- Department of Radiology, Keck School of Medicine, California, Los Angeles, USA
| | - Jennifer Dinalo
- Norris Medical Library, Keck School of Medicine, California, Los Angeles, USA
| | - Kevin King
- Department of Radiology, Keck School of Medicine, California, Los Angeles, USA
| | - Vinay Duddalwar
- Department of Radiology, Keck School of Medicine, California, Los Angeles, USA
| |
Collapse
|
13
|
A literature review on multimodality molecular imaging nanoprobes for cancer detection. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2019. [DOI: 10.2478/pjmpe-2019-0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Molecular imaging techniques using nanoparticles have significant potential to be widely used for the detection of various types of cancers. Nowadays, there has been an increased focus on developing novel nanoprobes as molecular imaging contrast enhancement agents in nanobiomedicine. The purpose of this review article is to summarize the use of a variety of nanoprobes and their current achievements in accurate cancer imaging and effective treatment. Nanoprobes are rapidly becoming potential tools for cancer diagnosis by using novel molecular imaging modalities such as Ultrasound (US) imaging, Computerized Tomography (CT), Single Photon Emission Tomography (SPECT) and Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI), and Optical Imaging. These imaging modalities may facilitate earlier and more accurate diagnosis and staging the most of cancers.
Collapse
|
14
|
Stern LA, Lown PS, Kobe AC, Abou-Elkacem L, Willmann JK, Hackel BJ. Cellular-Based Selections Aid Yeast-Display Discovery of Genuine Cell-Binding Ligands: Targeting Oncology Vascular Biomarker CD276. ACS COMBINATORIAL SCIENCE 2019; 21:207-222. [PMID: 30620189 PMCID: PMC6411437 DOI: 10.1021/acscombsci.8b00156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Yeast surface display is a proven tool for the selection and evolution of ligands with novel binding activity. Selections from yeast surface display libraries against transmembrane targets are generally carried out using recombinant soluble extracellular domains. Unfortunately, these molecules may not be good models of their true, membrane-bound form for a variety of reasons. Such selection campaigns often yield ligands that bind a recombinant target but not target-expressing cells or tissues. Advances in cell-based selections with yeast surface display may aid the frequency of evolving ligands that do bind true, membrane-bound antigens. This study aims to evaluate ligand selection strategies using both soluble target-driven and cellular selection techniques to determine which methods yield translatable ligands most efficiently and generate novel binders against CD276 (B7-H3) and Thy1, two promising tumor vasculature targets. Out of four ligand selection campaigns carried out using only soluble extracellular domains, only an affibody library sorted against CD276 yielded translatable binders. In contrast, fibronectin domains against CD276 and affibodies against CD276 were discovered in campaigns that either combined soluble target and cellular selection methods or used cellular selection methods alone. A high frequency of non target-specific ligands discovered from the use of cellular selection methods alone motivated the development of a depletion scheme using disadhered, antigen-negative mammalian cells as a blocking agent. Affinity maturation of CD276-binding affibodies by error-prone PCR and helix walking resulted in strong, specific cellular CD276 affinity ( Kd = 0.9 ± 0.6 nM). Collectively, these results motivate the use of cellular selections in tandem with recombinant selections and introduce promising affibody molecules specific to CD276 for further applications.
Collapse
Affiliation(s)
- Lawrence A. Stern
- Department of Chemical Engineering and Materials Science, University of Minnesota–Twin Cities, Minneapolis, MN
| | - Patrick S. Lown
- Department of Chemical Engineering and Materials Science, University of Minnesota–Twin Cities, Minneapolis, MN
| | - Alexandra C. Kobe
- Department of Chemical Engineering and Materials Science, University of Minnesota–Twin Cities, Minneapolis, MN
| | | | | | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota–Twin Cities, Minneapolis, MN
| |
Collapse
|
15
|
Venturini M, Bergamini A, Perani L, Sanchez AM, Rossi EG, Colarieti A, Petrone M, De Cobelli F, Del Maschio A, Viganò P, Mangili G, Candiani M, Tacchetti C, Esposito A. Contrast-enhanced ultrasound for ovary assessment in a murine model: preliminary findings on the protective role of a gonadotropin-releasing hormone analogue from chemotherapy-induced ovarian damage. Eur Radiol Exp 2018; 2:44. [PMID: 30564987 PMCID: PMC6298912 DOI: 10.1186/s41747-018-0076-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/26/2018] [Indexed: 11/27/2022] Open
Abstract
The prolonged, gonadotoxic effect of chemotherapy can finally lead to infertility in female cancer survivors. There is controversial evidence regarding the protective role of gonadotropin-releasing hormone analogue (GnRH-a) on chemotherapy-induced ovarian damage. In the present study on a murine model, ultrasound (US) and contrast-enhanced US (CEUS) were firstly used to characterise ovarian glands in normal conditions to validate a preclinical model. In addition, preliminary findings were obtained on anatomical and vascular ovarian changes induced by GnRH-a based on decapeptyl administration. Ovaries were accurately assessed with US and CEUS in a murine model placed in prone position, providing quantitative and reproducible information. Ovaries were identified in 40/40 cases and CEUS analysis was successfully performed in 20/20 cases with 100% technical success. A statistically significant increase of the diameter of the dominant follicle at US and a statistically significant reduced vascularisation at CEUS in decapeptyl-treated mice compared to untreated control mice were recorded. Further studies using US and CEUS in the murine model combining GnRH-a and chemotherapeutic agents will be needed to obtain more translational information useful for clinical practice.
Collapse
Affiliation(s)
- Massimo Venturini
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy. .,Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy.
| | - Alice Bergamini
- Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Laura Perani
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Ana Maria Sanchez
- Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Elena Giulia Rossi
- Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Colarieti
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy
| | - Micaela Petrone
- Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Francesco De Cobelli
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Del Maschio
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Viganò
- Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Giorgia Mangili
- Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Candiani
- Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Carlo Tacchetti
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Esposito
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy.,Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
16
|
Zhu L, Wang L, Liu Y, Xu D, Fang K, Guo Y. CAIX aptamer-functionalized targeted nanobubbles for ultrasound molecular imaging of various tumors. Int J Nanomedicine 2018; 13:6481-6495. [PMID: 30410333 PMCID: PMC6199208 DOI: 10.2147/ijn.s176287] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Targeted nanobubbles can penetrate the tumor vasculature and achieve ultrasound molecular imaging (USMI) of tumor parenchymal cells. However, most targeted nanobubbles only achieve USMI of tumor parenchymal cells from one organ, and their distribution, loading ability, and binding ability in tumors are not clear. Therefore, targeted nanobubbles loaded with carbonic anhydrase IX (CAIX) aptamer were fabricated for USMI of various tumors, and the morphological basis of USMI with targeted nanobubbles was investigated. Materials and methods The specificity of CAIX aptamer at the cellular level was measured by immunofluorescence and flow cytometry. Targeted nanobubbles loaded with CAIX aptamer were prepared by a maleimidethiol coupling reaction, and their binding ability to CAIX-positive tumor cells was analyzed in vitro. USMI of targeted and non-targeted nanobubbles was performed in tumor-bearing nude mice. The distribution, loading ability, and binding ability of targeted nanobubbles in xenograft tumor tissues were demonstrated by immunofluorescence. Results CAIX aptamer could specifically bind to CAIX-positive 786-O and Hela cells, rather than CAIX-negative BxPC-3 cells. Targeted nanobubbles loaded with CAIX aptamer had the advantages of small size, uniform distribution, regular shape, and high safety, and they could specifically accumulate around 786-O and Hela cells, while not binding to BxPC-3 cells in vitro. Targeted nanobubbles had significantly higher peak intensity and larger area under the curve than non-targeted nanobubbles in 786-O and Hela xenograft tumor tissues, while there was no significant difference in the imaging effects of targeted and non-targeted nanobubbles in BxPC-3 xenograft tumor tissues. Immunofluorescence demonstrated targeted nanobubbles could still load CAIX aptamer after penetrating the tumor vasculature and specifically binding to CAIX-positive tumor cells in xenograft tumor tissues. Conclusion Targeted nanobubbles loaded with CAIX aptamer have a good imaging effect in USMI of tumor parenchymal cells, and can improve the accuracy of early diagnosis of malignant tumors from various organs.
Collapse
Affiliation(s)
- Lianhua Zhu
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba District, Chongqing, China,
| | - Luofu Wang
- Department of Urology, Daping Hospital, Third Military Medical University (Army Medical University), Yuzhong District, Chongqing, China
| | - Yu Liu
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba District, Chongqing, China,
| | - Dan Xu
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba District, Chongqing, China,
| | - Kejing Fang
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba District, Chongqing, China,
| | - Yanli Guo
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba District, Chongqing, China,
| |
Collapse
|
17
|
Wischhusen J, Wilson KE, Delcros JG, Molina-Peña R, Gibert B, Jiang S, Ngo J, Goldschneider D, Mehlen P, Willmann JK, Padilla F. Ultrasound molecular imaging as a non-invasive companion diagnostic for netrin-1 interference therapy in breast cancer. Theranostics 2018; 8:5126-5142. [PMID: 30429890 PMCID: PMC6217066 DOI: 10.7150/thno.27221] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023] Open
Abstract
In ultrasound molecular imaging (USMI), ligand-functionalized microbubbles (MBs) are used to visualize vascular endothelial targets. Netrin-1 is upregulated in 60% of metastatic breast cancers and promotes tumor progression. A novel netrin-1 interference therapy requires the assessment of netrin-1 expression prior to treatment. In this study, we studied netrin-1 as a target for USMI and its potential as a companion diagnostic in breast cancer models. Methods: To verify netrin-1 expression and localization, an in vivo immuno-localization approach was applied, in which anti-netrin-1 antibody was injected into living mice 24 h before tumor collection, and revealed with secondary fluorescent antibody for immunofluorescence analysis. Netrin-1 interactions with the cell surface were studied by flow cytometry. Netrin-1-targeted MBs were prepared using MicroMarker Target-Ready (VisualSonics), and validated in in vitro binding assays in static conditions or in a flow chamber using purified netrin-1 protein or netrin-1-expressing cancer cells. In vivo USMI of netrin-1 was validated in nude mice bearing human netrin-1-positive SKBR7 tumors or weakly netrin-1-expressing MDA-MB-231 tumors using the Vevo 2100 small animal imaging device (VisualSonics). USMI feasibility was further tested in transgenic murine FVB/N Tg(MMTV/PyMT634Mul) (MMTV-PyMT) mammary tumors. Results: Netrin-1 co-localized with endothelial CD31 in netrin-1-positive breast tumors. Netrin-1 binding to the surface of endothelial HUVEC and cancer cells was partially mediated by heparan sulfate proteoglycans. MBs targeted with humanized monoclonal anti-netrin-1 antibody bound to netrin-1-expressing cancer cells in static and dynamic conditions. USMI signal was significantly increased with anti-netrin-1 MBs in human SKBR7 breast tumors and transgenic murine MMTV-PyMT mammary tumors compared to signals recorded with either isotype control MBs or after blocking of netrin-1 with humanized monoclonal anti-netrin-1 antibody. In weakly netrin-1-expressing human tumors and normal mammary glands, no difference in imaging signal was observed with anti-netrin-1- and isotype control MBs. Ex vivo analysis confirmed netrin-1 expression in MMTV-PyMT tumors. Conclusions: These results show that USMI allowed reliable detection of netrin-1 on the endothelium of netrin-1-positive human and murine tumors. Significant differences in USMI signal for netrin-1 reflected the significant differences in netrin-1 mRNA & protein expression observed between different breast tumor models. The imaging approach was non-invasive and safe, and provided the netrin-1 expression status in near real-time. Thus, USMI of netrin-1 has the potential to become a companion diagnostic for the stratification of patients for netrin-1 interference therapy in future clinical trials.
Collapse
|
18
|
Thyroid Cancer Detection by Ultrasound Molecular Imaging with SHP2-Targeted Perfluorocarbon Nanoparticles. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:8710862. [PMID: 29706844 PMCID: PMC5863344 DOI: 10.1155/2018/8710862] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 11/17/2022]
Abstract
Background Contrast-enhanced ultrasound imaging has been widely used in the ultrasound diagnosis of a variety of tumours with high diagnostic accuracy, especially in patients with hepatic carcinoma, while its application is rarely reported in thyroid cancer. The currently used ultrasound contrast agents, microbubbles, cannot be targeted to molecular markers expressed in tumour cells due to their big size, leading to a big challenge for ultrasound molecular imaging. Phase-changeable perfluorocarbon nanoparticles may resolve the penetrability limitation of microbubbles and serve as a promising probe for ultrasound molecular imaging. Methods 65 thyroid tumour samples and 40 normal samples adjacent to thyroid cancers were determined for SHP2 expression by IHC. SHP2-targeted PLGA nanoparticles (NPs-SHP2) encapsulating perfluoropentane (PFP) were prepared with PLGA-PEG as a shell material, and their specific target-binding ability was assessed in vitro and in vivo, and the effect on the enhancement of ultrasonic imaging induced by LIFU was studied in vivo. Results In the present study, we verified that tumour overexpression of SHP2 and other protein tyrosine phosphatases regulated several cellular processes and contributed to tumorigenesis, which could be introduced to ultrasound molecular imaging for differentiating normal from malignant thyroid diagnostic nodes. The IHC test showed remarkably high expression of SHP2 in human thyroid carcinoma specimens. In thyroid tumour xenografts in mice, the imaging signal was significantly enhanced by SHP2-targeted nanoparticles after LIFU induction. Conclusion This study provides a basis for preclinical exploration of ultrasound molecular imaging with NPs-SHP2 for clinical thyroid nodule detection to enhance diagnostic accuracy.
Collapse
|
19
|
Wang S, Hossack JA, Klibanov AL. Targeting of microbubbles: contrast agents for ultrasound molecular imaging. J Drug Target 2018; 26:420-434. [PMID: 29258335 DOI: 10.1080/1061186x.2017.1419362] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For contrast ultrasound imaging, the most efficient contrast agents comprise highly compressible gas-filled microbubbles. These micrometer-sized particles are typically filled with low-solubility perfluorocarbon gases, and coated with a thin shell, often a lipid monolayer. These particles circulate in the bloodstream for several minutes; they demonstrate good safety and are already in widespread clinical use as blood pool agents with very low dosage necessary (sub-mg per injection). As ultrasound is an ubiquitous medical imaging modality, with tens of millions of exams conducted annually, its use for molecular/targeted imaging of biomarkers of disease may enable wider implementation of personalised medicine applications, precision medicine, non-invasive quantification of biomarkers, targeted guidance of biopsy and therapy in real time. To achieve this capability, microbubbles are decorated with targeting ligands, possessing specific affinity towards vascular biomarkers of disease, such as tumour neovasculature or areas of inflammation, ischaemia-reperfusion injury or ischaemic memory. Once bound to the target, microbubbles can be selectively visualised to delineate disease location by ultrasound imaging. This review discusses the general design trends and approaches for such molecular ultrasound imaging agents, which are currently at the advanced stages of development, and are evolving towards widespread clinical trials.
Collapse
Affiliation(s)
- Shiying Wang
- a Department of Biomedical Engineering , University of Virginia , Charlottesville , VA , USA
| | - John A Hossack
- a Department of Biomedical Engineering , University of Virginia , Charlottesville , VA , USA
| | - Alexander L Klibanov
- a Department of Biomedical Engineering , University of Virginia , Charlottesville , VA , USA.,b Cardiovascular Division (Department of Medicine), Robert M Berne Cardiovascular Research Center , University of Virginia , Charlottesville , VA , USA
| |
Collapse
|
20
|
Wilson KE, Bachawal SV, Abou-Elkacem L, Jensen K, Machtaler S, Tian L, Willmann JK. Spectroscopic Photoacoustic Molecular Imaging of Breast Cancer using a B7-H3-targeted ICG Contrast Agent. Am J Cancer Res 2017; 7:1463-1476. [PMID: 28529630 PMCID: PMC5436506 DOI: 10.7150/thno.18217] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/11/2017] [Indexed: 12/23/2022] Open
Abstract
Purpose: Breast cancer imaging methods lack diagnostic accuracy, in particular for patients with dense breast tissue, and improved techniques are critically needed. The purpose of this study was to evaluate antibody-indocyanine green (ICG) conjugates, which undergo dynamic absorption spectrum shifts after cellular endocytosis and degradation, and spectroscopic photoacoustic (sPA) imaging to differentiate normal breast tissue from breast cancer by imaging B7-H3, a novel breast cancer associated molecular target. Methods: Quantitative immunohistochemical staining of endothelial and epithelial B7-H3 expression was assessed in 279 human breast tissue samples, including normal (n=53), benign lesions (11 subtypes, n=129), and breast cancers (4 subtypes, n=97). After absorption spectra of intracellular and degraded B7-H3-ICG and Isotype control-ICG (Iso-ICG) were characterized, sPA imaging in a transgenic murine breast cancer model (FVB/N-Tg(MMTVPyMT)634Mul) was performed and compared to imaging of control conditions [B7-H3-ICG in tumor negative animals (n=60), Iso-ICG (n=30), blocking B7-H3+B7-H3-ICG (n=20), and free ICG (n=20)] and validated with ex vivo histological analysis. Results: Immunostaining showed differential B7-H3 expression on both the endothelium and tumor epithelium in human breast cancer with an area under the ROC curve of 0.93 to differentiate breast cancer vs non-cancer. Combined in vitro/in vivo imaging showed that sPA allowed specific B7-H3-ICG detection down to the 13 nM concentration and differentiation from Iso-ICG. sPA molecular imaging of B7-H3-ICG showed a 3.01-fold (P<0.01) increase in molecular B7-H3-ICG signal in tumors compared to control conditions. Conclusions: B7-H3 is a promising target for both vascular and epithelial sPA imaging of breast cancer. Leveraging antibody-ICG contrast agents and their dynamic optical absorption spectra allows for highly specific sPA imaging of breast cancer.
Collapse
|
21
|
Willmann JK, Bonomo L, Testa AC, Rinaldi P, Rindi G, Valluru KS, Petrone G, Martini M, Lutz AM, Gambhir SS. Ultrasound Molecular Imaging With BR55 in Patients With Breast and Ovarian Lesions: First-in-Human Results. J Clin Oncol 2017; 35:2133-2140. [PMID: 28291391 DOI: 10.1200/jco.2016.70.8594] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose We performed a first-in-human clinical trial on ultrasound molecular imaging (USMI) in patients with breast and ovarian lesions using a clinical-grade contrast agent (kinase insert domain receptor [KDR] -targeted contrast microbubble [MBKDR]) that is targeted at the KDR, one of the key regulators of neoangiogenesis in cancer. The aim of this study was to assess whether USMI using MBKDR is safe and allows assessment of KDR expression using immunohistochemistry (IHC) as the gold standard. Methods Twenty-four women (age 48 to 79 years) with focal ovarian lesions and 21 women (age 34 to 66 years) with focal breast lesions were injected intravenously with MBKDR (0.03 to 0.08 mL/kg of body weight), and USMI of the lesions was performed starting 5 minutes after injection up to 29 minutes. Blood pressure, ECG, oxygen levels, heart rate, CBC, and metabolic panel were obtained before and after MBKDR administration. Persistent focal MBKDR binding on USMI was assessed. Patients underwent surgical resection of the target lesions, and tissues were stained for CD31 and KDR by IHC. Results USMI with MBKDR was well tolerated by all patients without safety concerns. Among the 40 patients included in the analysis, KDR expression on IHC matched well with imaging signal on USMI in 93% of breast and 85% of ovarian malignant lesions. Strong KDR-targeted USMI signal was present in 77% of malignant ovarian lesions, with no targeted signal seen in 78% of benign ovarian lesions. Similarly, strong targeted signal was seen in 93% of malignant breast lesions with no targeted signal present in 67% of benign breast lesions. Conclusion USMI with MBKDR is clinically feasible and safe, and KDR-targeted USMI signal matches well with KDR expression on IHC. This study lays the foundation for a new field of clinical USMI in cancer.
Collapse
Affiliation(s)
- Jürgen K Willmann
- Jürgen K. Willmann, Keerthi S. Valluru, Amelie M. Lutz, and Sanjiv S. Gambhir, Stanford University, Stanford, CA; and Lorenzo Bonomo, Antonia Carla Testa, Pierluigi Rinaldi, Guido Rindi, Gianluigi Petrone, and Maurizio Martini, Universitary Policlinic A. Gemelli-Foundation, Catholic University, Rome, Italy
| | - Lorenzo Bonomo
- Jürgen K. Willmann, Keerthi S. Valluru, Amelie M. Lutz, and Sanjiv S. Gambhir, Stanford University, Stanford, CA; and Lorenzo Bonomo, Antonia Carla Testa, Pierluigi Rinaldi, Guido Rindi, Gianluigi Petrone, and Maurizio Martini, Universitary Policlinic A. Gemelli-Foundation, Catholic University, Rome, Italy
| | - Antonia Carla Testa
- Jürgen K. Willmann, Keerthi S. Valluru, Amelie M. Lutz, and Sanjiv S. Gambhir, Stanford University, Stanford, CA; and Lorenzo Bonomo, Antonia Carla Testa, Pierluigi Rinaldi, Guido Rindi, Gianluigi Petrone, and Maurizio Martini, Universitary Policlinic A. Gemelli-Foundation, Catholic University, Rome, Italy
| | - Pierluigi Rinaldi
- Jürgen K. Willmann, Keerthi S. Valluru, Amelie M. Lutz, and Sanjiv S. Gambhir, Stanford University, Stanford, CA; and Lorenzo Bonomo, Antonia Carla Testa, Pierluigi Rinaldi, Guido Rindi, Gianluigi Petrone, and Maurizio Martini, Universitary Policlinic A. Gemelli-Foundation, Catholic University, Rome, Italy
| | - Guido Rindi
- Jürgen K. Willmann, Keerthi S. Valluru, Amelie M. Lutz, and Sanjiv S. Gambhir, Stanford University, Stanford, CA; and Lorenzo Bonomo, Antonia Carla Testa, Pierluigi Rinaldi, Guido Rindi, Gianluigi Petrone, and Maurizio Martini, Universitary Policlinic A. Gemelli-Foundation, Catholic University, Rome, Italy
| | - Keerthi S Valluru
- Jürgen K. Willmann, Keerthi S. Valluru, Amelie M. Lutz, and Sanjiv S. Gambhir, Stanford University, Stanford, CA; and Lorenzo Bonomo, Antonia Carla Testa, Pierluigi Rinaldi, Guido Rindi, Gianluigi Petrone, and Maurizio Martini, Universitary Policlinic A. Gemelli-Foundation, Catholic University, Rome, Italy
| | - Gianluigi Petrone
- Jürgen K. Willmann, Keerthi S. Valluru, Amelie M. Lutz, and Sanjiv S. Gambhir, Stanford University, Stanford, CA; and Lorenzo Bonomo, Antonia Carla Testa, Pierluigi Rinaldi, Guido Rindi, Gianluigi Petrone, and Maurizio Martini, Universitary Policlinic A. Gemelli-Foundation, Catholic University, Rome, Italy
| | - Maurizio Martini
- Jürgen K. Willmann, Keerthi S. Valluru, Amelie M. Lutz, and Sanjiv S. Gambhir, Stanford University, Stanford, CA; and Lorenzo Bonomo, Antonia Carla Testa, Pierluigi Rinaldi, Guido Rindi, Gianluigi Petrone, and Maurizio Martini, Universitary Policlinic A. Gemelli-Foundation, Catholic University, Rome, Italy
| | - Amelie M Lutz
- Jürgen K. Willmann, Keerthi S. Valluru, Amelie M. Lutz, and Sanjiv S. Gambhir, Stanford University, Stanford, CA; and Lorenzo Bonomo, Antonia Carla Testa, Pierluigi Rinaldi, Guido Rindi, Gianluigi Petrone, and Maurizio Martini, Universitary Policlinic A. Gemelli-Foundation, Catholic University, Rome, Italy
| | - Sanjiv S Gambhir
- Jürgen K. Willmann, Keerthi S. Valluru, Amelie M. Lutz, and Sanjiv S. Gambhir, Stanford University, Stanford, CA; and Lorenzo Bonomo, Antonia Carla Testa, Pierluigi Rinaldi, Guido Rindi, Gianluigi Petrone, and Maurizio Martini, Universitary Policlinic A. Gemelli-Foundation, Catholic University, Rome, Italy
| |
Collapse
|
22
|
Zhang H, Ingham ES, Gagnon MKJ, Mahakian LM, Liu J, Foiret JL, Willmann JK, Ferrara KW. In vitro characterization and in vivo ultrasound molecular imaging of nucleolin-targeted microbubbles. Biomaterials 2017; 118:63-73. [PMID: 27940383 PMCID: PMC5279957 DOI: 10.1016/j.biomaterials.2016.11.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/11/2016] [Accepted: 11/20/2016] [Indexed: 12/12/2022]
Abstract
Nucleolin (NCL) plays an important role in tumor vascular development. An increased endothelial expression level of NCL has been related to cancer aggressiveness and prognosis and has been detected clinically in advanced tumors. Here, with a peptide targeted to NCL (F3 peptide), we created an NCL-targeted microbubble (MB) and compared the performance of F3-conjugated MBs with non-targeted (NT) MBs both in vitro and in vivo. In an in vitro study, F3-conjugated MBs bound 433 times more than NT MBs to an NCL-expressing cell line, while pretreating cells with 0.5 mM free F3 peptide reduced the binding of F3-conjugated MBs by 84%, n = 4, p < 0.001. We then set out to create a method to extract both the tumor wash-in and wash-out kinetics and tumor accumulation following a single injection of targeted MBs. In order to accomplish this, a series of ultrasound frames (a clip) was recorded at the time of injection and subsequent time points. Each pixel within this clip was analyzed for the minimum intensity projection (MinIP) and average intensity projection (AvgIP). We found that the MinIP robustly demonstrates enhanced accumulation of F3-conjugated MBs over the range of tumor diameters evaluated here (2-8 mm), and the difference between the AvgIP and the MinIP quantifies inflow and kinetics. The inflow and clearance were similar for unbound F3-conjugated MBs, control (non-targeted) and scrambled control agents. Targeted agent accumulation was confirmed by a high amplitude pulse and by a two-dimensional Fourier Transform technique. In summary, F3-conjugated MBs provide a new imaging agent for ultrasound molecular imaging of cancer vasculature, and we have validated metrics to assess performance using low mechanical index strategies that have potential for use in human molecular imaging studies.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA
| | - Elizabeth S Ingham
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA
| | - M Karen J Gagnon
- Department of Environmental Health and Safety, University of California, Davis, CA, 95616, USA
| | - Lisa M Mahakian
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA
| | - Jingfei Liu
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA
| | - Josquin L Foiret
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA
| | | | - Katherine W Ferrara
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
23
|
Preparation and Characterization of Novel Perfluorooctyl Bromide Nanoparticle as Ultrasound Contrast Agent via Layer-by-Layer Self-Assembly for Folate-Receptor-Mediated Tumor Imaging. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6381464. [PMID: 27652265 PMCID: PMC5019893 DOI: 10.1155/2016/6381464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/25/2016] [Accepted: 06/27/2016] [Indexed: 12/04/2022]
Abstract
A folate-polyethylene glycol-chitosan derivative was synthesized and its structure was characterized. An optimal perfluorooctyl bromide nanocore template was obtained via utilizing the ultrasonic emulsification method combining with orthogonal design. The targeted nanoparticles containing targeted shell of folate-polyethylene glycol-chitosan derivative and perfluorooctyl bromide nanocore template of ultrasound imaging were prepared successfully by exploiting layer-by-layer self-assembly as contrast agent for ultrasound. Properties of the novel perfluorooctyl bromide nanoparticle were extensively studied by Dynamic Light Scattering and Transmission Electron Microscopy. The targeted nanoparticle diameter, polydispersity, and zeta potential are around 229.5 nm, 0.205, and 44.7 ± 0.6 mV, respectively. The study revealed that spherical core-shell morphology was preserved. Excellent stability of targeted nanoparticle is evidenced by two weeks of room temperature stability tests. The results of the cell viability assay and the hemolysis test confirmed that the targeted nanoparticle has an excellent biocompatibility for using in cell studies and ultrasound imaging in vivo. Most importantly, in vitro cell experiments demonstrated that an increased amount of targeted nanoparticles was accumulated in hepatocellular carcinoma cell line Bel7402 relative to hepatoma cell line L02. And targeted nanoparticles had also shown better ultrasound imaging abilities in vitro. The data suggest that the novel targeted nanoparticle may be applicable to ultrasonic molecular imaging of folate-receptor overexpressed tumor.
Collapse
|
24
|
Abstract
BACKGROUND Contrast-enhanced ultrasound imaging is increasingly being used in clinical applications, particularly for cardiovascular and liver diagnostics. In this context the availability of new molecular contrast agents and the initiation of clinical translation promises new options for pathomechanistic diagnostics. MATERIAL AND METHODS Analysis of the current literature on the development of molecular ultrasound contrast agents, the detection methods as well as the applications in preclinical and clinical studies. RESULTS Molecular contrast agents have become established in preclinical research for the detection of inflammation and angiogenesis and have been continuously refined over recent years. They consist of gas filled microbubbles with a diameter of 1-5 µm and the gas core is stabilized by a shell made of lipids, proteins or polymers to which biomolecules are conjugated that determine the target specificity. The agent BR55 is the first clinically evaluated molecular ultrasound contrast agent. It binds to the angiogenesis marker vascular endothelial growth factor receptor 2 (VEGFR2) and has been studied in several preclinical and clinical phase I and II studies on tumor diagnostics and characterization. CONCLUSION Molecular ultrasound imaging is rapidly evolving in preclinical research for a broad field of applications. Translation to clinical practice is conceivable for many indications and is already ongoing for BR55.
Collapse
Affiliation(s)
- A Rix
- Institut für Experimentelle Molekulare Bildgebung, Pauwelsstrasse 30, 52074, Aachen, Deutschland
| | - M Palmowski
- Institut für Experimentelle Molekulare Bildgebung, Pauwelsstrasse 30, 52074, Aachen, Deutschland
| | - F Kiessling
- Institut für Experimentelle Molekulare Bildgebung, Pauwelsstrasse 30, 52074, Aachen, Deutschland.
| |
Collapse
|
25
|
Abou-Elkacem L, Wilson KE, Johnson SM, Chowdhury SM, Bachawal S, Hackel BJ, Tian L, Willmann JK. Ultrasound Molecular Imaging of the Breast Cancer Neovasculature using Engineered Fibronectin Scaffold Ligands: A Novel Class of Targeted Contrast Ultrasound Agent. Theranostics 2016; 6:1740-52. [PMID: 27570547 PMCID: PMC4997233 DOI: 10.7150/thno.15169] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/19/2016] [Indexed: 12/21/2022] Open
Abstract
Molecularly-targeted microbubbles (MBs) are increasingly being recognized as promising contrast agents for oncological molecular imaging with ultrasound. With the detection and validation of new molecular imaging targets, novel binding ligands are needed that bind to molecular imaging targets with high affinity and specificity. In this study we assessed a novel class of potentially clinically translatable MBs using an engineered 10th type III domain of human-fibronectin (MB-FN3VEGFR2) scaffold-ligand to image VEGFR2 on the neovasculature of cancer. The in vitro binding of MB-FN3VEGFR2 to a soluble VEGFR2 was assessed by flow-cytometry (FACS) and binding to VEGFR2-expressing cells was assessed by flow-chamber cell attachment studies under flow shear stress conditions. In vivo binding of MB-FN3VEGFR2 was tested in a transgenic mouse model (FVB/N Tg(MMTV/PyMT634Mul) of breast cancer and control litter mates with normal mammary glands. In vitro FACS and flow-chamber cell attachment studies showed significantly (P<0.01) higher binding to VEGFR2 using MB-FN3VEGFR2 than control agents. In vivo ultrasound molecular imaging (USMI) studies using MB-FN3VEGFR2 demonstrated specific binding to VEGFR2 and was significantly higher (P<0.01) in breast cancer compared to normal breast tissue. Ex vivo immunofluorescence-analysis showed significantly (P<0.01) increased VEGFR2-expression in breast cancer compared to normal mammary tissue. Our results suggest that MBs coupled to FN3-scaffolds can be designed and used for USMI of breast cancer neoangiogenesis. Due to their small size, stability, solubility, the lack of glycosylation and disulfide bonds, FN3-scaffolds can be recombinantly produced with the advantage of generating small, high affinity ligands in a cost efficient way for USMI.
Collapse
|
26
|
Sharma SK, Nemieboka B, Sala E, Lewis JS, Zeglis BM. Molecular Imaging of Ovarian Cancer. J Nucl Med 2016; 57:827-33. [PMID: 27127223 DOI: 10.2967/jnumed.115.172023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/14/2016] [Indexed: 01/03/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy and the fifth leading cause of cancer-related death in women. Over the past decade, medical imaging has played an increasingly valuable role in the diagnosis, staging, and treatment planning of the disease. In this "Focus on Molecular Imaging" review, we seek to provide a brief yet informative survey of the current state of the molecular imaging of ovarian cancer. The article is divided into sections according to modality, covering recent advances in the MR, PET, SPECT, ultrasound, and optical imaging of ovarian cancer. Although primary emphasis is given to clinical studies, preclinical investigations that are particularly innovative and promising are discussed as well. Ultimately, we are hopeful that the combination of technologic innovations, novel imaging probes, and further integration of imaging into clinical protocols will lead to significant improvements in the survival rate for ovarian cancer.
Collapse
Affiliation(s)
- Sai Kiran Sharma
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brandon Nemieboka
- Tri-Institutional MD-PhD Program, New York, New York Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Evis Sala
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York, New York
| | - Brian M Zeglis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York, New York Department of Chemistry, Hunter College of City University of New York, New York, New York; and Graduate Center of City University of New York, New York, New York
| |
Collapse
|
27
|
Qin J, Wang TY, Willmann JK. Sonoporation: Applications for Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:263-91. [PMID: 26486343 DOI: 10.1007/978-3-319-22536-4_15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Therapeutic efficacy of both traditional chemotherapy and gene therapy in cancer is highly dependent on the ability to deliver drugs across natural barriers, such as the vessel wall or tumor cell membranes. In this regard, sonoporation induced by ultrasound-guided microbubble (USMB) destruction has been widely investigated in the enhancement of therapeutic drug delivery given it can help overcome these natural barriers, thereby increasing drug delivery into cancer. In this chapter we discuss challenges in current cancer therapy and how some of these challenges could be overcome using USMB-mediated drug delivery. We particularly focus on recent advances in delivery approaches that have been developed to further improve therapeutic efficiency and specificity of various cancer treatments. An example of clinical translation of USMB-mediated drug delivery is also shown.
Collapse
Affiliation(s)
- Jiale Qin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA
| | - Tzu-Yin Wang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jürgen K Willmann
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA.
| |
Collapse
|
28
|
Bakhtiary Z, Saei AA, Hajipour MJ, Raoufi M, Vermesh O, Mahmoudi M. Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: Possibilities and challenges. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:287-307. [PMID: 26707817 DOI: 10.1016/j.nano.2015.10.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/22/2015] [Accepted: 10/25/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED Nanomedicine, the integration of nanotechnological tools in medicine demonstrated promising potential to revolutionize the diagnosis and treatment of various human health conditions. Nanoparticles (NPs) have shown much promise in diagnostics of cancer, especially since they can accommodate targeting molecules on their surface, which search for specific tumor cell receptors upon injection into the blood stream. This concentrates the NPs in the desired tumor location. Furthermore, such receptor-specific targeting may be exploited for detection of potential metastases in an early stage. Some NPs, such as superparamagnetic iron oxide NPs (SPIONs), are also compatible with magnetic resonance imaging (MRI), which makes their clinical translation and application rather easy and accessible for tumor imaging purposes. Furthermore, multifunctional and/or theranostic NPs can be used for simultaneous imaging of cancer and drug delivery. In this review article, we will specifically focus on the application of SPIONs in early detection and imaging of major cancer types. FROM THE CLINICAL EDITOR Super-paramagnetic iron oxide nanoparticles (SPIONs) have been reported by many to be useful as an MRI contrast agent in the detection of tumors. To further enhance the tumor imaging, SPIONs can be coupled with tumor targeting motifs. In this article, the authors performed a comprehensive review on the current status of using targeted SPIONS in tumor detection and also the potential hurdles to overcome.
Collapse
Affiliation(s)
- Zahra Bakhtiary
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mohammad J Hajipour
- Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Raoufi
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Stuttgart, Germany; Department of Nanotechnology & Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ophir Vermesh
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, CA, USA
| | - Morteza Mahmoudi
- Department of Nanotechnology & Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
29
|
Bowtell DD, Böhm S, Ahmed AA, Aspuria PJ, Bast RC, Beral V, Berek JS, Birrer MJ, Blagden S, Bookman MA, Brenton JD, Chiappinelli KB, Martins FC, Coukos G, Drapkin R, Edmondson R, Fotopoulou C, Gabra H, Galon J, Gourley C, Heong V, Huntsman DG, Iwanicki M, Karlan BY, Kaye A, Lengyel E, Levine DA, Lu KH, McNeish IA, Menon U, Narod SA, Nelson BH, Nephew KP, Pharoah P, Powell DJ, Ramos P, Romero IL, Scott CL, Sood AK, Stronach EA, Balkwill FR. Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer 2015; 15:668-79. [PMID: 26493647 PMCID: PMC4892184 DOI: 10.1038/nrc4019] [Citation(s) in RCA: 857] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) accounts for 70-80% of ovarian cancer deaths, and overall survival has not changed significantly for several decades. In this Opinion article, we outline a set of research priorities that we believe will reduce incidence and improve outcomes for women with this disease. This 'roadmap' for HGSOC was determined after extensive discussions at an Ovarian Cancer Action meeting in January 2015.
Collapse
Affiliation(s)
- David D Bowtell
- Cancer Genomics and Genetics Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 8006, Australia; and the Kinghorn Cancer Centre, Garvan Institute for Medical Research, Darlinghurst, Sydney, 2010 New South Wales, Australia
| | - Steffen Böhm
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M6BQ, UK
| | - Ahmed A Ahmed
- Nuffield Department of Obstetrics and Gynaecology and the Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Paul-Joseph Aspuria
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | - Robert C Bast
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | - Valerie Beral
- University of Oxford, Headington, Oxford, OX3 7LF, UK
| | | | | | - Sarah Blagden
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | | | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | | | - Filipe Correia Martins
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - George Coukos
- University Hospital of Lausanne, Lausanne, Switzerland
| | - Ronny Drapkin
- University of Pennsylvania, Penn Ovarian Cancer Research Center, Philadelphia, Pennsylvania 19104, USA
| | | | - Christina Fotopoulou
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Hani Gabra
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Jérôme Galon
- Institut National de la Santé et de la Recherche Médicale, UMRS1138, Laboratory of Integrative Cancer Immunology, Cordeliers Research Center, Université Paris Descartes, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ Paris 06, 75006 Paris, France
| | - Charlie Gourley
- Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Valerie Heong
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | - David G Huntsman
- University of British Columbia, Departments of Pathology and Laboratory Medicine and Obstetrics and Gynecology, Faculty of Medicine, Vancouver, British Columbia V6T 2B5, Canada
| | | | - Beth Y Karlan
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | | | | | - Douglas A Levine
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Karen H Lu
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | | | - Usha Menon
- Women's Cancer, Institute for Women's Health, University College London, London WC1E 6BT, UK
| | - Steven A Narod
- Women's College Research Institute, Toronto, Ontario M5G 1N8, Canada
| | - Brad H Nelson
- British Columbia Cancer Agency, Victoria, British Columbia V8R 6V5, Canada
| | - Kenneth P Nephew
- Indiana University School of Medicine &Simon Cancer Center, Bloomington, IN 47405-4401, USA
| | - Paul Pharoah
- University of Cambridge, Strangeways Research Laboratory, Cambridge CB1 8RN, UK
| | - Daniel J Powell
- University of Pennsylvania, Philadelphia, PA 19104-5156, USA
| | - Pilar Ramos
- Translational Genomics Research Institute (Tgen), Phoenix, Arizona 85004, USA
| | | | - Clare L Scott
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | - Anil K Sood
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | - Euan A Stronach
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Frances R Balkwill
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M6BQ, UK
| |
Collapse
|
30
|
Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. NATURE REVIEWS. CANCER 2015. [PMID: 26493647 DOI: 10.1038/nrc4019]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) accounts for 70-80% of ovarian cancer deaths, and overall survival has not changed significantly for several decades. In this Opinion article, we outline a set of research priorities that we believe will reduce incidence and improve outcomes for women with this disease. This 'roadmap' for HGSOC was determined after extensive discussions at an Ovarian Cancer Action meeting in January 2015.
Collapse
|
31
|
Bowtell DD, Böhm S, Ahmed AA, Aspuria PJ, Bast RC, Beral V, Berek JS, Birrer MJ, Blagden S, Bookman MA, Brenton JD, Chiappinelli KB, Martins FC, Coukos G, Drapkin R, Edmondson R, Fotopoulou C, Gabra H, Galon J, Gourley C, Heong V, Huntsman DG, Iwanicki M, Karlan BY, Kaye A, Lengyel E, Levine DA, Lu KH, McNeish IA, Menon U, Narod SA, Nelson BH, Nephew KP, Pharoah P, Powell DJ, Ramos P, Romero IL, Scott CL, Sood AK, Stronach EA, Balkwill FR. Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. NATURE REVIEWS. CANCER 2015. [PMID: 26493647 DOI: 10.1038/nrc4019] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) accounts for 70-80% of ovarian cancer deaths, and overall survival has not changed significantly for several decades. In this Opinion article, we outline a set of research priorities that we believe will reduce incidence and improve outcomes for women with this disease. This 'roadmap' for HGSOC was determined after extensive discussions at an Ovarian Cancer Action meeting in January 2015.
Collapse
Affiliation(s)
- David D Bowtell
- Cancer Genomics and Genetics Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 8006, Australia; and the Kinghorn Cancer Centre, Garvan Institute for Medical Research, Darlinghurst, Sydney, 2010 New South Wales, Australia
| | - Steffen Böhm
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M6BQ, UK
| | - Ahmed A Ahmed
- Nuffield Department of Obstetrics and Gynaecology and the Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Paul-Joseph Aspuria
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | - Robert C Bast
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | - Valerie Beral
- University of Oxford, Headington, Oxford, OX3 7LF, UK
| | | | | | - Sarah Blagden
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | | | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | | | - Filipe Correia Martins
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - George Coukos
- University Hospital of Lausanne, Lausanne, Switzerland
| | - Ronny Drapkin
- University of Pennsylvania, Penn Ovarian Cancer Research Center, Philadelphia, Pennsylvania 19104, USA
| | | | - Christina Fotopoulou
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Hani Gabra
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Jérôme Galon
- Institut National de la Santé et de la Recherche Médicale, UMRS1138, Laboratory of Integrative Cancer Immunology, Cordeliers Research Center, Université Paris Descartes, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ Paris 06, 75006 Paris, France
| | - Charlie Gourley
- Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Valerie Heong
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | - David G Huntsman
- University of British Columbia, Departments of Pathology and Laboratory Medicine and Obstetrics and Gynecology, Faculty of Medicine, Vancouver, British Columbia V6T 2B5, Canada
| | | | - Beth Y Karlan
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | | | | | - Douglas A Levine
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Karen H Lu
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | | | - Usha Menon
- Women's Cancer, Institute for Women's Health, University College London, London WC1E 6BT, UK
| | - Steven A Narod
- Women's College Research Institute, Toronto, Ontario M5G 1N8, Canada
| | - Brad H Nelson
- British Columbia Cancer Agency, Victoria, British Columbia V8R 6V5, Canada
| | - Kenneth P Nephew
- Indiana University School of Medicine &Simon Cancer Center, Bloomington, IN 47405-4401, USA
| | - Paul Pharoah
- University of Cambridge, Strangeways Research Laboratory, Cambridge CB1 8RN, UK
| | - Daniel J Powell
- University of Pennsylvania, Philadelphia, PA 19104-5156, USA
| | - Pilar Ramos
- Translational Genomics Research Institute (Tgen), Phoenix, Arizona 85004, USA
| | | | - Clare L Scott
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | - Anil K Sood
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | - Euan A Stronach
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Frances R Balkwill
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M6BQ, UK
| |
Collapse
|
32
|
Freise AC, Wu AM. In vivo imaging with antibodies and engineered fragments. Mol Immunol 2015; 67:142-52. [PMID: 25934435 PMCID: PMC4529772 DOI: 10.1016/j.molimm.2015.04.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 12/20/2022]
Abstract
Antibodies have clearly demonstrated their utility as therapeutics, providing highly selective and effective drugs to treat diseases in oncology, hematology, cardiology, immunology and autoimmunity, and infectious diseases. More recently, a pressing need for equally specific and targeted imaging agents for assessing disease in vivo, in preclinical models and patients, has emerged. This review summarizes strategies for developing and optimizing antibodies as targeted probes for use in non-invasive imaging using radioactive, optical, magnetic resonance, and ultrasound approaches. Recent advances in engineered antibody fragments and scaffolds, conjugation and labeling methods, and multimodality probes are highlighted. Importantly, antibody-based imaging probes are seeing new applications in detection and quantitation of cell surface biomarkers, imaging specific responses to targeted therapies, and monitoring immune responses in oncology and other diseases. Antibody-based imaging will provide essential tools to facilitate the transition to truly precision medicine.
Collapse
Affiliation(s)
- Amanda C Freise
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, USA
| | - Anna M Wu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, USA.
| |
Collapse
|
33
|
Ravoori MK, Nishimura M, Singh SP, Lu C, Han L, Hobbs BP, Pradeep S, Choi HJ, Bankson JA, Sood AK, Kundra V. Tumor T1 Relaxation Time for Assessing Response to Bevacizumab Anti-Angiogenic Therapy in a Mouse Ovarian Cancer Model. PLoS One 2015; 10:e0131095. [PMID: 26098849 PMCID: PMC4476738 DOI: 10.1371/journal.pone.0131095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 05/28/2015] [Indexed: 12/19/2022] Open
Abstract
Purpose To assess whether T1 relaxation time of tumors may be used to assess response to bevacizumab anti-angiogenic therapy. Procedures: 12 female nude mice bearing subcutaneous SKOV3ip1-LC ovarian tumors were administered bevacizumab (6.25ug/g, n=6) or PBS (control, n=6) therapy twice a week for two weeks. T1 maps of tumors were generated before, two days, and 2 weeks after initiating therapy. Tumor weight was assessed by MR and at necropsy. Histology for microvessel density, proliferation, and apoptosis was performed. Results Bevacizumab treatment resulted in tumor growth inhibition (p<0.04, n=6), confirming therapeutic efficacy. Tumor T1 relaxation times increased in bevacizumab treated mice 2 days and 2 weeks after initiating therapy (p<.05, n=6). Microvessel density decreased 59% and cell proliferation (Ki67+) decreased 50% in the bevacizumab treatment group (p<.001, n=6), but not apoptosis. Conclusions Findings suggest that increased tumor T1 relaxation time is associated with response to bevacizumab therapy in ovarian cancer model and might serve as an early indicator of response.
Collapse
Affiliation(s)
- Murali K. Ravoori
- Department of Cancer Systems Imaging, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Masato Nishimura
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Tokushima, Japan
| | - Sheela P. Singh
- Department of Cancer Systems Imaging, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Chunhua Lu
- Department of Gynecologic Oncology, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Lin Han
- Department of Cancer Systems Imaging, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Brian P. Hobbs
- Department of Biostatistics, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Sunila Pradeep
- Department of Gynecologic Oncology, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Hyun J. Choi
- Department of Gynecologic Oncology, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - James A. Bankson
- Department of Imaging Physics, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Anil K. Sood
- Department of Gynecologic Oncology, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Cancer Biology, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Center for RNA Interference and Non-Coding RNA, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Vikas Kundra
- Department of Cancer Systems Imaging, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Radiology, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
34
|
Bachawal SV, Jensen KC, Wilson KE, Tian L, Lutz AM, Willmann JK. Breast Cancer Detection by B7-H3-Targeted Ultrasound Molecular Imaging. Cancer Res 2015; 75:2501-9. [PMID: 25899053 DOI: 10.1158/0008-5472.can-14-3361] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/09/2015] [Indexed: 12/13/2022]
Abstract
Ultrasound complements mammography as an imaging modality for breast cancer detection, especially in patients with dense breast tissue, but its utility is limited by low diagnostic accuracy. One emerging molecular tool to address this limitation involves contrast-enhanced ultrasound using microbubbles targeted to molecular signatures on tumor neovasculature. In this study, we illustrate how tumor vascular expression of B7-H3 (CD276), a member of the B7 family of ligands for T-cell coregulatory receptors, can be incorporated into an ultrasound method that can distinguish normal, benign, precursor, and malignant breast pathologies for diagnostic purposes. Through an IHC analysis of 248 human breast specimens, we found that vascular expression of B7-H3 was selectively and significantly higher in breast cancer tissues. B7-H3 immunostaining on blood vessels distinguished benign/precursors from malignant lesions with high diagnostic accuracy in human specimens. In a transgenic mouse model of cancer, the B7-H3-targeted ultrasound imaging signal was increased significantly in breast cancer tissues and highly correlated with ex vivo expression levels of B7-H3 on quantitative immunofluorescence. Our findings offer a preclinical proof of concept for the use of B7-H3-targeted ultrasound molecular imaging as a tool to improve the diagnostic accuracy of breast cancer detection in patients.
Collapse
Affiliation(s)
- Sunitha V Bachawal
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Kristin C Jensen
- Department of Pathology, Stanford University, Stanford, California. Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Katheryne E Wilson
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Lu Tian
- Department of Health, Research and Policy, Stanford University, Stanford, California
| | - Amelie M Lutz
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Jürgen K Willmann
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
35
|
Ultrasound molecular imaging of tumor angiogenesis with a neuropilin-1-targeted microbubble. Biomaterials 2015; 56:104-13. [PMID: 25934284 DOI: 10.1016/j.biomaterials.2015.03.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/15/2015] [Accepted: 03/20/2015] [Indexed: 02/06/2023]
Abstract
Ultrasound molecular imaging has great potential to impact early disease diagnosis, evaluation of disease progression and the development of target-specific therapy. In this paper, two neuropilin-1 (NRP) targeted peptides, CRPPR and ATWLPPR, were conjugated onto the surface of lipid microbubbles (MBs) to evaluate molecular imaging of tumor angiogenesis in a breast cancer model. Development of a molecular imaging agent using CRPPR has particular importance due to the previously demonstrated internalizing capability of this and similar ligands. In vitro, CRPPR MBs bound to an NRP-expressing cell line 2.6 and 15.6 times more than ATWLPPR MBs and non-targeted (NT) MBs, respectively, and the binding was inhibited by pretreating the cells with an NRP antibody. In vivo, the backscattered intensity within the tumor, relative to nearby vasculature, increased over time during the ∼6 min circulation of the CRPPR-targeted contrast agents providing high contrast images of angiogenic tumors. Approximately 67% of the initial signal from CRPPR MBs remained bound after the majority of circulating MBs had cleared (8 min), 8 and 4.5 times greater than ATWLPPR and NT MBs, respectively. Finally, at 7-21 days after the first injection, we found that CRPPR MBs cleared faster from circulation and tumor accumulation was reduced likely due to a complement-mediated recognition of the targeted microbubble and a decrease in angiogenic vasculature, respectively. In summary, we find that CRPPR MBs specifically bind to NRP-expressing cells and provide an effective new agent for molecular imaging of angiogenesis.
Collapse
|
36
|
Abou-Elkacem L, Bachawal SV, Willmann JK. Ultrasound molecular imaging: Moving toward clinical translation. Eur J Radiol 2015; 84:1685-93. [PMID: 25851932 DOI: 10.1016/j.ejrad.2015.03.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/13/2015] [Indexed: 12/11/2022]
Abstract
Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging.
Collapse
Affiliation(s)
- Lotfi Abou-Elkacem
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA
| | - Sunitha V Bachawal
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jürgen K Willmann
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA.
| |
Collapse
|
37
|
van Rooij T, Daeichin V, Skachkov I, de Jong N, Kooiman K. Targeted ultrasound contrast agents for ultrasound molecular imaging and therapy. Int J Hyperthermia 2015; 31:90-106. [PMID: 25707815 DOI: 10.3109/02656736.2014.997809] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ultrasound contrast agents (UCAs) are used routinely in the clinic to enhance contrast in ultrasonography. More recently, UCAs have been functionalised by conjugating ligands to their surface to target specific biomarkers of a disease or a disease process. These targeted UCAs (tUCAs) are used for a wide range of pre-clinical applications including diagnosis, monitoring of drug treatment, and therapy. In this review, recent achievements with tUCAs in the field of molecular imaging, evaluation of therapy, drug delivery, and therapeutic applications are discussed. We present the different coating materials and aspects that have to be considered when manufacturing tUCAs. Next to tUCA design and the choice of ligands for specific biomarkers, additional techniques are discussed that are applied to improve binding of the tUCAs to their target and to quantify the strength of this bond. As imaging techniques rely on the specific behaviour of tUCAs in an ultrasound field, it is crucial to understand the characteristics of both free and adhered tUCAs. To image and quantify the adhered tUCAs, the state-of-the-art techniques used for ultrasound molecular imaging and quantification are presented. This review concludes with the potential of tUCAs for drug delivery and therapeutic applications.
Collapse
Affiliation(s)
- Tom van Rooij
- Department of Biomedical Engineering, Thoraxcenter , Erasmus MC, Rotterdam , the Netherlands
| | | | | | | | | |
Collapse
|
38
|
Abstract
In view of the trend towards personalized treatment strategies for (cancer) patients, there is an increasing need to noninvasively determine individual patient characteristics. Such information enables physicians to administer to patients accurate therapy with appropriate timing. For the noninvasive visualization of disease-related features, imaging biomarkers are expected to play a crucial role. Next to the chemical development of imaging probes, this requires preclinical studies in animal tumour models. These studies provide proof-of-concept of imaging biomarkers and help determine the pharmacokinetics and target specificity of relevant imaging probes, features that provide the fundamentals for translation to the clinic. In this review we describe biological processes derived from the “hallmarks of cancer” that may serve as imaging biomarkers for diagnostic, prognostic and treatment response monitoring that are currently being studied in the preclinical setting. A number of these biomarkers are also being used for the initial preclinical assessment of new intervention strategies. Uniquely, noninvasive imaging approaches allow longitudinal assessment of changes in biological processes, providing information on the safety, pharmacokinetic profiles and target specificity of new drugs, and on the antitumour effectiveness of therapeutic interventions. Preclinical biomarker imaging can help guide translation to optimize clinical biomarker imaging and personalize (combination) therapies.
Collapse
|
39
|
Tian N, Qu YW, Liu HF. Targeted ultrasound microbubble contrast agents for enhanced tumor imaging. Shijie Huaren Xiaohua Zazhi 2014; 22:5100-5105. [DOI: 10.11569/wcjd.v22.i33.5100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the field of medical ultrasound, ultrasound microbubbles are a new class of ultrasound contrast agents. Ultrasound microbubbles can be divided into two types: ordinary and targeted microbubbles. Ordinary microbubbles have been widely used in clinical practice. Targeted microbubbles are a special class of contrast agents and can be divided into micron- and nano-scale targeted microbubbles according to particle size. The former cannot pass through the endothelial gap due to the larger particle size, while the latter can pass through the vascular endothelium and allows for imaging of the extravascular tissues. Ultrasound combined with targeted microbubbles in enhancing tumor imaging shows greater advantages and has become an important topic of research; however, its unknown toxicity limits its wider application. In addition, ultrasound parameters still need to be optimized.
Collapse
|
40
|
Santoro SP, Kim S, Motz GT, Alatzoglou D, Li C, Irving M, Powell DJ, Coukos G. T Cells Bearing a Chimeric Antigen Receptor against Prostate-Specific Membrane Antigen Mediate Vascular Disruption and Result in Tumor Regression. Cancer Immunol Res 2014; 3:68-84. [DOI: 10.1158/2326-6066.cir-14-0192] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|