1
|
Zhao X, Chen C, Qiu H, Liu J, Shao N, Guo M, Jiang Y, Zhao J, Xu L. The landscape of ATF3 in tumors: Metabolism, expression regulation, therapy approach, and open concerns. Pharmacol Res 2025; 214:107666. [PMID: 39978658 DOI: 10.1016/j.phrs.2025.107666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Cellular stress response is a pivotal process in tumor development and therapy. Activating transcription factor 3 (ATF3), a representative stress-responsive protein, plays pleiotropic roles in various biological processes. Over the past decade, studies have described not only the general role of ATF3 in tumor metabolism but also the complexity of ATF3 expression regulation and its associated modifications, including phosphorylation, ubiquitination, SUMOylation, and NEDDylation. Interestingly, beyond being a transcription factor, ATF3 can act as a modifier to control the ubiquitination of target molecules, such as p53, to exert its function in tumors. These advances in uncovering ATF3 biological function have yielded new insights into the cellular stress response during tumor development and will be instrumental in developing novel interventions. In this review, we update the role of ATF3 as a nexus in amino acid metabolism, lipid metabolism, glycometabolism, and other metabolic pathways in tumors; delineate the underlying mechanisms involving DNA level regulation, epigenetic regulation, and post-translational modifications of ATF3; and summarize the progression of tumor mono/combination therapies related to ATF3. In particular, we discuss the challenges that need to be addressed to provide a new conceptual framework for further understanding the potential therapeutic value of ATF3 in ongoing clinical trials.
Collapse
Affiliation(s)
- Xu Zhao
- Medical College, Guizhou University, Guiyang, Guizhou Province 550025, China; Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Chao Chen
- Medical College, Guizhou University, Guiyang, Guizhou Province 550025, China; Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Hui Qiu
- Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Jing Liu
- Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Nan Shao
- Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Mengmeng Guo
- Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Yuanye Jiang
- Department of Gastroenterology, Putuo hospital, Shanghai University of Tradtional Chinese Medicine, Shanghai 200062, China.
| | - Juanjuan Zhao
- Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China.
| | - Lin Xu
- Medical College, Guizhou University, Guiyang, Guizhou Province 550025, China; Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Innovation Center for Tissue Damage Repair, Ministry of Education, Zunyi, Guizhou 563000, China.
| |
Collapse
|
2
|
Fan G, Zhang Y, Li Q, Rong R, Chen S, He L, Li B, Zhuang W. BCL6 confers resistance to HDAC inhibitors in DLBCL. Biochem Pharmacol 2024; 227:116466. [PMID: 39102989 DOI: 10.1016/j.bcp.2024.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive non-Hodgkin lymphoma with limited response to chemotherapy. Histone acetylation is reduced in DLBCL. Chidamide, a histone deacetylase inhibitor, shows promise in lymphomas but needs further investigation for DLBCL. Our study indicated that chidamide effectively suppresses DLBCL both in vitro and in vivo. High-throughput RNA sequencing analysis provided comprehensive evidence that chidamide markedly influences crucial signaling pathways in DLBCL, including the MAPK, MYC and p53 pathway. Additionally, we observed substantial variability in the sensitivity of DLBCL cells to chidamide, and identified that elevated expression of BCL6 might confer resistance to chidamide in DLBCL. Moreover, our investigations revealed that BCL6 inhibited chidamide-induced histone acetylation by recruiting histone deacetylase (HDACs), leading to drug resistance in DLBCL cells. Furthermore, we found that lenalidomide targeted BCL6 degradation through the ubiquitination pathway and restore the sensitivity of drug-resistant DLBCL to chidamide. Collectively, these findings provided valuable insights into the global impact of chidamide on DLBCL and highlight the potential of targeting HDACs as a therapeutic strategy for DLBCL. Identifying BCL6 as a biomarker for predicting the response to chidamide and the combination therapy with BCL6 inhibition has the potential to lead to more personalized and effective treatments for DLBCL patients.
Collapse
Affiliation(s)
- Gao Fan
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuchen Zhang
- Department of Hematology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Li
- Department of Hematology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Rong Rong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Si Chen
- Suzhou Sano Precision Medicine Ltd, Suzhou, China
| | - Lexin He
- Suzhou Sano Precision Medicine Ltd, Suzhou, China
| | - Bingzong Li
- Department of Hematology, the Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Wenzhuo Zhuang
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Liu Y, Cao Y, Liu P, Zhai S, Liu Y, Tang X, Lin J, Shi M, Qi D, Deng X, Zhu Y, Wang W, Shen B. ATF3-induced activation of NF-κB pathway results in acquired PARP inhibitor resistance in pancreatic adenocarcinoma. Cell Oncol (Dordr) 2024; 47:939-950. [PMID: 38097870 DOI: 10.1007/s13402-023-00907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 07/04/2024] Open
Abstract
PURPOSE Olaparib, an inhibitor of poly-(adenosine diphosphate-ribose) polymerase (PARP), has been shown to have anticancer benefits in patients with pancreatic cancer who have a germline mutation in BRCA1/2. However, resistance acquired on long-term exposure to olaparib significantly impedes clinical efficacy. METHODS In this study, the chromatin accessibility and differentially expressed transcripts of parental and olaparib-resistant pancreatic cancer cell lines were assessed using the Assay for Transposase Accessible Chromatin with sequencing (ATAC-seq) and mRNA-seq. Detection of downstream genes regulated by transcription factors using ChIP (Chromatin immunoprecipitation assay). RESULTS According to pathway enrichment analysis, differentially expressed genes in olaparib-resistant cells were remarkably enriched in the NF-κB signaling pathway. With ATAC-seq, we identified chromatin regions with higher accessibility in olaparib-resistant cells and predicted a series of important transcription factors. Among them, activating transcription factor 3 (ATF3) was significantly highly expressed. Functional experiments verified that inhibition of ATF3 suppressed the NF-κB pathway significantly and restored olaparib sensitivity in olaparib-resistant cells. CONCLUSION Experiments in vitro and in vivo indicate ATF3 enhances olaparib resistance through the NF-κB signaling pathway, suggesting that ATF3 could be employed as an olaparib sensitivity and prognostic indicator in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Yang Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yizhi Cao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Pengyi Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Shuyu Zhai
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yihao Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Xiaomei Tang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Jiayu Lin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Debin Qi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Youwei Zhu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China.
| | - Weishen Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China.
| |
Collapse
|
4
|
Gagliano T, Kerschbamer E, Baccarani U, Minisini M, Di Giorgio E, Dalla E, Weichenberger CX, Cherchi V, Terrosu G, Brancolini C. Changes in chromatin accessibility and transcriptional landscape induced by HDAC inhibitors in TP53 mutated patient-derived colon cancer organoids. Biomed Pharmacother 2024; 173:116374. [PMID: 38447451 DOI: 10.1016/j.biopha.2024.116374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
Here we present the generation and characterization of patient-derived organoids (PDOs) from colorectal cancer patients. PDOs derived from two patients with TP53 mutations were tested with two different HDAC inhibitors (SAHA and NKL54). Cell death induction, transcriptome, and chromatin accessibility changes were analyzed. HDACIs promote the upregulation of low expressed genes and the downregulation of highly expressed genes. A similar differential effect is observed at the level of chromatin accessibility. Only SAHA is a potent inducer of cell death, which is characterized by the upregulation of BH3-only genes BIK and BMF. Up-regulation of BIK is associated with increased accessibility in an intronic region that has enhancer properties. SAHA, but not NKL54, also causes downregulation of BCL2L1 and decreases chromatin accessibility in three distinct regions of the BCL2L1 locus. Both inhibitors upregulate the expression of innate immunity genes and members of the MHC family. In summary, our exploratory study indicates a mechanism of action for SAHA and demonstrate the low efficacy of NKL54 as a single agent for apoptosis induction, using two PDOs. These observations need to be validated in a larger cohort of PDOs.
Collapse
Affiliation(s)
- Teresa Gagliano
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Emanuela Kerschbamer
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Umberto Baccarani
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Martina Minisini
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Emiliano Dalla
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | | | - Vittorio Cherchi
- General Surgery Clinic and Liver Transplant Center, University-Hospital of Udine, Udine, Italy
| | - Giovanni Terrosu
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy.
| |
Collapse
|
5
|
Ye J, Deng R, Wang X, Song S, Xu X, Zhang JY, Xu BB, Wang X, Yu JK. Intra-articular Histone Deacetylase Inhibitor Microcarrier Delivery to Reduce Osteoarthritis. NANO LETTERS 2023; 23:10832-10840. [PMID: 38009465 PMCID: PMC10722529 DOI: 10.1021/acs.nanolett.3c03037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
The histone deacetylase inhibitor (HDACi) was a milestone in the treatment of refractory T-cell lymphoma. However, the beneficial effects of HDACi have not been appreciated in osteoarthritis (OA). Herein, we implemented a microcarrier system because of the outstanding advantages of controlled and sustained release, biodegradability, and biocompatibility. The poly(d,l-lactide-co-glycolide) (PLGA) microcapsules have a regulated and sustained release profile with a reduced initial burst release, which can improve the encapsulation efficiency of the Chidamide. The emulsion solvent evaporation strategy was used to encapsulate Chidamide in PLGA microcapsules. The encapsulation of Chidamide was established by UV-vis spectra and scanning electron microscopy. Additionally, the inhibition of Tnnt3 and immune stimulation by Chidamide helped to inhibit cartilage destruction and prevent articular cartilage degeneration. Based on the results, the Chidamide in PLGA microcapsules provides a transformative therapeutic strategy for the treatment of osteoarthritis patients to relieve symptoms and protect against cartilage degeneration.
Collapse
Affiliation(s)
- Jing Ye
- Sports
Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
- Institute
of Sports Medicine, Peking University, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
| | - Ronghui Deng
- Sports
Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
- Institute
of Sports Medicine, Peking University, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
| | - Xinjie Wang
- Sports
Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
- Institute
of Sports Medicine, Peking University, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
| | - Shitang Song
- Sports
Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
- Institute
of Sports Medicine, Peking University, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
| | - Xiong Xu
- Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ji-Ying Zhang
- Sports
Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
- Institute
of Sports Medicine, Peking University, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
| | - Bing-bing Xu
- Sports
Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
- Institute
of Sports Medicine, Peking University, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
| | - Xing Wang
- Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Kuo Yu
- Sports
Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
- Institute
of Sports Medicine, Peking University, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
| |
Collapse
|
6
|
Ng I, Luk IY, Nightingale R, Reehorst CM, Dávalos-Salas M, Jenkins LJ, Fong C, Williams DS, Watt MJ, Dhillon AS, Mariadason JM. Intestinal-specific Hdac3 deletion increases susceptibility to colitis and small intestinal tumor development in mice fed a high-fat diet. Am J Physiol Gastrointest Liver Physiol 2023; 325:G508-G517. [PMID: 37788331 DOI: 10.1152/ajpgi.00160.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
High-fat (HF) diets (HFDs) and inflammation are risk factors for colon cancer; however, the underlying mechanisms remain to be fully elucidated. The transcriptional corepressor HDAC3 has recently emerged as a key regulator of intestinal epithelial responses to diet and inflammation with intestinal-specific Hdac3 deletion (Hdac3IKO) in mice increasing fatty acid oxidation genes and the rate of fatty acid oxidation in enterocytes. Hdac3IKO mice are also predisposed to experimentally induced colitis; however, whether this is driven by the intestinal metabolic reprogramming and whether this predisposes these mice to intestinal tumorigenesis is unknown. Herein, we examined the effects of intestinal-specific Hdac3 deletion on colitis-associated intestinal tumorigenesis in mice fed a standard (STD) or HFD. Hdac3IKO mice were highly prone to experimentally induced colitis, which was further enhanced by an HFD. Hdac3 deletion also accelerated intestinal tumor development, specifically when fed an HFD and most notably in the small intestine where lipid absorption is maximal. Expression of proteins involved in fatty acid metabolism and oxidation (SCD1, EHHADH) were elevated in the small intestine of Hdac3IKO mice fed an HFD, and these mice displayed increased levels of lipid peroxidation, DNA damage, and apoptosis in their villi, as well as extensive expansion of the stem cell and progenitor cell compartment. These findings reveal a novel role for Hdac3 in suppressing colitis and intestinal tumorigenesis, particularly in the context of consumption of an HFD, and reveal a potential mechanism by which HFDs may increase intestinal tumorigenesis by increasing fatty acid oxidation, DNA damage, and intestinal epithelial cell turnover.NEW & NOTEWORTHY We reveal a novel role for the transcriptional corepressor Hdac3 in suppressing colitis and intestinal tumorigenesis, particularly in the context of consumption of an HFD, and reveal a potential mechanism by which HFDs may increase intestinal tumorigenesis by increasing fatty acid oxidation, DNA damage, and intestinal epithelial cell turnover. We also identify a unique mouse model for investigating the complex interplay between diet, metabolic reprogramming, and tumor predisposition in the intestinal epithelium.
Collapse
Affiliation(s)
- Irvin Ng
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Ian Y Luk
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Rebecca Nightingale
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Camilla M Reehorst
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Mercedes Dávalos-Salas
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- Department of Biochemistry, Monash University, Melbourne, Victoria, Australia
| | - Laura J Jenkins
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Chun Fong
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - David S Williams
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
- Department of Pathology, Austin Health, Melbourne, Victoria, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Amardeep S Dhillon
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Chüeh AC, Tse JWT, Dickinson M, Ioannidis P, Jenkins L, Togel L, Tan B, Luk I, Davalos-Salas M, Nightingale R, Thompson MR, Williams BRG, Lessene G, Lee EF, Fairlie WD, Dhillon AS, Mariadason JM. Correction: ATF3 Repression of BCL-XL Determines Apoptotic Sensitivity to HDAC Inhibitors Across Tumor Types. Clin Cancer Res 2023; 29:3826. [PMID: 37712140 DOI: 10.1158/1078-0432.ccr-23-2100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
|
8
|
Qian X, Zhu L, Xu M, Liu H, Yu X, Shao Q, Qin J. Shikonin suppresses small cell lung cancer growth via inducing ATF3-mediated ferroptosis to promote ROS accumulation. Chem Biol Interact 2023; 382:110588. [PMID: 37268198 DOI: 10.1016/j.cbi.2023.110588] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Small cell lung cancer (SCLC) is a subtype of lung cancer with a very poor overall survival rate due to its extremely high proliferation and metastasis predilection. Shikonin is an active ingredient extracted from the roots of Lithospermum erythrorhizon, and exerts multiple anti-tumor functions in many cancers. In the present study, the role and underlying mechanism of shikonin in SCLC were investigated for the first time. We found that shikonin effectively suppressed cell proliferation, apoptosis, migration, invasion, and colony formation and slightly induced apoptosis in SCLC cells. Further experiment indicated the shikonin could also induced ferroptosis in SCLC cells. Shikonin treatment effectively suppressed the activation of ERK, the expression of ferroptosis inhibitor GPX4, and elevated the level of 4-HNE, a biomarker of ferroptosis. Both total ROS and lipid ROS were increased, while the GSH levels were decreased in SCLC cells after shikonin treatment. More importantly, our data identified that the function of shikonin was dependent on the up-regulation of ATF3 by performing rescue experiments using shRNA to silence the expression of ATF3, especially in the total and lipid ROS accumulaiton. Xenograft model was established using SBC-2 cells, and the results revealed that shikonin also significantly inhibited tumor growth by inducing ferroptosis. Finally, our data further confirmed that shikonin activated ATF3 transcription by impairing the recruitment of HDAC1 mediated by c-myc on the ATF3 promoter, and subsequently elevating of histone acetylation. Our data documented that shikonin suppressed SCLC by inducing ferroptosis in a ATF3-dependent manner. Shikonin upregulated the expression of ATF3 expression via promoting the histone acetylation by inhibiting c-myc-mediated HDAC1 binding on ATF3 promoter.
Collapse
Affiliation(s)
- Xinyu Qian
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine (Hangzhou Cancer Hospital), Hangzhou, Zhejiang, 310006, China
| | - Lin Zhu
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Mengzhen Xu
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Haoli Liu
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xinyan Yu
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Qiuyue Shao
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Jing Qin
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China; Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic oncology (lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, 310022, PR China.
| |
Collapse
|
9
|
Malayaperumal S, Marotta F, Kumar MM, Somasundaram I, Ayala A, Pinto MM, Banerjee A, Pathak S. The Emerging Role of Senotherapy in Cancer: A Comprehensive Review. Clin Pract 2023; 13:838-852. [PMID: 37489425 PMCID: PMC10366900 DOI: 10.3390/clinpract13040076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023] Open
Abstract
Senotherapy, a promising therapeutic strategy, has drawn a lot attention recently due to its potential for combating cancer. Senotherapy refers to the targeting of senescent cells to restore tissue homeostasis and mitigate the deleterious effects associated with senescence. Senolytic drugs represent a promising avenue in cancer treatment, with the potential to target and modulate senescent cells to improve patient outcomes. The review highlights the intricate interplay between the senescence-associated secretory phenotype (SASP) and the tumor microenvironment, emphasizing the role of senescent cells in promoting chronic inflammation, immune evasion, and tumor-cell proliferation. It then explores the potential of senotherapy as a novel strategy for cancer therapy. This review addresses the emerging evidence on the combination of senotherapy with conventional cancer treatments, such as chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Sarubala Malayaperumal
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, India; (S.M.); (M.M.K.); (A.B.)
| | - Francesco Marotta
- ReGenera R&D International for Aging Intervention, 20154 Milan, Italy
| | - Makalakshmi Murali Kumar
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, India; (S.M.); (M.M.K.); (A.B.)
| | | | - Antonio Ayala
- Department of Biochemistry and Molecular Biology, University of Seville, 41012 Seville, Spain; (A.A.); (M.M.P.)
| | - Mario Munoz Pinto
- Department of Biochemistry and Molecular Biology, University of Seville, 41012 Seville, Spain; (A.A.); (M.M.P.)
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, India; (S.M.); (M.M.K.); (A.B.)
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, India; (S.M.); (M.M.K.); (A.B.)
| |
Collapse
|
10
|
Tang Z, Liu L, Borlak J. Combined inhibition of histone deacetylase and cytidine deaminase improves epigenetic potency of decitabine in colorectal adenocarcinomas. Clin Epigenetics 2023; 15:89. [PMID: 37208732 DOI: 10.1186/s13148-023-01500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Targeting the epigenome of cancerous diseases represents an innovative approach, and the DNA methylation inhibitor decitabine is recommended for the treatment of hematological malignancies. Although epigenetic alterations are also common to solid tumors, the therapeutic efficacy of decitabine in colorectal adenocarcinomas (COAD) is unfavorable. Current research focuses on an identification of combination therapies either with chemotherapeutics or checkpoint inhibitors in modulating the tumor microenvironment. Here we report a series of molecular investigations to evaluate potency of decitabine, the histone deacetylase inhibitor PBA and the cytidine deaminase (CDA) inhibitor tetrahydrouridine (THU) in patient derived functional and p53 null colon cancer cell lines (CCCL). We focused on the inhibition of cell proliferation, the recovery of tumor suppressors and programmed cell death, and established clinical relevance by evaluating drug responsive genes among 270 COAD patients. Furthermore, we evaluated treatment responses based on CpG island density. RESULTS Decitabine caused marked repression of the DNMT1 protein. Conversely, PBA treatment of CCCL recovered acetylation of histone 3 lysine residues, and this enabled an open chromatin state. Unlike single decitabine treatment, the combined decitabine/PBA treatment caused > 95% inhibition of cell proliferation, prevented cell cycle progression especially in the S and G2-phase and induced programmed cell death. Decitabine and PBA differed in their ability to facilitate re-expression of genes localized on different chromosomes, and the combined decitabine/PBA treatment was most effective in the re-expression of 40 tumor suppressors and 13 genes typically silenced in cancer-associated genomic regions of COAD patients. Furthermore, this treatment repressed expression of 11 survival (anti-apoptotic) genes and augmented expression of X-chromosome inactivated genes, especially the lncRNA Xist to facilitate p53-mediated apoptosis. Pharmacological inhibition of CDA by THU or its gene knockdown prevented decitabine inactivation. Strikingly, PBA treatment recovered the expression of the decitabine drug-uptake transporter SLC15A1, thus enabling high tumor drug-loads. Finally, for 26 drug responsive genes we demonstrated improved survival in COAD patients. CONCLUSION The combined decitabine/PBA/THU drug treatment improved drug potency considerably, and given their existing regulatory approval, our findings merit prospective clinical trials for the triple combination in COAD patients.
Collapse
Affiliation(s)
- Zijiao Tang
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Lu Liu
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str.1, 30625, Hannover, Germany.
| |
Collapse
|
11
|
Schade AE, Kuzmickas R, Rodriguez CL, Mattioli K, Enos M, Gardner A, Cichowski K. Combating castration-resistant prostate cancer by co-targeting the epigenetic regulators EZH2 and HDAC. PLoS Biol 2023; 21:e3002038. [PMID: 37104245 PMCID: PMC10138213 DOI: 10.1371/journal.pbio.3002038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/16/2023] [Indexed: 04/28/2023] Open
Abstract
While screening and early detection have reduced mortality from prostate cancer, castration-resistant disease (CRPC) is still incurable. Here, we report that combined EZH2/HDAC inhibitors potently kill CRPCs and cause dramatic tumor regression in aggressive human and mouse CRPC models. Notably, EZH2 and HDAC both transmit transcriptional repressive signals: regulating histone H3 methylation and histone deacetylation, respectively. Accordingly, we show that suppression of both EZH2 and HDAC are required to derepress/induce a subset of EZH2 targets, by promoting the sequential demethylation and acetylation of histone H3. Moreover, we find that the induction of one of these targets, ATF3, which is a broad stress response gene, is critical for the therapeutic response. Importantly, in human tumors, low ATF3 levels are associated with decreased survival. Moreover, EZH2- and ATF3-mediated transcriptional programs inversely correlate and are most highly/lowly expressed in advanced disease. Together, these studies identify a promising therapeutic strategy for CRPC and suggest that these two major epigenetic regulators buffer prostate cancers from a lethal response to cellular stresses, thereby conferring a tractable therapeutic vulnerability.
Collapse
Affiliation(s)
- Amy E. Schade
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ryan Kuzmickas
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carrie L. Rodriguez
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kaia Mattioli
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Miriam Enos
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alycia Gardner
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Karen Cichowski
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
12
|
Everix L, Seane EN, Ebenhan T, Goethals I, Bolcaen J. Introducing HDAC-Targeting Radiopharmaceuticals for Glioblastoma Imaging and Therapy. Pharmaceuticals (Basel) 2023; 16:227. [PMID: 37259375 PMCID: PMC9967489 DOI: 10.3390/ph16020227] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 09/29/2023] Open
Abstract
Despite recent advances in multimodality therapy for glioblastoma (GB) incorporating surgery, radiotherapy, chemotherapy and targeted therapy, the overall prognosis remains poor. One of the interesting targets for GB therapy is the histone deacetylase family (HDAC). Due to their pleiotropic effects on, e.g., DNA repair, cell proliferation, differentiation, apoptosis and cell cycle, HDAC inhibitors have gained a lot of attention in the last decade as anti-cancer agents. Despite their known underlying mechanism, their therapeutic activity is not well-defined. In this review, an extensive overview is given of the current status of HDAC inhibitors for GB therapy, followed by an overview of current HDAC-targeting radiopharmaceuticals. Imaging HDAC expression or activity could provide key insights regarding the role of HDAC enzymes in gliomagenesis, thus identifying patients likely to benefit from HDACi-targeted therapy.
Collapse
Affiliation(s)
- Liesbeth Everix
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, 2610 Antwerpen, Belgium
| | - Elsie Neo Seane
- Department of Medical Imaging and Therapeutic Sciences, Cape Peninsula University of Technology, Cape Town 7530, South Africa
| | - Thomas Ebenhan
- Pre-Clinical Imaging Facility (PCIF), (NuMeRI) NPC, Pretoria 0001, South Africa
- Department of Science and Technology/Preclinical Drug Development Platform (PCDDP), North West University, Potchefstroom 2520, South Africa
- Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa
| | - Ingeborg Goethals
- Department of Nuclear Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Julie Bolcaen
- Radiation Biophysics Division, SSC laboratory, iThemba LABS, Cape Town 7131, South Africa
| |
Collapse
|
13
|
Jenkins LJ, Luk IY, Fairlie WD, Lee EF, Palmieri M, Schoffer KL, Tan T, Ng I, Vukelic N, Tran S, Tse JW, Nightingale R, Alam Z, Chionh F, Iatropoulos G, Ernst M, Afshar-Sterle S, Desai J, Gibbs P, Sieber OM, Dhillon AS, Tebbutt NC, Mariadason JM. Genotype-Tailored ERK/MAPK Pathway and HDAC Inhibition Rewires the Apoptotic Rheostat to Trigger Colorectal Cancer Cell Death. Mol Cancer Ther 2023; 22:52-62. [PMID: 36343387 PMCID: PMC9808369 DOI: 10.1158/1535-7163.mct-22-0101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/21/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
The EGFR/RAS/MEK/ERK signaling pathway (ERK/MAPK) is hyperactivated in most colorectal cancers. A current limitation of inhibitors of this pathway is that they primarily induce cytostatic effects in colorectal cancer cells. Nevertheless, these drugs do induce expression of proapoptotic factors, suggesting they may prime colorectal cancer cells to undergo apoptosis. As histone deacetylase inhibitors (HDACis) induce expression of multiple proapoptotic proteins, we examined whether they could synergize with ERK/MAPK inhibitors to trigger colorectal cancer cell apoptosis. Combined MEK/ERK and HDAC inhibition synergistically induced apoptosis in colorectal cancer cell lines and patient-derived tumor organoids in vitro, and attenuated Apc-initiated adenoma formation in vivo. Mechanistically, combined MAPK/HDAC inhibition enhanced expression of the BH3-only proapoptotic proteins BIM and BMF, and their knockdown significantly attenuated MAPK/HDAC inhibitor-induced apoptosis. Importantly, we demonstrate that the paradigm of combined MAPK/HDAC inhibitor treatment to induce apoptosis can be tailored to specific MAPK genotypes in colorectal cancers, by combining an HDAC inhibitor with either an EGFR, KRASG12C or BRAFV600 inhibitor in KRAS/BRAFWT; KRASG12C, BRAFV600E colorectal cancer cell lines, respectively. These findings identify a series of ERK/MAPK genotype-tailored treatment strategies that can readily undergo clinical testing for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Laura J. Jenkins
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Ian Y. Luk
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - W. Douglas Fairlie
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Erinna F. Lee
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Michelle Palmieri
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Kael L. Schoffer
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
| | - Tao Tan
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Irvin Ng
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Natalia Vukelic
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Sharon Tran
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Janson W.T. Tse
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Rebecca Nightingale
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Zakia Alam
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Fiona Chionh
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - George Iatropoulos
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Shoukat Afshar-Sterle
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Jayesh Desai
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Peter Gibbs
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Oliver M. Sieber
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Amardeep S. Dhillon
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Niall C. Tebbutt
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - John M. Mariadason
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Corresponding Author: John M. Mariadason, Olivia Newton-John Cancer Wellness and Research Centre, 145-163 Studley Road, Melbourne, Victoria, 3084, Australia. Phone: 613-9496-3068; E-mail:
| |
Collapse
|
14
|
Pandey T, Ma DK. Stress-Induced Phenoptosis: Mechanistic Insights and Evolutionary Implications. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1504-1511. [PMID: 36717459 DOI: 10.1134/s0006297922120082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Evolution by natural selection results in biological traits that enable organismic adaptation and survival under various stressful environments. External stresses can be sometimes too severe to overcome, leading to organismic death either because of failure in adapting to such stress, or alternatively, through a regulated form of organismic death (phenoptosis). While regulated cell deaths, including apoptosis, have been extensively studied, little is known about the molecular and cellular mechanisms underlying phenoptosis and its evolutionary significance for multicellular organisms. In this article, we review documented phenomena and mechanistic evidence emerging from studies of stress-induced phenoptosis in the multicellular organism C. elegans and stress-induced deaths at cellular levels in organisms ranging from bacteria to mammals, focusing on abiotic and pathogen stresses. Genes and signaling pathways involved in phenoptosis appear to promote organismic death during severe stress and aging, while conferring fitness and immune defense during mild stress and early life, consistent with their antagonistic pleiotropy actions. As cell apoptosis during development can shape tissues and organs, stress-induced phenoptosis may also contribute to possible benefits at the population level, through mechanisms including kin selection, abortive infection, and soma-to-germline resource allocation. Current models can generate experimentally testable predictions and conceptual frameworks with implications for understanding both stress-induced phenoptosis and natural aging.
Collapse
Affiliation(s)
- Taruna Pandey
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA.
| | - Dengke K Ma
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA. .,Innovative Genomics Institute, University of California, Berkeley, USA
| |
Collapse
|
15
|
Wu J, Huang Y, Zhou X, Xiang Z, Yang Z, Meng D, Wu D, Zhang J, Yang J. ATF3 and its emerging role in atherosclerosis: a narrative review. Cardiovasc Diagn Ther 2022; 12:926-942. [PMID: 36605071 PMCID: PMC9808109 DOI: 10.21037/cdt-22-206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/08/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Atherosclerosis (AS), is characterized by the subintima lipid accumulation and chronic inflammation inside the arterial wall, causing much mortality and morbidity worldwide. Activating transcription factor 3 (ATF3) is a member of ATF/cAMP-responsive element-binding (CREB) family of transcription factors, which acts as a master regulator of adaptive response. Recent studies have indicated the implicated role of ATF3 in atherogenesis and AS progression due to its impact on metabolic disorder, vascular injury, plaque formation, and stability. In this review, we summarize the current advances in the mechanism of ATF3 activation and the contribution of ATF3 in AS, highlighting vascular intrinsic and extrinsic mechanisms of how ATF3 influences the pathology of AS. METHODS The relevant literature (from origin to March 2022) was retrieved through PubMed research to explore the regulatory mechanism of ATF3 and the specific role of ATF3 in AS. Only English publications were reviewed in this paper. KEY CONTENT AND FINDINGS ATF3 acts as a key regulator of AS progression, which not only directly affects atherosclerotic lesions by regulating vascular homeostasis, but also gets involved in AS through systemic glucolipid metabolism and inflammatory response. The two different promoters, transcript variants, and post-translational modification in distinct cell types partly contribute to the regulatory diversity of ATF3 in AS. CONCLUSIONS ATF3 is a crucial transcription regulatory factor during atherogenesis and AS progression. Gaining a better understanding of how ATF3 affects vascular, metabolic, and immune homeostasis would advance the progress of ATF3-targeted therapy in AS.
Collapse
Affiliation(s)
- Jingyi Wu
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yifan Huang
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Xiaoyan Zhou
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Zujin Xiang
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Zishu Yang
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Di Meng
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Di Wu
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jing Zhang
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jian Yang
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| |
Collapse
|
16
|
Activating transcription factor 3 protects alveolar epithelial type II cells from Mycobacterium tuberculosis infection-induced inflammation. Tuberculosis (Edinb) 2022; 135:102227. [DOI: 10.1016/j.tube.2022.102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/07/2022] [Accepted: 06/19/2022] [Indexed: 11/22/2022]
|
17
|
Mayer M, Berger A, Leischner C, Renner O, Burkard M, Böcker A, Noor S, Weiland T, Weiss TS, Busch C, Lauer UM, Bischoff SC, Venturelli S. Preclinical Efficacy and Toxicity Analysis of the Pan-Histone Deacetylase Inhibitor Gossypol for the Therapy of Colorectal Cancer or Hepatocellular Carcinoma. Pharmaceuticals (Basel) 2022; 15:ph15040438. [PMID: 35455435 PMCID: PMC9028974 DOI: 10.3390/ph15040438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Gossypol, a sesquiterpenoid found in cotton seeds, exerts anticancer effects on several tumor entities due to inhibition of DNA synthesis and other mechanisms. In clinical oncology, histone deacetylase inhibitors (HDACi) are applied as anticancer compounds. In this study, we examined whether gossypol harbors HDAC inhibiting activity. In vitro analyses showed that gossypol inhibited class I, II, and IV HDAC, displaying the capability to laterally interact with the respective catalytic center and is, therefore, classified as a pan-HDAC inhibitor. Next, we studied the effects of gossypol on human-derived hepatoma (HepG2) and colon carcinoma (HCT-116) cell lines and found that gossypol induced hyperacetylation of histone protein H3 and/or tubulin within 6 h. Furthermore, incubation with different concentrations of gossypol (5–50 µM) over a time period of 96 h led to a prominent reduction in cellular viability and proliferation of hepatoma (HepG2, Hep3B) and colon carcinoma (HCT-116, HT-29) cells. In-depth analysis of underlying mechanisms showed that gossypol induced apoptosis via caspase activation. For pre-clinical evaluation, toxicity analyses showed toxic effects of gossypol in vitro toward non-malignant primary hepatocytes (PHH), the colon-derived fibroblast cell line CCD-18Co, and the intestinal epithelial cell line CCD 841 CoN at concentrations of ≥5 µM, and embryotoxicity in chicken embryos at ≥2.5 µM. In conclusion, the pronounced inhibitory capacity of gossypol on cancer cells was characterized, and pan-HDACi activity was detected in silico, in vitro, by inhibiting individual HDAC isoenzymes, and on protein level by determining histone acetylation. However, for clinical application, further chemical optimization is required to decrease cellular toxicity.
Collapse
Affiliation(s)
- Mascha Mayer
- Institute of Nutritional Medicine and Prevention, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Alexander Berger
- Department of Internal Medicine VIII, University Hospital Tuebingen, 72076 Tuebingen, Germany; (A.B.); (T.W.); (U.M.L.)
| | - Christian Leischner
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany; (C.L.); (O.R.); (M.B.)
| | - Olga Renner
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany; (C.L.); (O.R.); (M.B.)
| | - Markus Burkard
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany; (C.L.); (O.R.); (M.B.)
| | | | - Seema Noor
- Department of Dermatology, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany;
| | - Timo Weiland
- Department of Internal Medicine VIII, University Hospital Tuebingen, 72076 Tuebingen, Germany; (A.B.); (T.W.); (U.M.L.)
| | - Thomas S. Weiss
- Center for Liver Cell Research, Children’s University Hospital (KUNO), University Hospital Regensburg, 93042 Regensburg, Germany;
| | | | - Ulrich M. Lauer
- Department of Internal Medicine VIII, University Hospital Tuebingen, 72076 Tuebingen, Germany; (A.B.); (T.W.); (U.M.L.)
- German Cancer Consortium (DKTK), DKFZ Partner Site, 72076 Tuebingen, Germany
| | - Stephan C. Bischoff
- Institute of Nutritional Medicine and Prevention, University of Hohenheim, 70599 Stuttgart, Germany;
- Correspondence: (S.C.B.); (S.V.); Tel.: +49-711-459-24100 (S.C.B.); +49-711-459-24195 (S.V.)
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany; (C.L.); (O.R.); (M.B.)
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University of Tuebingen, 72074 Tuebingen, Germany
- Correspondence: (S.C.B.); (S.V.); Tel.: +49-711-459-24100 (S.C.B.); +49-711-459-24195 (S.V.)
| |
Collapse
|
18
|
Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer 2022; 22:45-64. [PMID: 34663943 DOI: 10.1038/s41568-021-00407-4] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
Apoptosis is a form of programmed cell death that is regulated by the balance between prosurvival and proapoptotic BCL-2 protein family members. Evasion of apoptosis is a hallmark of cancer that arises when this balance is tipped in favour of survival. One form of anticancer therapeutic, termed 'BH3-mimetic drugs', has been developed to directly activate the apoptosis machinery in malignant cells. These drugs bind to and inhibit specific prosurvival BCL-2 family proteins, thereby mimicking their interaction with the BH3 domains of proapoptotic BCL-2 family proteins. The BCL-2-specific inhibitor venetoclax is approved by the US Food and Drug Administration and many regulatory authorities worldwide for the treatment of chronic lymphocytic leukaemia and acute myeloid leukaemia. BH3-mimetic drugs targeting other BCL-2 prosurvival proteins have been tested in preclinical models of cancer, and drugs targeting MCL-1 or BCL-XL have advanced into phase I clinical trials for certain cancers. As with all therapeutics, efficacy and tolerability need to be carefully balanced to achieve a therapeutic window whereby there is significant anticancer activity with an acceptable safety profile. In this Review, we outline the current state of BH3-mimetic drugs targeting various prosurvival BCL-2 family proteins and discuss emerging data regarding primary and acquired resistance to these agents and approaches that may overcome this. We highlight issues that need to be addressed to further advance the clinical application of BH3-mimetic drugs, both alone and in combination with additional anticancer agents (for example, standard chemotherapeutic drugs or inhibitors of oncogenic kinases), for improved responses in patients with cancer.
Collapse
Affiliation(s)
- Sarah T Diepstraten
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Mary Ann Anderson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Clinical Haematology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
19
|
Hu H, Zhang F, Li L, Liu J, Ao Q, Li P, Zeng J, Li L. Identification and Validation of ATF3 Serving as a Potential Biomarker and Correlating With Pharmacotherapy Response and Immune Infiltration Characteristics in Rheumatoid Arthritis. Front Mol Biosci 2021; 8:761841. [PMID: 34966780 PMCID: PMC8710747 DOI: 10.3389/fmolb.2021.761841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Although disease-modifying antirheumatic drugs (DMARDs) have significantly improved the prognosis of patients with rheumatoid arthritis (RA), approximately 40% of RA patients have limited response. Therefore, it was essential to explore new biomarkers to improve the therapeutic effects on RA. This study aimed to develop a new biomarker and validate it by an in vitro study. Methods: The RNA-seq and the clinicopathologic data of RA patients were downloaded from Gene Expression Omnibus (GEO) databases. Differentially expressed genes were screened in the GPL96 and GPL570 databases. Then, weighted gene co-expression network analysis (WGCNA) was used to explore the most correlated gene modules to normal and RA synovium in the GPL96 and GPL570 databases. After that, the differentially expressed genes were intersected with the correlated gene modules to find the potential biomarkers. The CIBERSORT tool was applied to investigate the relationship between activated transcription factor 3 (ATF3) expression and the immune cell infiltration, and Gene Set Enrichment Analysis (GSEA) was used to investigate the related signaling pathways of differentially expressed genes in the high and low ATF3 groups. Furthermore, the relationships between ATF3 expression and clinical parameters were also explored in the GEO database. Finally, the role of ATF3 was verified by in vitro cell experiments. Results: We intersected the differentially expressed genes and the most correlated gene modules in the GPL570 and GPL96 databases and identified that ATF3 is a significant potential biomarker and correlates with some clinical–pharmacological variables. Immune infiltration analysis showed that activated mast cells had a significant infiltration in the high ATF3 group in the two databases. GSEA showed that metabolism-associated pathways belonged to the high ATF3 groups and that inflammation and immunoregulation pathways were enriched in the low ATF3 group. Finally, we validated that ATF3 could promote the proliferation, migration, and invasion of RA fibroblast-like synoviocyte (FLS) and MH7A. Flow cytometry showed that ATF3 expression could decrease the proportion of apoptotic cells and increase the proportion of S and G2/M phase cells. Conclusion: We successfully identified and validated that ATF3 could serve as a novel biomarker in RA, which correlated with pharmacotherapy response and immune cell infiltration.
Collapse
Affiliation(s)
- Huan Hu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Facai Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Li Li
- Medical Intensive Care Unit, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jun Liu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qin Ao
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ping Li
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jiashun Zeng
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Long Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
20
|
Xie G, Dong P, Chen H, Xu L, Liu Y, Ma Y, Zheng Y, Yang J, Zhou Y, Chen L, Shen L. Decreased expression of ATF3, orchestrated by β-catenin/TCF3, miR-17-5p and HOXA11-AS, promoted gastric cancer progression via increased β-catenin and CEMIP. Exp Mol Med 2021; 53:1706-1722. [PMID: 34728784 PMCID: PMC8639750 DOI: 10.1038/s12276-021-00694-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/09/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023] Open
Abstract
ATF3 has been reported to be dysregulated in various cancers and involved in various steps of tumorigenesis. However, the mechanisms underlying the abnormal expression of ATF3 and its biological function in gastric cancer (GC) have not been well investigated. Here, we report ATF3 as one of the key regulators of GC development and progression. Patients with low ATF3 expression had shorter survival and a poorer prognosis. In vitro and in vivo assays investigating ATF3 alterations revealed a complex integrated phenotype that affects cell growth and migration. Strikingly, high-throughput sequencing and microarray analysis of cells with ATF3 silencing or of ATF3-low GC tissues indicated alterations in the Wnt signaling pathway, focal adhesions and adherens junctions. Mechanistically, the expression of β-catenin and cell migration inducing hyaluronidase 1 (CEMIP) was significantly upregulated in GC cells with downregulated ATF3, which was synergistically repressed by the β-catenin/TCF3 signaling axis and noncoding RNA miR-17-5p and HOXA11-AS. In addition, we found that WDR5 expression was promoted by TCF3 and is involved in miR-17-5p and HOXA11-AS activation in GC cells. Taken together, our findings revealed the mechanism of ATF3 downregulation and its biological role in regulating the expression of Wnt signaling-related genes during GC progression, suggesting new informative biomarkers of malignancy and therapeutic directions for GC patients. New treatments for gastric cancer could involve controlling the activity of a regulatory gene and associated signaling pathway. Over-activation of the Wnt signaling pathway, which regulates many cellular functions, occurs in around half of gastric cancers. Further, the activating transcription factor 3 gene (ATF3) is thought to influence tumorigenesis, although its role in gastric cancer is unclear. Guohua Xie and co-workers at Shanghai Jiao Tong University, China, explored the function of ATF3 in human gastric cancer tissues. Patients with low ATF3 expression had poorer prognosis and shorter life expectancy. The team discovered that reduced expression of ATF3 triggered the increased expression of two of its target genes, which then altered Wnt signaling. Reduced ATF3 expression also boosted the invasiveness of gastric cancer cells. Initial results suggest that overexpression of ATF3 could suppress gastric cancer progression.
Collapse
Affiliation(s)
- Guohua Xie
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ping Dong
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Xu
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Liu
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhui Ma
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingxia Zheng
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyao Yang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunlan Zhou
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chen
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Faculty of Medical Laboratory Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Fairlie WD, Lee EF. Targeting the BCL-2-regulated apoptotic pathway for the treatment of solid cancers. Biochem Soc Trans 2021; 49:2397-2410. [PMID: 34581776 PMCID: PMC8589438 DOI: 10.1042/bst20210750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
The deregulation of apoptosis is a key contributor to tumourigenesis as it can lead to the unwanted survival of rogue cells. Drugs known as the BH3-mimetics targeting the pro-survival members of the BCL-2 protein family to induce apoptosis in cancer cells have achieved clinical success for the treatment of haematological malignancies. However, despite our increasing knowledge of the pro-survival factors mediating the unwanted survival of solid tumour cells, and our growing BH3-mimetics armamentarium, the application of BH3-mimetic therapy in solid cancers has not reached its full potential. This is mainly attributed to the need to identify clinically safe, yet effective, combination strategies to target the multiple pro-survival proteins that typically mediate the survival of solid tumours. In this review, we discuss current and exciting new developments in the field that has the potential to unleash the full power of BH3-mimetic therapy to treat currently recalcitrant solid malignancies.
Collapse
Affiliation(s)
- W. Douglas Fairlie
- Cell Death and Survival Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- Cell Death and Survival Laboratory, School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Erinna F. Lee
- Cell Death and Survival Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- Cell Death and Survival Laboratory, School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
22
|
Li W, Han S, Hu P, Chen D, Zeng Z, Hu Y, Xu F, Tang J, Wang F, Zhao Y, Huang M, Zhao G. LncRNA ZNFTR functions as an inhibitor in pancreatic cancer by modulating ATF3/ZNF24/VEGFA pathway. Cell Death Dis 2021; 12:830. [PMID: 34480024 PMCID: PMC8417266 DOI: 10.1038/s41419-021-04119-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/16/2023]
Abstract
The majority of long non-coding RNAs (lncRNAs) have been discovered to be overexpressed in pancreatic cancer (PC) and served as promoters in the tumorigenesis of PC, while the inhibitory functions of lncRNAs in the development of PC have not been fully elucidated yet. LncRNA microarray was adopted to analyze the differential expression of lncRNAs in PC tissues and that in normal peritumoral (NP) tissues. Functional role of lncRNA BM466146.1 on PC was evaluated by gain- and loss-of-function experiments in vivo and in vitro. RNA pull-down, RNA immunoprecipitation, luciferase reporter, and Chromatin-immunoprecipitation assays were performed to assess the mechanism of ZNFTR, respectively. The correlation between the expression of ZNFTR and various clinicopathological characteristics was accessed in PC specimens. This study displayed lncRNA BM466146.1 was downregulated in PC tissues and functioned as a suppressor through regulating the expression of adjacent gene Zinc finger protein 24 (ZNF24), which was assigned as ZNFTR. Mechanistically, ZNFTR interacted with activating transcription factor 3 (ATF3) and sequestered ATF3 away from the ZNF24 promoter, which consequently increased the expression of ZNF24. Further, ZNF24 inhibited the proliferative, metastatic, and pro-angiogenic abilities of PC cells by suppressing transcription of vascular endothelial growth factor A (VEGFA). Therefore, the downregulation of ZNFTR in PC led to the decreased expression of ZNF24, which further resulted in the upregulation of VEGFA to facilitate the development of PC. Meanwhile, ZNFTR was transcriptionally inhibited by the HIF-1α/HDAC1 complex-mediated deacetylation. Clinical results further demonstrated that the low expression of ZNFTR was associated with poor overall survival time. Taken together, our results implicated that ZNFTR was a hypoxia-responsive lncRNA, and functioned as an inhibitor by modulating ATF3/ZNF24/VEGFA pathway in PC.
Collapse
Affiliation(s)
- Wei Li
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shengbo Han
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ping Hu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ding Chen
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhu Zeng
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhang Hu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fengyu Xu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiang Tang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fan Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yong Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengqi Huang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gang Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
23
|
Shi Q, Hu B, Yang C, Deng S, Cheng X, Wu J, Qi N. ATF3 inhibits arsenic-induced malignant transformation of human bronchial epithelial cells by attenuating inflammation. Toxicology 2021; 460:152890. [PMID: 34364923 DOI: 10.1016/j.tox.2021.152890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 01/12/2023]
Abstract
Arsenic is a naturally occurring metalloid strongly associated with the incidence of lung cancer. Understanding the mechanisms of arsenic-induced carcinogenesis favors the development of effective interventions to reduce the incidence and mortality of lung cancer. In this study, we investigated the role of activating transcription factor 3 (ATF3) in arsenic-induced transformation of human bronchial epithelial cells. ATF3 was upregulated during chronic exposure to 0.25 μM arsenic, and loss of ATF3 promoted arsenic-induced transformation. Moreover, arsenic-transformed ATF3 knockout (ATF3 KO-AsT) cells exhibited more aggressive characteristics, including acceleration in proliferation, resistance to chemotherapy and increase in migratory capacity. RNA-seq revealed that pathways involved in inflammation, cell cycle, EMT and oncogenesis were affected due to ATF3 deficiency during chronic arsenic exposure. Further experiments confirmed the overproduction of IL-6, IL-8 and TNFα as well as enhanced phosphorylation of AKT and STAT3 in ATF3 KO-AsT cells. Our results demonstrate that ATF3 upregulated by chronic low-dose arsenic exposure represses cell transformation and acquisition of malignant characteristics through inhibiting the production of proinflammatory cytokines and activation of downstream proteins AKT and STAT3, providing a new strategy for the prevention of carcinogen-induced lung cancer.
Collapse
Affiliation(s)
- Qiwen Shi
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Bei Hu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Chen Yang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Shufen Deng
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xiang Cheng
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Jing Wu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Nan Qi
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
24
|
Zhang P, Zhang M. Epigenetics in the Pathogenesis and Treatment of Cutaneous T-Cell Lymphoma. Front Oncol 2021; 11:663961. [PMID: 34249700 PMCID: PMC8263908 DOI: 10.3389/fonc.2021.663961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Cutaneous T-cell lymphomas (CTCLs) comprise a group of heterogeneous diseases involving malignant T cells. The pathogenesis and etiology of CTCL are still unclear, although a large number of genetic and epidemiological studies on CTCL have been conducted. Most CTCLs have an indolent course, making early diagnosis difficult. Once large-cell transformation occurs, CTCL progresses to more aggressive types, resulting in an overall survival of less than five years. Epigenetic drugs, which have shown certain curative effects, have been selected as third-line drugs in patients with relapsing and refractory CTCL. Many studies have also identified epigenetic biomarkers from tissues and peripheral blood of patients with CTCL and suggested that epigenetic changes play a role in malignant transformation and histone deacetylase inhibitor (HDACi) resistance in CTCL. Single-cell sequencing has been applied in CTCL studies, revealing heterogeneity in CTCL malignant T cells. The mechanisms of HDACi resistance have also been described, further facilitating the discovery of novel HDACi targets. Despite the heterogeneity of CTCL disease and its obscure pathogenesis, more epigenetic abnormalities have been gradually discovered recently, which not only enables us to understand CTCL disease further but also improves our understanding of the specific role of epigenetics in the pathogenesis and treatment. In this review, we discuss the recent discoveries concerning the pathological roles of epigenetics and epigenetic therapy in CTCL.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, China.,Department of Oncology, Academy of Medical Sciences of Zhengzhou University, Zhengzhou City, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| |
Collapse
|
25
|
A novel BH3-mimetic, AZD0466, targeting BCL-XL and BCL-2 is effective in pre-clinical models of malignant pleural mesothelioma. Cell Death Discov 2021; 7:122. [PMID: 34050131 PMCID: PMC8163735 DOI: 10.1038/s41420-021-00505-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/15/2021] [Accepted: 05/01/2021] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer with treatment limited to Cisplatin and Pemetrexed chemotherapy. Recently, we showed that drugs targeting the BCL-2-regulated apoptosis pathway could kill MPM cell lines in vitro, and control tumor growth in vivo. These studies showed BCL-XL was the dominant pro-survival BCL-2 family member correlating with its high-level expression in cells and patient tumor samples. In this study we show another inhibitor, AZD4320 that targets BCL-XL (and BCL-2), can also potently kill MPM tumor cells in vitro (EC50 values in the 200 nM range) and this effect is enhanced by co-inhibition of MCL-1 using AZD5991. Moreover, we show that a novel nanoparticle, AZD0466, where AZD4320 is chemically conjugated to a PEGylated poly-lysine dendrimer, was as effective as standard-of-care chemotherapy, Cisplatin, at inhibiting tumor growth in mouse xenograft studies, and this effect was enhanced when both drugs were combined. Critically, the degree of thrombocytopenia, an on-target toxicity associated with BCL-XL inhibition, was significantly reduced throughout the treatment period compared to other BCL-XL-targeting BH3-mimetics. These pre-clinical findings provide a rationale for the future clinical evaluation for novel BH3-mimetic formulations in MPM, and indeed, other solid tumor types dependent on BCL-XL.
Collapse
|
26
|
ATF3 Promotes Arsenic-Induced Apoptosis and Oppositely Regulates DR5 and Bcl-xL Expression in Human Bronchial Epithelial Cells. Int J Mol Sci 2021; 22:ijms22084223. [PMID: 33921748 PMCID: PMC8072958 DOI: 10.3390/ijms22084223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/29/2022] Open
Abstract
Arsenic is one of the most common environmental pollutants eliciting serious public health issues; however, it is also a well-recognized chemotherapeutic agent for acute promyelocytic leukemia. The association between arsenic exposure and lung diseases has been established, but underlying molecular mechanisms are poorly defined. Here we investigated the toxicology of arsenic in airway epithelium. Arsenic rapidly induced the activating transcription factor ATF3 expression through the JNK and p38 pathways. The ATF3-deficient BEAS-2B cells were relatively resistant to apoptosis upon arsenic exposure, indicating a facilitatory role of ATF3 in arsenic-induced apoptosis. We further showed that ATF3 oppositely regulated the transcription of death receptor (DR5) and Bcl2-like 1 (Bcl-xL) by directly binding to the promoter DR5 and Bcl-xL. Altogether, our findings establish ATF3 as a pro-apoptotic protein in arsenic-induced airway epithelial apoptosis through transcriptionally regulating DR5 and Bcl-xL, highlighting the potential of ATF3 as an early and sensitive biomarker for arsenic-caused lung injury.
Collapse
|
27
|
Drug-Target Interaction Prediction Based on Adversarial Bayesian Personalized Ranking. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6690154. [PMID: 33628808 PMCID: PMC7889346 DOI: 10.1155/2021/6690154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/17/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022]
Abstract
The prediction of drug-target interaction (DTI) is a key step in drug repositioning. In recent years, many studies have tried to use matrix factorization to predict DTI, but they only use known DTIs and ignore the features of drug and target expression profiles, resulting in limited prediction performance. In this study, we propose a new DTI prediction model named AdvB-DTI. Within this model, the features of drug and target expression profiles are associated with Adversarial Bayesian Personalized Ranking through matrix factorization. Firstly, according to the known drug-target relationships, a set of ternary partial order relationships is generated. Next, these partial order relationships are used to train the latent factor matrix of drugs and targets using the Adversarial Bayesian Personalized Ranking method, and the matrix factorization is improved by the features of drug and target expression profiles. Finally, the scores of drug-target pairs are achieved by the inner product of latent factors, and the DTI prediction is performed based on the score ranking. The proposed model effectively takes advantage of the idea of learning to rank to overcome the problem of data sparsity, and perturbation factors are introduced to make the model more robust. Experimental results show that our model could achieve a better DTI prediction performance.
Collapse
|
28
|
Deng D, Shah K. TRAIL of Hope Meeting Resistance in Cancer. Trends Cancer 2020; 6:989-1001. [PMID: 32718904 PMCID: PMC7688478 DOI: 10.1016/j.trecan.2020.06.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 02/08/2023]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis selectively via its interaction with the death receptors TRAILR1/DR4 and TRAILR2/DR5 in a wide range of cancers, while sparing normal cells. Despite its tremendous potential for cancer therapeutics, the translation of TRAIL into the clinic has been confounded by TRAIL-resistant cancer populations. We discuss different molecular mechanisms underlying TRAIL-mediated apoptosis and resistance to TRAIL. We also discuss the successes and failures of recent preclinical and clinical studies of TRAIL-induced apoptosis, and current attempts to overcome TRAIL resistance, and we provide a perspective for improving the prospects of future clinical implementation.
Collapse
Affiliation(s)
- David Deng
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
29
|
Lin VS, Xu ZF, Huang DCS, Thijssen R. BH3 Mimetics for the Treatment of B-Cell Malignancies-Insights and Lessons from the Clinic. Cancers (Basel) 2020; 12:cancers12113353. [PMID: 33198338 PMCID: PMC7696913 DOI: 10.3390/cancers12113353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary B-cell malignancies, including chronic lymphocytic leukemia (CLL), non-Hodgkin lymphoma (NHL), and plasma cell dyscrasias, are significant contributors to cancer morbidity and mortality worldwide. The pathogenesis of many B-cell malignancies involves perturbations in the intrinsic pathway of apoptosis that allow cells to evade cell death. BH3 mimetics represent a class of anti-cancer agents that can restore the ability of cancer cells to undergo apoptosis. Venetoclax, a recently approved BH3 mimetic, has transformed the therapeutic landscape for CLL. Other BH3 mimetics are currently under development. This review summarizes the available data on existing BH3 mimetics and highlights both the rapidly expanding role of BH3 mimetics in the treatment of B-cell malignancies and the clinical challenges of their use. Abstract The discovery of the link between defective apoptotic regulation and cancer cell survival engendered the idea of targeting aberrant components of the apoptotic machinery for cancer therapy. The intrinsic pathway of apoptosis is tightly controlled by interactions amongst members of three distinct subgroups of the B-cell lymphoma 2 (BCL2) family of proteins. The pro-survival BCL2 proteins prevent apoptosis by keeping the pro-apoptotic effector proteins BCL2-associated X protein (BAX) and BCL2 homologous antagonist/killer (BAK) in check, while the BH3-only proteins initiate apoptosis by either neutralizing the pro-survival BCL2 proteins or directly activating the pro-apoptotic effector proteins. This tripartite regulatory mechanism is commonly perturbed in B-cell malignancies facilitating cell death evasion. Over the past two decades, structure-based drug discovery has resulted in the development of a series of small molecules that mimic the function of BH3-only proteins called the BH3 mimetics. The most clinically advanced of these is venetoclax, which is a highly selective inhibitor of BCL2 that has transformed the treatment landscape for chronic lymphocytic leukemia (CLL). Other BH3 mimetics, which selectively target myeloid cell leukemia 1 (MCL1) and B-cell lymphoma extra large (BCLxL), are currently under investigation for use in diverse malignancies. Here, we review the current role of BH3 mimetics in the treatment of CLL and other B-cell malignancies and address open questions in this rapidly evolving field.
Collapse
Affiliation(s)
- Victor S. Lin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, 3052 Parkville, Australia; (V.S.L.); (Z.-F.X.); (D.C.S.H.)
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, 3000 Melbourne, Australia
| | - Zhuo-Fan Xu
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, 3052 Parkville, Australia; (V.S.L.); (Z.-F.X.); (D.C.S.H.)
- School of Medicine, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - David C. S. Huang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, 3052 Parkville, Australia; (V.S.L.); (Z.-F.X.); (D.C.S.H.)
- Department of Medical Biology, University of Melbourne, 3000 Melbourne, Australia
| | - Rachel Thijssen
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, 3052 Parkville, Australia; (V.S.L.); (Z.-F.X.); (D.C.S.H.)
- Department of Medical Biology, University of Melbourne, 3000 Melbourne, Australia
- Correspondence:
| |
Collapse
|
30
|
Arulananda S, O'Brien M, Evangelista M, Harris TJ, Steinohrt NS, Jenkins LJ, Walkiewicz M, O'Donoghue RJJ, Poh AR, Thapa B, Williams DS, Leong T, Mariadason JM, Li X, Cebon J, Lee EF, John T, Fairlie WD. BCL-XL is an actionable target for treatment of malignant pleural mesothelioma. Cell Death Discov 2020; 6:114. [PMID: 33298868 PMCID: PMC7603509 DOI: 10.1038/s41420-020-00348-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/20/2020] [Indexed: 12/29/2022] Open
Abstract
Despite having one of the lowest survival rates of all cancers, there have been no new approved treatments for malignant pleural mesothelioma (MPM) in over a decade. Standard-of-care treatment relies on Cisplatin plus Pemetrexed chemotherapy. Here, we tested a suite of BH3-mimetic drugs targeting BCL-2 pro-survival proteins of the intrinsic apoptotic pathway. We found BCL-XL is the dominant pro-survival protein in a panel of cell lines in vitro, though potent, synergistic cell killing occurred with MCL-1 co-targeting. This correlates with high-level expression of BCL-XL and MCL-1 in cell lines and a large cohort of patient tumour samples. BCL-XL inhibition combined with Cisplatin also enhanced cell killing. In vivo BCL-XL inhibition was as effective as Cisplatin, and the combination enhanced tumour growth control and survival. Genetic ablation of MCL-1 also enhanced the effects of BCL-XL inhibitors, in vivo. Combined, these data provide a compelling rationale for the clinical investigation of BH3-mimetics targeting BCL-XL in MPM.
Collapse
Affiliation(s)
- Surein Arulananda
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia.,Department of Medical Oncology, Austin Health, Heidelberg, VIC, Australia
| | - Megan O'Brien
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Marco Evangelista
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Tiffany J Harris
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Nikita S Steinohrt
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Laura J Jenkins
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Marzena Walkiewicz
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Robert J J O'Donoghue
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Bibhusal Thapa
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - David S Williams
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia.,Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia.,Department of Pathology, Austin Health, Heidelberg, VIC, Australia
| | - Trishe Leong
- Department of Medical Oncology, Austin Health, Heidelberg, VIC, Australia.,Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia.,Department of Pathology, Austin Health, Heidelberg, VIC, Australia
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Xia Li
- Department of Mathematics and Statistics, La Trobe University, Bundoora, VIC, Australia
| | - Jonathan Cebon
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia.,Department of Medical Oncology, Austin Health, Heidelberg, VIC, Australia
| | - Erinna F Lee
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia. .,School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia. .,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia.
| | - Thomas John
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia. .,School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia. .,Department of Medical Oncology, Austin Health, Heidelberg, VIC, Australia. .,Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| | - W D Fairlie
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia. .,School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia. .,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
31
|
Antonelli R, Jiménez C, Riley M, Servidei T, Riccardi R, Soriano A, Roma J, Martínez-Saez E, Martini M, Ruggiero A, Moreno L, Sánchez de Toledo J, Gallego S, Bové J, Hooker JM, Segura MF. CN133, a Novel Brain-Penetrating Histone Deacetylase Inhibitor, Hampers Tumor Growth in Patient-Derived Pediatric Posterior Fossa Ependymoma Models. Cancers (Basel) 2020; 12:1922. [PMID: 32708733 PMCID: PMC7409080 DOI: 10.3390/cancers12071922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 01/13/2023] Open
Abstract
Pediatric ependymoma (EPN) is a highly aggressive tumor of the central nervous system that remains incurable in 40% of cases. In children, the majority of cases develop in the posterior fossa and can be classified into two distinct molecular entities: EPN posterior fossa A (PF-EPN-A) and EPN posterior fossa B (PF-EPN-B). Patients with PF-EPN-A have poor outcome and are in demand of new therapies. In general, PF-EPN-A tumors show a balanced chromosome copy number profile and have no recurrent somatic nucleotide variants. However, these tumors present abundant epigenetic deregulations, thereby suggesting that epigenetic therapies could provide new opportunities for PF-EPN-A patients. In vitro epigenetic drug screening of 11 compounds showed that histone deacetylase inhibitors (HDACi) had the highest anti-proliferative activity in two PF-EPN-A patient-derived cell lines. Further screening of 5 new brain-penetrating HDACi showed that CN133 induced apoptosis in vitro, reduced tumor growth in vivo and significantly extended the survival of mice with orthotopically-implanted EPN tumors by modulation of the unfolded protein response, PI3K/Akt/mTOR signaling, and apoptotic pathways among others. In summary, our results provide solid preclinical evidence for the use of CN133 as a new therapeutic agent against PF-EPN-A tumors.
Collapse
Affiliation(s)
- Roberta Antonelli
- Group of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute (VHIR)-Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (R.A.); (C.J.); (A.S.); (J.R.); (L.M.); (J.S.d.T.); (S.G.)
| | - Carlos Jiménez
- Group of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute (VHIR)-Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (R.A.); (C.J.); (A.S.); (J.R.); (L.M.); (J.S.d.T.); (S.G.)
| | - Misha Riley
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; (M.R.); (J.M.H.)
| | - Tiziana Servidei
- UOC Oncologia Pediatrica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (T.S.); (R.R.); (A.R.)
| | - Riccardo Riccardi
- UOC Oncologia Pediatrica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (T.S.); (R.R.); (A.R.)
| | - Aroa Soriano
- Group of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute (VHIR)-Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (R.A.); (C.J.); (A.S.); (J.R.); (L.M.); (J.S.d.T.); (S.G.)
| | - Josep Roma
- Group of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute (VHIR)-Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (R.A.); (C.J.); (A.S.); (J.R.); (L.M.); (J.S.d.T.); (S.G.)
| | - Elena Martínez-Saez
- Department of Pathology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Maurizio Martini
- Department of Pathology, Fondazione Policlinico A. Gemelli IRCCS, Catholic University of Sacred Heart, L.go A. Gemelli, 8, 00141 Rome, Italy;
| | - Antonio Ruggiero
- UOC Oncologia Pediatrica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (T.S.); (R.R.); (A.R.)
| | - Lucas Moreno
- Group of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute (VHIR)-Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (R.A.); (C.J.); (A.S.); (J.R.); (L.M.); (J.S.d.T.); (S.G.)
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron-Universitat Autònoma de Barcelona (UAB), Passeig Vall d’Hebron 119, 08035 Barcelona, Spain
| | - Josep Sánchez de Toledo
- Group of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute (VHIR)-Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (R.A.); (C.J.); (A.S.); (J.R.); (L.M.); (J.S.d.T.); (S.G.)
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron-Universitat Autònoma de Barcelona (UAB), Passeig Vall d’Hebron 119, 08035 Barcelona, Spain
| | - Soledad Gallego
- Group of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute (VHIR)-Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (R.A.); (C.J.); (A.S.); (J.R.); (L.M.); (J.S.d.T.); (S.G.)
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron-Universitat Autònoma de Barcelona (UAB), Passeig Vall d’Hebron 119, 08035 Barcelona, Spain
| | - Jordi Bové
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain;
| | - Jacob M. Hooker
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; (M.R.); (J.M.H.)
| | - Miguel F. Segura
- Group of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute (VHIR)-Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (R.A.); (C.J.); (A.S.); (J.R.); (L.M.); (J.S.d.T.); (S.G.)
| |
Collapse
|
32
|
Zhang XY, Rajagopalan D, Chung TH, Hooi L, Toh TB, Tian JS, Rashid MBMA, Sahib NRBM, Gu M, Lim JJ, Wang W, Chng WJ, Jha S, Chow EKH. Frequent upregulation of G9a promotes RelB-dependent proliferation and survival in multiple myeloma. Exp Hematol Oncol 2020; 9:8. [PMID: 32477831 PMCID: PMC7243326 DOI: 10.1186/s40164-020-00164-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/16/2020] [Indexed: 12/21/2022] Open
Abstract
Background Multiple myeloma is an incurable hematological malignancy characterized by a heterogeneous genetic and epigenetic landscape. Although a number of genetic aberrations associated with myeloma pathogenesis, progression and prognosis have been well characterized, the role of many epigenetic aberrations in multiple myeloma remain elusive. G9a, a histone methyltransferase, has been found to promote disease progression, proliferation and metastasis via diverse mechanisms in several cancers. A role for G9a in multiple myeloma, however, has not been previously explored. Methods Expression levels of G9a/EHMT2 of multiple myeloma cell lines and control cells Peripheral Blood Mononuclear Cells (PBMCs) were analyzed. Correlation of G9a expression and overall survival of multiple myeloma patients were analyzed using patient sample database. To further study the function of G9a in multiple myeloma, G9a depleted multiple myeloma cells were built by lentiviral transduction, of which proliferation, colony formation assays as well as tumorigenesis were measured. RNA-seq of G9a depleted multiple myeloma with controls were performed to explore the downstream mechanism of G9a regulation in multiple myeloma. Results G9a is upregulated in a range of multiple myeloma cell lines. G9a expression portends poorer survival outcomes in a cohort of multiple myeloma patients. Depletion of G9a inhibited proliferation and tumorigenesis in multiple myeloma. RelB was significantly downregulated by G9a depletion or small molecule inhibition of G9a/GLP inhibitor UNC0642, inducing transcription of proapoptotic genes Bim and BMF. Rescuing RelB eliminated the inhibition in proliferation and tumorigenesis by G9a depletion. Conclusions In this study, we demonstrated that G9a is upregulated in most multiple myeloma cell lines. Furthermore, G9a loss-of-function analysis provided evidence that G9a contributes to multiple myeloma cell survival and proliferation. This study found that G9a interacts with NF-κB pathway as a key regulator of RelB in multiple myeloma and regulates RelB-dependent multiple myeloma survival. G9a therefore is a promising therapeutic target for multiple myeloma.
Collapse
Affiliation(s)
- Xi Yun Zhang
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore.,2Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228 Singapore
| | - Deepa Rajagopalan
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore
| | - Tae-Hoon Chung
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore
| | - Lissa Hooi
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore
| | - Tan Boon Toh
- 3The N.1 Institute for Health (N.1), National University of Singapore, Center for Life Sciences, 28 Medical Drive, Singapore, 117456 Singapore
| | - Johann Shane Tian
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore
| | | | - Noor Rashidha Bte Meera Sahib
- 5Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Singapore
| | - Mengjie Gu
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore.,5Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Singapore
| | - Jhin Jieh Lim
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore
| | - Wilson Wang
- 6Department of Orthopaedic Surgery, National University of Singapore, Kent Ridge, Singapore, 119074 Singapore
| | - Wee Joo Chng
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore.,2Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228 Singapore.,7National University Cancer Institute, National University Health System, Singapore, 119228 Singapore
| | - Sudhakar Jha
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore.,8Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Edward Kai-Hua Chow
- 1Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, (MD6) #13-01G, 14 Medical Drive, Singapore, 117599 Singapore.,5Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Singapore
| |
Collapse
|
33
|
Asakawa Y, Okabe A, Fukuyo M, Li W, Ikeda E, Mano Y, Funata S, Namba H, Fujii T, Kita K, Matsusaka K, Kaneda A. Epstein-Barr virus-positive gastric cancer involves enhancer activation through activating transcription factor 3. Cancer Sci 2020; 111:1818-1828. [PMID: 32119176 PMCID: PMC7226279 DOI: 10.1111/cas.14370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/26/2022] Open
Abstract
Epstein‐Barr virus (EBV) is associated with particular forms of gastric cancer (GC). We previously showed that EBV infection into gastric epithelial cells induced aberrant DNA hypermethylation in promoter regions and silencing of tumor suppressor genes. We here undertook integrated analyses of transcriptome and epigenome alteration during EBV infection in gastric cells, to investigate activation of enhancer regions and related transcription factors (TFs) that could contribute to tumorigenesis. Formaldehyde‐assisted isolation of regulatory elements (FAIRE) sequencing (‐seq) data revealed 19 992 open chromatin regions in putative H3K4me1+ H3K4me3− enhancers in EBV‐infected MKN7 cells (MKN7_EB), with 10 260 regions showing increase of H3K27ac. Motif analysis showed candidate TFs, eg activating transcription factor 3 (ATF3), to possibly bind to these activated enhancers. ATF3 was considerably upregulated in MKN7_EB due to EBV factors including EBV‐determined nuclear antigen 1 (EBNA1), EBV‐encoded RNA 1, and latent membrane protein 2A. Expression of mutant EBNA1 decreased copy number of the EBV genome, resulting in relative downregulation of ATF3 expression. Epstein‐Barr virus was also infected into normal gastric epithelial cells, GES1, confirming upregulation of ATF3. Chromatin immunoprecipitation‐seq analysis on ATF3 binding sites and RNA‐seq analysis on ATF3 knocked‐down MKN7_EB revealed 96 genes targeted by ATF3‐activating enhancers, which are related with cancer hallmarks, eg evading growth suppressors. These 96 ATF3 target genes were significantly upregulated in MKN7_EB compared with MKN7 and significantly downregulated when ATF3 was knocked down in EBV‐positive GC cells SNU719 and NCC24. Knockdown of ATF3 in EBV‐infected MKN7, SNU719, and NCC24 cells all led to significant decrease of cellular growth through an increase of apoptotic cells. These indicate that enhancer activation though ATF3 might contribute to tumorigenesis of EBV‐positive GC.
Collapse
Affiliation(s)
- Yuta Asakawa
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Genome Research and Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Wenzhe Li
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Eriko Ikeda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasunobu Mano
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sayaka Funata
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroe Namba
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahiro Fujii
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.,School of Medicine, Chiba University, Chiba, Japan
| | - Kazuko Kita
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keisuke Matsusaka
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Pathology, Chiba University Hospital, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
34
|
Li L, Sun RM, Jiang GQ. ATF3 Demethylation Promotes the Transcription of ARL4C, Which Acts as a Tumor Suppressor in Human Breast Cancer. Onco Targets Ther 2020; 13:3467-3476. [PMID: 32425548 PMCID: PMC7195577 DOI: 10.2147/ott.s243632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Breast cancer is a common malignancy in females worldwide. In this study, we investigated the role of activating transcription factor 3 (ATF3) and ADP-ribosylation factor like-4 (ARL4) in human breast cancer, and the associated mechanisms. MATERIALS AND METHODS We measured ATF3 and ATL4C expressions in 15 paired breast cancer tissues using qRT-PCR, Western blotting and IHC. Cell growth, migration and invasion were tested in ATF3 or ARL4C overexpression breast cancer cells. TCGA database analysis was done to identify the correlation between ATF3 and ARL4C. We evaluated the binding of ATF3 to ARL4C promoter sequences and the effect of hypermethylation and demethylation of ATF3. A meta-analysis was done to investigate the relationship between the expression of ATF3 and/or ARL4C and the poor prognoses. RESULTS Our results showed that ATF3 and ARL4C were decreased in breast cancer specimens at both mRNA and protein levels. Restoration of ATF3 or ARL4C reduced breast cancer tumorigenesis, evidenced by decreased cell growth, migration and invasion. The expression of ATF3 was positively correlated with ARL4C in breast cancer specimens, and ATF3 was shown to bind to the ARL4C promoter sequences. Furthermore, the expression of ATF3 was negatively regulated by hypermethylation, and demethylation of ATF3 stimulated ATF3 expression, which further promoted ARL4C transcription. Finally, a meta-analysis showed that patients with breast cancer with lower expression levels of ATF3 and/or ARL4C had worse prognoses. CONCLUSION Our results suggest that the ATF3/ARL4C axis may be a prospective biomarker for diagnosis and determination of prognosis, and a potential target for breast cancer treatment.
Collapse
Affiliation(s)
- Liqi Li
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu215004, People’s Republic of China
- Department of Thyroid Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu214062, People’s Republic of China
| | - Rong-Mao Sun
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu215004, People’s Republic of China
| | - Guo-Qin Jiang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu215004, People’s Republic of China
- Correspondence: Guo-Qin Jiang Suzhou215004, People’s Republic of China Tel/Fax +86-512-67784797 Email
| |
Collapse
|
35
|
Mattes K, Gerritsen M, Folkerts H, Geugien M, van den Heuvel FA, Svendsen AF, Yi G, Martens JHA, Vellenga E. CD34 + acute myeloid leukemia cells with low levels of reactive oxygen species show increased expression of stemness genes and can be targeted by the BCL2 inhibitor venetoclax. Haematologica 2019; 105:e399-e403. [PMID: 31727766 DOI: 10.3324/haematol.2019.229997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Katharina Mattes
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen
| | - Mylène Gerritsen
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen
| | - Hendrik Folkerts
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen
| | - Marjan Geugien
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen
| | - Fiona A van den Heuvel
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen
| | - Arthur Flohr Svendsen
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen
| | - Guoqiang Yi
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Edo Vellenga
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen
| |
Collapse
|
36
|
Zhu Y, He D, Bo H, Liu Z, Xiao M, Xiang L, Zhou J, Liu Y, Liu X, Gong L, Ma Y, Zhou Y, Zhou M, Xiong W, Yang F, Xing X, Li R, Li W, Cao K. The MRVI1-AS1/ATF3 signaling loop sensitizes nasopharyngeal cancer cells to paclitaxel by regulating the Hippo–TAZ pathway. Oncogene 2019; 38:6065-6081. [DOI: 10.1038/s41388-019-0858-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/01/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022]
|
37
|
Elmallah MIY, Micheau O. Epigenetic Regulation of TRAIL Signaling: Implication for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11060850. [PMID: 31248188 PMCID: PMC6627638 DOI: 10.3390/cancers11060850] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
One of the main characteristics of carcinogenesis relies on genetic alterations in DNA and epigenetic changes in histone and non-histone proteins. At the chromatin level, gene expression is tightly controlled by DNA methyl transferases, histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyl-binding proteins. In particular, the expression level and function of several tumor suppressor genes, or oncogenes such as c-Myc, p53 or TRAIL, have been found to be regulated by acetylation. For example, HATs are a group of enzymes, which are responsible for the acetylation of histone proteins, resulting in chromatin relaxation and transcriptional activation, whereas HDACs by deacetylating histones lead to chromatin compaction and the subsequent transcriptional repression of tumor suppressor genes. Direct acetylation of suppressor genes or oncogenes can affect their stability or function. Histone deacetylase inhibitors (HDACi) have thus been developed as a promising therapeutic target in oncology. While these inhibitors display anticancer properties in preclinical models, and despite the fact that some of them have been approved by the FDA, HDACi still have limited therapeutic efficacy in clinical terms. Nonetheless, combined with a wide range of structurally and functionally diverse chemical compounds or immune therapies, HDACi have been reported to work in synergy to induce tumor regression. In this review, the role of HDACs in cancer etiology and recent advances in the development of HDACi will be presented and put into perspective as potential drugs synergizing with TRAIL's pro-apoptotic potential.
Collapse
Affiliation(s)
- Mohammed I Y Elmallah
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, F-21079 Dijon, France.
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan 11795 Cairo, Egypt.
| | - Olivier Micheau
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, F-21079 Dijon, France.
| |
Collapse
|
38
|
Imai Y, Hirano M, Kobayashi M, Futami M, Tojo A. HDAC Inhibitors Exert Anti-Myeloma Effects through Multiple Modes of Action. Cancers (Basel) 2019; 11:cancers11040475. [PMID: 30987296 PMCID: PMC6520917 DOI: 10.3390/cancers11040475] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 11/29/2022] Open
Abstract
HDACs are critical regulators of gene expression that function through histone modification. Non-histone proteins and histones are targeted by these proteins and the inhibition of HDACs results in various biological effects. Moreover, the aberrant expression and function of these proteins is thought to be related to the pathogenesis of multiple myeloma (MM) and several inhibitors have been introduced or clinically tested. Panobinostat, a pan-HDAC inhibitor, in combination with a proteasome inhibitor and dexamethasone has improved survival in relapsing/refractory MM patients. We revealed that panobinostat inhibits MM cell growth by degrading the protein PPP3CA, a catalytic subunit of calcineurin. This degradation was suggested to be mediated by suppression of the chaperone function of HSP90 due to HDAC6 inhibition. Cytotoxicity due to the epigenetic regulation of tumor-associated genes by HDAC inhibitors has also been reported. In addition, HDAC6 inhibition enhances tumor immunity and has been suggested to strengthen the cytotoxic effects of therapeutic antibodies against myeloma. Furthermore, therapeutic strategies to enhance the anti-myeloma effects of HDAC inhibitors through the addition of other agents has been intensely evaluated. Thus, the treatment of patients with MM using HDAC inhibitors is promising as these drugs exert their effects through multiple modes of action.
Collapse
Affiliation(s)
- Yoichi Imai
- Department of Hematology/Oncology, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Mitsuhito Hirano
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Masayuki Kobayashi
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Muneyoshi Futami
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Arinobu Tojo
- Department of Hematology/Oncology, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
39
|
Chang YS, Kan HW, Hsieh YL. Activating transcription factor 3 modulates protein kinase C epsilon activation in diabetic peripheral neuropathy. J Pain Res 2019; 12:317-326. [PMID: 30679921 PMCID: PMC6338122 DOI: 10.2147/jpr.s186699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Skin denervation that develops in patients with diabetes mellitus as a neuropathic manifestation is known as diabetic peripheral neuropathy (DPN). Skin denervation is parallel to neuronal injuries that alter intracellular signaling. To date, the correlation between nerve injury and the activation of intracellular responses to neuropathic manifestations has not been elucidated; specifically, whether activating transcription factor 3 (ATF3) is responsible for neuronal injury and a critical molecule that modulates the activation of intracellular protein kinase C epsilon (p-PKCε) and pain development in DPN is a crucial question. Methods To address, ATF3 knockout (atf3−/− group, C57/B6 genetic background) and wild-type mice (atf3+/+ group) received a single dose of streptozotocin (200 mg/kg) to generate a mouse model of DPN. Results Both atf3+/+ and atf3−/− mice exhibited hyperglycemia and the same pathology of skin denervation at posttreatment month 2, but only atf3+/+ mice developed thermal hyperalgesia (P<0.001) and mechanical allodynia (P=0.002). The atf3+/+ group, but not the atf3−/− group, had preferential ATF3 upregulation on p-PKCε(+) neurons with a ratio of 37.7%±6.1% in p-PKCε(+):ATF3(+) neurons (P<0.001). In addition, B-cell lymphoma-extra large (Bcl-XL), an antiapoptotic Bcl2 family protein, exhibited parallel patterns to p-PKCε (ie, Bcl-XL upregulation was reversed in atf3−/− mice). These two molecules were colocalized and increased by approximately two-fold in the atf3+/+ group compared with the atf3−/− group (30.0%±3.4% vs 13.7% ± 6.2%, P=0.003). Furthermore, linear analysis results showed that the densities of p-PKCε and Bcl-XL had a reverse linear relationship with the degrees of thermal hyperalgesia and mechanical allodynia. Conclusion Collectively, this report suggested that ATF3 is a critical upstream molecule that modulates p-PKCε and Bcl-XL expression, which consequently mediated the development of neuropathic manifestation in DPN.
Collapse
Affiliation(s)
- Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan,
| | - Hung-Wei Kan
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan,
| |
Collapse
|
40
|
Meka AK, Jenkins LJ, Dàvalos-Salas M, Pujara N, Wong KY, Kumeria T, Mariadason JM, Popat A. Enhanced Solubility, Permeability and Anticancer Activity of Vorinostat Using Tailored Mesoporous Silica Nanoparticles. Pharmaceutics 2018; 10:E283. [PMID: 30562958 PMCID: PMC6321298 DOI: 10.3390/pharmaceutics10040283] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 11/21/2022] Open
Abstract
Suberoylanilide hydroxamic acid (SAHA) or vorinostat (VOR) is a potent inhibitor of class I histone deacetylases (HDACs) that is approved for the treatment of cutaneous T-cell lymphoma. However, it has the intrinsic limitations of low water solubility and low permeability which reduces its clinical potential especially when given orally. Packaging of drugs within ordered mesoporous silica nanoparticles (MSNs) is an emerging strategy for increasing drug solubility and permeability of BCS (Biopharmaceutical Classification System) class II and IV drugs. In this study, we encapsulated vorinostat within MSNs modified with different functional groups, and assessed its solubility, permeability and anti-cancer efficacy in vitro. Compared to free drug, the solubility of vorinostat was enhanced 2.6-fold upon encapsulation in pristine MSNs (MCM-41-VOR). Solubility was further enhanced when MSNs were modified with silanes having amino (3.9 fold) or phosphonate (4.3 fold) terminal functional groups. Moreover, permeability of vorinostat into Caco-2 human colon cancer cells was significantly enhanced for MSN-based formulations, particularly MSNs modified with amino functional group (MCM-41-NH₂-VOR) where it was enhanced ~4 fold. Compared to free drug, vorinostat encapsulated within amino-modified MSNs robustly induced histone hyperacetylation and expression of established histone deacetylase inhibitor (HDACi)-target genes, and induced extensive apoptosis in HCT116 colon cancer cells. Similar effects were observed on apoptosis induction in HH cutaneous T-cell lymphoma cells. Thus, encapsulation of the BCS class IV molecule vorinostat within MSNs represents an effective strategy for improving its solubility, permeability and anti-tumour activity.
Collapse
Affiliation(s)
- Anand Kumar Meka
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Laura J Jenkins
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Melbourne, VIC 3084, Australia.
| | - Mercedes Dàvalos-Salas
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Melbourne, VIC 3084, Australia.
| | - Naisarg Pujara
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Kuan Yau Wong
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Melbourne, VIC 3084, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
41
|
Agarwal R, Chan YC, Tam CS, Hunter T, Vassiliadis D, Teh CE, Thijssen R, Yeh P, Wong SQ, Ftouni S, Lam EYN, Anderson MA, Pott C, Gilan O, Bell CC, Knezevic K, Blombery P, Rayeroux K, Zordan A, Li J, Huang DCS, Wall M, Seymour JF, Gray DHD, Roberts AW, Dawson MA, Dawson SJ. Dynamic molecular monitoring reveals that SWI–SNF mutations mediate resistance to ibrutinib plus venetoclax in mantle cell lymphoma. Nat Med 2018; 25:119-129. [DOI: 10.1038/s41591-018-0243-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 09/21/2018] [Indexed: 11/09/2022]
|
42
|
Li H, Wang X, Zhang C, Cheng Y, Yu M, Zhao K, Ge W, Cai A, Zhang Y, Han F, Hu Y. HDAC1-induced epigenetic silencing of ASPP2 promotes cell motility, tumour growth and drug resistance in renal cell carcinoma. Cancer Lett 2018; 432:121-131. [DOI: 10.1016/j.canlet.2018.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/17/2022]
|
43
|
The histone deacetylase inhibitor OBP-801 and eribulin synergistically inhibit the growth of triple-negative breast cancer cells with the suppression of survivin, Bcl-xL, and the MAPK pathway. Breast Cancer Res Treat 2018; 171:43-52. [DOI: 10.1007/s10549-018-4815-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/03/2018] [Indexed: 12/14/2022]
|
44
|
Jiang W, Wei Y, Long Y, Owen A, Wang B, Wu X, Luo S, Dang Y, Ma DK. A genetic program mediates cold-warming response and promotes stress-induced phenoptosis in C. elegans. eLife 2018; 7:35037. [PMID: 29664006 PMCID: PMC5903861 DOI: 10.7554/elife.35037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/08/2018] [Indexed: 01/04/2023] Open
Abstract
How multicellular organisms respond to and are impacted by severe hypothermic stress is largely unknown. From C. elegans screens for mutants abnormally responding to cold-warming stimuli, we identify a molecular genetic pathway comprising ISY-1, a conserved uncharacterized protein, and ZIP-10, a bZIP-type transcription factor. ISY-1 gatekeeps the ZIP-10 transcriptional program by regulating the microRNA mir-60. Downstream of ISY-1 and mir-60, zip-10 levels rapidly and specifically increase upon transient cold-warming exposure. Prolonged zip-10 up-regulation induces several protease-encoding genes and promotes stress-induced organismic death, or phenoptosis, of C. elegans. zip-10 deficiency confers enhanced resistance to prolonged cold-warming stress, more prominently in adults than larvae. We conclude that the ZIP-10 genetic program mediates cold-warming response and may have evolved to promote wild-population kin selection under resource-limiting and thermal stress conditions. Life on earth faces constant changes in temperature. Most warm-blooded animals like humans can maintain a fairly stable body temperature, but cold-blooded animals can experience drastic shifts in body temperature. For example, the body temperature of the worm Caenorhabditis elegans can vary greatly depending on its surroundings. This species has evolved an exquisite set of temperature-sensing machineries that can react even to subtle fluctuations, which enables the worm to adjust its behaviour. However, drastic shifts in temperature can cause significant changes within the organism. Transient exposure to heat can activate genes that help cells to repair damaged proteins, while cold shock can influence the production of proteins in the cell. Although C. elegans can tolerate short periods of stress, an extended exposure to extreme temperatures can kill the worm. Until now, it was not known how C. elegans responds to cold shock followed by warmer temperatures, also referred to as cold-warming. To address this question, Jiang et al. created random mutations in C. elegans and isolated the worms that responded to cold-warming differently. The results revealed a molecular pathway that turns on genes in response to cold-warming. Jiang et al. found that two genes and their proteins, ISY-1 and ZIP-10, control which other genes are switched on or off in response to this temperature change. When the worms were exposed to cold-warming over a long period, the pathway remained active and many of the worms died, in particular older animals. These findings suggest that this genetic program might have evolved to help younger animals survive better when stress conditions are high and food resources limited. More work is needed to explore this new pathway and its implication in the heat-cold shock mechanisms. The affected genes are often the same across different organisms and can therefore be engineered to benefit research and medical applications in unexpected ways. For example, patients suffering a heart attack or brain injury are exposed to colder temperature to prevent the risk of tissue injuries once the blood flow goes back to normal. Therefore, the findings of this study may help us to understand how human cells respond to and are protected by low temperature.
Collapse
Affiliation(s)
- Wei Jiang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States.,Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Yuehua Wei
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States.,Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Yong Long
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States.,Department of Physiology, University of California, San Francisco, San Francisco, United States.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Arthur Owen
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Bingying Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States.,Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Xuebing Wu
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Shuo Luo
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dengke K Ma
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States.,Department of Physiology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
45
|
Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of Histone Deacetylases (HDAC). PLoS One 2017; 12:e0186208. [PMID: 29190639 PMCID: PMC5708809 DOI: 10.1371/journal.pone.0186208] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/27/2017] [Indexed: 12/16/2022] Open
Abstract
Recent studies from our group and many others have shown the ability of histone deacetylase (HDAC) inhibitors for retarding the growth of carcinomas of cervix, colon and rectum in vitro. A search for naturally occurring HDAC inhibitors continues due to the adverse effects associated with known HDAC inhibitors like SAHA and TSA. Therefore in the current study, naturally occurring cinnamic acids derivatives were screened for HDAC inhibitory effect using in silico docking method which identified cinnamic acids as potential candidates. Cinnamic acids (CA) are naturally occurring phenolic compounds known to exhibit anticancer properties. However, it is not clearly known whether the anticancer properties of CA derivatives are due to the inhibition of oncogenic HDACs, if so how the efficacy varies among various CA derivatives. Hence, the HDAC inhibitory potential of CA derivatives containing increasing number of hydroxylic groups or methoxy moieties was determined using Discovery Studio software and the most potent CA derivatives tested ex vivo (biochemical assay) as well as in vitro (using cell based assay). Among CA derivatives tested, dihydroxy cinnamic acid (DHCA, commonly known as caffeic acid) exhibited better interactions with HDAC2 (compared to other isoforms) in silico and inhibited its activity ex vivo as well as in vitro. Targeted reduction of HDAC activity using DHCA induced death of cancer cells by (a) generating reactive oxygen species, (b) arresting cells in S and G2/M phases; and (c) induction of caspase-3 mediated apoptosis. In conclusion, we demonstrated that DHCA inhibited cancer cell growth by binding to HDAC followed by the induction of apoptosis.
Collapse
|
46
|
Chüeh AC, Liew MS, Russell PA, Walkiewicz M, Jayachandran A, Starmans MH, Boutros PC, Wright G, Barnett SA, Mariadason JM, John T. Promoter hypomethylation of NY-ESO-1, association with clinicopathological features and PD-L1 expression in non-small cell lung cancer. Oncotarget 2017; 8:74036-74048. [PMID: 29088766 PMCID: PMC5650321 DOI: 10.18632/oncotarget.18198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/01/2017] [Indexed: 12/15/2022] Open
Abstract
Cancer-Testis antigens (CTA) are immunogenic molecules with normal tissue expression restricted to testes but with aberrant expression in up to 30% of non-small cell lung cancers (NSCLCs). Regulation of CTA expression is mediated in part through promoter DNA methylation. Recently, immunotherapy has altered treatment paradigms in NSCLC. Given its immunogenicity and ability to be re-expressed through demethylation, NY-ESO-1 promoter methylation, protein expression and its association with programmed death receptor ligand-1 (PD-L1) expression and clinicopathological features were investigated. Lung cancer cell line demethylation resulting from 5-Aza-2'-deoxycytidine treatment was associated with both NY-ESO-1 and PD-L1 re-expression in vitro but not increased chemosensitivity. NY-ESO-1 hypomethylation was observed in 15/94 (16%) of patient samples and associated with positive protein expression (P < 0.0001). In contrast, PD-L1 expression was observed in 50/91 (55%) but strong expression in only 12/91 (13%) cases. There was no association between NY-ESO-1 and PD-L1 expression, despite resultant re-expression of both by 5-Aza-2'-deoxycytidine. Importantly, NY-ESO-1 hypomethylation was found to be an independent marker of poor prognosis in patients not treated with chemotherapy (HR 3.59, P = 0.003) in multivariate analysis. In patients treated with chemotherapy there were no differences in survival associated with NY-ESO-1 hypomethylation. Collectively, these results provided supporting evidence for the potential use of NY-ESO-1 hypomethylation as a prognostic biomarker in stage 3 NSCLCs. In addition, these data highlight the potential to incorporate demethylating agents to enhance immune activation, in tumours currently devoid of immune infiltrates and expression of immune checkpoint genes.
Collapse
Affiliation(s)
- Anderly C. Chüeh
- 1 Ludwig Institute of Cancer Research, Melbourne-Austin Branch, Victoria, Australia
- 2 Department of Medicine, Austin Health, University of Melbourne, Victoria, Australia
| | - Mun-Sem Liew
- 1 Ludwig Institute of Cancer Research, Melbourne-Austin Branch, Victoria, Australia
- 2 Department of Medicine, Austin Health, University of Melbourne, Victoria, Australia
- 3 Olivia Newton-John Cancer Research Institute, Victoria, Australia
| | - Prudence A. Russell
- 4 Department of Anatomical Pathology, St Vincent’s Hospital, Victoria, Australia
| | - Marzena Walkiewicz
- 1 Ludwig Institute of Cancer Research, Melbourne-Austin Branch, Victoria, Australia
- 3 Olivia Newton-John Cancer Research Institute, Victoria, Australia
| | - Aparna Jayachandran
- 1 Ludwig Institute of Cancer Research, Melbourne-Austin Branch, Victoria, Australia
- 3 Olivia Newton-John Cancer Research Institute, Victoria, Australia
- 5 School of Cancer Medicine, La Trobe University, Victoria, Australia
| | - Maud H.W. Starmans
- 6 Informatics and Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Canada
| | - Paul C. Boutros
- 6 Informatics and Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Canada
- 7 Department of Medical Biophysics, University of Toronto, Toronto, Canada
- 8 Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - Gavin Wright
- 9 Department of Thoracic Oncology, St Vincent’s Hospital, Victoria, Australia
| | - Stephen A Barnett
- 10 Department of Thoracic Surgery, Austin Hospital, Melbourne, Victoria, Australia
| | - John M. Mariadason
- 1 Ludwig Institute of Cancer Research, Melbourne-Austin Branch, Victoria, Australia
- 2 Department of Medicine, Austin Health, University of Melbourne, Victoria, Australia
- 3 Olivia Newton-John Cancer Research Institute, Victoria, Australia
- 5 School of Cancer Medicine, La Trobe University, Victoria, Australia
| | - Thomas John
- 1 Ludwig Institute of Cancer Research, Melbourne-Austin Branch, Victoria, Australia
- 2 Department of Medicine, Austin Health, University of Melbourne, Victoria, Australia
- 3 Olivia Newton-John Cancer Research Institute, Victoria, Australia
| |
Collapse
|
47
|
Chen H, Wang Y, Lin C, Lu C, Han R, Jiao L, Li L, He Y. Vorinostat and metformin sensitize EGFR-TKI resistant NSCLC cells via BIM-dependent apoptosis induction. Oncotarget 2017; 8:93825-93838. [PMID: 29212192 PMCID: PMC5706838 DOI: 10.18632/oncotarget.21225] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022] Open
Abstract
There is a close relationship between low expression of BIM and resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). Vorinostat is a pan-histone deacetylase inhibitor (HDACi) that augments BIM expression in various types of tumor cells, however, this effect is attenuated by the high expression of anti-apoptotic proteins in EGFR-TKI resistant non-small cell lung cancer (NSCLC) cells. Vorinostat in combination with metformin - a compound that can inhibit anti-apoptotic proteins expression, might cooperate to activate apoptotic signaling and overcome EGFR-TKI resistance. This study aimed to investigate the cooperative effect and evaluate possible molecular mechanisms. The results showed that vorinostat combined with gefitinib augmented BIM expression and increased the sensitivity of EGFR-TKI resistant NSCLC cells to gefitinib, adding metformin simultaneously could obviously inhibit the expression of anti-apoptotic proteins, and further increased expression levels of BIM and BAX, and as a result, further improved the sensitivity of gefitinib both on the NSCLC cells with intrinsic and acquired resistance to EGFR-TKI. In addition, autophagy induced by gefitinib and vorinostat could be significantly suppressed by metformin, which might also contribute to enhance apoptosis and improve sensitivity of gefitinib. These results suggested that the combination of vorinostat and metformin might represent a novel strategy to overcome EGFR-TKI resistance associated with BIM-dependent apoptosis in larger heterogeneous populations.
Collapse
Affiliation(s)
- Hengyi Chen
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yubo Wang
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Caiyu Lin
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Rui Han
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lin Jiao
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Li Li
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|