1
|
Zhang Z, Yu X, Wen L, Wang J, Li Z, Zhang Y, Cheng J, Kan R, Zhang W, Shen Y, Yuan S, Zhao L. USP9X integrates TGF-β and hypoxia signalings to promote ovarian cancer chemoresistance via HIF-2α-maintained stemness. Cell Death Dis 2025; 16:312. [PMID: 40246814 PMCID: PMC12006517 DOI: 10.1038/s41419-025-07646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
Widespread intraperitoneal metastases and chemoresistance render ovarian cancer the leading cause of gynecological malignancy-related deaths, wherein TGF-β signaling plays the pivotal role by promoting cancer stem cells (CSCs) activity. The activation mechanism and key protumorigeneic events downstream of TGF-β signaling remain incompletely understood. Here, we identify hypoxic tumor microenvironment as an initiator of TGF-β signaling to promote HIF-2α positive CSC-mediated chemoresistance in high-grade serous ovarian cancer (HGSOC). Mechanistically, deubiquitinase USP9X, as a TGF-β downstream effector, stabilizes HIF-2ɑ in a hydroxylation- and ubiquitylation-dependent manner, thus promoting stemness reprogramming. Hypoxia and TGF-β signals converge on USP9X-HIF-2ɑ axis via multi-level regulations, which in turn facilitates Smad/HIF responses. Clinically, USP9X expression correlates with TGF-β signatures, CSCs characteristics, EMT behaviors, and chemotherapy responsiveness, along with HIF-2ɑ. Antagonizing USP9X efficiently represses tumor formation, metastasis, CSCs occurrence, while increasing chemosensitivity in orthotopic tumors, patient-derived xenograft (PDX), organoid, and chemoresistant cell models, in part via restricting TGF-β and hypoxia activities. This study deciphers the critical role of hypoxic niche in stimulating TGF-β signaling, and a downstream USP9X-HIF-2ɑ proteostatic regulatory axis in priming the HGSOC stemness, thereby provides novel targeting venues to counteract TGF-β signaling in CSCs and meliorate clinical chemoresistance.
Collapse
Affiliation(s)
- Zhenlei Zhang
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Xiujie Yu
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Department of Pathology, Tianjin Central Hospital of Gynaecology Obsterics, Tianjin, China
| | - Liqi Wen
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Jia'nan Wang
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Zhufeng Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu Zhang
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Jiayu Cheng
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Ronglin Kan
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Wanting Zhang
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Yan Shen
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Department of Pathology, Tianjin Central Hospital of Gynaecology Obsterics, Tianjin, China.
| | - Shukai Yuan
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China.
| | - Li Zhao
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
2
|
Poleboyina PK, Pasha A, Heena SK, Poleboyina SM, Pawar SC. Evaluating TGF-β1 gene expression and promoter polymorphism in cervical cancer progression. J Mol Histol 2025; 56:126. [PMID: 40172705 DOI: 10.1007/s10735-025-10402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
This study aims to investigate the TGF-β1 gene, which has significant prognostic value for early detection and diagnosis of cervical cancer, as well as TGF-β1 gene mRNA and protein expression and the association of promoter region (-509 C>T) polymorphisms with cervical cancer (CC) development. Transcriptome analysis, immunohistochemistry, and RT-PCR were conducted to determine the gene expression of TGF-β1. The PCR-SSCP and Sanger sequencing methods were employed to test and validate the TGF-β1 -509C>T promoter polymorphism in cervical squamous cell carcinoma in comparison to control samples. TGF-β1 is a cytokine that plays a role in tumorigenesis as well as physiological and pathological processes. It appeared as one of the most over-expressed genes identified through the clariom D transcriptome microarray, which describes its role in cancer progression. The results showed a significant TGF-β1 upregulation in CC compared to normal cervical tissue was confirmed using immunohistochemistry and real-time PCR. The levels of TGF-β1 were also determined using a receiver operating characteristic (ROC) curve to distinguish diseased from normal individuals. TGF-β1 ROC showed good selectivity in distinguishing malignant CC from non-malignant cervical tissues. The -509 C>T promoter polymorphism in the TGF-β1 gene is found to be significantly more common in the disease group, and in-silico analysis (using the AliBaba2.0 gene regulation tool) confirms its correlation to the loss of myogenin transcription factor binding site, may resulting in TGF-β1 overexpression.
Collapse
Affiliation(s)
- Pavan Kumar Poleboyina
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - Akbar Pasha
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - S K Heena
- Department of Pathology, Osmania Medical College, Hyderabad, Telangana, 500095, India
| | - Sneha Malleswari Poleboyina
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - Smita C Pawar
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
3
|
Kim KP, Lemmon CA. Fibrotic extracellular matrix preferentially induces a partial Epithelial-Mesenchymal Transition phenotype in a 3-D agent based model of fibrosis. Math Biosci 2025; 381:109375. [PMID: 39832653 PMCID: PMC11925401 DOI: 10.1016/j.mbs.2025.109375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
One of the main drivers of fibrotic diseases is epithelial-mesenchymal transition (EMT): a transdifferentiation process in which cells undergo a phenotypic change from an epithelial state to a pro-migratory state. The cytokine transforming growth factor-β1 (TGF-β1) has been previously shown to regulate EMT. TGF-β1 binds to fibronectin (FN) fibrils, which are the primary extracellular matrix (ECM) component in renal fibrosis. We have previously demonstrated experimentally that inhibition of FN fibrillogenesis and/or TGF-β1 tethering to FN inhibits EMT. However, these studies have only been conducted on 2-D cell monolayers, and the role of TGF-β1-FN tethering in 3-D cellular environments is not clear. As such, we sought to develop a 3-D computational model of epithelial spheroids that captured both EMT signaling dynamics and TGF-β1-FN tethering dynamics. We have incorporated the bi-stable EMT switch model developed by Tian et al. (2013) into a 3-D multicellular model to capture both temporal and spatial TGF-β1 signaling dynamics. We showed that the addition of increasing concentrations of exogeneous TGF-β1 led to faster EMT progression, indicated by increased expression of mesenchymal markers, decreased cell proliferation and increased migration. We then incorporated TGF-β1-FN fibril tethering by locally reducing the TGF-β1 diffusion coefficient as a function of EMT to simulate the reduced movement of TGF-β1 when tethered to FN fibrils during fibrosis. We showed that incorporation of TGF-β1 tethering to FN fibrils promoted a partial EMT state, independent of exogenous TGF-β1 concentration, indicating a mechanism by which fibrotic ECM can promote a partial EMT state.
Collapse
Affiliation(s)
- Kristin P Kim
- Department of Biomedical Engineering, Virginia Commonwealth University, 410 West Main St., Richmond, VA, 23284, USA.
| | - Christopher A Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, 410 West Main St., Richmond, VA, 23284, USA.
| |
Collapse
|
4
|
Ma Y, Zhang X, Liu C, Zhao Y. Extracellular vesicles in cancers: mechanisms, biomarkers, and therapeutic strategies. MedComm (Beijing) 2024; 5:e70009. [PMID: 39611045 PMCID: PMC11604295 DOI: 10.1002/mco2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 11/30/2024] Open
Abstract
Extracellular vesicles (EVs) composed of various biologically active constituents, such as proteins, nucleic acids, lipids, and metabolites, have emerged as a noteworthy mode of intercellular communication. There are several categories of EVs, including exosomes, microvesicles, and apoptotic bodies, which largely differ in their mechanisms of formation and secretion. The amount of evidence indicated that changes in the EV quantity and composition play a role in multiple aspects of cancer development, such as the transfer of oncogenic signals, angiogenesis, metabolism remodeling, and immunosuppressive effects. As EV isolation technology and characteristics recognition improve, EVs are becoming more commonly used in the early diagnosis and evaluation of treatment effectiveness for cancers. Actually, EVs have sparked clinical interest in their potential use as delivery vehicles or vaccines for innovative antitumor techniques. This review will focus on the function of biological molecules contained in EVs linked to cancer progression and their participation in the intricate interrelationship within the tumor microenvironment. Furthermore, the potential efficacy of an EV-based liquid biopsy and delivery cargo for treatment will be explored. Finally, we explicitly delineate the limitations of EV-based anticancer therapies and provide an overview of the clinical trials aimed at improving EV development.
Collapse
Affiliation(s)
- Yuxi Ma
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaohui Zhang
- Cancer CenterHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesTaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - Cuiwei Liu
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanxia Zhao
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
5
|
Xu Y, Ma X, Ni W, Zheng L, Lin Z, Lai Y, Yang N, Dai Z, Yao T, Chen Z, Shen L, Wang H, Wang L, Wu Y, Gao W. PKM2-Driven Lactate Overproduction Triggers Endothelial-To-Mesenchymal Transition in Ischemic Flap via Mediating TWIST1 Lactylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406184. [PMID: 39474980 DOI: 10.1002/advs.202406184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/21/2024] [Indexed: 12/19/2024]
Abstract
The accumulation of lactate is a rising risk factor for patients after flap transplantation. Endothelial-to-mesenchymal transition (EndoMT) plays a critical role in skin fibrosis. Nevertheless, whether lactate overproduction directly contributes to flap necrosis and its mechanism remain unknown. The current study reveals that skin flap mice exhibit enhanced PKM2 and fibrotic response. Endothelial-specific deletion of PKM2 attenuates flap necrosis and ameliorates flap fibrosis in mice. Administration of lactate or overexpressing PKM2 promotes dysfunction of endothelial cells and stimulates mesenchymal-like phenotype following hypoxia. Mechanistically, glycolytic-lactate induces a correlation between Twist1 and p300/CBP, leading to lactylation of Twist1 lysine 150 (K150la). The increase in K150la promotes Twist1 phosphorylation and nuclear translocation and further regulates the transcription of TGFB1, hence inducing fibrosis phenotype. Genetically deletion of endothelial-specific PKM2 in mice diminishes lactate accumulation and Twist1 lactylation, then attenuates EndoMT-associated fibrosis following flap ischemia. The serum lactate levels of flap transplantation patients are elevated and exhibit predictive value for prognosis. This findings suggested a novel role of PKM2-derived lactate in mediating Twist1 lactylation and exacerbates flap fibrosis and ischemia. Inhibition of glycolytic-lactate and Twist1 lactylation reduces flap necrosis and fibrotic response might become a potential therapeutic strategy for flap ischemia.
Collapse
Affiliation(s)
- Yining Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xianhui Ma
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Weiyu Ni
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Lin Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhongnan Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yingying Lai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhanqiu Dai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Teng Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Zeyang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Lifeng Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Haitao Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Long Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yizheng Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
6
|
Suzuki K, Yokoi A, Matsuzaki J, Yoshida K, Yamamoto Y, Kato T, Ishikawa M, Ochiya T, Kajiyama H. Circulating serum miRNAs predict response to platinum chemotherapy in high-grade serous ovarian cancer. Cancer Med 2024; 13:e70251. [PMID: 39587714 PMCID: PMC11588858 DOI: 10.1002/cam4.70251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Platinum chemotherapy is the cornerstone of treatment for high-grade serous ovarian cancer (HGSOC); however, validated biomarkers that can accurately predict platinum response are lacking. Based on their roles in the underlying pathophysiology, circulating microRNAs are potential, noninvasive biomarkers in cancer. In the present study, we aimed to evaluate the circulating miRNA profiles of patients with HGSOC and to assess their potential utility as biomarkers to predict platinum response. METHODS Pretreatment serum samples collected from patients who received platinum chemotherapy for Stage III-IV HGSOC between 2008 and 2016 were analyzed using miRNA microarray. LASSO logistic regression analysis was used to construct predictive models for treatment-free interval of platinum (TFIp). RESULTS The median follow-up was 54.6 (range, 3.5-144.1) months. The comprehensive analysis of 2588 miRNAs was performed in serum samples of 153 eligible patients, and predictive models were constructed using a combination of circulating miRNAs with an area under the receiver operating characteristic curve of 0.944 for TFIp >1 month, 0.637 for TFIp ≥6 months, 0.705 for TFIp ≥12 months, and 0.938 for TFIp ≥36 months. Each predictive model provided a significant TFIp classification (p = 0.001 in TFIp >1 month, p = 0.013 in TFIp ≥6 months, p < 0.001 in TFIp ≥12 months, and p < 0.001 in TFIp ≥36 months). CONCLUSION Circulating miRNA profiles has potential utility in predicting platinum response in patients with HGSOC and can aid clinicians in choosing appropriate treatment strategies.
Collapse
Affiliation(s)
- Kazuhiro Suzuki
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Akira Yokoi
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
- Institute for Advanced ResearchNagoya UniversityNagoyaJapan
| | - Juntaro Matsuzaki
- Division of PharmacotherapeuticsKeio University Faculty of PharmacyTokyoJapan
| | - Kosuke Yoshida
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
- Institute for Advanced ResearchNagoya UniversityNagoyaJapan
| | - Yusuke Yamamoto
- Laboratory of Integrative OncologyNational Cancer Center Research InstituteTokyoJapan
| | - Tomoyasu Kato
- Department of GynecologyNational Cancer Center HospitalTokyoJapan
| | - Mitsuya Ishikawa
- Department of GynecologyNational Cancer Center HospitalTokyoJapan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Hiroaki Kajiyama
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
7
|
Plesselova S, Calar K, Axemaker H, Sahly E, Bhagia A, Faragher JL, Fink DM, de la Puente P. Multicompartmentalized Microvascularized Tumor-on-a-Chip to Study Tumor-Stroma Interactions and Drug Resistance in Ovarian Cancer. Cell Mol Bioeng 2024; 17:345-367. [PMID: 39513004 PMCID: PMC11538101 DOI: 10.1007/s12195-024-00817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/26/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction The majority of ovarian cancer (OC) patients receiving standard of care chemotherapy develop chemoresistance within 5 years. The tumor microenvironment (TME) is a dynamic and influential player in disease progression and therapeutic response. However, there is a lack of models that allow us to elucidate the compartmentalized nature of TME in a controllable, yet physiologically relevant manner and its critical role in modulating drug resistance. Methods We developed a 3D microvascularized multiniche tumor-on-a-chip formed by five chambers (central cancer chamber, flanked by two lateral stromal chambers and two external circulation chambers) to recapitulate OC-TME compartmentalization and study its influence on drug resistance. Stromal chambers included endothelial cells alone or cocultured with normal fibroblasts or cancer-associated fibroblasts (CAF). Results The tumor-on-a-chip recapitulated spatial TME compartmentalization including vessel-like structure, stromal-mediated extracellular matrix (ECM) remodeling, generation of oxygen gradients, and delayed drug diffusion/penetration from the circulation chamber towards the cancer chamber. The cancer chamber mimicked metastasis-like migration and increased drug resistance to carboplatin/paclitaxel treatment in the presence of CAF when compared to normal fibroblasts. CAF-mediated drug resistance was rescued by ECM targeted therapy. Critically, these results demonstrate that cellular crosstalk recreation and spatial organization through compartmentalization are essential to determining the effect of the compartmentalized OC-TME on drug resistance. Conclusions Our results present a functionally characterized microvascularized multiniche tumor-on-a-chip able to recapitulate TME compartmentalization influencing drug resistance. This technology holds the potential to guide the design of more effective and targeted therapeutic strategies to overcome chemoresistance in OC. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00817-y.
Collapse
Affiliation(s)
- Simona Plesselova
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
| | - Kristin Calar
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
| | - Hailey Axemaker
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
| | - Emma Sahly
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
- St. Olaf College, Northfield, MN USA
| | - Amrita Bhagia
- MD PhD Program, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD USA
| | - Jessica L. Faragher
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
- MD PhD Program, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD USA
| | - Darci M. Fink
- Department of Chemistry, Biochemistry & Physics, South Dakota State University, Brookings, SD USA
| | - Pilar de la Puente
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
- Department of Obstetrics and Gynecology, University of South Dakota Sanford School of Medicine, Sioux Falls, SD USA
- Department of Surgery, University of South Dakota Sanford School of Medicine, Sioux Falls, SD USA
- Flow Cytometry Core, Sanford Research, Sioux Falls, SD USA
| |
Collapse
|
8
|
Plesselova S, Calar K, Axemaker H, Sahly E, de la Puente P. Multicompartmentalized microvascularized tumor-on-a-chip to study tumor-stroma interactions and drug resistance in ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596456. [PMID: 38853974 PMCID: PMC11160770 DOI: 10.1101/2024.05.29.596456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Introduction The majority of ovarian cancer (OC) patients receiving standard of care chemotherapy develop chemoresistance within 5 years. The tumor microenvironment (TME) is a dynamic and influential player in disease progression and therapeutic response. However, there is a lack of models that allow us to elucidate the compartmentalized nature of TME in a controllable, yet physiologically relevant manner and its critical role in modulating drug resistance. Methods We developed a 3D microvascularized multiniche tumor-on-a-chip formed by five chambers (central cancer chamber, flanked by two lateral stromal chambers and two external circulation chambers) to recapitulate OC-TME compartmentalization and study its influence on drug resistance. Stromal chambers included endothelial cells alone or cocultured with normal fibroblasts or cancer-associated fibroblasts (CAF). Results The tumor-on-a-chip recapitulated spatial TME compartmentalization including vessel-like structure, stromal-mediated extracellular matrix (ECM) remodeling, generation of oxygen gradients, and delayed drug diffusion/penetration from the circulation chamber towards the cancer chamber. The cancer chamber mimicked metastasis-like migration and increased drug resistance to carboplatin/paclitaxel treatment in the presence of CAF when compared to normal fibroblasts. CAF-mediated drug resistance was rescued by ECM targeted therapy. Critically, these results demonstrate that cellular crosstalk recreation and spatial organization through compartmentalization are essential to determining the effect of the compartmentalized OC-TME on drug resistance. Conclusions Our results present a functionally characterized microvascularized multiniche tumor-on-a-chip able to recapitulate TME compartmentalization influencing drug resistance. This technology holds the potential to guide the design of more effective and targeted therapeutic strategies to overcome chemoresistance in OC.
Collapse
|
9
|
Dong M, Zhang X, Peng P, Chen Z, Zhang Y, Wan L, Xiang W, Liu G, Guo Y, Xiao Q, Wang B, Guo D, Zhu M, Yu X, Wan F. Hypoxia-induced TREM1 promotes mesenchymal-like states of glioma stem cells via alternatively activating tumor-associated macrophages. Cancer Lett 2024; 590:216801. [PMID: 38479552 DOI: 10.1016/j.canlet.2024.216801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/19/2024]
Abstract
The mesenchymal subtype of glioblastoma (GBM) cells characterized by aggressive invasion and therapeutic resistance is thought to be dependent on cell-intrinsic alteration and extrinsic cellular crosstalk. Tumor-associated macrophages (TAMs) are pivotal in tumor progression, chemo-resistance, angiogenesis, and stemness maintenance. However, the impact of TAMs on the shifts in glioma stem cells (GSCs) states remains largely uncovered. Herein, we showed that the triggering receptor expressed on myeloid cells-1 (TREM1) preferentially expressed by M2-like TAMs and induced GSCs into mesenchymal-like states by modulating the secretion of TGFβ2, which activated the TGFβR/SMAD2/3 signaling in GSCs. Furthermore, we demonstrated that TREM1 was transcriptionally regulated by HIF1a under the hypoxic environment and thus promoted an immunosuppressive type of TAMs via activating the TLR2/AKT/mTOR/c-MYC axis. Collectively, this study reveals that cellular communication between TAMs and GSCs through the TREM1-mediated TGFβ2/TGFβR axis is involved in the mesenchymal-like transitions of GSCs. Our study provides valuable insights into the regulatory mechanisms between the tumor immune microenvironment and the malignant characteristics of GBM, which can lead to potential novel strategies targeting TAMs for tumor control.
Collapse
Affiliation(s)
- Minhai Dong
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaolin Zhang
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Peng Peng
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital to Hubei University of Arts and Science, Xiangyang, 441021, China
| | - Zirong Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Zhang
- Department of Histology and Embryology, College of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lijun Wan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wang Xiang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guohao Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qungen Xiao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Zhu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xingjiang Yu
- Department of Histology and Embryology, College of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Feng Wan
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Gao H, Xi Z, Dai J, Xue J, Guan X, Zhao L, Chen Z, Xing F. Drug resistance mechanisms and treatment strategies mediated by Ubiquitin-Specific Proteases (USPs) in cancers: new directions and therapeutic options. Mol Cancer 2024; 23:88. [PMID: 38702734 PMCID: PMC11067278 DOI: 10.1186/s12943-024-02005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Drug resistance represents a significant obstacle in cancer treatment, underscoring the need for the discovery of novel therapeutic targets. Ubiquitin-specific proteases (USPs), a subclass of deubiquitinating enzymes, play a pivotal role in protein deubiquitination. As scientific research advances, USPs have been recognized as key regulators of drug resistance across a spectrum of treatment modalities, including chemotherapy, targeted therapy, immunotherapy, and radiotherapy. This comprehensive review examines the complex relationship between USPs and drug resistance mechanisms, focusing on specific treatment strategies and highlighting the influence of USPs on DNA damage repair, apoptosis, characteristics of cancer stem cells, immune evasion, and other crucial biological functions. Additionally, the review highlights the potential clinical significance of USP inhibitors as a means to counter drug resistance in cancer treatment. By inhibiting particular USP, cancer cells can become more susceptible to a variety of anti-cancer drugs. The integration of USP inhibitors with current anti-cancer therapies offers a promising strategy to circumvent drug resistance. Therefore, this review emphasizes the importance of USPs as viable therapeutic targets and offers insight into fruitful directions for future research and drug development. Targeting USPs presents an effective method to combat drug resistance across various cancer types, leading to enhanced treatment strategies and better patient outcomes.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jingwei Dai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Liang Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
11
|
Danielpour D. Advances and Challenges in Targeting TGF-β Isoforms for Therapeutic Intervention of Cancer: A Mechanism-Based Perspective. Pharmaceuticals (Basel) 2024; 17:533. [PMID: 38675493 PMCID: PMC11054419 DOI: 10.3390/ph17040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The TGF-β family is a group of 25 kDa secretory cytokines, in mammals consisting of three dimeric isoforms (TGF-βs 1, 2, and 3), each encoded on a separate gene with unique regulatory elements. Each isoform plays unique, diverse, and pivotal roles in cell growth, survival, immune response, and differentiation. However, many researchers in the TGF-β field often mistakenly assume a uniform functionality among all three isoforms. Although TGF-βs are essential for normal development and many cellular and physiological processes, their dysregulated expression contributes significantly to various diseases. Notably, they drive conditions like fibrosis and tumor metastasis/progression. To counter these pathologies, extensive efforts have been directed towards targeting TGF-βs, resulting in the development of a range of TGF-β inhibitors. Despite some clinical success, these agents have yet to reach their full potential in the treatment of cancers. A significant challenge rests in effectively targeting TGF-βs' pathological functions while preserving their physiological roles. Many existing approaches collectively target all three isoforms, failing to target just the specific deregulated ones. Additionally, most strategies tackle the entire TGF-β signaling pathway instead of focusing on disease-specific components or preferentially targeting tumors. This review gives a unique historical overview of the TGF-β field often missed in other reviews and provides a current landscape of TGF-β research, emphasizing isoform-specific functions and disease implications. The review then delves into ongoing therapeutic strategies in cancer, stressing the need for more tools that target specific isoforms and disease-related pathway components, advocating mechanism-based and refined approaches to enhance the effectiveness of TGF-β-targeted cancer therapies.
Collapse
Affiliation(s)
- David Danielpour
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; ; Tel.: +1-216-368-5670; Fax: +1-216-368-8919
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Institute of Urology, University Hospitals, Cleveland, OH 44106, USA
| |
Collapse
|
12
|
Ding Y, Zhou Q, Ding B, Zhang Y, Shen Y. Transcriptome analysis reveals the clinical significance of CXCL13 in Pan-Gyn tumors. J Cancer Res Clin Oncol 2024; 150:116. [PMID: 38459390 PMCID: PMC10923744 DOI: 10.1007/s00432-024-05619-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/09/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Gynecologic and breast tumors (Pan-Gyn) exhibit similar characteristics, and the role of CXCL13 in anti-tumor immunity and it's potential as a biomarker for immune checkpoint blockade (ICB) therapy have been gradually revealed. However, the precise role of CXCL13 in Pan-Gyn remains unclear, lacking a systematic analysis. METHODS We analyzed 2497 Pan-Gyn samples from the TCGA database, categorizing them into high and low CXCL13 expression groups. Validation was conducted using tumor expression datasets sourced from the GEO database. Correlation between CXCL13 and tumor immune microenvironment (TIME) was evaluated using multiple algorithms. Finally, we established nomograms for 3-year and 5-year mortality. RESULTS High expression of CXCL13 in Pan-Gyn correlates with a favorable clinical prognosis, increased immune cell infiltration, and reduced intra-tumor heterogeneity. Model was assessed using the C-index [BRCA: 0.763 (0.732-0.794), UCEC: 0.821 (0.793-0.849), CESC: 0.736 (0.684-0.788), and OV: 0.728 (0.707-0.749)], showing decent prediction of discrimination and calibration. CONCLUSION Overall, this study provides comprehensive insights into the commonalities and differences of CXCL13 in Pan-Gyn, potentially opening new avenues for personalized treatment.
Collapse
Affiliation(s)
- Yue Ding
- Zhongda Hospital Southeast University, Nanjing, China
| | - Quan Zhou
- Zhongda Hospital Southeast University, Nanjing, China
| | - Bo Ding
- Zhongda Hospital Southeast University, Nanjing, China
| | - Yang Zhang
- Department of Obstetrics and Gynecology, First People's Hospital of Lianyungang, No. 6 East Zhenhua Road, Haizhou, Lianyungang, China
| | - Yang Shen
- Zhongda Hospital Southeast University, Nanjing, China.
| |
Collapse
|
13
|
Li Y, Jin G, Liu N, Guo H, Xu F. The post-chemotherapy changes of tumor physical microenvironment: Targeting extracellular matrix to address chemoresistance. Cancer Lett 2024; 582:216583. [PMID: 38072368 DOI: 10.1016/j.canlet.2023.216583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
The tumor physical microenvironment (TPME) contributes to cancer chemoresistance in both mechanical and mechanobiological approaches. Along with chemotherapy, the tumor microenvironment undergoes dramatic changes, most of which can regulate TPME through extracellular matrix (ECM) remodeling and related signaling pathways. However, there is still no discussion about the post-chemotherapy TPME changes mediated by ECM remodeling, and consequent impact on chemoresistance. Herein, we summarize the TPME alterations induced by chemotherapy and corresponding influence on chemotherapy response of cancer cells in context of ECM. The response of cancer cell to chemotherapy, imposed by post-chemotherapy ECM, are discussed in both mechanical (ECM physical features) and mechanobiological (ECM-responsive signaling pathways) manner. In the end, we present ECM remodeling and related signaling pathways as two promising clinic strategies to relieve or overcome chemoresistance induced by TPME change, and summarize the corresponding therapeutic agents currently being tested in clinical trials.
Collapse
Affiliation(s)
- Yuan Li
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Na Liu
- Department of Gastroenterology, Hainan General Hospital (Hainan Affifiliated Hospital of Hainan Medical University), Haikou, Hainan, 570311, PR China.
| | - Hui Guo
- Department of Medical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China.
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
14
|
Hánělová K, Raudenská M, Masařík M, Balvan J. Protein cargo in extracellular vesicles as the key mediator in the progression of cancer. Cell Commun Signal 2024; 22:25. [PMID: 38200509 PMCID: PMC10777590 DOI: 10.1186/s12964-023-01408-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Exosomes are small vesicles of endosomal origin that are released by almost all cell types, even those that are pathologically altered. Exosomes widely participate in cell-to-cell communication via transferring cargo, including nucleic acids, proteins, and other metabolites, into recipient cells. Tumour-derived exosomes (TDEs) participate in many important molecular pathways and affect various hallmarks of cancer, including fibroblasts activation, modification of the tumour microenvironment (TME), modulation of immune responses, angiogenesis promotion, setting the pre-metastatic niche, enhancing metastatic potential, and affecting therapy sensitivity and resistance. The unique exosome biogenesis, composition, nontoxicity, and ability to target specific tumour cells bring up their use as promising drug carriers and cancer biomarkers. In this review, we focus on the role of exosomes, with an emphasis on their protein cargo, in the key mechanisms promoting cancer progression. We also briefly summarise the mechanism of exosome biogenesis, its structure, protein composition, and potential as a signalling hub in both normal and pathological conditions. Video Abstract.
Collapse
Affiliation(s)
- Klára Hánělová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Martina Raudenská
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Michal Masařík
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, Vestec, CZ-252 50, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
15
|
Li N, Zhang T, Wang R, Sun Y, Chu L, Lu X, Sun K. Homotypic targeted nanoplatform enable efficient chemoimmunotherapy and reduced DOX cardiotoxicity in chemoresistant cancer via TGF-β1 blockade. J Control Release 2023; 361:147-160. [PMID: 37536544 DOI: 10.1016/j.jconrel.2023.07.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Doxorubicin (DOX) with broad-spectrum antitumor activity has been reported to induce effective immunogenic cell death (ICD) effect. However, the serious cardiotoxicity and chemoresistance severely restrict the widely clinical application of DOX. Herein, for the first time, a bio-inspired nanoplatform via co-assembly of DOX-conjugated polyethyleneimine (PEI-DOX), cancer cell membrane (CCM) and TGF-β1 siRNA (siTGF-β1) was rationally designed, which can not only overcome the drawbacks of DOX but also display high capability to modulate the tumor microenvironment and prevent the tumor progressing and metastasis. Experimental studies confirmed the pH-sensitivity of PEI-DOX and the homotypic-targeting and immuno-escapable ability of CCM, resulting an enhanced accumulation of DOX and siTGF-β1 in tumor sites. In addition to this, the bio-inspired nanoplatform could also improve the stability and facilitate the endosomal escape of siTGF-β1. All these effects ensured the silence efficiency of siTGF-β1 in tumor sites, which could further modulate the chemoresistant and immunosuppressive tumor microenvironment, resulting a synergistic effect with DOX to prevent tumor progressing and metastasis. Additionally, even trapped in cardiac tissues, siTGF-β1 could inhibit the production of TGF-β1 and ROS induced by DOX, resulting a reduced myocardial damage. Therefore, our newly designed bio-inspired nano-delivery system may be a promising nanoplatform with efficient chemoimmunotherapy to ameliorate DOX-induced cardiotoxicity and combat tumor growth and metastasis in chemoresistant cancer.
Collapse
Affiliation(s)
- Nuannuan Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Tianyu Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Ru Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Yiying Sun
- Yantai Saipute Analyzing Service Co. Ltd, Yantai, Shandong Province, China
| | - Liuxiang Chu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Xiaoyan Lu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Kaoxiang Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China.
| |
Collapse
|
16
|
Barcellos-Hoff MH, Gulley JL. Molecular Pathways and Mechanisms of TGFβ in Cancer Therapy. Clin Cancer Res 2023; 29:2025-2033. [PMID: 36598437 PMCID: PMC10238558 DOI: 10.1158/1078-0432.ccr-21-3750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/04/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023]
Abstract
Even though the number of agents that inhibit TGFβ being tested in patients with cancer has grown substantially, clinical benefit from TGFβ inhibition has not yet been achieved. The myriad mechanisms in which TGFβ is protumorigenic may be a key obstacle to its effective deployment; cancer cells frequently employ TGFβ-regulated programs that engender plasticity, enable a permissive tumor microenvironment, and profoundly suppress immune recognition, which is the target of most current early-phase trials of TGFβ inhibitors. Here we discuss the implications of a less well-recognized aspect of TGFβ biology regulating DNA repair that mediates responses to radiation and chemotherapy. In cancers that are TGFβ signaling competent, TGFβ promotes effective DNA repair and suppresses error-prone repair, thus conferring resistance to genotoxic therapies and limiting tumor control. Cancers in which TGFβ signaling is intrinsically compromised are more responsive to standard genotoxic therapy. Recognition that TGFβ is a key moderator of both DNA repair and immunosuppression might be used to synergize combinations of genotoxic therapy and immunotherapy to benefit patients with cancer.
Collapse
Affiliation(s)
- Mary Helen Barcellos-Hoff
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - James L. Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Nepali PR, Kyprianou N. Anoikis in phenotypic reprogramming of the prostate tumor microenvironment. Front Endocrinol (Lausanne) 2023; 14:1160267. [PMID: 37091854 PMCID: PMC10113530 DOI: 10.3389/fendo.2023.1160267] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/09/2023] [Indexed: 04/25/2023] Open
Abstract
Prostate cancer is one of the most common malignancies in males wherein 1 in 8 men are diagnosed with this disease in their lifetime. The urgency to find novel therapeutic interventions is associated with high treatment resistance and mortality rates associated with castration-resistant prostate cancer. Anoikis is an apoptotic phenomenon for normal epithelial or endothelial cells that have lost their attachment to the extracellular matrix (ECM). Tumor cells that lose their connection to the ECM can die via apoptosis or survive via anoikis resistance and thus escaping to distant organs for metastatic progression. This review discusses the recent advances made in our understanding of the signaling effectors of anoikis in prostate cancer and the approaches to translate these mechanistic insights into therapeutic benefits for reducing lethal disease outcomes (by overcoming anoikis resistance). The prostate tumor microenvironment is a highly dynamic landscape wherein the balance between androgen signaling, cell lineage changes, epithelial-mesenchymal transition (EMT), extracellular matrix interactions, actin cytoskeleton remodeling as well as metabolic changes, confer anoikis resistance and metastatic spread. Thus, these mechanisms also offer unique molecular treatment signatures, exploitation of which can prime prostate tumors to anoikis induction with a high translational significance.
Collapse
Affiliation(s)
- Prerna R. Nepali
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
18
|
Nieddu V, Melocchi V, Battistini C, Franciosa G, Lupia M, Stellato C, Bertalot G, Olsen JV, Colombo N, Bianchi F, Cavallaro U. Matrix Gla Protein drives stemness and tumor initiation in ovarian cancer. Cell Death Dis 2023; 14:220. [PMID: 36977707 PMCID: PMC10050398 DOI: 10.1038/s41419-023-05760-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Ovarian cancer (OC) displays the highest mortality among gynecological tumors, mainly due to early peritoneal dissemination, the high frequency of tumor relapse following primary debulking, and the development of chemoresistance. All these events are thought to be initiated and sustained by a subpopulation of neoplastic cells, termed ovarian cancer stem cells (OCSC), that are endowed with self-renewing and tumor-initiating properties. This implies that interfering with OCSC function should offer novel therapeutic perspectives to defeat OC progression. To this aim, a better understanding of the molecular and functional makeup of OCSC in clinically relevant model systems is essential. We have profiled the transcriptome of OCSC vs. their bulk cell counterpart from a panel of patient-derived OC cell cultures. This revealed that Matrix Gla Protein (MGP), classically known as a calcification-preventing factor in cartilage and blood vessels, is markedly enriched in OCSC. Functional assays showed that MGP confers several stemness-associated traits to OC cells, including a transcriptional reprogramming. Patient-derived organotypic cultures pointed to the peritoneal microenvironment as a major inducer of MGP expression in OC cells. Furthermore, MGP was found to be necessary and sufficient for tumor initiation in OC mouse models, by shortening tumor latency and increasing dramatically the frequency of tumor-initiating cells. Mechanistically, MGP-driven OC stemness was mediated by the stimulation of Hedgehog signaling, in particular through the induction of the Hedgehog effector GLI1, thus highlighting a novel MGP/Hedgehog pathway axis in OCSC. Finally, MGP expression was found to correlate with poor prognosis in OC patients, and was increased in tumor tissue after chemotherapy, supporting the clinical relevance of our findings. Thus, MGP is a novel driver in OCSC pathophysiology, with a major role in stemness and in tumor initiation.
Collapse
Affiliation(s)
- V Nieddu
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy
| | - V Melocchi
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - C Battistini
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy
| | - G Franciosa
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - M Lupia
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy
| | - C Stellato
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy
| | - G Bertalot
- Unità Operativa Multizonale di Anatomia Patologica, APSS, Trento, Italy
- Centre for Medical Sciences - CISMed, University of Trento, Trento, Italy
| | - J V Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - N Colombo
- Division of Gynecologic Oncology, European Institute of Oncology IRCSS, Milan, Italy
- University of Milan-Bicocca, Milan, Italy
| | - F Bianchi
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - U Cavallaro
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy.
| |
Collapse
|
19
|
Li X, Yin L, Liao J, Yang J, Cai B, Yu Y, Su S, Du Z, Li X, Zhou Y, Chen P, Cho WJ, Chattipakorn N, Samorodov AV, Pavlov VN, Zhang F, Liang G, Tang Q. Novel O-benzylcinnamic acid derivative L26 treats acute lung injury in mice by MD-2. Eur J Med Chem 2023; 252:115289. [PMID: 36963290 DOI: 10.1016/j.ejmech.2023.115289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Acute lung injury (ALI) is an inflammation-mediated respiratory disease that is associated with a high mortality rate. In this study, a series of novel O-benzylcinnamic acid derivatives were designed and synthesized using cinnamic acid as the lead compound. We tested the preliminary anti-inflammatory activity of the compounds by evaluating their effect on inhibiting the activity of alkaline phosphatase (ALP) in Hek-Blue-TLR4 cells, in which compound L26 showed the best activity and 7-fold more active than CIN. ELISA, immunoprecipitation, and molecular docking indicated that L26 targeted MD-2 protein and competed with LPS to bind to MD-2, which resulted in the inhibition of inflammation. In the LPS-induced mouse model of ALI, L26 was found to decrease ALP activity and inflammatory cytokine TNF-α release to reduce lung injury by inhibiting the NF-κB signaling pathway. Acute toxicity experiments showed that high doses of L26 did not cause adverse reactions in mice, and it was safe in vivo. Also, the preliminary pharmacokinetic parameters of L26 were investigated in SD rats (T1/2 = 4.246 h). In summary, L26 exhibited optimal pharmacodynamic and pharmacokinetic characteristics, which suggested that L26 could serve as a potential agent for the development of ALI treatment.
Collapse
Affiliation(s)
- Xiang Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325024, Zhejiang, China
| | - Lina Yin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China
| | - Jing Liao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jun Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Binhao Cai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yiming Yu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Sijia Su
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zhiteng Du
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ying Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Aleksandr V Samorodov
- Department of Pharmacology, Bashkir State Medical University, Ufa City, 450005, Russia
| | - Valentin N Pavlov
- Department of Pharmacology, Bashkir State Medical University, Ufa City, 450005, Russia
| | - Fengzhi Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325024, Zhejiang, China; School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China.
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325024, Zhejiang, China.
| |
Collapse
|
20
|
Ludwig N, Yerneni SS, Azambuja JH, Pietrowska M, Widłak P, Hinck CS, Głuszko A, Szczepański MJ, Kärmer T, Kallinger I, Schulz D, Bauer RJ, Spanier G, Spoerl S, Meier JK, Ettl T, Razzo BM, Reichert TE, Hinck AP, Whiteside TL. TGFβ + small extracellular vesicles from head and neck squamous cell carcinoma cells reprogram macrophages towards a pro-angiogenic phenotype. J Extracell Vesicles 2022; 11:e12294. [PMID: 36537293 PMCID: PMC9764108 DOI: 10.1002/jev2.12294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/03/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Transforming growth factor β (TGFβ) is a major component of tumor-derived small extracellular vesicles (TEX) in cancer patients. Mechanisms utilized by TGFβ+ TEX to promote tumor growth and pro-tumor activities in the tumor microenvironment (TME) are largely unknown. TEX produced by head and neck squamous cell carcinoma (HNSCC) cell lines carried TGFβ and angiogenesis-promoting proteins. TGFβ+ TEX stimulated macrophage chemotaxis without a notable M1/M2 phenotype shift and reprogrammed primary human macrophages to a pro-angiogenic phenotype characterized by the upregulation of pro-angiogenic factors and functions. In a murine basement membrane extract plug model, TGFβ+ TEX promoted macrophage infiltration and vascularization (p < 0.001), which was blocked by using the TGFβ ligand trap mRER (p < 0.001). TGFβ+ TEX injected into mice undergoing the 4-nitroquinoline-1-oxide (4-NQO)-driven oral carcinogenesis promoted tumor angiogenesis (p < 0.05), infiltration of M2-like macrophages in the TME (p < 0.05) and ultimately tumor progression (p < 0.05). Inhibition of TGFβ signaling in TEX with mRER ameliorated these pro-tumor activities. Silencing of TGFβ emerges as a critical step in suppressing pro-angiogenic functions of TEX in HNSCC.
Collapse
Affiliation(s)
- Nils Ludwig
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- UPMC Hillman Cancer CenterPittsburghPennsylvaniaUSA
| | | | - Juliana H. Azambuja
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- UPMC Hillman Cancer CenterPittsburghPennsylvaniaUSA
- Postgraduate Program in BiosciencesFederal University of Health Sciences of Porto Alegre (UFCSPA)Porto AlegreBrazil
| | - Monika Pietrowska
- Maria Sklodowska‐Curie National Research Institute of OncologyGliwice BranchGliwicePoland
| | | | - Cynthia S. Hinck
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Alicja Głuszko
- Chair and Department of BiochemistryMedical University of WarsawWarsawPoland
| | - Mirosław J. Szczepański
- Chair and Department of BiochemistryMedical University of WarsawWarsawPoland
- Department of OtolaryngologyCentre of Postgraduate Medical EducationWarsawPoland
| | - Teresa Kärmer
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Isabella Kallinger
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Daniela Schulz
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Richard J. Bauer
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Gerrit Spanier
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Steffen Spoerl
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Johannes K. Meier
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Tobias Ettl
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | | | - Torsten E. Reichert
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Andrew P. Hinck
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Theresa L. Whiteside
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- UPMC Hillman Cancer CenterPittsburghPennsylvaniaUSA
- Departments of Immunology and OtolaryngologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
21
|
Gonzalez-Molina J, Moyano-Galceran L, Single A, Gultekin O, Alsalhi S, Lehti K. Chemotherapy as a regulator of extracellular matrix-cell communication: Implications in therapy resistance. Semin Cancer Biol 2022; 86:224-236. [PMID: 35331851 DOI: 10.1016/j.semcancer.2022.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/08/2023]
Abstract
The development of most solid cancers, including pancreatic, breast, lung, liver, and ovarian cancer, involves a desmoplastic reaction: a process of major remodeling of the extracellular matrix (ECM) affecting the ECM composition, mechanics, and microarchitecture. These properties of the ECM influence key cancer cell functions, including treatment resistance. Furthermore, emerging data show that various chemotherapeutic treatments lead to alterations in ECM features and ECM-cell communication. Here, we summarize the current knowledge around the effects of chemotherapy on both the ECM remodeling and ECM-cell signaling and discuss the implications of these alterations on distinct mechanisms of chemoresistance. Additionally, we provide an overview of current therapeutic strategies and ongoing clinical trials utilizing anti-cancer drugs to target the ECM-cell communication and explore the future challenges of these strategies.
Collapse
Affiliation(s)
- Jordi Gonzalez-Molina
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Lidia Moyano-Galceran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andrew Single
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Okan Gultekin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Shno Alsalhi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
22
|
Shukla N, Naik A, Moryani K, Soni M, Shah J, Dave H. TGF-β at the crossroads of multiple prognosis in breast cancer, and beyond. Life Sci 2022; 310:121011. [PMID: 36179816 DOI: 10.1016/j.lfs.2022.121011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 10/25/2022]
Abstract
Transforming growth factor β (TGF-β), a pluripotent cytokine and a multifunctional growth factor has a crucial role in varied biological mechanisms like invasion, migration, epithelial-mesenchymal transition, apoptosis, wound healing, and immunosuppression. Moreover, it also has an imperative role both in normal mammary gland development as well as breast carcinogenesis. TGF-β has shown to have a paradoxical role in breast carcinogenesis, by transitioning from a growth inhibitor to a growth promoter with the disease advancement. The inter-communication and crosstalk of TGF-β with different signaling pathways has strengthened the likelihood to explore it as a comprehensive biomarker. In the last two decades, TGF-β has been studied extensively and has been found to be a promising biomarker for early detection, disease monitoring, treatment selection, and tumor progression making it beneficial for disease management. In this review, we focus on the signaling pathways and biological activities of the TGF-β family in breast cancer pathogenesis and its role as a circulatory and independent biomarker for breast cancer progression and metastasis. Moreover, this review highlights TGF-β as a drug target, and the underlying mechanisms through which it is involved in tumorigenesis that will aid in the development of varied therapies targeting the different stages of breast cancer.
Collapse
Affiliation(s)
- Nirali Shukla
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Ankit Naik
- Ahmedabad University, Ahmedabad, Gujarat 390009, India
| | - Kamlesh Moryani
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Molisha Soni
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Jigna Shah
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Heena Dave
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
23
|
Wu J, Guo Z, Ni W, Feng Y, Guo X, Meng M, Yuan Y, Lin L, Chen J, Tian H, Chen X. Novel Cocktail Therapy Based on a Nanocarrier with an Efficient Transcytosis Property Reverses the Dynamically Deteriorating Tumor Microenvironment for Enhanced Immunotherapy. NANO LETTERS 2022; 22:7220-7229. [PMID: 35994713 DOI: 10.1021/acs.nanolett.2c02724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The immune checkpoint blockade (ICB) faces a low response rate in clinical cancer treatment. Chemotherapy could enhance the response rate of the ICB, but patients would suffer from side effects. The off-target toxicity could be reduced by loading the chemotherapeutic agent through nanocarriers. Therefore, we developed a polymeric carrier for doxorubicin (DOX) loading to form DOX nanoparticles (DOX NPs), which were spatiotemporally responsive to the tumor microenvironment (TME). DOX NPs had an efficient transcytosis property for deep tumor infiltration and sustained drug release ability. Unfortunately, a binary therapy of DOX NPs and ICB induces tumor adaptive resistance and causes dynamic deterioration of the TME. We propose for the first time that TGF-β1 is a major cause of tumor adaptive resistance and developed an immune cocktail therapy containing DOX NPs, ICB, and TGF-β1 gene silencing nanoparticles. This therapy successfully overcame tumor adaptive resistance by reversing the immunosuppressive TME and achieved enhanced tumor treatment efficiency.
Collapse
Affiliation(s)
- Jiayan Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Weidong Ni
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Yuanji Feng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Xiaoya Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Meng Meng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yunan Yuan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
24
|
Ge Y, Zhang Y, Zhao KN, Zhu H. Emerging Therapeutic Strategies of Different Immunotherapy Approaches Combined with PD-1/PD-L1 Blockade in Cervical Cancer. Drug Des Devel Ther 2022; 16:3055-3070. [PMID: 36110399 PMCID: PMC9470119 DOI: 10.2147/dddt.s374672] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yanjun Ge
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yuchen Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Kong-Nan Zhao
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Haiyan Zhu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Correspondence: Haiyan Zhu, Shanghai First Maternity and Infant Hospital, No. 2699 Gaokexi Road, Shanghai, 200092, People’s Republic of China, Tel +86 13758465255, Email
| |
Collapse
|
25
|
TGFBR1*6A as a modifier of breast cancer risk and progression: advances and future prospects. NPJ Breast Cancer 2022; 8:84. [PMID: 35853889 PMCID: PMC9296458 DOI: 10.1038/s41523-022-00446-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
There is growing evidence that germline mutations in certain genes influence cancer susceptibility, tumor evolution, as well as clinical outcomes. Identification of a disease-causing genetic variant enables testing and diagnosis of at-risk individuals. For breast cancer, several genes such as BRCA1, BRCA2, PALB2, ATM, and CHEK2 act as high- to moderate-penetrance cancer susceptibility genes. Genotyping of these genes informs genetic risk assessment and counseling, as well as treatment and management decisions in the case of high-penetrance genes. TGFBR1*6A (rs11466445) is a common variant of the TGF-β receptor type I (TGFBR1) that has a global minor allelic frequency (MAF) of 0.051 according to the 1000 Genomes Project Consortium. It is emerging as a high frequency, low penetrance tumor susceptibility allele associated with increased cancer risk among several cancer types. The TGFBR1*6A allele has been associated with increased breast cancer risk in women, OR 1.15 (95% CI 1.01–1.31). Functionally, TGFBR1*6A promotes breast cancer cell proliferation, migration, and invasion through the regulation of the ERK pathway and Rho-GTP activation. This review discusses current findings on the genetic, functional, and mechanistic associations between TGFBR1*6A and breast cancer risk and proposes future directions as it relates to genetic association studies and mechanisms of action for tumor growth, metastasis, and immune suppression.
Collapse
|
26
|
Birrer MJ, Fujiwara K, Oaknin A, Randall L, Ojalvo LS, Valencia C, Ray-Coquard I. The Changing Landscape of Systemic Treatment for Cervical Cancer: Rationale for Inhibition of the TGF-β and PD-L1 Pathways. Front Oncol 2022; 12:814169. [PMID: 35280818 PMCID: PMC8905681 DOI: 10.3389/fonc.2022.814169] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/24/2022] [Indexed: 12/28/2022] Open
Abstract
Cervical cancer is one of the most common and lethal cancers among women worldwide. Treatment options are limited in patients with persistent, recurrent, or metastatic cervical cancer, with <20% of women living >5 years. Persistent human papillomavirus (HPV) infection has been implicated in almost all cases of cervical cancer. HPV infection not only causes normal cervical cells to transform into cancer cells, but also creates an immunosuppressive environment for cancer cells to evade the immune system. Recent clinical trials of drugs targeting the PD-(L)1 pathway have demonstrated improvement in overall survival in patients with cervical cancer, but only 20% to 30% of patients show overall survival benefit beyond 2 years, and resistance to these treatments remains common. Therefore, novel treatment strategies targeting HPV infection-associated factors are currently being evaluated in clinical trials. Bintrafusp alfa is a first-in-class bifunctional fusion protein composed of the extracellular domain of the TGF-βRII receptor (a TGF-β "trap") fused to a human immunoglobulin G1 monoclonal antibody that blocks PD-L1. Early clinical trials of bintrafusp alfa have shown promising results in patients with advanced cervical cancer.
Collapse
Affiliation(s)
- Michael J Birrer
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas Medical School, Little Rock, AR, United States
| | - Keiichi Fujiwara
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Ana Oaknin
- Gynaecological Cancer Program, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Leslie Randall
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Laureen S Ojalvo
- EMD Serono Research & Development Institute, Inc., Billerica, MA, United States
| | - Christian Valencia
- EMD Serono Research & Development Institute, Inc., Billerica, MA, United States
| | - Isabelle Ray-Coquard
- GINECO Group & Department of Medical Oncology, Centre Leon Berard, University Claude Bernard Lyon, Lyon, France
| |
Collapse
|
27
|
Lee AH, Mejia Peña C, Dawson MR. Comparing the Secretomes of Chemorefractory and Chemoresistant Ovarian Cancer Cell Populations. Cancers (Basel) 2022; 14:1418. [PMID: 35326569 PMCID: PMC8946241 DOI: 10.3390/cancers14061418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) constitutes the majority of all ovarian cancer cases and has staggering rates of both refractory and recurrent disease. While most patients respond to the initial treatment with paclitaxel and platinum-based drugs, up to 25% do not, and of the remaining that do, 75% experience disease recurrence within the subsequent two years. Intrinsic resistance in refractory cases is driven by environmental stressors like tumor hypoxia which alter the tumor microenvironment to promote cancer progression and resistance to anticancer drugs. Recurrent disease describes the acquisition of chemoresistance whereby cancer cells survive the initial exposure to chemotherapy and develop adaptations to enhance their chances of surviving subsequent treatments. Of the environmental stressors cancer cells endure, exposure to hypoxia has been identified as a potent trigger and priming agent for the development of chemoresistance. Both in the presence of the stress of hypoxia or the therapeutic stress of chemotherapy, cancer cells manage to cope and develop adaptations which prime populations to survive in future stress. One adaptation is the modification in the secretome. Chemoresistance is associated with translational reprogramming for increased protein synthesis, ribosome biogenesis, and vesicle trafficking. This leads to increased production of soluble proteins and extracellular vesicles (EVs) involved in autocrine and paracrine signaling processes. Numerous studies have demonstrated that these factors are largely altered between the secretomes of chemosensitive and chemoresistant patients. Such factors include cytokines, growth factors, EVs, and EV-encapsulated microRNAs (miRNAs), which serve to induce invasive molecular, biophysical, and chemoresistant phenotypes in neighboring normal and cancer cells. This review examines the modifications in the secretome of distinct chemoresistant ovarian cancer cell populations and specific secreted factors, which may serve as candidate biomarkers for aggressive and chemoresistant cancers.
Collapse
Affiliation(s)
- Amy H. Lee
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA;
| | - Carolina Mejia Peña
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA;
| | - Michelle R. Dawson
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA;
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA;
| |
Collapse
|
28
|
Trivedi T, Pagnotti GM, Guise TA, Mohammad KS. The Role of TGF-β in Bone Metastases. Biomolecules 2021; 11:1643. [PMID: 34827641 PMCID: PMC8615596 DOI: 10.3390/biom11111643] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Complications associated with advanced cancer are a major clinical challenge and, if associated with bone metastases, worsen the prognosis and compromise the survival of the patients. Breast and prostate cancer cells exhibit a high propensity to metastasize to bone. The bone microenvironment is unique, providing fertile soil for cancer cell propagation, while mineralized bone matrices store potent growth factors and cytokines. Biologically active transforming growth factor β (TGF-β), one of the most abundant growth factors, is released following tumor-induced osteoclastic bone resorption. TGF-β promotes tumor cell secretion of factors that accelerate bone loss and fuel tumor cells to colonize. Thus, TGF-β is critical for driving the feed-forward vicious cycle of tumor growth in bone. Further, TGF-β promotes epithelial-mesenchymal transition (EMT), increasing cell invasiveness, angiogenesis, and metastatic progression. Emerging evidence shows TGF-β suppresses immune responses, enabling opportunistic cancer cells to escape immune checkpoints and promote bone metastases. Blocking TGF-β signaling pathways could disrupt the vicious cycle, revert EMT, and enhance immune response. However, TGF-β's dual role as both tumor suppressor and enhancer presents a significant challenge in developing therapeutics that target TGF-β signaling. This review presents TGF-β's role in cancer progression and bone metastases, while highlighting current perspectives on the therapeutic potential of targeting TGF-β pathways.
Collapse
Affiliation(s)
- Trupti Trivedi
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.T.); (G.M.P.); (T.A.G.)
| | - Gabriel M. Pagnotti
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.T.); (G.M.P.); (T.A.G.)
| | - Theresa A. Guise
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.T.); (G.M.P.); (T.A.G.)
| | - Khalid S. Mohammad
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.T.); (G.M.P.); (T.A.G.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
29
|
Liu Q, Chen G, Moore J, Guix I, Placantonokis D, Barcellos-Hoff MH. Exploiting Canonical TGFβ Signaling in Cancer Treatment. Mol Cancer Ther 2021; 21:16-24. [PMID: 34670783 PMCID: PMC8742762 DOI: 10.1158/1535-7163.mct-20-0891] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/15/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022]
Abstract
Transforming growth factor β (TGFβ) is a pleiotropic cytokine that plays critical roles to define cancer cell phenotypes, construct the tumor microenvironment, and suppress anti-tumor immune responses. As such, TGFβ is a lynchpin for integrating cancer cell intrinsic pathways and communication among host cells in the tumor and beyond that together affect responses to genotoxic, targeted, and immune therapy. Despite decades of preclinical and clinical studies, evidence of clinical benefit from targeting TGFβ in cancer remains elusive. Here, we review the mechanisms by which TGFβ acts to oppose successful cancer therapy, the reported prognostic and predictive value of TGFβ biomarkers, and the potential impact of inhibiting TGFβ in precision oncology. Paradoxically, the diverse mechanisms by which TGFβ impedes therapeutic response are a principal barrier to implementing TGFβ inhibitors because it is unclear which TGFβ mechanism is functional in which patient. Companion diagnostic tools and specific biomarkers of TGFβ targeted biology will be the key to exploiting TGFβ biology for patient benefit.
Collapse
Affiliation(s)
- Qi Liu
- Shenzhen Bay Laboratory, Institute for Biomedical Engineering
| | - Genwen Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University
| | - Jade Moore
- Department of Radiation Oncology, University of California, San Francicsco
| | - Ines Guix
- Department of Radiation Oncology, University of California, San Francicsco
| | | | | |
Collapse
|
30
|
Managò S, Tramontano C, Delle Cave D, Chianese G, Zito G, De Stefano L, Terracciano M, Lonardo E, De Luca AC, Rea I. SERS Quantification of Galunisertib Delivery in Colorectal Cancer Cells by Plasmonic-Assisted Diatomite Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101711. [PMID: 34302422 DOI: 10.1002/smll.202101711] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The small molecule Galunisertib (LY2157299, LY) shows multiple anticancer activities blocking the transforming growth factor-β1 receptor, responsible for the epithelial-to-mesenchymal transition (EMT) by which colorectal cancer (CRC) cells acquire migratory and metastatic capacities. However, frequent dosing of LY can produce highly toxic metabolites. Alternative strategies to reduce drug side effects can rely on nanoscale drug delivery systems that have led to a medical revolution in the treatment of cancer, improving drug efficacy and lowering drug toxicity. Here, a hybrid nanosystem (DNP-AuNPs-LY@Gel) made of a porous diatomite nanoparticle decorated with plasmonic gold nanoparticles, in which LY is retained by a gelatin shell, is proposed. The multifunctional capability of the nanosystem is demonstrated by investigating the efficient LY delivery, the enhanced EMT reversion in CRCs and the intracellular quantification of drug release with a sub-femtogram resolution by surface-enhanced Raman spectroscopy (SERS). The LY release trigger is the pH sensitivity of the gelatin shell to the CRC acidic microenvironment. The drug release is real-time monitored at single-cell level by analyzing the SERS signals of LY in CRC cells. The higher efficiency of LY delivered by the DNP-AuNPs-LY@Gel complex paves the way to an alternative strategy for lowering drug dosing and consequent side effects.
Collapse
Affiliation(s)
- Stefano Managò
- National Research Council, Institute of Biochemistry and Cell Biology, Naples, 80131, Italy
| | - Chiara Tramontano
- National Research Council, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, Naples, 80131, Italy
- University of Naples Federico II, Department of Pharmacy, Naples, 80131, Italy
| | - Donatella Delle Cave
- National Research Council, Institute of Genetics and Biophysics, Naples, 80131, Italy
| | - Giovanna Chianese
- National Research Council, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, Naples, 80131, Italy
| | - Gianluigi Zito
- National Research Council, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, Naples, 80131, Italy
| | - Luca De Stefano
- National Research Council, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, Naples, 80131, Italy
| | - Monica Terracciano
- University of Naples Federico II, Department of Pharmacy, Naples, 80131, Italy
| | - Enza Lonardo
- National Research Council, Institute of Genetics and Biophysics, Naples, 80131, Italy
| | - Anna Chiara De Luca
- National Research Council, Institute of Biochemistry and Cell Biology, Naples, 80131, Italy
| | - Ilaria Rea
- National Research Council, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, Naples, 80131, Italy
| |
Collapse
|
31
|
Kartikasari AER, Huertas CS, Mitchell A, Plebanski M. Tumor-Induced Inflammatory Cytokines and the Emerging Diagnostic Devices for Cancer Detection and Prognosis. Front Oncol 2021; 11:692142. [PMID: 34307156 PMCID: PMC8294036 DOI: 10.3389/fonc.2021.692142] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation generated by the tumor microenvironment is known to drive cancer initiation, proliferation, progression, metastasis, and therapeutic resistance. The tumor microenvironment promotes the secretion of diverse cytokines, in different types and stages of cancers. These cytokines may inhibit tumor development but alternatively may contribute to chronic inflammation that supports tumor growth in both autocrine and paracrine manners and have been linked to poor cancer outcomes. Such distinct sets of cytokines from the tumor microenvironment can be detected in the circulation and are thus potentially useful as biomarkers to detect cancers, predict disease outcomes and manage therapeutic choices. Indeed, analyses of circulating cytokines in combination with cancer-specific biomarkers have been proposed to simplify and improve cancer detection and prognosis, especially from minimally-invasive liquid biopsies, such as blood. Additionally, the cytokine signaling signatures of the peripheral immune cells, even from patients with localized tumors, are recently found altered in cancer, and may also prove applicable as cancer biomarkers. Here we review cytokines induced by the tumor microenvironment, their roles in various stages of cancer development, and their potential use in diagnostics and prognostics. We further discuss the established and emerging diagnostic approaches that can be used to detect cancers from liquid biopsies, and additionally the technological advancement required for their use in clinical settings.
Collapse
Affiliation(s)
- Apriliana E. R. Kartikasari
- Translational Immunology and Nanotechnology Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Cesar S. Huertas
- Integrated Photonics and Applications Centre (InPAC), School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Arnan Mitchell
- Integrated Photonics and Applications Centre (InPAC), School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Magdalena Plebanski
- Translational Immunology and Nanotechnology Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
32
|
van den Bijgaart RJE, Schuurmans F, Fütterer JJ, Verheij M, Cornelissen LAM, Adema GJ. Immune Modulation Plus Tumor Ablation: Adjuvants and Antibodies to Prime and Boost Anti-Tumor Immunity In Situ. Front Immunol 2021; 12:617365. [PMID: 33936033 PMCID: PMC8079760 DOI: 10.3389/fimmu.2021.617365] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
In situ tumor ablation techniques, like radiotherapy, cryo- and heat-based thermal ablation are successfully applied in oncology for local destruction of tumor masses. Although diverse in technology and mechanism of inducing cell death, ablative techniques share one key feature: they generate tumor debris which remains in situ. This tumor debris functions as an unbiased source of tumor antigens available to the immune system and has led to the concept of in situ cancer vaccination. Most studies, however, report generally modest tumor-directed immune responses following local tumor ablation as stand-alone treatment. Tumors have evolved mechanisms to create an immunosuppressive tumor microenvironment (TME), parts of which may admix with the antigen depot. Provision of immune stimuli, as well as approaches that counteract the immunosuppressive TME, have shown to be key to boost ablation-induced anti-tumor immunity. Recent advances in protein engineering have yielded novel multifunctional antibody formats. These multifunctional antibodies can provide a combination of distinct effector functions or allow for delivery of immunomodulators specifically to the relevant locations, thereby mitigating potential toxic side effects. This review provides an update on immune activation strategies that have been tested to act in concert with tumor debris to achieve in situ cancer vaccination. We further provide a rationale for multifunctional antibody formats to be applied together with in situ ablation to boost anti-tumor immunity for local and systemic tumor control.
Collapse
Affiliation(s)
- Renske J E van den Bijgaart
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Fabian Schuurmans
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jurgen J Fütterer
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Robotics and Mechatronics, University of Twente, Enschede, Netherlands
| | - Marcel Verheij
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lenneke A M Cornelissen
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
33
|
Ludwig N, Wieteska Ł, Hinck CS, Yerneni SS, Azambuja JH, Bauer RJ, Reichert TE, Hinck AP, Whiteside TL. Novel TGFβ Inhibitors Ameliorate Oral Squamous Cell Carcinoma Progression and Improve the Antitumor Immune Response of Anti-PD-L1 Immunotherapy. Mol Cancer Ther 2021; 20:1102-1111. [PMID: 33850003 DOI: 10.1158/1535-7163.mct-20-0944] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/11/2021] [Accepted: 03/26/2021] [Indexed: 01/11/2023]
Abstract
TGFβ is a key regulator of oral squamous cell carcinoma (OSCC) progression, and its potential role as a therapeutic target has been investigated with a limited success. This study evaluates two novel TGFβ inhibitors as mono or combinatorial therapy with anti-PD-L1 antibodies (α-PD-L1 Ab) in a murine OSCC model. Immunocompetent C57BL/6 mice bearing malignant oral lesions induced by 4-nitroquinoline 1-oxide (4-NQO) were treated for 4 weeks with TGFβ inhibitors mRER (i.p., 50 μg/d) or mmTGFβ2-7m (10 μg/d delivered by osmotic pumps) alone or in combination with α-PD-L1 Abs (7× i.p. of 100 μg/72 h). Tumor progression and body weight were monitored. Levels of bioactive TGFβ in serum were quantified using a TGFβ bioassay. Tissues were analyzed by immunohistology and flow cytometry. Therapy with mRER or mmTGFβ2-7m reduced tumor burden (P < 0.05) and decreased body weight loss compared with controls. In inhibitor-treated mice, levels of TGFβ in tumor tissue and serum were reduced (P < 0.05), whereas they increased with tumor progression in controls. Both inhibitors enhanced CD8+ T-cell infiltration into tumors and mRER reduced levels of myeloid-derived suppressor cells (P < 0.001). In combination with α-PD-L1 Abs, tumor burden was not further reduced; however, mmTGFβ2-7m further reduced weight loss (P < 0.05). The collagen-rich stroma was reduced by using combinatorial TGFβ/PD-L1 therapies (P < 0.05), enabling an accelerated lymphocyte infiltration into tumor tissues. The blockade of TGFβ signaling by mRER or mmTGFβ2-7m ameliorated in vivo progression of established murine OSCC. The inhibitors promoted antitumor immune responses, alone and in combination with α-PD-L1 Abs.
Collapse
Affiliation(s)
- Nils Ludwig
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. .,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Łukasz Wieteska
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Cynthia S Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Juliana H Azambuja
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Richard J Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany.,Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Torsten E Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. .,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Departments of Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Cummings M, Freer C, Orsi NM. Targeting the tumour microenvironment in platinum-resistant ovarian cancer. Semin Cancer Biol 2021; 77:3-28. [PMID: 33607246 DOI: 10.1016/j.semcancer.2021.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/09/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Ovarian cancer typically presents at an advanced stage, and although the majority of cases initially respond well to platinum-based therapies, chemoresistance almost always occurs leading to a poor long-term prognosis. While various cellular autonomous mechanisms contribute to intrinsic or acquired platinum resistance, the tumour microenvironment (TME) plays a central role in resistance to therapy and disease progression by providing cancer stem cell niches, promoting tumour cell metabolic reprogramming, reducing chemotherapy drug perfusion and promoting an immunosuppressive environment. As such, the TME is an attractive therapeutic target which has been the focus of intense research in recent years. This review provides an overview of the unique ovarian cancer TME and its role in disease progression and therapy resistance, highlighting some of the latest preclinical and clinical data on TME-targeted therapies. In particular, it focuses on strategies targeting cancer-associated fibroblasts, tumour-associated macrophages, cancer stem cells and cancer cell metabolic vulnerabilities.
Collapse
Affiliation(s)
- M Cummings
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom
| | - C Freer
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom
| | - N M Orsi
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom; St James's Institute of Oncology, Bexley Wing, Beckett Street, Leeds, LS9 7TF, United Kingdom.
| |
Collapse
|
35
|
Abstract
The transforming growth factor-beta (TGFβ) pathway is essential during embryo development and in maintaining normal homeostasis. During malignancy, the TGFβ pathway is co-opted by the tumor to increase fibrotic stroma, to promote epithelial to mesenchymal transition increasing metastasis and producing an immune-suppressed microenvironment which protects the tumor from recognition by the immune system. Compelling preclinical data demonstrate the therapeutic potential of blocking TGFβ function in cancer. However, the TGFβ pathway cannot be described as a driver of malignant disease. Two small molecule kinase inhibitors which block the serine-threonine kinase activity of TGFβRI on TGFβRII, a pan-TGFβ neutralizing antibody, a TGFβ trap, a TGFβ antisense agent, an antibody which stabilizes the latent complex of TGFβ and a fusion protein which neutralizes TGFβ and binds PD-L1 are in clinical development. The challenge is how to most effectively incorporate blocking TGFβ activity alone and in combination with other therapeutics to improve treatment outcome.
Collapse
Affiliation(s)
- Beverly A Teicher
- Developmental Therapeutics Program, DCTD, National Cancer Institute, RM 4-W602, MSC 9735, 9609 Medical Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Chen J, Ding ZY, Li S, Liu S, Xiao C, Li Z, Zhang BX, Chen XP, Yang X. Targeting transforming growth factor-β signaling for enhanced cancer chemotherapy. Theranostics 2021; 11:1345-1363. [PMID: 33391538 PMCID: PMC7738904 DOI: 10.7150/thno.51383] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
During the past decades, drugs targeting transforming growth factor-β (TGFβ) signaling have received tremendous attention for late-stage cancer treatment since TGFβ signaling has been recognized as a prime driver for tumor progression and metastasis. Nonetheless, in healthy and pre-malignant tissues, TGFβ functions as a potent tumor suppressor. Furthermore, TGFβ signaling plays a key role in normal development and homeostasis by regulating cell proliferation, differentiation, migration, apoptosis, and immune evasion, and by suppressing tumor-associated inflammation. Therefore, targeting TGFβ signaling for cancer therapy is challenging. Recently, we and others showed that blocking TGFβ signaling increased chemotherapy efficacy, particularly for nanomedicines. In this review, we briefly introduce the TGFβ signaling pathway, and the multifaceted functions of TGFβ signaling in cancer, including regulating the tumor microenvironment (TME) and the behavior of cancer cells. We also summarize TGFβ targeting agents. Then, we highlight TGFβ inhibition strategies to restore the extracellular matrix (ECM), regulate the tumor vasculature, reverse epithelial-mesenchymal transition (EMT), and impair the stemness of cancer stem-like cells (CSCs) to enhance cancer chemotherapy efficacy. Finally, the current challenges and future opportunities in targeting TGFβ signaling for cancer therapy are discussed.
Collapse
Affiliation(s)
- Jitang Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ze-yang Ding
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, National Medical Center for Major Public Health Events, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Sha Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, National Medical Center for Major Public Health Events, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-xiang Zhang
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, National Medical Center for Major Public Health Events, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-ping Chen
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, National Medical Center for Major Public Health Events, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, 510530, China
| |
Collapse
|
37
|
BMP signaling is a therapeutic target in ovarian cancer. Cell Death Discov 2020; 6:139. [PMID: 33298901 PMCID: PMC7719168 DOI: 10.1038/s41420-020-00377-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
BMP signaling has been found to have tumor-promoting as well as tumor-suppressing effects in different types of tumors. In this study, we investigated the effects of BMP signaling and of BMP inhibitors on ovarian cancer (OC) cells in vitro and in vivo. High expression of BMP receptor 2 (BMPR2) correlated with poor overall survival of OC patients in the TCGA dataset. Both BMP2 and BMPR2 enhanced OC cell proliferation, whereas BMP receptor kinase inhibitors inhibited OC cell growth in cell culture as well as in a mouse model. BMP2 also augmented sphere formation, migration, and invasion of OC cells, and induced EMT. High BMP2 expression was observed after chemotherapy of OC patients in the GSE109934 dataset. In accordance, carboplatin, used for the treatment of OC patients, increased BMP2 secretion from OC cells, and induced EMT partially via activation of BMP signaling. Our data suggest that BMP signaling has tumor-promoting effects in OC, and that BMP inhibitors might be useful therapeutic agents for OC patients. Considering that carboplatin treatment augmented BMP2 secretion, the possibility to use a combination of BMP inhibitors and carboplatin in the treatment of OC patients, would be worth exploring.
Collapse
|
38
|
Corilagin Represses Epithelial to Mesenchymal Transition Process Through Modulating Wnt/β-Catenin Signaling Cascade. Biomolecules 2020; 10:biom10101406. [PMID: 33027960 PMCID: PMC7600105 DOI: 10.3390/biom10101406] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/18/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
Corilagin (CLG), a major component of several medicinal plants, can exhibit diverse pharmacological properties including those of anti-cancer, anti-inflammatory, and hepatoprotective qualities. However, there are no prior studies on its potential impact on the epithelial-to-mesenchymal transition (EMT) process. EMT can lead to dissemination of tumor cells into other organs and promote cancer progression. Hence, we aimed to investigate the effect of CLG on EMT and its mechanism(s) of action in tumor cells. We noted that CLG reduced the expression of various epithelial markers and up-regulated the expression of Occludin and E-cadherin in both basal and TGFβ-stimulated tumor cells. CLG treatment also abrogated cellular invasion and migration in colon and prostate carcinoma cells. In addition, CLG effectively attenuated the Wnt/β-catenin signaling cascade in TGFβ-stimulated cells. Overall, our study suggests that CLG may function as and effective modulator of EMT and metastasis in neoplastic cells.
Collapse
|
39
|
Yu J, Dong Y, Tang W, Pan H, Lv L, Long T, Zhou Q, Qi J, Liu J, Ding G, Yin J, Tan L. The Relationship Between Single Nucleotide Polymorphisms of SMAD3/SMAD6 and Risk of Esophageal Squamous Cell Carcinoma in Chinese Population. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:355-363. [PMID: 32904644 PMCID: PMC7457549 DOI: 10.2147/pgpm.s250076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022]
Abstract
Background The TGF-β signal pathways play a key role in the development and promotion of squamous cell carcinoma (SCC). The pathway is mediated by the SMAD family proteins that include SMAD3 and SMAD6. Our study aimed to evaluate the relationship between single nucleotide polymorphism (SNP) of SMAD3/SMAD6 and susceptibility to esophageal squamous cell carcinoma (ESCC) in the Chinese population. Patients and Methods This was a hospital-based case-control study compromised of 1043 ESCC patients and 1315 non-cancer patients. Seven SMAD3/SMAD6 (rs8028147, rs3743343, rs3743342, rs8025774, rs8031440, rs803167, and rs34643453) SNPs were selected and used to evaluate their correlation with ESCC susceptibility. Genetic model tests, stratified analyses, linkage disequilibrium analyses, and haplotype analyses were performed in our study. Results Participants with SMAD3 rs3743342 C>T, rs8025774 C>T, rs8031440 G>A or rs8031627 G>A had a significantly higher risk of ESCC. This was more evident in males, older patients (>63 years), smokers, and non-alcohol drinking participants. Linkage disequilibrium analyses further revealed that there were strong correlations between SMAD3 rs3743342 C>T, rs8025774 C>T, rs8031440 G>A, and rs8031627 G>A. In the same line, haplotype analyses revealed that SMAD3 ACCCGGSMAD6A and SMAD3AGCCGGSMAD6A were associated with less susceptibility to ESCC while SMAD3ATTTAASMAD6A was associated with a higher risk of ESCC. Conclusion SNPs of SMAD3 were related to higher susceptibility to ESCC. As such, they may contribute to the development of viable strategies for early diagnosis and treatment of ESCC. However, more detailed association mechanisms between SMAD3/SMAD6 SNPs and ESCC need further experiments to prove.
Collapse
Affiliation(s)
- Jinjie Yu
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Yunpeng Dong
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Huiwen Pan
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Lu Lv
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Tao Long
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Qiang Zhou
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Junqing Qi
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Jianchao Liu
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Guowen Ding
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Jun Yin
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
40
|
Ahmadi Moughari F, Eslahchi C. ADRML: anticancer drug response prediction using manifold learning. Sci Rep 2020; 10:14245. [PMID: 32859983 PMCID: PMC7456328 DOI: 10.1038/s41598-020-71257-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/13/2020] [Indexed: 12/05/2022] Open
Abstract
One of the prominent challenges in precision medicine is to select the most appropriate treatment strategy for each patient based on the personalized information. The availability of massive data about drugs and cell lines facilitates the possibility of proposing efficient computational models for predicting anticancer drug response. In this study, we propose ADRML, a model for Anticancer Drug Response Prediction using Manifold Learning to systematically integrate the cell line information with the drug information to make accurate predictions about drug therapeutic. The proposed model maps the drug response matrix into the lower-rank spaces that lead to obtaining new perspectives about cell lines and drugs. The drug response for a new cell line-drug pair is computed using the low-rank features. The evaluation of ADRML performance on various types of cell lines and drug information, in addition to the comparisons with previously proposed methods, shows that ADRML provides accurate and robust predictions. Further investigations about the association between drug response and pathway activity scores reveal that the predicted drug responses can shed light on the underlying drug mechanism. Also, the case studies suggest that the predictions of ADRML about novel cell line-drug pairs are validated by reliable pieces of evidence from the literature. Consequently, the evaluations verify that ADRML can be used in accurately predicting and imputing the anticancer drug response.
Collapse
Affiliation(s)
- Fatemeh Ahmadi Moughari
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
| | - Changiz Eslahchi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran. .,School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
41
|
Teixeira AF, Ten Dijke P, Zhu HJ. On-Target Anti-TGF-β Therapies Are Not Succeeding in Clinical Cancer Treatments: What Are Remaining Challenges? Front Cell Dev Biol 2020; 8:605. [PMID: 32733895 PMCID: PMC7360684 DOI: 10.3389/fcell.2020.00605] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/19/2020] [Indexed: 12/24/2022] Open
Abstract
Metastasis is the leading cause of death for cancer patients. During cancer progression, the initial detachment of cells from the primary tumor and the later colonization of a secondary organ are characterized as limiting steps for metastasis. Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are opposite dynamic multistep processes that enable these critical events in metastasis by altering the phenotype of cancer cells and improving their ability to migrate, invade and seed at distant organs. Among the molecular pathways that promote tumorigenesis in late-stage cancers, transforming growth factor-β (TGF-β) is described as an EMT master inducer by controlling different genes and proteins related to cytoskeleton assembly, cell-cell attachment and extracellular matrix remodeling. Still, despite the successful outcomes of different TGF-β pharmacological inhibitors in cell culture (in vitro) and animal models (in vivo), results in cancer clinical trials are poor or inconsistent at least, highlighting the existence of crucial components in human cancers that have not been properly explored. Here we review most recent findings to provide perspectives bridging the gap between on-target anti-TGF-β therapies in vitro and in pre-clinical models and the poor clinical outcomes in treating cancer patients. Specifically, we focus on (i) the dual roles of TGF-β signaling in cancer metastasis; (ii) dynamic signaling; (iii) functional differences of TGF-β free in solution vs. in exosomes; (iv) the regulatory effects of tumor microenvironment (TME) – particularly by cancer-associated fibroblasts – on TGF-β signaling pathway. Clearly identifying and establishing those missing links may provide strategies to revitalize and clinically improve the efficacy of TGF-β targeted therapies.
Collapse
Affiliation(s)
- Adilson Fonseca Teixeira
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
42
|
Takahashi K, Akatsu Y, Podyma-Inoue KA, Matsumoto T, Takahashi H, Yoshimatsu Y, Koinuma D, Shirouzu M, Miyazono K, Watabe T. Targeting all transforming growth factor-β isoforms with an Fc chimeric receptor impairs tumor growth and angiogenesis of oral squamous cell cancer. J Biol Chem 2020; 295:12559-12572. [PMID: 32631954 DOI: 10.1074/jbc.ra120.012492] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/26/2020] [Indexed: 01/06/2023] Open
Abstract
Tumor progression is governed by various growth factors and cytokines in the tumor microenvironment (TME). Among these, transforming growth factor-β (TGF-β) is secreted by various cell types residing in the TME and promotes tumor progression by inducing the epithelial-to-mesenchymal transition (EMT) of cancer cells and tumor angiogenesis. TGF-β comprises three isoforms, TGF-β1, -β2, and -β3, and transduces intracellular signals via TGF-β type I receptor (TβRI) and TGF-β type II receptor (TβRII). For the purpose of designing ligand traps that reduce oncogenic signaling in the TME, chimeric proteins comprising the ligand-interacting ectodomains of receptors fused with the Fc portion of immunoglobulin are often used. For example, chimeric soluble TβRII (TβRII-Fc) has been developed as an effective therapeutic strategy for targeting TGF-β ligands, but several lines of evidence indicate that TβRII-Fc more effectively traps TGF-β1 and TGF-β3 than TGF-β2, whose expression is elevated in multiple cancer types. In the present study, we developed a chimeric TGF-β receptor containing both TβRI and TβRII (TβRI-TβRII-Fc) and found that TβRI-TβRII-Fc trapped all TGF-β isoforms, leading to inhibition of both the TGF-β signal and TGF-β-induced EMT of oral cancer cells, whereas TβRII-Fc failed to trap TGF-β2. Furthermore, we found that TβRI-TβRII-Fc suppresses tumor growth and angiogenesis more effectively than TβRII-Fc in a subcutaneous xenograft model of oral cancer cells with high TGF-β expression. These results suggest that TβRI-TβRII-Fc may be a promising tool for targeting all TGF-β isoforms in the TME.
Collapse
Affiliation(s)
- Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuichi Akatsu
- Department of Molecular Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.,Biomedicine Group, Pharmaceutical Research Laboratories, and Pharmaceutical Group, Nippon Kayaku Co. Ltd., Tokyo, Japan
| | - Katarzyna A Podyma-Inoue
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | - Hitomi Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yasuhiro Yoshimatsu
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Division of Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
43
|
Fang WY, Kuo YZ, Chang JY, Hsiao JR, Kao HY, Tsai ST, Wu LW. The Tumor Suppressor TGFBR3 Blocks Lymph Node Metastasis in Head and Neck Cancer. Cancers (Basel) 2020; 12:cancers12061375. [PMID: 32471132 PMCID: PMC7352722 DOI: 10.3390/cancers12061375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
The TGF-β type III receptor (TGFBR3) is an essential constituent of the TGF-β signaling. In this study, we observed a down-regulation of TGFBR3 in oral cancer, a subtype of head and neck cancer (HNC), and patients with low TGFBR3 had poor clinical outcomes. Ectopic expression of TGFBR3 decreased migration and invasion of oral cancer cells and lymph node metastasis of tumors, whereas depletion of TGFBR3 had the opposite effect. In SMAD4-positive OC-2 oral cancer cells, TGFBR3-mediated suppression requires both of its cytoplasmic interacting partners ARRB2 and GIPC1. We demonstrated that TGFBR3 induces the abundance of secreted angiogenin (ANG), a known pro-angiogenic factor, and ANG is essential and sufficient to mediate TGFBR3-dependent inhibition of migration and invasion of oral cancer cells. Notably, in SMAD4-deficient CAL-27 oral cancer cells, only GIPC1 is essential for TGFBR3-induced suppressive activity. Accordingly, HNC patients with low expressions of both TGFBR3 and GIPC1 had the poorest overall survival. In summary, we conclude that TGFBR3 is as a tumor suppressor via SMAD4-dependent and -independent manner in both tumor and stromal cells during oral carcinogenesis. Our study should facilitate the possibility of using TGFBR3-mediated tumor suppression for HNC treatment.
Collapse
Affiliation(s)
- Wei-Yu Fang
- Institutes of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Yi-Zih Kuo
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Y.-Z.K.); (J.-R.H.)
| | - Jang-Yang Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan;
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Y.-Z.K.); (J.-R.H.)
| | - Hung-Ying Kao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 43210, USA;
| | - Sen-Tien Tsai
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Y.-Z.K.); (J.-R.H.)
- Correspondence: (S.-T.T.); (L.-W.W.); Tel.: +886-6-2353535 (ext. 5315) (S.-T.T.); +886-6-2353535 (ext. 3618) (L.-W.W.); Fax: +886-6-2095845 (L.-W.W.)
| | - Li-Wha Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Laboratory Science and Technology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (S.-T.T.); (L.-W.W.); Tel.: +886-6-2353535 (ext. 5315) (S.-T.T.); +886-6-2353535 (ext. 3618) (L.-W.W.); Fax: +886-6-2095845 (L.-W.W.)
| |
Collapse
|
44
|
Rodrigues-Junior DM, Tan SS, Lim SK, Leong HS, Melendez ME, Ramos CRN, Viana LDS, Tan DSW, Carvalho AL, Iyer NG, Vettore AL. Circulating extracellular vesicle-associated TGFβ3 modulates response to cytotoxic therapy in head and neck squamous cell carcinoma. Carcinogenesis 2020; 40:1452-1461. [PMID: 31436806 DOI: 10.1093/carcin/bgz148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 01/28/2023] Open
Abstract
Management of locally advanced head and neck squamous cell carcinoma (HNSCC) requires a multi-prong approach comprising surgery, radiation and/or chemotherapy, yet outcomes are limited. This is largely due to a paucity of biomarkers that can predict response to specific treatment modalities. Here, we evaluated TGFβ3 protein levels in extracellular vesicles (EVs) released by HNSCC cells as a predictor for response to chemoradiation therapy (CRT). To this end, specific EV-fractions were isolated from cell lines or HNSCC patient plasma, and TGFβ3 protein was quantified. In patients treated with CRT, TGFβ3 levels were found to be significantly higher in plasma EV-fractions or non-responders compared with responders. High levels of TGFβ3 levels in Annexin V-EVs were associated with the worst progression-free survival. In vitro experiments demonstrated that TGFβ3 silencing sensitized HNSCC cells to cytotoxic therapies, and this phenotype could be rescued by treatment with exogenous. In addition, specific EV-fractions shed by cisplatin-resistant cells were sufficient to transfer the resistant phenotype to sensitive cells through activation of TGFβ-signaling pathway. Therefore, our data show that TGFβ3 transmitted through EV plays a significant role in response to cytotoxic therapy, which can be exploited as a potential biomarker for CRT response in HNSCC patients treated with curative intent.
Collapse
Affiliation(s)
- Dorival Mendes Rodrigues-Junior
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, Brazil.,Cancer Therapeutics Research Laboratory, National Cancer Centre of Singapore, Singapore
| | - Soon Sim Tan
- Institute of Medical Biology, A*-STAR, Singapore
| | | | - Hui Sun Leong
- Cancer Therapeutics Research Laboratory, National Cancer Centre of Singapore, Singapore
| | | | | | | | - Daniel S W Tan
- Cancer Therapeutics Research Laboratory, National Cancer Centre of Singapore, Singapore.,Division of Medical Oncology, National Cancer Centre of Singapore, Singapore
| | | | - N Gopalakrishna Iyer
- Cancer Therapeutics Research Laboratory, National Cancer Centre of Singapore, Singapore.,Division of Surgical Oncology, National Cancer Centre of Singapore, Singapore
| | - Andre Luiz Vettore
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| |
Collapse
|
45
|
Xu H, Wang Q, Fan GK. The Antiproliferative and Antifibrotic Effects of Cisplatin on Primary Human Vocal Fold Fibroblasts. ORL J Otorhinolaryngol Relat Spec 2020; 82:188-200. [PMID: 32268330 DOI: 10.1159/000506708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 02/20/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Vocal fold scarring and laryngeal stenosis are major clinical challenges. Current drugs do not efficiently reduce scarring. We examined the antiproliferative and antifibrotic effects of cisplatin on primary human vocal fold fibroblasts (HVFFs). METHODS HVFFs were cultured in vitro and identified by immunocytochemistry. The relative viability of HVFFs was analyzed by Cell Counting Kit-8 assays (CCK-8). The fibrogenic phenotype was induced by transforming growth factor-β1 (TGF-β1) and reversed by cisplatin as shown by immunocytochemistry. Real-time PCR and Western blotting assessed collagen III and I. Western blotting for Smad2, p-Smad2, Smad-3, p-Smad3 and caspase-3 were performed. RESULTS CCK-8 results showed that cisplatin decreased the relative viability of HVFFs, and Western blots revealed elevation of the apoptosis-related protein caspase-3 in HVFFs. Cisplatin treatment reduced α-smooth muscle actin staining intensity in the presence of TGF-β1. Real-time PCR revealed the downregulation of collagen III and I in cisplatin-treated HVFFs. The TGF-β1-induced increased fibrogenic protein levels were decreased by cisplatin. Reduced levels were detected at late time points. CONCLUSIONS Cisplatin induces antiproliferative and antifibrotic alterations in HVFFs. Cisplatin may prevent postoperative vocal fold scarring and laryngeal stenosis in patients treated with CO2 laser microsurgery and undergoing delayed wound healing.
Collapse
Affiliation(s)
- Haoyuan Xu
- Department of Otolaryngology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qi Wang
- Department of Otolaryngology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guo-Kang Fan
- Department of Otolaryngology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,
| |
Collapse
|
46
|
Dou N, Hu Q, Li L, Wu Q, Li Y, Gao Y. USP32 promotes tumorigenesis and chemoresistance in gastric carcinoma via upregulation of SMAD2. Int J Biol Sci 2020; 16:1648-1657. [PMID: 32226309 PMCID: PMC7097920 DOI: 10.7150/ijbs.43117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/29/2020] [Indexed: 12/21/2022] Open
Abstract
USP32, a member of the ubiquitin-specific proteases family, has been implicated in the development of breast cancer and small lung cancer. However, its biological functions and clinical significance in gastric cancer (GC) remain unclear. In the present study, we reported that knockdown or depletion of USP32 significantly inhibited GC cell proliferation and migration in vitro and in vivo, indicating that USP32 functions as an oncogene in GC. Importantly, results from immunohistochemical staining in a tissue microarray revealed that USP32 was upregulated in GC tissues compared with paracancerous tissues. Further analyses showed that high expression of USP32 was closely related with high T-staging and poor outcomes of GC patients. Mechanistically, USP32 silencing caused a decrease in the expression of SMAD2, which resulted in the inhibitory effects of GC cells on growth, motility, and chemoresistance to cisplatin. Therefore, our findings strongly suggest the involvement of USP32 in GC progression and provide a potential target for future therapy of GC.
Collapse
Affiliation(s)
- Ning Dou
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qingqing Hu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Li Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qiong Wu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yandong Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
47
|
Hu X, Lu E, Pan C, Xu Y, Zhu X. Overexpression and biological function of PRDX6 in human cervical cancer. J Cancer 2020; 11:2390-2400. [PMID: 32201510 PMCID: PMC7066013 DOI: 10.7150/jca.39892] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/23/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Our previous study demonstrated that the peroxiredoxin 6 (PRDX6) protein was downregulated in squamous cervical cancer samples after neoadjuvant chemotherapy compared with the expression level before chemotherapy. However, the effect of PRDX6 on the biological behavior of cervical cancer is still uncertain. Thus, the purpose of this study was to explore the functional impacts of PRDX6 gene on the biological behavior of cervical squamous cancer cells. Methods: An immunofluorescence assay was applied to evaluate the expression difference of PRDX6 between cervical cancer tissue and normal cervical tissue samples. A lentivirus was used to upregulate and downregulate PRDX6 expression in SiHa cells. Furthermore, the role of PRDX6 on cell proliferation, apoptosis, migration and invasion was evaluated. Additionally, the effect of PRDX6 on the progression of the cervical cancer was investigated via a xenograft model in BALB/c nude mice that either overexpressed or underexpressed PRDX6. Results: The expression of PRDX6 was generally increased in cervical cancer tissues. Furthermore, the overexpression of PRDX6 stimulated the proliferation, migration and invasion of cervical squamous cancer cells, and suppressed cell apoptosis. The opposite results were also obtained after successful knockdown of PRDX6. In addition, the overexpression of PRDX6 significantly promoted the growth of cervical carcinoma in vivo. Conclusions: PRDX6 promoted the proliferation, migration and invasion, and inhibited apoptosis in cervical cancer cells, indicating that PRDX6 is an important promoter of cervical cancer tumorigenicity.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Ermei Lu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Chunyu Pan
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yichi Xu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
48
|
Teixeira AF, Ten Dijke P, Zhu HJ. On-Target Anti-TGF-β Therapies Are Not Succeeding in Clinical Cancer Treatments: What Are Remaining Challenges? Front Cell Dev Biol 2020. [PMID: 32733895 DOI: 10.3389/fcell.2020.00605.pmid:32733895;pmcid:pmc7360684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Metastasis is the leading cause of death for cancer patients. During cancer progression, the initial detachment of cells from the primary tumor and the later colonization of a secondary organ are characterized as limiting steps for metastasis. Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are opposite dynamic multistep processes that enable these critical events in metastasis by altering the phenotype of cancer cells and improving their ability to migrate, invade and seed at distant organs. Among the molecular pathways that promote tumorigenesis in late-stage cancers, transforming growth factor-β (TGF-β) is described as an EMT master inducer by controlling different genes and proteins related to cytoskeleton assembly, cell-cell attachment and extracellular matrix remodeling. Still, despite the successful outcomes of different TGF-β pharmacological inhibitors in cell culture (in vitro) and animal models (in vivo), results in cancer clinical trials are poor or inconsistent at least, highlighting the existence of crucial components in human cancers that have not been properly explored. Here we review most recent findings to provide perspectives bridging the gap between on-target anti-TGF-β therapies in vitro and in pre-clinical models and the poor clinical outcomes in treating cancer patients. Specifically, we focus on (i) the dual roles of TGF-β signaling in cancer metastasis; (ii) dynamic signaling; (iii) functional differences of TGF-β free in solution vs. in exosomes; (iv) the regulatory effects of tumor microenvironment (TME) - particularly by cancer-associated fibroblasts - on TGF-β signaling pathway. Clearly identifying and establishing those missing links may provide strategies to revitalize and clinically improve the efficacy of TGF-β targeted therapies.
Collapse
Affiliation(s)
- Adilson Fonseca Teixeira
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
49
|
Abstract
Transforming growth factor (TGF)-β is a secreted multifunctional cytokine that signals via plasma membrane TGF-β type I and type II receptors and intercellular SMAD transcriptional effectors. Aberrant inter- and intracellular TGF-β signaling can contribute to cancer progression. In normal cells and early stages of cancer, TGF-β can stimulate epithelial growth arrest and elicit a tumor suppressor function. However, in late stages of cancer, when the cytostatic effects of TGF-β in cancer cells are blocked, TGF-β signaling can act as tumor promoter by its ability to stimulate epithelial-to-mesenchymal transition of cancer cells, by stimulating angiogenesis, and by promoting evasion of immune responses. In this review, we will discuss the rationale and challenges of targeting TGF-β signaling in cancer and summarize the clinical status of TGF-β signaling inhibitors that interfere with TGFβ bioavailability, TGF-βreceptor interaction, or TGF-β receptor kinase function. Moreover, we will discuss targeting of TGF-β signaling modulators and downstream effectors as well as alternative approaches by using promising technologies that may lead to entirely new classes of drugs.
Collapse
Affiliation(s)
- Linh Khanh Huynh
- Laboratory of Experimental Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Christopher John Hipolito
- Cancer Signaling, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Peptide Core Facility, Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Peter Ten Dijke
- Cancer Signaling, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Oncode Institute and Cell Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
50
|
Huynh LK, Hipolito CJ, ten Dijke P. A Perspective on the Development of TGF-β Inhibitors for Cancer Treatment. Biomolecules 2019; 9:biom9110743. [PMID: 31744193 PMCID: PMC6921009 DOI: 10.3390/biom9110743] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor (TGF)-β is a secreted multifunctional cytokine that signals via plasma membrane TGF-β type I and type II receptors and intercellular SMAD transcriptional effectors. Aberrant inter- and intracellular TGF-β signaling can contribute to cancer progression. In normal cells and early stages of cancer, TGF-β can stimulate epithelial growth arrest and elicit a tumor suppressor function. However, in late stages of cancer, when the cytostatic effects of TGF-β in cancer cells are blocked, TGF-β signaling can act as tumor promoter by its ability to stimulate epithelial-to-mesenchymal transition of cancer cells, by stimulating angiogenesis, and by promoting evasion of immune responses. In this review, we will discuss the rationale and challenges of targeting TGF-β signaling in cancer and summarize the clinical status of TGF-β signaling inhibitors that interfere with TGF−β bioavailability, TGF-β/receptor interaction, or TGF-β receptor kinase function. Moreover, we will discuss targeting of TGF-β signaling modulators and downstream effectors as well as alternative approaches by using promising technologies that may lead to entirely new classes of drugs.
Collapse
Affiliation(s)
- Linh Khanh Huynh
- Laboratory of Experimental Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan;
| | - Christopher John Hipolito
- Cancer Signaling, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan;
- Peptide Core Facility, Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Peter ten Dijke
- Cancer Signaling, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan;
- Oncode Institute and Cell Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Correspondence: ; Tel.: +31-71-526-9271; Fax: +31-71-526-8270
| |
Collapse
|