1
|
Ouchaoui AA, Hadad SEE, Aherkou M, Fadoua E, Mouad M, Ramli Y, Kettani A, Bourais I. Unlocking Benzosampangine's Potential: A Computational Approach to Investigating, Its Role as a PD-L1 Inhibitor in Tumor Immune Evasion via Molecular Docking, Dynamic Simulation, and ADMET Profiling. Bioinform Biol Insights 2024; 18:11779322241298591. [PMID: 39564188 PMCID: PMC11574905 DOI: 10.1177/11779322241298591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
The interaction between programmed cell death protein 1 (PD-1) and its ligand PD-L1 plays a crucial role in tumor immune evasion, presenting a critical target for cancer immunotherapy. Despite being effective, current monoclonal antibodies present some drawbacks such as high costs, toxicity, and resistance development. Therefore, the development of small-molecule inhibitors is necessary, especially those derived from natural sources. In this study, benzosampangine is predicted as a promising PD-L1 inhibitor, with potential applications in cancer immunotherapy. Utilizing the high-resolution crystal structure of human PD-L1 (PDB ID: 5O45), we screened 511 natural compounds, identifying benzosampangine as a top candidate with exceptional inhibitory properties. Molecular docking predicted that benzosampangine exhibits a strong binding affinity for PD-L1 (-9.4 kcal/mol) compared with established controls such as CA-170 (-6.5 kcal/mol), BMS-202 (-8.6 kcal/mol), and pyrvinium (-8.9 kcal/mol). The compound's predicted binding efficacy is highlighted by robust interactions with key amino acids (ILE54, TYR56, GLN66, MET115, ILE116, SER117, ALA121, ASP122) within the active site, notably forming 3 Pi-sulfur interactions with MET115-an interaction absents in control inhibitors. In addition, ADMET profiling suggests that over the control molecules, benzosampangine has several key advantages, including favorable solubility, permeability, metabolic stability, and low toxicity, while adhering to Lipinski's rule of five. Molecular dynamic simulations predict the stability of the benzosampangine-PD-L1 complex, reinforcing its potential to sustain inhibition of the PD-1/PD-L1 pathway. MMGBSA analysis calculated a binding free energy (ΔGbind) of -39.39 kcal/mol for the benzosampangine-PD-L1 complex, with significant contributions from Coulombic, lipophilic, and Van der Waals interactions, validating the predicted docking results. This study investigates in silico benzosampangine, predicting its better molecular interactions and pharmacokinetic profile compared with several already known PD-L1 inhibitors.
Collapse
Affiliation(s)
- Abderrahim Ait Ouchaoui
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, Morocco
- Mohammed VI Center for Research and Innovation (CM6RI), Rabat, Morocco
| | - Salah Eddine El Hadad
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, Morocco
- Mohammed VI Center for Research and Innovation (CM6RI), Rabat, Morocco
| | - Marouane Aherkou
- Mohammed VI Center for Research and Innovation (CM6RI), Rabat, Morocco
- Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Elkamili Fadoua
- Rabat Medical and Pharmacy School, Mohammed Vth University, Rabat, Morocco
| | - Mkamel Mouad
- Mohammed VI Center for Research and Innovation (CM6RI), Rabat, Morocco
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Anass Kettani
- Laboratory of Biology and Health, URAC 34, Faculty of Sciences Ben M'sik, Health and Biotechnology Research Center, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ilhame Bourais
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, Morocco
- Mohammed VI Center for Research and Innovation (CM6RI), Rabat, Morocco
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
2
|
Lopes-Pinto M, Lacerda-Nobre E, Silva AL, Marques P. Therapeutical Usefulness of PD-1/PD-L1 Inhibitors in Aggressive or Metastatic Pituitary Tumours. Cancers (Basel) 2024; 16:3033. [PMID: 39272895 PMCID: PMC11394371 DOI: 10.3390/cancers16173033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Therapeutic options for pituitary neuroendocrine tumours (PitNETs) refractory to temozolomide are scarce. Immune checkpoint inhibitors (ICIs), particularly inhibitors of the programmed cell death-1 (PD-1) pathway and its ligand (PD-L1), have been experimentally used in aggressive or metastatic PitNETs. We aimed to study the therapeutic usefulness of anti-PD-1 drugs in patients with aggressive or metastatic PitNETs. Published cases and case series involving patients with PitNETs treated with PD-1/PD-L1 inhibitors were reviewed. Demographic data, clinical-pathological features, previous therapies, drug dosage and posology, and the best radiological and biochemical responses, as well as survival data, were evaluated. We identified 29 cases of aggressive (n = 13) or metastatic (n = 16) PitNETs treated with PD-1/PD-L1 inhibitors. The hypersecretion of adrenocorticotropic hormone (ACTH) was documented in eighteen cases (62.1%), seven were prolactinomas (24.1%), and four were non-functioning PitNETs. All patients underwent various therapies prior to using ICIs. Overall, a positive radiological response (i.e., partial/complete radiological response and stable disease) was observed in eighteen of twenty-nine cases (62.1%), of which ten and four were ACTH- and prolactin-secreting PitNETs, respectively. Hormonal levels reduced or stabilised after using ICIs in 11 of the 17 functioning PitNET cases with available data (64.7%). The median survival of patients treated with ICIs was 13 months, with a maximum of 42 months in two ACTH-secreting tumours. Among 29 patients with PitNETs treated with PD-1/PD-L1 inhibitors, the positive radiological and biochemical response rates were 62.1% and 64.7%, respectively. Altogether, these data suggest a promising role of ICIs in patients with aggressive or metastatic PitNETs refractory to other treatment modalities.
Collapse
Affiliation(s)
- Mariana Lopes-Pinto
- Endocrinology Department, Unidade Local de Saúde de Santa Maria, Hospital de Santa Maria, 1649-035 Lisbon, Portugal
| | - Ema Lacerda-Nobre
- Endocrinology Department, Unidade Local de Saúde de Santa Maria, Hospital de Santa Maria, 1649-035 Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Ana Luísa Silva
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Faculdade de Medicina, Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal
| | - Pedro Marques
- Faculdade de Medicina, Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal
- Pituitary Tumor Unit, Endocrinology Department, Hospital CUF Descobertas, 1998-018 Lisbon, Portugal
| |
Collapse
|
3
|
Guo X, Yang Y, Qian Z, Chang M, Zhao Y, Ma W, Wang Y, Xing B. Immune landscape and progress in immunotherapy for pituitary neuroendocrine tumors. Cancer Lett 2024; 592:216908. [PMID: 38677640 DOI: 10.1016/j.canlet.2024.216908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Pituitary neuroendocrine tumors (pitNETs) are the second most common primary brain tumors. Despite their prevalence, the tumor immune microenvironment (TIME) and its clinical implications remain largely unexplored. This review provides a comprehensive overview of current knowledge on the immune landscape and advancements in targeted immunotherapy for pitNETs. Macrophages and T cells are principal immune infiltrates within the TIME. Different subtypes of pitNETs display distinct immune patterns, influencing tumor progressive behaviors. PD-L1, the most extensively studied immune checkpoint, is prominently expressed in hormonal pitNETs and correlates with tumor growth and invasion. Cytokines and chemokines including interleukins, CCLs, and CXCLs have complex correlations with tumor subtypes and immune cell infiltration. Crosstalk between macrophages and pitNET cells highlights bidirectional regulatory roles, suggesting potential macrophage-targeted strategies. Recent preclinical studies have demonstrated the efficacy of anti-PD-L1 therapy in a mouse model of corticotroph pitNET. Moreover, anti-PD-1 and/or anti-CTLA-4 immunotherapy has been applied globally in 28 cases of refractory pitNETs, showing more favorable responses in pituitary carcinomas than aggressive pitNETs. In conclusion, the TIME of pitNETs represents a promising avenue for targeted immunotherapy and warrants further investigation.
Collapse
Affiliation(s)
- Xiaopeng Guo
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiying Yang
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Eight-Year Program of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhihong Qian
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Mengqi Chang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Bing Xing
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Lopes-Pinto M, Lacerda-Nobre E, Silva AL, Tortosa F, Marques P. The Role of Programmed Cell Death Ligand 1 Expression in Pituitary Tumours: Lessons from the Current Literature. Neuroendocrinology 2024; 114:709-720. [PMID: 38754394 DOI: 10.1159/000539345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Programmed cell death-1 (PD-1) and PD ligand-1 (PD-L1) expression predict the biological behaviour, aggressiveness, and response to immune checkpoint inhibitors in different cancers. We reviewed the published data on PD-L1 expression in pituitary tumours from the perspective of its biological role and prognostic usefulness. SUMMARY A literature review focused on PD-L1 expression in pituitary tumours was performed. Six immunohistochemistry-based studies which assessed PD-L1 positivity in pituitary tumours were included, encompassing 704 patients. The cohort consisted of 384 (54.5%) nonfunctioning tumours and 320 (43.5%) functioning pituitary tumours. PD-L1 expression was positive in 248 cases (35.2%). PD-L1 positivity rate was higher in functioning than in nonfunctioning tumours (46.3% vs. 26.0%; p < 0.001) but also higher in growth hormone-secreting tumours (56.7%) and prolactinomas (53.6%) than in thyrotroph (33.3%) or corticotroph tumours (20.6%). While proliferative pituitary tumours showed higher rate of PD-L1 positivity than non-proliferative tumours (p < 0.001), no association with invasion or recurrence was found. KEY MESSAGES PD-L1 is expressed in a substantial number of pituitary tumours, predominantly in the functioning ones. PD-L1 positivity rates were significantly higher in proliferative pituitary tumours in comparison to non-proliferative tumours, but no differences were found concerning invasive or recurrent pituitary tumours. More studies following homogeneous and standardised methodologies are needed to fully elucidate the role and usefulness of PD-L1 expression in pituitary tumours.
Collapse
Affiliation(s)
- Mariana Lopes-Pinto
- Endocrinology Department, Unidade Local de Saúde de Santa Maria, Hospital de Santa Maria, Lisbon, Portugal
| | - Ema Lacerda-Nobre
- Endocrinology Department, Unidade Local de Saúde de Santa Maria, Hospital de Santa Maria, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Luísa Silva
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Saúde Ambiental da Faculdade de Medicina da Universidade de Lisboa (ISAMB-FMUL), Lisbon, Portugal
| | - Francisco Tortosa
- Pituitary Tumor Unit, Pathology Department, Hospital CUF Descobertas, Lisbon, Portugal
| | - Pedro Marques
- Pituitary Tumor Unit, Endocrinology Department, Hospital CUF Descobertas, Lisbon, Portugal
- Faculdade de Medicina, Universidade Católica Portuguesa, Lisbon, Portugal
| |
Collapse
|
5
|
Sabini E, Khan A, Caturegli P. Сytotoxic T lymphocyte-associated protein 4 (CTLA4) is overexpressed in a subset of prolactin- and growth hormone-secreting pituitary adenomas. Endocr Relat Cancer 2024; 31:e230196. [PMID: 37870923 PMCID: PMC11249045 DOI: 10.1530/erc-23-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
Cytotoxic T lymphocyte-associated protein 4 (CTLA4), a negative regulator typically expressed on the surface of T lymphocytes, is targeted by immunotherapy in patients with an ever-expanding spectrum of cancers. Characterizing the expression of CTLA4 in the pituitary gland could provide additional rationale for using immune checkpoint inhibitors in pituitary adenoma patients who do not respond to conventional treatments. We assessed the expression of CTLA4 mRNA and protein in a panel of 157 human pituitary glands, 45 collected at autopsy and 112 at surgery. These specimens included 50 normal glands and 107 adenomas: 41 nonsecreting, 25 PRL-, 24 ACTH-, 11 GH-, 2 TSH-, 1 FSH-secreting, and 3 atypical. Specimens were stained for CTLA4 and adenohypophyseal hormones using RNAscope in situ hybridization, immunohistochemistry, and RNAscope Multiplex Fluorescent Assay. CTLA4 mRNA was detectable in most normal pituitary glands (48 of 50, 96%) but varied in expression, with a histological score (H-score) ranging from 0.6 to 20. The variation did not depend upon the patient's gender and age and was not significantly affected by the archival storage time. CTLA4 expression was higher (P = 0.022) in pituitary adenomas than normal glands, with the greatest levels seen in PRL- and GH-secreting adenomas (P = 0.009 and 0.023 versus normal, respectively). Eight of 25 (32%) prolactinomas and 3 of 11 (27%) GH-adenomas had an H-score greater than 20, while no differences were seen for the other types. These novel data highlight the expression of an immune checkpoint such as CTLA4 on pituitary endocrine cells, a finding that could be exploited for therapeutical applications.
Collapse
Affiliation(s)
- Elena Sabini
- Department of Pathology, Johns Hopkins Hospital, School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins Hospital, School of Medicine, Baltimore, Maryland, USA
| | - Amna Khan
- Department of Pathology, Johns Hopkins Hospital, School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins Hospital, School of Medicine, Baltimore, Maryland, USA
| | - Patrizio Caturegli
- Department of Pathology, Johns Hopkins Hospital, School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins Hospital, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Iglesias P. Aggressive and Metastatic Pituitary Neuroendocrine Tumors: Therapeutic Management and Off-Label Drug Use. J Clin Med 2023; 13:116. [PMID: 38202123 PMCID: PMC10779494 DOI: 10.3390/jcm13010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Pituitary neuroendocrine tumors (PitNETs) are the most common pituitary tumors and the second most common brain tumors. Although the vast majority (>90%) are benign, a small percentage (<2%) are aggressive. These aggressive PitNETs (AgPitNETs) are defined by the presence of radiological invasion, a high rate of cell proliferation, resistance to conventional treatments, and/or a high propensity for recurrence. Lastly, there are the rare pituitary carcinomas, also known as metastatic PitNETs (MetPitNETs), which account for only 0.2% of cases and are defined by the presence of craniospinal or distant metastases. At present, there are no definitive factors that allow us to predict with certainty the aggressive behavior of PitNETs, making the therapeutic management of AgPitNETs a real challenge. Surgery is considered the first-line treatment for AgPitNETs and MetPitNETs. Radiation therapy can be effective in controlling tumor growth and regulating hormone hypersecretion. Currently, there are no approved non-endocrine medical therapies for the management of AgPitNETs/MetPitNETs, mainly due to the lack of randomized controlled clinical trials. As a result, many of the medical therapies used are off-label drugs, and several are under investigation. Temozolomide (TMZ) is now recognized as the primary medical treatment following the failure of standard therapy (medical treatment, surgery, and radiotherapy) in AgPitNETs/MetPitNETs due to its ability to improve overall and progression-free survival rates in responding patients over 5 years. Other therapeutic options include pituitary-targeted therapies (dopamine agonists and somatostatin analogs), hormonal antisecretory drugs, non-hormonal targeted therapies, radionuclide treatments, and immunotherapy. However, the number of patients who have undergone these treatments is limited, and the results obtained to date have been inconsistent. As a result, it is imperative to expand the cohort of patients undergoing treatment to better determine the therapeutic efficacy and safety of these drugs for individuals with AgPitNETs/MetPitNETs.
Collapse
Affiliation(s)
- Pedro Iglesias
- Department of Endocrinology, Hospital Universitario Puerta de Hierro Majadahonda, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana (IDIPHISA), 28222 Madrid, Spain
| |
Collapse
|
7
|
Toader C, Dobrin N, Tataru CI, Covache-Busuioc RA, Bratu BG, Glavan LA, Costin HP, Corlatescu AD, Dumitrascu DI, Ciurea AV. From Genes to Therapy: Pituitary Adenomas in the Era of Precision Medicine. Biomedicines 2023; 12:23. [PMID: 38275385 PMCID: PMC10813694 DOI: 10.3390/biomedicines12010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
This review presents a comprehensive analysis of pituitary adenomas, a type of brain tumor with diverse behaviors and complexities. We cover various treatment approaches, including surgery, radiotherapy, chemotherapy, and their integration with newer treatments. Key to the discussion is the role of biomarkers in oncology for risk assessment, diagnosis, prognosis, and the monitoring of pituitary adenomas. We highlight advances in genomic, epigenomic, and transcriptomic analyses and their contributions to understanding the pathogenesis and molecular pathology of these tumors. Special attention is given to the molecular mechanisms, including the impact of epigenetic factors like histone modifications, DNA methylation, and transcriptomic changes on different subtypes of pituitary adenomas. The importance of the tumor immune microenvironment in tumor behavior and treatment response is thoroughly analyzed. We highlight potential breakthroughs and innovations for a more effective management and treatment of pituitary adenomas, while shedding light on the ongoing need for research and development in this field to translate scientific knowledge into clinical advancements, aiming to improve patient outcomes.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (D.-I.D.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Nicolaie Dobrin
- Neurosurgical Clinic, “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iași, Romania
| | - Catalina-Ioana Tataru
- Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital of Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (D.-I.D.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (D.-I.D.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (D.-I.D.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (D.-I.D.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (D.-I.D.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (D.-I.D.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (D.-I.D.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
8
|
Lu Z, Ni H, Yang X, Tan L, Zhuang H, Mo Y, Wei X, Qi L, Xiang B. Prognostic potential of preoperative circulating tumor cells to predict the early progression recurrence in hepatocellular carcinoma patients after hepatectomy. BMC Cancer 2023; 23:1150. [PMID: 38012581 PMCID: PMC10680336 DOI: 10.1186/s12885-023-11629-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The role of circulating tumor cells (CTCs) in prognosis prediction has been actively studied in hepatocellular carcinoma (HCC) patients. However, their efficiency in accurately predicting early progression recurrence (EPR) is unclear. This study aimed to investigate the clinical potential of preoperative CTCs to predict EPR in HCC patients after hepatectomy. METHODS One hundred forty-five HCC patients, whose preoperative CTCs were detected, were enrolled. Based on the recurrence times and types, the patients were divided into four groups, including early oligo-recurrence (EOR), EPR, late oligo-recurrence (LOR), and late progression recurrence (LPR). RESULTS Among the 145 patients, 133 (91.7%) patients had a postoperative recurrence, including 51 EOR, 42 EPR, 39 LOR, and 1 LPR patient. Kaplan-Meier survival curve analysis indicated that the HCC patients with EPR had the worst OS. There were significant differences in the total-CTCs (T-CTCs) and CTCs subtypes count between the EPR group with EOR and LOR groups. Cox regression analysis indicated that the T-CTC count of > 5/5 mL, the presence of microvascular invasion (MVI) and satellite nodules were the independent risk factors for EPR. The efficiency of T-CTCs was superior as compared to those of the other indicators in predicting EPR. Moreover, the combined model demonstrated a markedly superior area under the curve (AUC). CONCLUSIONS The HCC patients with EPR had the worst OS. The preoperative CTCs was served as a prognostic indicator of EPR for HCC patients. The combined models, including T-CTCs, MVI, and satellite nodules, had the best performance to predict EPR after hepatectomy.
Collapse
Grants
- 81960450 National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
- 81960450 National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
- 2017ZX10203207 the National Major Special Science and Technology Project
- 2017ZX10203207 the National Major Special Science and Technology Project
- AA18221001, AB18050020, and 2020AB34006 the High-Level Innovation Team and Outstanding Scholar Program in Guangxi Colleges and Universities, "139" Projects for Training of High-Level Medical Science Talents from Guangxi, the Key Research and Development Project of Guangxi
- AA18221001, AB18050020, and 2020AB34006 the High-Level Innovation Team and Outstanding Scholar Program in Guangxi Colleges and Universities, "139" Projects for Training of High-Level Medical Science Talents from Guangxi, the Key Research and Development Project of Guangxi
- GKE2017-ZZ02, GKE2018-KF02, and GKE2019-ZZ07 the Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors of the Ministry of Education, Guangxi Independent Research Project
- GKE2017-ZZ02, GKE2018-KF02, and GKE2019-ZZ07 the Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors of the Ministry of Education, Guangxi Independent Research Project
- S2019039 Development and Application of Medical and Health Appropriate Technology in Guangxi
- the High-Level Innovation Team and Outstanding Scholar Program in Guangxi Colleges and Universities, “139” Projects for Training of High-Level Medical Science Talents from Guangxi, the Key Research and Development Project of Guangxi
Collapse
Affiliation(s)
- Zhan Lu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, 71# Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, People's Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Ministry of Education, Nanning, People's Republic of China
- Guangxi Medical University, Nanning, People's Republic of China
| | - Hanghang Ni
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, 71# Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, People's Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Ministry of Education, Nanning, People's Republic of China
- Guangxi Medical University, Nanning, People's Republic of China
| | - Xihua Yang
- Department of Surgical Oncology, Chenzhou No. 1 People's Hospital, Chenzhou, People's Republic of China
| | - Lihao Tan
- Guangxi Medical University, Nanning, People's Republic of China
| | - Haixiao Zhuang
- Guangxi Medical University, Nanning, People's Republic of China
| | - Yunning Mo
- Guangxi Medical University, Nanning, People's Republic of China
| | - Xingyu Wei
- Guangxi Medical University, Nanning, People's Republic of China
| | - Lunan Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, 71# Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, People's Republic of China.
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Ministry of Education, Nanning, People's Republic of China.
- Guangxi Medical University, Nanning, People's Republic of China.
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, People's Republic of China.
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, 71# Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, People's Republic of China.
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Ministry of Education, Nanning, People's Republic of China.
- Guangxi Medical University, Nanning, People's Republic of China.
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, People's Republic of China.
| |
Collapse
|
9
|
Nie D, Li C, Zhang Y. PitNETs and the gut microbiota: potential connections, future directions. Front Endocrinol (Lausanne) 2023; 14:1255911. [PMID: 38027221 PMCID: PMC10657991 DOI: 10.3389/fendo.2023.1255911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
The role of the gut microbiome has been widely discussed in numerous works of literature. The biggest concern is the association of the gut microbiome with the central nervous system through the microbiome-brain-gut axis in the past ten years. As more and more research has been done on the relationship between the disease of the central nervous system and gut microbes. This fact is being revealed that gut microbes seem to play an important role from the onset and progression of the disease to clinical symptoms, and new treatments. As a special tumor of the central nervous system, pituitary neuroendocrine tumors (PitNETs)are closely related to metabolism, endocrinology, and immunity. These factors are the vectors through which intestinal microbes interact with the central nervous system. However, little is known about the effects of gut microbes on the PitNET. In this review, the relationship of gut microbiota in PitNETs is introduced, the potential effects of the gut-brain axis in this relationship are analyzed, and future research directions are presented.
Collapse
Affiliation(s)
| | | | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Tapoi DA, Popa ML, Tanase C, Derewicz D, Gheorghișan-Gălățeanu AA. Role of Tumor Microenvironment in Pituitary Neuroendocrine Tumors: New Approaches in Classification, Diagnosis and Therapy. Cancers (Basel) 2023; 15:5301. [PMID: 37958474 PMCID: PMC10649263 DOI: 10.3390/cancers15215301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Adenohypophysal pituitary tumors account for 10-15% of all intracranial tumors, and 25-55% display signs of invasiveness. Nevertheless, oncology still relies on histopathological examination to establish the diagnosis. Considering that the classification of pituitary tumors has changed significantly in recent years, we discuss the definition of aggressive and invasive tumors and the latest molecular criteria used for classifying these entities. The pituitary tumor microenvironment (TME) is essential for neoplastic development and progression. This review aims to reveal the impact of TME characteristics on stratifying these tumors in view of finding appropriate therapeutic approaches. The role of the pituitary tumor microenvironment and its main components, non-tumoral cells and soluble factors, has been addressed. The variable display of different immune cell types, tumor-associated fibroblasts, and folliculostellate cells is discussed in relation to tumor development and aggressiveness. The molecules secreted by both tumoral and non-tumoral cells, such as VEGF, FGF, EGF, IL6, TNFα, and immune checkpoint molecules, contribute to the crosstalk between the tumor and its microenvironment. They could be considered potential biomarkers for diagnosis and the invasiveness of these tumors, together with emerging non-coding RNA molecules. Therefore, assessing this complex network associated with pituitary neuroendocrine tumors could bring a new era in diagnosing and treating this pathology.
Collapse
Affiliation(s)
- Dana Antonia Tapoi
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Maria-Linda Popa
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Department of Cell Biology and Clinical Biochemistry, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Diana Derewicz
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Pediatric Hematology and Oncology, Marie Sklodowska Curie Clinical Emergency Hospital, 041447 Bucharest, Romania
| | - Ancuța-Augustina Gheorghișan-Gălățeanu
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- C.I. Parhon National Institute of Endocrinology, 011863 Bucharest, Romania
| |
Collapse
|
11
|
Yuan F, Cai X, Wang Y, Du C, Cong Z, Zeng X, Tang C, Ma C. Comprehensive analysis of m 6A subtype classification for immune microenvironment of pituitary adenomas. Int Immunopharmacol 2023; 124:110784. [PMID: 37607464 DOI: 10.1016/j.intimp.2023.110784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND N6-methyladenosine (m6A) RNA methylation and tumor immune microenvironment (IME) have an essential role in tumor development. However, their relationships in pituitary adenomas (PAs) remains unclear. METHODS PA datasets from the Gene Expression Omnibus (GEO) and European Bioinformatics Institute (EMBL-EBI) were used. We utilized hierarchical clustering algorithms based on the m6A regulator gene set to identify m6A subtypes. ESTIMATE and CIBERSORT algorithms were applied to explore the compositions of stromal and immune cells. A nomogram model was constructed for the prediction of m6A subtypes in PAs. Immunohistochemistry and multiplex immunofluorescence staining were used to analyze the expression level of m6A regulator YTHDF2 in relation to M2 macrophages and immune checkpoints in PAs. RESULTS We concluded the IME landscape of m6A subtype classification and characterized two emerging m6A subtypes. Different IME between these two m6A subtypes were identified. Simultaneously, a polygenic nomogram model was constructed for predicting m6A subtype classification, with excellent predictive performance (training set, AUC = 0.984; validation set, AUC = 0.986). YTHDF2 was highly expressed in PAs and accompanied by upregulated M2 macrophages and expression of PD-L1. CONCLUSIONS We proposed two novel m6A subtypes in PAs for the first time and constructed a reliable and clinically accessible nomogram model for them. Meanwhile, YTHDF2 was first identified as a promising biomarker for immunotherapy and potential molecular target in PAs.
Collapse
Affiliation(s)
- Feng Yuan
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xiangming Cai
- School of Medicine, Southeast University, Nanjing, Jiangsu, China; Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Yingshuai Wang
- Department of Internal Medicine III, University Hospital Munich, Ludwig-Maximilians-University Munich, Germany
| | - Chaonan Du
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Zixiang Cong
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xinrui Zeng
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Chao Tang
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Chiyuan Ma
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; School of Medicine, Southeast University, Nanjing, Jiangsu, China; Jinling Hospital of Southern Medical University, Nanjing, Jiangsu, China; School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Ilie MD, De Alcubierre D, Carretti AL, Jouanneau E, Raverot G. Therapeutic targeting of the pituitary tumor microenvironment. Pharmacol Ther 2023; 250:108506. [PMID: 37562699 DOI: 10.1016/j.pharmthera.2023.108506] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The tumor microenvironment (TME), the complex environment in which tumors develop, has been increasingly targeted for cancer treatment in recent years. Aggressive pituitary tumors and pituitary carcinomas have been so far targeted with immune-checkpoint inhibitors (28 cases, including a large cohort), and anti-angiogenic drugs (34 cases), specifically bevacizumab (30 cases), sunitinib (three cases), and apatinib (one case). Here, we reviewed all these cases, reporting tumor response, potential predictors of response, as well as adverse events. Given that the histological type could potentially influence treatment response, we present the existing data separately for each type. Briefly, under ICIs, complete response was noted in one case, partial response in a third of cases, stable disease in 10% of cases, while 54% of tumors progressed. Under BVZ monotherapy, most cases (57%) showed stable disease, while 36% of tumors progressed; partial response was reported in only one case. The three cases treated with sunitinib monotherapy progressed. Regarding predictive factors of response, the tumor type (aggressive pituitary tumor versus pituitary carcinoma) appears as the strongest predictor of response to ICIs. To date, no predictor of response to anti-angiogenic drugs in the treatment of pituitary carcinomas and aggressive pituitary tumors has been identified. The interest of BZV add-on to first- or second-line chemotherapy warrants further investigation. In addition, we discuss perspectives regarding the TME-targeting in aggressive pituitary tumors and pituitary carcinomas, including perspectives on immunotherapy, anti-angiogenic drugs, as well as on other TME components, namely stromal cells, extracellular matrix, and secreted molecules.
Collapse
Affiliation(s)
- Mirela-Diana Ilie
- Inserm U1052, CNRS UMR5286, Cancer Research Center of Lyon, Lyon, France; Lyon 1 University, Villeurbanne, France; Endocrinology Department, "C.I. Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - Dario De Alcubierre
- Inserm U1052, CNRS UMR5286, Cancer Research Center of Lyon, Lyon, France; Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Anna Lucia Carretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy; Endocrinology Department, Reference Center for Rare Pituitary Diseases HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron, France
| | - Emmanuel Jouanneau
- Inserm U1052, CNRS UMR5286, Cancer Research Center of Lyon, Lyon, France; Lyon 1 University, Villeurbanne, France; Neurosurgery Department, Reference Center for Rare Pituitary Diseases HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron, France
| | - Gérald Raverot
- Inserm U1052, CNRS UMR5286, Cancer Research Center of Lyon, Lyon, France; Lyon 1 University, Villeurbanne, France; Endocrinology Department, Reference Center for Rare Pituitary Diseases HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron, France.
| |
Collapse
|
13
|
Cossu G, La Rosa S, Brouland JP, Pitteloud N, Harel E, Santoni F, Brunner M, Daniel RT, Messerer M. PD-L1 Expression in Pituitary Neuroendocrine Tumors/Pituitary Adenomas. Cancers (Basel) 2023; 15:4471. [PMID: 37760441 PMCID: PMC10526513 DOI: 10.3390/cancers15184471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/27/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND AND AIM About a third of Pituitary Neuroendocrine Tumors (PitNETs) may show aggressive behavior. Many efforts have been performed for identifying possible predictive factors to early determine the future behavior of PitNETs. Programmed cell death ligand 1 (PD-L1) expression was associated with a more aggressive biology in different solid tumors, but its role in PitNET is not well-established yet. Our study aims to analyze PD-L1 expression in a surgical cohort of PitNETs to determine its association with radiological invasion and pathology findings, as well as with long-term recurrence rates. METHODS We performed a retrospective analysis in a series of 86 PitNETs. Clinical presentation and radiological features of the preoperative period were collected, as well as pathological data and follow-up data. The rate of PD-L1 expression was immunohistochemically evaluated and expressed as a tumor proportion score (TPS). We assessed its relationship with cavernous sinus invasion and Trouillas' classification as primary outcomes. Secondary outcomes included the TPS' relationship with histopathological markers of proliferation, hormonal expression, tumor size and long-term recurrence rates. We calculated the optimal cut-point for the primary outcomes while maximizing the product of the sensitivity and specificity and then we evaluated the significance of secondary outcomes with logistic regression analysis. RESULTS Eighty-six patients were included in the analysis; 50 cases were non-functional PitNETs. The TPS for PD-L1 showed a highly right-skewed distribution in our sample, as 30.2% of patients scored 0. Using Trouillas' classification, we found that "proliferative" cases have a significantly higher probability to express PD-L1 in more than 30% of tumor cells (OR: 5.78; CI 95%: 1.80-18.4). This same cut-point was also associated with p53 expression. A positive association was found between PD-L1 expression and GH expression (p = 0.001; OR: 5.44; CI 95%: 1.98-14.98), while an inverse relationship was found with FSH/LH expression (p = 0.014; OR = 0.27, CI 95%: 0.10-0.76). No association was found with CS invasion, tumor size, bone erosion or dura invasion. We could not find any association between PD-L1 expression and recurrence. CONCLUSIONS PD-L1 expression was associated with proliferative grades of Trouillas' classification and p53 expression. We also confirmed a higher expression of PD-L1 in somatotroph tumors. Larger studies are necessary to investigate the relationship between PD-L1 expression and aggressive behaviors.
Collapse
Affiliation(s)
- Giulia Cossu
- Service of Neurosurgery, University Hospital of Lausanne, University of Lausanne, 1005 Lausanne, Switzerland; (E.H.); (R.T.D.); (M.M.)
| | - Stefano La Rosa
- Unit of Pathology, Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy;
- Department of Laboratory Medicine and Pathology, Institute of Pathology, University of Lausanne, 1005 Lausanne, Switzerland;
| | - Jean Philippe Brouland
- Department of Laboratory Medicine and Pathology, Institute of Pathology, University of Lausanne, 1005 Lausanne, Switzerland;
| | - Nelly Pitteloud
- Department of Endocrinology, University Hospital of Lausanne, University of Lausanne, 1005 Lausanne, Switzerland; (N.P.); (F.S.); (M.B.)
| | - Ethan Harel
- Service of Neurosurgery, University Hospital of Lausanne, University of Lausanne, 1005 Lausanne, Switzerland; (E.H.); (R.T.D.); (M.M.)
| | - Federico Santoni
- Department of Endocrinology, University Hospital of Lausanne, University of Lausanne, 1005 Lausanne, Switzerland; (N.P.); (F.S.); (M.B.)
| | - Maxime Brunner
- Department of Endocrinology, University Hospital of Lausanne, University of Lausanne, 1005 Lausanne, Switzerland; (N.P.); (F.S.); (M.B.)
| | - Roy Thomas Daniel
- Service of Neurosurgery, University Hospital of Lausanne, University of Lausanne, 1005 Lausanne, Switzerland; (E.H.); (R.T.D.); (M.M.)
| | - Mahmoud Messerer
- Service of Neurosurgery, University Hospital of Lausanne, University of Lausanne, 1005 Lausanne, Switzerland; (E.H.); (R.T.D.); (M.M.)
| |
Collapse
|
14
|
Luo M, Tang R, Wang H. Tumor immune microenvironment in pituitary neuroendocrine tumors (PitNETs): increased M2 macrophage infiltration and PD-L1 expression in PIT1-lineage subset. J Neurooncol 2023; 163:663-674. [PMID: 37418134 DOI: 10.1007/s11060-023-04382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE Tumor immune microenvironment in pituitary neuroendocrine tumors (PitNETs) and application of current immunotherapy for refractory PitNETs remains debated. We aim to evaluate the immune landscape in different lineages of PitNETs and determine the potential role of pituitary transcription factors in reshaping the tumor immune microenvironment (TIME), thus promoting the application of current immunotherapy for aggressive and metastatic PitNETs. METHODS Immunocyte infiltration and expression patterns of immune checkpoint molecules in different lineages of PitNETs were estimated via in silico analysis and validated using an IHC validation cohort. The correlation between varying immune components with clinicopathological features was assessed in PIT1-lineage PitNETs. RESULTS Transcriptome profiles from 210 PitNETs/ 8 normal pituitaries (NPs) and immunohistochemical validations of 77 PitNETs/6 NPs revealed a significant increase in M2-macrophage infiltration in PIT1-lineage PitNETs, compared with the TPIT-lineage, SF1-lineage subsets and NPs. While CD68 + macrophage, CD4 + T cells, and CD8 + T cells were not different among them. Increased M2-macrophage infiltration was associated with tumor volume (p < 0.0001, r = 0.57) in PIT1-lineage PitNETs. Meanwhile, differentially expressed immune checkpoint molecules (PD-L1, PD1, and CTLA-4) were screened and validated in IHC cohorts. The results showed that PD-L1 was highly expressed in PIT1-lineage subsets, and PD-L1 overexpression showed a positive correlation with tumor volume (p = 0.04, r = 0.29) and cavernous sinus invasion (p < 0.0001) in PIT1-lineage PitNETs. CONCLUSION PIT1-lineage PitNETs exhibit a distinct immune profile with enrichment of M2 macrophage infiltration and PD-L1 expression, which may contribute to its clinical aggressiveness. Application of current immune checkpoint inhibitors and M2-targeted immunotherapy might be more beneficial to treat aggressive and metastatic PIT-lineage PitNETs.
Collapse
Affiliation(s)
- Mei Luo
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Rui Tang
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Haijun Wang
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
15
|
Rodriguez A, Kamiya-Matsuoka C, Majd NK. The Role of Immunotherapy in the Treatment of Rare Central Nervous System Tumors. Curr Oncol 2023; 30:5279-5298. [PMID: 37366884 DOI: 10.3390/curroncol30060401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Establishing novel therapies for rare central nervous system (CNS) tumors is arduous due to challenges in conducting clinical trials in rare tumors. Immunotherapy treatment has been a rapidly developing field and has demonstrated improvements in outcomes for multiple types of solid malignancies. In rare CNS tumors, the role of immunotherapy is being explored. In this article, we review the preclinical and clinical data of various immunotherapy modalities in select rare CNS tumors, including atypical meningioma, aggressive pituitary adenoma, pituitary carcinoma, ependymoma, embryonal tumor, atypical teratoid/rhabdoid tumor, and meningeal solitary fibrous tumor. Among these tumor types, some studies have shown promise; however, ongoing clinical trials will be critical for defining and optimizing the role of immunotherapy for these patients.
Collapse
Affiliation(s)
- Andrew Rodriguez
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Nazanin K Majd
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
16
|
Marques P, Korbonits M. Tumour microenvironment and pituitary tumour behaviour. J Endocrinol Invest 2023; 46:1047-1063. [PMID: 37060402 DOI: 10.1007/s40618-023-02089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
The pituitary tumour microenvironment encompasses a spectrum of non-tumoural cells, such as immune, stromal or endothelial cells, as well as enzymes and signalling peptides like cytokines, chemokines and growth factors, which surround the tumour cells and may influence pituitary tumour behaviour and tumourigenic mechanisms. Recently, there has been intensive research activity in this field describing various pituitary tumour-infiltrating immune and stromal cell subpopulations, and immune- and microenvironment-related pathways. Key changes in oncological therapeutic avenues resulted in the recognition of pituitary as a target of adverse events for patients treated with immune checkpoint regulators. However, these phenomena can be turned into therapeutic advantage in severe cases of pituitary tumours. Therefore, unravelling the pituitary tumour microenvironment will allow a better understanding of the biology and behaviour of pituitary tumours and may provide further developments in terms of diagnosis and management of patients with aggressively growing or recurrent pituitary tumours.
Collapse
Affiliation(s)
- P Marques
- Pituitary Tumor Unit, Endocrinology Department, Hospital CUF Descobertas, Lisbon, Portugal.
- Faculdade de Medicina, Universidade Católica Portuguesa, Lisbon, Portugal.
| | - M Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
17
|
Chiloiro S, De Marinis L. The immune microenviroment in somatotropinomas: from biology to personalized and target therapy. Rev Endocr Metab Disord 2023; 24:283-295. [PMID: 36658300 PMCID: PMC10023617 DOI: 10.1007/s11154-022-09782-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2022] [Indexed: 01/21/2023]
Abstract
Pituitary tumors are rare neoplasms, with a heterogeneous biological and clinical behavior, due to their clinical course, local invasive growth, resistance to conventional therapies and the risk of disease progression. Recent studies on tumor microenvironment (TME) provided new knowledge on the biology of these neoplasia, that may explain the different phenotypes of these tumors and suggest new biomarkers able to predict the prognosis and the treatment outcome. The identification of molecular markers that act as targets for biological therapies may open new perspectives in the medical treatments of aggressive pituitary tumors.In this paper, we will review data of TME and target therapies in somatotropinomas.
Collapse
Affiliation(s)
- Sabrina Chiloiro
- UOC Endocrinology and Diabetology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Roma, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168, Roma, Italy
| | - Laura De Marinis
- UOC Endocrinology and Diabetology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Roma, Italy.
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168, Roma, Italy.
| |
Collapse
|
18
|
Targeting the Tumor Immune Microenvironment Could Become a Potential Therapeutic Modality for Aggressive Pituitary Adenoma. Brain Sci 2023; 13:brainsci13020164. [PMID: 36831707 PMCID: PMC9954754 DOI: 10.3390/brainsci13020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
OBJECT This study aimed to explore the relationship between the aggressiveness and immune cell infiltration in pituitary adenoma (PA) and to provide the basis for immuno-targeting therapies. METHODS One hundred and three patients with PA who underwent surgery at a single institution were retrospectively identified. The infiltration of macrophages and T-lymphocytes was quantitatively assessed. RESULTS The number of CD68+ macrophages was positively correlated with Knosp (p = 0.003) and MMP-9 expression grades (p = 0.00). The infiltration of CD163+ macrophages differed among Knosp (p = 0.022) and MMP-9 grades (p = 0.04). CD8+ tumor-infiltrating lymphocytes (TILs) were also positively associated with Knosp (p = 0.002) and MMP-9 grades (p = 0.01). Interestingly, MGMT expression was positively correlated with MMP-9 staining extent (p = 0.000). The quantities of CD8+ TILs (p = 0.016), CD68+ macrophages (p = 0.000), and CD163+ macrophages (p = 0.043) were negatively associated with MGMT expression levels. The number of CD68+ macrophages in the PD-L1 negative group was significantly more than that in the PD-L1 positive group (p = 0.01). The rate of PD-L1 positivity was positively correlated with the Ki-67 index (p = 0.046) and p53 expression (p = 0.029). CONCLUSION Targeted therapy for macrophages and CD8+ TILs could be a helpful treatment in the future for aggressive PA. Anti-PD-L1 therapy may better respond to PAs with higher Ki-67 and p53 expression and more infiltrating CD68+ macrophages. Multiple treatment modalities, especially combined with immunotherapy could become a novel therapeutic strategy for aggressive PA.
Collapse
|
19
|
Gubbi S, Vijayvergia N, Yu JQ, Klubo-Gwiezdzinska J, Koch CA. Immune Checkpoint Inhibitor Therapy in Neuroendocrine Tumors. Horm Metab Res 2022; 54:795-812. [PMID: 35878617 PMCID: PMC9731788 DOI: 10.1055/a-1908-7790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuroendocrine tumors (NETs) occur in various regions of the body and present with complex clinical and biochemical phenotypes. The molecular underpinnings that give rise to such varied manifestations have not been completely deciphered. The management of neuroendocrine tumors (NETs) involves surgery, locoregional therapy, and/or systemic therapy. Several forms of systemic therapy, including platinum-based chemotherapy, temozolomide/capecitabine, tyrosine kinase inhibitors, mTOR inhibitors, and peptide receptor radionuclide therapy have been extensively studied and implemented in the treatment of NETs. However, the potential of immune checkpoint inhibitor (ICI) therapy as an option in the management of NETs has only recently garnered attention. Till date, it is not clear whether ICI therapy holds any distinctive advantage in terms of efficacy or safety when compared to other available systemic therapies for NETs. Identifying the characteristics of NETs that would make them (better) respond to ICIs has been challenging. This review provides a summary of the current evidence on the value of ICI therapy in the management of ICIs and discusses the potential areas for future research.
Collapse
Affiliation(s)
- Sriram Gubbi
- Endocrinology, National Institutes of Health Clinical Center, Bethesda,
United States
| | | | - Jian Q Yu
- Nuclear Medicine, Fox Chase Cancer Center, Philadelphia, United
States
| | - Joanna Klubo-Gwiezdzinska
- National Institute of Diabetes and Digestive and Kidney Diseases,
National Institutes of Health, Bethesda, United States
| | - Christian A. Koch
- Medicine/Endocrinology, The University of Tennessee Health
Science Center, Memphis, United States
- Medicine, Fox Chase Cancer Center, Philadelphia, United
States
- Correspondence Prof. Christian A. Koch, FACP,
MACE Fox Chase Cancer
CenterMedicine, 333 Cottman
AvePhiladelphia19111-2497United
States215 728 2713
| |
Collapse
|
20
|
Nishiyama M, Iwasaki Y, Makino S. Animal Models of Cushing's Syndrome. Endocrinology 2022; 163:6761324. [PMID: 36240318 DOI: 10.1210/endocr/bqac173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 11/19/2022]
Abstract
Endogenous Cushing's syndrome is characterized by unique clinical features and comorbidities, and progress in the analysis of its genetic pathogenesis has been achieved. Moreover, prescribed glucocorticoids are also associated with exogenous Cushing's syndrome. Several animal models have been established to explore the pathophysiology and develop treatments for Cushing's syndrome. Here, we review recent studies reporting animal models of Cushing's syndrome with different features and complications induced by glucocorticoid excess. Exogenous corticosterone (CORT) administration in drinking water is widely utilized, and we found that CORT pellet implantation in mice successfully leads to a Cushing's phenotype. Corticotropin-releasing hormone overexpression mice and adrenal-specific Prkar1a-deficient mice have been developed, and AtT20 transplantation methods have been designed to examine the medical treatments for adrenocorticotropic hormone-producing pituitary neuroendocrine tumors. We also review recent advances in the molecular pathogenesis of glucocorticoid-induced complications using animal models.
Collapse
Affiliation(s)
- Mitsuru Nishiyama
- Health Care Center, Kochi University, Kochi city, Kochi 780-8520, Japan
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku city, Kochi 783-8505, Japan
| | - Yasumasa Iwasaki
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku city, Kochi 783-8505, Japan
- Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, Suzuka city, Mie 510-0293Japan
| | - Shinya Makino
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku city, Kochi 783-8505, Japan
- Department of Internal Medicine, Osaka Gyomeikan Hospital, Osaka city, Osaka 554-0012Japan
| |
Collapse
|
21
|
Zheng AC, Wang EJ, Aghi MK. Recent advancements in the molecular biology of pituitary adenomas. Expert Rev Endocrinol Metab 2022; 17:293-304. [PMID: 35702013 DOI: 10.1080/17446651.2022.2082942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Pituitary adenomas are a common and diverse group of intracranial tumors arising from the anterior pituitary that are usually slow-growing and benign, but still pose a significant healthcare burden to patients. Additionally, they are increasing in both incidence and prevalence, leading to a need for better understanding of molecular changes in the development of these tumors. AREAS COVERED A PubMed literature search was conducted using the terms 'pituitary adenoma' in combination with keywords related to secretory subtype: lactotroph, somatotroph, corticotroph, gonadotroph and null cell, in addition to their transcription factor expression: PIT1, TPIT, and SF-1. Articles resulting from this search were analyzed, as well as relevant articles cited as their references. In this review, we highlight recent advances in the genetic and epigenetic characterization of individual pituitary adenoma subtypes and the effect it may have on guiding future clinical treatment of these tumors. EXPERT OPINION Understanding the molecular biology of pituitary adenomas is a fundamental step toward advancing the treatment of these tumors. Yet crucial knowledge gaps exist in our understanding of the underlying molecular biology of pituitary adenomas which can potentially be addressed by turning to differentially activated molecular pathways in tumor relative to normal gland.
Collapse
Affiliation(s)
- Allison C Zheng
- Department of Neurosurgery; University of California at San Francisco (UCSF) San Francisco, CA, USA
| | - Elaina J Wang
- Department of Neurosurgery; Warren Alpert Medical School of Brown University Providence, RI, USA
| | - Manish K Aghi
- Department of Neurosurgery; University of California at San Francisco (UCSF) San Francisco, CA, USA
| |
Collapse
|
22
|
Marques P, Silva AL, López-Presa D, Faria C, Bugalho MJ. The microenvironment of pituitary adenomas: biological, clinical and therapeutical implications. Pituitary 2022; 25:363-382. [PMID: 35194709 DOI: 10.1007/s11102-022-01211-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
Abstract
The microenvironment of pituitary adenomas (PAs) includes a range of non-tumoral cells, such as immune and stromal cells, as well as cell signaling molecules such as cytokines, chemokines and growth factors, which surround pituitary tumor cells and may modulate tumor initiation, progression, invasion, angiogenesis and other tumorigenic processes. The microenvironment of PAs has been actively investigated over the last years, with several immune and stromal cell populations, as well as different cytokines, chemokines and growth factors being recently characterized in PAs. Moreover, key microenvironment-related genes as well as immune-related molecules and pathways have been investigated, with immune check point regulators emerging as promising targets for immunotherapy. Understanding the microenvironment of PAs will contribute to a deeper knowledge of the complex biology of PAs, as well as will provide developments in terms of diagnosis, clinical management and ultimately treatment of patients with aggressive and/or refractory PAs.
Collapse
Affiliation(s)
- Pedro Marques
- Endocrinology Department, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte (CHULN), Lisbon, Portugal.
| | - Ana Luísa Silva
- Endocrinology Department, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte (CHULN), Lisbon, Portugal
- Faculty of Medicine, Lisbon University, Lisbon, Portugal
| | - Dolores López-Presa
- Pathology Department, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte (CHULN), Lisbon, Portugal
| | - Cláudia Faria
- Neurosurgery Department, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte (CHULN), Lisbon, Portugal
| | - Maria João Bugalho
- Endocrinology Department, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte (CHULN), Lisbon, Portugal
- Faculty of Medicine, Lisbon University, Lisbon, Portugal
| |
Collapse
|
23
|
Di Nunno V, Franceschi E, Tosoni A, Gatto L, Maggio I, Lodi R, Bartolini S, Brandes AA. Immune-checkpoint inhibitors in pituitary malignancies. Anticancer Drugs 2022; 33:e28-e35. [PMID: 34348358 DOI: 10.1097/cad.0000000000001157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To date, there are no standardized systemic treatment options for patients with metastatic pituitary carcinoma progressed to chemo and radiation therapy. Immune-checkpoint inhibitors (ICIs) have been successfully assessed in other solid malignancies and could be a concrete hope for these patients. We performed a critical review of the literature aimed to evaluate studies assessing ICIs in pituitary malignancies. We also conducted research about published translational data assessing immune-contexture in these malignancies. Some preliminary reports reported a successful administration of pembrolizumab or the combination between nivolumab and ipilimumab in patients with metastatic ACTH-secreting pituitary carcinomas. Translational data suggest that adenomas secreting growth hormone and ACTH have a suppressed immune-microenvironment, which could be more likely to benefit from ICIs. Immune-checkpoint inhibitors can be an effective treatment in patients with pituitary carcinoma and maybe also recurrent adenoma. Tumors secreting growth hormone and ACTH are more likely to benefit from ICIs due to a different immune-microenvironment.
Collapse
Affiliation(s)
| | | | | | | | | | - Raffaele Lodi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | | |
Collapse
|
24
|
Voellger B, Zhang Z, Benzel J, Wang J, Lei T, Nimsky C, Bartsch JW. Targeting Aggressive Pituitary Adenomas at the Molecular Level-A Review. J Clin Med 2021; 11:jcm11010124. [PMID: 35011868 PMCID: PMC8745122 DOI: 10.3390/jcm11010124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/11/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
Pituitary adenomas (PAs) are mostly benign endocrine tumors that can be treated by resection or medication. However, up to 10% of PAs show an aggressive behavior with invasion of adjacent tissue, rapid proliferation, or recurrence. Here, we provide an overview of target structures in aggressive PAs and summarize current clinical trials including, but not limited to, PAs. Mainly, drug targets in PAs are based on general features of tumor cells such as immune checkpoints, so that programmed cell death 1 (ligand 1) (PD-1/PD-L1) targeting may bear potential to cure aggressive PAs. In addition, epidermal growth factor receptor (EGFR), mammalian target of rapamycin (mTOR), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and their downstream pathways are triggered in PAs, thereby modulating tumor cell proliferation, migration and/or tumor angiogenesis. Temozolomide (TMZ) can be an effective treatment of aggressive PAs. Combination of TMZ with 5-Fluorouracil (5-FU) or with radiotherapy could strengthen the therapeutic effects as compared to TMZ alone. Dopamine agonists (DAs) are the first line treatment for prolactinomas. Dopamine receptors are also expressed in other subtypes of PAs which renders DAs potentially suitable to treat other subtypes of PAs. Furthermore, targeting the invasive behavior of PAs could improve therapy. In this regard, human matrix metalloproteinase (MMP) family members and estrogens receptors (ERs) are highly expressed in aggressive PAs, and numerous studies demonstrated the role of these proteins to modulate invasiveness of PAs. This leaves a number of treatment options for aggressive PAs as reviewed here.
Collapse
Affiliation(s)
- Benjamin Voellger
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany; (Z.Z.); (J.B.); (J.W.); (C.N.); (J.-W.B.)
- Correspondence: ; Tel.: +49-6421-58-66447
| | - Zhuo Zhang
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany; (Z.Z.); (J.B.); (J.W.); (C.N.); (J.-W.B.)
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Julia Benzel
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany; (Z.Z.); (J.B.); (J.W.); (C.N.); (J.-W.B.)
- Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Junwen Wang
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany; (Z.Z.); (J.B.); (J.W.); (C.N.); (J.-W.B.)
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Christopher Nimsky
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany; (Z.Z.); (J.B.); (J.W.); (C.N.); (J.-W.B.)
| | - Jörg-Walter Bartsch
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany; (Z.Z.); (J.B.); (J.W.); (C.N.); (J.-W.B.)
| |
Collapse
|
25
|
Raverot G, Ilie MD, Lasolle H, Amodru V, Trouillas J, Castinetti F, Brue T. Aggressive pituitary tumours and pituitary carcinomas. Nat Rev Endocrinol 2021; 17:671-684. [PMID: 34493834 DOI: 10.1038/s41574-021-00550-w] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2021] [Indexed: 02/07/2023]
Abstract
Although usually benign, anterior pituitary tumours occasionally exhibit aggressive behaviour, with invasion of surrounding tissues, rapid growth, resistance to conventional treatments and multiple recurrences. In very rare cases, they metastasize and are termed pituitary carcinomas. The time between a 'classical' pituitary tumour and a pituitary carcinoma can be years, which means that monitoring should be performed regularly in patients with clinical (invasion and/or tumour growth) or pathological (Ki67 index, mitotic count and/or p53 detection) markers suggesting aggressiveness. However, although both invasion and proliferation have prognostic value, such parameters cannot predict outcome or malignancy without metastasis. Future research should focus on the biology of both tumour cells and their microenvironment, hopefully with improved therapeutic outcomes. Currently, the initial therapeutic approach for aggressive pituitary tumours is generally to repeat surgery or radiotherapy in expert centres. Standard medical treatments usually have no effect on tumour progression but they can be maintained on a long-term basis to, at least partly, control hypersecretion. In cases where standard treatments prove ineffective, temozolomide, the sole formally recommended treatment, is effective in only one-third of patients. Personalized use of emerging therapies, including peptide receptor radionuclide therapy, angiogenesis-targeted therapy and immunotherapy, will hopefully improve the outcomes of patients with this severe condition.
Collapse
Affiliation(s)
- Gérald Raverot
- Endocrinology Department, Reference Centre for Rare Pituitary Diseases HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron, France
- Lyon 1 University, Villeurbanne, France
- INSERM U1052, CNRS UMR5286, Cancer Research Centre of Lyon (CRLC), Lyon, France
| | - Mirela Diana Ilie
- Lyon 1 University, Villeurbanne, France
- INSERM U1052, CNRS UMR5286, Cancer Research Centre of Lyon (CRLC), Lyon, France
- Endocrinology Department, "C.I.Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - Hélène Lasolle
- Endocrinology Department, Reference Centre for Rare Pituitary Diseases HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron, France
- Lyon 1 University, Villeurbanne, France
- INSERM U1052, CNRS UMR5286, Cancer Research Centre of Lyon (CRLC), Lyon, France
| | - Vincent Amodru
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Endocrinology Department, Hôpital de la Conception, Reference Centre for Rare Pituitary Diseases HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille Maladies Rares (MarMaRa), Marseille, France
| | | | - Frédéric Castinetti
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Endocrinology Department, Hôpital de la Conception, Reference Centre for Rare Pituitary Diseases HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille Maladies Rares (MarMaRa), Marseille, France
| | - Thierry Brue
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Endocrinology Department, Hôpital de la Conception, Reference Centre for Rare Pituitary Diseases HYPO, Marseille, France.
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille Maladies Rares (MarMaRa), Marseille, France.
| |
Collapse
|
26
|
The intestinal flora of patients with GHPA affects the growth and the expression of PD-L1 of tumor. Cancer Immunol Immunother 2021; 71:1233-1245. [PMID: 34647152 PMCID: PMC9016060 DOI: 10.1007/s00262-021-03080-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023]
Abstract
Context Pituitary adenoma (PA) is a common intracranial tumor. The evidence indicates that the tumor immune microenvironment (TIME) is associated with PA and that the intestinal flora influences other tumors' growth through interacting with the TIME. However, how the intestinal microbial flora contributes to the development of PA through the immune response is unknown.
Objective and methods Here we used high-throughput Illumina MiSeq sequencing targeting the V3−V4 region of the 16S ribosomal RNA gene to investigate the intestinal flora of patients with growth hormone-secreting pituitary adenoma (GHPA), nonfunctional pituitary adenoma (NFPA), and healthy controls. We determined their effects on tumor growth and the TIME. Fecal microbiota transplantation (FMT) was performed after adoptive transfer via peripheral blood mononuclear cells to tumor-bearing nude mice, which allowed the study of the immune response. Result We discovered differences in the structures and quantities of intestinal flora between patients with GHPA, patients with NFPA, and healthy controls. After FMT, the intestinal flora of GHPA patients promoted the growth of tumors in mouse models. The number of programmed cell death ligand 1 (PD-L1)-positive cells increased in tumor tissues as well as the extent of infiltration of CD8+ cells. Increased numbers of CD3+CD8+ cells and increased levels of sPD-L1 were detected in peripheral blood. Conclusion These findings indicated that the intestinal flora of patients with GHPA promoted tumor growth and that the immune system may mediate this change. Supplementary Information The online version contains supplementary material available at 10.1007/s00262-021-03080-6.
Collapse
|
27
|
Lin AL, Tabar V, Young RJ, Cohen M, Cuaron J, Yang TJ, Rosenblum M, Rudneva VA, Geer EB, Bodei L. Synergism of Checkpoint Inhibitors and Peptide Receptor Radionuclide Therapy in the Treatment of Pituitary Carcinoma. J Endocr Soc 2021; 5:bvab133. [PMID: 34466766 PMCID: PMC8402930 DOI: 10.1210/jendso/bvab133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 11/23/2022] Open
Abstract
Context Aggressive pituitary tumors that have progressed following temozolomide have limited treatment options. Peptide receptor radionuclide therapy and immunotherapy may have a complementary role in the management of these tumors. Methods We provide follow-up data on a previously reported patient with a hypermutated recurrent tumor. The patient in this report provided written informed consent for tumor sequencing and review of medical records on an institutional review board–approved research protocol (NCT01775072). Results This patient with a corticotroph pituitary carcinoma with alkylator-induced somatic hypermutation has remained on treatment with ipilimumab and nivolumab for 3.5 years and remains clinically well. After an initial partial response to checkpoint inhibitors, she has had several recurrences that have undergone immunoediting of subclonal mutations, which have been effectively treated with continuation of immunotherapy, surgery, external beam radiation, and 177Lu-DOTATATE. Following external beam radiotherapy (RT), she had radiographic evidence of an abscopal response at a distant site of disease suggesting a synergism between checkpoint inhibitors and RT. Following treatment with 177Lu-DOTATATE, the patient had a partial response with a 61% reduction in volume of the target lesion. Conclusion In patients with aggressive pituitary tumors, treatment with checkpoint inhibitors may trigger an abscopal response from RT. With appropriate selection, an additional efficacious treatment, 177Lu-DOTATATE, may be available for a limited number of patients with aggressive pituitary tumors, including patients who have progressed on temozolomide and exhibit increased somatostatin receptor expression on 68Ga-DOTATATE positron emission tomography.
Collapse
Affiliation(s)
- Andrew L Lin
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Weill Cornell Medical College, New York, New York 10065, USA.,Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Viviane Tabar
- Weill Cornell Medical College, New York, New York 10065, USA.,Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Robert J Young
- Weill Cornell Medical College, New York, New York 10065, USA.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Marc Cohen
- Weill Cornell Medical College, New York, New York 10065, USA.,Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - John Cuaron
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - T Jonathan Yang
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Marc Rosenblum
- Weill Cornell Medical College, New York, New York 10065, USA.,Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Vasilisa A Rudneva
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Eliza B Geer
- Weill Cornell Medical College, New York, New York 10065, USA.,Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Lisa Bodei
- Weill Cornell Medical College, New York, New York 10065, USA.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
28
|
Nie D, Xue Y, Fang Q, Cheng J, Li B, Wang D, Li C, Gui S, Zhang Y, Zhao P. Immune Checkpoints: Therapeutic Targets for Pituitary Tumors. DISEASE MARKERS 2021; 2021:5300381. [PMID: 34447484 PMCID: PMC8384513 DOI: 10.1155/2021/5300381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022]
Abstract
Pituitary tumors are the third most common intracranial tumors in adults. Treatment of refractory pituitary tumors is known to be difficult due to limited treatment options. As a promising therapeutic method, tumor immunotherapy has been applied in the treatment of many tumors, including pituitary tumors. Immune checkpoint blocking is one of the effective strategies to activate antitumor immunity. Immune checkpoints prevent tissue damage by regulating the immune response of peripheral tissues and participate in the maintenance of a normal immune environment. In the presence of a tumor, inhibition of T cell activity by tumor cells binding to immune checkpoints and their ligands is an important mechanism for tumor cells to escape immune injury. In this review, we summarize the latest findings of immune checkpoints and their potential as immunotherapeutic targets for pituitary tumors.
Collapse
Affiliation(s)
- Ding Nie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yimeng Xue
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qiuyue Fang
- Beijing Neurosurgical Institute, Beijing, China
| | | | - Bin Li
- Beijing Neurosurgical Institute, Beijing, China
| | - Dawei Wang
- Beijing Neurosurgical Institute, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Beijing, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | - Peng Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Nie D, Fang Q, Li B, Cheng J, Li C, Gui S, Zhang Y, Zhao P. Research advances on the immune research and prospect of immunotherapy in pituitary adenomas. World J Surg Oncol 2021; 19:162. [PMID: 34090476 PMCID: PMC8180072 DOI: 10.1186/s12957-021-02272-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Background Pituitary adenomas are one type of intracranial tumor, which can be divided into microadenoma (≤ 1 cm), macroadenoma (> 1 cm), and giant adenoma (≥ 4 cm) according to their diametral sizes. They are benign, typically slow-progressing, whereas the biological behavior of some of them is invasive, which presents a major clinical challenge. Treatment of some pituitary adenomas is still difficult due to drug resistance or multiple relapses, usually after surgery, medication, and radiation. At present, no clear prediction and treatment biomarkers have been found in pituitary adenomas and some of them do not cause clinical symptoms, so patients are often found to be ill through physical examination, and some are even found through autopsy. With the development of research on pituitary adenomas, the immune response has become a hot spot and may serve as a novel disease marker and therapeutic target. The distribution and function of immune cells and their secreted molecules in pituitary adenomas are extremely complex. Researchers found that infiltration of immune cells may have a positive effect on the treatment and prognosis of pituitary adenomas. In this review, we summarized the advance of tumor immunity in pituitary adenomas, revealing the immunity molecules as potential biomarkers as well as therapeutic agents for pituitary adenomas. Conclusion The immune studies related to pituitary adenomas may help us find relevant immune markers. At the same time, the exploration of immunotherapy also provides new options for the treatment of pituitary adenomas.
Collapse
Affiliation(s)
- Ding Nie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiuyue Fang
- Beijing Neurosurgical Institute, Beijing, China
| | - Bin Li
- Beijing Neurosurgical Institute, Beijing, China
| | - Jianhua Cheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Beijing, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | - Peng Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
30
|
Mei Y, Bi WL, Agolia J, Hu C, Giantini Larsen AM, Meredith DM, Al Abdulmohsen S, Bale T, Dunn GP, Abedalthagafi M, Dunn IF. Immune profiling of pituitary tumors reveals variations in immune infiltration and checkpoint molecule expression. Pituitary 2021; 24:359-373. [PMID: 33492612 DOI: 10.1007/s11102-020-01114-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Pituitary tumors are the second most common primary brain tumors. Functional tumors demonstrate increased PD-L1 expression, but expression of other checkpoint regulators has not been characterized. We sought to characterize the immune microenvironment of human pituitary tumors to identify new treatment opportunities. METHODS 72 pituitary tumors were evaluated for expression of the immune regulatory markers programmed death ligand 1 (PD-L1), programmed death ligand 2 (PD-L2), V-domain Ig suppressor of T cell activation (VISTA), lymphocyte activation gene 3 (LAG3) and tumor necrosis factor receptor superfamily member 4 (OX40) by immunohistochemistry (IHC). Lymphocyte infiltration, macrophage infiltration, and angiogenesis were analyzed using IHC. Expression of pituitary tumor initiating cell marker CD15 and mismatch repair proteins MutS protein homolog 2 (MSH2) and MutS protein homolog 6 (MSH6) was also assessed. RESULTS Pituitary tumors were infiltrated by macrophages and T cells, and they expressed varying levels of PD-L1, PD-L2, VISTA, LAG3, and OX40. Functional tumors and tumors with high expression of tumor stem cell markers had higher immune cell infiltration and greater expression of immunosuppressive checkpoint regulators. Increased PD-L1 and LAG3 and reduced VISTA were observed in primary tumors compared to recurrent tumors. CONCLUSION Immune cell infiltration and checkpoint regulator expression vary depending on functional status and presence of pituitary tumor initiating cells. Functional tumors may have a particularly immunosuppressive microenvironment. Further studies of immune checkpoint blockade of pituitary tumors, particularly functional tumors, are warranted, though combination therapy may be required.
Collapse
Affiliation(s)
- Yu Mei
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Wenya Linda Bi
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA.
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - James Agolia
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Changchen Hu
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | | | - David M Meredith
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Sally Al Abdulmohsen
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA
- King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Tejus Bale
- Department of Neuropathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gavin P Dunn
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Malak Abedalthagafi
- King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Ian F Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, HHDC Suite 4000, 1000 N. Lincoln Blvd, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
31
|
Guo J, Fang Q, Liu Y, Xie W, Li C, Zhang Y. Screening and Identification of Key Microenvironment-Related Genes in Non-functioning Pituitary Adenoma. Front Genet 2021; 12:627117. [PMID: 33986766 PMCID: PMC8110910 DOI: 10.3389/fgene.2021.627117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/08/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose Non-functioning pituitary adenoma (NFPA) is a very common type of intracranial tumor, which can be locally invasive and can have a high recurrence rate. The tumor microenvironment (TME) shows a high correlation with tumor pathogenesis and prognosis. The current study aimed to identify microenvironment-related genes in NFPAs and assess their prognostic value. Methods 73 NFPA tumor samples were collected from Beijing Tiantan Hospital and transcriptional expression profiles were obtained through microarray analysis. The immune and stromal scores of each sample were calculated through the ESTIMATE algorithm, and the patients were divided into high and low immune/stromal score groups. Intersection differentially expressed genes (DEGs) were then obtained to construct a protein–protein interaction (PPI) network. Potential functions and pathways of intersection DEGs were then analyzed through Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes. The prognostic value of these genes was evaluated. The quantitative real-time polymerase chain reaction in another set of NFPA samples was used to confirm the credibility of the bioinformatics analysis. Results The immune/stromal scores were significantly correlated with cavernous sinus (CS) invasion. The Kaplan–Meier curve indicated that the high immune score group was significantly related to poor recurrence-free survival. We identified 497 intersection DEGs based on the high vs. low immune/stromal score groups. Function enrichment analyses of 497 DEGs and hub genes from the PPI network showed that these genes are mainly involved in the immune/inflammatory response, T cell activation, and the phosphatidylinositol 3 kinase-protein kinase B signaling pathway. Among the intersection DEGs, 88 genes were further verified as significantly expressed between the CS invasive group and the non-invasive group, and five genes were highly associated with NFPA prognosis. Conclusion We screened out a series of critical genes associated with the TME in NFPAs. These genes may play a fundamental role in the development and prognosis of NFPA and may yield new therapeutic targets.
Collapse
Affiliation(s)
- Jing Guo
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qiuyue Fang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yulou Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Weiyan Xie
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
32
|
Xi Z, Jones PS, Mikamoto M, Jiang X, Faje AT, Nie C, Labelle KE, Zhou Y, Miller KK, Soberman RJ, Zhang X. The Upregulation of Molecules Related to Tumor Immune Escape in Human Pituitary Adenomas. Front Endocrinol (Lausanne) 2021; 12:726448. [PMID: 34745002 PMCID: PMC8566912 DOI: 10.3389/fendo.2021.726448] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
Human pituitary adenomas are one of the most common intracranial neoplasms. Although most of these tumors are benign and can be treated medically or by transsphenoidal surgery, a subset of these tumors are fast-growing, aggressive, recur, and remain a therapeutic dilemma. Because antibodies against immune checkpoint receptors PD-1 and CLTA-4 are now routinely used for cancer treatment, we quantified the expression of mRNA coding for PD-1, CLTA-4, and their ligands, PD-L1, PD-L2, CD80, and CD86 in human pituitary adenomas and normal pituitary glands, with the ultimate goal of exploiting immune checkpoint therapy in aggressive pituitary adenomas. Aggressive pituitary adenomas demonstrated an increased expression of PD-L2, CD80, and CD86 in compared to that of normal human pituitary glands. Furthermore, aggressive pituitary tumors demonstrated significantly higher levels of CD80 and CD86 compared to non-aggressive tumors. Our results establish a rationale for studying a potential role for immune checkpoint inhibition therapy in the treatment of pituitary adenomas.
Collapse
Affiliation(s)
- Zhiyu Xi
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Pamela S. Jones
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Masaaki Mikamoto
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xiaobin Jiang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Alexander T. Faje
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Chuansheng Nie
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Kathryn E. Labelle
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yunli Zhou
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Karen K. Miller
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Roy J. Soberman
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xun Zhang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Xun Zhang,
| |
Collapse
|
33
|
Lin AL, Donoghue MTA, Wardlaw SL, Yang TJ, Bodei L, Tabar V, Geer EB. Approach to the Treatment of a Patient with an Aggressive Pituitary Tumor. J Clin Endocrinol Metab 2020; 105:5905925. [PMID: 32930787 PMCID: PMC7566322 DOI: 10.1210/clinem/dgaa649] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022]
Abstract
A small subset of pituitary adenomas grows despite maximal treatment with standard therapies; namely, surgery and radiotherapy. These aggressive tumors demonstrate 2 patterns of growth: they may be locally aggressive or metastasize distantly, either hematogenously or through the spinal fluid. Further surgery and radiotherapy may be helpful for palliation of symptoms, but they are rarely definitive in the management of these malignant tumors. The only chemotherapy with established activity in the treatment of pituitary tumors is the alkylating agent temozolomide. At most, 50% of patients exhibit an objective response to temozolomide and the median time to progression is short; thus, there remains a significant unmet need for effective treatments within this patient population. Several targeted agents have reported activity in this tumor type-including small molecule inhibitors, checkpoint inhibitors, and other biologics-but remain investigational at this time.
Collapse
Affiliation(s)
- Andrew L Lin
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Multidisciplinary Pituitary and Skull Base Center, Memorial Sloan Kettering Cancer Center, New York, New York
- Correspondence and Reprint Requests: Andrew Lin, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA. E-mail:
| | - Mark T A Donoghue
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sharon L Wardlaw
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - T Jonathan Yang
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lisa Bodei
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Multidisciplinary Pituitary and Skull Base Center, Memorial Sloan Kettering Cancer Center, New York, New York
- Program in Cell Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eliza B Geer
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Multidisciplinary Pituitary and Skull Base Center, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
34
|
Marques P, Barry S, Carlsen E, Collier D, Ronaldson A, Dorward N, Grieve J, Mendoza N, Nair R, Muquit S, Grossman AB, Korbonits M. The role of the tumour microenvironment in the angiogenesis of pituitary tumours. Endocrine 2020; 70:593-606. [PMID: 32946040 PMCID: PMC7674353 DOI: 10.1007/s12020-020-02478-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/23/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Angiogenesis has been studied in pituitary neuroendocrine tumours (PitNETs), but the role of the tumour microenvironment (TME) in regulating PitNET angiogenesis remains unknown. We aimed to characterise the role of TME components in determining the angiogenetic PitNET profile, focusing on immune cells and tumour-derived cytokines. METHODS Immune cells were studied by immunohistochemistry in 24 human PitNETs (16 non-functioning-PitNETs (NF-PitNETs) and 8 somatotrophinomas): macrophages (CD68, CD163, HLA-DR), cytotoxic (CD8) and T helper (CD4) lymphocytes, regulatory T cells (FOXP3), B cells (CD20) and neutrophils (neutrophil elastase); endothelial cells were assessed with CD31. Five normal pituitaries (NP) were included for comparison. Microvessel density and vascular morphology were estimated with ImageJ. The cytokine secretome from these PitNETs were assessed on culture supernatants using a multiplex immunoassay panel. RESULTS Microvessel density/area was higher in NP than PitNETs, which also had rounder and more regular vessels. NF-PitNETs had vessels of increased calibre compared to somatotrophinomas. The M2:M1 macrophage ratio correlated with microvessel area. PitNETs with more CD4+ T cells had higher microvessel area, while tumours with more FOXP3+ cells were associated with lower microvessel density. PitNETs with more B cells had rounder vessels. Of the 42 PitNET-derived cytokines studied, CCL2, CXCL10 and CX3CL1 correlated with microvessel density and vessel architecture parameters. CONCLUSIONS M2 macrophages appear to play a role in PitNET neovascularisation, while B, CD4+ and FOXP3+ lymphocytes, as well as non-cellular TME elements such as CCL2, CXCL10 and CX3CL1, may also modulate the angiogenesis of PitNETs.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sayka Barry
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - David Collier
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Amy Ronaldson
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Neil Dorward
- The National Hospital for Neurology and Neurosurgery, UCLH, NHS Trust, London, UK
| | - Joan Grieve
- The National Hospital for Neurology and Neurosurgery, UCLH, NHS Trust, London, UK
| | - Nigel Mendoza
- Department of Neurosurgery, Charing Cross Hospital, Imperial College, London, UK
| | - Ramesh Nair
- Department of Neurosurgery, Charing Cross Hospital, Imperial College, London, UK
| | - Samiul Muquit
- Department of Neurosurgery, Derriford Hospital, Plymouth, UK
| | - Ashley B Grossman
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
35
|
Zhou W, Zhang C, Zhang D, Peng J, Ma S, Wang X, Guan X, Li P, Li D, Jia G, Jia W. Comprehensive analysis of the immunological landscape of pituitary adenomas: implications of immunotherapy for pituitary adenomas. J Neurooncol 2020; 149:473-487. [PMID: 33034841 DOI: 10.1007/s11060-020-03636-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
PURPOSES Immunotherapies for solid tumor are gaining traction in the clinic, however, the immunological landscape of pituitary adenomas (PAs) is not well defined. In the present study, we used the RNA-seq data of PAs to investigate the impact of immunological landscape on clinical features of pituitary adenomas and aim to evaluate the potential immunotherapy for PAs. METHODS We analyzed tumor-infiltrating immune cells in 115 PA samples using RNA-seq. Main immune cell types (B cells, CD8+ T cells, CD4+ T cells, macrophages and NK cells) were detected from the expression of genes. The association between immune cells abundance and immune checkpoint, as well as inflammatory factors were analyzed. 10 additional patients were enrolled for validation. RESULTS In RNA sequencing data, landscape of PAs were identified. Our computationally inferred immune infiltrates significantly associate with patient clinical features. Growth hormone-secreting adenomas (GHomas) were found with higher B cells and CD8+ T cells infiltration. Moreover, GHomas showed relative different genetic background, significant invasive behavior and independently correlated with reduced progress-free time. Tumor progression was related to increased expression of PD-1/PD-L1 and was associated with higher immune infiltration. Analysis of cancer-testis antigen expression and CD8+ T-cell abundance suggested CTAG2 and TSPYL6 were potential immunotherapeutic targets in GHomas and non-functioning adenomas, respectively. CONCLUSIONS Tumor-infiltrating immune cells confer important clinical and biological implications. Our results of immune-infiltrate levels in PAs may inform effective cancer vaccine and checkpoint blockade therapies and make it possible to take immunotherapy into invasive PAs.
Collapse
Affiliation(s)
- Wenjianlong Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chuanbao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dainan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiayi Peng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shunchang Ma
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.,Beijing Neurosurgical Institute, 199 West Road, South Fourth Ring Road, Beijing, China
| | - Xi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiudong Guan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | - Deling Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guijun Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. .,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China. .,Beijing Neurosurgical Institute, 199 West Road, South Fourth Ring Road, Beijing, China.
| |
Collapse
|
36
|
Wang Z, Guo X, Gao L, Deng K, Lian W, Bao X, Feng M, Duan L, Zhu H, Xing B. The Immune Profile of Pituitary Adenomas and a Novel Immune Classification for Predicting Immunotherapy Responsiveness. J Clin Endocrinol Metab 2020; 105:5870365. [PMID: 32652004 PMCID: PMC7413599 DOI: 10.1210/clinem/dgaa449] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
CONTEXT The tumor immune microenvironment is associated with clinical outcomes and immunotherapy responsiveness. OBJECTIVE To investigate the intratumoral immune profile of pituitary adenomas (PAs) and its clinical relevance and to explore a novel immune classification for predicting immunotherapy responsiveness. DESIGN, PATIENTS, AND METHODS The transcriptomic data from 259 PAs and 20 normal pituitaries were included for analysis. The ImmuCellAI algorithm was used to estimate the abundance of 24 types of tumor-infiltrating immune cells (TIICs) and the expression of immune checkpoint molecules (ICMs). RESULTS The distributions of TIICs differed between PAs and normal pituitaries and varied among PA subtypes. T cells dominated the immune microenvironment across all subtypes of PAs. The tumor size and patient age were correlated with the TIIC abundance, and the ubiquitin-specific protease 8 (USP8) mutation in corticotroph adenomas influenced the intratumoral TIIC distributions. Three immune clusters were identified across PAs based on the TIIC distributions. Each cluster of PAs showed unique features of ICM expression that were correlated with distinct pathways related to tumor development and progression. CTLA4/CD86 expression was upregulated in cluster 1, whereas programmed cell death protein 1/programmed cell death 1 ligand 2 (PD1/PD-L2) expression was upregulated in cluster 2. Clusters 1 and 2 exhibited a "hot" immune microenvironment and were predicted to exhibit higher immunotherapy responsiveness than cluster 3, which exhibited an overall "cold" immune microenvironment. CONCLUSIONS We summarized the immune profile of PAs and identified 3 novel immune clusters. These findings establish a foundation for further immune studies on PAs and provide new insights into immunotherapy strategies for PAs.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- China Pituitary Disease Registry Center, Beijing, P. R. China
- China Pituitary Adenoma Specialist Council, Beijing, P. R. China
| | - Xiaopeng Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- China Pituitary Disease Registry Center, Beijing, P. R. China
- China Pituitary Adenoma Specialist Council, Beijing, P. R. China
| | - Lu Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- China Pituitary Disease Registry Center, Beijing, P. R. China
- China Pituitary Adenoma Specialist Council, Beijing, P. R. China
| | - Kan Deng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- China Pituitary Disease Registry Center, Beijing, P. R. China
- China Pituitary Adenoma Specialist Council, Beijing, P. R. China
| | - Wei Lian
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- China Pituitary Disease Registry Center, Beijing, P. R. China
- China Pituitary Adenoma Specialist Council, Beijing, P. R. China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- China Pituitary Disease Registry Center, Beijing, P. R. China
- China Pituitary Adenoma Specialist Council, Beijing, P. R. China
| | - Ming Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- China Pituitary Disease Registry Center, Beijing, P. R. China
- China Pituitary Adenoma Specialist Council, Beijing, P. R. China
| | - Lian Duan
- Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- China Pituitary Disease Registry Center, Beijing, P. R. China
- China Pituitary Adenoma Specialist Council, Beijing, P. R. China
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- China Pituitary Disease Registry Center, Beijing, P. R. China
- China Pituitary Adenoma Specialist Council, Beijing, P. R. China
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Bing Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- China Pituitary Disease Registry Center, Beijing, P. R. China
- China Pituitary Adenoma Specialist Council, Beijing, P. R. China
- Correspondence and Reprint Requests: Bing Xing, Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing 100730, P. R. China. E-mail:
| |
Collapse
|
37
|
Checkpoint blockade therapy for functioning pituitary adenomas. Oncoscience 2020; 7:38-39. [PMID: 32676516 PMCID: PMC7343575 DOI: 10.18632/oncoscience.509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 11/25/2022] Open
|
38
|
Marques P, Grossman AB, Korbonits M. The tumour microenvironment of pituitary neuroendocrine tumours. Front Neuroendocrinol 2020; 58:100852. [PMID: 32553750 DOI: 10.1016/j.yfrne.2020.100852] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
Abstract
The tumour microenvironment (TME) includes a variety of non-neoplastic cells and non-cellular elements such as cytokines, growth factors and enzymes surrounding tumour cells. The TME emerged as a key modulator of tumour initiation, progression and invasion, with extensive data available in many cancers, but little is known in pituitary tumours. However, the understanding of the TME of pituitary tumours has advanced thanks to active research in this field over the last decade. Different immune and stromal cell subpopulations, and several cytokines, growth factors and matrix remodelling enzymes, have been characterised in pituitary tumours. Studying the TME in pituitary tumours may lead to a better understanding of tumourigenic mechanisms, identification of biomarkers useful to predict aggressive disease, and development of novel therapies. This review summarises the current knowledge on the different TME cellular/non-cellular elements in pituitary tumours and provides an overview of their role in tumourigenesis, biological behaviour and clinical outcomes.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Ashley B Grossman
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
39
|
Expression of programmed death-ligand 1 (PD-L1) in human pituitary neuroendocrine tumor. Cancer Immunol Immunother 2020; 69:2053-2061. [PMID: 32445029 DOI: 10.1007/s00262-020-02611-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To explore the programmed death-ligand 1 (PD-L1) expression in varied subtypes of pituitary neuroendocrine tumors with assessment of their clinical behavior at diagnosis and follow-up. METHODS We conducted a retrospective monocentric study, including all patients operated in the Academic Hospital of Angers (France) for a pituitary neuroendocrine tumor between 2012 and 2018. PDL-1 immunostaining was performed using a European Conformity-In Vitro Diagnostic-labeled anti-PDL1 antibody (clone 22C3). PD-L1 immunostaining was evaluated as the percentage of tumor cells showing positive membrane staining, into four grades: grade 0 = < 1%, grade 1 = 1 to 5%, grade 2 = 6 to 49% and grade 3 = ≥ 50%. PD-L1 expression was compared with tumor features (secretion, proliferation, invasion) and outcome. RESULTS The study included 139 pituitary neuroendocrine tumors, including 84 (60%) nonfunctioning adenomas. Twenty-five pituitary neuroendocrine tumors were PD-L1 positive (18%), including 3 grade 3, 8 grade 2 and 14 grade 1. PD-L1 expression was not different between functioning and nonfunctioning adenomas (p = 0.26). Among 16 tumors with proliferative markers (Ki-67 ≥ 3% and p53 positive), only one was PD-L1 positive. CONCLUSION In our series, PD-L1 was expressed in a rather small proportion of PitNET (18%), and this immune marker was not associated with any biological characteristic or behavior of the pituitary tumors. Thus, PD-L1 staining may be necessary before considering PD-L1 blockage in pituitary neuroendocrine tumors, in case of therapeutic impasse.
Collapse
|
40
|
In silico analysis of the immunological landscape of pituitary adenomas. J Neurooncol 2020; 147:595-598. [PMID: 32236778 DOI: 10.1007/s11060-020-03476-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Immunotherapy has gained traction in the treatment of solid tumors but the immunological landscape of pituitary adenomas is not well defined. We sought to investigate the immunological composition in pituitary adenomas using RNA deconvolution (CIBERSORTx) on an existing gene expression dataset for pituitary adenomas. METHODS We applied an established computational approach (CIBERSORTx) on 134 pituitary adenomas from a previously published gene expression dataset to infer the proportions of 22 subsets of immune cells. We investigated associations between each immune cell type and tumor subtype. RESULTS We found that the majority of infiltrating immune cells within pituitary adenomas were comprised of M2 macrophages followed by resting CD4+ memory T cells and mast cells. Silent pituitary tumors have higher M2 macrophage fractions when compared to other subtypes. In contrast, Cushing pituitary tumors, both overt and subclinical cases, had higher CD8+ T cells fractions than GH tumors, prolactinomas, hyperthyroid tumors, and silent tumors. CONCLUSIONS RNA deconvolution of the immune infiltrates of pituitary adenomas using CIBERSORTx suggests that most pituitary adenomas comprise of M2 macrophages, but each adenoma subtype has a unique immune landscape. This may have implications in targeting each adenoma subtype with different immunotherapies.
Collapse
|
41
|
Dai C, Liang S, Sun B, Kang J. The Progress of Immunotherapy in Refractory Pituitary Adenomas and Pituitary Carcinomas. Front Endocrinol (Lausanne) 2020; 11:608422. [PMID: 33362722 PMCID: PMC7761748 DOI: 10.3389/fendo.2020.608422] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
Most pituitary adenomas (PAs) are considered benign tumors, but approximately 0.2% can present metastasis and are classified as pituitary carcinomas (PCs). Refractory PAs lie between benign adenomas and true malignant PC and are defined as aggressive-invasive PAs characterized by a high Ki-67 index, rapid growth, frequent recurrence, and resistance to conventional treatments, including temozolomide. It is notoriously difficult to manage refractory PAs and PC because of the limited therapeutic options. As a promising therapeutic approach, cancer immunotherapy has been experimentally used for the treatment of many tumors, including pituitary tumors. The purpose of this review is to report the progress of immunotherapy in pituitary tumors, including refractory PAs and PCs. The tumor immune microenvironment has been recognized as a key contributor to tumorigenesis, progression, and prognosis. One study indicated that the number of CD68+ macrophages was positively correlated with tumor size and Knosp classification grade for tumor invasiveness. The infiltration of CD4+ and CD8+ T cells was relatively scant in these adenomas, but pituitary growth hormone (GH) adenomas exhibited significantly more CD4+ and CD8+ T cells than non-GH adenomas. These results suggest an association of CD68+ macrophage infiltration with an increase in pituitary tumor size and invasiveness. Another study suggested that a lower number of CD8+ lymphocytes is associated with cavernous sinus invasion and resistance to treatment with first-generation somatostatin analogs in acromegaly patients, highlighting a potential role of the tumor immune microenvironment in determining the prognosis of somatotroph pituitary tumors. Preclinical studies have indicated that widely varying degrees of programmed death-ligand 1 (PD-L1) expression and tumor-infiltrating lymphocytes (TILs) are found among different subtypes. Functional PAs and aggressive PAs express significantly higher levels of PD-L1 and TILs than other subtypes, indicating that PD-1 blockade might be a promising alternative therapy for patients with aggressive PAs. PD-L1 transcript and protein levels were found to be significantly increased in functioning (GH and prolactin-expressing) pituitary tumors compared to nonfunctioning (null cell and silent gonadotroph) adenomas. Moreover, primary pituitary tumors harbored higher levels of PD-L1 mRNA than recurrent tumors. These findings suggest the possibility of considering checkpoint blockade immunotherapy for functioning pituitary tumors refractory to conventional management. Animal models of Cushing's disease also demonstrated PD-L1 and TIL expression in cultured tumors and murine models, as well as the effectiveness of checkpoint blockade therapy in reducing the tumor mass, decreasing hormone secretion, and increasing the survival rate. Clinical studies show that immunotherapy may be an effective treatment in patients with pituitary tumors. One corticotroph carcinoma patient showed a significant reduction in hormone levels and shrinkage of the tumor size of primary and metastatic lesions immediately after investigational treatment with ipilimumab and nivolumab. However, another patient with corticotroph adenoma progressed rapidly after four cycles of anti-PD-1 (pembrolizumab) treatment. To date, there are two registered clinical trials of immunotherapy for pituitary tumors. One of them is the phase II clinical trial of nivolumab combined with ipilimumab for patients with aggressive pituitary tumors (NCT04042753). The other one is also a phase II clinical trial of the combination of nivolumab and ipilimumab for rare tumors, including pituitary tumors (NCT02834013). Both clinical trials are in the stage of recruiting patients and have not been completed. In summary, the results from preclinical research and clinical studies indicated that immunotherapy might be a promising alternative therapy for PCs and refractory PAs resistant to conventional treatments. The combination of immunotherapy and radiotherapy or temozolomide may have synergistic effects compared to a single treatment. More preclinical and clinical studies are needed to further indicate the exact efficacy of immunotherapy in pituitary tumors.
Collapse
Affiliation(s)
- Congxin Dai
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Siyu Liang
- Eight-Year Program of Clinical Medicine, Peking Union Medical College Hospital (PUMCH), Chinese Academe of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Bowen Sun
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jun Kang
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Jun Kang,
| |
Collapse
|