1
|
Wehkamp U, Pietzka S, Kotrová M, Jost M, Oschlies I, Schwarz A, Baldus C, Darzentas N, Brüggemann M. Mycosis fungoides: differentiation from inflammation and detection of circulating tumour cells with the EuroClonality next-generation sequencing assay. Br J Dermatol 2025; 192:492-500. [PMID: 39475451 DOI: 10.1093/bjd/ljae425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 02/19/2025]
Abstract
BACKGROUND Mycosis fungoides (MF) is a rare malignancy that is characterized by the presence of circulating tumour cells (CTCs) in a subgroup of patients. Reliably distinguishing MF from inflammatory skin conditions is challenging. OBJECTIVES To evaluate the potential benefits of next-generation sequencing (NGS)-based T-cell receptor rearrangement repertoire analysis in detecting clonal rearrangements in MF and inflammatory skin conditions. METHODS Skin biopsies and blood samples from 33 patients with MF and 10 patients with inflammatory skin conditions were analysed using TRB and TRG NGS. Twenty-seven patients had early-stage IA (n = 19) and IB (n = 8) MF, and six had advanced-stage disease (IIB, n = 5; IIIA, n = 1). RESULTS Analysis applying standard abundance thresholds identified at least one clonal rearrangement in the skin DNA of 97% (n = 32/33) of patients with MF and in 90% (n = 9/10) of those with inflammatory skin conditions. To enhance specificity, an abundance and distribution-based approach was applied, which considered only rearrangements that significantly stood out from the physiological background as clonal (MF, n = 29/33; inflammatory skin conditions, n = 1/10), allowing for highly sensitive (88%) and specific (90%) discrimination between MF and other inflammatory skin conditions. CTCs were detected in 46% (n = 11/24) of patients with early-stage MF and in 60% (n = 3/5) of those with late-stage MF. CONCLUSIONS NGS-based T-cell receptor repertoire analysis is a highly sensitive and specific method for the differential diagnosis of early-stage MF vs. inflammatory skin conditions, and for the sensitive molecular detection of CTCs.
Collapse
Affiliation(s)
- Ulrike Wehkamp
- Department of Dermatology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Medical School Hamburg, Hamburg, Germany
| | - Sophie Pietzka
- Department of Dermatology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Department of Hematology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Michaela Kotrová
- Department of Hematology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Marion Jost
- Department of Dermatology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ilske Oschlies
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Agatha Schwarz
- Department of Dermatology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Claudia Baldus
- Department of Hematology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Nikos Darzentas
- Department of Hematology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Monika Brüggemann
- Department of Hematology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
2
|
Gniadecki R, Guenova E, Querfeld C, Nicolay JP, Scarisbrick J, Sokol L. Haematogenous seeding in mycosis fungoides and Sézary syndrome: current evidence and clinical implications. Br J Dermatol 2025; 192:381-389. [PMID: 39545505 DOI: 10.1093/bjd/ljae441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/10/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Cutaneous T-cell lymphomas (CTCLs) are a heterogeneous group of diseases characterized by abnormal neoplastic T-cell growth in the skin. Mycosis fungoides (MF), the most common CTCL, manifests as erythematous skin patches and/or plaques, tumours or erythroderma. The disease may involve blood, lymph nodes and rarely viscera. Sézary syndrome (SS) is a unique leukaemia/lymphoma syndrome related to MF, which presents with blood and skin involvement at diagnosis. The pathogenesis of MF/SS is not fully elucidated. The presence of skin lesions at distant sites underpins a hypothesis that MF/SS lesions may develop through haematogenous seeding. Phenotypic similarities between malignant and normal T cells led to the notion that disease-initiating mutations occur in specific subtypes of mature T cells, which are responsible for most CTCLs. However, this mature T-cell precursor model is not always consistent with clinical observations and research on MF/SS pathogenesis. Here, we review evidence supporting an alternative model of pathogenesis for MF/SS involving haematogenous seeding as a key process responsible for the initiation and progression of the disease. According to this hypothesis, malignant transformation occurs at an early stage of T-cell development (probably in bone marrow or thymus), yielding circulating neoplastic T cells which colonize the skin where the microenvironment is most permissive for proliferation and evolution. These mutated precursor cells seed the skin where they find a suitable niche to develop into clinically perceptible disease. Subsequently, malignant T cells can re-enter the bloodstream, re-seed pre-existing lesions and seed new areas of the skin, causing synchronous and convergent changes in the transcriptomic profile of lesions and tumours, and clinical disease progression - 'consecutive haematogenous seeding' captures this temporal phenomenon. This model radically changes the current understanding of CTCL pathogenesis, transforming it from a primarily cutaneous disease with secondary involvement of blood, to a systemic disease, where the spread of malignant cells through the blood to the skin is not a phenomenon of advanced disease but is an essential component of pathogenesis. This understanding of MF/SS could have several clinical implications, including standardizing our approach to assessing blood tumour burden, potential advances in prognosis and monitoring, and investigating combination treatments to improve patient outcomes.
Collapse
Affiliation(s)
- Robert Gniadecki
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | - Emmanuella Guenova
- Department of Dermatology, Lausanne University Hospital and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- University Institute and Clinic for Immunodermatology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Christiane Querfeld
- Department of Pathology and Division of Dermatology, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Jan P Nicolay
- University Medical Center Mannheim/Ruprecht Karls University of Heidelberg, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany
| | | | | |
Collapse
|
3
|
Zhao Y, Li Y, Wang P, Zhu M, Wang J, Xie B, Tang C, Ma Y, Wang S, Jin S, Xu J, Li Z, Zhang X, Li L, Song X, Wang P. The cancer-associated fibroblasts interact with malignant T cells in mycosis fungoides and promote the disease progression. Front Immunol 2025; 15:1474564. [PMID: 39963655 PMCID: PMC11830738 DOI: 10.3389/fimmu.2024.1474564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/31/2024] [Indexed: 02/20/2025] Open
Abstract
Background Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of T-cell lymphomas characterized with the presence of clonal malignant T cells. Mycosis fungoides (MF) is the most common type of CTCL. However, the pathogenesis of MF and the role of the tumor microenvironment (TME) remain unclear. Methods We performed single-cell RNA sequencing on tumor and adjacent normal tissues and peripheral blood mononuclear cell (PBMC) from patients with advanced MF and healthy control (HC). We compared skin lesions in different stages within the same patient to overcome inter-individual variability. Results The malignant clones displayed dual phenotypes characterized with tissue-resident memory T cells (TRMs) and central memory T cells (TCMs). We supposed that the tumor cells transformed from TRM-dominant phenotype to TCM-dominant phenotype during MF progressed from early-stage to advanced-stage. The cancer-associated fibroblasts (CAFs) showed active role in TME. The occurrence of inflammatory CAFs (iCAFs) may represent the advanced-stage MF. There may be mutual positive feedback of the crosstalk between tumor cells and CAFs during the MF development. Tumor cells promote CAF generation, and the CAFs, in turn, improve the invasiveness and metastasis of the malignant T cells through the IL-6/JAK2/STAT3/SOX4 or IL-6/HIF-1α/SOX4 pathway. SOX4 may be a critical regulatory gene of this positive feedback loop. Target SOX4 may disrupt the interactions between tumor cells and CAFs. Conclusion Our study revealed the origin and evolution trajectory of MF and uncovered the intercellular interactions between malignant T cells and CAFs, providing new insights into the novel treatment targets of MF.
Collapse
Affiliation(s)
- Yige Zhao
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yong Li
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Research Center, Shanghai Yeslab Biotechnology, Shanghai, China
| | - Panpan Wang
- Department of Dermatology, Shaoxing People's Hospital, Shaoxing, China
| | - Mengyan Zhu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaqi Wang
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenyu Tang
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yangyang Ma
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Shiwen Wang
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sha Jin
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinhui Xu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhao Li
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoyan Zhang
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Liuyu Li
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ping Wang
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Pitaro M, Antonini G, Arcovito A, Buccisano F, De Lauro A, Irno Consalvo M, Gallo V, Giacon N, Mangiatordi GF, Pacelli M, Pitaro MT, Polticelli F, Sorrenti M, Venditti A. Development of a recombinant human IgG1 monoclonal antibody against the TRBV5-1 segment of the T cell receptor for the treatment of mature T cell neoplasms. Front Immunol 2024; 15:1520103. [PMID: 39742266 PMCID: PMC11686114 DOI: 10.3389/fimmu.2024.1520103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025] Open
Abstract
Background Mature T-cell neoplasms arise from the neoplastic transformation of a single T lymphocyte, and all cells in a neoplastic clone share the same V segment in the beta chain of the T-cell receptor (TCR). These segments may represent an innovative target for the development of targeted therapies. Methods A specific V segment of the TCR beta chain (TRBV5-1) was analyzed using bioinformatic tools, identifying three potential antigenic peptides. One of these peptides, selected for synthesis, was used to screen a library of human single-chain variable fragments (scFv) through phage display. One fragment demonstrated high affinity and specificity for the antigen and was used to produce a human monoclonal antibody of the IgG1 class. Results Surface plasmon resonance (SPR) studies confirmed the high affinity of the monoclonal antibody for the antigen in the nanomolar range. Flow cytometry analysis on patients' samples demonstrated that the antibody, conjugated with a fluorochrome, selectively binds to tumor T lymphocytes expressing TRBV5-1, without binding to other lymphocytes or blood cell components. Conclusions The development of fully human IgG1 monoclonal antibodies targeting specific V segments of the TCR beta chain represents a potential therapeutic option for patients with mature T-cell neoplasms.
Collapse
Affiliation(s)
- Michele Pitaro
- INBB – Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
| | - Giovanni Antonini
- INBB – Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
- Dipartimento di Scienze, Università di Roma Tre, Rome, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche, Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesco Buccisano
- Dipartimento di Biomedicina e Prevenzione, Università di Roma Tor Vergata, Rome, Italy
| | | | - Maria Irno Consalvo
- Dipartimento di Biomedicina e Prevenzione, Università di Roma Tor Vergata, Rome, Italy
| | - Valentina Gallo
- Dipartimento di Scienze, Università di Roma Tre, Rome, Italy
| | - Noah Giacon
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche, Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | | | | | - Adriano Venditti
- Dipartimento di Biomedicina e Prevenzione, Università di Roma Tor Vergata, Rome, Italy
| |
Collapse
|
5
|
Licht P, Mailänder V. Multi-Omic Data Integration Suggests Putative Microbial Drivers of Aetiopathogenesis in Mycosis Fungoides. Cancers (Basel) 2024; 16:3947. [PMID: 39682136 DOI: 10.3390/cancers16233947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Mycosis fungoides (MF) represents the most prevalent entity of cutaneous T cell lymphoma (CTCL). The MF aetiopathogenesis is incompletely understood, due to significant transcriptomic heterogeneity and conflicting views on whether oncologic transformation originates in early thymocytes or mature effector memory T cells. Recently, using clinical specimens, our group showed that the skin microbiome aggravates disease course, mainly driven by an outgrowing, pathogenic S. aureus strain carrying the virulence factor spa, which was shown by others to activate the T cell signalling pathway NF-κB. METHODS To explore the role of the skin microbiome in MF aetiopathogenesis, we here performed RNA sequencing, multi-omic data integration of the skin microbiome and skin transcriptome using Multi-Omic Factor Analysis (MOFA), virome profiling, and T cell receptor (TCR) sequencing in 10 MF patients from our previous study group. RESULTS We observed that inter-patient transcriptional heterogeneity may be largely attributed to differential activation of T cell signalling pathways. Notably, the MOFA model resolved the heterogenous activation pattern of T cell signalling after denoising the transcriptome from microbial influence. The MOFA model suggested that the outgrowing S. aureus strain evoked signalling by non-canonical NF-κB and IL-1B, which in turn may have fuelled the aggravated disease course. Further, the MOFA model indicated aberrant pathways of early thymopoiesis alongside enrichment of antiviral innate immunity. In line with this, viral prevalence, particularly of Epstein-Barr virus (EBV), trended higher in both lesional skin and the blood compared to nonlesional skin. Additionally, TCRs in both MF skin lesions and the blood were significantly more likely to recognize EBV peptides involved in latent infection. CONCLUSIONS First, our findings suggest that S. aureus with its virulence factor spa fuels MF progression through non-canonical NF-κB and IL-1B signalling. Second, our data provide insights into the potential role of viruses in MF aetiology. Last, we propose a model of microbiome-driven MF aetiopathogenesis: Thymocytes undergo initial oncologic transformation, potentially caused by viruses. After maturation and skin infiltration, an outgrowing, pathogenic S. aureus strain evokes activation and maturation into effector memory T cells, resulting in aggressive disease. Further studies are warranted to verify and extend our data, which are based on computational analyses.
Collapse
Affiliation(s)
- Philipp Licht
- Department of Dermatology, University Medical Centre Mainz, 55131 Mainz, Germany
| | - Volker Mailänder
- Department of Dermatology, University Medical Centre Mainz, 55131 Mainz, Germany
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
6
|
Jiang TT, Kruglov O, Akilov OE. Unleashed monocytic engagement in Sézary syndrome during the combination of anti-CCR4 antibody with type I interferon. Blood Adv 2024; 8:2384-2397. [PMID: 38489234 PMCID: PMC11127216 DOI: 10.1182/bloodadvances.2023010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 03/17/2024] Open
Abstract
ABSTRACT Sézary syndrome (SS) is an aggressive leukemic expansion of skin-derived malignant CD4+ T cells. Drug monotherapy often results in disease relapse because of the heterogenous nature of malignant CD4+ T cells, but how therapies can be optimally combined remains unclear because of limitations in understanding the disease pathogenesis. We identified immunologic transitions that interlink mycosis fungoides with SS using single-cell transcriptome analysis in parallel with high-throughput T-cell receptor sequencing. Nascent peripheral CD4+ T cells acquired a distinct profile of transcription factors and trafficking receptors that gave rise to antigenically mature Sézary cells. The emergence of malignant CD4+ T cells coincided with the accumulation of dysfunctional monocytes with impaired fragment crystallizable γ-dependent phagocytosis, decreased responsiveness to cytokine stimulation, and limited repertoire of intercellular interactions with Sézary cells. Type I interferon supplementation when combined with a monoclonal antibody targeting the chemokine receptor type 4 (CCR4), unleashed monocyte induced phagocytosis and eradication of Sézary cells in vitro. In turn, coadministration of interferon-α with the US Food and Drug Administration-approved anti-CCR4 antibody, mogamulizumab, in patients with SS induced marked depletion of peripheral malignant CD4+ T cells. Importantly, residual CD4+ T cells after Sézary cell ablation lacked any immunologic shifts. These findings collectively unveil an auxiliary role for augmenting monocytic activity during mogamulizumab therapy in the treatment of SS and underscore the importance of targeted combination therapy in this disease.
Collapse
Affiliation(s)
- Tony T. Jiang
- Department of Dermatology, Cutaneous Lymphoma Program, University of Pittsburgh, Pittsburgh, PA
| | - Oleg Kruglov
- Department of Dermatology, Cutaneous Lymphoma Program, University of Pittsburgh, Pittsburgh, PA
| | - Oleg E. Akilov
- Department of Dermatology, Cutaneous Lymphoma Program, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
7
|
Jiang TT, Cao S, Kruglov O, Virmani A, Geskin LJ, Falo LD, Akilov OE. Deciphering Tumor Cell Evolution in Cutaneous T-Cell Lymphomas: Distinct Differentiation Trajectories in Mycosis Fungoides and Sézary Syndrome. J Invest Dermatol 2024; 144:1088-1098. [PMID: 38036289 PMCID: PMC11034798 DOI: 10.1016/j.jid.2023.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/08/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Abstract
Cutaneous T-cell lymphomas are a heterogeneous group of neoplasms originating in the skin, with mycosis fungoides (MF) and Sézary syndrome (SS) representing the most common variants. The cellular origin of cutaneous lymphomas has remained controversial owing to their immense phenotypic heterogeneity that obfuscates lineage reconstruction on the basis of classical surface biomarkers. To overcome this heterogeneity and reconstruct the differentiation trajectory of malignant cells in MF and SS, TCR sequencing was performed in parallel with targeted transcriptomics at the single-cell resolution among cutaneous samples in MF and SS. Unsupervised lineage reconstruction showed that Sézary cells exist as a population of CD4+ T cells distinct from those in patch, plaque, and tumor MF. Further investigation of malignant cell heterogeneity in SS showed that Sézary cells phenotypically comprised at least 3 subsets on the basis of differential proliferation potentials and expression of exhaustion markers. A T helper 1-polarized cell type, intermediate cell type, and exhausted T helper 2-polarized cell type were identified, with T helper 1- and T helper 2-polarized cells displaying divergent proliferation potentials. Collectively, these findings provide evidence to clarify the relationship between MF and SS and reveal cell subsets in SS that suggest a possible mechanism for therapeutic resistance.
Collapse
Affiliation(s)
- Tony T Jiang
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Simon Cao
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Oleg Kruglov
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aman Virmani
- School of Art and Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Larisa J Geskin
- Department of Dermatology, Columbia University, New York, New York, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Oleg E Akilov
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
8
|
Ødum AWF, Geisler C. Vitamin D in Cutaneous T-Cell Lymphoma. Cells 2024; 13:503. [PMID: 38534347 PMCID: PMC10969440 DOI: 10.3390/cells13060503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is characterized by the proliferation of malignant T cells in inflamed skin lesions. Mycosis fungoides (MF)-the most common variant of CTCL-often presents with skin lesions around the abdomen and buttocks ("bathing suit" distribution), i.e., in skin areas devoid of sun-induced vitamin D. For decades, sunlight and vitamin D have been connected to CTCL. Thus, vitamin D induces apoptosis and inhibits the expression of cytokines in malignant T cells. Furthermore, CTCL patients often display vitamin D deficiency, whereas phototherapy induces vitamin D and has beneficial effects in CTCL, suggesting that light and vitamin D have beneficial/protective effects in CTCL. Inversely, vitamin D promotes T helper 2 (Th2) cell specific cytokine production, regulatory T cells, tolerogenic dendritic cells, as well as the expression of immune checkpoint molecules, all of which may have disease-promoting effects by stimulating malignant T-cell proliferation and inhibiting anticancer immunity. Studies on vitamin D treatment in CTCL patients showed conflicting results. Some studies found positive effects, others negative effects, while the largest study showed no apparent clinical effect. Taken together, vitamin D may have both pro- and anticancer effects in CTCL. The balance between the opposing effects of vitamin D in CTCL is likely influenced by treatment and may change during the disease course. Therefore, it remains to be discovered whether and how the effect of vitamin D can be tilted toward an anticancer response in CTCL.
Collapse
Affiliation(s)
| | - Carsten Geisler
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
9
|
Patil K, Sher G, Kuttikrishnan S, Moton S, Alam M, Buddenkotte J, Ahmad A, Steinhoff M, Uddin S. The cross-talk between miRNAs and JAK/STAT pathway in cutaneous T cell lymphoma: Emphasis on therapeutic opportunities. Semin Cell Dev Biol 2024; 154:239-249. [PMID: 36216715 DOI: 10.1016/j.semcdb.2022.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 02/25/2023]
Abstract
Mycosis Fungoides (MF) and Sézary Syndrome (SS) belong to a wide spectrum of T cell lymphoproliferative disorders collectively termed cutaneous T cell lymphomas (CTCL). CTCLs represent an archetype of heterogeneous and dynamically variable lymphoproliferative neoplasms typified by distinct clinical, histological, immunophenotypic, and genetic features. Owing to its complex dynamics, the pathogenesis of CTCL remains elusive. However, in recent years, progress in CTCL classification combined with next-generation sequencing analyses has broadened the genetic and epigenetic spectrum of clearly defined CTCL entities such as MF and SS. Several large-scale genome studies have identified the polygenic nature of CTCL and unveiled an idiosyncratic mutational landscape involving genetic aberrations, epigenetic alterations, cell cycle dysregulation, apoptosis, and the constitutive activation of T cell/NF-κB/JAK-STAT signaling pathways. In this review, we summarize the evolving insights on how the intrinsic epigenetic events driven by dysregulated miRNAs, including the oncogenic and tumor-suppressive miRNAs, influence the pathogenesis of MF and SS. We also focus on the interplay between the JAK/STAT pathway and miRNAs in CTCL as well as the significance of the miRNA/STAT axis as a relevant pathogenetic mechanism underlying CTCL initiation and progression. Based on these biologic insights, the current status and recent progress on novel therapies with a strong biological rationale, including miRNA-targeted molecules and JAK/STAT-targeted therapy for CTCL management, are discussed.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Gulab Sher
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Safwan Moton
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33200, USA
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha 24144, Qatar; Dept. of Dermatology, Weill Cornell Medicine-New York 10065, New York, USA.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
10
|
Mandel J, Gleason L, Joffe D, Bhatti S, Nikbakht N. Immunosequencing applications in cutaneous T-cell lymphoma. Front Immunol 2023; 14:1300061. [PMID: 38213330 PMCID: PMC10783977 DOI: 10.3389/fimmu.2023.1300061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/08/2023] [Indexed: 01/13/2024] Open
Abstract
Immunosequencing has emerged as a newer clinical test for assessment of T-cell clonality in the blood and skin of cutaneous T-cell lymphoma (CTCL) patients. Utilization of immunosequencing, also known as high-throughput sequencing of the T-cell receptor (HTS-TCR), enables identification and quantification of the precise genetic signature of dominant T-cell clones. Although immunosequencing is more sensitive than commonly used methods such as polymerase chain reaction (PCR) paired with capillary electrophoresis or flow cytometry, it remains underutilized for CTCL management. Nonetheless, incorporation of HTS-TCR in clinical practice offers distinct advantages compared to other molecular analyses that may improve diagnostic evaluation, prognostication, and disease monitoring in CTCL. The objective of this comprehensive review is to provide a thorough explanation of the application of immunosequencing in the context of CTCL. We describe the significance of T-cell clonality and the methods used to detect it, including a detailed comparison between PCR paired with capillary electrophoresis and HTS-TCR. The utilization of immunosequencing in the blood and skin of CTCL patients is discussed in depth, specifically outlining how HTS-TCR can assist in diagnosing CTCL, predicting outcomes, and tracking disease progression. Finally, we address the potential applications of immunosequencing in clinical management and research as well as the novel challenges it presents.
Collapse
Affiliation(s)
| | | | | | | | - Neda Nikbakht
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
11
|
Tomacinschii V, Mosquera Orgueira A, Santos CA, Robu M, Buruiana S, Fraga Rodriguez MF. The implication of next-generation sequencing in the diagnosis and clinical management of non-Hodgkin lymphomas. Front Oncol 2023; 13:1275327. [PMID: 38023160 PMCID: PMC10663367 DOI: 10.3389/fonc.2023.1275327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Next generation sequencing (NGS) is a technology that broadens the horizon of knowledge of several somatic pathologies, especially in oncological and oncohematological pathology. In the case of NHL, the understanding of the mechanisms of tumorigenesis, tumor proliferation and the identification of genetic markers specific to different lymphoma subtypes led to more accurate classification and diagnosis. Similarly, the data obtained through NGS allowed the identification of recurrent somatic mutations that can serve as therapeutic targets that can be inhibited and thus reducing the rate of resistant cases. The article's purpose is to offer a comprehensive overview of the best ways of integrating of next-generation sequencing technologies for diagnosis, prognosis, classification, and selection of optimal therapy from the perspective of tailor-made medicine.
Collapse
Affiliation(s)
- Victor Tomacinschii
- Department of Hematology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
- Department of Hematology, Public Medical Sanitary Institution (PMSI) Institute of Oncology, Chisinau, Moldova
| | - Adrian Mosquera Orgueira
- University Hospital of Santiago de Compostela, Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos Aliste Santos
- University Hospital of Santiago de Compostela, Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
| | - Maria Robu
- Department of Hematology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Sanda Buruiana
- Department of Hematology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Maximo Francisco Fraga Rodriguez
- University Hospital of Santiago de Compostela, Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Forensic Sciences, Pathology, Ginecology and Obstetrics and Pediatrics, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
12
|
Gleason L, Talasila S, Tekmen V, Nikbakht N. Reduced Skin T-Cell Receptor Diversity in Large Cell Transformed Mycosis Fungoides. J Invest Dermatol 2023; 143:2318-2322.e4. [PMID: 37127182 PMCID: PMC10592559 DOI: 10.1016/j.jid.2023.03.1683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/26/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Laura Gleason
- Department of Dermatology & Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sahithi Talasila
- Department of Dermatology & Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Volkan Tekmen
- Department of Dermatology & Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Neda Nikbakht
- Department of Dermatology & Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
13
|
Morgenroth S, Roggo A, Pawlik L, Dummer R, Ramelyte E. What Is New in Cutaneous T Cell Lymphoma? Curr Oncol Rep 2023; 25:1397-1408. [PMID: 37874473 PMCID: PMC10640416 DOI: 10.1007/s11912-023-01464-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/25/2023]
Abstract
PURPOSE OF REVIEW This review focuses on updates in prognosis, pathogenesis, and treatment of cutaneous T cell lymphoma (CTCL). RECENT FINDINGS Cohort studies indicate imaging may be necessary in early-stage CTCL. Risk factors for progression of CTCL have been identified. Interactions between malignant cells and the tumor microenvironment (TME) and the skin microbiome advance the understanding of pathogenesis and tumor cell dissemination. Studies support a hypothesis of circulating malignant tumor cells. MicroRNA (miR) influence tumor progression and prognosis; the IL22-STAT3-CCL20 cascade may be a novel target. IL-4, IL-5, and IL-31 cytokines are relevant for pruritus and could be targets for therapeutic interventions. Systemic therapies, such as JAK inhibitors, targeted antibodies, and checkpoint inhibitors, show promise in advanced stages. Allogenic hematopoietic stem cell transplantation provides a potential curative option for patients. Further investigations of prognosis and translational research are necessary to improve stratification of patients for treatment.
Collapse
Affiliation(s)
- Sarah Morgenroth
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andrea Roggo
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Laura Pawlik
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Egle Ramelyte
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Joffe D, Bhatti S, Banner L, Zaya R, Gleason L, Mishra A, Kirsch I, Porcu P, Nikbakht N. The overlap of skin and blood T-cell clones in early-stage mycosis fungoides. Blood Adv 2023; 7:6206-6210. [PMID: 37611154 PMCID: PMC10582838 DOI: 10.1182/bloodadvances.2023010867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Affiliation(s)
- Daniel Joffe
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA
| | - Safiyyah Bhatti
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA
| | - Lauren Banner
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA
| | - Romsin Zaya
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA
| | - Laura Gleason
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA
| | - Anjali Mishra
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA
| | | | - Pierluigi Porcu
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA
| | - Neda Nikbakht
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
15
|
Harro CM, Sprenger KB, Chaurio RA, Powers JJ, Innamarato P, Anadon CM, Zhang Y, Biswas S, Mandal G, Mine JA, Cortina C, Nagy MZ, Martin AL, Handley KF, Borjas GJ, Chen PL, Pinilla-Ibarz J, Sokol L, Yu X, Conejo-Garcia JR. Sézary syndrome originates from heavily mutated hematopoietic progenitors. Blood Adv 2023; 7:5586-5602. [PMID: 37531660 PMCID: PMC10514084 DOI: 10.1182/bloodadvances.2022008562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
The pathogenesis of cutaneous T-cell lymphoma (CTCL) remains unclear. Using single-cell RNA or T-cell receptor (TCR) sequencing of 32 619 CD3+CD4+ and CD26+/CD7+ and 29 932 CD3+CD4+ and CD26-/CD7- lymphocytes from the peripheral blood of 7 patients with CTCL, coupled to single-cell ATAC-sequencing of 26,411 CD3+CD4+ and CD26+/CD7+ and 33 841 CD3+CD4+ and CD26-/CD7- lymphocytes, we show that tumor cells in Sézary syndrome and mycosis fungoides (MF) exhibit different phenotypes and trajectories of differentiation. When compared to MF, Sézary cells exhibit narrower repertoires of TCRs and exhibit clonal enrichment. Surprisingly, we identified ≥200 mutations in hematopoietic stem cells from multiple patients with Sézary syndrome. Mutations in key oncogenes were also present in peripheral Sézary cells, which also showed the hallmarks of recent thymic egression. Together our data suggest that CTCL arises from mutated lymphocyte progenitors that acquire TCRs in the thymus, which complete their malignant transformation in the periphery.
Collapse
Affiliation(s)
- Carly M. Harro
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL
- Cancer Biology PhD Program, College of Arts and Sciences, University of South Florida, Tampa, FL
| | - Kimberly B. Sprenger
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Ricardo A. Chaurio
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Immunology, Duke School of Medicine, Durham, NC
| | - John J. Powers
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Patrick Innamarato
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Carmen M. Anadon
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Immunology, Duke School of Medicine, Durham, NC
| | - Yumeng Zhang
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Subir Biswas
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Gunjan Mandal
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Biotechnology, Institute of Life Sciences, Bhubaneswar, India
| | - Jessica A. Mine
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Immunology, Duke School of Medicine, Durham, NC
| | - Carla Cortina
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Mate Z. Nagy
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Alexandra L. Martin
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Katelyn F. Handley
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Gustavo J. Borjas
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Pei-Ling Chen
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Javier Pinilla-Ibarz
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Lubomir Sokol
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Jose R. Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Immunology, Duke School of Medicine, Durham, NC
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| |
Collapse
|
16
|
Gleason L, Nikbakht N. Prognostic Relevance of Dominant Blood T-Cell Clones in Early Mycosis Fungoides. JAMA Dermatol 2023; 159:116. [PMID: 36416838 DOI: 10.1001/jamadermatol.2022.4855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Laura Gleason
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Neda Nikbakht
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Single-cell analyses reveal novel molecular signatures and pathogenesis in cutaneous T cell lymphoma. Cell Death Dis 2022; 13:970. [PMID: 36400759 PMCID: PMC9674677 DOI: 10.1038/s41419-022-05323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022]
Abstract
Sézary syndrome (SS) is a rare and aggressive type of cutaneous T cell lymphoma (CTCL) with a poor prognosis. Intra-tumoral heterogeneity caused by different disease compartments (e.g., skin, blood) and poor understanding of the pathogenesis has created obstacles to the precise diagnosis and targeted treatment of the disease. Here we performed a comprehensive analysis by integrating single-cell transcriptomic data of 40,333 peripheral blood mononuclear cells (PBMCs) and 41,580 skin cells, as well as single-cell chromatin accessibility data of 11,058 PBMCs from an SS patient and matched healthy controls (HCs). Validation and functional investigation were carried out in an independent cohort consisting of SS patients, mycosis fungoides (MF) patients, psoriatic erythroderma patients, and HCs, as well as multiple cell lines. The analysis revealed that skin-derived Sézary cells (SCs) had a shifting trend to more advanced mature phenotypes compared to blood-derived SCs. A series of specific marker genes (TOX, DNM3, KLHL42, PGM2L1, and SESN3) shared in blood- and skin-derived SCs were identified, facilitating the diagnosis and prognosis of MF/SS. Moreover, luciferase reporter assays and gene knockdown assays were used to verify that KLHL42 was transcriptionally activated by GATA3 in SS. Functional assays indicated that KLHL42 silencing significantly inhibited aggressive CTCL cell proliferation and promoted its apoptosis. Therefore, targeting inhibition KLHL42 might serve as a promising therapeutic approach in CTCL.
Collapse
|
18
|
Patil K, Kuttikrishnan S, Khan AQ, Ahmad F, Alam M, Buddenkotte J, Ahmad A, Steinhoff M, Uddin S. Molecular pathogenesis of Cutaneous T cell Lymphoma: Role of chemokines, cytokines, and dysregulated signaling pathways. Semin Cancer Biol 2022; 86:382-399. [PMID: 34906723 DOI: 10.1016/j.semcancer.2021.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 01/27/2023]
Abstract
Cutaneous T cell lymphomas (CTCLs) are a heterogeneous group of lymphoproliferative neoplasms that exhibit a wide spectrum of immune-phenotypical, clinical, and histopathological features. The biology of CTCL is complex and remains elusive. In recent years, the application of next-generation sequencing (NGS) has evolved our understanding of the pathogenetic mechanisms, including genetic aberrations and epigenetic abnormalities that shape the mutational landscape of CTCL and represent one of the important pro-tumorigenic principles in CTCL initiation and progression. Still, identification of the major pathophysiological pathways including genetic and epigenetic components that mediate malignant clonal T cell expansion has not been achieved. This is of prime importance given the role of malignant T cell clones in fostering T helper 2 (Th2)-bias tumor microenvironment and fueling progressive immune dysregulation and tumor cell growth in CTCL patients, manifested by the secretion of Th2-associated cytokines and chemokines. Alterations in malignant cytokine and chemokine expression patterns orchestrate the inflammatory milieu and influence the migration dynamics of malignant clonal T cells. Here, we highlight recent insights about the molecular mechanisms of CTCL pathogenesis, emphasizing the role of cytokines, chemokines, and associated downstream signaling networks in driving immune defects, malignant transformation, and disease progression. In-depth characterization of the CTCL immunophenotype and tumoral microenvironment offers a facile opportunity to expand the therapeutic armamentarium of CTCL, an intractable malignant skin disease with poor prognosis and in dire need of curative treatment approaches.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Fareed Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha, 24144, Qatar; Dept. of Dermatology, Weill Cornell Medicine, New York, 10065, NY, USA.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
19
|
Bozon A, Avinens O, Lacheretz-Szablewski V, Dereure O, Thévenin C. SPATIAL AND TEMPORAL HOMOGENEITY OF T-CELL RECEPTOR GAMMA CHAIN REARRANGEMENTS IN MYCOSIS FUNGOIDES: A NEXT GENERATION SEQUENCING ANALYSIS. J Am Acad Dermatol 2022; 87:908-910. [PMID: 35662662 DOI: 10.1016/j.jaad.2022.05.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Agathe Bozon
- Department of Dermatology and INSERM U1058 "Pathogenesis and Control of Chronic and Emerging Infections," University of Montpellier, Montpellier, France; Laboratory of Immunology, University of Montpellier, Montpellier, France
| | - Odile Avinens
- Laboratory of Immunology, University of Montpellier, Montpellier, France
| | | | - Olivier Dereure
- Department of Dermatology and INSERM U1058 "Pathogenesis and Control of Chronic and Emerging Infections," University of Montpellier, Montpellier, France.
| | - Céline Thévenin
- Laboratory of Immunology, University of Montpellier, Montpellier, France
| |
Collapse
|
20
|
Song X, Chang S, Seminario-Vidal L, de Mingo Pulido A, Tordesillas L, Song X, Reed RA, Harkins A, Whiddon S, Nguyen JV, Segura CM, Zhang C, Yoder S, Sayegh Z, Zhao Y, Messina JL, Harro CM, Zhang X, Conejo-Garcia JR, Berglund A, Sokol L, Zhang J, Rodriguez PC, Mulé JJ, Futreal AP, Tsai KY, Chen PL. Genomic and Single-Cell Landscape Reveals Novel Drivers and Therapeutic Vulnerabilities of Transformed Cutaneous T-cell Lymphoma. Cancer Discov 2022; 12:1294-1313. [PMID: 35247891 PMCID: PMC9148441 DOI: 10.1158/2159-8290.cd-21-1207] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/10/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022]
Abstract
ABSTRACT Cutaneous T-cell lymphoma (CTCL) is a rare cancer of skin-homing T cells. A subgroup of patients develops large cell transformation with rapid progression to an aggressive lymphoma. Here, we investigated the transformed CTCL (tCTCL) tumor ecosystem using integrative multiomics spanning whole-exome sequencing (WES), single-cell RNA sequencing, and immune profiling in a unique cohort of 56 patients. WES of 70 skin biopsies showed high tumor mutation burden, UV signatures that are prognostic for survival, exome-based driver events, and most recurrently mutated pathways in tCTCL. Single-cell profiling of 16 tCTCL skin biopsies identified a core oncogenic program with metabolic reprogramming toward oxidative phosphorylation (OXPHOS), cellular plasticity, upregulation of MYC and E2F activities, and downregulation of MHC I suggestive of immune escape. Pharmacologic perturbation using OXPHOS and MYC inhibitors demonstrated potent antitumor activities, whereas immune profiling provided in situ evidence of intercellular communications between malignant T cells expressing macrophage migration inhibitory factor and macrophages and B cells expressing CD74. SIGNIFICANCE Our study contributes a key resource to the community with the largest collection of tCTCL biopsies that are difficult to obtain. The multiomics data herein provide the first comprehensive compendium of genomic alterations in tCTCL and identify potential prognostic signatures and novel therapeutic targets for an incurable T-cell lymphoma. This article is highlighted in the In This Issue feature, p. 1171.
Collapse
Affiliation(s)
- Xiaofei Song
- Department of Genomic Medicine, The UT MD Anderson Cancer Center, Houston, TX, USA
| | - Shiun Chang
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Lucia Seminario-Vidal
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Alvaro de Mingo Pulido
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Leticia Tordesillas
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The UT MD Anderson Cancer Center, Houston, TX, USA
| | - Rhianna A. Reed
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Andrea Harkins
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Shannen Whiddon
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jonathan V. Nguyen
- Advanced Analytical and Digital Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Carlos Moran Segura
- Advanced Analytical and Digital Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chaomei Zhang
- Molecular Genomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sean Yoder
- Molecular Genomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Zena Sayegh
- Tissue Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Yun Zhao
- Department of Biopharma Services, Admera Health, Holmdel, NJ, USA
| | - Jane L. Messina
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Carly M. Harro
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Xiaohui Zhang
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - José R. Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Anders Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Lubomir Sokol
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The UT MD Anderson Cancer Center, Houston, TX, USA
| | - Paulo C. Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - James J. Mulé
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Andrew P. Futreal
- Department of Genomic Medicine, The UT MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth Y. Tsai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Pei-Ling Chen
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
21
|
Mass Cytometric Analysis of Early-Stage Mycosis Fungoides. Cells 2022; 11:cells11071062. [PMID: 35406628 PMCID: PMC8997708 DOI: 10.3390/cells11071062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Mycosis fungoides (MF) is the most common subtype of cutaneous T-cell lymphoma. Early-stage disease is characterized by superficial infiltrates of small- to medium-sized atypical epidermotropic T lymphocytes that are clonal related. Nevertheless, the percentage of atypical T cells is low with many admixed reactive immune cells. Despite earlier studies, the composition and spatial characteristics of the cutaneous lymphocytic infiltrate has been incompletely characterized. Here, we applied mass cytometry to profile the immune system in skin biopsies of patients with early-stage MF and in normal skin from healthy individuals. Single-cell suspensions were prepared and labeled with a 43-antibody panel, and data were acquired on a Helios mass cytometer. Unbiased hierarchical clustering of the data identified the major immune lineages and heterogeneity therein. This revealed patient-unique cell clusters in both the CD4+ and myeloid cell compartments but also phenotypically distinct cell clusters that were shared by most patients. To characterize the immune compartment in the tissue context, we developed a 36-antibody panel and performed imaging mass cytometry on MF skin tissue. This visualized the structure of MF skin and the distribution of CD4+ T cells, regulatory T cells, CD8+ T cells, malignant T cells, and various myeloid cell subsets. We observed clusters of CD4+ T cells and multiple types of dendritic cells (DCs) identified through differential expression of CD11c, CD1a, and CD1c in the dermis. These results indicated substantial heterogeneity in the composition of the local immune infiltrate but suggest a prominent role for clustered CD4-DC interactions in disease pathogenesis. Probably, the local inhibition of such interactions may constitute an efficient treatment modality.
Collapse
|
22
|
Single-cell transcriptomics links malignant T cells to the tumor immune landscape in cutaneous T cell lymphoma. Nat Commun 2022; 13:1158. [PMID: 35241665 PMCID: PMC8894386 DOI: 10.1038/s41467-022-28799-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Cutaneous T cell lymphoma (CTCL) represents a heterogeneous group of non-Hodgkin lymphoma distinguished by the presence of clonal malignant T cells. The heterogeneity of malignant T cells and the complex tumor microenvironment remain poorly characterized. With single-cell RNA analysis and bulk whole-exome sequencing on 19 skin lesions from 15 CTCL patients, we decipher the intra-tumor and inter-lesion diversity of CTCL patients and propose a multi-step tumor evolution model. We further establish a subtyping scheme based on the molecular features of malignant T cells and their pro-tumorigenic microenvironments: the TCyEM group, demonstrating a cytotoxic effector memory T cell phenotype, shows more M2 macrophages infiltration, while the TCM group, featured by a central memory T cell phenotype and adverse patient outcome, is infiltrated by highly exhausted CD8+ reactive T cells, B cells and Tregs with suppressive activities. Our results establish a solid basis for understanding the nature of CTCL and pave the way for future precision medicine for CTCL patients.
Collapse
|
23
|
Ni X, Maiti S, Redko A, Bijani P, Duvic M. Monitoring malignant T-cell clones by direct TCR expression assay in patients with leukemic cutaneous T-cell lymphoma during extracorporeal photopheresis. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2022; 38:158-168. [PMID: 34543492 PMCID: PMC11917527 DOI: 10.1111/phpp.12732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND/PURPOSE Accurate assessment of malignant T-cell clones in patients with leukemic cutaneous T-cell lymphoma (L-CTCL) is crucial for diagnosis, treatment, and monitoring disease. Although multiple approaches to quantitate malignant T-cell clones have been reported, a cost-effective assay with broad coverage is not available. We report a NanoString-nCounter-Technology-based direct TCR expression assay (DTEA) that was previously developed to quantify both TCR-Vα and TCR-Vβ usages after adoptive immunotherapy. This study was performed to test the effectiveness of DTEA in assessing malignant T-cell clones in L-CTCL patients. METHODS Total RNAs extracted from peripheral blood mononuclear cells of patients before starting extracorporeal photopheresis (ECP) (n = 15) and during therapy at 3 months and 6 months (n = 12) were used for DTEA, with customized probes for 45 TCR-Vα and 46 TCR-Vβ family members. RESULTS At baseline, DTEA detected TCR-Vβ clones in all 15 patients (100%) compared to flow cytometry that detected TCR-Vβ clones in 9 of 13 patients (69.2%). In addition to predominant TCR-Vβ clones, DTEA also detected additional TCR-Vβ clones in 8 of 15 patients (53.3%). Furthermore, DTEA simultaneously identified clonal TCR-Vα usages, which allowed us to pair TCR-Vα and TCRVβ usages by malignant T-cells and identify diversified clonotypes. Changes in the relative frequencies of clonal TCR-Vβ and TCRVα usages over therapy were consistent with patients' clinical responses. CONCLUSIONS Our results indicate that DTEA can effectively assess malignant T-cell clones by detecting clonal TCR-Vα and TCR-Vβ usages. By providing a global view of TCR repertoires, DTEA may also help us understand the origin(s) of malignant T-cells and pathogenesis of CTCL.
Collapse
Affiliation(s)
- Xiao Ni
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sourindra Maiti
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alissa Redko
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pedram Bijani
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Madeleine Duvic
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
24
|
Licht P, Mailänder V. Transcriptional Heterogeneity and the Microbiome of Cutaneous T-Cell Lymphoma. Cells 2022; 11:cells11030328. [PMID: 35159138 PMCID: PMC8834405 DOI: 10.3390/cells11030328] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cutaneous T-Cell Lymphomas (CTCL) presents with substantial clinical variability and transcriptional heterogeneity. In the recent years, several studies paved the way to elucidate aetiology and pathogenesis of CTCL using sequencing methods. Several T-cell subtypes were suggested as the source of disease thereby explaining clinical and transcriptional heterogeneity of CTCL entities. Several differentially expressed pathways could explain disease progression. However, exogenous triggers in the skin microenvironment also seem to affect CTCL status. Especially Staphylococcus aureus was shown to contribute to disease progression. Only little is known about the complex microbiome patterns involved in CTCL and how microbial shifts might impact this malignancy. Nevertheless, first hints indicate that the microbiome might at least in part explain transcriptional heterogeneity and that microbial approaches could serve in diagnosis and prognosis. Shaping the microbiome could be a treatment option to maintain stable disease. Here, we review current knowledge of transcriptional heterogeneity of and microbial influences on CTCL. We discuss potential benefits of microbial applications and microbial directed therapies to aid patients with CTCL burden.
Collapse
Affiliation(s)
- Philipp Licht
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
| | - Volker Mailänder
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Correspondence:
| |
Collapse
|
25
|
Zhu L, Xie S, Yang C, Hua N, Wu Y, Wang L, Ni W, Tong X, Fei M, Wang S. Current Progress in Investigating Mature T- and NK-Cell Lymphoma Gene Aberrations by Next-Generation Sequencing (NGS). Cancer Manag Res 2021; 13:5275-5286. [PMID: 34239326 PMCID: PMC8259727 DOI: 10.2147/cmar.s299505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/14/2021] [Indexed: 11/23/2022] Open
Abstract
Despite efforts to abrogate the severe threat to life posed by the profound malignancy of mature natural killer/T-cell lymphoma (NKTCL), therapeutic advances still require further investigation of its inherent regulatory biochemical processes. Next-generation sequencing (NGS) is an increasingly developing gene detection technique, which has been widely used in lymphoma genetic research in recent years. Targeted therapy based on the above studies has also generated a series of advances, making genetic mutation a new research hotspot in lymphoma. Advances in NKTCL-related gene mutations are reviewed in this paper.
Collapse
Affiliation(s)
- Lifen Zhu
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Shufang Xie
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chen Yang
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- Department of Clinical Medicine, Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Nanni Hua
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yi Wu
- Phase I clinical research center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Lei Wang
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Wanmao Ni
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiangmin Tong
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Min Fei
- Center of Health Management, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Shibing Wang
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
26
|
Branched evolution and genomic intratumor heterogeneity in the pathogenesis of cutaneous T-cell lymphoma. Blood Adv 2021; 4:2489-2500. [PMID: 32502269 DOI: 10.1182/bloodadvances.2020001441] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/30/2020] [Indexed: 02/08/2023] Open
Abstract
Mycosis fungoides (MF) is a slowly progressive cutaneous T-cell lymphoma (CTCL) for which there is no cure. In the early plaque stage, the disease is indolent, but development of tumors heralds an increased risk of metastasis and death. Previous research into the genomic landscape of CTCL revealed a complex pattern of >50 driver mutations implicated in more than a dozen signaling pathways. However, the genomic mechanisms governing disease progression and treatment resistance remain unknown. Building on our previous discovery of the clonotypic heterogeneity of MF, we hypothesized that this lymphoma does not progress in a linear fashion as currently thought but comprises heterogeneous mutational subclones. We sequenced exomes of 49 cases of MF and identified 28 previously unreported putative driver genes. MF exhibited extensive intratumoral heterogeneity (ITH) of a median of 6 subclones showing a branched phylogenetic relationship pattern. Stage progression was correlated with an increase in ITH and redistribution of mutations from stem to clades. The pattern of clonal driver mutations was highly variable, with no consistent mutations among patients. Similar intratumoral heterogeneity was detected in leukemic CTCL (Sézary syndrome). Based on these findings, we propose a model of MF pathogenesis comprising divergent evolution of cancer subclones and discuss how ITH affects the efficacy of targeted drug therapies and immunotherapies for CTCL.
Collapse
|
27
|
Cortés JR, Palomero T. Biology and Molecular Pathogenesis of Mature T-Cell Lymphomas. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a035402. [PMID: 32513675 DOI: 10.1101/cshperspect.a035402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peripheral T-cell lymphomas (PTCLs) constitute a highly heterogeneous group of hematological diseases with complex clinical and molecular features consistent with the diversity of the T-cell type from which they originate. In the past several years, the systematic implementation of high-throughput genomic technologies for the analysis of T-cell malignancies has supported an exponential progress in our understanding of the genetic drivers of oncogenesis and unraveled the molecular complexity of these diseases. Recent findings have helped redefine the classification of T-cell malignancies and provided novel biomarkers to improve diagnosis accuracy and analyze the response to therapy. In addition, multiple novel targeted therapies including small-molecule inhibitors, antibody-based approaches, and immunotherapy have shown promising results in early clinical analysis and have the potential to completely change the way T-cell malignancies have been treated traditionally.
Collapse
Affiliation(s)
| | - Teresa Palomero
- Institute for Cancer Genetics.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
28
|
Sivanand A, Hennessey D, Iyer A, O'Keefe S, Surmanowicz P, Vaid G, Xiao Z, Gniadecki R. The Neoantigen Landscape of Mycosis Fungoides. Front Immunol 2020; 11:561234. [PMID: 33329522 PMCID: PMC7719792 DOI: 10.3389/fimmu.2020.561234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/23/2020] [Indexed: 11/23/2022] Open
Abstract
Background Mycosis fungoides (MF) is the most common cutaneous T-cell lymphoma, for which there is no cure. Immune checkpoint inhibitors have been tried in MF but the results have been inconsistent. To gain insight into the immunogenicity of MF we characterized the neoantigen landscape of this lymphoma, focusing on the known predictors of responses to immunotherapy: the quantity, HLA-binding strength and subclonality of neoantigens. Methods Whole exome and whole transcriptome sequences were obtained from 24 MF samples (16 plaques, 8 tumors) from 13 patients. Bioinformatic pipelines (Mutect2, OptiType, MuPeXi) were used for mutation calling, HLA typing, and neoantigen prediction. PhyloWGS was used to subdivide malignant cells into stem and clades, to which neoantigens were matched to determine their clonality. Results MF has a high mutational load (median 3,217 non synonymous mutations), resulting in a significant number of total neoantigens (median 1,309 per sample) and high-affinity neoantigens (median 328). In stage I disease most neoantigens were clonal but with stage progression, 75% of lesions had >50% subclonal antigens and 53% lesions had CSiN scores <1. There was very little overlap in neoantigens across patients or between different lesions on the same patient, indicating a high degree of heterogeneity. Conclusions The neoantigen landscape of MF is characterized by high neoantigen load and significant subclonality which could indicate potential challenges for immunotherapy in patients with advanced-stage disease.
Collapse
Affiliation(s)
- Arunima Sivanand
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Dylan Hennessey
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Aishwarya Iyer
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Sandra O'Keefe
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Philip Surmanowicz
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Gauravi Vaid
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Zixuan Xiao
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Robert Gniadecki
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
29
|
Independent evolution of cutaneous lymphoma subclones in different microenvironments of the skin. Sci Rep 2020; 10:15483. [PMID: 32968137 PMCID: PMC7511331 DOI: 10.1038/s41598-020-72459-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/16/2020] [Indexed: 01/01/2023] Open
Abstract
Mycosis fungoides (MF) is the most common cutaneous T-cell lymphoma. Lesions of MF are formed by hematogenous seeding the skin with polyclonal (clonotypically diverse) neoplastic T-cells which accumulate numerous mutations and display a high degree of mutational, intratumoral heterogeneity (ITH). A characteristic but poorly studied feature of MF is epidermotropism, the tendency to infiltrate skin epithelial layer (epidermis) in addition to the vascularized dermis. By sequencing the exomes of the microdissected clusters of lymphoma cells from the epidermis and the dermis, we found that those microenvironments comprised different malignant clonotypes. Subclonal structure witnessed the independent mutational evolution in the epidermis and dermis. Thus, the epidermal involvement in MF could not be explained by gradual infiltration from the dermis but was caused by a separate seeding process followed by a quasi-neutral, branched evolution. In conclusion, tissue microenvironments shape the subclonal architecture in MF leading to “ecological heterogeneity” which contributes to the total ITH. Since ITH adversely affects cancer prognosis, targeting the microenvironment may present therapeutic opportunities in MF and other cancers.
Collapse
|
30
|
Willerslev-Olsen A, Buus TB, Nastasi C, Blümel E, Gluud M, Bonefeld CM, Geisler C, Lindahl LM, Vermeer M, Wasik MA, Iversen L, Becker JC, Andersen MH, Gjerdrum LMR, Litvinov IV, Litman T, Krejsgaard T, Woetmann A, Ødum N. Staphylococcus aureus enterotoxins induce FOXP3 in neoplastic T cells in Sézary syndrome. Blood Cancer J 2020; 10:57. [PMID: 32409671 PMCID: PMC7225173 DOI: 10.1038/s41408-020-0324-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/21/2022] Open
Abstract
Sézary syndrome (SS) is a heterogeneous leukemic subtype of cutaneous T-cell lymphoma (CTCL) with generalized erythroderma, lymphadenopathy, and a poor prognosis. Advanced disease is invariably associated with severe immune dysregulation and the majority of patients die from infectious complications caused by microorganisms such as, Staphylococcus aureus, rather than from the lymphoma per se. Here, we examined if staphylococcal enterotoxins (SE) may shape the phenotype of malignant SS cells, including expression of the regulatory T-cell-associated marker FOXP3. Our studies with primary and cultured malignant cells show that SE induce expression of FOXP3 in malignant cells when exposed to nonmalignant cells. Mutations in the MHC class II binding domain of SE-A (SEA) largely block the effect indicating that the response relies at least in part on the MHC class II-mediated antigen presentation. Transwell experiments show that the effect is induced by soluble factors, partly blocked by anti-IL-2 antibody, and depends on STAT5 activation in malignant cells. Collectively, these findings show that SE stimulate nonmalignant cells to induce FOXP3 expression in malignant cells. Thus, differences in exposure to environmental factors, such as bacterial toxins may explain the heterogeneous FOXP3 expression in malignant cells in SS.
Collapse
Affiliation(s)
- Andreas Willerslev-Olsen
- Department of Immunology and Microbiology; LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Terkild B Buus
- Department of Immunology and Microbiology; LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Nastasi
- Department of Immunology and Microbiology; LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Edda Blümel
- Department of Immunology and Microbiology; LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Maria Gluud
- Department of Immunology and Microbiology; LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Bonefeld
- Department of Immunology and Microbiology; LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- Department of Immunology and Microbiology; LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Lise M Lindahl
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Maarten Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Jürgen C Becker
- Department of Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Hospital of Essen, Essen, Germany.,Deutsches Krebsforschungsinstitut (DKFZ), Heidelberg, Germany
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Lise M R Gjerdrum
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Ivan V Litvinov
- Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| | - Thomas Litman
- Department of Immunology and Microbiology; LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- Department of Immunology and Microbiology; LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of Immunology and Microbiology; LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- Department of Immunology and Microbiology; LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
31
|
Skin colonization by circulating neoplastic clones in cutaneous T-cell lymphoma. Blood 2020; 134:1517-1527. [PMID: 31515249 DOI: 10.1182/blood.2019002516] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/03/2019] [Indexed: 12/27/2022] Open
Abstract
Mycosis fungoides (MF) is a mature T-cell lymphoma currently thought to develop primarily in the skin by a clonal expansion of a transformed, resident memory T cell. However, this concept does not explain the key characteristics of MF, such as the debut with multiple, widespread skin lesions or inability of skin-directed therapies to provide cure. The testable inference of the mature T-cell theory is the clonality of MF with respect to all rearranged T-cell receptor (TCR) genes. Here, we used a whole-exome sequencing approach to detect and quantify TCR-α, β, and γ clonotypes in tumor cell clusters microdissected from MF lesions. This method allowed us to calculate the tumor cell fraction of the sample and therefore an unequivocal identification of the TCR clonotypes as neoplastic. Analysis of TCR sequences from 29 patients with MF stage I to IV proved the existence of multiple T-cell clones within the tumor cell fraction, with a considerable variation between patients and between lesions from the same patient (median, 11 clones; range, 2-80 clones/sample). We have also detected multiple neoplastic clones in the peripheral blood in all examined patients. Based on these findings, we propose that circulating neoplastic T-cell clones continuously replenish the lesions of MF, thus increasing their heterogeneity by a mechanism analogous to the consecutive tumor seeding. We hypothesize that circulating neoplastic clones might be a promising target for therapy and could be exploited as a potential biomarker in MF.
Collapse
|
32
|
Rauch DA, Conlon KC, Janakiram M, Brammer JE, Harding JC, Ye BH, Zang X, Ren X, Olson S, Cheng X, Miljkovic MD, Sundaramoorthi H, Joseph A, Skidmore ZL, Griffith O, Griffith M, Waldmann TA, Ratner L. Rapid progression of adult T-cell leukemia/lymphoma as tumor-infiltrating Tregs after PD-1 blockade. Blood 2019; 134:1406-1414. [PMID: 31467059 PMCID: PMC6839957 DOI: 10.1182/blood.2019002038] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoint inhibitors are a powerful new tool in the treatment of cancer, with prolonged responses in multiple diseases, including hematologic malignancies, such as Hodgkin lymphoma. However, in a recent report, we demonstrated that the PD-1 inhibitor nivolumab led to rapid progression in patients with adult T-cell leukemia/lymphoma (ATLL) (NCT02631746). We obtained primary cells from these patients to determine the cause of this hyperprogression. Analyses of clonality, somatic mutations, and gene expression in the malignant cells confirmed the report of rapid clonal expansion after PD-1 blockade in these patients, revealed a previously unappreciated origin of these malignant cells, identified a novel connection between ATLL cells and tumor-resident regulatory T cells (Tregs), and exposed a tumor-suppressive role for PD-1 in ATLL. Identifying the mechanisms driving this alarming outcome in nivolumab-treated ATLL may be broadly informative for the growing problem of rapid progression with immune checkpoint therapies.
Collapse
Affiliation(s)
- Daniel A Rauch
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Kevin C Conlon
- Lymphoid Malignancies Branch, National Institutes of Health, Bethesda, MD
| | - Murali Janakiram
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Jonathan E Brammer
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH; and
| | - John C Harding
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Xingxing Zang
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
- Department of Microbiology and Immunology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Xiaoxin Ren
- Department of Microbiology and Immunology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Sydney Olson
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Xiaogang Cheng
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Milos D Miljkovic
- Lymphoid Malignancies Branch, National Institutes of Health, Bethesda, MD
| | - Hemalatha Sundaramoorthi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Ancy Joseph
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Zachary L Skidmore
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Obi Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Malachi Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, National Institutes of Health, Bethesda, MD
| | - Lee Ratner
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
33
|
Sivanand A, Surmanowicz P, Alhusayen R, Hull P, Litvinov IV, Zhou Y, Gniadecki R. Immunotherapy for Cutaneous T-Cell Lymphoma: Current Landscape and Future Developments. J Cutan Med Surg 2019; 23:537-544. [PMID: 31353944 DOI: 10.1177/1203475419867610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mycosis fungoides (MF) and Sézary syndrome (SS) are chronic, progressive primary cutaneous T-cell lymphomas (CTCLs) for which there are no curative treatments. Skin-directed therapies, such as phototherapy, radiation therapy, or topical nitrogen mustard, provide only short-term remissions. Numerous attempts with different chemotherapeutic regimes failed to achieve meaningful clinical responses. Immunotherapy seems to be a promising avenue to achieve long-term disease control in CTCL. There is compelling evidence indicating that MF and SS are immunogenic lymphomas, which can be recognized by the patient's immune system. However, CTCL uses different strategies to impair host's immunity, eg, via repolarizing the T-cell differentiation from type I to type II, recruiting immunosuppressive regulatory T-cells, and limiting the repertoire of lymphocytes in the circulation. Many currently used therapies, such as interferon-α, imiquimod, extracorporeal phototherapy, and allogeneic bone marrow transplant, seem to exert their therapeutic effect via activation of the antitumor cytotoxic response and reconstitution of the host's immune system. It is likely that novel immunotherapies such as immune checkpoint inhibitors, cancer vaccines, and chimeric antigen receptor-T cells will help to manage CTCL more efficiently. We also discuss how current genomic techniques, such as estimating the mutational load by whole genome sequencing and neoantigen calling, are likely to provide clinically useful information facilitating personalized immunotherapy of CTCL.
Collapse
Affiliation(s)
- Arunima Sivanand
- 1 Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | | | - Raed Alhusayen
- 2 Division of Dermatology, University of Toronto, ON, Canada
| | - Peter Hull
- 3 Division of Clinical Dermatology and Cutaneous Science, Dalhousie University, Halifax, NS, Canada
| | - Ivan V Litvinov
- 4 Division of Dermatology, McGill University, Montreal, QC, Canada
| | - Youwen Zhou
- 5 Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | - Robert Gniadecki
- 1 Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
34
|
Antibiotics inhibit tumor and disease activity in cutaneous T-cell lymphoma. Blood 2019; 134:1072-1083. [PMID: 31331920 DOI: 10.1182/blood.2018888107] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 06/16/2019] [Indexed: 02/07/2023] Open
Abstract
It has been proposed that CD4 T-cell responses to Staphylococcus aureus (SA) can inadvertently enhance neoplastic progression in models of skin cancer and cutaneous T-cell lymphoma (CTCL). In this prospective study, we explored the effect of transient antibiotic treatment on tumor cells and disease activity in 8 patients with advanced-stage CTCL. All patients experienced significant decrease in clinical symptoms in response to aggressive, transient antibiotic treatment. In some patients, clinical improvements lasted for more than 8 months. In 6 of 8 patients, a malignant T-cell clone could be identified in lesional skin, and a significant decrease in the fraction of malignant T cells was observed following antibiotics but an otherwise unchanged treatment regimen. Immunohistochemistry, global messenger RNA expression, and cell-signaling pathway analysis indicated that transient aggressive antibiotic therapy was associated with decreased expression of interleukin-2 high-affinity receptors (CD25), STAT3 signaling, and cell proliferation in lesional skin. In conclusion, this study provides novel evidence suggesting that aggressive antibiotic treatment inhibits malignant T cells in lesional skin. Thus, we provide a novel rationale for treatment of SA in advanced CTCL.
Collapse
|