1
|
Yamamoto Y, Nonomura N. Editorial Comment to "Tertiary Lymphoid Structures Correlate With Better Prognosis in Patients With Retroperitoneal Sarcoma: A Retrospective Study". Int J Urol 2025. [PMID: 40312933 DOI: 10.1111/iju.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Affiliation(s)
- Yoshiyuki Yamamoto
- Department of Urology, The University of Osaka Graduate School of Medicine, Suita City, Osaka Prefecture, Japan
| | - Norio Nonomura
- Department of Urology, The University of Osaka Graduate School of Medicine, Suita City, Osaka Prefecture, Japan
| |
Collapse
|
2
|
Kret ZS, Sweder RJ, Pollock R, Tinoco G. Potential Mechanisms for Immunotherapy Resistance in Adult Soft-Tissue Sarcoma. Target Oncol 2025; 20:485-502. [PMID: 40289241 DOI: 10.1007/s11523-025-01145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2025] [Indexed: 04/30/2025]
Abstract
Soft-tissue sarcomas represent a diverse group of rare malignancies originating from mesenchymal tissue, accounting for less than 1% of adult cancers in the USA. With over 13,000 new cases and around 5350 deaths annually, patients with metastatic soft-tissue sarcomas face limited therapeutic options and an estimated median overall survival of 18 months. While immunotherapy has demonstrated effectiveness in several cancers, its application in soft-tissue sarcomas remains challenging owing to the tumors' largely "cold" immunological environment, characterized by low levels of tumor-infiltrating lymphocytes and a lack of soft-tissue sarcoma-specific biomarkers. This review examines potential mechanisms underlying immunotherapy resistance in soft-tissue sarcomas, including the complex interplay between innate and adaptive immunity, the tumor microenvironment, and the role of immune-related genes. Despite preliminary findings suggesting correlations between immune profiles and histological subtypes, consistent biomarkers for predicting immunotherapeutic responses across soft-tissue sarcoma types are absent. Emerging strategies focus on converting "cold" tumors to "hot" tumors, enhancing their susceptibility to immunologic activation. While research is ongoing, personalized treatment approaches may offer hope for overcoming the inherent heterogeneity and resistance seen in soft-tissue sarcomas, ultimately aiming to improve outcomes for affected patients.
Collapse
Affiliation(s)
- Zaina S Kret
- The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Ryan J Sweder
- The Ohio State University College of Arts and Sciences and College of Medicine, Columbus, OH, USA
| | - Raphael Pollock
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Gabriel Tinoco
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, 1800 Cannon Drive, 1240 Lincoln Tower, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Aobo Z, Xiao Z, Chengfei X, Zhe X, Yingxue C, Chenhe Z, Fuan X, Fan Y, Mengmeng X, Feng Y, Wengang L. Combination of immune checkpoint inhibitors and anthracyclines as a potential first-line regimen for dedifferentiated liposarcoma: systematic review and meta-analysis. Cancer Immunol Immunother 2025; 74:179. [PMID: 40257618 PMCID: PMC12011665 DOI: 10.1007/s00262-025-04007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 04/22/2025]
Abstract
INTRODUCTION Dedifferentiated liposarcoma (DDLPS) is a rare and aggressive subtype of soft tissue sarcoma, characterized by limited treatment options and poor prognosis. Despite surgical resection being the only potentially curative treatment for localized DDLPS, the recurrence rate remains high, and systemic chemotherapy, typically anthracycline-based, shows limited efficacy in advanced stages. While immune checkpoint inhibitors (ICIs) have shown promise in various sarcoma subtypes, including DDLPS, their role as a first-line treatment remains unclear. METHODS We conducted a systematic meta-analysis to evaluate the efficacy of ICIs in treating patients with DDLPS. A total of 25 studies encompassing 245 patients were included. Data on overall response rate (ORR), progression-free survival, and grade III-V treatment-related adverse events were analyzed. We assessed treatment efficacy based on the line of therapy and treatment regimens, including ICI monotherapy, dual ICI therapy, and ICI combinations with other modalities. RESULTS The pooled ORR for all ICI-based treatments was 7%. First-line ICI therapy yielded a significantly higher ORR of 22%, compared to 4% in later-line treatment. The combination of ICI with anthracyclines demonstrated the highest ORR of 52%. In contrast, ICI regimens combined with trabectedin or other agents showed limited efficacy. Sensitivity analysis confirmed the stability of results, and publication bias was not detected. CONCLUSION This meta-analysis supports the potential role of ICIs, particularly in combination with anthracyclines, as a first-line therapeutic strategy for DDLPS. These results provide a foundation for future prospective studies aimed at optimizing immunotherapy approaches for this rare and challenging malignancy.
Collapse
Affiliation(s)
- Zhuang Aobo
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhou Xiao
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xu Chengfei
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Xi Zhe
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Chen Yingxue
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhang Chenhe
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xie Fuan
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yang Fan
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiao Mengmeng
- Department of Retroperitoneal Tumor Surgery, Peking University People's Hospital, Beijing, China.
| | - Ye Feng
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| | - Li Wengang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
4
|
Levy A, Morel D, Texier M, Rodriguez-Ruiz ME, Bouarroudj L, Bouquet F, Bustillos A, Quevrin C, Clémenson C, Mondini M, Meziani L, Sun R, Zaghdoud N, Tselikas L, Assi T, Faron M, Honoré C, Ngo C, Verret B, Le Péchoux C, Le Cesne A, Ginhoux F, Massard C, Bahleda R, Deutsch E. Monocyte-lineage tumor infiltration predicts immunoradiotherapy response in advanced pretreated soft-tissue sarcoma: phase 2 trial results. Signal Transduct Target Ther 2025; 10:103. [PMID: 40097400 PMCID: PMC11914280 DOI: 10.1038/s41392-025-02173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Immunoradiotherapy holds promise for improving outcomes in patients with advanced solid tumors, including in soft-tissue sarcoma (STS). However, the ideal combination of treatment modalities remains to be determined, and reliable biomarkers to predict which patients will benefit are lacking. Here, we report the results of the STS cohort of the SABR-PDL1 phase II trial that evaluated the anti-PDL1 atezolizumab combined with stereotactic body radiation therapy (SBRT) delivered concurrently with the 2nd cycle to at least one tumor site. Eligible patients received atezolizumab until progression or unmanageable toxicity, with SBRT at 45 Gy in 3 fractions). The primary endpoint was one-year progression-free survival (PFS) rate with success defined as 13 patients achieving 1-year PFS. Sixty-one heavily pretreated patients with STS (median 5 prior lines; 52% men; median age 54 years; 28% leiomyosarcoma) were enrolled across two centers (France, Spain). SBRT was delivered to 55 patients (90%), with the lung being the most commonly irradiated site (50%). After a median follow-up of 45 months, the one-year PFS rate was 8.3% [95% CI: 3.6-18.1]. Median PFS and overall survival were 2.5 and 8.6 months, respectively. Best responses included partial responses (5%) and stable disease (60%). Immune profiling revealed increased immunosuppressive tumor-associated macrophages (e.g., IL4I1, HES1) and monocyte-recruiting chemokines in non-responders. Higher monocyte/lymphocyte ratios (MonoLR) in tumor and blood correlated with progression. PD-L1 status, lymphoid infiltration, and tertiary-lymphoid structures were not predictive. Although the primary endpoint was not met, this study highlights MonoLR imbalance as a potential biomarker to identify STS patients likely to benefit from immunoradiotherapy. EudraCT No. 2015-005464-42; Clinicaltrial.gov number: NCT02992912.
Collapse
Affiliation(s)
- Antonin Levy
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France.
- Gustave Roussy, Inserm U1030, Université Paris-Saclay, Villejuif, France.
- Faculté de Médecine, Université Paris Saclay, Le Kremlin-Bicêtre, France.
- Sarcoma unit, Gustave Roussy, Villejuif, France.
| | - Daphné Morel
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Inserm U1030, Université Paris-Saclay, Villejuif, France
| | - Matthieu Texier
- Biostatistics and Epidemiology Office, Gustave Roussy, Villejuif, France
- Oncostat 1018 Inserm, University Paris-Saclay, Villejuif, France
| | | | - Lisa Bouarroudj
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Inserm U1030, Université Paris-Saclay, Villejuif, France
- Bioinformatic platform, Gustave Roussy, Villejuif, France
| | - Fanny Bouquet
- Product Development Medical Affairs, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Alberto Bustillos
- Product Development Medical Affairs, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Clément Quevrin
- Gustave Roussy, Inserm U1030, Université Paris-Saclay, Villejuif, France
| | - Céline Clémenson
- Gustave Roussy, Inserm U1030, Université Paris-Saclay, Villejuif, France
| | - Michele Mondini
- Gustave Roussy, Inserm U1030, Université Paris-Saclay, Villejuif, France
| | - Lydia Meziani
- Gustave Roussy, Inserm U1030, Université Paris-Saclay, Villejuif, France
| | - Roger Sun
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Inserm U1030, Université Paris-Saclay, Villejuif, France
- Faculté de Médecine, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Nadia Zaghdoud
- Biostatistics and Epidemiology Office, Gustave Roussy, Villejuif, France
| | - Lambros Tselikas
- Faculté de Médecine, Université Paris Saclay, Le Kremlin-Bicêtre, France
- Department of Interventional Radiology, Gustave Roussy, Villejuif, France
| | - Tarek Assi
- Sarcoma unit, Gustave Roussy, Villejuif, France
| | - Matthieu Faron
- Sarcoma unit, Gustave Roussy, Villejuif, France
- Oncostat 1018 Inserm, University Paris-Saclay, Villejuif, France
| | | | - Carine Ngo
- Sarcoma unit, Gustave Roussy, Villejuif, France
| | | | - Cécile Le Péchoux
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Sarcoma unit, Gustave Roussy, Villejuif, France
| | | | - Florent Ginhoux
- Gustave Roussy, Inserm U1015, Université Paris-Saclay, Villejuif, France
| | - Christophe Massard
- Gustave Roussy, Inserm U1030, Université Paris-Saclay, Villejuif, France
- Faculté de Médecine, Université Paris Saclay, Le Kremlin-Bicêtre, France
- Drug Development Department (DITEP) Gustave Roussy-Cancer Campus, Villejuif, France
| | - Rastilav Bahleda
- Sarcoma unit, Gustave Roussy, Villejuif, France
- Drug Development Department (DITEP) Gustave Roussy-Cancer Campus, Villejuif, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France.
- Gustave Roussy, Inserm U1030, Université Paris-Saclay, Villejuif, France.
- Faculté de Médecine, Université Paris Saclay, Le Kremlin-Bicêtre, France.
| |
Collapse
|
5
|
Lopez de Rodas M, Villalba-Esparza M, Sanmamed MF, Chen L, Rimm DL, Schalper KA. Biological and clinical significance of tumour-infiltrating lymphocytes in the era of immunotherapy: a multidimensional approach. Nat Rev Clin Oncol 2025; 22:163-181. [PMID: 39820025 DOI: 10.1038/s41571-024-00984-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
Immune-checkpoint inhibitors (ICIs) have improved clinical outcomes across several solid tumour types. Prominent efforts have focused on understanding the anticancer mechanisms of these agents, identifying biomarkers of response and uncovering resistance mechanisms to develop new immunotherapeutic approaches. This research has underscored the crucial roles of the tumour microenvironment and, particularly, tumour-infiltrating lymphocytes (TILs) in immune-mediated tumour elimination. Numerous studies have evaluated the prognostic and predictive value of TILs and the mechanisms that govern T cell dysfunction, fuelled by technical developments in single-cell transcriptomics, proteomics, high-dimensional spatial platforms and advanced computational models. However, questions remain regarding the definition of TILs, optimal strategies to study them, specific roles of different TIL subpopulations and their clinical implications in different treatment contexts. Additionally, most studies have focused on the abundance of major TIL subpopulations but have not developed standardized quantification strategies or analysed other crucial aspects such as their functional profile, spatial distribution and/or arrangement, tumour antigen-reactivity, clonal diversity and heterogeneity. In this Review, we discuss a conceptual framework for the systematic study of TILs and summarize the evidence regarding their biological properties and biomarker potential for ICI therapy. We also highlight opportunities, challenges and strategies to support future developments in this field.
Collapse
Affiliation(s)
- Miguel Lopez de Rodas
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Cancer Center Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Maria Villalba-Esparza
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Miguel F Sanmamed
- Department of Immunology and Immunotherapy, Centro de Investigación Médica Aplicada and Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - David L Rimm
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Kurt A Schalper
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Shenasa E, Thornton S, Gao D, Kommoss FKF, Nielsen TO. Immune Biomarkers on Tissue Microarray Cores Support the Presence of Adjacent Tertiary Lymphoid Structures in Soft Tissue Sarcoma. J Transl Med 2025; 105:104091. [PMID: 39800049 DOI: 10.1016/j.labinv.2025.104091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/29/2024] [Accepted: 12/15/2024] [Indexed: 01/15/2025] Open
Abstract
Immunotherapy has emerged as a new treatment modality in some soft tissue sarcomas, particularly for tumors associated with tertiary lymphoid structures (TLSs). These structures are functional lymphoid aggregates, and their presence is indicative of an active anticancer immune response in the tumor microenvironment. The assessment of TLS as a predictive biomarker at scale on patient specimens remains challenging. Although tissue microarrays (TMAs) could facilitate this assessment, it is unclear whether small microarray cores can represent and identify associated TLS responses. We sought to use multiplex immunohistochemistry to identify key components of TLS: T cells, B cells, and dendritic cells. The multiplex panels (CD3, CD20, CD208, and PNAd) were applied to 80 cases both on TMAs and on their cognate available full-faced sections from epithelioid sarcoma and dedifferentiated/well-differentiated liposarcoma case series. TMAs were digitally scored for the number of immune cells using the HALO image analysis platform, and cognate full-faced sections were visually evaluated for the presence of TLS. An independent validation set of soft tissue sarcomas (N = 49) was stained with the CD3, CD20, and CD208, and scored by QuPath. A combined immune marker (defined as the presence of more than 24% CD3+ T cells, or 0.51% CD20+ B cells, or >0.14% CD208+ mature dendritic cells on tissue microarray cores) is highly specific (100%) and moderately sensitive (61%) to predict the existence of TLS on full-faced sections. The combined immune marker showed a sensitivity of 25% and specificity of 91% on the validation set. The combined immune marker assessed on tissue microarrays is highly specific in inferring the presence of TLS on cognate full-faced sections. Therefore, despite the small area sampled, tissue microarrays may be utilized to assess the clinical value of TLS on data sets where specificity is critical and large sample size can mitigate low-to-moderate sensitivity.
Collapse
Affiliation(s)
- Elahe Shenasa
- Interdisciplinary Oncology, University of British Columbia, Vancouver, Canada
| | - Shelby Thornton
- Molecular and Advanced Pathology Core, University of British Columbia, Vancouver, Canada
| | - Dongxia Gao
- Molecular and Advanced Pathology Core, University of British Columbia, Vancouver, Canada
| | - Felix K F Kommoss
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Torsten O Nielsen
- Interdisciplinary Oncology, University of British Columbia, Vancouver, Canada; Molecular and Advanced Pathology Core, University of British Columbia, Vancouver, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
7
|
Wagner MJ, Pimenta EM, Sweeney NW, Loggers ET, Roberts JL, Brinkman E, Chen EY, Ricciotti R, Haddox CL, Berg R, Yilma B, Stoppler MC, Chen JL, Cranmer LD. Genomic Characterization of Chondrosarcoma Reveals Potential Therapeutic Targets. JCO Precis Oncol 2025; 9:e2400592. [PMID: 40117529 PMCID: PMC11949235 DOI: 10.1200/po-24-00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/28/2024] [Accepted: 02/03/2025] [Indexed: 03/23/2025] Open
Abstract
PURPOSE Chondrosarcomas are rare cancers of cartilage with limited systemic therapy options. To identify potential therapeutic targets, this study investigated the molecular and immune landscape of three chondrosarcoma subtypes using a large database of clinical-grade sequencing results. METHODS Deidentified records from patients with a histologic diagnosis of conventional, dedifferentiated, or mesenchymal chondrosarcoma sequenced by the Tempus xT DNA assay were included. Microsatellite instability (MSI) and tumor mutational burden (TMB) were determined from sequencing data. The expression of PD-L1 and mismatch repair enzymes was evaluated in cases with available immunohistochemistry (IHC) data. RESULTS Of the 149 patients, 103 had conventional chondrosarcoma, 31 dedifferentiated chondrosarcoma, and 15 mesenchymal chondrosarcoma. Across the cohort, 44% (n = 65) had an IDH1 or IDH2 mutation. No cases were MSI high. One conventional chondrosarcoma patient had a TMB >10 mut/Mb. Among 112 patients with available PD-L1 IHC, 10% of conventional (n = 7), 45% of dedifferentiated (n = 13), and 17% of mesenchymal cases (n = 2) were PD-L1-positive. The most common somatic alterations were in IDH1 (34%) and TP53 (28%) in conventional chondrosarcoma; TP53 (68%), TERT (65%), IDH1 (39%), IDH2 (39%), CDKN2A (35%), and CDKN2B (35%) in dedifferentiated chondrosarcoma; and HEY1-NCOA2 fusions (87%) and CDKN2A (20%) in mesenchymal chondrosarcoma. MTAP was deleted in >10% of each subtype, and potentially actionable PDGFRB mutations were identified in 13% of dedifferentiated chondrosarcomas. CONCLUSION These findings reinforce therapeutic efforts to target IDH signaling in chondrosarcoma, provide insight into varied subpopulation response to immune checkpoint inhibitors, and identify new potential therapeutic targets for clinical development in chondrosarcoma.
Collapse
Affiliation(s)
- Michael J. Wagner
- Sarcoma and Bone Cancer Center, Dana-Farber Cancer Institute, Boston, MA
- Medical Oncology, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Erica M. Pimenta
- Sarcoma and Bone Cancer Center, Dana-Farber Cancer Institute, Boston, MA
| | | | - Elizabeth T. Loggers
- Medical Oncology, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jesse L. Roberts
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington, Seattle, WA
| | - Elyse Brinkman
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington, Seattle, WA
| | - Eleanor Y. Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Robert Ricciotti
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Candace L. Haddox
- Sarcoma and Bone Cancer Center, Dana-Farber Cancer Institute, Boston, MA
| | | | | | | | | | - Lee D. Cranmer
- Medical Oncology, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
8
|
Zhuang AB, Xi Z, Cheng YX, Zhang CH, Li WG. Current status and future perspectives of immunotherapy for abdominal liposarcoma: From basic research to clinical practice. Shijie Huaren Xiaohua Zazhi 2025; 33:81-88. [DOI: 10.11569/wcjd.v33.i2.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/06/2024] [Accepted: 12/17/2024] [Indexed: 02/28/2025] Open
Abstract
Liposarcoma is a highly heterogeneous type of soft tissue sarcoma originating from adipose tissue, characterized by complex biological behavior and invasiveness. Traditional treatments have shown limited efficacy in high-grade and metastatic liposarcoma, with unsatisfactory patient outcomes. In recent years, the breakthroughs of immunotherapy in various solid tumors have sparked interest in its potential application to liposarcoma. This review systematically examines the progress in basic research and clinical practice of immunotherapy for liposarcoma, discussing the tumor immune microenvironment, mechanisms of immune evasion, the application of immune checkpoint inhibitors, combination therapy strategies, the challenges faced, as well as the future direction, with an aim to provide a theoretical basis for personalized treatment of liposarcoma, promote the development of novel immunotherapy strategies, and ultimately improve patient prognosis and quality of life.
Collapse
Affiliation(s)
- Ao-Bo Zhuang
- School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Zhe Xi
- School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Ying-Xue Cheng
- School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Chen-He Zhang
- School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Wen-Gang Li
- Department of Hepatobiliary and Pancreatic Surgery, Xiang'an Hospital of Xiamen University, Xiamen 361102, Fujian Province, China
- Cancer Research Center of Xiamen University, Xiamen 361005, Fujian Province, China
| |
Collapse
|
9
|
Shafer AM, Kenna E, Golden LAF, Elhossiny AM, Perry KD, Wilkowski J, Yan W, Kaczkofsky B, McGue J, Bresler SC, Courtney AH, Dalman JM, Galban CJ, Jiang W, Espinoza CE, Chugh R, Iyer MK, Frankel TL, Pasca di Magliano M, Dlugosz AA, Angeles CV. An immunocompetent mouse model of liposarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.634916. [PMID: 40297505 PMCID: PMC12036434 DOI: 10.1101/2025.01.31.634916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Liposarcoma (LPS) is the most prevalent soft tissue sarcoma. The most common biological subtypes are well-differentiated (WDLPS), a low-grade disease that can evolve to high-grade dedifferentiated LPS (DDLPS), with increased rates of recurrence and metastasis and low response rates to chemotherapy and targeted therapies. Preclinical testing of immunotherapeutics for LPS has been held back by the lack of an immunocompetent mouse model. Here, we present a spontaneous immunocompetent LPS mouse model, ACPP, with targeted deletion of Trp53 and Pten in adipocytes to mimic signaling alterations observed in human LPS. Similar to human LPS, tumors arising in ACPP mice produce WDLPS and DDLPS, along with tumors that exhibit both WD and DD components. Murine and human DDLPS tumors possess transcriptional similarities, including increased expression of oncogenes Cdk4 and Hmga2 and reduced expression of the tumor suppressor Cebpa; further, both mouse and human DDLPS exhibit either high or low T cell infiltration. Syngeneic cell lines derived from spontaneous ACPP DDLPS reliably produce tumors following orthotopic injection, each with distinct growth patterns, aggressiveness and tumor infiltrating lymphocyte profiles. These models provide much needed tools to understand the complex immunobiology of LPS and greatly accelerate the pace of preclinical studies to uncover new therapies for patients with this aggressive malignancy.
Collapse
|
10
|
Patel L, Kolundzic N, Abedalthagafi M. Progress in personalized immunotherapy for patients with brain metastasis. NPJ Precis Oncol 2025; 9:31. [PMID: 39880875 PMCID: PMC11779815 DOI: 10.1038/s41698-025-00812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Brain metastasis leads to poor outcomes and CNS injury, significantly reducing quality of life and survival rates. Advances in understanding the tumor immune microenvironment have revealed the promise of immunotherapies, which, alongside surgery, chemotherapy, and radiation, offer improved survival for some patients. However, resistance to immunotherapy remains a critical challenge. This review explores the immune landscape of brain metastases, current therapies, clinical trials, and the need for personalized, biomarker-driven approaches to optimize outcomes.
Collapse
Affiliation(s)
- Lalit Patel
- Department of Pathology and Lab Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Nikola Kolundzic
- Department of Women & Children's Health, Faculty of Life Sciences & Medicine, King's College London, London, UK
- REPROCELL Europe Ltd., Glasgow, UK
| | - Malak Abedalthagafi
- Department of Pathology and Lab Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
11
|
Jin X, Ji R, Wu Y, Wang J, Chen X. Treatment of Retroperitoneal Well-Differentiated Liposarcoma with Combination of Penpulimab and Anlotinib: A Case Report and Literature Review. Niger J Clin Pract 2025; 28:128-133. [PMID: 40326946 DOI: 10.4103/njcp.njcp_817_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/16/2024] [Indexed: 05/07/2025]
Abstract
To observe the efficacy of combination therapy with Penpulimab and Anlotinib in the treatment of retroperitoneal well-differentiated liposarcoma. Retrospective analysis of clinical data of a patient with retroperitoneal well-differentiated soft tissue sarcoma admitted to Shaoxing People's Hospital, and review of relevant literature. The patient is a young male who experienced recurrence of retroperitoneal well-differentiated liposarcoma after two surgeries. After first-line treatment with Anlotinib combined with Penpulimab, the patient achieved almost complete remission with a progression free survival period of about 16 months. The first-line treatment of retroperitoneal well-differentiated soft tissue sarcoma using Anlotinib combined with Penpulimab resulted in a good prognosis.
Collapse
Affiliation(s)
- X Jin
- Medical Oncology, Shaoxing People's Hospital, Shaoxing, China
| | - R Ji
- Department of Radiation Oncology, The Second Hospital of Shaoxing, Shaoxing, China
| | - Y Wu
- College of Medicine, Shaoxing University, Shaoxing, China
| | - J Wang
- Medical Oncology, Shaoxing People's Hospital, Shaoxing, China
| | - X Chen
- Medical Oncology, Shaoxing People's Hospital, Shaoxing, China
| |
Collapse
|
12
|
Palmerini E, Lopez Pousa A, Grignani G, Redondo A, Hindi N, Provenzano S, Sebio A, Lopez Martin JA, Valverde C, Martinez Trufero J, Gutierrez A, de Alava E, Aparisi Gomez MP, D'Ambrosio L, Collini P, Bazzocchi A, Moura DS, Ibrahim T, Stacchiotti S, Broto JM. Nivolumab and sunitinib in patients with advanced bone sarcomas: A multicenter, single-arm, phase 2 trial. Cancer 2025; 131:e35628. [PMID: 39540661 DOI: 10.1002/cncr.35628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Herein, we present the results of the phase 2 IMMUNOSARC study (NCT03277924), investigating sunitinib and nivolumab in adult patients with advanced bone sarcomas (BS). METHODS Progressing patients with a diagnosis of BS were eligible. Treatment was comprised of sunitinib (37.5 mg/day on days 1-14, 25 mg/day afterword) plus nivolumab (3 mg/kg every 2 weeks). Primary end point was progression-free survival rate (PFSR) at 6 months based on central radiology review. Secondary end points were overall survival (OS), overall response rate (ORR) by Response Evaluation Criteria in Solid Tumors (RECIST) v1.1, and safety. RESULTS A total of 46 patients were screened, 40 patients entered the study, and 38 underwent central radiological review and were evaluable for primary end point. Median age was 47 years (range, 21-74). Histologies include 17 (43%) osteosarcoma, 14 chondrosarcoma (35%, 10 conventional, four dedifferentiated [DDCS]), eight (20%) Ewing sarcoma, and one (2%) undifferentiated pleomorphic sarcoma. The PFSR at 6 months was 42% (95% confidence interval [CI], 27-58). With a median follow-up of 39.8 months (95% CI, 37.9-41.7), the median PFS and OS were 3.8 months (95% CI, 2.7-4.8) and 11.9 months (95% CI, 5.6-18.2). ORR by RECIST was 5%, with two of 38 partial responses (one of four DDCS and one of 17 osteosarcoma), 19 of 38 (50%) stable disease, and 17 of 38 (45%) progressions. Grade ≥3 adverse events were neutropenia (six of 40, 15%), anemia (5/40, hypertension (6/40, 15%), 12.5%), ALT/AST elevation (5/40, 12.5%), and pneumonitis (1/40, 2.5%). Seventeen percent of patients discontinued treatment due to toxicity, including a treatment-related grade 5 pneumonitis CONCLUSION: The trial met its primary end point in the BS cohort with >15% of patients progression-free at 6 months. However, the toxicity profile of this regimen was relevant.
Collapse
Affiliation(s)
- Emanuela Palmerini
- Osteoncology, Bone and Soft Tissue Tumors and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | | - Andres Redondo
- Medical Oncology Department, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Nadia Hindi
- Medical Oncology Department, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
- Hospital General de Villalba, Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Salvatore Provenzano
- Adult Mesenchymal and Rare Tumour Unit, Fondazione IRCCS Istituto Nazionale Tumori Milan, Milano, Italy
| | - Ana Sebio
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | - Enrique de Alava
- Institute of Biomedicine of Sevilla, IBiS/Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Seville, Spain
| | - Maria Pilar Aparisi Gomez
- Department of Radiology, Auckland City Hospital, Auckland District Health Board, Grafton, Auckland, New Zealand
- Department of Radiology, IMSKE, Valencia, Spain
| | - Lorenzo D'Ambrosio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
- Department of Oncology, University of Turin, Turin, Italy
| | - Paola Collini
- Soft Tissue Tumor Pathology, Advanced Diagnostics Department, IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - David S Moura
- Medical Oncology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Tumors and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Silvia Stacchiotti
- Adult Mesenchymal and Rare Tumour Unit, Fondazione IRCCS Istituto Nazionale Tumori Milan, Milano, Italy
| | - Javier Martin Broto
- Medical Oncology Department, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
- Hospital General de Villalba, Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
13
|
Pan M, Zhou M, Xie L, Bui N, Ganjoo K. Recent advances in sarcoma therapy: new agents, strategies and predictive biomarkers. J Hematol Oncol 2024; 17:124. [PMID: 39696530 PMCID: PMC11656826 DOI: 10.1186/s13045-024-01650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
Soft tissue and bone sarcomas are a heterogenous group of uncommon mesenchymal tumors with high unmet needs for novel therapeutic and diagnostic strategies. Despite many challenges that persist, innovative therapeutics are emerging. Here we provide a review of the studies presented at the 2024 American Society of Clinical Oncology annual meeting that were focused on sarcoma. There were many outstanding studies that were reported at the meeting. We begin by discussing the clinical studies on soft tissue sarcoma (STS) that included multiple histology subtypes, followed by highlighting developments in cellular therapy, before delving into specific STS histologic subtypes followed by a section covering the studies that were focused on predictive biomarkers. We conclude by discussing the studies in bone sarcomas. Some of the studies discussed here are likely to be practice changing. Some of the early-phase clinical trials have shown encouraging results.
Collapse
Affiliation(s)
- Minggui Pan
- Department of Medicine Division of Oncology, Sarcoma Program, Stanford University School of Medicine, Stanford, Palo Alto, CA, 94305, USA.
| | - Maggie Zhou
- Department of Medicine Division of Oncology, Sarcoma Program, Stanford University School of Medicine, Stanford, Palo Alto, CA, 94305, USA
| | - Lu Xie
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
| | - Nam Bui
- Department of Medicine Division of Oncology, Sarcoma Program, Stanford University School of Medicine, Stanford, Palo Alto, CA, 94305, USA
| | - Kristen Ganjoo
- Department of Medicine Division of Oncology, Sarcoma Program, Stanford University School of Medicine, Stanford, Palo Alto, CA, 94305, USA
| |
Collapse
|
14
|
Haddox CL, Hornick JL, Roland CL, Baldini EH, Keedy VL, Riedel RF. Diagnosis and management of dedifferentiated liposarcoma: A multidisciplinary position statement. Cancer Treat Rev 2024; 131:102846. [PMID: 39454547 DOI: 10.1016/j.ctrv.2024.102846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Dedifferentiated liposarcoma (DDLPS) is a malignant mesenchymal neoplasm in desperate need of novel therapeutic approaches. Often occurring in conjunction with well-differentiated liposarcoma (WDLPS), DDLPS can behave more aggressively and exhibits a significant risk for developing recurrence or metastatic disease when compared to its well-differentiated counterpart. A multidisciplinary approach is critically important, particularly for patients with localized disease, as disease presentations are often complex, and the management of patients has become increasingly nuanced as treatment approaches have become more refined. Expert pathology review and appropriate application of diagnostic molecular techniques are key components of DDLPS diagnosis and also reflect an improved understanding of the underlying pathogenesis of the disease. Systemic therapies remain limited for DDLPS, but novel therapies targeting important underlying molecular drivers have resulted in ongoing clinical trials aiming to improve outcomes for patients with advanced disease. In recognition of the increased activity and interest within the DDLPS field, a multidisciplinary group of nationally recognized experts in medical oncology, surgical oncology, radiation oncology, and pathology was convened to summarize key insights. This position paper highlights important points from the meeting and provides evidence-based recommendations for practicing clinicians.
Collapse
Affiliation(s)
- Candace L Haddox
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Jason L Hornick
- Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Christina L Roland
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth H Baldini
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States; Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Vicki L Keedy
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Richard F Riedel
- Duke Cancer Institute, Duke University, Durham, NC, United States.
| |
Collapse
|
15
|
Lee TY, von Mehren M. Novel pharmacotherapies for the treatment of liposarcoma: a comprehensive update. Expert Opin Pharmacother 2024; 25:2293-2306. [PMID: 39535168 DOI: 10.1080/14656566.2024.2427333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Liposarcomas are malignancies of adipocytic lineage and represent one of the most common types of soft tissue sarcomas. They encompass multiple histologies, each with unique molecular profiles. Treatment for localized disease includes resection, potentially with perioperative radiation or systemic therapy. Treatment for unresectable or metastatic disease revolves around palliative systemic therapy, for which improved therapies are urgently needed. AREAS COVERED We reviewed the literature on novel therapies in clinical development for liposarcomas within the past 5 years and discuss their potential impact on future treatment strategies. EXPERT OPINION Understanding of the molecular characteristics of liposarcoma subtypes has led to testing of several targeted therapies, including inhibitors of amplified gene products (CDK4 and MDM2) and upregulated proteins (XPO1). Immuno-oncology has played an increasing role in the treatment of liposarcomas, with checkpoint inhibition showing promise in dedifferentiated liposarcomas, and immune therapies targeting cancer testis antigens NY-ESO-1 and MAGE family proteins poised to become an option for myxoid/round cell liposarcomas. The search for novel agents from existing classes (tyrosine kinase inhibitors) with efficacy in liposarcoma also continues. Combination therapies as well as biomarker identification for patient selection of therapies warrant ongoing exploration.
Collapse
Affiliation(s)
- Teresa Y Lee
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Margaret von Mehren
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
16
|
Seligson ND, Asmann YW, Almerey T, Zayas YC, Edgar MA, Attia S, Knutson KL, Bagaria SP. Molecular markers of proliferation, DNA repair, and immune infiltration defines high-risk subset of resectable retroperitoneal sarcomas. Surg Oncol 2024; 56:102125. [PMID: 39213836 DOI: 10.1016/j.suronc.2024.102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/09/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION For retroperitoneal sarcomas (RPS), aggressive surgical resection offers the only chance for a cure; however, 5-year survival remains below 65%. Therefore, there is a critical need to identify drivers of poor clinical outcomes. MATERIALS AND METHODS To identify biomarkers of tumors likely to recur following curative intent resection, we performed genomic and transcriptomic sequencing for 47 and 34 patients, respectively, with non-metastatic RPS at a single, high-volume sarcoma center. RESULTS At the DNA level, alterations in TERT were associated with poor disease-free survival (DFS) and overall survival (OS). Increased RNA expression of gene sets related to growth signaling and DNA repair were associated with poor DFS and OS. Infiltration of CD8+ T-Cells and activated dendritic cells were associated with poor DFS and OS. CONCLUSION These findings may help to better identify and treat non-metastatic, high-risk RPS.
Collapse
Affiliation(s)
- Nathan D Seligson
- Department of Pharmacotherapy and Translational Research, The University of Florida, Jacksonville, FL, USA
| | - Yan W Asmann
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Tariq Almerey
- Department of Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Yaquelin Coll Zayas
- Department of Pharmacotherapy and Translational Research, The University of Florida, Jacksonville, FL, USA
| | - Mark A Edgar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - Steven Attia
- Division of Hematology/Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Keith L Knutson
- Department of Immunology, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
17
|
Robinson SI, Rochell RE, Penza V, Naik S. Translation of oncolytic viruses in sarcoma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200822. [PMID: 39040851 PMCID: PMC11261849 DOI: 10.1016/j.omton.2024.200822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Sarcomas are a rare and highly diverse group of malignancies of mesenchymal origin. While sarcomas are generally considered resistant to immunotherapy, recent studies indicate subtype-specific differences in clinical response to checkpoint inhibitors (CPIs) that are associated with distinct immune phenotypes present in sarcoma subtypes. Oncolytic viruses (OVs) are designed to selectively infect and kill tumor cells and induce intratumoral immune infiltration, enhancing immunogenicity and thereby sensitizing tumors to immunotherapy. Herein we review the accumulated clinical data evaluating OVs in sarcoma. Small numbers of patients with sarcoma were enrolled in early-stage OV trials as part of larger solid tumor cohorts demonstrating safety but providing limited insight into the biological effects due to the low patient numbers and lack of histologic grouping. Several recent studies have investigated talimogene laherparepvec (T-VEC), an approved oncolytic herpes simplex virus (HSV-1), in combination therapy regimens in sarcoma patient cohorts. These studies have shown promising responses in heavily pre-treated and immunotherapy-resistant patients associated with increased intratumoral immune infiltration. As new and more potent OVs enter the clinical arena, prospective evaluation in subtype-specific cohorts with correlative studies to define biomarkers of response will be critical to advancing this promising approach for sarcoma therapy.
Collapse
Affiliation(s)
- Steven I. Robinson
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55902, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Roya E. Rochell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Velia Penza
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Shruthi Naik
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
18
|
Chen F, Sheng J, Li X, Gao Z, Hu L, Chen M, Fei J, Song Z. Tumor-associated macrophages: orchestrators of cholangiocarcinoma progression. Front Immunol 2024; 15:1451474. [PMID: 39290697 PMCID: PMC11405194 DOI: 10.3389/fimmu.2024.1451474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a rare but highly invasive cancer, with its incidence rising in recent years. Currently, surgery remains the most definitive therapeutic option for CCA. However, similar to other malignancies, most CCA patients are not eligible for surgical intervention at the time of diagnosis. The chemotherapeutic regimen of gemcitabine combined with cisplatin is the standard treatment for advanced CCA, but its effectiveness is often hampered by therapeutic resistance. Recent research highlights the remarkable plasticity of tumor-associated macrophages (TAMs) within the tumor microenvironment (TME). TAMs play a crucial dual role in either promoting or suppressing tumor development, depending on the factors that polarize them toward pro-tumorigenic or anti-tumorigenic phenotypes, as well as their interactions with cancer cells and other stromal components. In this review, we critically examine recent studies on TAMs in CCA, detailing the expression patterns and prognostic significance of different TAM subtypes in CCA, the mechanisms by which TAMs influence CCA progression and immune evasion, and the potential for reprogramming TAMs to enhance anticancer therapies. This review aims to provide a framework for deeper future research.
Collapse
Affiliation(s)
- Fei Chen
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jian Sheng
- Department of Research and Teaching, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaoping Li
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Zhaofeng Gao
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Lingyu Hu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Minjie Chen
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jianguo Fei
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Zhengwei Song
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
19
|
Tang Q, Zhang X, Zhu X, Xu H, Song G, Lu J, Wu H, Deng C, Ai F, Zhang Y, Wang J. Camrelizumab in combination with doxorubicin, cisplatin, ifosfamide, and methotrexate in neoadjuvant treatment of resectable osteosarcoma: A prospective, single-arm, exploratory phase II trial. Cancer Med 2024; 13:e70206. [PMID: 39324173 PMCID: PMC11424980 DOI: 10.1002/cam4.70206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/10/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND The poor overall survival of osteosarcoma (OS) underscores the need to explore new therapeutic avenues. Tumor necrosis rate (TNR) after neoadjuvant chemotherapy predicts prognosis. AIMS The study was to investigate safety and activity of neoadjuvant chemotherapy with camrelizumab (a humanized antibody against PD-1) in patients with resectable OS. MATERIALS & METHODS We conducted a prospective, single-arm, exploratory phase II trial in OS patients. Eligible patients received camrelizumab combined with doxorubicin or liposomal doxorubicin, cisplatin, methotrexate, ifosfamide with mesna. Surgery was performed 12-14 days after neoadjuvant therapy and adjuvant therapy starting 2-3 weeks postoperatively. The primary endpoint was the rate of good tumor necrosis (TNR ≥90%) after neoadjuvant therapy, and the secondary outcomes were safety, 2-year progression free survival and 2-year overall survival. RESULTS Seventy-five patients were recruited to the study. Subsequently, 64 patients completed neoadjuvant therapy and underwent surgery. Thirty-one patients (48.4%) have a good TNR to neoadjuvant therapy. With a median follow-up of 22.4 months (range 2.2-44.9 months), the estimated 2-year PFS was 69.6% and the estimated 2-year overall survival was 89.4%. Grade 3 or 4 treatment-related adverse events were noticed in 62.7% of the patients. Frequent grade 3 or 4 adverse events were decreased platelet count (45.3%), decreased white blood cell count (36%). No immune-related serious adverse events were observed. DISCUSSION Our study had limitations. First, it was limited by its non-randomized design. Besides, stromal tumor-infiltrating lymphocytes was comprehensively analyzed in this study. CONCLUSIONS This study demonstrated that amrelizumab combined with adriamycin, cisplatin, methotrexate, and ifosfamide in the neoadjuvant treatment of resectable OS was safe and tolerable. This combined therapeutic strategy may not increase TNR, but the long-term survival benefit remains to be followed up.
Collapse
Affiliation(s)
- Qinglian Tang
- Department of Musculoskeletal OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Xinke Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
- Department of pathologySun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Xiaojun Zhu
- Department of Musculoskeletal OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Huaiyuan Xu
- Department of Musculoskeletal OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Guohui Song
- Department of Musculoskeletal OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Jinchang Lu
- Department of Musculoskeletal OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Hao Wu
- Department of Musculoskeletal OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Chuangzhong Deng
- Department of Musculoskeletal OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Fei Ai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
- Department of radiologySun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Yingchun Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
- Department of pathologySun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Jin Wang
- Department of Musculoskeletal OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| |
Collapse
|
20
|
Pasquali S, Vallacchi V, Lalli L, Collini P, Barisella M, Romagosa C, Bague S, Coindre JM, Dei Tos AP, Palmerini E, Quagliuolo V, Martin-Broto J, Lopez-Pousa A, Grignani G, Blay JY, Beveridge RD, Casiraghi E, Brich S, Renne SL, Bergamaschi L, Vergani B, Sbaraglia M, Casali PG, Rivoltini L, Stacchiotti S, Gronchi A. Spatial distribution of tumour immune infiltrate predicts outcomes of patients with high-risk soft tissue sarcomas after neoadjuvant chemotherapy. EBioMedicine 2024; 106:105220. [PMID: 39018755 PMCID: PMC11287012 DOI: 10.1016/j.ebiom.2024.105220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Anthracycline-based neoadjuvant chemotherapy (NAC) may modify tumour immune infiltrate. This study characterized immune infiltrate spatial distribution after NAC in primary high-risk soft tissue sarcomas (STS) and investigate association with prognosis. METHODS The ISG-STS 1001 trial randomized STS patients to anthracycline plus ifosfamide (AI) or a histology-tailored (HT) NAC. Four areas of tumour specimens were sampled: the area showing the highest lymphocyte infiltrate (HI) at H&E; the area with lack of post-treatment changes (highest grade, HG); the area with post-treatment changes (lowest grade, LG); and the tumour edge (TE). CD3, CD8, PD-1, CD20, FOXP3, and CD163 were analyzed at immunohistochemistry and digital pathology. A machine learning method was used to generate sarcoma immune index scores (SIS) that predict patient disease-free and overall survival (DFS and OS). FINDINGS Tumour infiltrating lymphocytes and PD-1+ cells together with CD163+ cells were more represented in STS histologies with complex compared to simple karyotype, while CD20+ B-cells were detected in both these histology groups. PD-1+ cells exerted a negative prognostic value irrespectively of their spatial distribution. Enrichment in CD20+ B-cells at HI and TE areas was associated with better patient outcomes. We generated a prognostic SIS for each tumour area, having the HI-SIS the best performance. Such prognostic value was driven by treatment with AI. INTERPRETATION The different spatial distribution of immune populations and their different association with prognosis support NAC as a modifier of tumour immune infiltrate in STS. FUNDING Pharmamar; Italian Ministry of Health [RF-2019-12370923; GR-2016-02362609]; 5 × 1000 Funds-2016, Italian Ministry of Health; AIRC Grant [ID#28546].
Collapse
Affiliation(s)
- Sandro Pasquali
- Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy.
| | - Viviana Vallacchi
- Translational Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Luca Lalli
- Translational Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy.
| | - Paola Collini
- Soft Tissue Tumor Pathology Unit, Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | | | - Cleofe Romagosa
- Pathology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Silvia Bague
- Pathology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jean Michel Coindre
- Department of Pathology, Institut Bergonié, 33000, Bordeaux, France; INSERM U1218 ACTION, Institut Bergonié, 33000, Bordeaux, France
| | - Angelo Paolo Dei Tos
- Surgical Pathology & Cytopathology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Emanuela Palmerini
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Javier Martin-Broto
- Oncology Department, Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Antonio Lopez-Pousa
- Medical Oncology Department, Hospital de la Santa Creu i Sant Pau, Carrer de Sant Quintí, 89, 08041, Barcelona, Spain
| | - Giovanni Grignani
- Medical Oncology Unit, Città della Salute e della Scienza Hospital, Turin, Italy
| | - Jean-Yves Blay
- Centre Léon Bérard & Université Claude Bernard Lyon 1, Lyon, France
| | - Robert Diaz Beveridge
- Department of Cancer Medicine, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Elena Casiraghi
- AnacletoLab, Department of Computer Science "Giovanni degli Antoni", Università degli Studi di Milano, Milan, Italy
| | - Silvia Brich
- Soft Tissue Tumor Pathology Unit, Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Salvatore Lorenzo Renne
- Pathology Department, IRCCS Humanitas Research Hospital, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Laura Bergamaschi
- Translational Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Barbara Vergani
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Marta Sbaraglia
- Surgical Pathology & Cytopathology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Paolo Giovanni Casali
- Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Licia Rivoltini
- Translational Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy.
| | - Silvia Stacchiotti
- Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Alessandro Gronchi
- Sarcoma Service, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy.
| |
Collapse
|
21
|
Kim HD, Ryu MH, Park YS, Yoo C, Kim SJ, Kang YK. Clinical and Biomarker Analysis of a Phase I/II Study of PDR001 Plus Imatinib for Advanced Treatment-Refractory Gastrointestinal Stromal Tumors. Clin Cancer Res 2024; 30:2743-2750. [PMID: 38662455 DOI: 10.1158/1078-0432.ccr-23-4065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/16/2024] [Accepted: 04/22/2024] [Indexed: 07/02/2024]
Abstract
PURPOSE In this phase Ib/II study, we aimed to evaluate the safety and efficacy of PDR001, an anti-PD1 antibody, in combination with imatinib in patients with treatment-refractory gastrointestinal stromal tumor (GIST). PATIENTS AND METHODS Patients with advanced GIST whose disease had progressed on imatinib, sunitinib, and regorafenib were enrolled. In phase Ib, the standard 3 + 3 dose escalation scheme was applied. Intravenous administration of PDR001 at 400 mg for every 4 weeks plus imatinib (300 and 400 mg daily for dose levels I and II, respectively) was given. The primary outcome for phase II was the disease control rate at 12 weeks. Exploratory biomarker analysis was performed based on PDL1 IHC, next-generation sequencing, and multiplexed IHC. RESULTS No dose-limiting toxicity was observed in the phase Ib part (n = 10), and dose level II was selected as the recommended phase II dose. In the phase II part (n = 29), there was no objective response, and the disease control rate at 12 weeks was 37.9%, not meeting the primary efficacy endpoint. For patients in phase Ib-dose level II and phase II (n = 36), the median progression-free survival (PFS) and overall survival were 2.3 and 9.5 months, respectively. The most common grade 3 to 4 adverse event was anemia. Exploratory biomarker analysis indicated that a higher CD8+ T-cell density was associated with a favorable PFS but to a limited degree. Tumor mutational burden and PDL1 were not associated with better PFS. CONCLUSIONS In patients with treatment-refractory GIST, PDR001 in combination with imatinib was generally tolerable, but it was not effective.
Collapse
Affiliation(s)
- Hyung-Don Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min-Hee Ryu
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Joo Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yoon-Koo Kang
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
22
|
Balovic G, Stojanovic BS, Radovanovic D, Lazic D, Ilic M, Jovanovic I, Svilar D, Stankovic V, Sibalija Balovic J, Markovic BS, Dimitrijevic Stojanovic M, Jovanovic D, Stojanovic B. A Detailed Examination of Retroperitoneal Undifferentiated Pleomorphic Sarcoma: A Case Report and Review of the Existing Literature. J Clin Med 2024; 13:3684. [PMID: 38999251 PMCID: PMC11242107 DOI: 10.3390/jcm13133684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/21/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
This detailed review focuses on retroperitoneal undifferentiated pleomorphic sarcoma (UPS), a particularly aggressive soft-tissue sarcoma that poses unique diagnostic and therapeutic challenges due to its rarity and complex presentation. By documenting a new case of retroperitoneal UPS and conducting a comprehensive review of all known cases, this article aims to expand the existing body of knowledge on the epidemiology, molecular pathogenesis, and treatment strategies associated with this rare disease. The complexity of diagnosing UPS is emphasized given that it rarely occurs in the retroperitoneal space and its histological and molecular complexity often complicates its recognition. This review highlights the need for specialized diagnostic approaches, including advanced imaging techniques and histopathological studies, to accurately diagnose and stage the disease. In terms of treatment, this paper advocates a multidisciplinary approach that combines surgery, radiotherapy and chemotherapy and tailors it to individual patients to optimize treatment outcomes. This review highlights case studies that illustrate the effectiveness of surgical intervention in the treatment of these tumors and emphasize the importance of achieving clear surgical margins to prevent recurrence. Furthermore, this review discusses the potential of new molecular targets and the need for innovative therapies that could bring new hope to patients affected by this challenging sarcoma.
Collapse
Affiliation(s)
- Goran Balovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojana S Stojanovic
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dragce Radovanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dejan Lazic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milena Ilic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dejan Svilar
- Department of Radiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Vesna Stankovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | | | - Bojana Simovic Markovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milica Dimitrijevic Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dalibor Jovanovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Stojanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
23
|
Ingangi V, De Chiara A, Ferrara G, Gallo M, Catapano A, Fazioli F, Di Carluccio G, Peranzoni E, Marigo I, Carriero MV, Minopoli M. Emerging Treatments Targeting the Tumor Microenvironment for Advanced Chondrosarcoma. Cells 2024; 13:977. [PMID: 38891109 PMCID: PMC11171855 DOI: 10.3390/cells13110977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Chondrosarcoma (ChS), a malignant cartilage-producing tumor, is the second most frequently diagnosed osseous sarcoma after osteosarcoma. It represents a very heterogeneous group of malignant chemo- and radiation-resistant neoplasms, accounting for approximately 20% of all bone sarcomas. The majority of ChS patients have a good prognosis after a complete surgical resection, as these tumors grow slowly and rarely metastasize. Conversely, patients with inoperable disease, due to the tumor location, size, or metastases, represent a great clinical challenge. Despite several genetic and epigenetic alterations that have been described in distinct ChS subtypes, very few therapeutic options are currently available for ChS patients. Therefore, new prognostic factors for tumor progression as well as new treatment options have to be explored, especially for patients with unresectable or metastatic disease. Recent studies have shown that a correlation between immune infiltrate composition, tumor aggressiveness, and survival does exist in ChS patients. In addition, the intra-tumor microvessel density has been proven to be associated with aggressive clinical behavior and a high metastatic potential in ChS. This review will provide an insight into the ChS microenvironment, since immunotherapy and antiangiogenic agents are emerging as interesting therapeutic options for ChS patients.
Collapse
Affiliation(s)
- Vincenzo Ingangi
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (V.I.); (G.D.C.); (M.M.)
| | - Annarosaria De Chiara
- Histopathology Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (A.D.C.); (G.F.)
| | - Gerardo Ferrara
- Histopathology Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (A.D.C.); (G.F.)
| | - Michele Gallo
- Musculoskeletal Surgery Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (M.G.); (A.C.); (F.F.)
| | - Antonio Catapano
- Musculoskeletal Surgery Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (M.G.); (A.C.); (F.F.)
| | - Flavio Fazioli
- Musculoskeletal Surgery Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (M.G.); (A.C.); (F.F.)
| | - Gioconda Di Carluccio
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (V.I.); (G.D.C.); (M.M.)
| | - Elisa Peranzoni
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (E.P.); (I.M.)
| | - Ilaria Marigo
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (E.P.); (I.M.)
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padua, Italy
| | - Maria Vincenza Carriero
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (V.I.); (G.D.C.); (M.M.)
| | - Michele Minopoli
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (V.I.); (G.D.C.); (M.M.)
| |
Collapse
|
24
|
Wood GE, Meyer C, Petitprez F, D'Angelo SP. Immunotherapy in Sarcoma: Current Data and Promising Strategies. Am Soc Clin Oncol Educ Book 2024; 44:e432234. [PMID: 38781557 DOI: 10.1200/edbk_432234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Traditionally sarcomas have been considered immunologically quiet tumours, with low tumour mutational burden (TMB) and an immunosuppressive tumour microenvironment (TME), consisting of decreased T-cell infiltration and elevated levels of H1F1α, macrophages and neutrophils.1,2 However, research has shown that a subset of sarcomas are immunologically 'hot' with either high TMB, PDL-1 expression, CD8+ T cells or presence of tertiary lymphoid structures (TLS) demonstrating sensitivity to immunotherapy.3,4 Here, we review the current evidence for immunotherapy use in bone sarcomas (BS) and soft tissue sarcomas (STS), with immune checkpoint inhibitors (ICI) and adoptive cellular therapies including engineered T-cell therapies, chimeric antigen receptor (CAR) T-cell therapies, tumour infiltrating lymphocytes (TILs) and cancer vaccines and biomarkers of response.
Collapse
Affiliation(s)
- Georgina E Wood
- University College Hospital of London, London, United Kingdom
| | | | | | | |
Collapse
|
25
|
Wang MJ, Xu SQ, Wu LL, Li ZX, Xie D. Surgical resection due to poor outcome of the immunotherapy of a relapsed mediastinal liposarcoma: a case report. Future Sci OA 2024; 10:FSO906. [PMID: 38827794 PMCID: PMC11140642 DOI: 10.2144/fsoa-2023-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/18/2023] [Indexed: 06/05/2024] Open
Abstract
The feasibility of surgery after immunotherapy for mediastinal liposarcoma remains uncertain. Besides, the case of immunotherapy for liposarcoma is still lacking. We report a case of recurrence after resection of a left mediastinal liposarcoma. After recurrence, one course of pembrolizumab plus anlotinib hydrochloride showed no tumor shrinkage, and genetic testing showed CDK4 amplification and PD-L1 TPS <1%; therefore, the plan was changed to one course of pembrolizumab plus palbociclib, but the tumor still did not shrink. Thus, second tumor resection was performed. In addition, the postoperative pathology was still well-differentiated liposarcoma. The significance of immunotherapy in liposarcoma still needs to be further explored. In the absence of surgical contraindications, secondary surgery might be feasible.
Collapse
Affiliation(s)
- Ming-Ji Wang
- Department of Thoracic Surgery, Fuqing City Hospital Affiliated to Fujian Medical University, Fuqing, PR China
| | - Shu-Quan Xu
- School of Medicine, Tongji University, Shanghai, PR China
| | - Lei-Lei Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Zhi-Xin Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
26
|
Ribeiro MF, Demicco EG, Razak ARA. Clinical activity of pembrolizumab in refractory MDM2-amplified advanced intimal sarcomas. Ther Adv Med Oncol 2024; 16:17588359241250158. [PMID: 38745586 PMCID: PMC11092541 DOI: 10.1177/17588359241250158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Intimal sarcoma (InS) is an ultra-rare and aggressive subtype of soft tissue sarcoma (STS). It usually arises in large mediastinal arteries and the heart. In the advanced setting, sequential cytotoxic chemotherapy is often used, mainly based on retrospective studies and case series but with modest benefit. The use of immune checkpoint inhibitors is a promising strategy for some STS, but identifying biomarkers of response remains challenging due to disease rarity and heterogeneity. A reactive and pro-inflammatory tumor microenvironment (TME) is believed to be associated with better outcomes for patients receiving anti-PD-1-based regimens, generating the rationale to explore this strategy in malignancies with this characteristic, such as InS. We report three cases of advanced InS patients experiencing partial response to pembrolizumab-based therapy despite low tumor mutational burden and absence of mismatch-repair deficiency. We hypothesize that TME-related characteristics such as PD-L1 expression and the presence of tertiary lymphoid structures might explain this phenomenon.
Collapse
Affiliation(s)
- Mauricio Fernando Ribeiro
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Elizabeth G. Demicco
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Albiruni Ryan Abdul Razak
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Suit 6-445.13, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Division of Medical Oncology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Nasr LF, Zoghbi M, Lazcano R, Nakazawa M, Bishop AJ, Farooqi A, Mitra D, Guadagnolo BA, Benjamin R, Patel S, Ravi V, Araujo DM, Livingston A, Zarzour MA, Conley AP, Ratan R, Somaiah N, Lazar AJ, Roland C, Keung EZ, Nassif Haddad EF. High-Grade Pleomorphic Sarcomas Treated with Immune Checkpoint Blockade: The MD Anderson Cancer Center Experience. Cancers (Basel) 2024; 16:1763. [PMID: 38730715 PMCID: PMC11083765 DOI: 10.3390/cancers16091763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Undifferentiated pleomorphic sarcomas (UPSs) are amongst the most common subtypes of soft-tissue sarcomas. Few real-world data on the use of immune checkpoint blockade (ICB) in UPS patients and other high-grade pleomorphic STS patients are available. PURPOSE The purpose of our study is to describe the efficacy and toxicity of ICB in patients with advanced UPSs and other high-grade pleomorphic sarcomas treated at our institution. METHODS This is a retrospective, observational study of all patients with metastatic high-grade pleomorphic sarcomas treated with FDA-approved ICB at MD Anderson Cancer Center between 1 January 2015 and 1 January 2023. Patients included in trials for which results are not yet published were excluded. RESULTS Thirty-six patients with advanced/metastatic pleomorphic sarcomas were included. The median age was 52 years. A total of 26 patients (72%) had UPSs and 10 patients (28%) had other high-grade pleomorphic sarcomas. The median follow-up time was 8.8 months. The median PFS was 2.9 months. The 3-month PFS and 6-month PFS were 46% and 32%, respectively. The median OS was 12.9 months. The 12-month OS and 24-month OS were 53% and 29%, respectively. The best response, previous RT, and type of ICB treatment were significantly and independently associated with shorter PFS (p = 0.0012, p = 0.0019 and p = 0.036, respectively). No new safety signal was identified, and the toxicity was overall manageable with no toxic deaths and only four patients (11%) stopping treatment due to toxicity. CONCLUSIONS Real-world retrospective data are consistent with the published literature, with a promising 6-month PFS of 32%. Partial or stable responders to ICB treatment have significantly improved PFS compared to progressors.
Collapse
Affiliation(s)
- Lewis F. Nasr
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (L.F.N.)
| | - Marianne Zoghbi
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (L.F.N.)
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Nakazawa
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (R.B.); (M.A.Z.)
| | - Andrew J. Bishop
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.J.B.); (A.F.)
| | - Ahsan Farooqi
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.J.B.); (A.F.)
| | - Devarati Mitra
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.J.B.); (A.F.)
| | - Beverly Ashleigh Guadagnolo
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.J.B.); (A.F.)
| | - Robert Benjamin
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (R.B.); (M.A.Z.)
| | - Shreyaskumar Patel
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (R.B.); (M.A.Z.)
| | - Vinod Ravi
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (R.B.); (M.A.Z.)
| | - Dejka M. Araujo
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (R.B.); (M.A.Z.)
| | - Andrew Livingston
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (R.B.); (M.A.Z.)
| | - Maria A. Zarzour
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (R.B.); (M.A.Z.)
| | - Anthony P. Conley
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (R.B.); (M.A.Z.)
| | - Ravin Ratan
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (R.B.); (M.A.Z.)
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (R.B.); (M.A.Z.)
| | - Alexander J. Lazar
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christina Roland
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.R.)
| | - Emily Z. Keung
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.R.)
| | - Elise F. Nassif Haddad
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (R.B.); (M.A.Z.)
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
28
|
Arfan S, Thway K, Jones RL, Huang PH. Molecular Heterogeneity in Leiomyosarcoma and Implications for Personalised Medicine. Curr Treat Options Oncol 2024; 25:644-658. [PMID: 38656686 DOI: 10.1007/s11864-024-01204-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
OPINION STATEMENT Leiomyosarcoma (LMS) is one of the more common subtypes of soft tissue sarcomas (STS), accounting for about 20% of cases. Differences in anatomical location, risk of recurrence and histomorphological variants contribute to the substantial clinical heterogeneity in survival outcomes and therapy responses observed in patients. There is therefore a need to move away from the current one-size-fits-all treatment approach towards a personalised strategy tailored for individual patients. Over the past decade, tissue profiling studies have revealed key genomic features and an additional layer of molecular heterogeneity among patients, with potential utility for optimal risk stratification and biomarker-matched therapies. Furthermore, recent studies investigating intratumour heterogeneity and tumour evolution patterns in LMS suggest some key features that may need to be taken into consideration when designing treatment strategies and clinical trials. Moving forward, national and international collaborative efforts to aggregate expertise, data, resources and tools are needed to achieve a step change in improving patient survival outcomes in this disease of unmet need.
Collapse
Affiliation(s)
- Sara Arfan
- Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| | - Khin Thway
- Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
- The Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Robin L Jones
- The Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
- Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK.
| |
Collapse
|
29
|
Lu Y, Chen D, Wang B, Chai W, Yan M, Chen Y, Zhan Y, Yang R, Zhou E, Dai S, Li Y, Dong R, Zheng B. Single-cell landscape of undifferentiated pleomorphic sarcoma. Oncogene 2024; 43:1353-1368. [PMID: 38459120 DOI: 10.1038/s41388-024-03001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Undifferentiated pleomorphic sarcoma (UPS) is a highly aggressive malignant soft tissue tumor with a poor prognosis; however, the identity and heterogeneity of tumor populations remain elusive. Here, eight major cell clusters were identified through the RNA sequencing of 79,569 individual cells of UPS. UPS originates from mesenchymal stem cells (MSCs) and features undifferentiated subclusters. UPS subclusters were predicted to exist in two bulk RNA datasets, and had a prognostic value in The Cancer Genome Atlas (TCGA) dataset. The functional heterogeneity of malignant UPS cells and the immune microenvironment were characterized. Additionally, the fused cells were innovatively detected by expressing both monocyte/macrophage markers and other subcluster-associated genes. Based on the ligand-receptor interaction analysis, cellular interactions with epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) were abundant. Furthermore, 73% of patients with UPS (48/66) showed positive EGFR expression, which was associated with a poor prognosis. EGFR blockade with cetuximab inhibited tumor growth in a patient-derived xenograft model. Our transcriptomic studies delineate the landscape of UPS intratumor heterogeneity and serve as a foundational resource for further discovery and therapeutic exploration.
Collapse
Affiliation(s)
- Yifei Lu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Deqian Chen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Bingnan Wang
- Department of Musculoskeletal Oncology, Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenjun Chai
- Department of Animal Experimental Center, Fudan University Shanghai Cancer Center, Shanghai, 201102, China
| | - Mingxia Yan
- Department of Animal Experimental Center, Fudan University Shanghai Cancer Center, Shanghai, 201102, China
| | - Yong Chen
- Department of Musculoskeletal Oncology, Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yong Zhan
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Ran Yang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Enqing Zhou
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Shuyang Dai
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Yi Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China.
| | - Biqiang Zheng
- Department of Musculoskeletal Oncology, Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
30
|
Roland CL, Nassif Haddad EF, Keung EZ, Wang WL, Lazar AJ, Lin H, Chelvanambi M, Parra ER, Wani K, Guadagnolo BA, Bishop AJ, Burton EM, Hunt KK, Torres KE, Feig BW, Scally CP, Lewis VO, Bird JE, Ratan R, Araujo D, Zarzour MA, Patel S, Benjamin R, Conley AP, Livingston JA, Ravi V, Tawbi HA, Lin PP, Moon BS, Satcher RL, Mujtaba B, Witt RG, Traweek RS, Cope B, Lazcano R, Wu CC, Zhou X, Mohammad MM, Chu RA, Zhang J, Damania A, Sahasrabhojane P, Tate T, Callahan K, Nguyen S, Ingram D, Morey R, Crosby S, Mathew G, Duncan S, Lima CF, Blay JY, Fridman WH, Shaw K, Wistuba I, Futreal A, Ajami N, Wargo JA, Somaiah N. A randomized, non-comparative phase 2 study of neoadjuvant immune-checkpoint blockade in retroperitoneal dedifferentiated liposarcoma and extremity/truncal undifferentiated pleomorphic sarcoma. NATURE CANCER 2024; 5:625-641. [PMID: 38351182 DOI: 10.1038/s43018-024-00726-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/10/2024] [Indexed: 04/30/2024]
Abstract
Based on the demonstrated clinical activity of immune-checkpoint blockade (ICB) in advanced dedifferentiated liposarcoma (DDLPS) and undifferentiated pleomorphic sarcoma (UPS), we conducted a randomized, non-comparative phase 2 trial ( NCT03307616 ) of neoadjuvant nivolumab or nivolumab/ipilimumab in patients with resectable retroperitoneal DDLPS (n = 17) and extremity/truncal UPS (+ concurrent nivolumab/radiation therapy; n = 10). The primary end point of pathologic response (percent hyalinization) was a median of 8.8% in DDLPS and 89% in UPS. Secondary end points were the changes in immune infiltrate, radiographic response, 12- and 24-month relapse-free survival and overall survival. Lower densities of regulatory T cells before treatment were associated with a major pathologic response (hyalinization > 30%). Tumor infiltration by B cells was increased following neoadjuvant treatment and was associated with overall survival in DDLPS. B cell infiltration was associated with higher densities of regulatory T cells before treatment, which was lost upon ICB treatment. Our data demonstrate that neoadjuvant ICB is associated with complex immune changes within the tumor microenvironment in DDLPS and UPS and that neoadjuvant ICB with concurrent radiotherapy has significant efficacy in UPS.
Collapse
Affiliation(s)
- Christina L Roland
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Elise F Nassif Haddad
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Centre Léon-Bérard, University Claude Bernard Lyon I, Lyon, France
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Z Keung
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heather Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manoj Chelvanambi
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin R Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khalida Wani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - B Ashleigh Guadagnolo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew J Bishop
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth M Burton
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly K Hunt
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keila E Torres
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Barry W Feig
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher P Scally
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valerae O Lewis
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Justin E Bird
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ravin Ratan
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dejka Araujo
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Alexandra Zarzour
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shreyaskumar Patel
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Benjamin
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anthony P Conley
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Andrew Livingston
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vinod Ravi
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hussein A Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick P Lin
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bryan S Moon
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert L Satcher
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bilal Mujtaba
- Department of Musculoskeletal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Russell G Witt
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raymond S Traweek
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandon Cope
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chia-Chin Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiao Zhou
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohammad M Mohammad
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Randy A Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashish Damania
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pranoti Sahasrabhojane
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Taylor Tate
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kate Callahan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sa Nguyen
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Davis Ingram
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rohini Morey
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shadarra Crosby
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Grace Mathew
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sheila Duncan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cibelle F Lima
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jean-Yves Blay
- Centre Léon-Bérard, University Claude Bernard Lyon I, Lyon, France
| | - Wolf Herman Fridman
- Centre de Recherche des Cordeliers, Inserm, Université Paris-Cité, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Kenna Shaw
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio Wistuba
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadim Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
31
|
Subramanian A, Nemat-Gorgani N, Ellis-Caleo TJ, van IJzendoorn DGP, Sears TJ, Somani A, Luca BA, Zhou MY, Bradic M, Torres IA, Oladipo E, New C, Kenney DE, Avedian RS, Steffner RJ, Binkley MS, Mohler DG, Tap WD, D'Angelo SP, van de Rijn M, Ganjoo KN, Bui NQ, Charville GW, Newman AM, Moding EJ. Sarcoma microenvironment cell states and ecosystems are associated with prognosis and predict response to immunotherapy. NATURE CANCER 2024; 5:642-658. [PMID: 38429415 PMCID: PMC11058033 DOI: 10.1038/s43018-024-00743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 02/08/2024] [Indexed: 03/03/2024]
Abstract
Characterization of the diverse malignant and stromal cell states that make up soft tissue sarcomas and their correlation with patient outcomes has proven difficult using fixed clinical specimens. Here, we employed EcoTyper, a machine-learning framework, to identify the fundamental cell states and cellular ecosystems that make up sarcomas on a large scale using bulk transcriptomes with clinical annotations. We identified and validated 23 sarcoma-specific, transcriptionally defined cell states, many of which were highly prognostic of patient outcomes across independent datasets. We discovered three conserved cellular communities or ecotypes associated with underlying genomic alterations and distinct clinical outcomes. We show that one ecotype defined by tumor-associated macrophages and epithelial-like malignant cells predicts response to immune-checkpoint inhibition but not chemotherapy and validate our findings in an independent cohort. Our results may enable identification of patients with soft tissue sarcomas who could benefit from immunotherapy and help develop new therapeutic strategies.
Collapse
Affiliation(s)
- Ajay Subramanian
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Neda Nemat-Gorgani
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | | | | | - Timothy J Sears
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Anish Somani
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Bogdan A Luca
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Maggie Y Zhou
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Martina Bradic
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ileana A Torres
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Eniola Oladipo
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Christin New
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, USA
| | - Deborah E Kenney
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, USA
| | - Raffi S Avedian
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, USA
| | - Robert J Steffner
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, USA
| | - Michael S Binkley
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - David G Mohler
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, USA
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical Center, New York, NY, USA
| | - Sandra P D'Angelo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical Center, New York, NY, USA
| | | | - Kristen N Ganjoo
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Nam Q Bui
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | | | - Aaron M Newman
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Everett J Moding
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
32
|
Ewongwo A, Hui C, Moding EJ. Opportunity in Complexity: Harnessing Molecular Biomarkers and Liquid Biopsies for Personalized Sarcoma Care. Semin Radiat Oncol 2024; 34:195-206. [PMID: 38508784 DOI: 10.1016/j.semradonc.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Due to their rarity and complexity, sarcomas represent a substantial therapeutic challenge. However, the incredible diversity within and across sarcoma subtypes presents an opportunity for personalized care to maximize efficacy and limit toxicity. A deeper understanding of the molecular alterations that drive sarcoma development and treatment response has paved the way for molecular biomarkers to shape sarcoma treatment. Genetic, transcriptomic, and protein biomarkers have become critical tools for diagnosis, prognostication, and treatment selection in patients with sarcomas. In the future, emerging biomarkers like circulating tumor DNA analysis offer the potential to improve early detection, monitoring response to treatment, and identifying mechanisms of resistance to personalize sarcoma treatment. Here, we review the current state of molecular biomarkers for sarcomas and highlight opportunities and challenges for the implementation of new technologies in the future.
Collapse
Affiliation(s)
- Agnes Ewongwo
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Caressa Hui
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Everett J Moding
- Department of Radiation Oncology, Stanford University, Stanford, CA.; Stanford Cancer Institute, Stanford University, Stanford, CA..
| |
Collapse
|
33
|
Haddox CL, Nathenson MJ, Mazzola E, Lin JR, Baginska J, Nau A, Weirather JL, Choy E, Marino-Enriquez A, Morgan JA, Cote GM, Merriam P, Wagner AJ, Sorger PK, Santagata S, George S. Phase II Study of Eribulin plus Pembrolizumab in Metastatic Soft-tissue Sarcomas: Clinical Outcomes and Biological Correlates. Clin Cancer Res 2024; 30:1281-1292. [PMID: 38236580 PMCID: PMC10982640 DOI: 10.1158/1078-0432.ccr-23-2250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/19/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024]
Abstract
PURPOSE Eribulin modulates the tumor-immune microenvironment via cGAS-STING signaling in preclinical models. This non-randomized phase II trial evaluated the combination of eribulin and pembrolizumab in patients with soft-tissue sarcomas (STS). PATIENTS AND METHODS Patients enrolled in one of three cohorts: leiomyosarcoma (LMS), liposarcomas (LPS), or other STS that may benefit from PD-1 inhibitors, including undifferentiated pleomorphic sarcoma (UPS). Eribulin was administered at 1.4 mg/m2 i.v. (days 1 and 8) with fixed-dose pembrolizumab 200 mg i.v. (day 1) of each 21-day cycle, until progression, unacceptable toxicity, or completion of 2 years of treatment. The primary endpoint was the 12-week progression-free survival rate (PFS-12) in each cohort. Secondary endpoints included the objective response rate, median PFS, safety profile, and overall survival (OS). Pretreatment and on-treatment blood specimens were evaluated in patients who achieved durable disease control (DDC) or progression within 12 weeks [early progression (EP)]. Multiplexed immunofluorescence was performed on archival LPS samples from patients with DDC or EP. RESULTS Fifty-seven patients enrolled (LMS, n = 19; LPS, n = 20; UPS/Other, n = 18). The PFS-12 was 36.8% (90% confidence interval: 22.5-60.4) for LMS, 69.6% (54.5-89.0) for LPS, and 52.6% (36.8-75.3) for UPS/Other cohorts. All 3 patients in the UPS/Other cohort with angiosarcoma achieved RECIST responses. Toxicity was manageable. Higher IFNα and IL4 serum levels were associated with clinical benefit. Immune aggregates expressing PD-1 and PD-L1 were observed in a patient that completed 2 years of treatment. CONCLUSIONS The combination of eribulin and pembrolizumab demonstrated promising activity in LPS and angiosarcoma.
Collapse
Affiliation(s)
- Candace L. Haddox
- Sarcoma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael J. Nathenson
- Sarcoma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Emanuele Mazzola
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jia-Ren Lin
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Joanna Baginska
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Allison Nau
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jason L. Weirather
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Edwin Choy
- Division of Hematology Oncology, Massachusetts General Cancer Center, Boston, Massachusetts
| | | | - Jeffrey A. Morgan
- Sarcoma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gregory M. Cote
- Division of Hematology Oncology, Massachusetts General Cancer Center, Boston, Massachusetts
| | - Priscilla Merriam
- Sarcoma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Andrew J. Wagner
- Sarcoma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Peter K. Sorger
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Sandro Santagata
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Suzanne George
- Sarcoma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
34
|
Zhang QS, Hayes JP, Gondi V, Pollack SM. Immunotherapy and Radiotherapy Combinations for Sarcoma. Semin Radiat Oncol 2024; 34:229-242. [PMID: 38508787 DOI: 10.1016/j.semradonc.2023.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Sarcomas are a heterogeneous group of bone and soft tissue tumors. Survival outcomes for advanced (unresectable or metastatic) disease remain poor, so therapeutic improvements are needed. Radiotherapy plays an integral role in the neoadjuvant and adjuvant treatment of localized disease as well as in the treatment of metastatic disease. Combining radiotherapy with immunotherapy to potentiate immunotherapy has been used in a variety of cancers other than sarcoma, and there is opportunity to further investigate combining immunotherapy with radiotherapy to try to improve outcomes in sarcoma. In this review, we describe the diversity of the tumor immune microenvironments for sarcomas and describe the immunomodulatory effects of radiotherapy. We discuss studies on the timing of radiotherapy relative to immunotherapy and studies on the radiotherapy dose and fractionation regimen to be used in combination with immunotherapy. We describe the impact of radiotherapy on the tumor immune microenvironment. We review completed and ongoing clinical trials combining radiotherapy with immunotherapy for sarcoma and propose future directions for studies combining immunotherapy with radiotherapy in the treatment of sarcoma.
Collapse
Affiliation(s)
- Qian S Zhang
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - John P Hayes
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Vinai Gondi
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Seth M Pollack
- Division of Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL..
| |
Collapse
|
35
|
Benesova I, Capkova L, Ozaniak A, Pacas P, Kopeckova K, Galova D, Lischke R, Buchler T, Ozaniak Strizova Z. A comprehensive analysis of CD47 expression in various histological subtypes of soft tissue sarcoma: exploring novel opportunities for macrophage-directed treatments. J Cancer Res Clin Oncol 2024; 150:134. [PMID: 38493445 PMCID: PMC10944806 DOI: 10.1007/s00432-024-05661-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
PURPOSE The CD47 molecule, often referred to as the "do not eat me" signal, is frequently overexpressed in tumor cells. This signaling pathway limits phagocytosis by macrophages. Our objective was to determine CD47 abundance in various soft tissue sarcomas (STS) to investigate whether it could serve as a potential evasion mechanism for tumor cells. Additionally, we aimed to assess the prognostic value of CD47 expression by examining its association with different clinicopathological factors. This study aimed to elucidate the significance of CD47 in the context of emerging anti-tumor targeting approaches. METHODS In this retrospective study, formalin-fixed paraffine-embedded (FFPE) tumor tissues of 55 treatment-naïve patients were evaluated by immunohistochemistry for the abundance of CD47 molecule on tumor cells. The categorization of CD47 positivity was as follows: 0 (no staining of tumor cells), 1 + (less than 1/3 of tumor area positive), 2 + (between 1/3 and 2/3 of tumor area positive), and 3 + (more than 2/3 of tumor area positive for CD47). Next, we compared CD47 abundance between different tumor grades (G1-3). We used Kaplan-Meier survival curves with log-rank test to analyze the differences in survival between patients with different CD47 expression. Moreover, we performed Cox proportional hazards regression model to evaluate the clinical significance of CD47. RESULTS CD47 is widely prevalent across distinct STS subtypes. More than 80% of high grade undifferentiated pleiomorphic sarcoma (UPS), 70% of myxofibrosarcoma (MFS) and more than 60% of liposarcoma (LPS) samples displayed a pattern of moderate-to-diffuse positivity. This phenomenon remains consistent regardless of the tumor grade. However, there was a tendency for higher CD47 expression levels in the G3 group compared to the combined G1 + G2 groups when all LPS, MFS, and UPS were analyzed together. No significant associations were observed between CD47 abundance, death, and metastatic status. Additionally, high CD47 expression was associated with a statistically significant increase in progression-free survival in the studied cohort of patients. CONCLUSION This study highlights the potential of the CD47 molecule as a promising immunotherapeutic target in STS, particularly given its elevated expression levels in diverse sarcoma types. Our data showed a notable trend linking CD47 expression to tumor grade, while also suggesting an interesting correlation between enhanced abundance of CD47 expression and a reduced hazard risk of disease progression. Although these findings shed light on different roles of CD47 in STS, further research is crucial to assess its potential in clinical settings.
Collapse
Affiliation(s)
- Iva Benesova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague 5, Czech Republic
| | - Linda Capkova
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Andrej Ozaniak
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Pavel Pacas
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Katerina Kopeckova
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Dominika Galova
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Robert Lischke
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Zuzana Ozaniak Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague 5, Czech Republic.
| |
Collapse
|
36
|
Shehata MS, Lofftus SY, Park JY, Singh AS, Federman NC, Eilber FC, Crompton JG, McCaw TR. Sarcoma in patients with Lynch syndrome and response to immunotherapy. J Surg Oncol 2024; 129:820-826. [PMID: 38151827 DOI: 10.1002/jso.27567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/16/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Lynch syndrome (LS) is an autosomal dominant genetic predisposition to multiple malignancies and is characterized by deficient DNA mismatch repair. Increased incidence of sarcomas is not formally ascribed to LS; however, increasing evidence suggests a preponderance of these malignancies in affected families. Sarcomas typically possess a low tumor mutational burden and incite a poor immune infiltrate, thereby rendering them poorly responsive to immunotherapy. METHODS We searched the University of California, Los Angeles (UCLA) sarcoma program database for patients with a diagnosis of sarcoma and LS from 2016 to 2023. Three such patients were identified and all three were treated with PD1 blockade. RESULTS We present three cases of LS-associated sarcomas (two soft tissue sarcoma and one osteosarcoma) with increased tumor mutational burdens. These patients were each treated with an anti-PD1 antibody and experienced a response far superior to that reported for non-LS-associated sarcomas. CONCLUSIONS Increased mutational burden and immune infiltrate are observed for sarcomas associated with LS. Although unselected patients with sarcoma have demonstrated poor response rates to immunotherapy, our findings suggest that patients with Lynch-associated sarcomas are more likely to respond to treatment with anti-PD1. These patients should be given consideration for immunotherapy.
Collapse
Affiliation(s)
- Michael S Shehata
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, California, USA
| | - Serena Y Lofftus
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, California, USA
| | - Joon Y Park
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, California, USA
| | - Arun S Singh
- Division of Hematology-Oncology, University of California, Los Angeles, Santa Monica, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Noah C Federman
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, California, USA
| | - Fritz C Eilber
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Joseph G Crompton
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Tyler R McCaw
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
37
|
Cho HJ, Yun KH, Shin SJ, Lee YH, Kim SH, Baek W, Han YD, Kim SK, Ryu HJ, Lee J, Cho I, Go H, Ko J, Jung I, Jeon MK, Rha SY, Kim HS. Durvalumab plus pazopanib combination in patients with advanced soft tissue sarcomas: a phase II trial. Nat Commun 2024; 15:685. [PMID: 38263321 PMCID: PMC10806253 DOI: 10.1038/s41467-024-44875-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
We aimed to determine the activity of the anti-VEGF receptor tyrosine-kinase inhibitor, pazopanib, combined with the anti-PD-L1 inhibitor, durvalumab, in metastatic and/or recurrent soft tissue sarcoma (STS). In this single-arm phase 2 trial (NCT03798106), treatment consisted of pazopanib 800 mg orally once a day and durvalumab 1500 mg once every 3 weeks. Primary outcome was overall response rate (ORR) and secondary outcomes included progression-free survival (PFS), overall survival, disease control rate, immune-related response criteria, and safety. The ORR was 30.4% and the trial met the pre-specified endpoint. The median PFS was 7.7 months (95% confidence interval: 5.7-10.4). The common treatment-related adverse events of grades 3-4 included neutropenia (9 [19.1%]), elevated aspartate aminotransferase (7 [14.9%]), alanine aminotransferase (5 [10.6%]), and thrombocytopenia (4 [8.5%]). In a prespecified transcriptomic analysis, the B lineage signature was a significant key determinant of overall response (P = 0.014). In situ analysis also showed that tumours with high CD20+ B cell infiltration and vessel density had a longer PFS (P = 6.5 × 10-4) than those with low B cell infiltration and vessel density, as well as better response (50% vs 12%, P = 0.019). CD20+ B cell infiltration was identified as the only independent predictor of PFS via multivariate analysis. Durvalumab combined with pazopanib demonstrated promising efficacy in an unselected STS cohort, with a manageable toxicity profile.
Collapse
Affiliation(s)
- Hee Jin Cho
- Department of Biomedical Convergence Science and Technology, CMRI, Kyungpook National University, Daegu, Republic of Korea
| | - Kum-Hee Yun
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Han Lee
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Hyun Kim
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wooyeol Baek
- Department of Plastic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Dae Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Kyum Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyang Joo Ryu
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joohee Lee
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Iksung Cho
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jiwon Ko
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Inkyung Jung
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Kyung Jeon
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Young Rha
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Song Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Dalal S, Shan KS, Thaw Dar NN, Hussein A, Ergle A. Role of Immunotherapy in Sarcomas. Int J Mol Sci 2024; 25:1266. [PMID: 38279265 PMCID: PMC10816403 DOI: 10.3390/ijms25021266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Sarcomas are a group of malignancies of mesenchymal origin with a plethora of subtypes. Given the sheer heterogeneity of various subtypes and the rarity of the disease, the management of sarcomas has been challenging, with poor patient outcomes. Surgery, radiation therapy and chemotherapy have remained the backbone of treatment in patients with sarcoma. The introduction of immunotherapy has revolutionized the treatment of various solid and hematological malignancies. In this review, we discuss the basics of immunotherapy and the immune microenvironment in sarcomas; various modalities of immunotherapy, like immune checkpoint blockade, oncolytic viruses, cancer-targeted antibodies, vaccine therapy; and adoptive cell therapies like CAR T-cell therapy, T-cell therapy, and TCR therapy.
Collapse
Affiliation(s)
- Shivani Dalal
- Memorial Healthcare, Division of Hematology and Oncology, Pembroke Pines, FL 33028, USA; (K.S.S.); (N.N.T.D.); (A.H.); (A.E.)
| | | | | | | | | |
Collapse
|
39
|
Liu J, Lu J, Wang G, Gu L, Li W. Prognostic characteristics of a six-gene signature based on ssGSEA in sarcoma. Aging (Albany NY) 2024; 16:1536-1554. [PMID: 38240704 PMCID: PMC10866427 DOI: 10.18632/aging.205443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/07/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Sarcoma is a rare malignant tumor originating of the interstitial or connective tissue with a poor prognosis. Next-generation sequencing technology offers new opportunities for accurate diagnosis and treatment of sarcomas. There is an urgent need for new gene signature to predict prognosis and evaluate treatment outcomes. METHODS We used transcriptome data from the Cancer Genome Atlas (TCGA) database and single sample gene set enrichment analysis (ssGSEA) to explore the cancer hallmarks most associated with prognosis in sarcoma patients. Then, weighted gene coexpression network analysis, univariate COX regression analysis and random forest algorithm were used to construct prognostic gene characteristics. Finally, the prognostic value of gene markers was validated in the TCGA and Integrated Gene Expression (GEO) (GSE17118) datasets, respectively. RESULTS MYC targets V1 and V2 are the main cancer hallmarks affecting the overall survival (OS) of sarcoma patients. A six-gene signature including VEGFA, HMGB3, FASN, RCC1, NETO2 and BIRC5 were constructed. Kaplan-Meier analysis suggested that higher risk scores based on the six-gene signature associated with poorer OS (P < 0.001). The receiver Operating characteristic curve showed that the risk score based on the six-gene signature was a good predictor of sarcoma, with an area under the curve (AUC) greater than 0.73. In addition, the prognostic value of the six-gene signature was validated in GSE17118 with an AUC greater than 0.72. CONCLUSION This six-gene signature is an independent prognostic factor in patients with sarcoma and is expected to be a potential therapeutic target for sarcoma.
Collapse
Affiliation(s)
- Jun Liu
- Department of Clinical Laboratory, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523005, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515000, China
| | - Jianjun Lu
- Department of Quality Control and Evaluation, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Gefei Wang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515000, China
| | - Liming Gu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515000, China
| | - Wenli Li
- Department of Clinical Laboratory, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523005, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515000, China
| |
Collapse
|
40
|
Jumaniyazova E, Lokhonina A, Dzhalilova D, Kosyreva A, Fatkhudinov T. Immune Cells in the Tumor Microenvironment of Soft Tissue Sarcomas. Cancers (Basel) 2023; 15:5760. [PMID: 38136307 PMCID: PMC10741982 DOI: 10.3390/cancers15245760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Soft tissue sarcomas (STSs) are a rare heterogeneous group of malignant neoplasms characterized by their aggressive course and poor response to treatment. This determines the relevance of research aimed at studying the pathogenesis of STSs. By now, it is known that STSs is characterized by complex relationships between the tumor cells and immune cells of the microenvironment. Dynamic interactions between tumor cells and components of the microenvironment enhance adaptation to changing environmental conditions, which provides the high aggressive potential of STSs and resistance to antitumor therapy. Today, active research is being conducted to find effective antitumor drugs and to evaluate the possibility of using therapy with immune cells of STS. The difficulty in assessing the efficacy of new antitumor options is primarily due to the high heterogeneity of this group of malignant neoplasms. Studying the role of immune cells in the microenvironment in the progression STSs and resistance to antitumor therapies will provide the discovery of new biomarkers of the disease and the prediction of response to immunotherapy. In addition, it will help to initially divide patients into subgroups of good and poor response to immunotherapy, thus avoiding wasting precious time in selecting the appropriate antitumor agent.
Collapse
Affiliation(s)
- Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
| | - Anastasiya Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| | - Dzhuliia Dzhalilova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Anna Kosyreva
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| |
Collapse
|
41
|
Aix Ponce S, Cousin S, Dubos P, Belcaid L, Bayle A, Italiano A. Letter re: Hyperprogressive disease during PD-1 blockade in patients with advanced gastric cancer. Eur J Cancer 2023; 193:113309. [PMID: 37776631 DOI: 10.1016/j.ejca.2023.113309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 10/02/2023]
Affiliation(s)
| | - Sophie Cousin
- Early Phase Trials Unit, Institut Bergonié, Bordeaux, France
| | - Paul Dubos
- Early Phase Trials Unit, Institut Bergonié, Bordeaux, France
| | - Laila Belcaid
- DITEP, Gustave Roussy, Villejuif, France; Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | | | - Antoine Italiano
- DITEP, Gustave Roussy, Villejuif, France; Early Phase Trials Unit, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
42
|
Rosenbaum E, Seier K, Bradic M, Kelly C, Movva S, Nacev BA, Gounder MM, Keohan ML, Avutu V, Chi P, Thornton KA, Chan JE, Dickson MA, Donoghue MT, Tap WD, Qin LX, D'Angelo SP. Immune-related Adverse Events after Immune Checkpoint Blockade-based Therapy Are Associated with Improved Survival in Advanced Sarcomas. CANCER RESEARCH COMMUNICATIONS 2023; 3:2118-2125. [PMID: 37787759 PMCID: PMC10583739 DOI: 10.1158/2767-9764.crc-22-0140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/31/2022] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
The association between immune-related AEs (irAE) and outcome in patients with sarcoma is not known. We retrospectively reviewed a cohort of patients with advanced sarcoma treated with immune checkpoint blockade (ICB)-based therapy. Association of irAEs with survival was assessed using a Cox regression model that incorporated irAE occurrence as a time-dependent covariate. Tumor samples with available RNA sequencing data were stratified by presence of an irAE to identify patterns of differential gene expression. A total of 131 patients were included. Forty-two (32%) had at least one irAE of any grade and 16 (12%) had at least one grade ≥ 3 irAE. The most common irAEs were hypothyroidism (8.3%), arthralgias (5.3%), pneumonitis (4.6%), allergic reaction (3.8%), and elevated transaminases (3.8%). Median progression-free survival (PFS) and overall survival (OS) from the time of study entry were 11.4 [95% confidence interval (CI), 10.7-15.0) and 74.6 weeks (CI, 44.9-89.7), respectively. On Cox analysis adjusting for clinical covariates that were significant in the univariate setting, the HR for an irAE (HR, 0.662; CI, 0.421-1.041) approached, but did not reach statistical significance for PFS (P = 0.074). Patients had a significantly lower HR for OS (HR, 0.443; CI, 0.246-0.798; P = 0.007) compared with those without or before an irAE. Gene expression profiling on baseline tumor samples found that patients who had an irAE had higher numbers of tumor-infiltrating dendritic cells, CD8+ T cells, and regulatory T cells as well as upregulation of immune and inflammatory pathways. SIGNIFICANCE irAE after ICB therapy was associated with an improved OS; it also approached statistical significance for improved PFS. Patients who had an irAE were more likely to have an inflamed tumor microenvironment at baseline.
Collapse
Affiliation(s)
- Evan Rosenbaum
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Kenneth Seier
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Martina Bradic
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ciara Kelly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Sujana Movva
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Benjamin A. Nacev
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Mrinal M. Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Mary L. Keohan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Viswatej Avutu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Ping Chi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katherine A. Thornton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Jason E. Chan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Mark A. Dickson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Mark T.A. Donoghue
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William D. Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Li-Xuan Qin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sandra P. D'Angelo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
43
|
Anzar I, Malone B, Samarakoon P, Vardaxis I, Simovski B, Fontenelle H, Meza-Zepeda LA, Stratford R, Keung EZ, Burgess M, Tawbi HA, Myklebost O, Clancy T. The interplay between neoantigens and immune cells in sarcomas treated with checkpoint inhibition. Front Immunol 2023; 14:1226445. [PMID: 37799721 PMCID: PMC10548483 DOI: 10.3389/fimmu.2023.1226445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/10/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction Sarcomas are comprised of diverse bone and connective tissue tumors with few effective therapeutic options for locally advanced unresectable and/or metastatic disease. Recent advances in immunotherapy, in particular immune checkpoint inhibition (ICI), have shown promising outcomes in several cancer indications. Unfortunately, ICI therapy has provided only modest clinical responses and seems moderately effective in a subset of the diverse subtypes. Methods To explore the immune parameters governing ICI therapy resistance or immune escape, we performed whole exome sequencing (WES) on tumors and their matched normal blood, in addition to RNA-seq from tumors of 31 sarcoma patients treated with pembrolizumab. We used advanced computational methods to investigate key immune properties, such as neoantigens and immune cell composition in the tumor microenvironment (TME). Results A multifactorial analysis suggested that expression of high quality neoantigens in the context of specific immune cells in the TME are key prognostic markers of progression-free survival (PFS). The presence of several types of immune cells, including T cells, B cells and macrophages, in the TME were associated with improved PFS. Importantly, we also found the presence of both CD8+ T cells and neoantigens together was associated with improved survival compared to the presence of CD8+ T cells or neoantigens alone. Interestingly, this trend was not identified with the combined presence of CD8+ T cells and TMB; suggesting that a combined CD8+ T cell and neoantigen effect on PFS was important. Discussion The outcome of this study may inform future trials that may lead to improved outcomes for sarcoma patients treated with ICI.
Collapse
Affiliation(s)
- Irantzu Anzar
- Oslo Cancer Cluster, NEC OncoImmunity AS, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | | | | | | | - Leonardo A. Meza-Zepeda
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Genomics Core Facility, Department of Core Facilities, Oslo University Hospital, Oslo, Norway
| | | | - Emily Z. Keung
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Melissa Burgess
- Department of Medical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Hussein A. Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ola Myklebost
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Trevor Clancy
- Oslo Cancer Cluster, NEC OncoImmunity AS, Oslo, Norway
| |
Collapse
|
44
|
Cho H, Song I, Jo U, Jeong J, Koo HJ, Yang DH, Jung S, Song JS, Cho K. Primary cardiac sarcomas: A clinicopathologic study in a single institution with 25 years of experience with an emphasis on MDM2 expression and adjuvant therapy for prognosis. Cancer Med 2023; 12:16815-16828. [PMID: 37395142 PMCID: PMC10501235 DOI: 10.1002/cam4.6303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/04/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Primary cardiac sarcomas are rare and their clinicopathologic features are heterogeneous. Among them, particularly intimal sarcoma is a diagnostic challenge due to nonspecific histologic features. Recently, MDM2 amplification reported to be a characteristic genetic event in the intimal sarcoma. In this study, we aimed to identify the types and incidence of primary cardiac sarcomas that occurred over 25 years in tertiary medical institutions, and to find clinicopatholgical significance through reclassification of diagnoses using additional immunohistochemistry (IHC). METHODS We reviewed the primary cardiac sarcoma cases between January 1993 and June 2018 at Asan Medical Center, South Korea, with their clinicopathologic findings, and reclassified the subtypes, especially using IHC for MDM2 and then, analyzed the significance of prognosis. RESULTS Forty-eight (6.8%) cases of a primary cardiac sarcoma were retrieved. The tumors most frequently involved the right atrium (n = 25, 52.1%), and the most frequent tumor subtype was angiosarcoma (n = 23, 47.9%). Seven cases (53.8%) were newly reclassified as an intimal sarcoma by IHC for MDM2. Twenty-nine (60.4%) patients died of disease (mean, 19.8 months). Four patients underwent a heart transplantation and had a median survival of 26.8 months. This transplantation group tended to show good clinical outcomes in the earlier stages, but this was not statistically significant (p = 0.318). MDM2 positive intimal sarcoma showed the better overall survival (p = 0.003) than undifferentiated pleomorphic sarcoma. Adjuvant treatment is beneficial for patient survival (p < 0.001), particularly in angiosarcoma (p < 0.001), but not in intimal sarcoma (p = 0.154). CONCLUSION Our study supports the use of adjuvant treatment in primary cardiac sarcoma, as it was associated with a significantly better overall survival rate. Further consideration of tumor histology may be important in determining the optimal use of adjuvant treatment for different types of sarcomas. Therefore, accurate diagnosis by MDM2 test is important condsidering patient's prognosis and treatment.
Collapse
Affiliation(s)
- Haeyon Cho
- Department of PathologyUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulRepublic of Korea
| | - In‐Hye Song
- Department of PathologyUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulRepublic of Korea
| | - Uiree Jo
- Department of PathologyUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulRepublic of Korea
| | - Ji‐Seon Jeong
- Department of PathologyUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulRepublic of Korea
| | - Hyun Jung Koo
- Department of Radiology and Research Institute of RadiologyUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulRepublic of Korea
| | - Dong Hyun Yang
- Department of Radiology and Research Institute of RadiologyUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulRepublic of Korea
| | - Sung‐Ho Jung
- Department of Thoracic and Cardiovascular SurgeryUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulRepublic of Korea
| | - Joon Seon Song
- Department of PathologyUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulRepublic of Korea
| | - Kyung‐Ja Cho
- Department of PathologyUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulRepublic of Korea
| |
Collapse
|
45
|
Feng X, Tonon L, Li H, Darbo E, Pleasance E, Macagno N, Dufresne A, Brahmi M, Bollard J, Ducimetière F, Karanian M, Meurgey A, Pérot G, Valentin T, Chibon F, Blay JY. Comprehensive Immune Profiling Unveils a Subset of Leiomyosarcoma with "Hot" Tumor Immune Microenvironment. Cancers (Basel) 2023; 15:3705. [PMID: 37509366 PMCID: PMC10378143 DOI: 10.3390/cancers15143705] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Purpose: To investigate the immune biomarker in Leiomyosarcoma (LMS), which is rare and recognized as an immune cold cancer showing a poor response rate (<10%) to immune checkpoint inhibitors (ICIs). However, durable response and clinical benefit to ICIs has been observed in a few cases of LMS, including, but not only, LMS with tertiary lymphoid structure (TLS) structures. Patients and methods: We used comprehensive transcriptomic profiling and a deconvolution method extracted from RNA-sequencing gene expression data in two independent LMS cohorts, the International Cancer Genome Consortium (ICGC, N = 146) and The Cancer Genome Atlas (TCGA, N = 75), to explore tumor immune microenvironment (TIME) in LMS. Results: Unsupervised clustering analysis using the previously validated two methods, 90-gene signature and Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT), identified immune hot (I-H) and immune high (I-Hi) LMS, respectively, in the ICGC cohort. Similarly, immune active groups (T-H, T-Hi) were identified in the TCGA cohort using these two methods. These immune active ("hot") clusters were significantly associated, but not completely overlapping, with several validated immune signatures such as sarcoma immune class (SIC) classification and TLS score, T cell inflamed signature (TIS) score, immune infiltration score (IIS), and macrophage score (M1/M2), with more patients identified by our clustering as potentially immune hot. Conclusions: Comprehensive immune profiling revealed a subset of LMS with a distinct active ("hot") TIME, consistently associated with several validated immune signatures in other cancers. This suggests that the methodologies that we used in this study warrant further validation and development, which can potentially help refine our current immune biomarkers to select the right LMS patients for ICIs in clinical trials.
Collapse
Affiliation(s)
- Xiaolan Feng
- Tom Baker Cancer Center, Department of Medical Oncology, University of Calgary, Calgary, AB T2N 4N2, Canada
| | - Laurie Tonon
- Synergie Lyon Cancer, Gille Thomas Bioinformatice Platform, Centre Léon Bérard, 69008 Lyon, France
| | - Haocheng Li
- Department of Mathematics and Statistics, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Elodie Darbo
- BRIC, INSERM U1312, Université de Bordeaux, 33600 Bordeaux, France
| | - Erin Pleasance
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Nicolas Macagno
- Department of Pathology, Aix Marseille University, INSERM, APHM MMG, UMR1251, Marmara Institute, La Timone Hospital, 13005 Marseille, France
| | - Armelle Dufresne
- Department of Medical Oncology, Centre Leon Bérard, 69008 Lyon, France
| | - Mehdi Brahmi
- Department of Medical Oncology, Centre Leon Bérard, 69008 Lyon, France
| | - Julien Bollard
- Department of Medical Oncology, Centre Leon Bérard, 69008 Lyon, France
| | | | - Marie Karanian
- Centre Léon Bérard, Department of Pathology, 69008 Lyon, France
| | | | - Gaëlle Pérot
- Department of Pathology, Institut Claudius Régaud, IUCT-Oncopole, 31000 Toulouse, France
| | - Thibaud Valentin
- Department of Pathology, Institut Claudius Régaud, IUCT-Oncopole, 31000 Toulouse, France
| | - Frédéric Chibon
- Department of Pathology, Institut Claudius Régaud, IUCT-Oncopole, 31000 Toulouse, France
| | - Jean-Yves Blay
- Department of Medical Oncology, Centre Léon Bérard, University Claude Bernard Lyon, 69008 Lyon, France
| |
Collapse
|
46
|
Dooley SW, Gong MF, Carlson LA, Frear AJ, Mandell JB, Zheng A, Bhogal S, Schoedel KE, Weiss KR. Postoperative infection and bone sarcoma survival: systematic review of the role of infection in bone sarcoma prognosis. ANNALS OF JOINT 2023; 8:22. [PMID: 38529233 PMCID: PMC10929285 DOI: 10.21037/aoj-22-41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/16/2023] [Indexed: 03/27/2024]
Abstract
Background Osteosarcoma (OS) and chondrosarcoma (CS) are primary bone malignancies whose prognoses have stagnated despite advancements in surgical management, chemotherapy, radiation therapy, and immunotherapy. The role of the immune system in generating anti-cancer physiologic responses is critical to prognosis. Prior studies have explored if immune system activation via infection enhances survival in bone sarcomas without a clear consensus. Methods This study sought to (I) retrospectively examine the effect of postoperative infection on survival in OS and CS and (II) systematically review the effect of postoperative infection on survival in primary bone malignancies. We performed a retrospective case-control study of 192 patients treated between 1/2000-12/2015 at a single academic sarcoma referral center. Patients with OS or CS undergoing operative resection were included. Eligible patients were grouped by presence of metastasis, and survival was compared between patients with or without postoperative infection. Furthermore, we performed a systematic review following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines investigating the effect of infection on primary bone malignancy survival. Risk of bias assessment was performed utilizing the ROBINS-I (Risk of Bias in Non-randomized Studies-of Interventions) assessment tool. All presented studies included author information, study population, and overall or disease-free survival results. Results One hundred and four patients were included, with 85 without infection (26 metastatic, 59 non-metastatic) and 19 with infection (10 metastatic, 9 non-metastatic). Five-year survival was greatest in patients without metastasis with a postoperative infection (100%), followed by patients without metastasis who were infection-free (80%). Five-year survival was comparatively lower in patients with metastasis who were infection-free (35%) and lowest in patients with metastasis with a postoperative infection (20%). No significant differences were present (P=0.17) on log-rank analysis. Our systematic review collected six studies exploring the impact of infection on primary bone malignancy survival, with two studies reporting significant findings of infection improving survival. Limitations of this review included risk of bias due to confounding, inconsistency comparing outcomes, and differences in patient populations. Conclusions This retrospective study and systematic review suggests postoperative infection may play a role in modulating immune response to malignancy. Understanding the synergy between anti-pathogen and anti-cancer responses warrants further investigation as an alternative method of targeted cancer treatment.
Collapse
Affiliation(s)
- Sean W. Dooley
- Musculoskeletal Oncology Laboratory, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew F. Gong
- Musculoskeletal Oncology Laboratory, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Luke A. Carlson
- Musculoskeletal Oncology Laboratory, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Andrew J. Frear
- Musculoskeletal Oncology Laboratory, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan B. Mandell
- Department of Microbiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aaron Zheng
- Musculoskeletal Oncology Laboratory, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sumail Bhogal
- Musculoskeletal Oncology Laboratory, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Karen E. Schoedel
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kurt R. Weiss
- Musculoskeletal Oncology Laboratory, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
47
|
Burns J, Wilding CP, Krasny L, Zhu X, Chadha M, Tam YB, Ps H, Mahalingam AH, Lee ATJ, Arthur A, Guljar N, Perkins E, Pankova V, Jenks A, Djabatey V, Szecsei C, McCarthy F, Ragulan C, Milighetti M, Roumeliotis TI, Crosier S, Finetti M, Choudhary JS, Judson I, Fisher C, Schuster EF, Sadanandam A, Chen TW, Williamson D, Thway K, Jones RL, Cheang MCU, Huang PH. The proteomic landscape of soft tissue sarcomas. Nat Commun 2023; 14:3834. [PMID: 37386008 PMCID: PMC10310735 DOI: 10.1038/s41467-023-39486-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Soft tissue sarcomas (STS) are rare and diverse mesenchymal cancers with limited treatment options. Here we undertake comprehensive proteomic profiling of tumour specimens from 321 STS patients representing 11 histological subtypes. Within leiomyosarcomas, we identify three proteomic subtypes with distinct myogenesis and immune features, anatomical site distribution and survival outcomes. Characterisation of undifferentiated pleomorphic sarcomas and dedifferentiated liposarcomas with low infiltrating CD3 + T-lymphocyte levels nominates the complement cascade as a candidate immunotherapeutic target. Comparative analysis of proteomic and transcriptomic profiles highlights the proteomic-specific features for optimal risk stratification in angiosarcomas. Finally, we define functional signatures termed Sarcoma Proteomic Modules which transcend histological subtype classification and show that a vesicle transport protein signature is an independent prognostic factor for distant metastasis. Our study highlights the utility of proteomics for identifying molecular subgroups with implications for risk stratification and therapy selection and provides a rich resource for future sarcoma research.
Collapse
Affiliation(s)
- Jessica Burns
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | | | - Lukas Krasny
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Xixuan Zhu
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Madhumeeta Chadha
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Yuen Bun Tam
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Hari Ps
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | | | - Alexander T J Lee
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Amani Arthur
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Nafia Guljar
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Emma Perkins
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Valeriya Pankova
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Andrew Jenks
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Vanessa Djabatey
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Cornelia Szecsei
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Frank McCarthy
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Chanthirika Ragulan
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Martina Milighetti
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | | | - Stephen Crosier
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Martina Finetti
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Jyoti S Choudhary
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Ian Judson
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Cyril Fisher
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Eugene F Schuster
- Ralph Lauren Centre for Breast Cancer Research, The Royal Marsden NHS Foundation Trust, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Anguraj Sadanandam
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Tom W Chen
- Department of Oncology, National Taiwan University Hospital, Taipei City, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine Taipei, Taipei City, Taiwan
| | - Daniel Williamson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Khin Thway
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Robin L Jones
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Maggie C U Cheang
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
| |
Collapse
|
48
|
Kelly CM, Qin LX, Whiting KA, Richards AL, Avutu V, Chan JE, Chi P, Dickson MA, Gounder MM, Keohan ML, Movva S, Nacev BA, Rosenbaum E, Adamson T, Singer S, Bartlett EK, Crago AM, Yoon SS, Hwang S, Erinjeri JP, Antonescu CR, Tap WD, D’Angelo SP. A Phase II Study of Epacadostat and Pembrolizumab in Patients with Advanced Sarcoma. Clin Cancer Res 2023; 29:2043-2051. [PMID: 36971773 PMCID: PMC10752758 DOI: 10.1158/1078-0432.ccr-22-3911] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/15/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Epacadostat, an indole 2,3 dioxygenase 1 (IDO1) inhibitor, proposed to shift the tumor microenvironment toward an immune-stimulated state, showed early promise in melanoma but has not been studied in sarcoma. This study combined epacadostat with pembrolizumab, which has modest activity in select sarcoma subtypes. PATIENTS AND METHODS This phase II study enrolled patients with advanced sarcoma into five cohorts including (i) undifferentiated pleomorphic sarcoma (UPS)/myxofibrosarcoma, (ii) liposarcoma (LPS), (iii) leiomyosarcoma (LMS), (iv) vascular sarcoma, including angiosarcoma and epithelioid hemangioendothelioma (EHE), and (v) other subtypes. Patients received epacadostat 100 mg twice daily plus pembrolizumab at 200 mg/dose every 3 weeks. The primary endpoint was best objective response rate (ORR), defined as complete response (CR) and partial response (PR), at 24 weeks by RECIST v.1.1. RESULTS Thirty patients were enrolled [60% male; median age 54 years (range, 24-78)]. The best ORR at 24 weeks was 3.3% [PR, n = 1 (leiomyosarcoma); two-sided 95% CI, 0.1%-17.2%]. The median PFS was 7.6 weeks (two-sided 95% CI, 6.9-26.7). Treatment was well tolerated. Grade 3 treatment-related adverse events occurred in 23% (n = 7) of patients. In paired pre- and post-treatment tumor samples, no association was found between treatment and PD-L1 or IDO1 tumor expression or IDO-pathway-related gene expression by RNA sequencing. No significant changes in serum tryptophan or kynurenine levels were observed after baseline. CONCLUSIONS Combination epacadostat and pembrolizumab was well tolerated and showed limited antitumor activity in sarcoma. Correlative analyses suggested that inadequate IDO1 inhibition was achieved.
Collapse
Affiliation(s)
- Ciara M. Kelly
- Department of Medicine, Memorial Sloan Kettering Cancer Center
- Department of Medicine, Weill Cornell Medical College
| | - Li-Xuan Qin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center
| | - Karissa A. Whiting
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center
| | - Allison L. Richards
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center
| | - Viswatej Avutu
- Department of Medicine, Memorial Sloan Kettering Cancer Center
- Department of Medicine, Weill Cornell Medical College
| | - Jason E. Chan
- Department of Medicine, Memorial Sloan Kettering Cancer Center
- Department of Medicine, Weill Cornell Medical College
| | - Ping Chi
- Department of Medicine, Memorial Sloan Kettering Cancer Center
- Department of Medicine, Weill Cornell Medical College
| | - Mark A. Dickson
- Department of Medicine, Memorial Sloan Kettering Cancer Center
- Department of Medicine, Weill Cornell Medical College
| | - Mrinal M. Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center
- Department of Medicine, Weill Cornell Medical College
| | - Mary Louise Keohan
- Department of Medicine, Memorial Sloan Kettering Cancer Center
- Department of Medicine, Weill Cornell Medical College
| | - Sujana Movva
- Department of Medicine, Memorial Sloan Kettering Cancer Center
- Department of Medicine, Weill Cornell Medical College
| | - Benjamin A. Nacev
- Department of Medicine, Memorial Sloan Kettering Cancer Center
- Department of Medicine, Weill Cornell Medical College
| | - Evan Rosenbaum
- Department of Medicine, Memorial Sloan Kettering Cancer Center
- Department of Medicine, Weill Cornell Medical College
| | - Travis Adamson
- Department of Medicine, Memorial Sloan Kettering Cancer Center
| | - Sam Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center
| | | | - Aimee M. Crago
- Department of Surgery, Memorial Sloan Kettering Cancer Center
| | - Sam S. Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center
| | - Sinchun Hwang
- Department of Radiology, Memorial Sloan Kettering Cancer Center
| | | | | | - William D. Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center
- Department of Medicine, Weill Cornell Medical College
| | - Sandra P. D’Angelo
- Department of Medicine, Memorial Sloan Kettering Cancer Center
- Department of Medicine, Weill Cornell Medical College
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center
| |
Collapse
|
49
|
Zhou MY, Bui NQ, Charville GW, Ganjoo KN, Pan M. Treatment of De-Differentiated Liposarcoma in the Era of Immunotherapy. Int J Mol Sci 2023; 24:ijms24119571. [PMID: 37298520 DOI: 10.3390/ijms24119571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Well-differentiated/de-differentiated liposarcoma (WDLPS/DDLPS) is one of the most common histologic subtypes of soft tissue sarcoma (STS); however, treatment options remain limited. WDLPS and DDLPS both exhibit the characteristic amplification of chromosome region 12q13-15, which contains the genes CDK4 and MDM2. DDLPS exhibits higher amplification ratios of these two and carries additional genomic lesions, including the amplification of chromosome region 1p32 and chromosome region 6q23, which may explain the more aggressive biology of DDLPS. WDLPS does not respond to systemic chemotherapy and is primarily managed with local therapy, including multiple resections and debulking procedures whenever clinically feasible. In contrast, DDLPS can respond to chemotherapy drugs and drug combinations, including doxorubicin (or doxorubicin in combination with ifosfamide), gemcitabine (or gemcitabine in combination with docetaxel), trabectedin, eribulin, and pazopanib. However, the response rate is generally low, and the response duration is usually short. This review highlights the clinical trials with developmental therapeutics that have been completed or are ongoing, including CDK4/6 inhibitors, MDM2 inhibitors, and immune checkpoint inhibitors. This review will also discuss the current landscape in assessing biomarkers for identifying tumors sensitive to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Maggie Y Zhou
- Sarcoma Program, Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Nam Q Bui
- Sarcoma Program, Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Gregory W Charville
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Kristen N Ganjoo
- Sarcoma Program, Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Minggui Pan
- Sarcoma Program, Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| |
Collapse
|
50
|
Chawla SP, Tellez WA, Chomoyan H, Valencia C, Ahari A, Omelchenko N, Makrievski S, Brigham DA, Chua-Alcala V, Quon D, Moradkhani A, Gordon EM. Activity of TNT: a phase 2 study using talimogene laherparepvec, nivolumab and trabectedin for previously treated patients with advanced sarcomas (NCT# 03886311). Front Oncol 2023; 13:1116937. [PMID: 37234994 PMCID: PMC10206273 DOI: 10.3389/fonc.2023.1116937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/31/2023] [Indexed: 05/28/2023] Open
Abstract
Background Intratumoral injection of talimogene laherparepvec evokes a cytotoxic immune response. Therefore, the combination of talimogene laherparepvec with trabectedin and nivolumab may have synergistic effects in advanced sarcomas. Patients and methods This phase 2 trial was conducted from May 30, 2019 to January 31, 2022. Endpoints: Primary: Progression free survival rate at month 12. Secondary: Best overall response, progression free survival rate at 6 and 9 months, overall survival rate at 6, 9, and 12 months, incidence of conversion of an unresectable tumor to a resectable tumor, and incidence of adverse events. Eligible patients had to be ≥ 18 years of age, have advanced histologically proven sarcoma, at least 1 previous chemotherapy regimen, and at least one accessible tumor for intratumoral injection. Treatment: Trabectedin intravenously (1.2 mg/m2 q3 weeks), nivolumab intravenously (3 mg/kg q2 weeks), and intratumoral talimogene laherparepvec (1x108 plaque forming units/ml q2 weeks). Results Median time of follow-up: 15.2 months. Efficacy analysis: Thirty-nine patients who had completed at least one treatment cycle and had a follow-up computerized tomography were evaluable for efficacy analysis. Median number of prior therapies: 4 (range 1-11). Progression free survival rate at month 12, 36.7%. Confirmed Best Overall Response by Response Evaluation Criteria in Solid Tumors v1.1 = 3 partial responses, 30 stable disease, 6 progressive disease. Best Overall Response Rate, 7.7%, Disease Control Rate, 84.6%; median progression free survival, 7.8 (95% Confidence Intervals: 4.1-13.1) months; 6-, 9-, 12-month progression free survival rates, 54.5%/45.9%/36.7%; median overall survival 19.3 (95% Confidence Intervals: 12.8 -.) months; 6-, 9- and 12-month overall survival rate, 86.9%/73.3%/73.3%. One patient had a complete surgical resection. Fifty percent of patients had a ≥ grade 3 treatment related adverse events which included anemia (6%), thrombocytopenia (6%), neutropenia (4%), increased alanine transaminase (4%), decreased left ventricular ejection fraction (4%), dehydration (4%), hyponatremia (4%). Conclusions Taken together these data suggest that the TNT regimen is effective and safe for advanced previously treated sarcomas, and is worth being further studied in a randomized phase 3 trial as first- or second- line treatment for patients with advanced sarcomas.
Collapse
Affiliation(s)
- Sant P. Chawla
- Medical Oncology, Sarcoma Oncology Research Center, Santa Monica, CA, United States
| | - Walter Andree Tellez
- Medical Oncology, Sarcoma Oncology Research Center, Santa Monica, CA, United States
| | - Hripsime Chomoyan
- Medical Oncology, Sarcoma Oncology Research Center, Santa Monica, CA, United States
| | - Chrysler Valencia
- Medical Oncology, Sarcoma Oncology Research Center, Santa Monica, CA, United States
| | - Amir Ahari
- Medical Oncology, Sarcoma Oncology Research Center, Santa Monica, CA, United States
| | - Nadezhda Omelchenko
- Medical Oncology, Sarcoma Oncology Research Center, Santa Monica, CA, United States
| | - Stefan Makrievski
- Medical Oncology, Sarcoma Oncology Research Center, Santa Monica, CA, United States
| | - Don A. Brigham
- Medical Oncology, Sarcoma Oncology Research Center, Santa Monica, CA, United States
- Gene and Cell Therapy, Aveni Foundation, Santa Monica, CA, United States
| | - Victoria Chua-Alcala
- Medical Oncology, Sarcoma Oncology Research Center, Santa Monica, CA, United States
| | - Doris Quon
- Medical Oncology, Sarcoma Oncology Research Center, Santa Monica, CA, United States
| | - Ania Moradkhani
- Medical Oncology, Sarcoma Oncology Research Center, Santa Monica, CA, United States
| | - Erlinda M. Gordon
- Medical Oncology, Sarcoma Oncology Research Center, Santa Monica, CA, United States
- Gene and Cell Therapy, Aveni Foundation, Santa Monica, CA, United States
| |
Collapse
|