1
|
Nolan-Stevaux O, Smith R. Logic-gated and contextual control of immunotherapy for solid tumors: contrasting multi-specific T cell engagers and CAR-T cell therapies. Front Immunol 2024; 15:1490911. [PMID: 39606234 PMCID: PMC11599190 DOI: 10.3389/fimmu.2024.1490911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
CAR-T cell and T cell engager therapies have demonstrated transformational efficacy against hematological malignancies, but achieving efficacy in solid tumors has been more challenging, in large part because of on-target/off-tumor toxicities and sub-optimal T cell anti-tumor cytotoxic functions. Here, we discuss engineering solutions that exploit biological properties of solid tumors to overcome these challenges. Using logic gates as a framework, we categorize the numerous approaches that leverage two inputs instead of one to achieve better cancer selectivity or efficacy in solid tumors with dual-input CAR-Ts or multi-specific TCEs. In addition to the "OR gate" and "AND gate" approaches that leverage dual tumor antigen targeting, we also review "contextual AND gate" technologies whereby continuous cancer-selective inputs such a pH, hypoxia, target density, tumor proteases, and immune-suppressive cytokine gradients can be creatively incorporated in therapy designs. We also introduce the notion of "output directionality" to distinguish dual-input strategies that mechanistically impact cancer cell killing or T cell fitness. Finally, we contrast the feasibility and potential benefits of the various approaches using CAR-T and TCE therapeutics and discuss why the promising "IF/THEN" and "NOT" gate types pertain more specifically to CAR-T therapies, but can also succeed by integrating both technologies.
Collapse
Affiliation(s)
| | - Richard Smith
- Cell Biology Research, Kite Pharma, Foster City, CA, United States
| |
Collapse
|
2
|
Qi C, Liu D, Liu C, Wei X, Ma M, Lu X, Tao M, Zhang C, Wang X, He T, Li J, Dai F, Ding Y, Shen L. Antigen-independent activation is critical for the durable antitumor effect of GUCY2C-targeted CAR-T cells. J Immunother Cancer 2024; 12:e009960. [PMID: 39366753 PMCID: PMC11459315 DOI: 10.1136/jitc-2024-009960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cells face many obstacles in solid tumor therapy, including heterogeneous antigen expression and inefficient T cell persistence. Guanylyl cyclase C (GUCY2C) has been identified as a suitable tumor antigen for targeted therapy due to its intestinal-restricted expression pattern in normal tissues and steady overexpression in gastrointestinal tumors, especially colorectal cancer. An antigen-sensitive and long-lasting CAR-T cell targeting GUCY2C was investigated in this study. METHODS Using constructed tumor cell lines with various GUCY2C expression densities, we screened out an antigen-sensitive single chain variable fragment (scFv) that enabled CAR-T cells to efficiently eradicate the GUCY2C lowly expressed tumor cells. CAR-T cells with different compositions of the hinge, transmembrane and costimulatory domains were also constructed for selection of the long-lasting CAR-T format with durable antitumor efficacy in vitro and in tumor-bearing mice. The underlying mechanism was further investigated based on mutation of the hinge and transmembrane domains. RESULTS We found that the composition of the antigen-sensitive scFv, CD8α hinge, CD8α transmembrane, and CD28 costimulatory domains boosted CAR-T cells to rapidly kill tumors, maintain high expansion capacity, and long-term efficacy in various colorectal cancer models. The durable antitumor function was attributed to the optimal CAR tonic signaling that conferred CAR-T cells with autonomous activation, proliferation, survival and cytokine release in the absence of antigen stimulation. The tonic signaling was associated with the length and the cysteine residues in the CD8α hinge and transmembrane domains. CONCLUSIONS This study demonstrated a potent GUCY2C-targeted CAR-T cell for gastrointestinal tumor therapy and highlights the importance of adequate tonic signaling for effective CAR-T cell therapy against solid tumors.
Collapse
Affiliation(s)
- Changsong Qi
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Early Drug Development Centre, Peking University Cancer Hospital, Beijing, China
| | - Dongqun Liu
- Beijing Imunopharm Technology Co Ltd, Beijing, China
| | - Chang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Early Drug Development Centre, Peking University Cancer Hospital, Beijing, China
| | - Xiaofei Wei
- Beijing Imunopharm Technology Co Ltd, Beijing, China
| | - Mingyang Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital, Beijing, China
| | - Xinan Lu
- Beijing Imunopharm Technology Co Ltd, Beijing, China
| | - Min Tao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital, Beijing, China
| | - Cheng Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital, Beijing, China
| | - Xicheng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital, Beijing, China
| | - Ting He
- Beijing Imunopharm Technology Co Ltd, Beijing, China
| | - Jian Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital, Beijing, China
| | - Fei Dai
- Beijing Imunopharm Technology Co Ltd, Beijing, China
| | - Yanping Ding
- Beijing Imunopharm Technology Co Ltd, Beijing, China
| | - Lin Shen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital, Beijing, China
| |
Collapse
|
3
|
Han YJ, Shao CY, Yao Y, Zhang Z, Fang MZ, Gong T, Zhang YJ, Li M. Immunotherapy of microsatellite stable colorectal cancer: resistance mechanisms and treatment strategies. Postgrad Med J 2024; 100:373-381. [PMID: 38211949 DOI: 10.1093/postmj/qgad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/11/2023] [Accepted: 12/03/2023] [Indexed: 01/13/2024]
Abstract
In recent years, immunotherapy strategies based on immune checkpoint inhibitors have yielded good efficacy in colorectal cancer (CRC)especially in colorectal cancer with microsatellite instability-high. However, microsatellite-stable (MSS) CRCs account for about 85% of CRCs and are resistant to immunotherapy. Previous studies have shown that compared with MSS CRC, high microsatellite instability CRC possesses a higher frequency of mutations and can generate more neoantigens. Therefore, improving the sensitivity of immunotherapy to MSS CRC is a hot topic which is crucial for the treatment of MSS CRC. This review aims to discuss the factors contributing to MSS CRC insensitivity to immunotherapy and explored potential solutions to overcome immunotherapy resistance.
Collapse
Affiliation(s)
- Yan-Jie Han
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
- Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210046, China
| | - Chi-Yun Shao
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
- Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210046, China
| | - Ying Yao
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
- Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210046, China
| | - Zhe Zhang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
- Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210046, China
| | - Ming-Zhi Fang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
| | - Tao Gong
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
| | - Ya-Jie Zhang
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing, University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
- Department of Biobank, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
| | - Min Li
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
| |
Collapse
|
4
|
Yuan Y, Li J, Chen J, Han L, Wang L, Yue Y, Liu J, Zhang B, Yuan Y, Wu M, Bian Y, Xie Y, Zhu J. Characterization of a novel T cell-engaging bispecific antibody for elimination of L1CAM-positive tumors. Biomed Pharmacother 2024; 174:116565. [PMID: 38603888 DOI: 10.1016/j.biopha.2024.116565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/09/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Neural cell adhesion molecule L1 (L1CAM) is a cell-surface glycoprotein involved in cancer occurrence and migration. Up to today, L1CAM-targeted therapy appeared limited efficacy in clinical trials although quite a few attempts by monoclonal antibody (mAb) or chimeric antigen receptor T-cell therapy (CAR-T) have been reported. Therefore, the development of new effective therapies targeting L1CAM is highly desirable. It has been demonstrated that T cell-engaging bispecific antibody (TCE) plays an effective role in cancer immunotherapy by redirecting the cytotoxic activity of CD3+ T cells to tumor cells, resulting in tumor cell death. In this study, we designed and characterized a novel bispecific antibody (CE7-TCE) based on the IgG-(L)-ScFv format, which targets L1CAM and CD3 simultaneously. In vitro, CE7-TCE induced specific killing of L1CAM-positive tumor cells through T cells. In vivo, CE7-TCE inhibited tumor growth in human peripheral blood mononuclear cell/tumor cell co-grafting models. To overcome the adaptive immune resistance (AIR) that impairs the efficacy of TCEs, we conducted a combination therapy of CE7-TCE with Pembrolizumab (anti-PD1 mAb), which enhanced the anti-tumor activity of CE7-TCE. Our results confirmed the feasibility of using L1CAM as a TCE target for the treatment of solid tumors and revealed the therapeutic potential of CE7-TCE combined with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Yuan Yuan
- Engineering Research Center of Cell & Therapeutical Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junyan Li
- Engineering Research Center of Cell & Therapeutical Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Chen
- Engineering Research Center of Cell & Therapeutical Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Han
- Jecho Institute, Co. Ltd, Shanghai 200241, China
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutical Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yali Yue
- Engineering Research Center of Cell & Therapeutical Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junjun Liu
- Engineering Research Center of Cell & Therapeutical Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutical Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunsheng Yuan
- Engineering Research Center of Cell & Therapeutical Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingyuan Wu
- Engineering Research Center of Cell & Therapeutical Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanlin Bian
- Engineering Research Center of Cell & Therapeutical Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yueqing Xie
- Jecho Institute, Co. Ltd, Shanghai 200241, China
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutical Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Jecho Institute, Co. Ltd, Shanghai 200241, China.
| |
Collapse
|
5
|
Wang L, Leach V, Muthusamy N, Byrd J, Long M. A CD3 humanized mouse model unmasked unique features of T-cell responses to bispecific antibody treatment. Blood Adv 2024; 8:470-481. [PMID: 37871327 PMCID: PMC10837186 DOI: 10.1182/bloodadvances.2023010971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
ABSTRACT T-cell bispecific antibodies (T-BsAbs) such as blinatumomab hold great promise for cancer immunotherapy. A better understanding of the in vivo immune response induced by T-BsAbs is crucial to improving their efficacy and safety profile. However, such efforts are hindered by the limitations of current preclinical models. To address this, we developed a syngeneic murine model with humanized CD3 and target antigen (CD20). This model enables the development of disseminated leukemia with a high tumor burden, which mirrors clinical findings in human patients with relapsed/refractory acute lymphoblastic leukemia. Treatment of this model with T-BsAbs results in cytokine release syndrome, with cytokine profiles and levels reflecting observations made in human patients. This model also faithfully recapitulates the dynamics of T-cell activation seen in human patients, including the temporary disappearance of T cells from the bloodstream. During this phase, T cells are sequestered in secondary lymphoid organs and undergo activation. Clinical correlative studies that rely primarily on peripheral blood samples are likely to overlook this critical activation stage, leading to a substantial underestimation of the extent of T-cell activation. Furthermore, we demonstrate that surface expression of the T-BsAb target antigen by leukemia cells triggers a swift immune response, promoting their own rejection. Humanizing the target antigen in the recipient mice is crucial to facilitate tolerance induction and successful establishment of high tumor burden. Our findings underscore the importance of meticulously optimized syngeneic murine models for investigating T-BsAb-induced immune responses and for translational research aimed at improving efficacy and safety.
Collapse
Affiliation(s)
- Lingling Wang
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Vincent Leach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Natarajan Muthusamy
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - John Byrd
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Meixiao Long
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
6
|
Chakraborty B, Agarwal S, Kori S, Das R, Kashaw V, Iyer AK, Kashaw SK. Multiple Protein Biomarkers and Different Treatment Strategies for Colorectal Carcinoma: A Comprehensive Prospective. Curr Med Chem 2024; 31:3286-3326. [PMID: 37151060 DOI: 10.2174/0929867330666230505165031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 05/09/2023]
Abstract
In this review, we emphasized important biomarkers, pathogenesis, and newly developed therapeutic approaches in the treatment of colorectal cancer (CRC). This includes a complete description of small-molecule inhibitors, phytopharmaceuticals with antiproliferative potential, monoclonal antibodies for targeted therapy, vaccinations as immunotherapeutic agents, and many innovative strategies to intervene in the interaction of oncogenic proteins. Many factors combine to determine the clinical behavior of colorectal cancer and it is still difficult to comprehend the molecular causes of a person's vulnerability to CRC. It is also challenging to identify the causes of the tumor's onset, progression, and responsiveness or resistance to antitumor treatment. Current recommendations for targeted medications are being updated by guidelines throughout the world in light of the growing number of high-quality clinical studies. So, being concerned about the aforementioned aspects, we have tried to present a summarized pathogenic view, including a brief description of biomarkers and an update of compounds with their underlying mechanisms that are currently under various stages of clinical testing. This will help to identify gaps or shortfalls that can be addressed in upcoming colorectal cancer research.
Collapse
Affiliation(s)
- Biswadip Chakraborty
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivangi Agarwal
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivam Kori
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Ratnesh Das
- Department of Chemistry, ISF College of Pharmacy, Moga-Punjab, India
| | - Varsha Kashaw
- Sagar Institute of Pharmaceutical Sciences, Sagar (M.P.), India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
- Molecular Imaging Program, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Sushil Kumar Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
7
|
Piroozkhah M, Aghajani A, Jalali P, Shahmoradi A, Piroozkhah M, Tadlili Y, Salehi Z. Guanylate cyclase-C Signaling Axis as a theragnostic target in colorectal cancer: a systematic review of literature. Front Oncol 2023; 13:1277265. [PMID: 37927469 PMCID: PMC10623427 DOI: 10.3389/fonc.2023.1277265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is a devastating disease that affects millions of people worldwide. Recent research has highlighted the crucial role of the guanylate cyclase-C (GC-C) signaling axis in CRC, from the early stages of tumorigenesis to disease progression. GC-C is activated by endogenous peptides guanylin (GU) and uroguanylin (UG), which are critical in maintaining intestinal fluid homeostasis. However, it has been found that these peptides may also contribute to the development of CRC. This systematic review focuses on the latest research on the GC-C signaling axis in CRC. Methods According to the aim of the study, a systematic literature search was conducted on Medline and PubMed databases. Ultimately, a total of 40 articles were gathered for the systematic review. Results Our systematic literature search revealed that alterations in GC-C signaling compartments in CRC tissue have demonstrated potential as diagnostic, prognostic, and therapeutic markers. This research highlights a potential treatment for CRC by targeting the GC-C signaling axis. Promising results from recent studies have explored the use of this signaling axis to develop new vaccines and chimeric antigen receptors that may be used in future clinical trials. Conclusion The findings presented in this review provide compelling evidence that targeting the GC-C signaling axis may be an advantageous approach for treating CRC.
Collapse
Affiliation(s)
- Moein Piroozkhah
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Aghajani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arvin Shahmoradi
- Department of Laboratory Medicine, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mobin Piroozkhah
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Younes Tadlili
- Department of Molecular Cell Biology, Microbiology Trend, Faculty of Basic Sciences, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Zahra Salehi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Rampuria P, Mosyak L, Root AR, Svenson K, Agostino MJ, LaVallie ER. Molecular insights into recognition of GUCY2C by T-cell engaging bispecific antibody anti-GUCY2CxCD3. Sci Rep 2023; 13:13408. [PMID: 37591971 PMCID: PMC10435522 DOI: 10.1038/s41598-023-40467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023] Open
Abstract
The intestinal epithelial receptor Guanylyl Cyclase C (GUCY2C) is a tumor-associated cell surface antigen expressed across gastrointestinal malignancies that can serve as an efficacious target for colorectal cancer immunotherapy. Here, we describe a yeast surface-display approach combined with an orthogonal peptide-based mapping strategy to identify the GUCY2C binding epitope of a novel anti-GUCY2CxCD3 bispecific antibody (BsAb) that recently advanced into the clinic for the treatment of cancer. The target epitope was localized to the N-terminal helix H2 of human GUCY2C, which enabled the determination of the crystal structure of the minimal GUCY2C epitope in complex with the anti-GUCY2C antibody domain. To understand if this minimal epitope covers the entire antibody binding region and to investigate the impact of epitope position on the antibody's activity, we further determined the structure of this interaction in the context of the full-length extracellular domain (ECD) of GUCY2C. We found that this epitope is positioned on the protruding membrane-distal helical region of GUCY2C and that its specific location on the surface of GUCY2C dictates the close spatial proximity of the two antigen arms in a diabody arrangement essential to the tumor killing activity of GUCY2CxCD3 BsAb.
Collapse
Affiliation(s)
- Pragya Rampuria
- Biomedicine Design, Pfizer Inc., 610 Main St., Cambridge, MA, 02139, USA.
| | - Lidia Mosyak
- Biomedicine Design, Pfizer Inc., 610 Main St., Cambridge, MA, 02139, USA.
| | - Adam R Root
- Generate Biomedicines Inc, Cambridge, MA, USA
| | - Kristine Svenson
- Biomedicine Design, Pfizer Inc., 610 Main St., Cambridge, MA, 02139, USA
| | | | - Edward R LaVallie
- Biomedicine Design, Pfizer Inc., 610 Main St., Cambridge, MA, 02139, USA
| |
Collapse
|
9
|
Tria SM, Burge ME, Whitehall VLJ. The Therapeutic Landscape for KRAS-Mutated Colorectal Cancers. Cancers (Basel) 2023; 15:cancers15082375. [PMID: 37190303 DOI: 10.3390/cancers15082375] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Colorectal cancer is one of the world's most prevalent and lethal cancers. Mutations of the KRAS gene occur in ~40% of metastatic colorectal cancers. While this cohort has historically been difficult to manage, the last few years have shown exponential growth in the development of selective inhibitors targeting KRAS mutations. Their foremost mechanism of action utilizes the Switch II binding pocket and Cys12 residue of GDP-bound KRAS proteins in G12C mutants, confining them to their inactive state. Sotorasib and Adagrasib, both FDA-approved for the treatment of non-small cell lung cancer (NSCLC), have been pivotal in paving the way for KRAS G12C inhibitors in the clinical setting. Other KRAS inhibitors in development include a multi-targeting KRAS-mutant drug and a G12D mutant drug. Treatment resistance remains an issue with combination treatment regimens including indirect pathway inhibition and immunotherapy providing possible ways to combat this. While KRAS-mutant selective therapy has come a long way, more work is required to make this an effective and viable option for patients with colorectal cancer.
Collapse
Affiliation(s)
- Simon Manuel Tria
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Matthew E Burge
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Medicine, The University of Queensland, Herston, QLD 4029, Australia
- Department of Medical Oncology, Cancer Care Services, The Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
- Department of Medical Oncology, The Prince Charles Hospital, Chermside, QLD 4032, Australia
| | - Vicki L J Whitehall
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Medicine, The University of Queensland, Herston, QLD 4029, Australia
- Conjoint Internal Medicine Laboratory, Pathology Queensland, Queensland Health, Brisbane, QLD 4006, Australia
| |
Collapse
|
10
|
Siminzar P, Tohidkia MR, Eppard E, Vahidfar N, Tarighatnia A, Aghanejad A. Recent Trends in Diagnostic Biomarkers of Tumor Microenvironment. Mol Imaging Biol 2022; 25:464-482. [PMID: 36517729 DOI: 10.1007/s11307-022-01795-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
The tumor microenvironment (TME) play critical roles in tumor survival, progression, and metastasis and can be considered potential targets for molecular imaging of cancer. The targeting agents for imaging of TME components (e.g., fibroblasts, mesenchymal stromal cells, immune cells, extracellular matrix, blood vessels) provide a promising strategy to target these biomarkers for the early diagnosis of cancers. Moreover, various cancer types have similar tumor immune microenvironment (TIME) features that targeting those biomarkers and offer clinically translatable molecular imaging of cancers. In this review, we categorize and summarize the components in TME which have been targeted for molecular imaging. Moreover, this review updated the recent progress in targeted imaging of TIME biological molecules by various modalities for the early detection of cancer.
Collapse
|
11
|
Zhang W, Auguste A, Liao X, Walterskirchen C, Bauer K, Lin YH, Yang L, Sayedian F, Fabits M, Bergmann M, Binder C, Corrales L, Vogt AB, Hudson LJ, Barnes MP, Bisht A, Giragossian C, Voynov V, Adam PJ, Hipp S. A Novel B7-H6-Targeted IgG-Like T Cell-Engaging Antibody for the Treatment of Gastrointestinal Tumors. Clin Cancer Res 2022; 28:5190-5201. [PMID: 36166004 PMCID: PMC9713360 DOI: 10.1158/1078-0432.ccr-22-2108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/22/2022] [Accepted: 09/22/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Advanced-stage gastrointestinal cancers represent a high unmet need requiring new effective therapies. We investigated the antitumor activity of a novel T cell-engaging antibody (B7-H6/CD3 ITE) targeting B7-H6, a tumor-associated antigen that is expressed in gastrointestinal tumors. EXPERIMENTAL DESIGN Membrane proteomics and IHC analysis identified B7-H6 as a tumor-associated antigen in gastrointestinal tumor tissues with no to very little expression in normal tissues. The antitumor activity and mode of action of B7-H6/CD3 ITE was evaluated in in vitro coculture assays, in humanized mouse tumor models, and in colorectal cancer precision cut tumor slice cultures. RESULTS B7-H6 expression was detected in 98% of colorectal cancer, 77% of gastric cancer, and 63% of pancreatic cancer tissue samples. B7-H6/CD3 ITE-mediated redirection of T cells toward B7-H6-positive tumor cells resulted in B7-H6-dependent lysis of tumor cells, activation and proliferation of T cells, and cytokine secretion in in vitro coculture assays, and infiltration of T cells into tumor tissues associated with tumor regression in in vivo colorectal cancer models. In primary patient-derived colorectal cancer precision-cut tumor slice cultures, treatment with B7-H6/CD3 ITE elicited cytokine secretion by endogenous tumor-infiltrating immune cells. Combination with anti-PD-1 further enhanced the activity of the B7-H6/CD3 ITE. CONCLUSION These data highlight the potential of the B7-H6/CD3 ITE to induce T cell-redirected lysis of tumor cells and recruitment of T cells into noninflamed tumor tissues, leading to antitumor activity in in vitro, in vivo, and human tumor slice cultures, which supports further evaluation in a clinical study.
Collapse
Affiliation(s)
- Wei Zhang
- Boehringer Ingelheim Pharmaceuticals, Inc., Cancer Immunology & Immune Modulation, Ridgefield, Connecticut
| | - Aurélie Auguste
- Boehringer Ingelheim Pharma, GmbH & Co KG, Translational Medicine and Clinical Pharmacology, Biberach an der Riß, Germany
| | - Xiaoyun Liao
- Boehringer Ingelheim Pharmaceuticals, Inc., Oncology Translational Science, Ridgefield, Connecticut
| | | | - Kathrin Bauer
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Yu-Hsi Lin
- Boehringer Ingelheim Pharmaceuticals, Inc., Cancer Immunology & Immune Modulation, Ridgefield, Connecticut
| | - Ling Yang
- Boehringer Ingelheim Pharmaceuticals, Inc., Cancer Immunology & Immune Modulation, Ridgefield, Connecticut
| | | | - Markus Fabits
- Medical University of Vienna, Division of Visceral Surgery, Department of General Surgery and Comprehensive Cancer Center, Vienna, Austria
| | - Michael Bergmann
- Medical University of Vienna, Division of Visceral Surgery, Department of General Surgery and Comprehensive Cancer Center, Vienna, Austria
| | - Carina Binder
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Leticia Corrales
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Anne B. Vogt
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | | | | | - Arnima Bisht
- Oxford BioTherapeutics, Inc., San Jose, California
| | - Craig Giragossian
- Boehringer Ingelheim Pharmaceuticals, Inc., Biotherapeutics Discovery, Ridgefield, Connecticut
| | - Vladimir Voynov
- Boehringer Ingelheim Pharmaceuticals, Inc., Biotherapeutics Discovery, Ridgefield, Connecticut
| | - Paul J. Adam
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Susanne Hipp
- Boehringer Ingelheim Pharmaceuticals, Inc., Cancer Immunology & Immune Modulation, Ridgefield, Connecticut.,Boehringer Ingelheim Pharmaceuticals, Inc., Translational Medicine and Clinical Pharmacology, Ridgefield, Connecticut.,Corresponding Author: Susanne Hipp, Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, CT 06877-0368. Phone: 203-798-4567; E-mail:
| |
Collapse
|
12
|
Long M, Mims AS, Li Z. Factors Affecting the Cancer Immunotherapeutic Efficacy of T Cell Bispecific Antibodies and Strategies for Improvement. Immunol Invest 2022; 51:2176-2214. [PMID: 36259611 DOI: 10.1080/08820139.2022.2131569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
T-cell bispecific antibodies (T-BsAbs) are a new class of cancer immunotherapy drugs that can simultaneously bind to tumor-associated antigens on target cells and to the CD3 subunit of the T-cell receptor (TCR) on T cells. In the last decade, numerous T-BsAbs have been developed for the treatment of both hematological malignancies and solid tumors. Among them, blinatumomab has been successfully used to treat CD19 positive malignancies and has been approved by the FDA as standard care for acute lymphoblastic leukemia (ALL). However, in many clinical scenarios, the efficacy of T-BsAbs remains unsatisfactory. To further improve T-BsAb therapy, it will be crucial to better understand the factors affecting treatment efficacy and the nature of the T-BsAb-induced immune response. Herein, we first review the studies on the potential mechanisms by which T-BsAbs activate T-cells and how they elicit efficient target killing despite suboptimal costimulatory support. We focus on analyzing reports from clinical trials and preclinical studies, and summarize the factors that have been identified to impact the efficacy of T-BsAbs. Lastly, we review current and propose new approaches to improve the clinical efficacy of T-BsAbs.
Collapse
Affiliation(s)
- Meixiao Long
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.,Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Alice S Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.,Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
13
|
Sánchez J, Nicolini V, Fahrni L, Waldhauer I, Walz AC, Jamois C, Fowler S, Simon S, Klein C, Umaña P, Friberg L, Frances N. Preclinical InVivo Data Integrated in a Modeling Network Informs a Refined Clinical Strategy for a CD3 T-Cell Bispecific in Combination with Anti-PD-L1. AAPS J 2022; 24:106. [PMID: 36207642 DOI: 10.1208/s12248-022-00755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
TYRP1-TCB is a CD3 T-cell bispecific (CD3-TCB) antibody for the treatment of advanced melanoma. A tumor growth inhibition (TGI) model was developed using mouse xenograft data with TYRP1-TCB monotherapy or TYRP1-TCB plus anti-PD-L1 combination. The model was translated to humans to inform a refined clinical strategy. From xenograft mouse data, we estimated an EC50 of 0.345 mg/L for TYRP1-TCB, close to what was observed in vitro using the same tumor cell line. The model showed that, though increasing the dose of TYRP1-TCB in monotherapy delays the time to tumor regrowth and promotes higher tumor cell killing, it also induces a faster rate of tumor regrowth. Combination with anti-PD-L1 extended the time to tumor regrowth by 25% while also decreasing the tumor regrowth rate by 69% compared to the same dose of TYRP1-TCB alone. The model translation to humans predicts that if patients' tumors were scanned every 6 weeks, only 46% of the monotherapy responders would be detected even at a TYRP1-TCB dose resulting in exposures above the EC90. However, combination of TYRP1-TCB and anti-PD-L1 in the clinic is predicted to more than double the overall response rate (ORR), duration of response (DoR) and progression-free survival (PFS) compared to TYRP1-TCB monotherapy. As a result, it is highly recommended to consider development of CD3-TCBs as part of a combination therapy from the outset, without the need to escalate the CD3-TCB up to the Maximum Tolerated Dose (MTD) in monotherapy and without gating the combination only on RECIST-derived efficacy metrics.
Collapse
Affiliation(s)
- Javier Sánchez
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland. .,Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| | - Valeria Nicolini
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Linda Fahrni
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Inja Waldhauer
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Antje-Christine Walz
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Candice Jamois
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Stephen Fowler
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Silke Simon
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Pablo Umaña
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Lena Friberg
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Nicolas Frances
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
14
|
Caspi A, Entezari AA, Crutcher M, Snook AE, Waldman SA. Guanylyl cyclase C as a diagnostic and therapeutic target in colorectal cancer. Per Med 2022; 19:457-472. [PMID: 35920071 DOI: 10.2217/pme-2022-0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022]
Abstract
Colorectal cancer remains a major cause of mortality in the USA, despite advances in prevention and screening. Existing therapies focus primarily on generic treatment such as surgical intervention and chemotherapy, depending on disease severity. As personalized medicine and targeted molecular oncology continue to develop as promising treatment avenues, there has emerged a need for effective targets and biomarkers of colorectal cancer. The transmembrane receptor guanylyl cyclase C (GUCY2C) regulates intestinal homeostasis and has emerged as a tumor suppressor. Further, it is universally expressed in advanced metastatic colorectal tumors, as well as other cancer types that arise through intestinal metaplasia. In this context, GUCY2C satisfies many characteristics of a compelling target and biomarker for gastrointestinal malignancies.
Collapse
Affiliation(s)
- Adi Caspi
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ariana A Entezari
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Madison Crutcher
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E Snook
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott A Waldman
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
15
|
Wang P, Sun LL, Clark R, Hristopoulos M, Chiu CP, Dillon M, Lin W, Lo AA, Chalsani S, Das Thakur M, Zimmerman Savill KM, Rougé L, Lupardus P, Piskol R, Husain B, Ellerman D, Shivva V, Leong SR, Ovacik M, Totpal K, Wu Y, Spiess C, Lee G, Leipold DD, Polson AG. Novel Anti-LY6G6D/CD3 T-Cell-Dependent Bispecific Antibody for the Treatment of Colorectal Cancer. Mol Cancer Ther 2022; 21:974-985. [PMID: 35364611 PMCID: PMC9381132 DOI: 10.1158/1535-7163.mct-21-0599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/21/2021] [Accepted: 03/21/2022] [Indexed: 01/07/2023]
Abstract
New therapeutics and combination regimens have led to marked clinical improvements for the treatment of a subset of colorectal cancer. Immune checkpoint inhibitors have shown clinical efficacy in patients with mismatch-repair-deficient or microsatellite instability-high (MSI-H) metastatic colorectal cancer (mCRC). However, patients with microsatellite-stable (MSS) or low levels of microsatellite instable (MSI-L) colorectal cancer have not benefited from these immune modulators, and the survival outcome remains poor for the majority of patients diagnosed with mCRC. In this article, we describe the discovery of a novel T-cell-dependent bispecific antibody (TDB) targeting tumor-associated antigen LY6G6D, LY6G6D-TDB, for the treatment of colorectal cancer. RNAseq analysis showed that LY6G6D was differentially expressed in colorectal cancer with high prevalence in MSS and MSI-L subsets, whereas LY6G6D expression in normal tissues was limited. IHC confirmed the elevated expression of LY6G6D in primary and metastatic colorectal tumors, whereas minimal or no expression was observed in most normal tissue samples. The optimized LY6G6D-TDB, which targets a membrane-proximal epitope of LY6G6D and binds to CD3 with high affinity, exhibits potent antitumor activity both in vitro and in vivo. In vitro functional assays show that LY6G6D-TDB-mediated T-cell activation and cytotoxicity are conditional and target dependent. In mouse xenograft tumor models, LY6G6D-TDB demonstrates antitumor efficacy as a single agent against established colorectal tumors, and enhanced efficacy can be achieved when LY6G6D-TDB is combined with PD-1 blockade. Our studies provide evidence for the therapeutic potential of LY6G6D-TDB as an effective treatment option for patients with colorectal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrew G. Polson
- Corresponding Author: Andrew G. Polson, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080. Phone: 650-225-5134; Fax: 650-225-6240; E-mail:
| |
Collapse
|
16
|
Immunotherapy for Colorectal Cancer: Mechanisms and Predictive Biomarkers. Cancers (Basel) 2022; 14:cancers14041028. [PMID: 35205776 PMCID: PMC8869923 DOI: 10.3390/cancers14041028] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Late-stage colorectal cancer treatment often involves chemotherapy and radiation that can cause dose-limiting toxicity, and therefore there is great interest in developing targeted therapies for this disease. Immunotherapy is a targeted therapy that uses peptides, cells, antibodies, viruses, or small molecules to engage or train the immune system to kill cancer. Here, we discuss the preclinical and clinical development of immunotherapy for treatment of colorectal cancer and provide an overview of predictive biomarkers for such treatments. We also consider open questions including optimal combination treatments and sensitization of colorectal cancer patients with proficient mismatch repair enzymes. Abstract Though early-stage colorectal cancer has a high 5 year survival rate of 65–92% depending on the specific stage, this probability drops to 13% after the cancer metastasizes. Frontline treatments for colorectal cancer such as chemotherapy and radiation often produce dose-limiting toxicities in patients and acquired resistance in cancer cells. Additional targeted treatments are needed to improve patient outcomes and quality of life. Immunotherapy involves treatment with peptides, cells, antibodies, viruses, or small molecules to engage or train the immune system to kill cancer cells. Preclinical and clinical investigations of immunotherapy for treatment of colorectal cancer including immune checkpoint blockade, adoptive cell therapy, monoclonal antibodies, oncolytic viruses, anti-cancer vaccines, and immune system modulators have been promising, but demonstrate limitations for patients with proficient mismatch repair enzymes. In this review, we discuss preclinical and clinical studies investigating immunotherapy for treatment of colorectal cancer and predictive biomarkers for response to these treatments. We also consider open questions including optimal combination treatments to maximize efficacy, minimize toxicity, and prevent acquired resistance and approaches to sensitize mismatch repair-proficient patients to immunotherapy.
Collapse
|
17
|
T Cell Bispecific Antibodies: An Antibody-Based Delivery System for Inducing Antitumor Immunity. Pharmaceuticals (Basel) 2021; 14:ph14111172. [PMID: 34832954 PMCID: PMC8619951 DOI: 10.3390/ph14111172] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
As a breakthrough immunotherapy, T cell bispecific antibodies (T-BsAbs) are a promising antibody therapy for various kinds of cancer. In general, T-BsAbs have dual-binding specificity to a tumor-associated antigen and a CD3 subunit forming a complex with the TCR. This enables T-BsAbs to crosslink tumor cells and T cells, inducing T cell activation and subsequent tumor cell death. Unlike immune checkpoint inhibitors, which release the brake of the immune system, T-BsAbs serve as an accelerator of T cells by stimulating their immune response via CD3 engagement. Therefore, they can actively redirect host immunity toward tumors, including T cell recruitment from the periphery to the tumor site and immunological synapse formation between tumor cells and T cells. Although the low immunogenicity of solid tumors increases the challenge of cancer immunotherapy, T-BsAbs capable of immune redirection can greatly benefit patients with such tumors. To investigate the detailed relationship between T-BsAbs delivery and their T cell redirection activity, it is necessary to determine how T-BsAbs deliver antitumor immunity to the tumor site and bring about tumor cell death. This review article discusses T-BsAb properties, specifically their pharmacokinetics, redirection of anticancer immunity, and local mechanism of action within tumor tissues, and discuss further challenges to expediting T-BsAb development.
Collapse
|
18
|
Fan A, Wang B, Wang X, Nie Y, Fan D, Zhao X, Lu Y. Immunotherapy in colorectal cancer: current achievements and future perspective. Int J Biol Sci 2021; 17:3837-3849. [PMID: 34671202 PMCID: PMC8495390 DOI: 10.7150/ijbs.64077] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Following dramatic success in many types of advanced solid tumors, interest in immunotherapy for the treatment of colorectal cancer (CRC) is increasingly growing. Given the compelling long-term durable remission, two programmed cell death 1 (PD-1)-blocking antibodies, pembrolizumab and nivolumab (with or without Ipilimumab), have been approved for the treatment of patients with metastatic colorectal cancer (mCRC) that is mismatch-repair-deficient and microsatellite instability-high (dMMR-MSI-H). Practice-changing results of several randomized controlled trials to move immunotherapy into the first-line treatment for MSI-H metastasis cancer and earlier stage were reported successively in the past 2 years. Besides, new intriguing advances to expand the efficacy of immunotherapy to mCRC that is mismatch-repair-proficient and low microsatellite instability (pMMR-MSI-L) demonstrated the potential benefits for the vast majority of mCRC cases. Great attention is also paid to the advances in cancer vaccines and adoptive cell therapy (ACT). In this review, we summarize the above progresses, and also highlight the current predictive biomarkers of responsiveness in immunotherapy with broad clinical utility.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
19
|
Pham E, Friedrich M, Aeffner F, Lutteropp M, Mariano NF, Deegen P, Dahlhoff C, Vogel F, Bluemel C, Harrold JM, Brandl C, Grinberg N, Rattel B, Coxon A, Ballis JM. Preclinical Assessment of a MUC12-Targeted BiTE® (Bispecific T Cell Engager) Molecule. Mol Cancer Ther 2021; 20:1977-1987. [PMID: 34376583 DOI: 10.1158/1535-7163.mct-21-0236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/14/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022]
Abstract
MUC12 is a transmembrane mucin that is highly expressed in >50% of primary and metastatic colorectal tumors. MUC12 is also expressed by normal epithelial cells of the colon and small intestine. While MUC12 localization in normal epithelial cells is restricted to the apical membrane, expression in tumors is depolarized and shows broad membrane localization. The differential localization of MUC12 in tumor cells as compared to normal cells makes it a potential therapeutic target. Here, we evaluated targeting of MUC12 with a BiTE® (bispecific T cell engager) molecule. We generated a panel of proof-of-concept half-life extended (HLE) BiTE molecules that bind MUC12 on tumor cells and CD3 on T cells. We prioritized one molecule based on in vitro activity for further characterization in vivo. In vitro, the MUC12 HLE BiTE molecule mediated T cell redirected lysis of MUC12-expressing cells with half-maximal lysis of 4.4 {plus minus} 0.9 pM to 117 {plus minus} 78 pM. In an exploratory cynomolgus monkey toxicology study, the MUC12 HLE BiTE molecule administered at 200 µg/kg with a step dose to 1000 µg/kg was tolerated with minimal clinical observations. However, higher doses were not tolerated, and there was evidence of damage in the gastrointestinal tract, suggesting dose levels projected to be required for antitumor activity may be associated with on-target toxicity. Together, these data demonstrate that the apically restricted expression of MUC12 in normal tissues is accessible to BiTE molecule target engagement and highlight the difficult challenge of identifying tumor-selective antigens for solid tumor T cell engagers.
Collapse
Affiliation(s)
| | | | - Famke Aeffner
- Translational Safety & Bioanalytical Sciences, Amgen, Inc
| | | | | | - Petra Deegen
- Translational Safety & Bioanalytical Sciences, Amgen Research (Munich) GmbH, Amgen (Germany)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Maresca KP, Chen J, Mathur D, Giddabasappa A, Root A, Narula J, King L, Schaer D, Golas J, Kobylarz K, Rosfjord E, Keliher E, Chen L, Ram S, Pickering EH, Hardwick JS, Rejto PA, Hussein A, Ilovich O, Staton K, Wilson I, McCarthy TJ. Preclinical Evaluation of 89Zr-Df-IAB22M2C PET as an Imaging Biomarker for the Development of the GUCY2C-CD3 Bispecific PF-07062119 as a T Cell Engaging Therapy. Mol Imaging Biol 2021; 23:941-951. [PMID: 34143379 PMCID: PMC8578158 DOI: 10.1007/s11307-021-01621-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023]
Abstract
Purpose A sensitive and specific imaging biomarker to monitor immune activation and quantify pharmacodynamic responses would be useful for development of immunomodulating anti-cancer agents. PF-07062119 is a T cell engaging bispecific antibody that binds to CD3 and guanylyl cyclase C, a protein that is over-expressed by colorectal cancers. Here, we used 89Zr-Df-IAB22M2C (89Zr-Df-Crefmirlimab), a human CD8-specific minibody to monitor CD8+ T cell infiltration into tumors by positron emission tomography. We investigated the ability of 89Zr-Df-IAB22M2C to track anti-tumor activity induced by PF-07062119 in a human CRC adoptive transfer mouse model (with injected activated/expanded human T cells), as well as the correlation of tumor radiotracer uptake with CD8+ immunohistochemical staining. Procedures NOD SCID gamma mice bearing human CRC LS1034 tumors were treated with four different doses of PF-07062119, or a non-targeted CD3 BsAb control, and imaged with 89Zr-Df-IAB22M2C PET at days 4 and 9. Following PET/CT imaging, mice were euthanized and dissected for ex vivo distribution analysis of 89Zr-Df-IAB22M2C in tissues on days 4 and 9, with additional data collected on day 6 (supplementary). Data were analyzed and reported as standard uptake value and %ID/g for in vivo imaging and ex vivo tissue distribution. In addition, tumor tissues were evaluated by immunohistochemistry for CD8+ T cells. Results The results demonstrated substantial mean uptake of 89Zr-Df-IAB22M2C (%ID/g) in PF-07062119-treated tumors, with significant increases in comparison to non-targeted BsAb-treated controls, as well as PF-07062119 dose-dependent responses over time of treatment. A moderate correlation was observed between tumor tissue radioactivity uptake and CD8+ cell density, demonstrating the value of the imaging agent for non-invasive assessment of intra-tumoral CD8+ T cells and the mechanism of action for PF-07062119. Conclusion Immune-imaging technologies for quantitative cellular measures would be a valuable biomarker in immunotherapeutic clinical development. We demonstrated a qualification of 89Zr-IAB22M2C PET to evaluate PD responses (mice) to a novel immunotherapeutic. Supplementary Information The online version contains supplementary material available at 10.1007/s11307-021-01621-0.
Collapse
Affiliation(s)
- Kevin P Maresca
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA.
| | - Jianqing Chen
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA
| | - Divya Mathur
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA.,Regneron Pharmaceuticals, Tarrytown, NY, USA
| | | | - Adam Root
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA.,Generate Biomedicines, Inc, Cambridge, MA, USA
| | - Jatin Narula
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA
| | - Lindsay King
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA
| | - David Schaer
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA
| | - Jonathan Golas
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA.,Regneron Pharmaceuticals, Tarrytown, NY, USA
| | - Keith Kobylarz
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA
| | - Edward Rosfjord
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA.,Black Diamond Therapeutics, New York, NY, USA
| | - Edmund Keliher
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA
| | - Laigao Chen
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA
| | - Sripad Ram
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA
| | - Eve H Pickering
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA
| | - James S Hardwick
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA
| | - Paul A Rejto
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA
| | | | - Ohad Ilovich
- Invicro, A Konica Minolta Company, New Haven, USA
| | - Kevin Staton
- Evergreen Theragnostics, Jersey City, NJ, USA.,Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | |
Collapse
|
21
|
Lim SM, Pyo KH, Soo RA, Cho BC. The promise of bispecific antibodies: Clinical applications and challenges. Cancer Treat Rev 2021; 99:102240. [PMID: 34119803 DOI: 10.1016/j.ctrv.2021.102240] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023]
Abstract
The development of cancer therapies using monoclonal antibodies has been successful during the last 30 years. Recently much progress was achieved with technologies involving bispecific and multi-specific antibodies. Bispecific antibodies (BsAbs) are antibodies that bind two distinct epitopes, and a large number of potential clinical applications of BsAbs have been described. Here we review mechanism of action, clinical development and future challenges of BsAbs which could be a serve as a valuable arsenal in cancer patients.
Collapse
Affiliation(s)
- Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoung-Ho Pyo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore.
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
22
|
Wang C, Fakih M. Targeting MSS colorectal cancer with immunotherapy: are we turning the corner? Expert Opin Biol Ther 2021; 21:1347-1357. [PMID: 34030532 DOI: 10.1080/14712598.2021.1933940] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Immunotherapy with checkpoint inhibition has shown potent antitumor activity in patients with microsatellite instability (MSI) metastatic cancer. Microsatellite stable (MSS) colorectal cancer has long been considered resistant to immunotherapy. AREAS COVERED In this review, we provide an overview of current progress on strategies to overcome the resistance to immunotherapy in MSS colorectal cancer. EXPERT OPINION Emerging evidence suggest that combination of immune modulators such as regorafenib may improve the responsiveness of MSS colorectal cancer to checkpoint blockade. In addition, signs of clinical activity have also been observed in other combination strategies, such as the combination of checkpoint blockade with Stat3 inhibitor, or bispecific T-cell engagers. Nevertheless, predictive biomarkers that can identify patients who may benefit from immunotherapy are key for its implementation in clinical setting. Metastatic disease sites may predict for the response or resistance to checkpoint blockade, with liver metastases emerging as a strong predictive biomarker of lack of benefit from PD-1 targeting, even with combination therapies. Additional efforts are required to study the mechanism of resistance and to develop novel therapeutic strategies to overcome immune resistance. ABBREVIATIONS CEA: carcinoembryonic antigen; CR: complete response; CTLA-4: cytotoxic T-lymphocyte-associated protein 4; DCR: disease control rate; MSI-H: microsatellite instability-high; MSS: Microsatellite stable (MSS); OS: overall survival; PD-1: programmed cell death protein 1; PD-L1: programmed death-ligand receptor 1; PR: partial response; PFS: progression-free survival; SD: stable disease; TMB: tumor mutation burden; VEGFR: vascular endothelial growth factor receptor.
Collapse
Affiliation(s)
- Chongkai Wang
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Marwan Fakih
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
23
|
Kopenhaver J, Crutcher M, Waldman SA, Snook AE. The shifting paradigm of colorectal cancer treatment: a look into emerging cancer stem cell-directed therapeutics to lead the charge toward complete remission. Expert Opin Biol Ther 2021; 21:1335-1345. [PMID: 33977849 DOI: 10.1080/14712598.2021.1929167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Colorectal cancer (CRC) is one of the most common forms of cancer worldwide and is the second leading cause of cancer-related death in the United States. Despite advances in early detection, ~25% of patients are late stage, and treated patients have <12% chance of survival after five years. Tumor relapse and metastasis are the main causes of patient death. Cancer stem cells (CSCs) are a rare population of cancer cells characterized by properties of self-renewal, chemo- and radio-resistance, tumorigenicity, and high plasticity. These qualities make CSCs particularly important for metastasic seeding, DNA-damage resistance, and tumor repopulating.Areas Covered: The following review article focuses on the role of CRC-SCs in tumor initiation, metastasis, drug resistance, and tumor relapse, as well as on potential therapeutic options for targeting CSCs.Expert Opinion: Current studies are underway to better isolate and discriminate CSCs from normal stem cells and to produce CSC-targeted therapeutics. The intestinal receptor, guanylate cyclase C (GUCY2C) could potentially provide a unique therapeutic target for both non-stem cells and CSCs alike in colorectal cancer through immunotherapies. Indeed, immunotherapies targeting CSCs have the potential to break the treatment-recurrence cycle in the management of advanced malignancies.
Collapse
Affiliation(s)
- Jessica Kopenhaver
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States
| | - Madison Crutcher
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States.,Department of Surgery, Thomas Jefferson University, Philadelphia, United States
| | - Scott A Waldman
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States
| | - Adam E Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States
| |
Collapse
|
24
|
Zhong X, D’Antona AM. Recent Advances in the Molecular Design and Applications of Multispecific Biotherapeutics. Antibodies (Basel) 2021; 10:13. [PMID: 33808165 PMCID: PMC8103270 DOI: 10.3390/antib10020013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Recombinant protein-based biotherapeutics drugs have transformed clinical pipelines of the biopharmaceutical industry since the launch of recombinant insulin nearly four decades ago. These biologic drugs are structurally more complex than small molecules, and yet share a similar principle for rational drug discovery and development: That is to start with a pre-defined target and follow with the functional modulation with a therapeutic agent. Despite these tremendous successes, this "one target one drug" paradigm has been challenged by complex disease mechanisms that involve multiple pathways and demand new therapeutic routes. A rapidly evolving wave of multispecific biotherapeutics is coming into focus. These new therapeutic drugs are able to engage two or more protein targets via distinct binding interfaces with or without the chemical conjugation to large or small molecules. They possess the potential to not only address disease intricacy but also exploit new therapeutic mechanisms and assess undruggable targets for conventional monospecific biologics. This review focuses on the recent advances in molecular design and applications of major classes of multispecific biotherapeutics drugs, which include immune cells engagers, antibody-drug conjugates, multispecific tetherbodies, biologic matchmakers, and small-scaffold multispecific modalities. Challenges posed by the multispecific biotherapeutics drugs and their future outlooks are also discussed.
Collapse
Affiliation(s)
- Xiaotian Zhong
- Department of BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA;
| | | |
Collapse
|
25
|
Lisby AN, Flickinger JC, Bashir B, Weindorfer M, Shelukar S, Crutcher M, Snook AE, Waldman SA. GUCY2C as a biomarker to target precision therapies for patients with colorectal cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021; 6:117-129. [PMID: 34027103 DOI: 10.1080/23808993.2021.1876518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction Colorectal cancer (CRC) is one of the most-deadly malignancies worldwide. Current therapeutic regimens for CRC patients are relatively generic, based primarily on disease type and stage, with little variation. As the field of molecular oncology advances, so too must therapeutic management of CRC. Understanding molecular heterogeneity has led to a new-found promotion for precision therapy in CRC; underlining the diversity of molecularly targeted therapies based on individual tumor characteristics. Areas covered We review current approaches for the treatment of CRC and discuss the potential of precision therapy in advanced CRC. We highlight the utility of the intestinal protein guanylyl cyclase C (GUCY2C), as a multi-purpose biomarker and unique therapeutic target in CRC. Here, we summarize current GUCY2C-targeted approaches for treatment of CRC. Expert opinion The GUCY2C biomarker has multi-faceted utility in medicine. Developmental investment of GUCY2C as a diagnostic and therapeutic biomarker offers a variety of options taking the molecular characteristics of cancer into account. From GUCY2C-targeted therapies, namely cancer vaccines, CAR-T cells, and monoclonal antibodies, to GUCY2C agonists for chemoprevention in those who are at high risk for developing colorectal cancer, the utility of this protein provides many avenues for exploration with significance in the field of precision medicine.
Collapse
Affiliation(s)
- Amanda N Lisby
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - John C Flickinger
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Babar Bashir
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Megan Weindorfer
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Sanjna Shelukar
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Madison Crutcher
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
26
|
Flickinger JC, Rappaport JA, Barton JR, Baybutt TR, Pattison AM, Snook AE, Waldman SA. Guanylyl cyclase C as a biomarker for immunotherapies for the treatment of gastrointestinal malignancies. Biomark Med 2021; 15:201-217. [PMID: 33470843 PMCID: PMC8293028 DOI: 10.2217/bmm-2020-0359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal cancers encompass a diverse class of tumors arising in the GI tract, including esophagus, stomach, pancreas and colorectum. Collectively, gastrointestinal cancers compose a high fraction of all cancer deaths, highlighting an unmet need for novel and effective therapies. In this context, the transmembrane receptor guanylyl cyclase C (GUCY2C) has emerged as an attractive target for the prevention, detection and treatment of many gastrointestinal tumors. GUCY2C is an intestinally-restricted protein implicated in tumorigenesis that is universally expressed by primary and metastatic colorectal tumors as well as ectopically expressed by esophageal, gastric and pancreatic cancers. This review summarizes the current state of GUCY2C-targeted modalities in the management of gastrointestinal malignancies, with special focus on colorectal cancer, the most incident gastrointestinal malignancy.
Collapse
Affiliation(s)
- John C Flickinger
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jeffrey A Rappaport
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joshua R Barton
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Trevor R Baybutt
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Amanda M Pattison
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott A Waldman
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
27
|
Middelburg J, Kemper K, Engelberts P, Labrijn AF, Schuurman J, van Hall T. Overcoming Challenges for CD3-Bispecific Antibody Therapy in Solid Tumors. Cancers (Basel) 2021; 13:287. [PMID: 33466732 PMCID: PMC7829968 DOI: 10.3390/cancers13020287] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy of cancer with CD3-bispecific antibodies is an approved therapeutic option for some hematological malignancies and is under clinical investigation for solid cancers. However, the treatment of solid tumors faces more pronounced hurdles, such as increased on-target off-tumor toxicities, sparse T-cell infiltration and impaired T-cell quality due to the presence of an immunosuppressive tumor microenvironment, which affect the safety and limit efficacy of CD3-bispecific antibody therapy. In this review, we provide a brief status update of the CD3-bispecific antibody therapy field and identify intrinsic hurdles in solid cancers. Furthermore, we describe potential combinatorial approaches to overcome these challenges in order to generate selective and more effective responses.
Collapse
Affiliation(s)
- Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Kristel Kemper
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Patrick Engelberts
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Aran F. Labrijn
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Janine Schuurman
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
28
|
Root AR, Guntas G, Katragadda M, Apgar JR, Narula J, Chang CS, Hanscom S, McKenna M, Wade J, Meade C, Ma W, Guo Y, Liu Y, Duan W, Hendershot C, King AC, Zhang Y, Sousa E, Tam A, Benard S, Yang H, Kelleher K, Jin F, Piche-Nicholas N, Keating SE, Narciandi F, Lawrence-Henderson R, Arai M, Stochaj WR, Svenson K, Mosyak L, Lam K, Francis C, Marquette K, Wroblewska L, Zhu HL, Sheehan AD, LaVallie ER, D’Antona AM, Betts A, King L, Rosfjord E, Cunningham O, Lin L, Sapra P, Tchistiakova L, Mathur D, Bloom L. Discovery and optimization of a novel anti-GUCY2c x CD3 bispecific antibody for the treatment of solid tumors. MAbs 2021; 13:1850395. [PMID: 33459147 PMCID: PMC7833764 DOI: 10.1080/19420862.2020.1850395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 12/29/2022] Open
Abstract
We report here the discovery and optimization of a novel T cell retargeting anti-GUCY2C x anti-CD3ε bispecific antibody for the treatment of solid tumors. Using a combination of hybridoma, phage display and rational design protein engineering, we have developed a fully humanized and manufacturable CD3 bispecific antibody that demonstrates favorable pharmacokinetic properties and potent in vivo efficacy. Anti-GUCY2C and anti-CD3ε antibodies derived from mouse hybridomas were first humanized into well-behaved human variable region frameworks with full retention of binding and T-cell mediated cytotoxic activity. To address potential manufacturability concerns, multiple approaches were taken in parallel to optimize and de-risk the two antibody variable regions. These approaches included structure-guided rational mutagenesis and phage display-based optimization, focusing on improving stability, reducing polyreactivity and self-association potential, removing chemical liabilities and proteolytic cleavage sites, and de-risking immunogenicity. Employing rapid library construction methods as well as automated phage display and high-throughput protein production workflows enabled efficient generation of an optimized bispecific antibody with desirable manufacturability properties, high stability, and low nonspecific binding. Proteolytic cleavage and deamidation in complementarity-determining regions were also successfully addressed. Collectively, these improvements translated to a molecule with potent single-agent in vivo efficacy in a tumor cell line adoptive transfer model and a cynomolgus monkey pharmacokinetic profile (half-life>4.5 days) suitable for clinical development. Clinical evaluation of PF-07062119 is ongoing.
Collapse
Affiliation(s)
- Adam R. Root
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | | | | | - Jatin Narula
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | - Sara Hanscom
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | - Jason Wade
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Caryl Meade
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Weijun Ma
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Yongjing Guo
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Yan Liu
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Weili Duan
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | - Amy C. King
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Yan Zhang
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Eric Sousa
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Amy Tam
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Susan Benard
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Han Yang
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | - Fang Jin
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | | | | | | | - Maya Arai
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | | | - Lidia Mosyak
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | | | | | | | - H. Lily Zhu
- BioMedicine Design, Pfizer Inc., Andover, MA, USA
| | | | | | | | - Alison Betts
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Lindsay King
- BioMedicine Design, Pfizer Inc., Andover, MA, USA
| | - Edward Rosfjord
- Oncology Research & Development, Pfizer Inc., Pearl River, NY, USA
| | | | - Laura Lin
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Puja Sapra
- Oncology Research & Development, Pfizer Inc., Pearl River, NY, USA
| | | | - Divya Mathur
- Oncology Research & Development, Pfizer Inc., Pearl River, NY, USA
| | - Laird Bloom
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| |
Collapse
|
29
|
Sam J, Colombetti S, Fauti T, Roller A, Biehl M, Fahrni L, Nicolini V, Perro M, Nayak T, Bommer E, Schoenle A, Karagianni M, Le Clech M, Steinhoff N, Klein C, Umaña P, Bacac M. Combination of T-Cell Bispecific Antibodies With PD-L1 Checkpoint Inhibition Elicits Superior Anti-Tumor Activity. Front Oncol 2020; 10:575737. [PMID: 33330050 PMCID: PMC7735156 DOI: 10.3389/fonc.2020.575737] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/29/2020] [Indexed: 12/31/2022] Open
Abstract
T-cell Bispecific Antibodies (TCBs) elicit anti-tumor responses by cross-linking T-cells to tumor cells and mediate polyclonal T-cell expansion that is independent of T-cell receptor specificity. TCBs thus offer great promise for patients who lack antigen-specific T-cells or have non-inflamed tumors, which are parameters known to limit the response of checkpoint inhibitors. The current study deepens the understanding of TCB mode of action and elaborates on one of the adaptive resistance mechanisms following its treatment in vivo in humanized mice and syngeneic pre-clinical tumor models. Single-agent TCB treatment reduced tumor growth compared with controls and led to a 2-10-fold increase in tumor-infiltrating T-cells, regardless of the baseline tumor immune cell infiltration. TCB treatment strongly induced the secretion of CXCL10 and increased the frequency of intra-tumor CXCR3+ T-cells pointing to the potential role of the CXCL10-CXCR3 pathway as one of the mechanisms for T-cell recruitment to tumors upon TCB treatment. Tumor-infiltrating T-cells displayed a highly activated and proliferating phenotype, resulting in the generation of a highly inflamed tumor microenvironment. A molecular signature of TCB treatment was determined (CD8, PD-1, MIP-a, CXCL10, CXCL13) to identify parameters that most robustly characterize TCB activity. Parallel to T-cell activation, TCB treatment also led to a clear upregulation of PD-1 on T-cells and PD-L1 on tumor cells and T-cells. Combining TCB treatment with anti-PD-L1 blocking antibody improved anti-tumor efficacy compared to either agent given as monotherapy, increasing the frequency of intra-tumoral T-cells. Together, the data of the current study expand our knowledge of the molecular and cellular features associated with TCB activity and provide evidence that the PD-1/PD-L1 axis is one of the adaptive resistance mechanisms associated with TCB activity. This mechanism can be managed by the combination of TCB with anti-PD-L1 blocking antibody translating into more efficacious anti-tumor activity and prolonged control of the tumor outgrowth. The elucidation of additional resistance mechanisms beyond the PD-1/PD-L1 axis will constitute an important milestone for our understanding of factors determining tumor escape and deepening of TCB anti-tumor responses in both solid tumors and hematological disorders.
Collapse
Affiliation(s)
- Johannes Sam
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Sara Colombetti
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Tanja Fauti
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Andreas Roller
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Marlene Biehl
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Linda Fahrni
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Valeria Nicolini
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Mario Perro
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Tapan Nayak
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Esther Bommer
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Anne Schoenle
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Maria Karagianni
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Marine Le Clech
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Nathalie Steinhoff
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Christian Klein
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Pablo Umaña
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Marina Bacac
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Hipp S, Voynov V, Drobits-Handl B, Giragossian C, Trapani F, Nixon AE, Scheer JM, Adam PJ. A Bispecific DLL3/CD3 IgG-Like T-Cell Engaging Antibody Induces Antitumor Responses in Small Cell Lung Cancer. Clin Cancer Res 2020; 26:5258-5268. [PMID: 32554516 DOI: 10.1158/1078-0432.ccr-20-0926] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/12/2020] [Accepted: 06/15/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Small cell lung cancer (SCLC) is the most lethal and aggressive subtype of lung carcinoma characterized by highly chemotherapy-resistant recurrence in the majority of patients. To effectively treat SCLC, we have developed a unique and novel IgG-like T-cell engaging bispecific antibody (ITE) that potently redirects T-cells to specifically lyse SCLC cells expressing Delta-like ligand 3 (DLL3), an antigen that is frequently expressed on the cell surface of SCLC cells, with no to very little detectable expression in normal tissues. EXPERIMENTAL DESIGN The antitumor activity and mode of action of DLL3/CD3 ITE was evaluated in vitro using SCLC cell lines and primary human effector cells and in vivo in an SCLC xenograft model reconstituted with human CD3+ T-cells. RESULTS Selective binding of DLL3/CD3 ITE to DLL3-positive tumor cells and T-cells induces formation of an immunological synapse resulting in tumor cell lysis and activation of T-cells. In a human T-cell engrafted xenograft model, the DLL3/CD3 ITE leads to an increase in infiltration of T-cells into the tumor tissue resulting in apoptosis of the tumor cells and tumor regression. Consistent with the mode of action, the DLL3/CD3 ITE treatment led to upregulation of PD-1, PD-L1, and LAG-3. CONCLUSIONS This study highlights the ability of the DLL3/CD3 ITE to induce strictly DLL3-dependent T-cell redirected lysis of tumor cells and recruitment of T-cells into noninflamed tumor tissues leading to tumor regression in a preclinical in vivo model. These data support clinical testing of the DLL3/CD3 ITE in patients with SCLC.
Collapse
Affiliation(s)
- Susanne Hipp
- Boehringer Ingelheim Pharmaceuticals, Inc., Cancer Immunology & Immune Modulation, Ridgefield, Connecticut.
| | - Vladimir Voynov
- Boehringer Ingelheim Pharmaceuticals, Inc., Biotherapeutics Discovery, Ridgefield, Connecticut
| | - Barbara Drobits-Handl
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Pharmacology and Disease Positioning, Vienna, Austria
| | - Craig Giragossian
- Boehringer Ingelheim Pharmaceuticals, Inc., Biotherapeutics Discovery, Ridgefield, Connecticut
| | - Francesca Trapani
- Boehringer Ingelheim RCV, GmbH & Co KG., Oncology Translational Science, Vienna, Austria
| | - Andrew E Nixon
- Boehringer Ingelheim Pharmaceuticals, Inc., Biotherapeutics Discovery, Ridgefield, Connecticut
| | - Justin M Scheer
- Boehringer Ingelheim Pharmaceuticals, Inc., Biotherapeutics Discovery, Ridgefield, Connecticut
| | - Paul J Adam
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| |
Collapse
|