1
|
Shen ZP, Zhang ZY, Li N, Xu L, Chen Y. Targeted therapy for pediatric glioma: RAF(t)ing in the molecular era. World J Pediatr 2025:10.1007/s12519-025-00889-4. [PMID: 40227462 DOI: 10.1007/s12519-025-00889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Pediatric gliomas are the most frequently occurring central nervous system tumors in children. While targeted therapies have been widely applied in the treatment of many adult cancers, their use in pediatric gliomas has lagged behind. However, recent advances in multiomics profiling of pediatric gliomas, coupled with the approval of inhibitors against Raf serine/threonine kinase (RAF), isocitrate dehydrogenase 1/2 (IDH1/2) and neurotrophic receptor tyrosine kinase (NTRK), have spurred significant progress in this field. In light of these developments, this review aims to provide a comprehensive overview of current advancements and the evolving landscape of targeted therapeutic strategies and approaches for pediatric gliomas. DATA SOURCES Data analyzed in this study were obtained from the literature from PubMed, as well as other online databases and websites, including ClinicalTrials.gov and the Pediatric Neuro-Oncology Consortium. RESULTS Based on findings from multiomics profiling, significant insights have been gained into the genetic and molecular landscape of pediatric gliomas, enabling the identification of key mutations and potentially targetable lesions. These advancements provide rationales for the development of more precise treatment strategies and targeted therapies. Recent approvals of targeted therapies and ongoing clinical trials in pediatric gliomas are converging on the targeting of key signaling molecules and metabolic pathways. CONCLUSIONS In the molecular era, targeted therapies offer new hope for more effective and personalized treatment options for pediatric glioma patients. By developing and tailoring treatments to target specific molecular and metabolic vulnerabilities, targeted therapies have the potential to improve the clinical management of pediatric gliomas, ultimately enhancing both the treatment experience and overall prognosis of these patients.
Collapse
Affiliation(s)
- Zhi-Peng Shen
- Department of Neurosurgery, Children's Hospital Zhejiang University School of Medicine, Hangzhou, 310052, China
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Zhong-Yuan Zhang
- Department of Neurosurgery, Children's Hospital Zhejiang University School of Medicine, Hangzhou, 310052, China
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Nan Li
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Liang Xu
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Ye Chen
- Department of Neurosurgery, Children's Hospital Zhejiang University School of Medicine, Hangzhou, 310052, China.
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Amemiya K, Hirotsu Y, Iimuro Y, Tajiri R, Oyama T, Obi S, Mochizuki H, Omata M. Decoding Genomic Diversity to Guide Tumor Lesion-Specific Treatment of Multifocal Hepatocellular Carcinoma. Cancer Med 2025; 14:e70814. [PMID: 40145314 PMCID: PMC11947740 DOI: 10.1002/cam4.70814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a primary liver cancer often associated with chronic liver disease and characterized by multifocal tumor lesions with synchronous and metachronous lesions, which poses treatment challenges due to potential genomic heterogeneity. This study aims to assess the consistency of actionable mutation profiles across synchronous and metachronous lesions in HCC patients. METHODS This study analyzed 68 patients with multifocal HCC, including 193 tumor lesions (82 synchronous, 111 metachronous). Genomic profiling of 72 HCC-related genes was performed using next-generation sequencing. We collected clinical and pathological data, including tumor size, grade, fibrosis, and etiology. Patients were categorized into two groups based on the consistency of actionable mutations among multifocal HCC. Statistical analyses compared clinicopathological features between these groups. RESULTS A total of 252 and 445 somatic mutations were identified in synchronous and metachronous tumors, respectively. Synchronous tumors had an average of 3.1 somatic mutations and 0.7 actionable mutations per lesion. Metachronous tumors had 4.0 somatic mutations and 1.0 actionable mutations per lesion. Actionable variants were found in 12 (36.4%) of 33 patients and 20 (24.4%) of 82 nodules in the synchronous tumors, and 23 (65.7%) of 35 patients and 42 (37.8%) of 111 nodules in the metachronous tumors. Compared to synchronous tumors, metachronous tumors exhibited significantly aberrant signaling pathways including the Wnt/β-catenin (p = 0.009) and KEAP1/NRF2 (p = 0.022) pathways. There was no correlation with significant clinical differences in tumor characteristics between the consistent and divergent actionable mutation groups. Notably, divergent actionable mutations were identified in 45.6% of patients, which may be beneficial for changing potential therapies for individual tumors. CONCLUSION The study shows substantial inter-tumoral heterogeneity in multifocal HCC, indicating the necessity for comprehensive molecular profiling for tailored treatment strategies. Divergent actionable mutations across lesions suggest that a uniform treatment approach may not be effective in some patients with multifocal HCC.
Collapse
Affiliation(s)
- Kenji Amemiya
- Genome Analysis CenterYamanashi Central HospitalKofu, YamanashiJapan
- Division of Genetics and Clinical LaboratoryYamanashi Central HospitalKofu, YamanashiJapan
| | - Yosuke Hirotsu
- Genome Analysis CenterYamanashi Central HospitalKofu, YamanashiJapan
| | - Yuji Iimuro
- Department of SurgeryYamanashi Central HospitalKofu, YamanashiJapan
| | - Ryosuke Tajiri
- Department of PathologyYamanashi Central HospitalKofu, YamanashiJapan
| | - Toshio Oyama
- Department of PathologyYamanashi Central HospitalKofu, YamanashiJapan
| | - Shuntaro Obi
- Department of GastroenterologyYamanashi Central HospitalKofu, YamanashiJapan
- Department of Internal MedicineTeikyo University Chiba Medical CenterIchihara, ChibaJapan
| | - Hitoshi Mochizuki
- Genome Analysis CenterYamanashi Central HospitalKofu, YamanashiJapan
- Department of GastroenterologyYamanashi Central HospitalKofu, YamanashiJapan
| | - Masao Omata
- Department of GastroenterologyYamanashi Central HospitalKofu, YamanashiJapan
- The University of TokyoTokyoJapan
| |
Collapse
|
3
|
Peng P, Shen F, Peng B, Chen Z, Zhou L, Hao X, Liu Y. Genetic Evidence Supporting the Repurposing of mTOR Inhibitors for Reducing BMI. Biomedicines 2025; 13:839. [PMID: 40299431 PMCID: PMC12025023 DOI: 10.3390/biomedicines13040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Although mTOR has long been regarded as a promising target for cancer treatment, the efficacy of mTOR inhibitors in most clinical trials has been rather limited. Nevertheless, their favorable safety profile has opened up opportunities for drug repurposing, even as their potential applications across various diseases remain largely unexplored. Methods: We performed an MR-PheWAS analysis across 1431 phenotypes to explore drug repurposing opportunities. We analyzed GWAS data of 452 plasma metabolites, 731 immune traits, and 412 gut microbiota to uncover potential mechanisms for the causal link between the mTOR gene and body mass index (BMI). Results: A causal link between mTOR gene expression and BMI has been established. Additionally, mTOR-related vulnerabilities associated with BMI, including alterations in metabolites, immune traits, and gut microbiota, were identified. Conclusions: The identified causal relationship between mTOR and BMI suggests novel potential non-cancer applications for mTOR inhibitors.
Collapse
Affiliation(s)
- Ping Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (B.P.); (Z.C.); (L.Z.)
| | - Fan Shen
- Nursing Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Bi Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (B.P.); (Z.C.); (L.Z.)
| | - Ziqi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (B.P.); (Z.C.); (L.Z.)
| | - Lei Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (B.P.); (Z.C.); (L.Z.)
| | - Xingjie Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yuanhui Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (B.P.); (Z.C.); (L.Z.)
| |
Collapse
|
4
|
Middleton G, Robbins HL, Fletcher P, Savage J, Mehmi M, Summers Y, Greystoke A, Steele N, Popat S, Jain P, Spicer J, Cave J, Shaw P, Gilligan D, Power D, Fennell D, Bajracharya M, McBride DJ, Maheswari U, Frankell AM, Swanton C, Beggs AD, Billingham L. A phase II trial of mTORC1/2 inhibition in STK11 deficient non small cell lung cancer. NPJ Precis Oncol 2025; 9:67. [PMID: 40069402 PMCID: PMC11897347 DOI: 10.1038/s41698-025-00838-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/10/2025] [Indexed: 03/15/2025] Open
Abstract
There are no current stratified medicine options for STK11-deficient NSCLC. STK11 loss mediates mTORC activation, GLUT1 up-regulation and increased glycolysis. This metabolic reprogramming might represent a therapeutic vulnerability targetable with mTORC1/2 inhibition. In arm B2 of the National Lung Matrix Trial 54 patients with NSCLC received vistusertib, of which 49 were STK11-deficient (30 with KRAS mutation (B2D), 19 without (B2S)). Objective response (OR) and durable clinical benefit (DCB) rates with 95% credible intervals (CrI) were estimated from posterior probability distributions generated using Bayesian beta-binomial conjugate analysis. In B2D, 2 per-protocol patients obtained OR (estimated true OR rate (95%CrI) 9.8% (2.4-24.3). Estimates of true DCB rate (95%CrI): B2D 24.4% (11.1-42.3), B2S 14.6% (3.6-34.7). Overall, vistusertib cannot be recommended in this context. Longitudinal ctDNA analysis demonstrates enrichment of SMARCA4 mutations post-treatment. In vitro studies show adaptive resistance to mTORC1/2 inhibition via AKT reactivation. (NCT02664935, ISRCTN38344105, EudraCT 2014-000814-73, 10 June 2015).
Collapse
Affiliation(s)
- Gary Middleton
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- Department of Immunology & Immunotherapy, University of Birmingham, Birmingham, UK.
| | - Helen L Robbins
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Department of Immunology & Immunotherapy, University of Birmingham, Birmingham, UK
| | - Peter Fletcher
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Joshua Savage
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Manita Mehmi
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | | | | | | | | | - Pooja Jain
- St James's University Hospital, Leeds, UK
| | - James Spicer
- King's College London, Guy's Hospital, London, UK
| | - Judith Cave
- Southampton University Hospitals NHS Trust, Southampton, UK
| | | | | | | | | | | | | | | | - Alexander M Frankell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Andrew D Beggs
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Department of Cancer & Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Lucinda Billingham
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Contreras-Sanz A, Negri GL, Reike MJ, Oo HZ, Scurll JM, Spencer SE, Nielsen K, Ikeda K, Wang G, Jackson CL, Gupta S, Roberts ME, Berman DM, Seiler R, Morin GB, Black PC. Proteomic profiling identifies muscle-invasive bladder cancers with distinct biology and responses to platinum-based chemotherapy. Nat Commun 2025; 16:1240. [PMID: 39890781 PMCID: PMC11785721 DOI: 10.1038/s41467-024-55665-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 12/18/2024] [Indexed: 02/03/2025] Open
Abstract
Platinum-based neoadjuvant chemotherapy prior to radical cystectomy is the preferred treatment for muscle-invasive bladder cancer despite modest survival benefit and significant associated toxicities. Here, we profile the global proteome of muscle-invasive bladder cancers pre- and post-neoadjuvant chemotherapy treatment using archival formalin-fixed paraffin-embedded tissue. We identify four pre-neoadjuvant chemotherapy proteomic clusters with distinct biology and response to therapy and integrate these with transcriptomic subtypes and immunohistochemistry. We observe proteomic plasticity post-neoadjuvant chemotherapy that is associated with increased extracellular matrix and reduced keratinisation compared to pre-neoadjuvant chemotherapy. Post-neoadjuvant chemotherapy clusters appear to be differentially enriched for druggable proteins. For example, MTOR and PARP are over-expressed at the protein level in tumours identified as neuronal-like. In addition, we determine that high intra-tumoural proteome heterogeneity in pre-neoadjuvant chemotherapy tissue is associated with worse prognosis. Our work highlights aspects of muscle-invasive bladder cancer biology associated with clinical outcomes and suggests biomarkers and therapeutic targets based on proteomic clusters.
Collapse
Affiliation(s)
- A Contreras-Sanz
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - G L Negri
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - M J Reike
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - H Z Oo
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - J M Scurll
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - S E Spencer
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - K Nielsen
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - K Ikeda
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - G Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - C L Jackson
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - S Gupta
- Department of Oncology, The Cleveland Clinic, Cleveland, OH, USA
| | - M E Roberts
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - D M Berman
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - R Seiler
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Urology, Hospital Center Biel, Biel, Switzerland
| | - G B Morin
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - P C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Lv J, Wang Y, Lv J, Zheng C, Zhang X, Wan L, Zhang J, Liu F, Zhang H. Pifithrin-μ sensitizes mTOR-activated liver cancer to sorafenib treatment. Cell Death Dis 2025; 16:42. [PMID: 39863613 PMCID: PMC11762308 DOI: 10.1038/s41419-025-07332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/10/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
TSC2, a suppressor of mTOR, is inactivated in up to 20% of HBV-associated liver cancer. This subtype of liver cancer is associated with aggressive behavior and early recurrence after hepatectomy. Being the first targeted regimen for advanced liver cancer, sorafenib has limited efficacy in HBV-positive patients. In this study, we observed that mTOR-activated cells, due to the loss of either TSC2 or PTEN, were insensitive to the treatment of sorafenib. Mechanistically, HSP70 enhanced the interaction between active mTOR-potentiated CREB1 and CREBBP to boost the transcription of the antioxidant response regulator SESN3. In return, elevated SESN3 enhanced cellular antioxidant capacity and rendered cells resistant to sorafenib. Pifithrin-μ, an HSP70 inhibitor, synergized with sorafenib in the induction of ferroptosis in mTOR-activated liver cancer cells and suppression of TSC2-deficient hepatocarcinogenesis. Our findings highlight the pivotal role of the mTOR-CREB1-SESN3 axis in sorafenib resistance of liver cancer and pave the way for combining pifithrin-μ and sorafenib for the treatment of mTOR-activated liver cancer.
Collapse
Affiliation(s)
- Jiarui Lv
- Department of Organ Transplantation and Hepatobiliary Surgery, Key Laboratory of Organ Transplantation of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanan Wang
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiacheng Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Cuiting Zheng
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Zhang
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Radiology, State Key Laboratory of Complex, Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College and Peking Union Medical College Hospital, Beijing, China
| | - Linyan Wan
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Gastroenterology, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Jiayang Zhang
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing, China
| | - Fangming Liu
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongbing Zhang
- Department of Organ Transplantation and Hepatobiliary Surgery, Key Laboratory of Organ Transplantation of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Testa U. Recent developments in molecular targeted therapies for hepatocellular carcinoma in the genomic era. Expert Rev Mol Diagn 2024; 24:803-827. [PMID: 39194003 DOI: 10.1080/14737159.2024.2392278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Primary liver cancer is a major health problem being the sixth most frequent cancer in the world and the third cause of cancer-related death in the world. The most common histological type of liver cancer is hepatocellular carcinoma (HCC, 75-80%). AREAS COVERED Based on primary literature, this review provides an updated analysis of studies of genetic characterization of HCC at the level of gene mutation profiling, copy number alterations, and gene expression, with the definition of molecular subgroups and the identification of some molecular biomarkers and therapeutic targets. Recent therapeutic developments are also highlighted. EXPERT OPINION Deepening the understanding of the molecular complexity of HCC is progressively paving the way for the development of more personalized treatment approaches. Two important strategies involve the definition and validation of molecularly defined therapeutic targets in a subset of HCC patients and the identification of suitable biomarkers for approved systematic therapies (multikinase inhibitors and immunotherapies). The extensive molecular characterization of patients at the genomic and transcriptomic levels and the inclusion of detailed and relevant translational studies in clinical trials will represent a fundamental tool for improving the benefit of systemic therapies in HCC.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
8
|
Shang S, Zhang L, Liu K, Lv M, Zhang J, Ju D, Wei D, Sun Z, Wang P, Yuan J, Zhu Z. Landscape of targeted therapies for advanced urothelial carcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:641-677. [PMID: 38966172 PMCID: PMC11220318 DOI: 10.37349/etat.2024.00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/06/2024] [Indexed: 07/06/2024] Open
Abstract
Bladder cancer (BC) is the tenth most common malignancy globally. Urothelial carcinoma (UC) is a major type of BC, and advanced UC (aUC) is associated with poor clinical outcomes and limited survival rates. Current options for aUC treatment mainly include chemotherapy and immunotherapy. These options have moderate efficacy and modest impact on overall survival and thus highlight the need for novel therapeutic approaches. aUC patients harbor a high tumor mutation burden and abundant molecular alterations, which are the basis for targeted therapies. Erdafitinib is currently the only Food and Drug Administration (FDA)-approved targeted therapy for aUC. Many potential targeted therapeutics aiming at other molecular alterations are under investigation. This review summarizes the current understanding of molecular alterations associated with aUC targeted therapy. It also comprehensively discusses the related interventions for treatment in clinical research and the potential of using novel targeted drugs in combination therapy.
Collapse
Affiliation(s)
- Shihao Shang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Lei Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Kepu Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Maoxin Lv
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming 65000, Yunnan, China
| | - Jie Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
- College of Life Sciences, Northwest University, Xi’an 710068, Shaanxi, China
| | - Dongen Ju
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Di Wei
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Zelong Sun
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Pinxiao Wang
- School of Clinical Medicine, Xi’an Medical University, Xi’an 710021, Shaanxi, China
| | - Jianlin Yuan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Zheng Zhu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| |
Collapse
|
9
|
Genito CJ, Darwitz BP, Reber CP, Moorman NJ, Graves CL, Monteith AJ, Thurlow LR. mTOR signaling is required for phagocyte free radical production, GLUT1 expression, and control of Staphylococcus aureus infection. mBio 2024; 15:e0086224. [PMID: 38767353 PMCID: PMC11324022 DOI: 10.1128/mbio.00862-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Mammalian target of rapamycin (mTOR) is a key regulator of metabolism in the mammalian cell. Here, we show the essential role for mTOR signaling in the immune response to bacterial infection. Inhibition of mTOR during infection with Staphylococcus aureus revealed that mTOR signaling is required for bactericidal free radical production by phagocytes. Mechanistically, mTOR supported glucose transporter GLUT1 expression, potentially through hypoxia-inducible factor 1α, upon phagocyte activation. Cytokine and chemokine signaling, inducible nitric oxide synthase, and p65 nuclear translocation were present at similar levels during mTOR suppression, suggesting an NF-κB-independent role for mTOR signaling in the immune response during bacterial infection. We propose that mTOR signaling primarily mediates the metabolic requirements necessary for phagocyte bactericidal free radical production. This study has important implications for the metabolic requirements of innate immune cells during bacterial infection as well as the clinical use of mTOR inhibitors.IMPORTANCESirolimus, everolimus, temsirolimus, and similar are a class of pharmaceutics commonly used in the clinical treatment of cancer and the anti-rejection of transplanted organs. Each of these agents suppresses the activity of the mammalian target of rapamycin (mTOR), a master regulator of metabolism in human cells. Activation of mTOR is also involved in the immune response to bacterial infection, and treatments that inhibit mTOR are associated with increased susceptibility to bacterial infections in the skin and soft tissue. Infections caused by Staphylococcus aureus are among the most common and severe. Our study shows that this susceptibility to S. aureus infection during mTOR suppression is due to an impaired function of phagocytic immune cells responsible for controlling bacterial infections. Specifically, we observed that mTOR activity is required for phagocytes to produce antimicrobial free radicals. These results have important implications for immune responses during clinical treatments and in disease states where mTOR is suppressed.
Collapse
Affiliation(s)
- Christopher J. Genito
- Division of Oral and
Craniofacial Health Sciences, Adams School of Dentistry, University of
North Carolina at Chapel Hill,
Chapel Hill, North Carolina,
USA
| | - Benjamin P. Darwitz
- Department of
Microbiology and Immunology, School of Medicine, University of North
Carolina at Chapel Hill, Chapel
Hill, North Carolina, USA
| | - Callista P. Reber
- Department of
Microbiology, University of Tennessee,
Knoxville, Tennessee,
USA
| | - Nathaniel J. Moorman
- Department of
Microbiology and Immunology, School of Medicine, University of North
Carolina at Chapel Hill, Chapel
Hill, North Carolina, USA
| | - Christina L. Graves
- Division of Oral and
Craniofacial Health Sciences, Adams School of Dentistry, University of
North Carolina at Chapel Hill,
Chapel Hill, North Carolina,
USA
| | - Andrew J. Monteith
- Department of
Microbiology, University of Tennessee,
Knoxville, Tennessee,
USA
| | - Lance R. Thurlow
- Division of Oral and
Craniofacial Health Sciences, Adams School of Dentistry, University of
North Carolina at Chapel Hill,
Chapel Hill, North Carolina,
USA
- Department of
Microbiology and Immunology, School of Medicine, University of North
Carolina at Chapel Hill, Chapel
Hill, North Carolina, USA
| |
Collapse
|
10
|
Tang H, Dilimulati D, Yang Z, Zhou K, Chen X, Sun R, Wang N, Liang Z, Bian S, Zhao J, Song P, Zheng S, Wang H, Xie H. Chemically engineered mTOR-nanoparticle blockers enhance antitumour efficacy. EBioMedicine 2024; 103:105099. [PMID: 38604089 PMCID: PMC11017279 DOI: 10.1016/j.ebiom.2024.105099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly prevalent and deadly type of cancer, and although pharmacotherapy remains the cornerstone of treatment, therapeutic outcomes are often unsatisfactory. Pharmacological inhibition of mammalian target of rapamycin (mTOR) has been closely associated with HCC regression. METHODS Herein, we covalently conjugated AZD8055, a potent mTORC1/2 blocker, with a small panel of unsaturated fatty acids via a dynamically activating linkage to enable aqueous self-assembly of prodrug conjugates to form mTOR nanoblockers. Cell-based experiments were carried out to evaluate the effects of the nanoblocker against hepatocellular carcinoma (HCC) cells. The orthotopic and subcutaneous HCC mouse models were established to examine its antitumour activity. FINDINGS Among several fatty acids as promoieties, linoleic acid-conjugated self-assembling nanoblocker exhibited optimal size distribution and superior physiochemical properties. Compared with free agents, PEGylated AZD8055 nanoblocker (termed AZD NB) was pharmacokinetically optimized after intravenous administration. In vivo investigations confirmed that AZD NB significantly suppressed tumour outgrowth in subcutaneous HCCLM3 xenograft, Hepatoma-22, and orthotopic Hepa1-6 liver tumour models. Strikingly, treatment with AZD NB, but not free agent, increased intratumour infiltration of IFN-γ+CD8+ T cells and CD8+ memory T cells, suggesting a potential role of the mTOR nanoblocker to remodel the tumour microenvironment. Overall, a single conjugation with fatty acid transformed a hydrophobic mTOR blocker into a systemically injectable nanomedicine, representing a facile and generalizable strategy for improving the therapeutic index of mTOR inhibition-based cancer therapy. INTERPRETATION The mTOR inhibition by chemically engineered nanoblocker presented here had enhanced efficacy against tumours compared with the pristine drug and thus has the potential to improve the survival outcomes of patients with HCC. Additionally, this new nanosystem derived from co-assembling of small-molecule prodrug entities can serve as a delivery platform for the synergistic co-administration of distinct pharmaceutical agents. FUNDING This work was supported by the National Natural Science Foundation of China (32171368,81721091), the Zhejiang Provincial Natural Science Foundation of China (LZ21H180001), the Jinan Provincial Laboratory Research Project of Microecological Biomedicine (JNL-2022039c and JNL-2022010B), State Key Laboratory for Diagnosis and Treatment of Infectious Diseases (zz202310), and Natural Science Foundation of Shandong Province (ZR2023ZD59).
Collapse
Affiliation(s)
- Hong Tang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Dilinuer Dilimulati
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Zhentao Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ke Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaona Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ruiqi Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ning Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhi Liang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Suchen Bian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jialing Zhao
- Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province 310003, China
| | - Penghong Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province 310003, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province 310003, China.
| | - Hangxiang Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province 310003, China.
| |
Collapse
|
11
|
Tapia-Valladares C, Valenzuela G, González E, Maureira I, Toro J, Freire M, Sepúlveda-Hermosilla G, Ampuero D, Blanco A, Gallegos I, Morales F, Erices JI, Barajas O, Ahumada M, Contreras HR, González J, Armisén R, Marcelain K. Distinct Driver Pathway Enrichments and a High Prevalence of TSC2 Mutations in Right Colon Cancer in Chile: A Preliminary Comparative Analysis. Int J Mol Sci 2024; 25:4695. [PMID: 38731914 PMCID: PMC11083322 DOI: 10.3390/ijms25094695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 05/13/2024] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer deaths globally. While ethnic differences in driver gene mutations have been documented, the South American population remains understudied at the genomic level, despite facing a rising burden of CRC. We analyzed tumors of 40 Chilean CRC patients (Chp) using next-generation sequencing and compared them to data from mainly Caucasian cohorts (TCGA and MSK-IMPACT). We identified 388 mutations in 96 out of 135 genes, with TP53 (45%), KRAS (30%), PIK3CA (22.5%), ATM (20%), and POLE (20%) being the most frequently mutated. TSC2 mutations were associated with right colon cancer (44.44% in RCRC vs. 6.45% in LCRC, p-value = 0.016), and overall frequency was higher compared to TCGA (p-value = 1.847 × 10-5) and MSK-IMPACT cohorts (p-value = 3.062 × 10-2). Limited sample size restricts definitive conclusions, but our data suggest potential differences in driver mutations for Chilean patients, being that the RTK-RAS oncogenic pathway is less affected and the PI3K pathway is more altered in Chp compared to TCGA (45% vs. 25.56%, respectively). The prevalence of actionable pathways and driver mutations can guide therapeutic choices, but can also impact treatment effectiveness. Thus, these findings warrant further investigation in larger Chilean cohorts to confirm these initial observations. Understanding population-specific driver mutations can guide the development of precision medicine programs for CRC patients.
Collapse
Affiliation(s)
- Camilo Tapia-Valladares
- Departamento de Oncología Básico Clínico, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Guillermo Valenzuela
- Departamento de Oncología Básico Clínico, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Evelin González
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610507, Chile
| | - Ignacio Maureira
- Departamento de Oncología Básico Clínico, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Jessica Toro
- Departamento de Oncología Básico Clínico, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
- Centro para la Prevención y Control del Cáncer, CECAN, Universidad de Chile, Santiago 8380000, Chile
| | - Matías Freire
- CORFO Center of Excellence in Precision Medicine, Pfizer Chile, Santiago 8380000, Chile
| | | | - Diego Ampuero
- CORFO Center of Excellence in Precision Medicine, Pfizer Chile, Santiago 8380000, Chile
| | - Alejandro Blanco
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610507, Chile
| | - Iván Gallegos
- Departamento de Oncología Básico Clínico, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
- Centro para la Prevención y Control del Cáncer, CECAN, Universidad de Chile, Santiago 8380000, Chile
- Departamento de Patología, Hospital Clínico de la Universidad de Chile, Santiago 8380453, Chile
| | - Fernanda Morales
- Departamento de Oncología Básico Clínico, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - José I. Erices
- Departamento de Oncología Básico Clínico, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Olga Barajas
- Departamento de Oncología Básico Clínico, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
- Centro para la Prevención y Control del Cáncer, CECAN, Universidad de Chile, Santiago 8380000, Chile
- Departamento de Medicina Interna, Hospital Clínico de la Universidad de Chile, Santiago 8380453, Chile
| | - Mónica Ahumada
- Departamento de Oncología Básico Clínico, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
- Centro para la Prevención y Control del Cáncer, CECAN, Universidad de Chile, Santiago 8380000, Chile
- Departamento de Medicina Interna, Hospital Clínico de la Universidad de Chile, Santiago 8380453, Chile
| | - Héctor R. Contreras
- Departamento de Oncología Básico Clínico, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
- Centro para la Prevención y Control del Cáncer, CECAN, Universidad de Chile, Santiago 8380000, Chile
| | - Jaime González
- Departamento de Oncología Básico Clínico, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Ricardo Armisén
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610507, Chile
| | - Katherine Marcelain
- Departamento de Oncología Básico Clínico, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
- Centro para la Prevención y Control del Cáncer, CECAN, Universidad de Chile, Santiago 8380000, Chile
| |
Collapse
|
12
|
Cordani M, Strippoli R, Trionfetti F, Barzegar Behrooz A, Rumio C, Velasco G, Ghavami S, Marcucci F. Immune checkpoints between epithelial-mesenchymal transition and autophagy: A conflicting triangle. Cancer Lett 2024; 585:216661. [PMID: 38309613 DOI: 10.1016/j.canlet.2024.216661] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
Inhibitory immune checkpoint (ICP) molecules are pivotal in inhibiting innate and acquired antitumor immune responses, a mechanism frequently exploited by cancer cells to evade host immunity. These evasion strategies contribute to the complexity of cancer progression and therapeutic resistance. For this reason, ICP molecules have become targets for antitumor drugs, particularly monoclonal antibodies, collectively referred to as immune checkpoint inhibitors (ICI), that counteract such cancer-associated immune suppression and restore antitumor immune responses. Over the last decade, however, it has become clear that tumor cell-associated ICPs can also induce tumor cell-intrinsic effects, in particular epithelial-mesenchymal transition (EMT) and macroautophagy (hereafter autophagy). Both of these processes have profound implications for cancer metastasis and drug responsiveness. This article reviews the positive or negative cross-talk that tumor cell-associated ICPs undergo with autophagy and EMT. We discuss that tumor cell-associated ICPs are upregulated in response to the same stimuli that induce EMT. Moreover, ICPs themselves, when overexpressed, become an EMT-inducing stimulus. As regards the cross-talk with autophagy, ICPs have been shown to either stimulate or inhibit autophagy, while autophagy itself can either up- or downregulate the expression of ICPs. This dynamic equilibrium also extends to the autophagy-apoptosis axis, further emphasizing the complexities of cellular responses. Eventually, we delve into the intricate balance between autophagy and apoptosis, elucidating its role in the broader interplay of cellular dynamics influenced by ICPs. In the final part of this article, we speculate about the driving forces underlying the contradictory outcomes of the reciprocal, inhibitory, or stimulatory effects between ICPs, EMT, and autophagy. A conclusive identification of these driving forces may allow to achieve improved antitumor effects when using combinations of ICIs and compounds acting on EMT and/or autophagy. Prospectively, this may translate into increased and/or broadened therapeutic efficacy compared to what is currently achieved with ICI-based clinical protocols.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy.
| |
Collapse
|
13
|
Caliò A, Marletta S, Settanni G, Rizzo M, Gobbo S, Pedron S, Stefanizzi L, Munari E, Brunelli M, Marcolini L, Pesci A, Fratoni S, Pierconti F, Raspollini MR, Marchetti A, Doglioni C, Amin MB, Porta C, Martignoni G. mTOR eosinophilic renal cell carcinoma: a distinctive tumor characterized by mTOR mutation, loss of chromosome 1, cathepsin-K expression, and response to target therapy. Virchows Arch 2023; 483:821-833. [PMID: 37938323 PMCID: PMC10700445 DOI: 10.1007/s00428-023-03688-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023]
Abstract
In the spectrum of oncocytic renal neoplasms, a subset of tumors with high-grade-appearing histologic features harboring pathogenic mutations in mammalian target of rapamycin (mTOR) and hitherto clinical indolent behavior has been described. Three cases (2F,1 M) with histologically documented metastases (lymph node, skull, and liver) were retrieved and extensively investigated by immunohistochemistry, FISH, and next-generation sequencing. Tumors were composed of eosinophilic cells with prominent nucleoli (G3 by ISUP/WHO) arranged in solid to nested architecture. Additionally, there were larger cells with perinuclear cytoplasmic shrinkage and sparse basophilic Nissl-like granules, superficially resembling the so-called spider cells of cardiac rhabdomyomas. The renal tumors, including the skull and liver metastases, showed immunoexpression PAX8, CK8-18, and cathepsin-K, and negativity for vimentin. NGS identified mTOR genetic alterations in the three cases, including the skull and liver metastases. One patient was then treated with Everolimus (mTOR inhibitors) with clinical response (metastatic tumor shrinkage). We present a distinct renal tumor characterized by high-grade eosinophilic cells, cathepsin-K immunohistochemical expression, and harboring mTOR gene mutations demonstrating a malignant potential and showing responsiveness to mTOR inhibitors.
Collapse
Affiliation(s)
- Anna Caliò
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Largo L. Scuro 10, 37134, Verona, Italy
| | - Stefano Marletta
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Largo L. Scuro 10, 37134, Verona, Italy
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Giulio Settanni
- Department of Pathology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Mimma Rizzo
- Division of Medical Oncology, A.O.U. Consorziale Policlinico Di Bari, Bari, Italy
| | - Stefano Gobbo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Serena Pedron
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Largo L. Scuro 10, 37134, Verona, Italy
| | | | - Enrico Munari
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Matteo Brunelli
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Largo L. Scuro 10, 37134, Verona, Italy
| | - Lisa Marcolini
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Anna Pesci
- Department of Pathology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Stefano Fratoni
- Division of Anatomic Pathology, S. Eugenio Hospital, Rome, Italy
| | - Francesco Pierconti
- Division of Anatomic Pathology and Histology, Foundation "A. Gemelli" University Hospital, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Rosaria Raspollini
- Histopathology and Molecular Diagnostics, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Antonio Marchetti
- Division of Anatomic Pathology and Histology, Ospedale Clinicizzato "SS. Annunziata" Università Di Chieti, Chieti, Italy
| | | | - Mahul B Amin
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science, Memphis, TN, USA
- Department of Urology, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Camillo Porta
- Interdisciplinary Department of Medicine, University of Bari "A. Moro, Bari, Italy
| | - Guido Martignoni
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Largo L. Scuro 10, 37134, Verona, Italy.
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy.
| |
Collapse
|
14
|
Du H, Yang YC, Liu HJ, Yuan M, Asara JM, Wong KK, Henske EP, Singh M, Kwiatkowski DJ. Bi-steric mTORC1 inhibitors induce apoptotic cell death in tumor models with hyperactivated mTORC1. J Clin Invest 2023; 133:e167861. [PMID: 37909334 PMCID: PMC10617776 DOI: 10.1172/jci167861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 09/06/2023] [Indexed: 11/03/2023] Open
Abstract
The PI3K/AKT/mTOR pathway is commonly dysregulated in cancer. Rapalogs exhibit modest clinical benefit, likely owing to their lack of effects on 4EBP1. We hypothesized that bi-steric mTORC1-selective inhibitors would have greater potential for clinical benefit than rapalogs in tumors with mTORC1 dysfunction. We assessed this hypothesis in tumor models with high mTORC1 activity both in vitro and in vivo. Bi-steric inhibitors had strong growth inhibition, eliminated phosphorylated 4EBP1, and induced more apoptosis than rapamycin or MLN0128. Multiomics analysis showed extensive effects of the bi-steric inhibitors in comparison with rapamycin. De novo purine synthesis was selectively inhibited by bi-sterics through reduction in JUN and its downstream target PRPS1 and appeared to be the cause of apoptosis. Hence, bi-steric mTORC1-selective inhibitors are a therapeutic strategy to treat tumors driven by mTORC1 hyperactivation.
Collapse
Affiliation(s)
- Heng Du
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Yu Chi Yang
- Department of Biology, Revolution Medicines Inc., Redwood City, California, USA
| | - Heng-Jia Liu
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Min Yuan
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - John M. Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York University Langone Health, New York, New York, USA
| | - Elizabeth P. Henske
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Mallika Singh
- Department of Biology, Revolution Medicines Inc., Redwood City, California, USA
| | - David J. Kwiatkowski
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Pezzicoli G, Ciciriello F, Musci V, Salonne F, Ragno A, Rizzo M. Genomic Profiling and Molecular Characterization of Clear Cell Renal Cell Carcinoma. Curr Oncol 2023; 30:9276-9290. [PMID: 37887570 PMCID: PMC10605358 DOI: 10.3390/curroncol30100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) treatment has undergone three major paradigm shifts in recent years, first with the introduction of molecular targeted therapies, then with immune checkpoint inhibitors, and, more recently, with immune-based combinations. However, to date, molecular predictors of response to targeted agents have not been identified for ccRCC. The WHO 2022 classification of renal neoplasms introduced the molecularly defined RCC class, which is a first step in the direction of a better molecular profiling of RCC. We reviewed the literature data on known genomic alterations of clinical interest in ccRCC, discussing their prognostic and predictive role. In particular, we explored the role of VHL, mTOR, chromatin modulators, DNA repair genes, cyclin-dependent kinases, and tumor mutation burden. RCC is a tumor whose pivotal genomic alterations have pleiotropic effects, and the interplay of these effects determines the tumor phenotype and its clinical behavior. Therefore, it is difficult to find a single genomic predictive factor, but it is more likely to identify a signature of gene alterations that could impact prognosis and response to specific treatment. To accomplish this task, the interpolation of large amounts of clinical and genomic data is needed. Nevertheless, genomic profiling has the potential to change real-world clinical practice settings.
Collapse
Affiliation(s)
- Gaetano Pezzicoli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (F.S.)
| | - Federica Ciciriello
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (F.S.)
| | - Vittoria Musci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (F.S.)
| | - Francesco Salonne
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (F.S.)
| | - Anna Ragno
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Consorziale, Policlinico di Bari, 70124 Bari, Italy;
| | - Mimma Rizzo
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Consorziale, Policlinico di Bari, 70124 Bari, Italy;
| |
Collapse
|
16
|
Evmorfopoulos K, Mitrakas L, Karathanasis A, Zachos I, Tzortzis V, Vlachostergios PJ. Upper Tract Urothelial Carcinoma: A Rare Malignancy with Distinct Immuno-Genomic Features in the Era of Precision-Based Therapies. Biomedicines 2023; 11:1775. [PMID: 37509415 PMCID: PMC10376290 DOI: 10.3390/biomedicines11071775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Upper tract urothelial carcinoma (UTUC) is a rare malignancy, occurring in 5-10% of patients diagnosed with UC, and involves the renal pelvis, calyces, or ureters. UTUC can be sporadic or hereditary as a clinical manifestation of Lynch syndrome. Therapeutic management of these patients is challenging. Following risk stratification of localized disease, patients with low-grade UTUC may undergo kidney-sparing surgery or radical nephroureterectomy (RNU) and/or chemoablation with mitomycin-c instillation to reduce recurrence. In high-grade disease, RNU followed by adjuvant chemotherapy remains the standard of care. For decades, platinum-based chemotherapy has been the cornerstone of treatment for locally advanced and metastatic disease. The aim of the present review is to summarize recent advances in UTUC's therapeutic management through the lens of its genomic and immune landscape. Accumulating knowledge on the genetic and immune aspects of UTUC tumors has increased our understanding of their underlying biology, supporting a luminal papillary, T-cell depleted contexture and enrichment in fibroblast growth factor receptor (FGFR) expression. These advances have fueled successful clinical testing of several precision-based therapeutic approaches, including immune checkpoint inhibitors (ICIs), the antibody-drug conjugates (ADCs) enfortumab vedotin and sacituzumab govitecan, and agents targeting the FGFR axis such as erdafitinib and other kinase inhibitors, allowing their entry into the therapeutic armamentarium and improving the prognosis of these patients. Not all patients respond to these precision-based targeted therapies; thus, validating and expanding the toolkit of potential biomarkers of response or resistance, including molecular subtypes, FGFR pathway gene alterations, DNA repair gene defects, tumor mutational burden (TMB), circulating tumor DNA (ctDNA), nectin-4, TROP2, and programmed death ligand-1 (PD-L1), are key to maximizing the benefit to these particular subgroups of patients.
Collapse
Affiliation(s)
- Konstantinos Evmorfopoulos
- Department of Urology, School of Health Sciences, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Lampros Mitrakas
- Department of Urology, School of Health Sciences, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Athanasios Karathanasis
- Department of Urology, School of Health Sciences, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Ioannis Zachos
- Department of Urology, School of Health Sciences, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Vassilios Tzortzis
- Department of Urology, School of Health Sciences, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Panagiotis J. Vlachostergios
- Department of Urology, School of Health Sciences, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
- Department of Medical Oncology, IASO Thessalias Hospital, 41500 Larissa, Greece
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
17
|
Luceno CF, Jeon WJ, Samaeekia R, Shin J, Sonpavde GP. Precision Medicine to Treat Urothelial Carcinoma-The Way Forward. Cancers (Basel) 2023; 15:cancers15113024. [PMID: 37296985 DOI: 10.3390/cancers15113024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The treatment of urothelial carcinoma (UC) is challenging given its molecular heterogeneity and variable response to current therapies. To address this, many tools, including tumor biomarker assessment and liquid biopsies, have been developed to predict prognosis and treatment response. Approved therapeutic modalities for UC currently include chemotherapy, immune checkpoint inhibitors, receptor tyrosine kinase inhibitors, and antibody drug conjugates. Ongoing investigations to improve the treatment of UC include the search for actionable alterations and the testing of novel therapies. An important objective in recent studies has been to increase efficacy while decreasing toxicity by taking into account unique patient and tumor-related factors-an endeavor called precision medicine. The aim of this review is to highlight advancements in the treatment of UC, describe ongoing clinical trials, and identify areas for future study in the context of precision medicine.
Collapse
Affiliation(s)
- Carvy Floyd Luceno
- Department of Internal Medicine, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Won Jin Jeon
- Department of Internal Medicine, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Ravand Samaeekia
- Department of Internal Medicine, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - John Shin
- Department of Medical Oncology/Hematology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Guru P Sonpavde
- Department of Medical Oncology, Section of Genitourinary Oncology and Phase I Clinical Research, AdventHealth Cancer Institute, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
18
|
Djerroudi L, Masliah-Planchon J, Brisse HJ, El Zein S, Helfre S, Tzanis D, Hamzaoui N, Bonnet C, Laurence V, Bonvalot S, Watson S. Metastatic Malignant Perivascular Epithelioid Cell Tumors With Microsatellite Instability Within Lynch Syndrome Successfully Treated With Anti-PD1 Pembrolizumab. JCO Precis Oncol 2023; 7:e2200627. [PMID: 36716416 PMCID: PMC9928971 DOI: 10.1200/po.22.00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Sarcoma developed within Lynch Syndrome are rare but must be recognized. They can show complete response to anti-PD1
Collapse
Affiliation(s)
- Lounes Djerroudi
- Department of Diagnostic and Theranostic Medicine, Institut Curie Hospital, Paris, France
| | | | - Hervé J. Brisse
- Department of Radiology, Institut Curie Hospital, Paris, France
| | - Sophie El Zein
- Department of Diagnostic and Theranostic Medicine, Institut Curie Hospital, Paris, France
| | - Sylvie Helfre
- Department of Radiotherapy, Institut Curie Hospital, Paris, France
| | - Dimitri Tzanis
- Department of Surgical Oncology, Institut Curie Hospital, Paris, France
| | - Nadim Hamzaoui
- INSERM U1016, CNRS UMR8104, Université de Paris, CARPEM, Institut Cochin, Paris, France,Fédération de Génétique et Médecine Génomique, Hôpital Cochin, AP-HP Centre-Université de Paris, Paris, France
| | - Clément Bonnet
- Department of Medical Oncology, Institut Curie Hospital, Paris, France
| | - Valérie Laurence
- Department of Medical Oncology, Institut Curie Hospital, Paris, France
| | - Sylvie Bonvalot
- Department of Surgical Oncology, Institut Curie Hospital, Paris, France
| | - Sarah Watson
- Department of Medical Oncology, Institut Curie Hospital, Paris, France,INSERM U830, Équipe Labellisée Ligue Nationale Contre le Cancer, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France,Sarah Watson, MD, PhD, Department of Medical Oncology, Institut Curie Hospital, 26 rue d'Ulm, Paris 75005, France; Twitter: @SarahWatson1985; e-mail:
| |
Collapse
|
19
|
Papageorgiou G, Skouteris N, Valavanis C, Stanc GM, Souka E, Charalampakis N. Identification of a Novel TSC2 c.170G>A Missense Variant: A Case Report and Elaboration on the Yield of Targeted Options against Tuberous Sclerosis Complex Manifestations. Rev Recent Clin Trials 2023; 18:304-312. [PMID: 37877150 DOI: 10.2174/0115748871258042230921052344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/24/2023] [Accepted: 08/18/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a rare genetic disease that affects multiple organs and affects the quality of life. Mutations in TSC1 and TSC2 genes are causing dysregulations in the mammalian target of the rapamycin (mTOR) pathway, inducing mostly benign but also malignant tumors, including renal cell carcinoma (RCC). The diagnosis of TSC, based on established clinical and genetic criteria, is essential for the optimal surveillance and management of patients. CASE PRESENTATION With the current report, we present the case of two sisters who were consequently diagnosed with early-stage chromophobe-like RCC, possibly familial given their young age. The younger sister also had a previous diagnosis of differentiated thyroid carcinoma, for which she had been treated properly. Genetic testing of both revealed the same heterozygous TSC2 variant that is currently regarded as a variant of unknown significance, while both patients did not fulfill the clinical criteria for the diagnosis of TSC. Owing to these data, we opted to manage and surveil both sisters as TSC patients, while we also considered the specific TSC2 variant to be pathogenic - but of low penetrance - based on clinical judgment and functional analyses. Furthermore, we discussed the implementation of mTOR inhibitors for the treatment of TSC complications. CONCLUSION As novel pathogenic variants of TSC genes are constantly being explored, the identification of TSC variants of unknown significance in combination with absent clinical diagnostic criteria cannot exclude a TSC diagnosis. We support the implementation of clinical judgment in assisting the diagnosis of TSC, as well as the enrollment of patients in clinical trials due to the rarity of the disease.
Collapse
Affiliation(s)
| | - Nikolaos Skouteris
- Division of Medical Oncology & Hematopoietic Cell Transplant Unit, Department of Medicine, ''Metaxa'' Cancer Hospital, 51 Botassi Street, 18537 Piraeus, Greece
| | - Christos Valavanis
- Pathology Department, Metaxa" Cancer Hospital, Piraeus, Greece
- Molecular Pathology Unit, Metaxa" Cancer Hospital, Piraeus, Greece
| | | | - Efthymia Souka
- Pathology Department, Metaxa" Cancer Hospital, Piraeus, Greece
| | - Nikolaos Charalampakis
- Division of Medical Oncology & Hematopoietic Cell Transplant Unit, Department of Medicine, ''Metaxa'' Cancer Hospital, 51 Botassi Street, 18537 Piraeus, Greece
| |
Collapse
|
20
|
Witte HM, Fähnrich A, Künstner A, Riedl J, Fliedner SMJ, Reimer N, Hertel N, von Bubnoff N, Bernard V, Merz H, Busch H, Feller A, Gebauer N. Primary refractory plasmablastic lymphoma: A precision oncology approach. Front Oncol 2023; 13:1129405. [PMID: 36923431 PMCID: PMC10008852 DOI: 10.3389/fonc.2023.1129405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Introduction Hematologic malignancies are currently underrepresented in multidisciplinary molecular-tumor-boards (MTB). This study assesses the potential of precision-oncology in primary-refractory plasmablastic-lymphoma (prPBL), a highly lethal blood cancer. Methods We evaluated clinicopathological and molecular-genetic data of 14 clinically annotated prPBL-patients from initial diagnosis. For this proof-of-concept study, we employed our certified institutional MTB-pipeline (University-Cancer-Center-Schleswig-Holstein, UCCSH) to annotate a comprehensive dataset within the scope of a virtual MTB-setting, ultimately recommending molecularly stratified therapies. Evidence-levels for MTB-recommendations were defined in accordance with the NCT/DKTK and ESCAT criteria. Results Median age in the cohort was 76.5 years (range 56-91), 78.6% of patients were male, 50% were HIV-positive and clinical outcome was dismal. Comprehensive genomic/transcriptomic analysis revealed potential recommendations of a molecularly stratified treatment option with evidence-levels according to NCT/DKTK of at least m2B/ESCAT of at least IIIA were detected for all 14 prPBL-cases. In addition, immunohistochemical-assessment (CD19/CD30/CD38/CD79B) revealed targeted treatment-recommendations in all 14 cases. Genetic alterations were classified by treatment-baskets proposed by Horak et al. Hereby, we identified tyrosine-kinases (TK; n=4), PI3K-MTOR-AKT-pathway (PAM; n=3), cell-cycle-alterations (CC; n=2), RAF-MEK-ERK-cascade (RME; n=2), immune-evasion (IE; n=2), B-cell-targets (BCT; n=25) and others (OTH; n=4) for targeted treatment-recommendations. The minimum requirement for consideration of a drug within the scope of the study was FDA-fast-track development. Discussion The presented proof-of-concept study demonstrates the clinical potential of precision-oncology, even in prPBL-patients. Due to the aggressive course of the disease, there is an urgent medical-need for personalized treatment approaches, and this population should be considered for MTB inclusion at the earliest time.
Collapse
Affiliation(s)
- Hanno M Witte
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany.,Department of Hematology and Oncology, Federal Armed Forces Hospital, Ulm, Germany
| | - Anke Fähnrich
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Jörg Riedl
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany.,Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Stephanie M J Fliedner
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Niklas Reimer
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Nadine Hertel
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Veronica Bernard
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Hartmut Merz
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Alfred Feller
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Niklas Gebauer
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| |
Collapse
|
21
|
Makrakis D, Wright JL, Roudier MP, Garcia J, Vakar-Lopez F, Porter MP, Wang Y, Dash A, Lin D, Schade G, Winters B, Zhang X, Nelson P, Mostaghel E, Cheng HH, Schweizer M, Holt SK, Gore JL, Yu EY, Lam HM, Montgomery B. A Phase 1/2 Study of Rapamycin and Cisplatin/Gemcitabine for Treatment of Patients With Muscle-Invasive Bladder Cancer. Clin Genitourin Cancer 2022; 21:265-272. [PMID: 36710146 DOI: 10.1016/j.clgc.2022.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/02/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Cisplatin-based neoadjuvant chemotherapy (NAC) followed by cystectomy is the standard for muscle-invasive bladder cancer (MIBC), however, NAC confers only a small survival benefit and new strategies are needed to increase its efficacy. Pre-clinical data suggest that in response to DNA damage the tumor microenvironment (TME) adopts a paracrine secretory phenotype dependent on mTOR signaling which may provide an escape mechanism for tumor resistance, thus offering an opportunity to increase NAC effectiveness with mTOR blockade. PATIENTS & METHODS We conducted a phase I/II clinical trial to assess the safety and efficacy of gemcitabine-cisplatin-rapamycin combination. Grapefruit juice was administered to enhance rapamycin pharmacokinetics by inhibiting intestinal enzymatic degradation. Phase I was a dose determination/safety study followed by a single arm Phase II study of NAC prior to radical cystectomy evaluating pathologic response with a 26% pCR rate target. RESULTS In phase I, 6 patients enrolled, and the phase 2 dose of 35 mg rapamycin established. Fifteen patients enrolled in phase II; 13 were evaluable. Rapamycin was tolerated without serious adverse events. At the preplanned analysis, the complete response rate (23%) did not meet the prespecified level for continuing and the study was stopped due to futility. With immunohistochemistry, successful suppression of the mTOR signaling pathway in the tumor was achieved while limited mTOR activity was seen in the TME. CONCLUSION Adding rapamycin to gemcitabine-cisplatin therapy for patients with MIBC was well tolerated but failed to improve therapeutic efficacy despite evidence of mTOR blockade in tumor cells. Further efforts to understand the role of the tumor microenvironment in chemotherapy resistance is needed.
Collapse
Affiliation(s)
- Dimitrios Makrakis
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA.
| | - Jonathan L Wright
- Department of Urology, University of Washington, Seattle, WA; VA Puget Sound Health Care System, Seattle, WA; Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Jose Garcia
- Department of Urology, University of Washington, Seattle, WA
| | | | - Michael P Porter
- Department of Urology, University of Washington, Seattle, WA; VA Puget Sound Health Care System, Seattle, WA
| | - Yan Wang
- Department of Urology, University of Washington, Seattle, WA
| | - Atreya Dash
- Department of Urology, University of Washington, Seattle, WA
| | - Daniel Lin
- Department of Urology, University of Washington, Seattle, WA; Fred Hutchinson Cancer Research Center, Seattle, WA
| | - George Schade
- Department of Urology, University of Washington, Seattle, WA
| | | | - Xiotun Zhang
- CellNetix Pathology and Laboratories LLC, Seattle, WA
| | - Peter Nelson
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA; Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Heather H Cheng
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA; Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Michael Schweizer
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA
| | - Sarah K Holt
- Department of Urology, University of Washington, Seattle, WA
| | - John L Gore
- Department of Urology, University of Washington, Seattle, WA; Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Evan Y Yu
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA
| | - Hung Ming Lam
- Department of Urology, University of Washington, Seattle, WA
| | - Bruce Montgomery
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA; VA Puget Sound Health Care System, Seattle, WA
| |
Collapse
|
22
|
Tripathi A, MacDougall K, Sonpavde GP. Therapeutic Landscape Beyond Immunotherapy in Advanced Urothelial Carcinoma: Moving Past the Checkpoint. Drugs 2022; 82:1649-1662. [DOI: 10.1007/s40265-022-01802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/29/2022]
|
23
|
Liu Y, Azizian NG, Sullivan DK, Li Y. mTOR inhibition attenuates chemosensitivity through the induction of chemotherapy resistant persisters. Nat Commun 2022; 13:7047. [PMID: 36396656 PMCID: PMC9671908 DOI: 10.1038/s41467-022-34890-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Chemotherapy can eradicate a majority of cancer cells. However, a small population of tumor cells often survives drug treatments through genetic and/or non-genetic mechanisms, leading to tumor recurrence. Here we report a reversible chemoresistance phenotype regulated by the mTOR pathway. Through a genome-wide CRISPR knockout library screen in pancreatic cancer cells treated with chemotherapeutic agents, we have identified the mTOR pathway as a prominent determinant of chemosensitivity. Pharmacological suppression of mTOR activity in cancer cells from diverse tissue origins leads to the persistence of a reversibly resistant population, which is otherwise eliminated by chemotherapeutic agents. Conversely, activation of the mTOR pathway increases chemosensitivity in vitro and in vivo and predicts better survival among various human cancers. Persister cells display a senescence phenotype. Inhibition of mTOR does not induce cellular senescence per se, but rather promotes the survival of senescent cells through regulation of autophagy and G2/M cell cycle arrest, as revealed by a small-molecule chemical library screen. Thus, mTOR plays a causal yet paradoxical role in regulating chemotherapeutic response; inhibition of the mTOR pathway, while suppressing tumor expansion, facilitates the development of a reversible drug-tolerant senescence state.
Collapse
Affiliation(s)
- Yuanhui Liu
- grid.63368.380000 0004 0445 0041Center for Immunotherapy Research, Houston Methodist Research Institute, Houston, TX 77030 USA ,grid.5386.8000000041936877XDepartment of Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| | - Nancy G. Azizian
- grid.63368.380000 0004 0445 0041Center for Immunotherapy Research, Houston Methodist Research Institute, Houston, TX 77030 USA ,grid.5386.8000000041936877XDepartment of Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| | - Delaney K. Sullivan
- grid.19006.3e0000 0000 9632 6718UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Yulin Li
- grid.63368.380000 0004 0445 0041Center for Immunotherapy Research, Houston Methodist Research Institute, Houston, TX 77030 USA ,grid.5386.8000000041936877XDepartment of Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| |
Collapse
|
24
|
Wood KC, Gutkind JS. Challenges and Emerging Opportunities for Targeting mTOR in Cancer. Cancer Res 2022; 82:3884-3887. [PMID: 36321262 PMCID: PMC9634680 DOI: 10.1158/0008-5472.can-22-0602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/17/2022] [Accepted: 09/01/2022] [Indexed: 12/29/2022]
Abstract
The mechanistic target of rapamycin (mTOR) plays a key role in normal and malignant cell growth. However, pharmacologic targeting of mTOR in cancer has shown little clinical benefit, in spite of aberrant hyperactivation of mTOR in most solid tumors. Here, we discuss possible reasons for the reduced clinical efficacy of mTOR inhibition and highlight lessons learned from recent combination clinical trials and approved indications of mTOR inhibitors in cancer. We also discuss how the emerging systems level understanding of mTOR signaling in cancer can be exploited for the clinical development of novel multimodal precision targeted therapies and immunotherapies aimed at achieving tumor remission.
Collapse
Affiliation(s)
- Kris C. Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - J. Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, USA
| |
Collapse
|
25
|
Inhibition of the AKT/mTOR pathway negatively regulates PTEN expression via miRNAs. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1637-1647. [PMID: 36331296 PMCID: PMC9827858 DOI: 10.3724/abbs.2022159] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PI3K/AKT/mTOR pathway plays important roles in cancer development, and the negative role of PTEN in the PI3K/AKT/mTOR pathway is well known, but whether PTEN can be inversely regulated by PI3K/AKT/mTOR has rarely been reported. Here we aim to investigate the potential regulatory relationship between PTEN and Akt/mTOR inhibition in MEFs. AKT1 E17K and TSC2 -/- MEFs were treated with the AKT inhibitor MK2206 and the mTOR inhibitors rapamycin and Torin2. Our results reveal that inhibition of AKT or mTOR suppresses PTEN expression in AKT1 E17K and TSC2 -/- MEFs, but the transcription, subcellular localization, eIF4E-dependent translational initiation or lysosome- and proteasome-mediated degradation of PTEN change little, as shown by the real time PCR, nucleus cytoplasm separation assay and immunofluorescence analysis. Moreover, mTOR suppression leads to augmentation of mouse PTEN-3'UTR-binding miRNAs, including miR-23a-3p, miR-23b-3p, miR-25-3p and miR-26a-5p, as shown by the dual luciferase reporter assay and miRNA array analysis, and miRNA inhibitors collaborately rescue the decline of PTEN level. Collectively, our findings confirm that inhibition of mTOR suppresses PTEN expression by upregulating miRNAs, provide a novel explanation for the limited efficacy of mTOR inhibitors in the treatment of mTOR activation-related tumors, and indicate that dual inhibition of mTOR and miRNA is a promising therapeutic strategy to overcome the resistance of mTOR-related cancer treatment.
Collapse
|
26
|
Ionescu C, Oprea B, Ciobanu G, Georgescu M, Bică R, Mateescu GO, Huseynova F, Barragan-Montero V. The Angiogenic Balance and Its Implications in Cancer and Cardiovascular Diseases: An Overview. Medicina (B Aires) 2022; 58:medicina58070903. [PMID: 35888622 PMCID: PMC9316440 DOI: 10.3390/medicina58070903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is the process of developing new blood vessels from pre-existing ones. This review summarizes the main features of physiological and pathological angiogenesis and those of angiogenesis activation and inhibition. In healthy adults, angiogenesis is absent apart from its involvement in female reproductive functions and tissue regeneration. Angiogenesis is a complex process regulated by the action of specific activators and inhibitors. In certain diseases, modulating the angiogenic balance can be a therapeutic route, either by inhibiting angiogenesis (for example in the case of tumor angiogenesis), or by trying to activate the process of new blood vessels formation, which is the goal in case of cardiac or peripheral ischemia.
Collapse
Affiliation(s)
- Cătălina Ionescu
- Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea București, 200144 Craiova, Romania;
- Correspondence: (C.I.); (B.O.)
| | - Bogdan Oprea
- Histology Department, University of Medicine and Pharmacy, 2-4 Petru Rares, 200349 Craiova, Romania;
- Correspondence: (C.I.); (B.O.)
| | - Georgeta Ciobanu
- Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea București, 200144 Craiova, Romania;
| | - Milena Georgescu
- Clinic for Plastic Surgery and Burns, County Emergency Hospital Craiova, 200642 Craiova, Romania;
| | - Ramona Bică
- General Hospital—“Victor Babes”, 281 Mihai Bravu St., Sector III, 030303 Bucharest, Romania;
| | - Garofiţa-Olivia Mateescu
- Histology Department, University of Medicine and Pharmacy, 2-4 Petru Rares, 200349 Craiova, Romania;
| | - Fidan Huseynova
- LBN, University of Montpellier, 34193 Montpellier, France; (F.H.); (V.B.-M.)
- Institute of Molecular Biology and Biotechnologies, Azerbaïjan National Academy of Sciences (ANAS), AZ1073 Baku, Azerbaijan
- Department of Histology, Cytology and Embryology, Azerbaijan Medical University, AZ1078 Baku, Azerbaijan
| | | |
Collapse
|
27
|
An J, Oh M, Kim SY, Oh YJ, Oh B, Oh JH, Kim W, Jung JH, Kim HI, Kim JS, Sung CO, Shim JH. PET-Based Radiogenomics Supports mTOR Pathway Targeting for Hepatocellular Carcinoma. Clin Cancer Res 2022; 28:1821-1831. [PMID: 35191466 DOI: 10.1158/1078-0432.ccr-21-3208] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/22/2021] [Accepted: 02/09/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE This work aimed to explore in depth the genomic and molecular underpinnings of hepatocellular carcinoma (HCC) with increased 2[18F]fluoro-2-deoxy-d-glucose (FDG) uptake in PET and to identify therapeutic targets based on this imaging-genomic surrogate. EXPERIMENTAL DESIGN We used RNA sequencing and whole-exome sequencing data obtained from 117 patients with HCC who underwent hepatic resection with preoperative FDG-PET/CT imaging as a discovery cohort. The primary radiogenomic results were validated with transcriptomes from a second cohort of 81 patients with more advanced tumors. All patients were allocated to an FDG-avid or FDG-non-avid group according to the PET findings. We also screened potential drug candidates targeting FDG-avid HCCs in vitro and in vivo. RESULTS High FDG avidity conferred worse recurrence-free survival after HCC resection. Whole transcriptome analysis revealed upregulation of mTOR pathway signals in the FDG-avid tumors, together with higher abundance of associated mutations. These clinical and genomic findings were replicated in the validation set. A molecular signature of FDG-avid HCCs identified in the discovery set consistently predicted poor prognoses in the public-access datasets of two cohorts. Treatment with an mTOR inhibitor resulted in decreased FDG uptake followed by effective tumor control in both the hyperglycolytic HCC cell lines and xenograft mouse models. CONCLUSIONS Our PET-based radiogenomic analysis indicates that mTOR pathway genes are markedly activated and altered in HCCs with high FDG retention. This nuclear imaging biomarker may stimulate umbrella trials and tailored treatments in precision care of patients with HCC.
Collapse
Affiliation(s)
- Jihyun An
- Gastroenterology and Hepatology, Hanyang University College of Medicine, Guri, Gyeonggi, Republic of Korea
| | - Minyoung Oh
- Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seog-Young Kim
- Convergence Medicine Research Center, Asan Medical Center, Seoul, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yoo-Jin Oh
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Bora Oh
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Ji-Hye Oh
- Center for Cancer Genome Discovery, Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Wonkyung Kim
- Center for Cancer Genome Discovery, Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jin Hwa Jung
- Convergence Medicine Research Center, Asan Medical Center, Seoul, Republic of Korea
| | - Ha Il Kim
- Gastroenterology, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Jae-Seung Kim
- Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang Ohk Sung
- Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ju Hyun Shim
- Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
28
|
Application of mTORC1 Inhibitors for Tissue-Agnostic Management of Standard-Therapy-Refractory Solid Tumors. Cancers (Basel) 2022; 14:cancers14081936. [PMID: 35454843 PMCID: PMC9032789 DOI: 10.3390/cancers14081936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
In this analysis, we examined the efficacy, feasibility, and limitations of the application of mTOR inhibitors based on the individual molecular profiles of pretreated cancer patients after the failure of all standard treatments in the palliative setting. In this single-center, real-world analysis of our platform for precision medicine, we analyzed the molecular characteristics of 71 cancer patients. The tumor samples of the patients were analyzed using next-generation sequencing panels of mutation hotspots, microsatellite stability testing, and immunohistochemistry. All profiles were reviewed by a multidisciplinary team to provide a targeted treatment recommendation after a consensus discussion. Seventy-one cancer patients with activation of the mTOR pathway were offered an mTORC1-inhibitor-based targeted therapy, and twenty-three (32.4%) of them eventually received the targeted therapy. Only three patients (4.2%) achieved stable disease, of whom one experienced progressive disease again after 9.1 months. The median time to treatment failure was 2.8 months. In total, 110 mutations were detected in 60 patients (84.5%). The three most frequent mutations were found in TP53, PTEN, and KRAS, which accounted for over 50% (56.4%) of all mutations. In sum, in selected patients with heavily pretreated solid tumors with activation of the mTOR pathway, the antitumoral activity of mTORC1 inhibition was weak.
Collapse
|
29
|
Thomas J, Sonpavde G. Molecularly Targeted Therapy towards Genetic Alterations in Advanced Bladder Cancer. Cancers (Basel) 2022; 14:1795. [PMID: 35406567 PMCID: PMC8997162 DOI: 10.3390/cancers14071795] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
Despite the introduction of immune checkpoint inhibitors and antibody-drug conjugates to the management of advanced urothelial carcinoma, the disease is generally incurable. The increasing incorporation of next-generation sequencing of tumor tissue into the characterization of bladder cancer has led to a better understanding of the somatic genetic aberrations potentially involved in its pathogenesis. Genetic alterations have been observed in kinases, such as FGFRs, ErbBs, PI3K/Akt/mTOR, and Ras-MAPK, and genetic alterations in critical cellular processes, such as chromatin remodeling, cell cycle regulation, and DNA damage repair. However, activating mutations or fusions of FGFR2 and FGFR3 remains the only validated therapeutically actionable alteration, with erdafitinib as the only targeted agent currently approved for this group. Bladder cancer is characterized by genomic heterogeneity and a high tumor mutation burden. This review highlights the potential relevance of aberrations and discusses the current status of targeted therapies directed at them.
Collapse
Affiliation(s)
- Jonathan Thomas
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Guru Sonpavde
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
| |
Collapse
|
30
|
Huan J, Grivas P, Birch J, Hansel DE. Emerging Roles for Mammalian Target of Rapamycin (mTOR) Complexes in Bladder Cancer Progression and Therapy. Cancers (Basel) 2022; 14:1555. [PMID: 35326708 PMCID: PMC8946148 DOI: 10.3390/cancers14061555] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway regulates important cellular functions. Aberrant activation of this pathway, either through upstream activation by growth factors, loss of inhibitory controls, or molecular alterations, can enhance cancer growth and progression. Bladder cancer shows high levels of mTOR activity in approximately 70% of urothelial carcinomas, suggesting a key role for this pathway in this cancer. mTOR signaling initiates through upstream activation of phosphatidylinositol 3 kinase (PI3K) and protein kinase B (AKT) and results in activation of either mTOR complex 1 (mTORC1) or mTOR complex 2 (mTORC2). While these complexes share several key protein components, unique differences in their complex composition dramatically alter the function and downstream cellular targets of mTOR activity. While significant work has gone into analysis of molecular alterations of the mTOR pathway in bladder cancer, this has not yielded significant benefit in mTOR-targeted therapy approaches in urothelial carcinoma to date. New discoveries regarding signaling convergence onto mTOR complexes in bladder cancer could yield unique insights the biology and targeting of this aggressive disease. In this review, we highlight the functional significance of mTOR signaling in urothelial carcinoma and its potential impact on future therapy implications.
Collapse
Affiliation(s)
- Jianya Huan
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (J.H.); (J.B.)
| | - Petros Grivas
- Division of Medical Oncology, Department of Medicine, University of Washington School of Medicine, Fred Hutchinson Cancer Research Center, Seattle Cancer Care Alliance, Seattle, WA 98195, USA;
| | - Jasmine Birch
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (J.H.); (J.B.)
| | - Donna E. Hansel
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (J.H.); (J.B.)
| |
Collapse
|
31
|
Jun T, Hahn NM, Sonpavde G, Albany C, MacVicar GR, Hauke R, Fleming M, Gourdin T, Jana B, Oh WK, Taik P, Wang H, Varadarajan AR, Uzilov A, Galsky MD. OUP accepted manuscript. Oncologist 2022; 27:432-e452. [PMID: 35438782 PMCID: PMC9177111 DOI: 10.1093/oncolo/oyab075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background Treatment options have been historically limited for cisplatin-ineligible patients with advanced urothelial carcinoma (UC). Given the need for alternatives to platinum-based chemotherapy, including non-chemotherapy regimens for patients with both impaired renal function and borderline functional status, in 2010 (prior to the immune checkpoint blockade era in metastatic UC), we initiated a phase II trial to test the activity of everolimus or everolimus plus paclitaxel in the cisplatin-ineligible setting. Methods This was an open-label phase II trial conducted within the US-based Hoosier Cancer Research Network (ClinicalTrials.gov number: NCT01215136). Patients who were cisplatin-ineligible with previously untreated advanced UC were enrolled. Patients with both impaired renal function and poor performance status were enrolled into cohort 1; patients with either were enrolled into cohort 2. Patients received everolimus 10 mg daily alone (cohort 1) or with paclitaxel 80 mg/m2 on days 1, 8, and 15 of each 28-day cycle (cohort 2). The primary outcome was clinical benefit at 4 months. Secondary outcomes were adverse events, progression-free survival (PFS), and 1-year overall survival (OS). Exploratory endpoints included genomic correlates of outcomes. The trial was not designed for comparison between cohorts. Results A total of 36 patients were enrolled from 2010 to 2018 (cohort 1, N = 7; cohort 2, N = 29); the trial was terminated due to slow accrual. Clinical benefit at 4 months was attained by 0 (0%, 95% confidence interval [CI] 0-41.0%) patients in cohort 1 and 11 patients (37.9%, 95% CI 20.7-57.7%) in cohort 2. Median PFS was 2.33 (95% CI 1.81-Inf) months in cohort 1 and 5.85 (95% CI 2.99-8.61) months in cohort 2. Treatment was discontinued due to adverse events for 2 patients (29%) in cohort 1 and 11 patients (38%) in cohort 2. Molecular alterations in microtubule associated genes may be associated with treatment benefit but this requires further testing. Conclusion Everolimus plus paclitaxel demonstrates clinical activity in cisplatin-ineligible patients with metastatic UC, although the specific contribution of everolimus cannot be delineated. Patients with both impaired renal function and borderline functional status may be difficult to enroll to prospective trials. (ClinicalTrials.gov Identifier NCT01215136).
Collapse
Affiliation(s)
- Tomi Jun
- Sema4, Stamford, CT, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Noah M Hahn
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Guru Sonpavde
- University of Alambama at Birmingham, Birmingham, AL Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Constantine Albany
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| | - Gary R MacVicar
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL Illinois CancerCare, Peoria, IL, USA
| | - Ralph Hauke
- Nebraska Cancer Specialists/ Nebraska Methodist Hospital, Omaha, NE, USA
| | | | - Theodore Gourdin
- Medical University of South Carolina Hollings Cancer Center, Charleston, SC, USA
| | - Bagi Jana
- University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - William K Oh
- Sema4, Stamford, CT, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | | | - Matthew D Galsky
- Corresponding author: Matthew D. Galsky, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA;
| |
Collapse
|
32
|
Nawrocka PM, Galka-Marciniak P, Urbanek-Trzeciak MO, M-Thirusenthilarasan I, Szostak N, Philips A, Susok L, Sand M, Kozlowski P. Profile of Basal Cell Carcinoma Mutations and Copy Number Alterations - Focus on Gene-Associated Noncoding Variants. Front Oncol 2021; 11:752579. [PMID: 34900699 PMCID: PMC8656283 DOI: 10.3389/fonc.2021.752579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Basal cell carcinoma (BCC) of the skin is the most common cancer in humans, characterized by the highest mutation rate among cancers, and is mostly driven by mutations in genes involved in the hedgehog pathway. To date, almost all BCC genetic studies have focused exclusively on protein-coding sequences; therefore, the impact of noncoding variants on the BCC genome is unrecognized. In this study, with the use of whole-exome sequencing of 27 tumor/normal pairs of BCC samples, we performed an analysis of somatic mutations in both protein-coding sequences and gene-associated noncoding regions, including 5'UTRs, 3'UTRs, and exon-adjacent intron sequences. Separately, in each region, we performed hotspot identification, mutation enrichment analysis, and cancer driver identification with OncodriveFML. Additionally, we performed a whole-genome copy number alteration analysis with GISTIC2. Of the >80,000 identified mutations, ~50% were localized in noncoding regions. The results of the analysis generally corroborated the previous findings regarding genes mutated in coding sequences, including PTCH1, TP53, and MYCN, but more importantly showed that mutations were also clustered in specific noncoding regions, including hotspots. Some of the genes specifically mutated in noncoding regions were identified as highly potent cancer drivers, of which BAD had a mutation hotspot in the 3'UTR, DHODH had a mutation hotspot in the Kozak sequence in the 5'UTR, and CHCHD2 frequently showed mutations in the 5'UTR. All of these genes are functionally implicated in cancer-related processes (e.g., apoptosis, mitochondrial metabolism, and de novo pyrimidine synthesis) or the pathogenesis of UV radiation-induced cancers. We also found that the identified BAD and CHCHD2 mutations frequently occur in melanoma but not in other cancers via The Cancer Genome Atlas analysis. Finally, we identified a frequent deletion of chr9q, encompassing PTCH1, and unreported frequent copy number gain of chr9p, encompassing the genes encoding the immune checkpoint ligands PD-L1 and PD-L2. In conclusion, this study is the first systematic analysis of coding and noncoding mutations in BCC and provides a strong basis for further analyses of the variants in BCC and cancer in general.
Collapse
Affiliation(s)
- Paulina Maria Nawrocka
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Paulina Galka-Marciniak
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | - Natalia Szostak
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Philips
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Laura Susok
- Department of Dermatology, Venereology and Allergology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Michael Sand
- Department of Dermatology, Venereology and Allergology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany.,Department of Plastic Surgery, St. Josef Hospital, Catholic Clinics of the Ruhr Peninsula, Essen, Germany Department of Plastic, Reconstructive and Aesthetic Surgery, St. Josef Hospital, Essen, Germany
| | - Piotr Kozlowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
33
|
Pezzicoli G, Filoni E, Gernone A, Cosmai L, Rizzo M, Porta C. Playing the Devil's Advocate: Should We Give a Second Chance to mTOR Inhibition in Renal Clear Cell Carcinoma? - ie Strategies to Revert Resistance to mTOR Inhibitors. Cancer Manag Res 2021; 13:7623-7636. [PMID: 34675658 PMCID: PMC8500499 DOI: 10.2147/cmar.s267220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/24/2021] [Indexed: 01/10/2023] Open
Abstract
In the last decade, the inhibition of the mechanistic target of Rapamycin (mTOR) in renal clear cell carcinoma (RCC) has disappointed the clinician's expectations. Many clinical trials highlighted the low efficacy and unmanageable safety profile of first-generation mTOR inhibitors (Rapalogs), thus limiting their use in the clinical practice only to those patients who already failed several therapy lines. In this review, we analyze the major resistance mechanisms that undermine the efficacy of this class of drugs. Moreover, we describe some of the possible strategies to overcome the mechanisms of resistance and their clinical experimentation, with particular focus on novel mTOR inhibitors and the combinations of mTOR inhibitors and other anti-cancer drugs.
Collapse
Affiliation(s)
- Gaetano Pezzicoli
- Department of Biomedical Sciences and Human Oncology, Post-Graduate School of Specialization in Medical Oncology, University of Bari 'A. Moro', Bari, Italy.,Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Elisabetta Filoni
- Department of Biomedical Sciences and Human Oncology, Post-Graduate School of Specialization in Medical Oncology, University of Bari 'A. Moro', Bari, Italy.,Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Angela Gernone
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Laura Cosmai
- Onconephrology Outpatient Clinic, Division of Nephrology and Dialysis, A.S.S.T. Fatebenefratelli-Sacco, Fatebenefratelli Hospital, Milan, Italy
| | - Mimma Rizzo
- Division of Translational Oncology, I.R.C.C.S. Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Camillo Porta
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy.,Chair of Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari 'A. Moro', Bari, Italy
| |
Collapse
|
34
|
Kato S, Cohen EEW. Did Everolimus Break the Rules? Clin Cancer Res 2021; 27:3807-3808. [PMID: 33986025 DOI: 10.1158/1078-0432.ccr-21-1508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022]
Abstract
A phase II study with everolimus (mTORC1 inhibitor) among advanced solid tumors patients with TSC1/TSC2 or MTOR alterations was recently published. Although efficacy was limited, the study provided the future groundwork to advance the targeted therapy approach.See related article by Adib et al., p. 3845.
Collapse
Affiliation(s)
- Shumei Kato
- Division of Hematology-Oncology, Department of Internal Medicine, University of California, San Diego, Moores Cancer Center, La Jolla, California
| | - Ezra E W Cohen
- Division of Hematology-Oncology, Department of Internal Medicine, University of California, San Diego, Moores Cancer Center, La Jolla, California.
| |
Collapse
|